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Summary
In this paper we deal with integrals whose integrand has a rapidly oscillating zero-
order Bessel function of the first kind with real parameters in its argument which can
become large. We introduce and tabulate model integrals which depend on a single
parameter, which can determine the behavior of the original integral near the zeros
of the argument of the Bessel function. As an example of the uniform asymptotic
analysis, we evaluate the multi-parameter integral which arises in the solution of
the transition problem for an accelerating moving load on an elastically supported
infinite string. Asymptotic predictions are compared with the results obtained by
direct numerical integration.

1. Introduction

The method of stationary phase is of particular importance for numerous applications in
physics and engineering. It is studied in great detail and described in a number of the
classical textbooks in the field of asymptotic analysis (e.g. see (1),(2)). At the same
time uniform generalizations of this method are usually restricted to the integration of
rapidly oscillating sinusoidal functions (see the monograph (3) and the more recent journal
publications (4),(5)). The most famous example of a uniform stationary phase expansion is
the situation when two stationary points merge. As a result, a more complicated asymptotic
behavior which occurs is expressed in terms of the Airy function.

When integrating an oscillating Bessel function with a large parameter in its argument,
the vicinities of the zeros of the argument require a special treatment (see (3), (6)). The
point is that the well-known sinusoidal-type asymptotics of Bessel functions fail in this case
and, therefore, the aforementioned techniques are not applicable. Thus, the peculiarity of
uniform analysis of the integrals involving Bessel functions derives from the effect of various
parameters on the behavior of the zeros of the argument.

In this paper we study uniform asymptotic behaviors of integrals with a rapidly oscillating
zero-order Bessel function of the first kind J0. The problem is specified in section 2,
where we also define three model integrals (2.8), (2.11) and (2.14) with the argument
depending on the real non-negative parameter α as s

√
α + s,

√
s(α + s) and s

√
α− s (s is

the integration parameter), respectively. It is shown how these model integrals arise from
uniform asymptotic analysis. In section 3 for each of them we establish local asymptotics
both for large and small values of the parameter; in doing so, a more sophisticated limit of
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large α is studied using the steepest descent method (e.g. see (6), (7)) implemented for the
Hankel function.

In section 4 of the paper we apply, as an example, the model integrals investigated in
section 3 for the evaluation of the multi-parameter integral of the Bessel function J0 arising
from the problem of an accelerating moving load on an elastically supported infinite string,
previously investigated in (8, 9). In this case the passage through the sound wave speed with
a small acceleration is associated with the presence of a large parameter in the argument of
the Bessel function. Two other problem parameters correspond to the speed of the load and
its moving co-ordinate. Three specific combinations of the last two parameters are tackled
by utilizing the model integrals.

Two sets of numerical computations are presented in the paper. The first of these is to
tabulate the model integrals and test the accuracy of the local asymptotics in section 3.
The second one deals with the application of these integrals to the derivation of uniform
asymptotics in the problem for a string.

2. Statement of the problem
We begin with the integral

F(ν) =

b∫

a

J0(νf(p))dp, b > a, (2.1)

where ν is a large real parameter and J0 denotes the zero-order Bessel function of the first
kind.

Away from the zeros of the argument f(p), the Bessel function of the integrand (2.1)
behaves as (10)

J0(νf(p)) ∼
√

2
πνf(p)

cos
(
νf(p)− π

4

)
, ν À 1. (2.2)

As a result, the integral (2.1) can be evaluated using the standard method of stationary
phase.

