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Abstract 

Queueing systems arise in modelling of many practical applications related to 

computer sciences, telecommunication networks, manufacturing and production, 
human computer interaction, and so on. The classical queueing system, even 

vacation queues or queues subject to breakdown, might not be sufficiently 

realistic. 

The purpose of this research is to extend the work done on vacation queues and on 

unreliable queues by studying queueing systems which take into consideration 
both phenomena. We study the behavior of a batch arrival queueing system with 

a single server, where the system is subject to random breakdowns which require 

a repair process, and on the other hand, the server is allowed to take a vacation 

after finishing a service. The breakdowns are assumed to occur while serving 

a customer, and when the system breaks down, it enters a repair process 
immediately while the customer whose service is interrupted comes back to the 
head of the queue waiting for the service to resume. Server vacations are assumed 
to follow a Bernoulli schedule under single vacation policy. 

We consider the above assumptions for different queueing models: queues with 

generalized service time, queues with two-stages of heterogeneous service, queues 

with a second optional service, and queues with two types of service. For all the 

models mentioned above, it is assumed that the service times, vacation times, and 

repair times all have general arbitrary distributions. 

Applying the supplementary variable technique, we obtain probability generating 
functions of queue size at a random epoch for different states of the system, and 

some performance measures such as the mean queue length, mean waiting time in 

the queue, proportion of server's idle time, and the utilization factor. The results 

obtained in this research, show the effect of vacation and breakdown parameters 

upon main performance measures of interest. These effects are also illustrated 

using some numerical examples and graphs. 
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Notations and Abbreviations 

M Number of customers in the system. 

n Number of customers in the queue. 
A The average rate of customers entering the queue system. 

P The average rate of serving customers per server. 

PA measure of traff ic congestion for single server system which is 

defined as p =- Alu 

P (t) Transient state probability of having exactly m customers in the 

system at time t. 
P. Steady state probability of having exactly m customers in the system. 

N(t) Random Variable representing the total number of customers in the 

system at time t. 

NI(t) Random Variable representing the total number of customers in the 

queue at time t. 
N, (t) Random Variable representing the total number of customers in 

service at time t. 

T Random variable representing the time a customer spends in the 

system. 
Tq Random variable representing the time a customer spends waiting in 

the queue prior to entering service. 
S Random variable representing the service time with mean service 

time E[S] = 11, u 
L The mean number of customers in the system, i. e. L= E[N] 

Lq The mean number of customers in the queue, i. e. Lq = E[Nq] 

W The mean waiting time in the system, i. e. W= E[71 

Wq The mean waiting time in the queue, i. e. W. = E[Tq] 

Probability that, at time t, the server is providing a service and there 

are n (n '? - 0) customers in the queue excluding the one being served 

and the clapsed service time for this customer is x. 

P (x, t)dc denotes the probability that, at time t, the server 
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is providing a service and there are n (n ý: 0) customers in the queue 

excluding the one being served irrespective of the value of x. 
V, (X, t) Probability that at time t, the server is on vacation with elapsed 

vacation time x and there are n (n ; -> 0) customers waiting in the queue 
for service. 

V. W V. (t) =fV. (x, t)dx denotes the probability that at time t there are n 

customers in the queue and the server is on vacation irrespective of 

the value of x. 
R,, (x, t) Probability that at time t, the system is inactive due to system 

breakdown and the system is under repair with elapsed repair time x, 

while there are n (n ý: 0) customers in the queue waiting for service. 

R,, (t) R. (t) =rR,, (x, t)dx denotes the probability that at time t, the 

system is inactive due to system breakdown and the system is under 

repair irrespective of the value of x, while there are n (n ; -> 0) 

customers in the queue waiting for service. 
Q(t) Probability that at time t, there are no customers in the system and the 

server is idle but available in the system. 

(X, 0 Probability that, at time t, the server is providing the j' stage of 

service, j=1,2, and there are n (n -: t 0) customers in the queue 

excluding the one inp stage of service, and the elapsed service time 

for this customer is x. 

P(j)(t) 
R P,, (J)(t) P, ý)(x, t)dx denotes the probability that at time t, the 

server is providing the P stage of service, j=1,2, and there are n 
(n ý! 0) customers in the queue excluding the one infh stage of service 
irrespective of the value of x. 

e)(X, t) Probability that, at time t, the server is providing the first essential 

service and there are n (n ; >- 0) customers in the queue excluding the 

one being provided the first essential service, and the elapsed service 
time for this customer is x. 

P. '(elo P,, (el(t) =fP. ()(x, t)dr denotes the probability that, at time 1, the 
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server is providing the first essential service and there are n (n ýt 0) 

customers in the queue excluding the one being provided the first 

essential service irrespective of the value of x. 

P. 60)(X, t) Probability that, at time t, the server is providing the second 9ptional 

service and there are n (n ; -> 0) customers in the queue excluding the 

one being provided the second optional service, and the elapsed 

service time for this customer is x. 

P P"'01(t) (01(t) P. ()(x, t)dx denotes the probability that, at time 1, the 

server is providing the second pptional service and there are n (n ; -> 0) 

customers in the queue excluding the one being provided the second 

optional service irrespective of the value of x. 

P. ý'W(X, O Probability that, at time t, the server is providing the t kind of 

service, j=1,2, and there are n (n ý: 0) customers in the queue 

excluding the one being provided the fh kind of service, and the 

elapsed service time for this customer is x. 

P ('cJ) (t ) 
R 

P"(KJ)(t) P. (J)(x, t)dx denotes the probability that, at time t, the 

server is providing the fh kind of service, j=1,2, and there are n 
(n 2: 0) customers in the queue excluding the one being provided the 
ýh kind of service irrespective of the value of x. 

Soca 



Chapter 1 

Preliminaries 

1.1 Introduction 

Everyone has experienced the annoyance of having to wait in queues. 
Unfortunately, this phenomenon continues to be common in congested, urbanized 

societies. For example, in the United States, it has been estimated that Americans 

spend 37,000,000,000 hours per year waiting in queues. If this time could be spent 

productively instead, it would amount to nearly 20 million person-years of useful 

work each year! (Hillier & Lieberman, 2005) 

We, as customers, do not generally like to wait in queues, and the managers of the 

establishments at which we wait also do not like us to wait, since it may cost them 
business, but this is the situation whenever the current demand for a service 
exceeds the current capacity to provide that service. Decisions regarding the 

amount of capacity to provide must be made frequently in industry and elsewhere. 
However, these are difficult decisions since it is often impossible to accurately 

predict when customers will arrive requiring a service and/or how much time will 
be needed to provide the required service. Adding more servers in the system is 

costly; on the other hand, fewer servers would cause the waiting queue to become 

excessively long. Therefore, the goal is to achieve an economical balance between 

the cost and the waiting line length. Queueing theory itself does not directly find 

this balance. However, it does contribute vital information required for such 
a decision by predicting various characteristics of the waiting queue such as the 

average waiting time, the average number of customers in the queue, etc. (Gross 

& Harris, 1998; Hillier & Lieberman, 2005). 
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Willig (2004) described a queueing system as a service centre and a population of 

customers, that may enter the service centre at various points of time in order to 

get service. In many cases, the service centre can only serve a limited number of 

customers at a time. If a new customer arrives and there is no free server, the 

customer enters a waiting line and waits until the service facility becomes 

available. Figure 1.1 shows the elements of a simple queueing model. 

0 
11 140 

Arriving Waiting Customer Server Departing 
customers customers in service customers 

Figure 1.1 The classical queueing model 

The term customer is used in a general sense and doesn't imply necessarily a 
human customer. For example, a customer could be a ball bearing waiting to be 

polished, an airplane waiting in line to take off, or a computer command waiting 

to be performed (Gross & Harris, 1998). 

It is not necessary that there actually be a physical waiting line in front of the 

service provider. In other words, the members of the queue may be scattered 
throughout an area waiting for the server to come to them, e. g. machines waiting 
to be repaired (Hillier & Lieberman, 2005). 

There are many valuable applications of the theory, most of which have been 

documented in the literature of probability, operations research, management 

science, and industrial engineering. The following are some examples in 

which queues occur as described by Adan and Resing (2001), Willig (2004) and 
Daigle (2005). 

a Supermarkets: Customers wait at the checkouts, and queues become 

longer at peak-hours. The number of available checkouts is an important 

decision. 

m Traffic lights: Traffic lights should be regulated in a way such that the 

waiting times are managed. 
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Computers: A computer with a single processor runs a set of tasks. Each 

task requires some computation time. The task completion times are of 
interest, and if there are other shared resources like disks, printers, etc., 
then jobs waiting for these resources often have to be queued. 

n Dental clinic: When there is no appointments system, patients arrive and 

queue to see the doctor for treatment. 

s Call centres: In some companies and institutes, questions by phone are 
handled by a call centre. The call centre has a team structure where each 

operator helps a customer. A customer calling for help might wait in 

a queue till an operator becomes available. 

a Post Office: In a post office there may be specialized counters for stamps, 

packages, financial transactions, etc. Counters with the same specialisation 

could have one common queue or separate queues. 

a Data communication: As data traverses the Internet, it is multiplexed onto 

and demultiplexed from data communications lines at a number of 

switches, the interconnection of which fonns an end-to-end path. Queues 
form at many points along the path. 

1.2 Historical Background 

Queueing theory history goes back nearly 100 years when A. K. Erlang, the 
Danish engineer who worked for the Copenhagen Telephone Exchange, published 
"The Theory of Probabilities and Telephone Conversations" in 1909. In later 

works, he observed that a telephone system could be modeled as Poisson input 

which represents the random arrival of calls, exponential or constant holding 
(service) times, and single or multiple channels. His papers written during the 
following 20 years contain some of the most important concepts and techniques, 

such as the notion of statistical equilibrium, the method of writing down balance 

equations, and optimization of a queueing system. 

In 1927 Molina published his paper "Application of the Theory of Probability to 
Telephone Trunking Problems", and after a year Fry published "Probability and 
its Engineering Uses". 



Chapter 14 

In the early 1930's, Pollaczek investigated queueing systems during finite time 
intervals. At that time, several theoreticians became interested in such problems 

and developed general models which could be used in more complex situations, 

such as Kolmogorov and Khintchine in Russia, Crommelin in France, and Palm in 

Sweden. 

Queueing theory as an identifiable body of literature was essentially defined by 

the fundamental research of the 1950's and 1960's. In 1966, Saaty stated: "in the 

past seven years the literature on queueing theory has increased by half of its 

amount for the previous fifty years". Kovalenko (1974) presented a survey of 

mathematical research in queueing theory in the period from 1964 to 1970. 

The queue with Poisson arrival, exponential service, and single server is one of 
the earliest systems to be analysed. Bailey used generating functions for the 

differential equations governing the system in 1954, Lederman and Reuter used 

spectral theory in their solution in 1956, while Laplace transformations were 

used later. Kendall initiated a probabilistic approach to the analysis in 1951 and 
1953. 

In the 1960's several authors investigated the use of approximation in the analysis 

of queueing systems. Kingman initiated the analysis under heavy traffic in 1965, 
Newell suggested fluid approximation in 1968, and Iglehart investigated diffusion 

approximation and weak convergence in 1970. 

Computer technology inspired the field of queueing theory. The first article 

on queueing networks was by Jackson in 1957, while complex queueing 

network problems have been investigated extensively since the early 1970's. In 

1975, Neuts developed an analysis technique for the transform method to 

multivariables. Some special queueing models of the 1950's and 1960's have 
found broader applicability in the context of computers and communication 
systems such as Polling models, Vacation models, and Retrial models. 

Since the 1970's, with the advent of new processes in manufacturing, the 

application of queueing theory results and the development of new techniques 
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have occurred at a phenomenal rate. Dallery and Gershwin wrote about 

manufacturing flow line systems. In 1992 Bitran and Dasu reported open 

queueing network models of manufacturing systems. 

Clark gave the first theoretical treatment of the estimation problem in 1957, while 

the first paper on estimating parameters in a non-Markovian system is by Goyal 

and Harris in 1972. Hillier's paper in 1963 on economic models for industrial 

waiting line problems is the first paper to introduce standard optimization 
techniques to queueing problems. Since then, operations researchers trained in 

mathematical optimization techniques explored their use in a large number of 

queueing systems. Bauerle considered an optimal control problem in a queueing 

network in 2002. (Bhat, 1969; 2008; Gross & Harris, 1998) 

1.3 Characteristics of a Queueing System 
In describing any queueing system, some characteristics should be specified in 

order to understand the nature of the system. Tanner (1995), Gross and Harris 

(1998), Adan and Resing (2001), and others discussed such characteristics, and 

they mentioned the following: 

1.3.1 Arrival Pattern of Customers 

In usual queueing situations, the process of arrivals is stochastic, and it is thus 

necessary to know the probability distribution describing the times between 

successive customers arrivals (interarrival times). The rate of arrivals or 
the average number of arrivals per minute can be defined. A common 

assumption is that arrivals are at random. Customers may arrive one by one or 
in batches, and if customers arrive in batches, it is necessary to know the 

probability distribution describing the size of batches. Langaris and 
Moutzoukis (1995) and Drezner (1999) among many others have investigated 

queueing systems with batch arrivals. 

The population of customers may be finite or infinite. It is often assumed that 

the population is infinite even when the actual size is some relatively large 
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finite number. The manner in which the pattern of arrivals changes with time 

should be considered. An arrival pattern could be: 

m Stationary, i. e., the probability distribution describing the input process 
is time-independent. 

a Nonstationary, i. e., the probability distribution describing the input 

process depends on time. 

1.3.2 The Behavior of Customers 

It is necessary to know the reaction of a customer upon entering the system. 
A customer may decide to enter the system no matter how long is the queue, 

or, on the other hand, a customer may decide not to enter the system if the 

queue is too long. Customers who decided to enter the system may be patient 

and willing to wait (for a long time), or may be impatient and leave after 

a while. Customers' impatience in queues was analysed by Altman and 
Yechiali (2006). In case there are two or more parallel waiting lines, 

customers may switch from one to another if they think they will get served 
faster by so doing. 

1.3.3 Service Discipline 

The service discipline is the manner in which customers are selected for 

service when a queue has formed. Some possibilities for the order in which 

customers enter service are: 

m FIFO: First In First Out. Also called 'FCFS' which refers to First 

Come First Served. This is the most common discipline that can be 

observed in everyday life. 

LIFO: Last In First Out. Also called ILCFS'which refers to Last Come 

First Served. This is applicable to many inventory systems when it is 

easier to reach the nearest item, which is the last in. 

w SIRO: Serve In Random Order. 

RR (Round Robin): If the servicing of a customer is not completed at 
the end of a time slice of specified length, the customer is preempted 
and returned to the queue, which is served according to FCFS. This 

action is repeated until the customer service is completed. 
PS (Processor Sharing): This strategy corresponds to round robin with 



Chapter 1 7 

infinitesimally small time slices. It is as if all customers arc served 

simultaneously and the service time is increased correspondingly. 

m IS (Infinite Server): There is an ample number of servers so that no 

queue ever forms. 

m Priorities: Where customers are given priorities upon entering the 

system, the ones with higher priorities are served first, regardless of 

their time of arrival to the system. A priority discipline could be 

preemptive or nonprcemptive. In the preemptive case the customer 

with the highest priority is allowed to enter service immediately even 
if the server is busy with a customer with lower priority; that is the 

lower-priority customer in service is preempted, its service stopped, to 
be resumed after the higher priority customer is served. While in the 

nonpreemptive case the highest priority customer goes to the head of 

the queue but can not get into service until the current service is 

completed. 

1.3.4 System Capacity 

In some queueing systems there is waiting room capacity, so that when the 

number of customers in the queue reaches a certain limit, no further customers 

are allowed to enter until a service of a customer completes. These are called 
finite queueing systems, in which there is a finite limit to the maximum 

system size. Other queueing systems have no capacity limitation. Finch (1958) 

investigated the effect of the size of waiting room on a simple queue. 

1.3.5 Number of Service Channels 

As mentioned earlier, adding service channels to the system helps in reducing 
the waiting time of customers. A number of service channels mean many 

parallel service stations which can serve customers simultaneously, and it is 

generally assumed that the service mechanisms of the parallel channels 

operate independently of each other. 

A multi-channel system could be fed with a single queue or each channel 

could have a separate queue. Figure 1.2 illustrates these two different types. 
Adan, Boxma, and Rcsing (2001) explored queueing models with multiple 
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waiting lines. An example of the first type could be airplanes waiting at the 

holding point for an empty runway to take off, while petrol stations could fit 

the second type. 

Arriving Departing 
customers customers 0 

0 
0 

10 P. 

I'll". 
Arriving 10 1111] Ile 0 Departing 

customers 0 customers 
0 
0 

Figure 1.2 Multi-channel queueing systems 

1.3.6 Service Mechanism 

Many important aspects of service mechanism should be considered. Most 

importantly, a probability distribution is needed to describe service times. 

Service may also be single or batches. There are many situations where 

customers may be served simultaneously by the same server, such as people 
boarding a train or a computer with parallel processor. Service rate may 
depend on the length of the waiting line. A Server may work faster if the line 

is building up. The situation which service depends on the number of 

customers waiting is referred as state-dependent service. 

Even if the service rate is high, it is very likely that some customers will be 

delayed waiting for the service. In general, customers arrive and depart in 

irregular intervals; hence the queue length will assume no definitive pattern 

unless arrivals and service are deterministic. 
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Service, like arrivals, can be stationary or non-stationary with respect to time. 

Usually it is assumed that the service times for customers are independent and 
do not depend upon the arrival process. 

1.3.7 Stages of Service 

A queueing system may have only a single stage as in the supermarket 

example, or it may have several stages, in which the customer enters a queue 

waits for service, gets served, departs the service station to enter a new queue 
for another service, and so on. An example of a multistage queueing system 

would be a causeway between to countries where each traveler must proceed 
through several stages; such as paying fee; visas; customs; and so on. Some 

multistage queueing systems allow recycling or feedback. Recycling could be 

seen in manufacturing processes where items that do not meet quality 

standards are sent back for reprocessing. A queueing system with feed back is 

illustrated in Figure 1.3. 

Arriving Departing 
customers customers 

Figure 1.3 A multistage queueing system withfeedback 

1.4 Queue Notation 
Describing queueing systems in short, Kendall's (1953) notation is widely used to 
demonstrate elementary queueing systems. Kendall's notation as described in 

Gclenbc and Pujolle (1998), Gross and Harris (1998), and Taha (2007) takes the 
following form: 

Where: 

I A/B/C/K/M/Z 

A: indicates the probability distribution of inter-arrival times 

B: indicates the probability distribution of service time 
C. Number of parallel service channels 
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K. The restriction on system capacity 
M. The size of population of customers 
Z. is the queue discipline 

Some standard symbols for these characteristics are presented in Table I. I. For 

example: 
M/D/l/oo/oo/FCFS: indicates a queueing process with exponential 
interaffival times, Deterministic service times, a single server, no 

restriction on the maximum number of customers allowed in the system, 

the population of customers is infinite and first come-first served queue 
discipline. 