Let us now assume that f(0) = 0, f ′(a) > 0 and f(p) = f ′(a)(p − a) + ... (|p − a| ¿ 1).
Assuming for the sake of simplicity that the function f(p) has no stationary points and
zeros over the domain of integration in (2.1) (see (3), (6) for further details) we have after
the substitution s = νf ′(a)(p− a)

F(ν) ∼ 1
νf ′(a)

νf ′(a)(b−a)∫

0

J0(s)ds. (2.3)

Finally, we get for ν À 1 (11)

F(ν) ∼ 1
νf ′(a)

∞∫

0

J0(s)ds =
1

νf ′(a)
. (2.4)

Thus, the contribution of the zeros of the J0 argument is of the same asymptotic order
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O(ν−1) as that of ordinary stationary phase points (the additional factor ν−1/2 comes from
the asymptotic formula (2.2)).

In this paper we investigate integrals of the type

F(ν, β) =

b∫

a

J0(νf(p, β))dp, (2.5)

with an extra real parameter β.
Our main focus is the uniform asymptotic analysis in terms of the parameters ν and

β, dealing in particular with the dominant contributions of the J0 zeros, which cannot be
reduced to well known uniform generalizations of the stationary phase method including,
for example, the Airy function (e.g. see (3) and reference therein).

To this end, we introduce canonical integrals that play, in our considerations, the same
role as the above mentioned Airy function (and some others) do in the well established case
of oscillating sinusoidal functions.

If, for example, in (2.5)

f(p, β) = p
√

p + β, β ≥ 0, (2.6)

and the limits of integration are a = 0 and b = ∞, we have after the substitution p = ν−2/3s

F(ν, β) = ν−2/3F1(α), (2.7)

where

F1(α) =

∞∫

0

J0(y
√

α + s)ds. (2.8)

Here and below α = βν2/3 is a real non-negative parameter.
For the same limits of integration in (2.5) and with

f(p, β) = (p + β)
√

p, β ≥ 0, (2.9)

we get

F(ν, β) = ν−2/3F2(α), (2.10)

where

F2(α) =

∞∫

0

J0(
√

s(α + s))ds. (2.11)

The last canonical integral considered in the paper arises from letting

f(p, β) = p
√

β − p, β ≥ 0 (2.12)

with the limits a = 0 and b = β.
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In this case

F(ν, β) = ν−2/3F3(α), (2.13)

where

F3(α) =

α∫

0

J0(s
√

α− s)ds. (2.14)

In more general situations when the formula (2.6), (2.9) and (2.12) correspond to the
local approximations of the Bessel function argument near its zeros and for arbitrary limits
of integration we may expect that the canonical integrals (2.8), (2.11) and (2.14) will appear
as the leading order terms in related asymptotic expansions. In section 4 of the paper all
of these integrals naturally arise in the moving load problem for a string.

3. Canonical integrals

The behavior of the argument of the Bessel function in all the canonical integrals (2.8),
(2.11) and (2.14) is strongly affected by the parameter α. In particular, in (2.8) and (2.11)
it has, respectively, the limiting forms α1/2y and αy1/2 for α À 1 and tends to y3/2 for
α ¿ 1 in both integrals. In (2.14) the argument of J0 is uniformly small for α ¿ 1, whereas
it takes large values, outside the vicinities of the end points, in this integral for α À 1.

Let us study in greater detail the asymptotic behavior of the functions Fi (i = 1, 2, 3) in
the domain of small and large values of the parameter α. It is clear that (see e.g. (11))

lim
α→0

Fj(α) =

∞∫

0

J0(s3/2)ds =
2
√

π

3Γ (5/6)
, j = 1, 2. (3.1)

It is also evident that

F3(α) ∼ α as α ¿ 1, (3.2)

since J0(s
√

α− s) ∼ 1.
Asymptotic analysis for α À 1 requires more delicate calculations. Let us express first

the functions Fi (i = 1, 2, 3) in terms of integrals of the Hankel function H
(1)
0 . Changing

variables in (2.8), (2.11) and (2.14) by the formulae y = −α(z2 + 1), y = αz2 and y =
α(z2 + 1), respectively, we have

F1(ν) = −2ν2/3Re

i∞∫

i

H
(1)
0 (iνh)zdz (3.3)

F2(ν) = 2ν2/3Re

∞∫

0

H
(1)
0 (νh)zdz (3.4)
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and

F3(ν) = 2ν2/3Re

0∫

−i

H
(1)
0 (iνh)zdz (3.5)

where ν = α3/2 À 1 and h(z) = z(z2 + 1)
The asymptotic behavior of the Hankel function in (3.3) - (3.5) for ν|h| À 1 is given by

(see (10))

H
(1)
0 (iνh) ∼ −i

√
2

πνh
e−νh (3.6)

and

H
(1)
0 (νh) ∼ e−

πi
4

√
2

πνh
eiνh. (3.7)

The exponentials in the right-hand sides of the formulae (3.6) - (3.7) motivate making
use of the steepest descent method (e.g. see (6), (7)) when evaluating the original integrals
(3.3) - (3.5). To this end we introduce a complex variable z = x + iy having

h(x + iy) = hr(x, y) + ihi(x, y) (3.8)

where

hr(x, y) = Reh(x + iy) = x(x2 − 3y2 + 1),
hi(x, y) = Imh(x + iy) = y(3x2 − y2 + 1). (3.9)

In case of the function F1, we present the integral (3.3) as (see Fig. 1)
∫

C1

=
∫

C11

+
∫

C12

. (3.10)

where C1 is the original path of integration in (3.3), C11 is the steepest descent path through
the point z = i corresponding to the exponential in (3.6) and C12 is the path along the circle
of an infinitely large radius. Here and below we omit integrands in all symbolic formulae.

Along the steepest descent path C11 we have Imh(z) = Imh(i) = 0 (see (3.6) and (3.9)).
Therefore

y =
√

3x2 + 1. (3.11)

We start from the first integral in (3.10). Near the end point z = i we get h(z) ≈
−2x, z ≈ i and dz ≈ dx. Thus,

∫

C11

∼ i

−∞∫

0

H
(1)
0 (−2iνx)dx. (3.12)

It is clear that the contribution of the integral along C12 vanishes. Then, by substituting
x1 = −2νx in (3.12) we obtain from (3.10)
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C1

C12

C11

x

y

1
π/3

0

Fig. 1 Contour integration in (3.3)

∫

C1

∼ − i

2ν

∞∫

0

H
(1)
0 (ix1)dx1 = − 1

πν

∞∫

0

K0(x1)dx1 = − 1
2ν

(3.13)

where K0 - denotes the Macdonald function. Finally, we have from (3.3)

F1(α) ∼ 1√
α

(3.14)

To establish the asymptotic behavior of the functions F1 and F2 we need to calculate the
saddle points of the function h(z). By setting h′(z) = 0 we obtain 3z2 + 1 = 0. The saddle
points become z1,2 = ± i√

3
.

Next, consider the integral (3.4). The steepest descent path through the saddle point
z1 = i√

3
is determined by the condition Reh(z) = Reh( i√

3
) = 0 (see (3.7) and (3.9))

resulting in

y =
1√
3

√
x2 + 1 (3.15)

Similarly to (3.10) we present the integral (3.4) as (see Fig. ...)
∫

C2

=
∫

C21

+
∫

C22

+
∫

C23

(3.16)

where C21 is the part of the imaginary axis between the points z = 0 and z = i/
√

3, C22

is the steepest descent path and C23 is the path along the circle of an infinitely large radius.
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C2

C22

C21

C23

x

y

1√
3

π/6
0

Fig. 2 Contour integration in (3.4)

Along the path C21 we get z = iy and h(z) = i(1− y). Then

∫

C21

= −

1√
3∫

0

H
(1)
0

[
i(1− y2)

]
dy. (3.17)

The real part of the last integral is equal to zero and it does not affect the asymptotic
behavior of F2 (see (3.4)). By using the formula (3.7) we obtain

∫

C22

∼ −i

√
2
πν

∞∫

0

1
hi

exp (−νhi) (x + iy)
(

1 + i
dy

dx

)
dx. (3.18)

where the steepest descent path y(x) is given by (3.15) whereas

dy

dx
=

x√
3(x2 + 1)

, hi =
2

3
√

3

√
x2 + 1(4x2 + 1).