GIEW211 0/1 OO/SIRO: indicates a queueing system with general interarrival 

time distribution, an Erlang-k service distribution, two servers, a maximum 

of ten customers are allowed in the system at any one time, only one 
hundred users can occupy this queue and the service discipline is random. 

Table 1.1 Queueing notation AIBICIKIMIZ 

Characteristic Symbol Explanation 

Interarrival-time distribution (A) M Exponential (Markovian) 
Service-time distribution (B) D Deterministic 

Ek Erlang distribution with k phases 
Hk Mixture of k exponentials 
Ck Cox distribution with k phases 
PH Phase type 
GI General Independent distribution 
G General 

Number of parallel servers (C) 1,2, ..., oo 
System capacity (K) 1,2,..., oo 
Population of users (Al) 1,2, ..., oo 
Queue discipline (Z) FIFO First In, first Out 

LIFO Last In, first Out 
SIRO Serve In Random Order 
PR Priority 
RR Round Robin 
is Infinite Server 
GD General Discipline 

In many situations the last three elements of Kendall's notation are omitted if the 

system capacity is not limited to a certain number (K = oo), the population of 
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customers is infinite (M = oo), and the service discipline is first come, first served 
(Z = FCFS). Thus MIGII is a queueing system with exponential inter-arrival 

times, general service time distribution, single server, infinite waiting rooms, 
infinite population, and first come first served discipline. 

The current research deals with AP31GII queueing system, that is Poisson arrivals 
(exponential interarrival times), general service time distribution, single server, no 

system capacity, infinite population of customers and first come - first served 

queue discipline. The superscript IAI indicates that the customers arrive to the 

system in batches of variable size. 

1.5 Performance Measures 

There are many parameters which are of importance when measuring the system 
effectiveness. These parameters could be classified into two categories and 

mentioned by Bose (2002): 

1. Parameters of interest for a customer arriving to the queue: 
Probability distribution of the queueing time. 
Probability distribution of the total time spent by a customer in the 

system. 
Probability distribution of the number of customers in the queue. 
Probability distribution of the number of customers in the System. 

Blocking probability for the finite capacity queues. 
Probability that the customer has to wait for service. 

2. Parameters of interest for the service provider: 
a Probability distribution for the service utilization. 

Probability distribution for the buffer utilization. 
Total revenue obtained or total revenue lost. 

a Customer satisfaction. 

Usually mean performance measures are of interest in studying queueing systems 

such as mean waiting time in the queue or in the system, mean number of 

customers in the queue or in the system, mean utilization of system facility, etc. 
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Generally the queueing analyst has one of the following two tasks (Gross 

& Harris, 1998): 

a Determine the values of appropriate measures of effectiveness for a given 

process. This could be done by relating waiting delays, queue lengths and 

such to the given properties of the arrival pattern and the service 

procedure. 
Design an optimal system to reach a balance between customer waiting 

time and the idle time of servers. 

1.6 Server Vacations 
In many real world queueing systems, server(s) may become unavailable for 

a random period of time at the service completion instant when there 

are no customers waiting in the queue, or even if there are customers. The random 

periods in which the server is absent are called a server vacation (Zhang & Tian, 

2003b). Vacation periods could be deterministic, exponential, hyper-exponential, 

general, etc. 

Queueing systems with vacations could provide (LaMaire, 1992): 

0 Exhaustive service - as the server cannot go for vacation until all the 

customers presently in the system have been served. 
Gated service - where the server only serves those customers that it finds 

in the system when it first starts service following its vacation. It then 

leaves for vacation again. 

n Limited service - where the maximum number of customers that can be 

served before the server goes on a vacation has a fixed limit. Thus the 

server serves until either the limit is reached or all the customers eligible 
for service have been served. 

a Limited with limit variation - where the maximum number of customers 
that can be served before the server goes on a vacation has a varying 
limit. 

The vacation model itself may be of different types as Dshalalow (1998) and Bose 

(2002) stated: 
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Multiple vacation model where a server, on returning from a vacation, 

goes for another vacation if it finds the system still empty. In this case the 

server resumes normal service if it finds one or more customers waiting 

after returning from a vacation. 

u Single vacation model where the server goes for only one vacation after 

a service completion. Even if the queue is empty when it returns from the 

vacation, it stays at the system waiting for a customer to arrive. 

a N-Policy vacation model where the server can go on multiple vacations 

and resumes service only when it finds N or more customers waiting when 
it returns from a vacation. 

Doshi (1986), Alfa (2003) and Fiems and Bruneel (2002) listed some other 

queueing systems which could be considered as vacation queues including: 

Polling systems: Where many queues are served by only one server who 

attends to only one queue at a time, so it is considered as being away on 

vacation for customers in queues which are not receiving service. Polling 

systems are very common in computer systems where a processor has to 

attend to several queues of jobs. Also a road intersection controlled by 

traffic signals is an example. 

a Priority queues: While the higher priority customer is receiving service, 
the lower priority customers consider the server as being away in vacation. 
Breakdowns and repairs: When the system breaks down and is being 

repaired, the system is considered to be on vacation 
Scheduled maintenance periods can also be considered as vacation 

periods. 

1.7 Random Breakdowns 

Some systems might suddenly break down such as computer systems, 

communication systems, networks, and many others. For example, consider 

a machine that always needs some maintenance, especially it needs some oil 
from time to time. If the machine runs out of oil, it will break down and 

a repairman must be called, who fills a new portion of oil into the machine. 
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However, due to several circumstances the machine uses (randomly) varying 

rate of oil, so the next time when the machine runs out of oil, will be random. 

Whenever a service channel suddenly fails, then this service channel either 

enters a repair process immediately, or waits in a queue for the repairman. In 

both cases, the customer whose service is interrupted comes back to the head 

of the queue or might even leave the system. The service to customers will be 

provided once the problem is covered. The repair time could be deterministic, 

exponential, hyper-exponential, general, etc. 

1.8 Some Definitions and Notations 

In this section, some concepts and notations related to queueing theory are defined 

and presented. 

1.8.1 Laplace and Laplace-Stieltjes Transforms 

The Laplace transform of the probability density function J(x) for x>0 is 

defined by the following integral: 

L{f (x)1 =f (s) = fe-"f (x)dx 

Theorem: If X, and X2 are two independent random variables with Laplace 

transformations 7, (S) and 
72(s), 

respectively, and Y=X, + X2 has 

probability density functionj(y), then 

f (S) =A (S) +A (S) 

Where f (S) is the Laplace transformation offlY). 

The Laplace-Stielyes transform of a function J(x) for x>0 is defined by the 
following integral: 

00 
(s) = fe'df (x) 

The Laplace-Stieltjes transform shares many properties with the Laplace 
transforin. 
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1.8.2 Probability Generating Function 

15 

The idea of probability generating function is a useful tool in the analysis of 

queueing systems. If N is a discrete random variable which can assume the 

values n=0,1,2, ... with probability p,, then the probability generating 

function is defined as 
00 

P(z) = E[z N )=Zp,, z", lzl: 51 
n=O 

Of course 
m Ep 1 

, '. o 
lfp,, represents the probability that there are n customers in the queue, then the 

mean number of customers in the queue could be found using the probability 

generating function as follows (Bunday, 1996): 

np. -= -ý- P, (z)l.., 
dz n0 

1.8.3 Stochastic Process 

A stochastic process is the mathematical abstraction of an empirical process 

whose development is governed by probabilistic laws such as a Poisson 

process. A stochastic process is a family of random variables, {X(I), t e7j, 
defined over some index set or parameter space T. The set T is sometimes also 

called the time range, and X(t) denotes the state of the process at time t. The 

process is classified as discrete-parameter or continuous-parameter depending 

upon the nature of the time range as follows (Gross & Harris, 1998): 

m The stochastic process is said to be a discrete-parameter process 
defined on the index set T if T is a countable sequence, for example, 

{O, ±I, ±2, ... ) or T= {O, 1,2, ... ). 

The stochastic process is said to be a continuous-parameter process 
defined on the index set T if T is an interval or an algebraic 

combination of intervals, for example, T= (t : --co <t< oo) or 

=(I : O<t <00). 

In general, a stochastic process may be put into one of four broad categories 
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determined by how time is measured and by how the states of the process are 

classified. Time can be discrete or continuous, and the states can be discrete or 

continuous. Examples for the four categories could be: 

a Discrete time - discrete states process: The number of computers 

waiting for service when time is measured in days. 

" Discrete time - continuous states process: The distance traveled by 

a truck driver each day. 

" Continuous time - discrete states process: Number of calls arriving at 

a switchboard during the day. 

" Continuous time - continuous states process: atmospheric temperature 

which changes continuously in time. 

Depending on the nature of the process, the states may be numerical or non- 

numerical quantities. In queueing systems, the states are often taken to be the 

number of customers waiting for service. 

1.8.4 Markov Process 

A discrete-parameter stochastic process or a continuous-parametcr stochastic 

process is said to be a Markov process if each outcome is linked to the one 
immediately preceding it. Mathematically, this could be stated in the 
following definition. 

Definition: 

For times n=0,1,2, ... let (X(n)) denote a stochastic process and let (S(n)) 

denote any collection of states of the process. The process is said to satisfy the 
Markov property if 

P[X(n + 1) = s(n + 1) 1 X(n) = s(n), X(n - 1) = s(n - I), -, X(O) = s(O)] 
P[X(n + 1) = s(n + 1) 1 X(n) = s(n)] 

for n=0,1,2, ... (Higgins & Keller-McNulty, 1995). 

For example, many board games have the Markov property. That is, the next 

position of a token on the board depends only on the present position and the 

roll of the dice. 



Chapter I 17 

1.8.5 Time-Independent Solution (Steady State) 

When the behavior of the queueing system becomes independent of time, 

a steady state solution is said to prevail. When the queueing system has 

reached a steady-state condition, the state probabilities P,, (t) become constants 
independent of time but yet the process is not deterministic. Mathematically, 

reaching a steady state needs the following condition to be satisfied 

lim P", 
I -*Go 

so that 

lim 
dP. (1) 

=0 
1-+OD 

ý 
dt 

I 

In some cases, the steady state is never reached. This happens for systems 
having arrival rate greater than service rate. In this case, the queue becomes 

larger and larger as time goes, the queue will become beyond control, and 
hence the steady state is never reached. 

1.8.6 Supplementary Variable Technique 

There are different techniques for analysing queueing systems with fairly 

general assumptions, such as the imbedded Markov chain, matrix-geometric 

method, and supplementary variable technique. In this research we use the 

supplementary variable technique in which one or more extra variables, called 

supplementary variables, are introduced in the definitions of the states of the 

system, so that the process with the new definition becomes Markovian. This 

technique was introduced by Cox (1955). For the MIGII system we need one 

supplementary variable, being the time since the last departure. While in the 

current research, we assume that the server takes vacations and breakdowns 

may occur at random which require repair process; additional supplementary 

variables are introduced being the elapsed vacation time and the elapsed repair 

time. The supplementary variable method is illustrated for the classic MIGII 

system in section 1.10 of this chapter. 

Compared with the imbedded Markov chain approach, it is more 

straightforward to obtain the steady-state probabilities at an arbitrary instant 

and practically interesting performance measures via the supplementary 
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variable method (Niu & Takahashi, 1999). It was shown by Choi, Hwang and 
Han (1998) that this method is simple and elegant. Gupta and Sikdar (2006) 

gave more advantages of supplementary variable techniques. They used this 

technique to develop the relations between the queue length distributions 

when the server is busy/vacation at arbitrary and departure epochs. They 

justified the use of this technique over other methods by that one can obtain 

several other results by using simple algebraic manipulation of transform 

equations such as mean length of idle period. Also, the supplementary variable 

method has the advantage over the imbedded Markov chain method that here 

we can study the system in continuous time instead of at discrete time points 
(Kashyap & Chaudhry, 1988). As expected by Choi, Hwang and Han (1998), 

the supplementary variable method is widely used in the analysis of variants 

of the MIGII queue. Several authors used this technique in their analyses for 

queueing system involving general distributions (Frey & Takahashi, 1999; Lee 

& Jeon, 1999; Madan, 2000a; 2000b; 2001; Wang, Cao & Li, 2001; Ke, 

2003a; Niu, Shu & Takahashi, 2003; Arumuganathan & Jeyakumar, 2005; 

Madan & Choudhury, 2005; Kumar & Arumuganathan, 2008). 

1.8.7 Some General Results 

There are some general results and relationships for GIGII and GIGIc queues 

which are useful in the study of queueing theory. 

The standard mathematical "little o" notation will be used. Thus, 

o(At) represents any function of At which goes to zero faster than At itself so 
that 

lim O(At) 
=0 At-+O At 

For example, in any calculation, if (AI)2 appeared, it could be replaced by 

o(Al) since 

lim (Atý 
= lim At= 0 

At-*O At At-*O 

This notation will be very useful for summarizing negligible terms which do 

not enter into the final results. 
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Comparing arrivals rate with the service rate yields the following three 

cases: 

p>I (A > qu): The average number of arrivals into the system 

exceeds the maximum average service rate of the system, and it is 

expected that, as time goes on, the queue to get bigger and bigger, 

unless at some point customers were not allowed to enter the system. 

Thus, there is no steady state when p>1, since the queue size never 

settles down (assuming customers are not prevented from entering the 

system). 

p=I (A = cp): When the arrivals rate exactly equals to the maximum 

average service rate of the system, the steady state does not exist 

unless arrivals and service are deterministic and perfectly scheduled, 

since randomness will prevent the queue from ever emptying out and 

allowing the server to catch up, thus causing the queue to grow without 
bound. 

p<I (A < cp): When the average arrival rate is strictly less than the 

maximum average service rate, a steady state solution exists since the 

queue size will be under control. Therefore, knowing the average 

arrival rate and the average service rate helps in finding the minimum 

number of parallel servers which guarantee a steady state solution by 

calculating the smallest c satisfying Alcp < 1. 

Finding the probability distribution for the total number of customers in the 

system is important in solving queueing models. This probability 
distribution is made up of those waiting in the queue, Nq(t), plus those in the 

service, N, (t). That is, N= Nq + N, Let P .. (1) = Pr {N(t) = m), and 
P.. = Pr(N = m) in the steady state. Considering c-server queues in steady 

state, two expected value measures of major interest are the mean number of 

customers in the system, 
Co L= E[N] = 2: mp. 

M-o 
and the mean number of customers in the queue, 

Lq = E[Nq] =Z (m - c)p. 
"0 

m=c+l 
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1.8.8 Little's Law 

One of the most powerful relationships in queueing theory was developed by 

John D. C. Little in the early 1960s. Little's law is a general results holding for 

GIGII queues; it also applies to other service disciplines than FIFO. It 

establishes a relationship between the average number of customers in the 

system, the mean arrival rate, and the mean system response time (that is the 

time between entering and leaving the system after finishing the service) in the 

steady state. 

Little's law states that "the average number of customers in a system 
(over some interval) is equal to their average arrival rate, multiplied by their 

average time in the system". That is 

L=AW (1.2) 

Similarly "the average number of customers in the queue (over some interval) 

is equal to their arrival rate, multiplied by their average time spent in the 

queue". That is 
Lq ý- A Wq (1.3) 

Thus, in view of Little's formulae, it is necessary to find only one of the four 

expected value measures E[N], E[Nq], E[7], or E[Tq]; which are L, Lq, W, and 
Wq, respectively, and the fact that E[71 = E[Tj + E[S], that is 

W= Wq+ E[S] (1.4) 
Or the fact that E[N] = E[Nq] + p, that is 

L=Lq+P (1.5) 

Rosenkrantz (1992) presented a stochastic integral approach to Little's 

theorem. A distributional form of Little's law was studied by Takine 

(2001). 

1.8.9 Related Distributions 

1.8.9.1 Bernoulli Distribution 

The Bernoulli distribution is a discrete probability distribution, which takes 

value I with probability p and value 0 with probability I -p. 

A random variable N has a Bernoulli distribution, if and only if its probability 
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distribution is given by 

P(N = n) = p"(I - p)'-" for n=0, I 

The mean and the variance of the Bernoulli distribution are given by 

E(N) =p and C2 (N) = p(l - p) 

And its probability generating function is given by 

P(Z) = Pz + (I - P) 

Many Queueing theorists considered the Bernoulli distribution in their 

researches (Choi & Park, 1990; Wortman, Disney & Kiessler, 1991; 

Weststrate & Van der Mei, 1994; Feng, Kowada & Adachi, 1998; Lee et al., 
1999; Atencia et al., 2006). 

1.8.9.2 Poisson Distribution 

The Poisson distribution is a discrete probability distribution which expresses 

the probability of a number of events occurring in a fixed period of time if 

these events occur with a known average rate A>0, and are independent of 

the time since the last event. 
A random variable N has a Poisson distribution, if and only if its probability 
distribution is given by 

P(N n) = for n=0,1,2, 
n! 

where A is the expected number of arrivals during a given interval. The mean 

and the variance of the Poisson distribution are given by 

E(N) =A and o-'(N) =A 

And its probability generating function is given by 

P(z) = e-"('-z) 

Many authors have investigated the applications of Poisson distribution in 

queueing systems (Kendall, 1951; Prabhu, 1960; Shanbhag, 1966; 

Berenshtein, Vainshtein & Kreinin, 1989). The Poisson distribution is widely 

used in queueing theory. In fact, all studies concern with queues having 'M 

letter for the first or second elements in Kendall's notations, deal with Poisson 

arrivals or Poisson distribution for service completions, respectively. 
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1.8.9.3 Exponential Distribution 

The Exponential distribution is a continuous probability distribution which is 

often used to model the time between events that happen at a constant average 

rate, such as affivals in queueing theory. 

A random variable X has an exponential distribution, if and only if its 

probability density is given by 

fW pe-Av for x>0 
0 elsewhere 

The mean and the variance of the exponential distribution are given by 

E(X) and Cr2(X) =12 

du 

An important property of the exponential distribution is that it is memoryless. 

This means that if a random variable X is exponentially distributed its 

conditional probability obeys 
P(X>s+xlX>x)=P(X>s), foralls, x; ->O 

This says that the conditional probability that we need to wait, for example, 

more than another 10 seconds before the first arrival, given that the first 

arrival has not yet happened after 30 seconds, is no different from the initial 

probability that we need to wait more than 10 seconds for the first arrival. 
That is, 

P(X > 401 X> 30) = P(X > 10) 

The most common stochastic queueing models assume that customers arrive at 

random which implies that the arrivals follow a Poisson distribution, and this 

leads to an exponentially distributed inter-arrival times. Similarly, the service 

completions follows a Poisson distribution when it is considered to be random, 

and this leads to exponentially distributed service times. For derivation of 
these results, see Gross & Harris (1998). 