By applying the Laplace method (e.g. see (6), (7)) in (3.18) we arrive at the sought for
asymptotic formulae. It is

∫

C2

∼ exp
(
− 2ν

3
√

3

)
1√
πν

∞∫

0

(
−
√

3νx2
)

dx =
1
2ν

exp
(
− 2ν

3
√

3

)
. (3.19)

Now, by inserting (3.19) into (3.4) we get
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F2(α) =
1

α1/2
exp

(
−2α3/2

3
√

3

)
. (3.20)

The path of integration for the function F3 is shown in Fig. 3 . Here the path C31 goes
along the real axis, the path C32 goes along the steepest descent pathes associated with the
saddle point z = − i√

3
and C33 is the steepest descent path through the point z = −i.

Along the path C32 we have Imh(z) = Imh(− i√
3
) = − 2

3
√

3
and

x =
(

y +
1√
3

) √
y − 2/

√
3

3y
(3.21)

The equation of the path C33 follows from the condition Imh(z) = Imh(−i) = 0. The
result is

y = −
√

3x2 + 1. (3.22)

C3

C32

C31

C33 x

y

−1/
√

3

-1

π/3

0

Fig. 3 Contour integration in (3.5)

As above, we present the studied integral as a sum, i.e.
∫

C3

=
∫

C31

+
∫

C32

+
∫

C33

(3.23)

Along the path C31, we get y = 0 and h(z) = x(x2 + 1). The integral
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∫

C31

=

∞∫

0

H
(1)
0

[
ix(x2 + 1)

]
xdx (3.24)

takes an imaginary value and does not contribute to the function F3.
The integral along the path C33 is similar to that along C11 (see (3.12)). In this case

∫

C31

∼ −i

−∞∫

0

H
(1)
0 (−2iνx)dx =

1
2ν

. (3.25)

Near the saddle point z = − i√
3
, we derive from (3.21) y ≈ − 1√

3
+ x, z ≈ − i√

3
, dz ≈

(1 + i)dx and h(z) ≈ 2
√

3x2 − 2
3
√

3
i. Then, we obtain

∫

C32

∼ i

√
2
√

3
πν

exp
(
−i

2ν

3
√

3

) +∞∫

−∞
e−2

√
3νx2

dx (3.26)

and ∫

C3

∼ 1
ν1/2

[
1
2

+ i exp
(
−i

2ν

3
√

3

)]
. (3.27)

10 8 6 4 2 0 2 4 6 8 10
0

1

2

3

4

5

6

F1 F2

α α

Fig. 4 The function F1 and F2. Asymptotics (dashed line and asterisk) and numerics (solid line).

By substituting (3.27) into (3.5) we arrive at the formula

F3(α) ∼ 1
α1/2

(
1 + 2 sin

(
2α3/2

3
√

3

))
(3.28)
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0 1 2 3 4 5 6 7 8 9 10

−0.5

0.0

0.5

1.0

1.5

2.0

F3

α

Fig. 5 The function F3. Asymptotics (dashed line) and numerics (solid line).

Further, we may expect that the canonical integrals (2.8), (2.11) and (2.14) describe
uniform asymptotic behavior of more complicated integrals of this type for the case in
which the intermediate range α ∼ 1 is also of interest.

A comparison of the asymptotics of the functions Fi(i = 1, 2, 3) with the results of
numerical computations for the integrals (2.8), (2.11) and (2.14) is presented in Figs 4 and
5. The solid line in the first and second quadrants of Fig 4 corresponds to the computed
values of the integrals (2.11) and (2.8), respectively. The asymptotics (3.14) and (3.20) are
plotted in this figure by the dashed line. In addition, the limiting value (3.1) is denoted by
an asterisk. In Fig 5 the results of the numerical evaluation of the integral (2.14) (solid line)
are shown with its asymptotic forms (3.2) and (3.28) (dashed line). The tabulated values
of the functions Fi are also displayed in Table 1.

Here and below we use MatLab for calculating integrals.

4. An elastically supported string under accelerating load.

As an example, consider an infinite string lying on an elastic support and subject to a point
force uniformly accelerating from rest (see Fig 6). An appropriately nondimesionalised
equation of motion can be written as (e.g. see (8), (9) for more details)

−∂2w

∂ξ2
+

∂2w

∂τ2
+ w = δ(ξ − 1

2
aτ2) (4.1)

where τ is time, ξ is coordinate, a is acceleration, w is transverse displacement and δ denotes
Dirac’s delta; in doing so, dimensionless sound wave speed, stiffness of the elastic support
and magnitude of the moving load all take unit values.

The solution of the equation (4.1) with homogeneous initial data can be expressed as
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α F1 F2 F3 α F1 F2 F3

0.0 1.04713 1.04713 0.00000 2.6 0.58912 0.11115 1.76045
0.1 1.01559 0.98280 0.10000 2.7 0.58088 0.09995 1.73827
0.2 0.98573 0.91931 0.19997 2.8 0.57263 0.08843 1.70562
0.3 0.95731 0.85697 0.29983 2.9 0.56431 0.07774 1.66250
0.4 0.93014 0.79721 0.39947 3.0 0.55592 0.06911 1.60906
0.5 0.90419 0.74135 0.49870 3.1 0.54759 0.06270 1.54554
0.6 0.87948 0.68948 0.59730 3.2 0.53947 0.05738 1.47232
0.7 0.85611 0.64039 0.69501 3.3 0.53174 0.05167 1.38993
0.8 0.83418 0.59273 0.79150 3.4 0.52454 0.04511 1.29901
0.9 0.81374 0.54625 0.88640 3.5 0.51796 0.03857 1.20037
1.0 0.79476 0.50200 0.97932 3.6 0.51197 0.03343 1.09492
1.1 0.77713 0.46135 1.06979 3.7 0.50648 0.03026 0.98372
1.2 0.76065 0.42469 1.15733 3.8 0.50131 0.02824 0.86796
1.3 0.74507 0.39101 1.24142 3.9 0.49626 0.02589 0.74891
1.4 0.73014 0.35877 1.32152 4.0 0.49116 0.02241 0.62798
1.5 0.71564 0.32725 1.39704 4.1 0.48587 0.01832 0.50663
1.6 0.70144 0.29713 1.46740 4.2 0.48036 0.01503 0.38642
1.7 0.68751 0.26977 1.53200 4.3 0.47467 0.01345 0.26893
1.8 0.67391 0.24590 1.59023 4.4 0.46893 0.01316 0.15576
1.9 0.66077 0.22483 1.64149 4.5 0.46332 0.01276 0.04852
2.0 0.64826 0.20502 1.68519 4.6 0.45802 0.01116 -0.05122
2.1 0.63651 0.18539 1.72079 4.7 0.45315 0.00852 -0.14195
2.2 0.62562 0.16623 1.74774 4.8 0.44880 0.00612 -0.22225
2.3 0.61556 0.14884 1.76558 4.9 0.44492 0.00515 -0.29082
2.4 0.60625 0.13423 1.77387 5.0 0.44142 0.00561 -0.34651
2.5 0.59751 0.12214 1.77225

Table 1 Tabulated values of canonical integrals

w(ν, λ, u) = ν

u∫

0

J0(νφ(u, λ, z))H(φ2(u, λ, z))dz (4.2)

with
φ(u, λ, z) =

√
z2 − (λ + uz − z2/2)2 (4.3)

where H denotes Heaviside step function. The last integral depends on three problem
parameters including the load speed u = aτ , the moving coordinate λ = ξ − 1

2aτ2, and
the parameter ν = 1/a. The large values of the parameter ν (ν À 1) are associated with
dynamic phenomena observing when the load speed passes through the critical value u = 1,
i.e. the sound wave speed in a string, with a small acceleration a. Non-uniform asymptotics
of the function (4.2) were derived in (8).