1.8.9.4 Deterministic Distribution 

The letter D in the first (second) clement of Kendall's notation indicates that 

the interarrival time (service time) is constant. In the case of constant 
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interarrival times, also called regular arrivals or regular input, when each 

interarrival time is a, say, where 0<a< oo, we have the input distribution 

A (u) 
0u<a 

u ý: a 

And the density function 

a(u) 8(u -a) 

where 8(. ) is the Dirac delta function. When service times are constant, we 

have similar expressions for the service time distribution (Kashyap 

& Chaudhry, 1988). 

Jansson (1966), Pack (1977), Servi (1986), Pinotsi and Zazanis (2005), and 
Van-Leeuqaarden (2005) are among many others who have studied queueing 

models with deterministic interarrival times. Other authors including Stadje 

(1998), Ahn, Leeb and Jeona (2000), Brun and Garcia (2000), Koba (2000), 

Alm and Jeon (2002), Nakagawa (2002), Jelenkovid, Mandelbaurn 

& Momdilovid (2004) and Kentaro et al. (2007) investigated queues with 
deterministic service time distribution. The deterministic distribution could be 

used also for vacation times as studied by Madan (2001). 

1.8.9.5 Erlang Distribution (Ek) 

The Erlang distribution was developed by A. K. Erlang to examine the number 

of telephone calls which might be made at the same time to the operators of 

the switching stations (See page 3 for Erlang's contribution to the theory of 

queues). The Erlang distribution is a continuous distribution, which has a 

positive value for all real numbers greater than zero, and is given by two 

parameters: the shape k, which is an integer, and the rate p, which is a real. 

A random variable X has an Erlang-k distribution if X is the sum of k 

independent random variables XI, X2, ... Xk having a common exponential 
distribution with parameter p. The probability density of an Erlang distribution 

is given by 

f(x; k,, u) = 'u 
kx k-I 

e-* forx >0 
(k - 1)! 
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When the shape parameter k equals 1, the distribution simplifies to the 

exponential distribution. 

The Erlang distribution is a special case of the Gamma distribution where the 

shape parameter k is an integer. In the Gamma distribution, this parameter is 

a real. 

The mean and the variance of the Erlang-k distribution are given by 

E(X) =k and U2(X) =k2 
Pp 

Hillier and Boling (1967), Ackere and Ninios (1993), Adan and Wessels 

(1996), and Bertsimas and Mourtzinou (1999) among several others have 

studied queueing models with Erlang distribution. 

1.9 The MIM11 Queueing System 
The MIMII systems can be described as follows: arrivals come at rate A>0, and 
hence the interarrival times are identically distributed and have exponential 
distribution with parameter A (mean 11A). The service rate is P>0, and hence the 

service times are also identically distributed and have exponential distribution 

with parameter p (mean l1p). There is only one server and customers are served in 

order of arrival. The waiting line and population of customers are infinite. 

Accordingly, we have the following probabilities for arrivals and service: 
PrIarrival occurs between t and t+ At) = AAt + o(At) 

Pr(more than one arrival between t and t+ At) = o(At) 
Pr {no arrivals between I and t+ At) =I- AAt + o(At) 

Pr {one service completion between t and t+ At) = pAt + o(At) 
Pr{more than one service completion between t and t +At) = o(At) 
Pr (no service completion between t and t+ At) =I- pAt + o(At) 

The aim is to calculate Pý')(t), the probability of m arrivals up to time t. To do so, 

we start with calculating the probability of the system state at time t+ At as 
follows 
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p(m)(t +At) =P(M)(t)(1-AAt)(1-PAt)+P(M-, )(t)(AAt)(1-PAt) 

+ P(--')(t)(I - AAt)(PAt), m 2t 1 

PM(t +At) =P, O)(t)(1-AAt)+P(, )(t)(1-AAt)(PAt) (1.7) 

Simplifying (1.6) and (1.7) and ignoring terms with (At)2 and higher order terms, 

we get 

P(-)(t+, &t)=P(M)(t)(I-, I&-PAt)+P('n-1)(t)AAt+p("')(t)pAt, MýA 
(0) +, ät) =p (0) (t)(1 - mt) +p (1) (t)pAt 

Taking the limits as At -> 0, we get the following differential equations 

dP (') (1) 
= _(A + P)p + Ap (m -, ) (t) + pp dt 

-= -AP (0) + pp (1) 
dt 

The steady state solution for these differential equations can be obtained 

according to the following conditions 

=0 and limP(')(t)=P() forallm; ->O, dt 1-+w 

Replacing Alu by p, with p<1 for stability, and subject to the condition 

Co Ep(m)(t)=l forallt, wegetthesystemstateprobabilitiestobe 
M-o 

P(m) = P", 0- P), m ý: o (1.12) 

Knowing the steady state (equilibrium) probabilities P('), various mean 

performance measures can be computed as follows: 

a) Probability of finding the system empty on arrival 
The customer will get served immediately on arrival if the system is 

empty, the probability of this is 

p(0) =I-p 

b) Server utilization 
The server is busy whenever there is at least one customer in the system, 
i. e. the system state being zero. Hence, the utilization of the server will be 

I -P(O) = 

c) Mean number in the system 
Co 00 00 L=EmP(')=Empm(1-p)=(1-p)Emp'= P 

M-o M-o M-o 1-p 
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d) Mean number in queue 
m 

m) p 
L�=E(m-1)P(' = (1 -P(0» = 

m-) 
7--p - 1-p 

e) Average waiting time in system 
W can be computed using equation (1.2) 

w=.. =_1 It P(1P) 
f) Average waiting time in the queue 

Wq can be computed using equation (1.3) 

Wq =Lq =P 

A P(l - 

26 

1.10 The MIG11 Queueing System 
The MIGII model assumes that the queueing system has a single server and 

a Poisson input process (exponential interarrival times) with a fixed mean arrival 

rate A. As usual, it is assumed that the customers have independent service times 

with the same probability distribution. However, no restrictions are imposed on 

the specific service-time distribution. 

Let p(x)dx be the conditional probability density of service completion during the 
interval (x, x+ dx], given that the elapsed time is x, so that 

g(x) 
I- G(x) (1.13) 

Where G(s) and g(s) are the distribution function and the density function of the 

service time, respectively. Accordingly, we have 

G(s)=I-e 0 

- 
ip 

(x) dx (1.15) 
g(s) = ju(s)e 0 

For the steady state, we consider the limiting probability density 

P, (X) =limp (X, I) of -+W 11 

and the limiting probability 
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00 
lim P. (1) = lim fp. (X, I)* 

0 

Q= IiMQ (t) 
t-+W 

Arguing as in section 1.9, we have the following transition equations 

P,, (x +Ax)=P. (x)[I-(A+p(x))Ax]+P,, 
-, 

(x)AAx, n ; -> I 

Po(x +Ax)=Po(x)[i-(A+, U(X))AX] 

'o 
Q=Q (I - AAx + fu(x)Ax - P. (x )dx 

0 
Hence, the steady state equations governing the MIGII system are 

d 
ýWpjx) +(A+P(X))P. (X) =AP,, -, 

(X), n 'e- I 

d Po(x)+(A+Ax))Po(x)=O 
dc 

w 
AQ = fPo(x), u(x)dx 

0 

These equations are to be solved with the following boundary conditions 
00 

P (0) = 
fP. 

�(x), u(x)dx, n 2: 1 
0 

Po (0) =fP, (x ), u (x )dx + AQ 

and the nonnalization condition 
OD 

+ fP,, (x)dx =I 
M-0 0 

Define the generating functions 

co 00 
Pq(XlZ)=ZZ"P,, (X), Pq(Z)=EZ"P,, 

' 
n=O n=O 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

Now, multiplying equation (1.16) by 2, summing over n from I to oo, adding to 

(1.17), and using the generating functions defined in (1.22), we get 

jpq(Xgz)+(A-, etz +. U(X»pq(X>z) =0 (1.23) 

Similarly we get 
Go 

zP, (0, z fP,, (x, z )p(x )dx +A (z - 1) 
0 
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Whose solution is 

Pq(X, Z)=pq(O, Z)e 0 (1.25) 

Integrating equation (1.25) by parts with respect to x yields 

P, (Z) = P, (O, Z) 
I -dF[A - AZ ] (1,26) 

IA- 
Az 

where dF[A - Az fe dG(x) is the Laplace-Stieltjes transform of the 00 

0 

service time. Now, multiplying both sides of equation (1.25) by p(x) and 
integrating the resulting equation over x, we get 

co fpq(X, Z)P(XA =pq(o, z)(7[A-Az] 
0 

Using equation (1.27) in equation (1.24) we get 
A(z -I)Q Pq (01Z) =- (1.28) 

z -G[A-Az] 
Substituting for P. (O, z) in equation (1.26) and finding Q using the nonnalization 

condition (1.2 1), we get 
(I 

- j[A - Az 1) (1 - AE (S)) 
Pq (z) ý- N 

(Y[A-Az]-z 
(1.29) 

where E(S) is the mean service time. Equation (1.29) gives the probability 

generating function of the number of customers in the queue. Using this equation, 

equation (1.1) and Little's laws, various mean performance measures can be 

computed as follows: 

a) Probability of finding the system empty on arrival 
The customer will get served immediately on arrival if the server is idle. 

The probability of this is 

I-p= I-AE(S) 

b) Server utilization 
The server is busy whenever there is at least one customer in the system 

P= I- Q=AE(S) 

c) Mean number in queue 
Let us write Pq(z) given in (1.29) as Pq(z)=N(z)ID(z) where N(z) and 

D(z) are the numerator and denominator of the right hand side of (1.29), 
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respectively, then from equation (1.1) we have 

L =! 
Lp 

(Z) 
D (I)N'(1) -N (I)D'(1) 

qd Zq 

I. 

I= (D (1))2 

This is of 0/0 fonn since N(l) = D(l) = 0. Then we use L'Hopital's rule 

twice, we get 

Lq = lim 
d 

Pq(z)=Iim 
D'(z)N "(z) - N'(z)D "(z) 

dz X-A 

ý 

2(D'(z ))2 

D'(I)N "(1) - N'(I)D "(1) 
2(D'(1))' 

Using this result we get 
2E2 

2(l - p) 

d) Mean number in the system 
Using equation (1.5) we have 

=p+ 
2E2 

2(l - p) 

e) Average waiting time in the queue 
Using equation (1.3) we have 

wq = 
AE(S2) 

2(l - p) 
f) Average waiting time in system 

Using equation (1.2) or (1.4) we get 

=P+ 
AE(S) 

A 2(l - p) 

(1.30) 

On the other hand, the probability generating function of the number of customers 
in the system at a random epoch P(z) can be found using equation (1.29) and the 

equation given by Kashyap and Chaudhry (1988) 

P (Z ) -Z zpq (Z ) 

hence, we get 

P(Z) = 
j[A -Az ](I -z)(I -AE(S)) (1.32) j[A -Az ] -Z 

The above results obtained for MIGII can be applied for queueing systems with 
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any given distribution for the service time by making the appropriate substitutions 

for Up - Az ], E (S) and E (S'). Accordingly, the equations, solutions, and 

performance measures for the queueing systems MIM11, MIDII and MlEkll can be 

obtained as special cases of the results discussed in this section. 

The MIGII queueing system has been studied extensively due to its wide 

applicability. Apart from the theoretical interest, it has been successfully applied 
in operations research and management sciences problems, in particular, for 

production planning. It has also become a tool for the performance prediction of 

complex computer and telecommunication systems (Kumar, Arivudainambi 

& Vijayakumar, 2002). Various aspects of MIGII queueing models have been 

studied by Levy and Yechiali (1975), Heyman (1977), Scholl and Kleinrock 

(1983), Ott (1984), Schassberger (1984), Willmot (1988), Madan (1994; 2000a), 

Nelson (1995), Harrison and Pitel (1996), Li and Zhu (1996), Xi (1996), Hur and 
Paik (1999), Bischof (2001), Choudhury (2003b; 2005; 2006), Eddins (2004), 

Kella, Zwart and Boxma (2005) and Taha (2007) among several others. 

1.11 The 0"YIIGll Queueing System 
Queueing systems may have arrivals coming in groups or the service is rendered 
in groups. The size of the groups will be regarded as a random variable given by a 

probability distribution. In this section, we introduce a single server queueing 

system with Poisson arrivals and general service time distribution in which 

customers arrive to the system in batches of variable size. The queueing systems 
described in earlier sections, with a batch size being always equal to one, become 

particular cases of the model discussed here. 

The IW-xI1G1I queue assumes similar assumptions underlying MIGII queues which 

were explained in section 1.10. Further, we let Acidt (i = 1,2,3, ... ) be the first 

order probability that a batch of i customers arrives at the system during a short 

interval of time (t, t+ dt], where 0 
_-5 ci: 5 I and c, =I and A>0 is the mean 

arrival rate of batches. Accordingly, the following equations will govern the 

system at steady-state. 
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d "-I 
P�(x) + (, t+/KX»P. (x) =. tzcip"-4 (X), nkl dc 

d 
7p o(x) + (A + XX»p o(x) =0 

m 
AQ = IP, (x ), u (x )dx 

00 
P. (O)=fp,, +I(x)p(x)dx+k,, +, Q, n; ->O (1.36) 

0 

Define the probability generating function for the batch size as follows 

en 
C(Z) z'c, 

From equations (1.33) - (1.37) we get 
d 

7pq 
(X 

gz)+ 
(A 

-AC (Z)+ P(X»pq (X 
pz) =0 (1.38) 

Co 
zP, (0, z fPq(x, z), u(x)dx +, Z(C(z)-1)Q 

0 
Solving this system we get the following probability generating function for the 

number of customers in the queue at a random epoch 

Pq(z)= 
(1 -j[A -X (z)])(1 -, ZE(I)E (S» 

U[, t-, ZC(Z)]-z 
'0 

where dF[A-AC(z)]= fe-(-(1))x dG(x) is the Laplace-Stieltjes transform of the 
0 

service time and EQ) is the mean batch size of the arriving customers. Similar to 

MIGII queues; using equation (1.31), we can find the probability generating 
function of the number of customers in the system at a random epoch 

P(Z) = 
G[A -AC(z)](l -z) (I - AE(I)E(S)) 

j[A-AC(Z)]-Z 

The following performance measures for AFOIG11 queues are obtained using 

equation (1.40) and Little's laws, knowing that E(I(I-1)) is the second factorial 

moment of the batch size of arriving customers. 

a) Probability of finding the system empty on arrival 
The customer will get served immediately on arrival if the server is idle. The 
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probability of this is 

I -p= I-AE(I)E(S) 

b) Server utilization 
The server is busy whenever there is at least one customer in the system, i. e. 

Q =AE (I)E (S) 

c) Mean number in queue 

Lq ý-- 
AE (S)E (I (I - 1)) + (AE (j))2 E(S2) 

2(1-p) 

d) Mean number in the system 

=p+ 
AE (S)E (I V- 1)) + (AE (j))2 E (S2) 

2(1-p) 

e) Average waiting time in the queue 

Wq ý-- 
E (S)E (I (I - 1)) +A (E (j))2 E(S) 

2(1-p) 

f) Average waiting time In system 

P E(S)E(I(I-1))+A(E(I))2E(S2) 
w =ý, + 

A 2(l - p) 

In the current research, we consider an AP31GII queueing system where the 

arrival occurs according to a marked Poisson process in batches of variable size. 
We attempt to generalise the results obtained for the classical AP31GII queue. 
There is extensive literature on the APY31GII queues, which has been studied in 

various forms by numerous authors including Lee and Srinivasan (1989), 

Lucantoni (199 1), Lee, Lee and Chae (1994), Lucantoni, Choudhury and Whitt 

(1994), Choudhury (2000; 2003a; 2007), Choi et al. (2001), Fakinos and 
Economou (2001), Ke (2001; 2007b), Lee, Baek and Jeon (2005) and Madan and 
Al-Rawwash (2005), among several others. 

1.12 Literature Review and the Current Work 
In classical queueing theory, it is generally assumed that the server(s) are always 

available providing service for customers. However, this is not always the case in 
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real life situations. A more realistic situation observed in real life examples is that 

the server may be leaving for a vacation, under repair, stopped for maintenance, 

attending to other queues, or simply forced to stop serving. 

Vacation queues are a very important class of queues in real life. During the past 
two decades, there have been considerable contributions on queueing systems 

with server vacations, which have been successfully used in various applied 
problems including telecommunication engineering, computer networks, flexible 

manufacturing and production systems. 

The well known stochastic decomposition result is one of the most significant 

results of the research on vacation models which was discovered by Levy and 
Yechiali (1975). It states that the waiting time in the queue for MIGPI models 

with vacations is distributed as the sum of two independent components - one 
distributed as the waiting time in the queue without vacations and the other as the 

equilibrium residual time in a vacation. An intuitive and simple explanation for 

this result is given by Fuhrmann (1984). This result was further studied by 

Fuhrmann and Cooper (1985) for MIGII queues with generalised vacations. Doshi 

(1985) extended the decomposition result for the GPG11 queue with single and 

multiple vacation models through different techniques, while Miyazawa (1994) 

provided a unified treatment of the stochastic decomposition results for MIGA 

and GRG11 queueing systems in more general settings. Tian, Li and Cao (1999) 

investigated the conditional stochastic decomposition in MIMIc queue with server 

vacation. Choudhury and Borthakur (2000) presented the stochastic 
decomposition results of batch arrival Poisson queue with a grand vacation 

process. Recently, Chang and Takine (2005) applied the same result to bulk 

queues with generalised vacations. 

Among the different vacation models, Zhang and Tian (2003a), Madan and Abu 

Al-Rub (2004) and Madan and Al-Rawwash (2005) have considered queues with 

single vacation policy, while Zhang and Tian (2001), Tian and Zhang (2002), 

Kumar and Madheswari (2005), Banik, Gupta, and Pathak (2007), Choudhury, 

Tadj, and Paul (2007) and Xu et al. (2007) studied queues with multiple vacation 

policy. In other vacation queues, the server is turned on when N or more 
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customers are present, and off only when the system is empty. After the server is 

turned off, the service will not operate until at least N customers are present in the 

system. This is called an N-Policy as introduced earlier in this chapter, and it is 

the model studied by Igaki (1992), Ke (2003a) and Choudhury and Madan (2005). 

Arurnuganathan and Jeyakumar (2005) considered bulk queues with multiple 

vacations, setup times with N-policy and closedown times. Ke (2001; 2003b) 

conducted studies on queueing systems with server startup and two vacation 

types. 

The vacation time could be exponentially distributed as assumed by Tian, Zhang 

and Cao (1989), Madan, Abu-Dayyeh and Saleh (2002), Ke (2003a), and Kumar 

and Mahdheswari (2005); deterministic as assumed by Madan (2001); or has 

general distribution as considered by Chatterjee and Mukherjee (1990), Madan 

(199 1), Wortman, Disney and Kiessler (199 1), Borthakur and Choudhury (1997), 

Chae, Lee, and Ahn (2001), Chang et al. (2002) and Madan and Choudhury 

(2005). 

Shin and Pearce (1998) considered batch arrival queues in which the lengths of 

vacation times depend on the number of customers in the system at the beginning 

of a vacation. Finite capacity queueing systems with server vacation have been 

investigated by Jacob and Madhusoodanan (1987), Loris-Teghem (1988), Blondia 

(1989) and Niu and Takahashi (1999). Vacation queues with batch arrivals have 

been studied by Niu, Shu, and Takahashi (2003), Hur and Alm (2005), Madan and 
Al-Rawwash (2005) and Ke (2007a; 2007b). 

In queueing systems, assuming that the server is available on a permanent basis is 

apparently practically unrealistic. As discussed above, the server might leave for 

scheduled vacations. Another reason for the server being unavailable all the time 

is that the system may well be subjected to lengthy and unpredictable breakdowns 

while serving a customer. For instance, in manufacturing systems the machine 

may breakdown due to machine or job related problems; in computer systems, 
besides the scheduled backups, the machine may be subjected to unpredictable 
failures. In such systems server breakdowns result in a period of unavailable time 

until it is repaired. Understanding the behavior of an unreliable server, and the 
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effect of machine breakdowns and repairs in these systems, is important from both 

the queueing and reliability points of view (Li, Shi & Chao, 1997). 

In recent years, queues with server failure or breakdowns have emerged as one of 

the important areas of queueing theory. Avi-Itzhak and Naor (1963) presented five 

interesting models of queueing problems with service station subject to 

breakdown. Numerous researchers including Federgruen and So (1990), 

Jayawardene and Kella (1996), Takine and Sengupta (1997), N6hez-Queija 

(2000), Wang, Chiang, and Ke (2003), Vinck and Bruneel (2006) and Ke (2007a) 

studied queueing systems subject to breakdowns. Joseph and Manoharan (1997) 

obtained the transient distribution as well as the steady state distribution of 

a repairable system having different failure modes. Aissani and Artalejo (1998), 

Kulkami and Choi (1990), Wang, Cao, and Li (200 1) and Sherman (2006) studied 

retrial queues subject to breakdowns. A queue with two servers and random 
breakdowns was studied by Madan, Abu-Deyyed, and Gharaibeh (2003a). Gray, 

Wang and Scott (2004) studied a queueing model with multiple type of 
breakdowns in which each type of breakdown requires a finite random number of 

stages of repair. Matis, Feldman and Curry (2008) used an MIM11 model with 

server failures as the basis for an approximation to more general systems with 

nonexponential failure times. 

Almost all the work on queueing systems mentioned above have a common 

characteristic; they either consider queues with server vacations or queues subject 

to breakdowns. Some authors considered system breakdowns as the server being 

in vacation as mentioned in section 1.6. In our work, we consider batch arrival 

queueing systems with server vacations and random breakdowns, where vacation 

and breakdown are considered as two different concepts, since breakdowns may 

occur randomly while vacations are scheduled. The vacations are based on 

a single vacation policy and Bernoulli schedule; that is, after a service completion, 
the server may go for a vacation with probability p (0 < p: 5 1) or may continue to 

serve the next customer, if any, with probability I-p. When a vacation period 

ends, the server comes back to the system irrespective of the presence of any 

customer in the system. Breakdowns are assumed to occur at random while 

serving a customer, and when the system fails, a repair process starts immediately 
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to overcome the problem. In this case, the customer who was in service when the 

system failed goes back to the head of the queue waiting for the service to resume. 

The present study was motivated by its various applications in real life situations. 
Our results can be applied to many systems such as a flexible manufacturing 

system as a tool of performance evaluation. In general, the parts to be processed 

arrive to a workstation in batches. A workstation may be in charge of several jobs 

at once. So the vacation in our models may correspond to the time duration that it 

is working on other secondary jobs such as maintenance work or simply taking 

a rest. Furthermore, a workstation may suddenly stop performing jobs due to any 

problems and thus a repair process starts. Server vacations and breakdowns have 

significant effects on system performance. We wish to understand such an effect 

on measures of system performance such as queue length and mean waiting time. 

To the best of the researcher's knowledge, very little work considers both 

vacations and breakdowns in the system, and these published papers rely on 
different assumptions for the queueing systems than those considered in the 

current study. 

Li, Shi and Chao (1997) studied the reliability analysis of MIGII queueing 
systems with server breakdowns and Bernoulli vacations. They assumed single 
arrivals and exponential vacation times, while in the current work we assume 
batch arrivals of variable size and generally distributed vacation times. 

Ke (2007a) analysed the system characteristics of batch arrival queues under 
vacation policies with server breakdowns and startup/closedown times. In his 

model, Ke assumed that when all the customers are served in the system 

exhaustively, the server shuts downs by a closedown time and after shutdown, the 

server takes vacation. This is different from a Bernoulli schedule server vacation 
which is assumed in the current work. 

Wang and Li (2008) studied a repairable MIGII retrial queue with Bernoulli 

vacation and a two-phase service. Although retrial queues belong to different class 
of queueing systems than the systems considered in the current research, yet there 
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are some other differences in the assumptions underlying their model and the 

current model. They have assumed single arrivals rather than batch arrivals. 
Moreover, they have assumed no waiting space in front of the server; therefore if 

an arriving customer finds the server idle, he may obtain service immediately, and 

otherwise he either leaves the system or joins a retrial queue. This differs from the 

current research assumption of infinite waiting space. 

1.13 Research Objectives 
As discussed in the above section, the literature on queueing theory lacks studies 

conducted in depth on queues with server vacations and random breakdowns. 

Thus, the aim of this research is to extend both the classical ILP31GII queue with 

server vacations and the classical APIG11 queue with random breakdowns by 

looking at the effect of server vacations and random breakdowns on queue size 
distribution and performance measures of some batch arrival queueing systems 

with single server and generalised service time. Server vacations are assumed to 
follow a Bernoulli schedule under single vacation policy, and breakdowns are 

assumed to occur at random while serving a customer. When the system fails, it 

enters a repair process immediately, and the customer whose service is interrupted 

comes back to the head of the queue. 
Therefore, this research is conducted with the following objectives: 

1. To determine the time-dependent behavior and steady-state behavior of 
batch arrival queueing systems with Bernoulli schedule vacation and 

random breakdown, where service times follow an arbitrary general 
distribution, while vacation times and repair times follow exponential 
distributions. 

2. To determine the steady-state behavior of batch arrival queueing systems 

with Bernoulli schedule vacation and random breakdown, where service 
times, vacation times and repair times all are assumed to have general 
(arbitrary) distributions. 

3. To determine the steady-state behavior of batch arrival queueing systems 

with Bernoulli schedule vacation and random breakdown, in which the 

customer undergoes two stages of heterogeneous service, where the times 
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of both stages of service, vacation times and repair times are all assumed 

to have general (arbitrary) distributions. 

4. To determine the steady-state behavior of batch arrival queueing system 

with Bernoulli schedule vacation and random breakdown, in which the 

server provides a compulsory service to arriving customers as well as an 

optional service, where the times of both services, vacation times and 

repair times are all assumed to have general (arbitrary) distributions. 

S. To determine the steady-state behavior of batch arrival queueing system 

with Bernoulli schedule vacation and random breakdown, in which an 

arriving customer chooses one of the two kinds of heterogeneous service 

provided by the server, where the times of both kinds of service, vacation 

times and repair times are all assumed to have general (arbitrary) 

distributions. 

1.14 Research Methods 

The Research aims and objectives discussed in the previous section could be 

achieved by obtaining probability generating functions for the queue size 
distribution at a random epoch. Thus, time dependent and steady state probability 

generating functions have been obtained to achieve the first objective, while to 

achieve objectives 2 to 5, steady state probability generating functions have been 

obtained. 

Since the queueing systems under consideration have different states, for each 

queueing model, the following have been obtained: 
1. Probability generating function for the number of customers in the queue 

while the server is providing a service. 
2. Probability generating function for the number of customers in the queue 

while the server is on vacation. 
3. Probability generating function for the number of customers in the queue 

while the system is under repair. 
4. Probability generating function for the number of customers in the queue 

iffespective of the state of the system. 
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To understand the behavior of the queueing systems under consideration, we have 

also obtained some system performance measures such as mean queue length, 

mean waiting time in the queue, the proportion of time that the server is idle, and 
the utilization factor. Numerical results and some graphs have been given to 

demonstrate the behavior of the queues in an efficient way. 

Among different methods in analysing such queueing systems, the supplementary 

variable method has been implemented to find the necessary probability 

generating functions. This method is preferred over the other methods due to its 

advantages outlined in section 1.8.6 of this chapter. 

1.15 Outline of Forthcoming Chapters 

This work consists of seven chapters. The content of forthcoming chapters is 
briefly outlined below. 

In chapter 2, we analyse a batch arrival queueing system with a single server in 

which the server takes Bernoulli schedule vacations and the system is subject to 
breakdowns. Using the supplementary variable method, we obtain a time- 
dependent solution for the queue size distribution at a random epoch, and then by 

taking the limit as t goes to infinity, we obtain a steady state solution as well. As a 

starting point, in this chapter we consider the exponential distribution for vacation 
times and repair times, while the service time has a general distribution. For this 

queueing model, the mean queue size, the mean waiting time in the queue, the 

proportion of time that the server is idle and the utilization factor are obtained as 

some performance measures of the queueing system. As particular cases, we 

consider a queueing system with (1) k-Erlang service time, (2) exponential service 
time, (3) deterministic service time, (4) no server vacations, (5) no system 
breakdowns, and (6) the classical APIG11 queue. These cases are of interest as 

some other authors' work can be classified into the above particular cases. A 

numerical illustration and three dimensional graphs are presented for the special 

cases with k-Erlang, exponential and deterministic service time distributions. 
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The queueing system considered in chapter 2 is generalised in chapter 3 by 

considering general arbitrary distributions for both the vacation times and repair 

times instead of the special case of the exponential distribution. For this model, 

steady state solutions are obtained and some performance measures of the 

queueing system. As particular cases, we consider (1) a queue with exponential 

vacation time, (2) exponential repair time, and (3) exponential vacation time and 

repair time in which the problem reduces to the steady state part of chapter 2. 

In chapter 4, the queueing model is extended to a system with two-stage 

heterogeneous service. In this chapter a batch arrival queueing system with 

a two-stage heterogeneous service, single server, Bernoulli schedule vacations and 

random breakdowns is analysed. Each stage of service time has a different 

arbitrary distribution. Also vacation times and repair times are all generally 
distributed. The assumptions underlying arrivals, vacations and breakdown are 

similar to those assumed in chapters 2 and 3, while the service is provided in two 

compulsory stages by the same server. Again, for this model, steady state 

solutions and some performance measures are obtained. The following particular 

cases are discussed: (1) exponential vacation time and repair time, (2) No server 

vacations, (3) no system breakdowns with exponential vacations, and (4) No 

server vacations and no system breakdowns. For the first special case, we give 

some numerical results and graphs. 

A queueing system with second optional service is studied in chapter 5, where the 

server provides an essential service to arriving customers and a second optional 

service, both having different general distributions for service time. As the aim of 
this research requires, the server takes vacation and the system is subjected to 
breakdowns while serving the customers in the first essential service. Vacation 

times and repair times are generally distributed. We obtain steady state results for 

this batch arrival queue along with some performance measures. As special cases 

we assume (1) no customer requires the second optional service, and (2) the 

system never fails. A numerical illustration is given along with some graphs for 

the special case of exponential service times, vacation times and repair times. 

In chapter 6, a batch arrival queueing system with two kinds of general 
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heterogeneous service is analysed. As in the previous chapters, the server may 
take Bernoulli vacations and the system may breakdown at random. In this model, 

an arriving customer has the option to choose one of the two types of service 

provided by the server. On the contrary to the assumption in chapter 5, here we 

assume that the system may breakdown while serving a customer in either kind of 

service. Steady state results are obtained and performance measures of the 

queueing model are derived. If no customer chooses the second service, the model 

reduces to the one considered in chapter 3. This is the first special case analysed. 
The second special case assumes no breakdowns may occur. As in the previous 

chapters, numerical and graphical illustrations are given. 

In chapter 7, we conclude the work carried out in this research by summarising 
the important results, outlining contributions of the research, reflecting upon 

certain resulting concerns and views, and recommending further research studies. 

ID*CZR 



Chapter 2 

Time Dependent and Steady State Solutions for an 

APIIG11 Queue with Bernoulli Schedule Exponential 

Server Vacations, Random Breakdowns and Exponential 

Repair Times 

2.1 Introduction 
In this chapter we study a batch arrival queueing system in which the service 
facility suffers random breakdowns from time to time, and the server has the 

option to take a vacation after any service completion. When the server breaks 

down, it immediately enters a repair process of random length. The durations of 

the server vacation are of random length as well. 

Many queueing researchers assume exponential distribution for intcrarrival times, 

service time, setup times, retrial times, vacation times or repair times. In this 

chapter we assume exponential distributions for both vacation times and repair 

times, while we assume a general distribution for service time. 

Tian, Zhang and Cao (1989) analysed the GIIMII queue with exhaustive service 

and multiple exponential vacations. Kumar and Madhcswari (2005) studied 

a queue with two heterogeneous servers and multiple vacations where intcrarrival 

times, service times and vacation times are all assumed to be exponentially 
distributed. By using matrix geometric method, the stationary queue length 

distribution and mean system size have been obtained. Zhang (2005) also assumed 

exponential distributions for interaffival times, service times and vacation times. 



Chapter 2 43 

When a queueing system is subject to breakdowns, repair times could be assumed 

exponentially distributed according to Madan, Abu-Dayyed and Gharaibeh 

(2003b). They studied two models of a single bulk queueing system with random 
breakdowns in which the repair times are assumed to be exponential in the first 

model and deterministic in the second model. Wang, Chiang and Ke (2003) 

analysed the cost of the unloader queueing system with a single unloader subject 

to breakdowns in which repair times were exponentially distributed. 

In the above mentioned work, authors worked out only steady state solutions. In 

the current chapter time dependent solution as well as steady state solution is 

obtained. Time dependent solutions are useful to monitor the behavior of the 

queueing system over time. Takagi (1990) studied the time dependent analysis of 
MIGII vacation models with exhaustive service. Garg and Kumari (1998) studied 

the time dependent solution for a bulk queue. Garg (2003) derived the time 

dependent solution of a single channel queueing system with service in batches of 

variable size where interarrival times and service times are exponentially 
distributed. Madan and Abu-AlRub (2004) provided time dependent equations 

governing a single server queue with optional server vacations based on 

exhaustive service, but the solutions to those equations were not obtained. In 

another work by Madan (2000a), the time dependent probability generating 
functions were obtained for an MIGII queue with second optional service where 
the service times of the optional service are exponential. Also Madan, Abu- 

Deyyeh and Gharaibeh (2003a) obtained time dependent results for a queueing 

system with two parallel servers subject to random breakdowns where both the 

service time and repair time are assumed to be exponential. 

All the above mentioned papers, considered a queueing system with either server 

vacations or random breakdowns. In reality, it is not uncommon to find queueing 

systems in which the server is allowed to take vacations and the system is subject 
to breakdowns. Thats why we consider such systems in the current work. We 

further assume that the customers arrive to the service station in batches of 

variable size, but are served one by one. It is useful to understand how 

breakdowns and vacations affect the performance measures of a queueing system. 
Hence, we obtain time dependent results and steady state results in terms of the 
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queue size distribution as well as the probabilities for various states of the system. 

The rest of the chapter is organised as follows: section 2.2 gives the assumptions 

underlying the queueing system considered. Equations governing the system are 
formulated in section 2.3 while the time dependent solutions to those equations 

are given in section 2.4. In section 2.5 the steady state results of the system are 

found. Mean queue size and mean waiting time for a customer are obtained in 

section 2.6. Some special cases of interest have been discussed in section 2.7. To 

demonstrate how the assumption of vacations and breakdowns affect the 

performance measures of the system, some numerical tables and graphs are given 
in section 2.8. 

2.2 The Mathematical Model 

The mathematical model of this chapter can be characterised by the following 

assumptions: 

a) Customers arrive at the system in batches of variable size in a compound 

Poisson process. Let Acidt (i = 1,2,3, ... ) to be the first order probability 

that a batch of i customers arrives at the system during a short interval of 

time Q, t+ dt], where 0 --ý ci :51, c, =I and A>0 is the mean arrival 

rate of batches. 

b) There is a single server who provides one by one service to arriving 

customers on a "first come, first served" basis and the service time follows 

a general (arbitrary) distribution with distribution function G(s) and 
density function g(s). Let p(x)dx be the conditional probability density of 

service completion during the interval (x, x+ dx], given that the elapsed 

time is x, so that 

and, therefore 

P(X) = 
g(x) (2.1) 

1- G(x) 

8 

g(S) = (S), -Iu(x)dc (2.2) 

c) The system may break down at random, and breakdowns are assumed to 
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occur according to a Poisson stream with mean breakdown rate a>0. 
Further we assume that once the system breaks down, the customer whose 

service is interrupted comes back to the head of the queue. 
d) Once the system breaks down, it enters a repair process immediately. The 

repair times are exponentially distributed with mean repair rate, 8 > 0. 

e) As soon as a service is completed, the server may take a vacation with 

probability p, or may stay in the system with probability I -p, 0: 5 p: S 1. 

f) The duration of vacations follows exponential distribution with rate 7>0 

and hence mean vacation time Ily. 

Various stochastic processes involved in the system are independent of 

each other. 