Below we investigate the string behavior at the moving point λ = 0, where the force is
applied and also at the moving singularity λ = − (u−1)2

2 . The latter arises when passing
through the sound speed and coincides with the point λ = 0 at u = 1. The aforementioned
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w u

ξ

ξ

λ

Fig. 6 Elastically supported string under moving load

moving points are of the main interest when investigating the passage through the sound
wave barrier. Below we study three combinations of the problem parameters.

(i) The displacement under the load before the passage (u ≤ 1 and λ = 0).
In this case the original integral in (4.2) becomes

I =

u∫

0

J0(νφ(u, 0, t))dt, (4.4)

with

φ(u, 0, t) = t

√
1− u2 + t− t

[
(1− u) +

t

4

]
. (4.5)

In the vicinity of the end point t = 0 in the integral (4.4) we have φ(u, 0, t) ≈ t
√

1− u2,
if t ¿ 1− u. Otherwise, for 1− u ¿ t ¿ 1 we get φ(u, 0, t) ≈ t3/2. The formula

φ(u, 0, t) ≈ t
√

1− u2 + t, t ¿ 1 (4.6)

contains both of the limiting forms.
As above, to the leading order we may substitute infinity at the upper limit of the last
integral. Finally, we obtain a simpler integral, which is
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I ∼
∞∫

0

J0(νt
√

1− u2 + t)dz. (4.7)

Next, changing the independent variable by t1 = tν2/3 we establish the sought for
uniform asymptotic behavior in the parameters ν and u

I ∼ ν−2/3

∞∫

0

J0(t1
√

ν2/3(1− u2) + t1)dt1, (4.8)

or
I ∼ ν−2/3F1(η). (4.9)

where the fundamental parameter η determines the scaling of the problem. It is given
by

η = ν2/3(1− u2) (4.10)

Outside the characteristic zone η ∼ 1 (1 − u2 ∼ ν−2/3) the function F1 in (4.9) can
be reduced to the local forms (3.1) for η ¿ 1 (1 − u2 ¿ ν−2/3) and (3.14) for η À 1
(1− u2 À ν−2/3). Such an observation is relevant for other integrals considered below
in this section.

(ii) The displacement under the load after the passage (u ≥ 1 and λ = 0).
Now, we get

I =

u∫

2(u−1)

J0(νφ(u, 0, t))dt, (4.11)

with

φ(u, 0, t) =
t

2

√
(t− 2(u− 1))(2(u + 1)− t). (4.12)

In this case we present the function φ(u, 0, t) near the end point t = 2(u− 1) as

φ(u, 0, t) ≈ t
√

t− 2(u− 1). (4.13)

After changing the independent variable by

t1 = ν2/3(t− 2(u− 1)), (4.14)

we obtain

I ∼ ν−2/3

∞∫

0

J0((t1 + 2ν2/3(u− 1))
√

t1)dt1 = ν−2/3F2(2ν2/3(u− 1)). (4.15)

This asymptotics is of interest only over the narrow vicinity of the sound wave speed
(u − 1 ∼ ν−2/3) due to exponential decay of the function F2. In this case, we may
introduce the parameter η in the last formula setting 2− u ≈ u2 − 1.
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Fig. 7 Uniform asymptotics (solid line) and numerics (dashed line) of the function (4.2) using
integrals (4.4) (u ≤ 1) and (4.9) (u ≥ 1).
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Fig. 8 Uniform asymptotics (dashed line) and numerics (solid line) of the function (4.2) using
integrals (4.16).