2.3 Equations Governing the System 

According to the assumptions mentioned above, the system has the following set 
of differential-difference equations 

P. (x, t)+-2-P,, (x, t)+(A+p(x)+a)P. (x, t)=A"-' , _jx, t), n; ->l (2.3) P P. 
ax at 1-1 

a 
Po (X, t) +aP. (x, t)+ (, t+p(x)+ a)PO(x, t) =0 (2.4) 

L9X 49t 

d n-I OD 

V,, (t)+(A+yy,, (t)=AEc, v. 
_, 

(t)+pfP,, (x, t)p(x)dx, ný: l (2.5) dt 1-1 0 
d 
dt 

Vo (t) + (A + r) Vo (t) =p fP, (x, t)p(x)dx (2.6) 
0 

d n-, 00 
dt 

R�(t) +(A+ ß)R�(t) =, tEcR�-, (t) +a fP�-, (x, t)dx, n 2ý 1 (2.7) 
1-1 0 

d Ro (t) + (A + ß)RO (t) =0 (2.8) 
dt 

d 0, 
7 Q(t) + IQ(t) = YVO(t) + ßRo (t) + (1 - p) fP, (x, t)#(x)dx t 

(2.9) 

The above equations are to be solved subject to the following boundary conditions 

00 
P,, (O, t)=(I-P)fP,, +I(x, t)p(x)chc+ýV,, +I(t)+, 

BR,, 
+I(t)+Ac,, +, 

Q(t), ný! 0 (2.10) 
0 
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We assume that initially there is no customer in the system and the server is idle, 

so that the initial conditions are 

P (0) = 0, v', (0) = 0, R� (0) = 0, Q(0) =1 for n 2: 0 

2.4 Time Dependent Solution 
To find the solution, first we define the probability generating functions 

00 
P (X, Z, t) = zz »P� (X, t), q 

n-0 

Co 
vq (Z, t) = 

Zz nv� (t» 

n-0 

00 
R. (z, t) = J: z"R. (t), 

n-0 

00 C(Z) = ZZ'Cl (2.12) 
1-1 

Next, we take Laplace transform of equations (2.3) - (2.10) using the initial 

conditions given in (2.11), we get 

P�(x, s)+(s+, t+, u(x)+a)P�(x, s)=, tEcP�-, (x, s), nkl (2.13) 
ölx 1-1 

'D PO (x, s) + (s +A + p(x) + a)PO (x, s) =0 (2.14) ex 
OD 

(s+, 
I+Y) 

, 
(s) =AZcV, -, 

(s) +p fP,, (x, s)p(x)dx, n; -> 1 
1-1 0 

+A + r)PO (s) =p 
fP, (x, s), u(x)dx 
,0 

40 (s + cR-, -, 
(s) +a fP, 

-, 
(x, s)dx, ný! l (2.17) 

0 

(s +A+, B)RO(s) 0 (2.18) 

(S+Ak(s) = 1+(1-p)fPo(x, s)p(x)dx+yPO(s)+, 6Ko(s) (2.19) 
'o 

0 
co 

P. (O, s)=(I-p)f, P. 
+I(x, s)p(x)dx+yV,, +I(s)+, 

Bk,,., I(s)+Ac,, +Iý(s), ný: O (2.20) 
0 
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Then, we multiply equation (2.13) by z" and take the summation over n from 

I to oo we get 
00 00 00 n-I 

j: z"-L. P,, (x, s) + (s +A+ p(x) + a)Zz", P,, (x, s) = AZz"j: cj5,, -, 
(x, s) 

n-I 
& 

n-I n-I 1-1 

Adding the result to equation (2.14) yields 
CID 'o Go M-1 

Fzn 0 j5. (x, s)+(s+A+p(x)+a)Ez'P,, (x, s)=AEzn2: cj5,, -, 
(x, s) 

n=O 
ax 

R=O R-1 1-1 

Using the generating functions defined in (2.12) we get 

'D P, (x, z, s) + (s +A -AC(z) +, u(x) + a)i5, (x, z, s) = ex 

Similarly multiplying equation (2.15) by z", taking summation over n from I to oo, 

adding the result to equation (2.16) and using the probability generating functions 

defined in (2.12) we get 

(S +A- AC(Z) + Y)7q (Z, S) =p 
fP, (x, z, s), u(x)dx (2.22) 
0 

Again, multiplying equation (2.17) by z", take summation over n from I to oo as 
follows, adding the result to equation (2.18), and using the probability generating 
functions defined in (2.12) we get 

Co (s 
+A- AC(z) + ß), K. (z, s) =ew f 

Pq (x, z, s) dx (2.23) 

For the boundary condition, we multiply equation (2.20) by 2", take the 

summation over n from 0 to oo and use the probability generating functions 

defined in (2.12). Thus we obtain 
Co 

zP (0, z, s) = (1 - p) 
fP, (x, z, s), u(x)dx +y7, (z, s) + ßg, (z, s) +, ZC(z)ý(s) 

0 

(1-p)fP. (x, s), u(x)dx+y]V, (s)+ßK. (s) (2.24) 
00 

0 
Equation (2.19) can be rewritten in the form 

1- (S +'t)&s) = (1 - p) IPO (x, s), U(X)dx + yi70 (s) + ßzo(S) 
0 

-( 
Utilizing the above equation in (2.24) we get 
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zP, (0, z, s) =I+ (I - p) fP, (x, z, s), u(x)dx + yVq(z, s) +, BR, (z, s) 
0 

+[A(C(Z)-l)-S]ý(S) (2.25) 

Now we integrate equation (2.21) between 0 and x and use the boundary 

conditions we have 

P (X, Z, S) = Pq(O, z, s) e (2.26) 
q 

where P, (O, z, s) is given by (2.25). Again integrating (2.26) with respect to x by 

parts and using (2.2), we get 

I- U[s +A- AC(z) + af Pq (zP S) = Pq (0, Z' S) 
- 

s+A-AC(z)+a 
- 

(2.27) 

where J[s +A- AC (z )+ a] = fe -(3 +A-Ac (z )+a)x 
- dG (x ) is the Laplace-Stieltjes 

transform of the service time. Now, using the result obtained in (2.27), equation 
(2.23) becomes 

(S + 11 - 
"C(Z) + 

JgAq 
(Z) S) = OZPq (09 Z9 S) 

- 
I-U[s+A-AC(z)+a] 

(2.28) 
s+A-AC(z)+a 

Multiplying both sides of (2.26) by p(x) and integrating over x, we get 

Go fP, (x, z, s)p(x)dx = Pq (0, z, s)G [s +A- AC(z) + a] (2.29) q 
0 

Then, using equation (2.29), equation (2.22) can be written as 
(s 

+, I 
- 

AC(z) +, Y)Fq(z, s) = pPq(O, z, s)U[s +A- AC(z) + a] (2.30) 

Next, using equation (2.29) in equation (2.25) and simplifying we get 
[z 

- (I - p)U[s +A- AC(z) + a]P, (0, z, s) =1+ yPq (z, s) +, 6k(z, s) 

+1A(C(Z)-I)-S0(S) (2.31) 

We now substitute the expressions for V. (z, s) and Rq (z, s) from (2.28) and (2.30) 

in equation (2.3 1) and solve for Pq (0, z, s), we get 

j5j (0, Z' S) = 
f, (ZI 3M (Z' SM (Z' S) fI+ [A(C(Z) - I) - -Y 

Owl 
(z's)j (2.32) f, (z, s)f, (z, s)f3 (z, s)f, (z, s) - a, 6zf3 (z, s) - 

U[f, (z, 3)] ýPfj (z, s)f2 (z, s) - a, 8zf3 

where 
fl(z, s)=s+A-AC(z)+a 
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A (Z$ 3) S+ O'C(Z) + 
40 

A (ZI S) =S+A AC(Z) +Y 

f4 (z, s) =z- (I p)U[s +A- AC(z) + a] 

Next, using (2.32) in equations (2.27), (2.28), and (2.30) we obtain 
P, (Z' S) = 

A (ZP3)f3(ZSS)(1 - 
Z71fI (Z, S)IXI + [A(C(Z) - 1)-S]ý(S)j 

(2.33) f, (ZS3)f2'(ZsS)f3(ZPS)f4(ZOS) - agf3(zs) - 
UVI (ZP3)kPfI (ZOSM2 (ZPS) - aAf3(ZIS)! 

P9 (Z' S) = 
A (ZO SM (Z) S)ZT(fl (ZI S)If 1+ IA(C(Z) - 1) - SOW) 

. 34) (2 f fj(z, s)f2(z, s)f3(z, s)f4(z, s) - a, 8zf3(z, s) - 6[f, (z, s)]ýpfj(z, s)f2(z, s) - afiz . (z, s)) 
Re (Z' S) = 

C'Zf3(ZPS)(1 - 
UIA(ZISAXI + IA(C(Z) 

-I) - SOW) 

(2.35) &Ef (Z' S)jýpf (Z' S)f '2 
(Z 

I S) (Z 
I 

7S) 
Z (Z$ SM (Z' 3M (Z9 3)f4 (ZI S) - a)6Zf3 (Z9 S) 3(ZIS) 

Let Wq(z, s) denote the probability generating function of the queue size 

irrespective of the state of the system. Then adding equations (2.33), (2. 34) and 
(2.35) we obtain 

J7V' q 
(ZI 3) (ZI S) + 

Pq (ZI S) + 
Kq (ZI S) (2.36) 

fv, 
q 

(Z' S) = 

IA (ZtS)f3 (ZtS)(1 - 
UVI (ZtS)])+ PfI (ZPS)f2 (ZIS)ETIA (ZtSA' + IA(C(Z) - 1)- SOW) 

fý (z, s)f2 (z, s)f3(z, s)f, (z, s) - a, 6zf, (z, s) - U[f, (z, s)]ýPfj (z, s)f2 (z, s) - aflZf3 (z, s)j 

+ 
OZA (Z) 3)(1 - 

Z7V (Z, SAX I+ [A(C(Z) 
- 

1) 
- SOW 

1 

(2.37) 
A (Z) 3M (ZI SM (ZP SM (ZI S) - aftýf3 (Z. S) - 6[f, (z, s)]ýpf, (z, s)f, (z, s) - apf3 (ZO S)) 

V If we let z =I in equation (2.37), we can easily verify that ý(S)+f 
q(Z93)="S 

as it should be. Further, it can be shown that the denominator of the right hand 

side of (2.37) has one zero inside the unit circle Iz 1= I which is sufficient to 

determine the only unknown ý(s) appearing in the numerator. Therefore, 

Pq (Z' S) I Vq(z, s), Rq(z, s) and for that matter Wq(z, s) can be completely 

determined. 

We note that many particular cases of interest such as MIM11, MlEkll, MIDII, etc., 

can be derived from the results given in (2.33), (3.34), (2.35), and (2.37), by using 
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the appropriate values for G [s +A- AC(z) + a]. 

2.5 The Steady State Results 

To define the steady state probabilities and the corresponding probability 

generating functions we drop the argument t and for that matter, the arguments, 

wherever it appears in the time-dependent analysis up to this point. Then the 

corresponding steady state results can be obtained by applying the well-known 
Tauberian property 

limsf (s) = limf (t) 
.v -+0 t -+0 

Thus, multiplying both sides of equation (2.33) by s, taking the limit as 3 

approaches zero, applying the Tauberian property, and after some simplification 

we get 
Pq(Z)=limspq(Z, S)= 

, ->O 

limýfý(Z, S)fý (Z, S)(1 - Ulf, (z, s)]xl + [A(C(Z) - l)- si&s»i 3-->0 
18' flz ý, 'VI(ZIS)f2(ZOS)f3(ZOS)f4(ZIS)-at6Zf3(ZOS)-6[fl(ZIS)]bPfl(ZIS)f2(ZIS)-a f3(ZIS) 

-+0 

"MV2 (ZY SM3 (Z$ S)(1 - 
Ulfl (ZO S)IXS + S[A(C(Z) - 1)- SlýWIJ 

. v-+O 
1'MVI (Z' SM (ZISMI(ZI S)f4 (ZIS) 

-aß ZMZIS) - 
Ulf. (ZIS)&fý(ZIS)f2(Z, S) -aß Zf3 (Z, S) 

X-40 

P, (Z) = 
f2 (Z)f3 (Z)(1 - 

Z71f1 (Z)mc(Z) - 1)Q (2.38) fl (z) f2 (z) f3 (z) f4 (z) 
- aß zf3 (z) 

-Ü[ 
fl (z) &fl (z) f2 (z) 

- aß zf3 (z)ý 

where 
f, (z) =A- AC(z) +a 
A (Z) AC(Z) + J6 

A (Z) 
ý--A -AC(Z) +7 

f4 (z) =z- (I - p)U[A - AC(z) + a] 

Performing similar operations to equations (2.34) and (2.35) leads to 
Vq (Z) = "M S 

F9 (Z, S) = 

IiMýPf, (Z, S)fý(Z, S)U[fj z S)I[I + [A(C(Z) - i)-s]ý(s))l 
S-*O 1'MVI (Z9S)f2(ZPS)f3(ZYS)f4(Z9S) 

- aßzf3 (z. s) - 
U[fl(z, s)]bpf, (z, s)f2(z, s) - aßzf3(z, s) 

x-+O 

V, (Z) = 
pf, (z)f2 (z)G [fl (z)], 1(C(z) - 1)Q 

fi (Z)f2 (Z) f3 (Z)f4 (Z) - ctßzf3 (Z) - 
Mfl W] bpfl (Z) f2 (Z) -aß zf3 (Z) (2.39) 
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R, (z) = lim sk, (z, s) 
0-+0 

iimýczzf, (z, S)(i - 
ZT[fl (Z, S)]xl + [, l(C(Z) - 1) - 

$-+0 
"MVI(ZPS)f2(ZPS)f3(ZYS)f4(ZYS) -aßzf3 

(Z$ S) - 
um (Z$ SApf. (Z) S)f2(ZYS) - aßzf3(ZPS»i 

. v-+O 

Rq (z) = 
fi (Z)f2 (Z)f3 (Z)f4 (Z)- aßzf3 (Z)- U[f, (z)1 bpfý (z)f2 (z) - aßzf3 (Z) 

-Grf (z)I)A(C(z) -I (2.40) 

Now, for the steady states, we add equations (2.3 8), (2.3 9), and (2.40) we get 
Wq (z) = P, (z) + V, (z) + R, (z) = 

z)(f, (Z) + cz) + Ulf. WXX WA (Z) - f2 (Z)f3 (Z) - c2f3 (z»XZ(C(z) - 1)PQ 

fl (Z)f2 (Z)f3 (Z)f4 (Z)- aßZf3 (Z) -Zi[ fi (z) 1 bpf, (z ) f2 (z) - aß zf3 ( z) ) 

According to the normalization condition we have 

Q+W, (1)=1 

We see that for z=1, W, 7(z) is indeterminate of 0/0 form. Therefore, we apply 
L'Hopital's Rule on equation (2.41), where we differentiate both the numerator 

and denominator with respect to z. Accordingly, we get 

W(I)=, q G[a 
(2.42) 

where C(I) = 1, C'(1) = E(I) is the mean batch size of the arriving customers. 

Adding Q to (2.42), equating to I and solving for Q we get 

Q= 
U[ a] (afly + A&E (I) +A ayE (I) -A aflpE (I)) -A yE (I) (a + 8) 

(2.43) 
aflyU[a] 

After simplification, equation (2.43) can be written as 

IIIIP Q=I- AE(I) + --= ------ (2.44) 
(, 

6G[a] aG[a] a8 y) 

where AE(J) + +k 
)<I 

emerges out to be the stability 
(PG[a] 

aG[a] a8y 

condition under which the steady states exits. Hence 

IIIIP 
p= AE(I) --ý + -- + (2.45) 

(, 

BG[a] aG[a] aP 7) 

Equation (2.44) gives the probability that the server is idle. Substituting for Q 
from (2.44) in (2.41), we have completely and explicitly determined W, (z), the 

probability generating function of the queue size at a random epoch. 
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2.6 The Mean Queue Size and the Mean Waiting Time 
To find the mean number of customers in the queueing system considered in this 

chapter, we write W,, (z) obtained in (2.4 1) as W,, (z) = N(z) / D(z) where N(z) 

and D(z) are the numerator and denominator of the right hand side of (2.41), 

respectively. Then we use 
D'(I)N "(1) - N'(I)D'(1) 

2(D'(1))' (2.46) 

which was derived in equation (1.30) in chapter 1. Note that primes and double 

primes in (2.46) denote first and second derivatives at z=1, respectively. Then 

carrying out the first and second derivatives for the expression for W, (z) obtained 

in (2.4 1) and letting z=I we get the following 

N'(1) = AQE(I)fay + flv + U[a](pa, 8 - ay - fly)) (2.47) 

Q(, tE(j))2 
av 

2 y-, 8-a+ ýwf 
AE(I)) 

+Z7[a y+fl+a- ay 
-pfl-pa 1( 

AE(I) 

+ U'[a](ay + fly - pafl) 
I 

+ AQE(I(I - 1))fay + fly + Z7[a](pap - ay - flv)) (2.48) 

D'(I)=-AYE(I)(a+, 8)+U[a](A, 8rE(I)+Aa7E(I)-Aa, BpE(I)+a, 8y) (2.49) 

D"(1) = 2(AE(I))' a++y 7a Y, 9 
-) AE(I) AE(I) 

+U[a](pa+pfl-a-fl-r- 

+ U'[a aflp - ar -, 6r - 
a, 6y 

- AE(I(I - 1))(ay +, 6y + ? 7[a](pafl - ay - fly)) (2.50) 

where E(I(I-1)) is the second factorial moment of the batch size of arriving 

customers, and Q has been found in (2.44). Then if we substitute for N'(1), 

N"(1), D'(1), and D"(1) from (2.47) - (2.50) in equation (2.46) we obtain L, in 

a closed form. Further, the mean waiting time of a customer can be found using 
Little's laws discussed in chapter 1, specifically; equation (1.3) can be used to find 

the mean waiting time, knowing the mean queue size. 
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2.7 Particular Cases 
2.7.1 Single Poisson Arrivals 

When customers arrive at the system one by one, then cl =I and ci =0 for i#1. 

Consequently, Qz) = z, EQ) = 1, E(I(I-1)) = 0. Using these substitutions in (2.41) 

we get, 
W9 (Z) = 

V2(ZY3(Z)('-lglfl(Z)])+Pfl(ZY2(Z)5Vý(Z)I+CtZf3(Z)('-(Ilfl(Z)]))[A(Z 

-1)]Q (2.51) 
A (Z A (Z Y3(Z Y4(Z) -Pyfl (Z A (Z)6[f, (z)] - a, 8Zf3(Z)('-lglfl(Z)I) 

where 
f, (z) =A -Az +a 
f2 (z) =A -Az + j6 
A(Z) 

= dý ý 
2Z +r 

f4(z) =z- (I - p)ZT[A -, L- 

and Q is given by 

Q=I-A -= + ---= 
I-I-I+ 

(2.52) 
(, 

6G[a] aG[a] aP -Ly) 

and hence, 

to= (2.53) 
, 
6G[a] aG[a] a6 y) 

Using the same substitutions in (2.47) - (2.50) yields 
N'(1) = AQf(ay +fly)+ (pa, 8 - ay -fly)U(a]) (2.54) 

N"(1) = 2AQj (- Av - A, 8 - Aa + ay) 
" U[a](Ay + A, 6 + Aa - ay - pAfl - pAa) (2.55) 

" U'[ a] (A ay + Afly - Ap afl)) 

D'(1) = -Av(a + fl)+ U[a](afl7 + Afly + Aa7 - Aaflp) (2.56) 

, 
g) D"(1) = 21(, Va +, e, 8 +, Vy - Aya - Ay 

+ U[a]ýAýa + pAýfl - Aýa - Aý, 8 - Aý7 - aBA) (2.57) 

+ Z7'[ a] (Aý a, 8p - Aý ay - Aý fly - a, 8yA) I 

Then if we substitute for N'(1), N"(1), D'(1), and D"(1) in equation (2.46) we 

obtain Lq in a closed form. Further, the mean waiting time of a customer can be 

found by using equation (1.3). 
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2.7.2 k-Erlang Service Time 

In this case, the service time has a k-Erlang distribution, and hence 

g(x) =kx 
k-I 

e-jec u>0, k=1,2,3 
(k - 1)! " 

lu 
kpk 

G[A-AC(z)+a]= (A - AC(z) +a+ pý , G[a] = Ta +, a 

Substituting for U[A - AC(z) +a] in equation (2.4 1) we have 

w- (Z) = 
q 

(A -AC(z) +a+, u)'f, (z)(f, (z) + m), Z(C(z) - 1)Q 
(, t-. ZC(z)+a+, uýf3(z)(fý(z)f2(z)f, (z)-aßzl-p* fl(z)f2(z)-aßzf3(z» bp 

- nzf (z»1, Z(C(z) - 
fio (Z) (Z) u 

k(nf(Z)£ 
Z 

+ 
-aOz (A-AC(z)+a+T f3 Wýl (Z)f2 WA (Z) 

where 
f, (z) =A- AC(z) +a 
A (Z) =" -'ýC(Z) + 08 
A (Z) = *ý -'ýC(Z) + 

dy 

f (Z)=z- 
0- P)P* 

4 (A - AC(z) +a+ pý 

and Q and p are given by 

(z)f2(z)-aßzf3(z) 

01 
1 -AE(I) k+k-1-1+p 

am aß y) 

p= AE(l) 
A+-1-1+. 

L 
ýUk ap 

kaP 
y) 

54 

(2.58) 

(2.59) 

(2.60) 

Further, Lq can be found using (2.46) and then Wq is obtained using (1.3). Thus, 

Uk 
-ku 

k 

substituting for G [a] =k and G (a]= - k+l :. quations (2.47) - -Ca + p) (a + p) 

(2.50) we get 

N'(1) = AQE(I) ay +, 8y +p (p a, 8 - ay - pr (a+pý 
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N"(1) = 2Q(AE(I))2 y-, 8-a+ ay 
AE(l)) 

+pk y+, 6+a- ay 
-pfl-pa (a+ p)* 

( 

AE(I) 

-k 
pk (av + fly -p afl) ýa + P)k+l 

AQE(I(I - 1)) ay +, 6y +p (pafl - ay - fly (a + ýU)k 
)1 (2.62) 

D'(1) = -AyE(I)(a +, 6) +p (A, 6YE(I) + AaYE(I) - AaflPE(I) + aflY) (2.63) (a + p)k 

j))2 ra Vfl ) 
klw, ( 

ý (a+fl+, 
v- AE(I) AE(I5) 

k 

)k pa+pp-a-, 8-r- afi 
(a+p 

( 

AE(I)) 

- ýa- 
klk (aflp 

- ay -, 6y - 
afly 

a+ JU)k+l AE(I)) 

I 

- AE(I(I - 1)) ay +, 6y + (a k 
(p ap - ay -, 6y)l (2.64) 

2.7.3 Exponential Service Time 

The most common distribution function for the service time is the exponential 
distribution. For this distribution, the rate of service is P>0. The equations for an 

exponential service time could be found by letting k=I in the k-Erlang service 

time results. Thus 

W -')Q 
ff2(Z)f3(Z)+lPf2(Z)+OZf3(Z))A(C(Z) 

(2.65) (fl (Z) + P)f2 (Z)f3 (Z)f4 W- 
pýpf2 (z) - a, 8 Zf3 (Z) 

where 

f, (z) =A- AC(z) +a 

A (Z) =A- AC(Z) + *8 
A(Z) =A- AC(z) +7 

A(Z) 
- Z- 

0- Au 

(A - AC(z) +a+ 

and Q simplifies to 

Q=I-AE(I) +P (2.66) 
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and hence 

A -E- 
1L 

E(I)(& +P+ 
7) 

(2.67) 

Now we let k=I in equations (2.47) - (2.50), we obtain 

N'(1) = AQE(I) a7 + fl7 + ýu (p afl - a7 -, 07 (2.68) -Ca + p) 
)I 

av N"(1) = 2Q(AE(I)y y-, 8-a+ 

+P y+, 8+a- ay 
-p, 6-pa 'u (ay +, 6y -p aý6) (a+li)( AE(I) 

)-(a 

+ P)2 

+AQE(I(I-1)) ay+py+ 'u (paO-ay-, By (2.69) Ta- + -) 
Ip 

)I 

D'(I)= 'Y (A, 6. YE(I)+AaYE(I)-Aa, 6pE(I)+aflv)-AYE(l)(a+p) (2.70) (a + p) 

(a+, 
6+7- 7a ; Y, 8 

AE(I) 

a, 67) 
+ 'u 

(pa+pfl-a-p-, 
Y- 

(affi-ay-fly- 
(a+p) AE(I)) Ta-+py 

-A-F(I(I-1+, v+p. y+ (pa, 6-av- (2.71) (a+p 10Y)j 

Utilizing equations (2.68) -(2.71) in equation (2.46) we can find L., and hence 

W. can be found using equation (1.3). 

2.7.4 Deterministic Service Time 

In this case we assume that the service time is constant of length b>0. Then, 

b-b-b 
G[A - AC(z) + a] =- G[a]=-, G [a]=-7 (2.72) A- AC(z) +a'a 

Using these substitutions, equation (2.41) can be written as 
J(fj (z) - bXf2 (z) + cx)f3(z)+bpf, (Z)f2(Z))A(C(Z)-')Q 

12 
(Z) 

3 
(Z) 

W, (Z) =f2 
(Z)f 

- a, 8 zfl (z) f3(z) -b ýpfj (z) f2 (z) - aB zf3(z)) 
(2.73) f3 z 

4 
(Z) 

where 
f, (z) =A- AC(z) +a 

A (Z) -'ýC(Z) + #8 
A (Z) - 

"C(Z) +7 
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(I - p)b 
A- AC(z) +a 

and Q is expressed as 

57 

I- AE(I) a+1-1 
-1 +P) (2.74) 

(fib 

ba6y 

Thus, the utilization factor becomes 

p= AE(I) a+I-I-I+ (2.75) 
(, 

Bb ba8 

For the mean number of customers in the queue and the mean waiting time, we 

need to use (2.72) in equations (2.47) - (2.50) which gives 

N'(1) = AQE(I) ay +, 8y +b (pa, 8 - ay -fly (2.76) 
fa )I 

N"(1) = 2Q(AE(I))' y-, 8-a+ +b 
(Y+P+a- ay 

-pg-pa) a AE(I) 

b (ay + 16; Y-pap) +AQE(I(I-1)) ay+py+A(pafl-ay-fly (2.77) 711a 
)I 

D'(1) = -L (A, 8yE(I) + AarE(I) - Aa, 6pE(I) + apr) - AyE(I)(a + (2.78) 
a 

D'(1) = 2(AE(j))2 a+p+y- 
va v8 +. 

L 
pa+pp-a-, 6-y- IL 

AE(I) AE(l)) a( 
b (aA afly )I 

p-ay-fly- -AE(I(I - 1))ýar +, 6y + 
L(pa, 

6- ay -fly (2.79) -7 
a 

)I 

2.7.5 No Server Vacations 

When the server has no option to take a vacation, we have p=0. Using this in 

equation (2.41), Wq(z) can be written in the form 

W, (Z) = ((A-, IC(z) +P)+az)(I -j[, I-AC(z) +a])A(C(z)-I)Q 
(A-AC(z)+a)(A-AC(z)+, 6)(z-(Y[A-AC(z)+al)-a, 6z(l-d[, I-AC(z)+a]) (2.80) 

where Q could be found by setting p=0 in (2.44) 

Q 'E(I)(rG 
[a] aG[a] a 

(2.81) 

Therefore, 
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II11 
AE(I) --- --- (2.82) 

(flU[a] 

aG [a] a fl) 

Further, to find the mean number in the queue and the mean waiting time in the 

queue we find N'(1), N"(1), D'(1), and D"(1) 

N'(1) = AQE(I)(ay + flr - U[a](ar + fly)) (2.83) 

N"(1) = 2Q(AE(I)y y-, 8-a+ ay +P+a- ay U[a] 
AE(I)) + 

(y 

AE(I)) 

+ (ay +, 6y)U'[a] + AQE(I(I - 1))fay + fly - U[a](av +, 6y)) (2.84) 

D'(1) = U[a](AflvE(I) + AaYE(I) + afly) - AvE(I)(a + fl) (2.85) 

D"(1) = 2(AE(I))' a +, 6 +y- ya Y9 
- U[a] a+ +Y+ afl 

AE(I) AE(Iý) AE(I)) 

- U'(a] ay + fly + afly ) 
AE(I(I - 1))fay +, By - U[a](ay +, fly)) (2.86) 

Using the results obtained in (2.83) - (2.86) in (2.46) we can find Lq, and 

hence Wq 
. 

2.7.6 No System Breakdowns 

In this case, the system will never fail and hence a=0 which gives R, (z)= 0. 

Then equation (2.41) becomes 

Wq (Z) = 
J(A 

- AC(Z) +'VX1 - Z7[A - AC(Z)I) + P(A - AC(Z))z7[A - AC(Z)IIQ 
(2.87) 

PAA - AC(z)] - (A -'TC(z) +, Vxz - (I - P)61A - Ac(z)]) 

To find Q, we let a=0 in (2.43), get the 0/0 form, and then we use L'Hopitals 

rule. Differentiating both the numerator and denominator of the right hand side of 
(2.43) with respect to a, we get 

Q=I-AE(I) L+E(S) (2.88) 

where G [0] =I and -G [0] =E (S) is the mean service time. Hence 

p= AE(I) + E(S) (2.89) 

Further, we compute N'(1), N'(1), D'(1), and D"(1) using the expression 

obtained for Wq(z) in (2.87). 
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N'(1) = -AQE(I)(; vE(S) + p) (2.90) 

N"(1) = Qý(l - p)E(S)(AE(I))2 - 7(AE(I))2E(S2) 

- AE(I(I - 1))[p + 7E(S)]) (2.91) 

D'(1) = 7AE(I)E(S) + ApE(I) -7 (2.92) 

D"(1) = 7(AE(I))2E(S2) - 2(l - p)(AE(I)) 2 E(S) + 2AE(I) 

+ AE(I(I - 1))[p + 7E(S)] (2.93) 

where G [0] =E (S 2) is the second moment of the service time. Utilizing 

equations (2.90) - (2.93) in equation (2.46) we can easily find Lq, and hence Wq. 

If customers arrive one by one instead of batches, then C(z) = z, and hence Wq (z) 

becomes 

Wq (Z) ý 
f(A 

- ýz + Yxi - U[A 
-, L, ])+ P(A -, L, )U[A 

- (2.94) 
pAA-Azl-(A-Az+rxz (, -P)U[A- 

For single arrivals we let EQ) =I in (2.88), hence Q becomes 

A(411 + E(S) (2.95) 
y 

Thus, the stability condition is given by 

p=A -ýý+E(S) (2.96) 
(7 

The results obtained in (2.94) and (2.95) appeared in the literature of queueing 
theory (Madan, Abu-Dayyeh, & Saleh, 2002). 

Letting E(l) = 1, and E(I(I- 1)) =0 in (2.90), (2.91), (2.92), and (2.93) we compute 
N'(1), N"(1), D'(1), and D"(1) 

Y(I) = -A&(S) + p) (2.97) 

N"(1) = AýQJ2(1 - p)E(S) - yE(S2)1 (2.98) 

D'(1) = 7AE(S) -y+ Ap (2.99) 

D"(1) = 2ýX(S2) 
- 2Aý (I - p)E(S) + 2A (2.100) 

Substituting for N'(1), N"(1), D'(1), and D"(1) from equations (2.97) - (2.100) 

in equation (2.46) and using (2.95) we get the following closed form of the mean 
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Lq _ 
Aý (y'E(S') + ME(S) + p) 1-A -L + E(S) (2.101) 

2(yAE(S) -7+ Apy 

(( 

'Y 
which gives the following expression for the mean waiting time in the queue 

Wq 
- 

A(Y2 E(S2) + VE(S) + p) I-A P+E(S) (2.102) 
2(yAE(S) -y+ Ap)2 

((y 

2.7.7 No Server Vacations, No System Breakdowns 

In this case we let p=0=a, hence V,, (z) =0=R, (z) . Using these substitutions in 

(2.41) and after some simplifications we get 

Wq (Z) - 
(G7[, t-, tC(z)j-1)Q 

(2.103) 
Z-ü[, t-, tC(Z)] 

where Q could be found by letting p=0 in (2.95) 
I- AE(I)E(S) (2.104) 

which gives 
AE(I)E(S) (2.105) 

Then, (2.103) can be written as 

Wq (Z) = 
(G-[, t-, IC(z)]-1)(1-, ZE(I)E(S» 

(2.106) 
Z-U1, t-, 1c(Z)i 

Further, we can find the mean number of customers in the queue by setting p=0 
in (2.97) - (2.100) 

N'(1) = -AyQE(I)E(S) (2.107) 

N'(1) = QýE(S)(AE(I))2_ AvE(S)E(I(I-1))-y(AE(I)YE(S2)j (2.108) 

D'(1) = yAE(I)E(S) -y (2.109) 

D"(1) =Y(AE(j))2E(S2)-2(AE(I)YE(S)+2AE(I)+A7E(S)E(I(I-1)) (2.110) 

Utilizing equations (2.107) - (2.110) in equation (2.46), we get 
(AE(l))'E(S2) + AE(S)E(I(I - 1)) 

2(l - AE(I)E(S)) 

and hence the mean waiting time in the queue is given by 

W= A(E(I))'E(S') + E(S)E(I(I - 1)) 
q 2(l - AE(I)E(S)) 

(2.112) 
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For single Poisson arrivals, we let C(z) = z, E(I) = 1, and E(I(I-1)) =0 in the main 

results, we get 

W, (z) = 
(G-[A-, L-]-I)(1-AE(S)) 

z-U[A-, Lz] 

where 
Q: -- I- AE(S) (2.114) 

p= AE(S) (2.115) 

Using same substitutions in (2.111) and (2.112) gives 

Lq 
= 

'E S) 
2(l - AE(S)) 

w- AE(S2) 
(2.117) q 2(l - AE(S)) 

The result obtained in (2.116) is given by Bunday (1996). 

2.8 A Numerical Illustration 

For the purpose of a numerical illustration, we obtain some tables and graphs for 

the first three particular cases. We choose the following arbitrary values A=2, 

p= 20, EQ) = 1, and E(I(I- 1)) = 0. 

All the tables give the computed values of various states of the server, the 

proportion of idle time, the utilization factor, the mean queue size, the mean 

waiting time, the probability that the server is working irrespective of the number 

of customers in the queue, the probability that the server is on vacation 
irrespective of the number of customers in the queue, the probability that the 

system is in repair due to breakdown irrespective of the number of customers in 

the queue, and the probability that the server is not idle. 

In Tables 2.1 - 2.6 and graphs 2.1 - 2.7, we consider the special case discussed in 

section 2.7.2 which is a queueing system with Bernoulli vacations and random 
breakdowns. Service time follows k-Erlang distribution (values of k vary from 4 

to 2), while vacation times and repair times both have exponential distributions. 
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In Table 2.1 values of 8 and v are fixed to be 10 and 7, respectively, while (X 

varies from I to 4 and p takes the values 0.25,0.5, and 0.75. All the values were 

chosen such that the steady state condition is satisfied. 

Table 2.1 Computed values qI'various queue characterisficsfin- a vacation quelle 
with breakdown and k-Erlang service time, k-4,13 ý 10, y -- 7 

a p Q p Lq tyq /',, (1) f'q (1) R, j (1) ji", (1) 

1 0.25 0.4544 0.5456 0.5211 0.2606 0,431 0.0714 0.0431 0.545-5- 
1 0.5 0.383 0.617 0.752 0.376 0.431 0.1428 0.0431 0.6169 
1 0.75 0.3116 0.6884 1.0887 0.5444 0.431 0.2143 0.0431 0.6884 

2 0.25 0.3716 0.6284 0.9187 0.4594 0.4641 0.0714 0.0928 0,6283 
2 0.5 0.3002 0.6998 1.3158 0.6579 0.4641 0.1429 0.0928 0.6998 
2 0.75 0.2288 0.7712 1.9611 0.9806 0.4642 0.2143 0.0928 0.7713 

3 0.25 0.2796 0.7204 1.6655 0.8328 0.4993 0.0714 0,1498 0.7205 
3 0.5 0.2081 0.7919 2.5058 1.2529 0.4992 0.1428 0.1498 0.7918 
3 0.75 0.1367 0.8633 4.2258 2.1129 0.4992 0.2143 0.1498 0.8633 

4 0.25 0.1772 0.8228 3.4507 1.7254 0.5367 0.0714 0.2147 0.8228 
4 0.5 0.1058 0.8942 6.3386 3.1693 0.5369 0.1429 0.2148 0.8946 
4 0.75 0.0343 0.9657 21.2071 10.6036 0.5361 0.2141 0.2145 0.9647 

Q 

I 
Figure 2.1 Effiect qj'a andp on the proportion qftime that theservel. is idle 

(k-Erlang service lime with k=4, A=2, pý 20, J3 - 10, ant 17 - 7) 
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Figure 2.2 Effict oj'a andp on the litilizationfizelor p 
(k-Erlang service time with k=4, A=2, pý20,13 ý 10, and y= 7) 

Lq 

Figure 2.3 Effiect oj'a andp on the mean queue size L,, 
(k-Erlang service time with ký4, A=2, p= 20,8 = 10, and 7= 7) 

wJ 

63 

Figure 2.4 Ejjýct ql'a andp on the mean ivailhkq time IV,, 
(k-Erlang service time with k=4, Aý2, p -- 20,8 ý 10, and y- 7) 
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0.52 
0. PIA I)0.4 

0. 

Figure 2.5 Efftct oj'a andp on the probabiliýy that the server is working 
(k-Erlang service time with k=4, A=2, pý 20,13 - 10, and 7ý 7) 

0. 

V110) 0. 

Figure 2.6 Ejfect of a andp on the probabiliýv that the server is on vacation 
(k-Erlang service time with k=4, Aý2, p= 20,8 = 10, and )/ - 7) 

0. 
R, 1(1) t 

fa andp on the probabilitv that thesystem is under repair Figure 2.7 Eftýct o 
(k--Erlang service time with k=4, A=2,20,13 10, (,,, (1 7) 
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In the following table, for the sarne queueing system considercd in the previous 

table, we fix the values of a and p to be 3 and 0.5, rcspcctively, while /; varies 

from 6 to 9 and )/varies from 6 to 8. All the valucs were chosen such that Ilic 

steady state condition is satisfied. 