(iii) The displacement at the moving singularity (u ≥ 1 and λ = − 1
2 (u− 1)2).

We have in (4.2)

I = I1 + I2, (4.16)
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with

I1 =

u∫

u−1

J0(νφ(u,−1
2
(u− 1)2), t))dt, (4.17)

and

I2 =

u−1∫

(
√

u−1)2

J0(νφ(u,−1
2
(u− 1)2), t))dt, (4.18)

where

φ(u,−1
2
(u− 1)2, t) = ±(t− (u− 1))

√
−1

4
(t− (

√
u− 1)2)(t− (

√
u + 1)2). (4.19)

Here and below the signs ”+” and ”−” correspond to the integrals I1 and I2,
respectively.
Let us restrict ourselves to the parameter range in which the values of u are close
enough to the value u = 1. In this case we may set

√
u + 1 ≈ 2. Next, we expand

the function (4.19) near the left end point in the integral (4.17) and over the whole
integration domain in the integral (4.18). It becomes

φ(u,−1
2
(u− 1)2, t) ≈ ±(t− (u− 1))

√
t− (

√
u− 1)2.

Now, we change the variables in the integrals (4.17) and (4.18) by the formula

t1 = ±ν2/3(t− (u− 1)). (4.20)

The result is

I1 ∼ ν−2/3

∞∫

0

J0(t1
√

t1 + 2(
√

u− 1)ν2/3)dt1 = ν−2/3F1(2(
√

u− 1)ν2/3), (4.21)

and

I2 ∼ ν−2/3

2(
√

u−1)ν2/3∫

0

J0(t1
√

2(
√

u− 1)ν2/3 − t1)dt1 = ν−2/3F3(2(
√

u− 1)ν2/3).

(4.22)
Finally,

I ∼ ν−2/3[F1(2ν2/3(
√

u− 1)) + F3(2ν2/3(
√

u− 1))]. (4.23)

Similar to the previous case, we may operate with the functions Fj(− 1
2η) (j = 1, 3) in

the vicinity of the sound wave speed where
√

u− 1 ≈ 1
4 (u2 − 1).
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Numerical examples are presented in Figs 7 and 8. In Fig 7 we display the computed
values of the function (4.2) using the formulae (4.4) and (4.11) (dashed line) along with its
uniform asymptotic behaviors given by the formulae (4.9) and (4.15) (solid line). Graphs of
the function (4.2) in case of integral (4.16) (dashed line) and uniform asymptotic formula
(4.23) (solid line) are plotted in Fig 8.

These figures illustrate uniform validity of the derived asymptotic formulae in case of the
moving load problem for a string. The striking difference between asymptotic behaviors
of the functions F1 and F2 for α À 1 leads to a strong asymmetry of the resonant curves
in Fig. 7. In Fig. 8 the function F3 reproduces oscillatory patterns associated with the
passage through sound wave barrier.

5. Concluding remarks
In this paper we define canonical integrals (2.8), (2.11) and (2.14) involving the Bessel
function with a real parameter in its argument. They demonstrate a potential for
constructing uniform asymptotic expansions due to their distinct limiting behavior at large
and small values of the parameter.

These integrals are successfully applied to the evaluation of the three-parameter integral
(4.2). The large values of one of the parameters in that integral correspond to the case of
a slowly accelerating point load on an infinite string resting on an elastic foundation.

The derived asymptotic formulae are useful not only for a numerical investigation of
the passage through the sound wave speed, but also allow a better physical insight. In
particular they provide an important information on the scaling law. In fact, all the uniform
asymptotic formulae in Section 4 involve the parameter η (see (4.10)) expressing the scaling
of the analyzed phenomenon.

The developed methodology may be easily extended to deal with other types of oscillating
Bessel functions with arguments of different forms, that will result in making use of other
canonical integrals. In addition, the applications of the uniform asymptotics of the integrals
of Bessel functions are expected to have a wider application than to the here considered
problem for a string.
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