Table 2.2 Computed values qfvarious queue characteristics. 1br a vacation quelle 
with breakdown and k-ErIang service litne, k ý- 4, aý3. pý0.5 

,8 y p L, W" J)" (1) (1) R, (1) 1 r, (1) 

6 6 0.0845 0.9155 8.7241 4.3621 0.4994 0.1667 0.2497 0.9158 
6 7 0.1083 0.8917 6.5587 3.2794 0.4993 0.1429 0.2497 0.8919 
6 8 0.1261 0.8739 5.481 2.7405 0.4991 0.125 0.2495 0.8736 

7 6 0.1201 0.8799 5.5451 2.7726 0.4991 0.1666 0.2139 0.8796 
7 7 0.1439 0.8561 4.4428 2.2214 0.4991 0.1428 0.2139 0.8558 
7 8 0,1618 0.8382 3.8394 1.9197 0.4993 0.125 0.214 0.8383 

8 6 0.1469 0.8531 4.1931 2.0966 0.4993 0.1667 0.1872 0.8532 
8 7 0.1707 0.8293 3.4519 1.726 0.4993 0.1429 0.1872 0.8294 
8 8 0.1885 0.8115 3.026 1.513 0.4991 0.125 0.1872 0.8113 

9 6 0.1677 0.8323 3.4462 1.7231 0.4993 0.1667 0.1664 0.8324 
9 7 0.1915 0.8085 2.8785 1.4393 0.4993 0.1429 0.1664 0.8086 

-9 
8 0.2093 0.7907 2.5439 1.272 0.4991 0.125 0.1664 0.7905 

0. 

Qv. 

"C 
Figure 2.8 Efftcl oj', 8 and y on the proportion oftime that the server is idle 

(A--Erlang service time with k=4, Aý2, pý 20, a -- 3, and p -- 0.5) 
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PU. 

Figure 2.9 4fict oj', 8 and y on the utilization fiictor p 
(k-Erlang service time with ký4, Aý2, pý 20, a-3, and 1) - 0.5) 

Lq 

, It, 
Figure 2.10 Ejkct o) f8 and y on the mean queue size L,, 

(k-Erlang senice time with ký4, Aý2, pý 20, aý3, and p-0. -5) 

Wq 

1ý t, 

06 

Figure 2.11 Ej 
. 
lýet qIßand y on the inean wailing linie ; 11� 

(k-Erlang service ti nie willi k ý- 4, Z=2, li ý 20, aý3, andp - 0.5) 
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. 
Jýct oj', 8 and y on the probabilitv that the server is on vacation Figure 2.12 gf 

(k-Erlang service time with k=4, A=2,20, a-3, and 1) - 0.5) 

R, (I) 

Figure 2.13 Ej -epair , 
7&ct of 8 and 7 on the probabili(v that thes 

* vsfem is under i 
(k-Erlang service time with k=4, Aý2, pý 20, ct ý 3, and 1) - 0.5) 

In Tables 2.3 and 2.4 we let k be 3. First we fix the values ol'13 and y while (I and 

p are varying in Table 2.3. Next we fix the values of' (z and p and vary both ol'/I 

and )/ ]in Table 2.4. Similarly, in Tables 2.5 and 2.6 flor k equal to 2, and in Tables 

2.7 and 2.8 for k equal to I which corresponds to in exponential distribution 1`01' 

the service time. 
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Table 2.3 Computed values of various queue characteristicsfor a vacation queue 
with breakdown and k-ErIang service time, k=3,6 = 10, y=7 

a p Q p Lq Wq Pq (1) Vq (1) R, (1) Wq (1) 

1 0.25 0.5817 0.4183 0.2686 0.1343 0.3154 0.0714 0.0315 0.4183 
1 0.5 0.5103 0.4897 0.3904 0.1952 0.3154 0.1429 0.0315 0.4898 
1 0.75 0.4388 0.5612 0.5517 0.2759 0.3153 0.2143 0.0315 0.5611 

2 0.25 0.5313 0.4687 0.4072 0.2036 0.331 0.0714 0.0662 0.4686 
2 0.5 0.4599 0.5401 0.5663 0.2832 0.331 0.1429 0.0662 0.5401 
2 0.75 0.3885 0.6115 0.7839 0.392 0.331 0.2143 0.0662 0.6115 

3 0.25 0.4771 0.5229 0.5952 0.2976 0.3473 0.0714 0.1042 0.5229 
3 0.5 0.4057 0.5943 0.8115 0.4058 0.3473 0.1429 0.1042 0.5944 
3 0.75 0.3343 0.6657 1.1202 0.5601 0.3473 0.2143 0.1042 0.6658 

4 0.25 0.419 0.581 0.8574 0.4287 0.364 0.0714 0.1456 0.581 
4 0.5 0.3475 0.6525 1.167 0.5835 0.364 0.1428 0.1456 0.6524 
4 0.75 0.2761 0.7239 1.637 0.8185 0.364 0.2143 0.1456 0.7239 

Table 2.4 Computed values of various queue characteristicsfor a vacation queue 
with breakdown and k-Erlanz service time, k=3, a=3, p=0.5 

16 Q p 
Lq We Pq (1) Vq (1) Rq (1) Wq (1) 

6 4 0.2291 0.7709 2.5082 1.2541 0.3473 0.25 0.1736 0.7709 
6 5 0.2791 0.7209 1.8354 0.9177 0.3473 0.2 0.1736 0.7209 
6 6 0.3124 0.6876 1.5241 0.7621 0.3473 0.1667 0.1736 0.6876 

7 
7 
7 

8 
8 
8 

9 
9 

4 
5 
6 

4 
5 
6 

4 
5 
6 

0.2539 0.7461 2.0803 1.0402 0.3473 0.25 0.1488 0.7461 
0.3039 0.6961 1.5328 0.7664 0.3473 0.2 0.1488 0.6961 
0.3372 0.6628 1.2743 0.6372 0.3472 0.1667 0.1488 0.6627 

0.2725 0.7275 1.8162 0.9081 0.3473 0.25 0.1302 0.7275 
0.3225 0.6775 1.3412 0.6706 0.3473 0.2 0.1302 0.6775 
0.3558 0.6442 1.1143 0.5572 0.3472 0.1667 0.1302 0.6441 

0.287 0.713 1.6379 0.819 0.3473 0.25 0.1158 0.7131 
0.337 0.663 1.2097 0.6049 0.3473 0.2 0.1158 0.6631 

0.3703 0.6297 1.0034 0.5017 0.3473 0.1667 0.1158 0.6298 

Table 2.5 Computed values of various queue characteristicsfor a vacation queue 
with breakdown and k-ErIang service time, k=2, fl = 10, y=7 

aPIQP 
Lq Wq Pq (1) Vq (1) Rq (1) Wq (1) 

1 0.25 0.703 0.297 0.1351 0.0676 0.2051 0.0714 0.0205 0.297 
1 0.5 0.6316 0.3684 0.2059 0.103 0.2051 0.1429 0.0205 0.3685 
1 0.75 0.5601 0.4399 0.2947 0.1474 0.2051 0.2143 0.0205 0.4399 

2 0.25 0.6765 0.3235 0.1877 0.0939 0.2101 0.0714 0.042 0.3235 
2 0.5 0.6051 0.3949 0.2684 0.1342 0.2101 0.1429 0.042 0.395 
2 0.75 0.5336 0.4664 0.3706 0.1853 0.2101 0.2143 0.042 0.4664 

3 0.25 0.649 0.351 0.2468 0.1234 0.215 0.0714 0.0645 0.3509 
3 0.5 0.5776 0.4224 0.3393 0.1697 0.2151 0.1429 0.0645 0.4225 
3 0.75 0.5061 0.4939 0.4578 0.2289 0.215 0.2143 0.0645 0.4938 

4 0.25 0.6205 0.3795 0.315 0.1575 0.22 0.0714 0.088 0.3794 
4 0.5 0.5491 0.4509 0.4218 0.2109 0.2201 0.1429 0.088 0.451 
4 0.75 0.4776 0.5224 0.5604 0.2802 0.22 0.2143 0.088 0.5223 
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Table 2.6 Computed values ofvarious queue characteristicsfor a vacation queue 
with breakdown and k-ErIang service time, k=2, a=3, p=0.5 

18 yIQPL, W, Pq (1) Vq (1) Rq (1) Wq (1) 

6 
6 
6 

7 
7 
7 

8 
8 
8 
9 
9 
9 

4 
5 
6 

4 
5 
6 

4 
5 
6 
4 
5 
6 

0.4274 0.5726 0.8805 0.4403 0.215 0.25 0.1075 0.5725 
0.4774 0.5226 0.6715 0.3358 0.215 0.2 0.1075 0.5225 
0.5108 0.4892 0.5659 0.283 0.2151 0.1667 0.1075 0.4893 

0.4428 0.5572 0.788 0.394 0.2151 
0.4928 0.5072 0.5949 0.2975 0.2151 
0.5261 0.4739 0.4971 0.2486 0.215 

0.4543 0.5457 0.7248 0.3624 0.215 
0.5043 0.4957 0.5424 0.2712 0.215 
0.5376 0.4624 0.4499 0.225 0.215 
0.4633 0.5367 0.6791 0.3396 0.2151 
0.5133 0.4867 0.5043 0.2522 0.2151 
0.5466 0.4534 0.4157 0.2079 0.2151 

0.25 0.0922 0.5573 
0.2 0.0922 0.5073 

0.1667 0.0922 0.4739 

0.25 0.0806 0.5456 
0.2 0.0806 0.4956 

0.1667 0.0806 0.4623 
0.25 0.0717 0.5368 
0.2 0.0717 0.4868 

0.1667 0.0717 0.4535 

Table 2.7 Computed values ofvarious queue characteristicsfor a vacation queue 
with breakdown and exponential service time, = 10, y=7 

a P Q P Lq wq Pq (1) V9 (1) Rq (1) Wq (1) 

1 0.25 0.8186 0.1814 0.0613 0.0307 0.1 0.0714 0.01 0.1814 
1 0.5 0.7472 0.2528 0.1041 0.0521 0.1 0.1429 0.01 0.2529 
1 0.75 0.6758 0.3242 0.1558 0.0779 0.1 0.2143 0.01 0.3243 

2 0.25 0.8086 0.1914 0.0787 0.0394 0.1 0.0714 0.02 0.1914 
2 0.5 0.7372 0.2628 0.1237 0.0619 0.1 0.1429 0.02 0.2629 
2 0.75 0.6657 0.3343 0.1783 0.0892 0.1 0.2143 0.02 0.3343 
3 0.25 0.7986 0.2014 0.0958 0.0479 0.1 0.0714 0.03 0.2014 
3 0.5 0.7272 0.2728 0.1431 0.0716 0.1 0.1429 0.03 0.2729 
3 0.75 0.6558 0.3442 0.2007 0.1004 0.1 0.2143 0.03 0.3443 
4 0.25 0.7885 0.2115 0.1137 0.0569 0.1 0.0714 0.04 0.2114 
4 0.5 0.7171 0.2829 0.1634 0.0817 0.1 0.1429 0.04 0.2829 
4 0.75 0.6457 0.3543 0.2242 0.1121 0.1 0.2143 0.04 0.3543 

Table 2.8 Computed values ofvarious queue characteristicsfor a vacation queue 
with breakdown and exponential service time, a=3, p = 0.5 

/3 

6 
6 
6 

7 
7 
7 

8 
8 
8 
9 
9 
9 

7 

5 
6 

4 
5 
6 

4 
5 
6 
4 
5 
6 

Q p 
Lq Wq 

0.6 0.4 0.386 0.193 
0.65 0.35 0.2794 0.1397 

0.6834 0.3166 0.2251 0.1126 

0.6072 0.3928 0.3613 0.1807 
0.6572 0.3428 0.2577 0.1289 
0.6905 0.3095 0.205 0.1025 
0.6125 0.3875 0.3438 0.1719 
0.6625 0.3375 0.2424 0.1212 
0.6959 0.3041 0.1909 0.0955 
0.6167 0.3833 0.3309 0.1655 
0.6667 0.3333 0.231 0.1155 

0.7 0.3 0.1804 0.0902 

Pq (1) Vq (1) Rq (1) Wq (1) 

0.1 0.25 0.05 0.4 
0.1 0.2 0.05 0.35 
0.1 0.1667 0.05 0.3167 

0.1 0.25 0.0428 0.3928 
0.1 0.2 0.0428 0.3428 
0.1 0.1667 0.0428 0.3095 

0.1 0.25 0.0375 0.3875 
0.1 0.2 0.0375 0.3375 
0.1 0.1667 0.0375 0.3042 

0.1 0.25 0.0333 0.3833 
0.1 0.2 0.0333 0.3333 
0.1 0.1667 0.0333 0.3 
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The results obtained for the special case discussed in section 2.7.4 are used to 

calculate various queue characteristics in Tabics 2.9 - 2.12. In this case we 

consider a queueing system with Bernoulli vacations and random breakdowns 

where the service times follow a deterministic distribution while both the vacation 

time and repair time are exponentially distributed. For Table 2.9 wc scIcct the 

arbitrary value b to be equal to 3, the values of /I and yare I ixed to be 10 and 7, 

respectively, while a varies from I to 4 and p takes the values 0.25,0.5, and 0.75. 

All the values of queue pararneters were chosen such that flic steady state 

condition is satisfied. 

Table 2.9 Computed values qf'various queue characteristicsfin- a vacation quelle 
with breakdown and deterministic service time, b-3,13 - 10, 

-Z - 
10 

apýQp 
Lq ty, P,, (1) K, (I ) R,, (1) w., (1) 

6 0.25 0.4167 0.5833 0.6404 0.3202 0.3334 0.05 0.2 0.5834 
6 0.5 0.3667 0.6333 0.8005 0.4003 0.3334 0.1 0.2 0.6334 
6 0.75 0.3167 0.6833 1.0111 0.5056 0.3334 0.15 0.2 0.6834 

7 0.25 0.3025 0.6975 1.5113 0.7557 0.381 0.05 0.2667 0.6977 
7 0.5 0.2525 0.7475 1.9257 0.9629 0.381 0.1 0.2667 0.7477 
7 0.75 0.2025 0.7975 2.5449 1.2725 0.381 0.15 0.2667 0.7977 

8 0.25 0.2 0.8 3.1534 1.5767 0.4167 0.05 0.3333 0.8 
8 0.5 0.15 0.85 4.41 2.205 0.4167 0.1 0.3333 0.85 
8 0.75 0.1 0.9 6.9234 3.4617 0.4167 0.15 0.3333 0.9 

9 0.25 0.1054 0.8946 7.5305 3.7653 0.4444 0.05 0.4 0.8944 
9 0.5 0.0554 0.9446 14.9009 7.4505 0.4443 0.0999 0.3999 0.9441 
9 0.75 0.0054 0.9946 157.3123 78.6562 0.4421 0.1492 0.3979 0.9892 

Q( 

Figure 2.14 ýf -oportion qftime that the set-ver is idle 
. 
feet of a andp on the pi 

(Deterministic service time with b=3, A=2,13 - 10, and 7-/ 0) 
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Figure 2.15 g/fict qf'a andp on the utilizationftictor p 
(Deterministic service time with b=3, Aý2,13 - 10, and y- 10) 
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Figure 2.16 ýffecl of a andp on the mean quette size L,, 
(Deterministic service time with b=3, A=2,8 ý 10, and yý 10) 
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Figure 2.17 ýffect (? f a andp on the mean waititkg lime W, 
(Deterministic service lime with b=3, A=2,8 - /0, and yý /0) 
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Figure 2.19 Pfect of a andp on the pl-ohahiliýv that the set-vel. is Oil vacation 
(Deterministic service time with bý3, A -- 2, /1 - /0, andy - 10) 

o. l 

Rq(l) 

Figure 2.20 -to ir 
, 
kc fa andp on the probabiliti, that the system is undei el a 

(Deterministic service lime with b=3, A=2,13 = 10, and 10) 
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For the following table, we consider the same queueing system used in Table 2.9, 

but here we attempt to observe the effect of 8 and y by fixing the values of a 

and p to be 3 and 0.5, respectively, while 8 varies from 10 to 13 and y varies from 

4 to 6. All the values are chosen in such away that satisfies the steady state 

condition. 

Table 2.10 Computed values oj'various queue characteristics. for vacation queue 
with breakdown and deterministic service time, b=3, aý5, p=0.5 

,8 7 Q p Lq W, P, (1) V, (1) R, (1) 11", (1) 

10 4 0.35 0.65 0.6238 0.3119 0.2667 0.25 0.1333 0.65 
10 5 0.4 0.6 0.4 0.2 0.2667 0.2 0.1333 0.6 
10 6 0.4333 0.5667 0.2923 0.1462 0.2666 0.1667 0.1333 0.5666 

11 4 0.3621 0.6379 0.5678 0.2839 0.2667 0.25 0.1212 0.6379 
11 5 0.4121 0.5879 0.3574 0.1787 0.2667 0.2 0,1212 0.5879 
11 6 0.4455 0.5545 0.2558 0.1279 0.2667 0.1667 0.1212 0.5546 

12 4 0.3722 0.6278 0.5248 0.2624 0.2667 0.25 0.1111 0.6278 
12 5 0.4222 0.5778 0.3245 0.1623 0.2667 0.2 0.1111 0.5778 
12 6 0.4556 0.5444 0.2277 0.1139 0.2667 0.1667 0.1111 0.5445 

13 4 0.3808 0.6192 0.491 0.2455 0,2667 0.25 0.1026 0.6193 
13 5 0.4308 0.5692 0.2986 0.1493 0.2667 0.2 0.1026 0.5693 
13 6 0.4641 0.5359 0.2053 0.1027 0.2667 0.1667 0.1026 0.536 

04 
,04 

03 

13, 
Figure 2.21 Effiect qf 8 and y on the proportion oj'time that the server is idle 

(Deterministic service time with b=3, A=2, a=5, andp ý 0-5) 
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Figure 2.22 Effect offland yon the utilizationfiictor p 
(Deterministic service time with b=3, A=2, a=5, and p=0.5) 
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, 
fect oj', 8 and yon the mean quette size L,, Figure 2.23 Ej 

(Deterministic service time with b=3, A=2, a=5, andp ý 0.5) 
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Fi gure 2.24 ý&ct (? f 8 and y on the inean vvaithkq lime IYl 
(Deterministic service time with b=3, A=2, aý5, andp ý 0.5) 



Chapter 2 75 

vq(l) 

0. 

.31 
Figure 2.25 Effect of, 8and; von theprobability that the server is on vacation 

(Deterministic service time with b=3, A=2, a=5, andp ý 0.5) 

". 1 

1) '0. 

Figure 2.26 ý#ýct offland yon lheprobabiliýv that the system is under repair 
(Deterministic service time with bý3, Aý2, a=5, andp ý 0.5) 

In Tables 2.11 and 2.12 we let b be 3 for the deterministic service time where first 

we fix the values of, 8 and )/ to be 8 and 7, respectively, while a varies from 6 to 9 

and p takes the values 0.25,0.5 and 0.75. Then, we fix the values of* a and 1; to be 

10 and 0.5, respectively, and vary the value of, 8 trom 10 to 13 and 7 from 4 to 6. 

The selected values for different parameters of' the queueing system satisly tile 

stability condition. 
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Table2.11 Computed values ofvarious queue characteristicsfor a vacation 
aueue with breakdown and deterministic service time, b=4, fl = 8, y=7 

a P Q P Lq Wq Pq (1) Vq (1) Rq (1) Wq (1) 

6 0.25 0.6369 0.3631 0.0671 0.0336 0.1666 0.0714 0.125 0.363 
6 0.5 0.5655 0.4345 0.1327 0.0664 0.1666 0.1429 0.125 0.4345 
6 0.75 0.4941 0.5059 0.2173 0.1087 0.1666 0.2143 0.125 0.5059 

7 0.25 0.5267 0.4733 0.3859 0.193 0.2143 0.0714 0.1875 0.4732 
7 0.5 0.4553 0.5447 0.5249 0.2625 0.2143 0.1429 0.1875 0.5447 
7 0.75 0.3839 0.6161 0.7156 0.3578 0.2143 0.2143 0.1875 0.6161 

8 0.25 0.4286 0.5714 0.8185 0.4093 0.25 0.0714 0.25 0.5714 
8 0.5 0.3571 0.6429 1.0892 0.5446 0.25 0.1428 0.25 0.6428 
8 0.75 0.2857 0.7143 1.4955 0.7478 0.25 0.2143 0.25 0.7143 

9 0.25 0.3382 0.6618 1.4487 0.7244 0.2778 0.0714 0.3126 0.6618 
9 0.5 0.2668 0.7332 1.9878 0.9939 0.2779 0.1429 0.3126 0.7334 
9 0.75 0.1953 0.8047 2.9199 1.46 0.2778 0.2143 0.3125 0.8046 

Table 2.12 Computed values ofvarious queue characteristicsfor vacation queue 
with breakdown and deter7ninistic service time, b 4, a= 10, P=0.5 

7 Q P Lq Wq Pq (1) Vq (1) Rq (1) Wq (1) 

10 4 0.15 0.85 4.4 2.2 0.3 0.25 0.3 0.85 
10 5 0.2 0.8 3 1.5 0.3 0.2 0.3 0.8 
10 6 0.2333 0.7667 2.4235 1.2118 0.3 0.1666 0.3 0.7666 

11 4 0.1773 0.8227 3.4854 1.7427 0.3 0.25 0.2728 0.8228 
11 5 0.2273 0.7727 2.4545 1.2273 0.3 0.2 0.2728 0.7728 
11 6 0.2606 0.7394 2.0081 1.0041 0.3 0.1667 0.2727 0.7394 

12 4 0.2 0.8 2.9167 1.4584 0.3 0.25 0.25 0.8 
12 5 0.25 0.75 2.0933 1.0467 0.3 0.2 0.25 0.75 
12 6 0.2833 0.7167 1.7253 0.8627 0.3 0.1666 0.25 0.7166 
13 4 0.2192 0.7808 2.53 1.265 0.3 0.25 0.2307 0.7807 
13 5 0.2692 0.7308 1.8374 0.9187 0.3 0.2 0.2307 0.7307 
13 6 0.3026 0.6974 1.5215 0.7608 0.3 0.1667 0.2308 0.6975 

The above tables 2.1 - 2.12 and graphs 2.1 - 2.26 clearly show if we increase 

either the value of p or a, the server idle time decreases, while the utilization 
factor, the mean queue size and the mean waiting time of customers, all increase. 

On the other hand, increasing fl or y increases the server idle time and decreases 

the utilization factor, the mean number of customers in the queue and the mean 

waiting time. Also the tables and graphs show that either increasing p or 

decreasing y increases the probability that the server is on vacation. Similarly, 

increasing a or decreasing j6 increases the probability that the system is under 

repair. The trends shown by the tables and graphs are as expected. 

JR; )CQ 
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An OxIlG11 Queue with Bernoulli Schedule General 

Vacations, Random Breakdowns and General Repair 

Times 

3.1 Introduction 
In this chapter we generalise the results obtained in chapter 2 by assuming 

a general (arbitrary) distribution for vacation times and a general (arbitrary) 

distribution for repair times instead of the exponential special case assumed in 

chapter 2. These general assumptions make the results applicable to a wider range 

of queueing systems in which the service times, vacation times and repair times 

can be exponential, hyperexponcntial, deterministic, k-Erlang, etc. 

Numerous research results have been published regarding queueing systems with 

generalised vacations. Sharda and Indra (1996) assumed general distributions for 

the service time and vacation time of a two-state queueing model. Takagi (1990) 

obtained time dependent results of MIGII with general vacation time based on 

single and multiple vacation policies, while Hur and Ahn (2005) obtained steady 

state results for batch arrival queues with general vacations and server setup. 
Madan (1991) assumed general vacations for a queueing system with bulk input 

and bulk output. In studies of a finite capacity queue with exhaustive vacation, 

close-down, setup times and Markovian arrival process, general distribution for 

vacation times were assumed by the authors (Niu & Takahashi, 1999; Niu, Shu & 

Takahashi, 2003). Chae, Lee and Ahn (2001) proposed the arrival time approach 

of finding the queue length distributions for AFG11 type queues with generalised 
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server vacations. Madan and Saleh (2001) studied the MIDII queue with general 

server vacations. An APIGII queue with feedback and optional server vacations 

based on general vacation times and a single vacation policy was investigated by 

Madan and Al-Rawwash (2005). The optional vacation assumed by Choudhury 

(2006) for an MIGII queue was generally distributed as well. 

In the current research, first we assumed a special case of exponential distribution 

for vacation time and repair time, as appears in chapter 2, then we attempt to 

generalisc vacation time and repair time to general (arbitrary) distributions in this 

chapter. The same sequence was followed by Altman and Yechiali (2006) who 
first assumed exponential distribution for the multiple vacations considered for an 
MIMII queue with impatient times, and then they generalised the vacation time 

and service time to an arbitrary distribution. 

In other studies, general distributions were assumed for repair times when the 

queueing model is subject to breakdown and repair process. Cao (1994) 

considered the MIGII queueing system where the service station consists of r 

units and it operates if and only if all of the r units operate, assuming that each 

unit has a constant failure rate and arbitrary repair time distribution. Wang, Cao 

and Li (2001) studied the reliability analysis of the retrial queue with server 
breakdowns and repairs where a general distribution was assumed for repair 
times. Similarly, when the system breaks down it enters a repair process of 

random length and the repair periods are generally distributed for the MIGII 

retrial queue considered by Atencia et al. (2006). 

From the above discussion on the literature on queues, we see that most of the 

papers are concerned with either vacations or breakdowns with different 

assumptions underlying the queue model. One of the few authors who 
investigated both vacations and breakdowns in the queueing model is Ke (2007a). 

He studied the operating characteristics of an APOIG11 queueing system under 

vacation policies with startup/closedown times and server breakdowns where the 

vacation time, the startup time, closedown time and repair time are generally 
distributed. In this model, it was assumed that the server is not allowed to take a 

vacation unless the system becomes empty, that is, the server may take a vacation 
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only when all the customers are served in the system exhaustively. In this chapter, 

we assume a batch arrival queueing system with server vacations and random 
breakdowns where the service times, vacation times, and repair times are all 

assumed to follow general distributions, but contrary to Ke's work, the server has 

the option to takea vacation after any service completion. We obtain steady state 

solutions for our model. 

Maraghi, Madan and Darby-Dowman (2009a) analysed the steady state behavior 

of a queueing system with Bernoulli vacations and random breakdowns where 

vacation times are generally distributed and repair times are exponentially 
distributed. In another study, they generalised the repair time, while the vacation 
times were assumed to be exponential (Maraghi, Madan and Darby-Dowman, 

2009b). The results obtained in these studies may be considered as special cases 

of the results of this chapter, since in this chapter we consider the most general 

case where the service times, vacation times and repair times are assumed to have 

arbitrary distributions. 

The remaining part of this chapter is organised as follows: The assumptions 

underlying the mathematical model are detailed in section 3.2. In section 3.3 we 
formulate the steady state equations governing the system in which the solutions 
to these equations are obtained in section 3.4. Some performance measures are 
obtained in section 3.5. In section 3.6 we present some important particular cases. 

3.2 The Mathematical Model 

The mathematical model of this chapter is described by the following 

assumptions: 

a) Batches of customers of variable size arrive to the system in a compound 
Poisson process. We letACdt Q=1,2,3, ... ) to be the first order 

probability that a batch of i customers arrives at the system during a short 

interval of time Q, t+ di], where 0 :5 cl :51, r, 
=, 

c, =I and A>0 is the 

mean arrival rate of batches. 

b) The service is provided to customers one by one on a "first come, first 
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served" basis by a single server. The service time follows a general 
(arbitrary) distribution with distribution function G(s) and density function 

g(s). Let u(x)dx be the conditional probability density of service 

completion during the interval (x, x+ dx], given that the elapsed time is x, 

so that 

P(X) = 
g(x) 

1- G(x) 

which gives 

(3.2) 
g(s) = p(s)e 

c) When a service completes, then with probability p the server may take a 

vacation of random length, or with probability I-p he may stay in the 

system providing service, where 0: 5p: 5 1. 

d) Vacation time follows a general (arbitrary) distribution with distribution 

function B(v) and density function b(v). We let y(x)dx be the conditional 

probability of a completion of a vacation during the interval (x, x+ dx] 

given that the elapsed vacation time is x, so that 

Y(X) = 
h(x) 

(3.3) 
1- B(x) 

Accordingly, 

-jy(. ), I, (3.4) b(v) = y(v)e 0 

e) The queueing system is subject to breakdowns which are assumed to occur 

according to a Poisson stream with mean breakdown rate a>0. We also 

assume that once the system breaks down, the customer whose service is 

interrupted comes back to the head of the queue waiting for the service to 

resume. 
f) Once the system breaks down, it enters a repair process immediately. The 

repair time follows a general (arbitrary) distribution with distribution 

function (D(r) and density function (p(r). Let fl(x)dx be the conditional 
probability of a repair completion during the interval (x, x+ dx] given that 
the elapsed repair time is x, so that 

AX) = IPW (3.5) 
1-(D(x) 
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and, hence 

v(r) =, 6(r)e 0 
(3.6) 

Different stochastic processes involved in the system are independent of 

each other. 

3.3 Steady State Equations Governing the System 

We assume that the steady state solutions exist. Hence, we define the following 
limits as the corresponding steady state probabilities. 

m 
lim P. (X, t) = P. (X), lim P. (t) = lim X=P f (X, t)d p 

Co 
, im v. (x, V. (x), im V. lim. 
1-40 1--ho 

fV. (x, 1)dx = V. 
0 
w 

liMR. (x, t)=R. (x), lim R. (1) = lim x=R. fR. (x, I)d 
0 

lim Q(t) =Q #-+w 
Then, connecting states of the system at time t+ dt with those at time t and taking 

the limit as t --* co, we obtain the following set of steady state equations governing 
the system 

d P (x) + (A +, u(x) + a)P. (X) =, tzcip. 
-i(X), n 2: 1 (3.7) 

dx i-1 
d PO(x) + (A +, u(x) + a)PO(x) =0 (3.8) 
dx 

=A ci V�-, (X), n 2: 1 v. (x) + (A + r(x»V. (x) (3.9) 

d ve (x) + ('t + Y(X»vo (x) =0 (3.10) 
dx 

d 
R. (x) + (A + ß(x»R. (x) =AZ cR�, nkl (3.11) 

dx d-1 
d 
j& (x) + (A + ß(X»& (x) =0 (3.12) 

ao ww 

AQ = (I - p) fPo (x)p(x)dc + fV(, (x)y(x)dx + fRo (x), 6(x)dx (3.13) 
000 
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The differential equations (3.7) - (3.13) will be solved with the following 

boundary conditions 

P. (O)=(I-p)fP.., I(x)p(x)dc+fV.. I(x)y(x)dx+fR., I(x)p(x)dc+Ac.,., Q, nýtO 
000 

Co 
V. (0) =p 

fP, (x), u(x)dx, n 2: 0 

Co 
R. (0)=afP, 

-, 
(x)dx, n 2: 1 (3.16) 

0 

&(0) =0 (3.17) 

3.4 Queue Size Distribution at a Random Epoch 
To solve the differential equations obtained in the previous section, we need to 

define the following probability generating functions for different states of the 

system 
Go Go 

P, (x, z)=Ez'P,, (x), P, (Z)=Eznpn, 
n=O n-0 

w Go 
Vq(X, Z)ýZZffV, (X), Vq(z)=j: ZiVn9 

R=O n=O 

00 Co 
R. (x, z)=2: z'R, (x), R. (z)=2: z»R�, 

n=O n-0 

OD 

C(Z) Z'Cj (3.18) 

Now, multiplying equation (3.7) by z", summing over n from I to oo, adding to 
(3.8) and using the generating functions defined in (3.18), we get 

d P, (x, z) + (A -AC(z) +. u(x) + a)P, (x, z) =0 (3.19) dr 
Performing similar operations to equations (3.9) and (3.10), (3.11) and (3.12), 
(3.14), (3.15), (3.16), and (3.17) we get 

d Vq (XZ) + (A - AC(Z) + Y(X))V, (X, Z) =0 (3.20) dr 
d 
, jýR, (xz) + (A - AC(z) +, 6(x))R, (x, z) =0 (3.21) 
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zP(O, z)=(1-p)fP, (x, z). m(x)dx+fV. (x, z)y(x)dx+fR. (x, z)ß(x)dx+, Z(C(z)-1)Q (3.22) q 

V (O, z) p fP, (x, z). u(x)dx (3.23) 

R, (0, z) = az fP� (x, z) dx (3.24) 

Now, we solve the differential equations (3.19) - (3.21) we obtain 

Pq(XIZ)=pq(OIZ)e (3.25) 

V, (3.26) 
, 

(x, z) = Vq (0, z)e 

R, (x, z) = Rq (0, z)e 0 (3.27) 

where Pq(O, z), V, (O, z), and R, (O, z) are given by (3.22), (3.23) and (3.24), 

respectively. Integrating equations (3.25) - (3.27) by parts with respect to x we 

obtain 

P, (Z) = P, (0, Z) 
1- U[A -AC(z) + a] - (3.28) 

1A- 

AC(z) +a 

V, (Z) = V, (0, Z) 
1- li[, t -Ac(z)1 (3.29) 

-A -AC(z) - 
Rq (z) = Rq (01 Z) (3.30) 

1A-, 
tC(Z) j 

where C[A-, ZC(z)+a]= fe-(t--'c"-)x dG(x), B[A-AC(z)]= fe-l"-"c()ý' dB(x), 

and &D[A - AC(z)] = fe-("(-))x 
- dO(x) are the Laplace-Stieltjes transform of 

the service time, vacation time and repair time, respectively. 
Now, multiplying both sides of equation (3.25) by p(x), equation (3.26) by Xx) 

and equation (3.27) by fi(x) and integrating the resulting equations over x we 

obtain 
00 fPq (x, z), u(x)dx = P, (O, z)U[A - AC(z) +a] 
0 

Co f V, (x, z)y (x)dx = Vq (0, z)7ý7[, t -, tC(z)1 (3.32) 
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00 fR, (x, z)ß(x)dx = Rq (0, z)-ý[, t -, ZC(z)1 (3.33) 

Using equation (3.3 1), equation (3.23) can be written in the form 

V (0, Z) = PP, (0, Z) j[A -AC(z) + a] (3.34) 

And using equation (3.28), equation (3.24) will take the form 

Rq(O, z) = ozPq (0, z) 
I- U[A - AC(z) + a] (3.35) 

_ 
A-AC(z)+a 

] 

Substituting for Vq(O, z)from (3.34) in equations (3.29) and (3.32), and for 

Rq(O, z) from (3.35) in equations (3.30) and (3.33), we obtain 

V, (Z) = pp, (0, Z) 
- J[A -AC(z) + a](l - ff[A -AC(z)f (3.36) 

A -AC(z) 
Rq (z) z-- azPq (0, z) 

- (1 
- 

j[A 
-AC(z) + a]XI - U)[, t -, ZC(z)])] 

(3.37) (A - AC(z) + aXA -AC(z» j 

Co 
q 
(0, z)Upt -, tC(z) + a]li[, t -, IC(Z)] (3.38) Vq(x, z)y(x)dx = pP 

0 

90 -- 
fR. (x, z)ß(x)dx=azP 
0 

7(0, z) 

- 

T[A 

A -AC(z) +a 
(3.39) 

Now, using equations (3.31), (3.3 8) and (3.3 9), equation (3.22) becomes 

zP, (O, z) = (1-p)P, (O, z)U[A-AC(z)+ a] + pP,, (O, z)U[A -AC(z) +allf(A -AC(z)] 

+ azp - AC(z)](l - U[A - AC(z) + a]) 
9 (0, z) L 

T[A 
A-AC(z)+a 

I+ 
A(C(Z) - I)Q 

Solving this equation for P,, (O, z) gives 

P (o, z)= 
(A -AC(z)+a)A(C(z)-I)Q 

qD (z) 

where 

(3.40) 

D(z) = (A - AC(z) + aXz - (I - p)U[A - AC(z) + a] - pU[A - AC(z) + a]! T[A - AC(z)]) 

- az7(D-[A - AC(z)](l - U[A - AC(z) + a]) 

Substituting for Pq(O, z) in (3.28), (3.36), and (3.37) we have 

pq (Z )= 
(1 -J[A -, IC(z) + a]), t(C (z) - 1)Q 

D (z) 

(A -, IC (z) + a)J[A -AC (z) + a](ä-[, t -AC (z)] - 1)Q 
(3.42) 

D (z) 
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R. (z) = 
oz(I-U[A-AC(z)+al [A-AC(z)]-I)Q 

(3.43) 
D(z) 

To find the probability generating function of the queue size irrespective of the 

q(z) =P q 
(z) +V 

q(z)+R q 
(z). Then adding equations state of the system, we let W 

(3.41), (3.42), and (3.43) we obtain 

wý - j[A -Ac(Z) + alý(C(Z) - 1)Q 
, 
(Z) 

D(z) 

p(A -AC(z) + a)j[A -AC(z) + aj(F[A -, ZC(z)1 - 1)Q 
D(z) 

ciz(I-U[. t-, ZC(z)+al [A -, ZC(z)1 - 1)Q 
D(z) 

(3.44) 

We need to determine Q which appeared in the expression of W (z) given by q 

equation (3.44). Using the normalization condition W,, (1) +Q=1. We see that for 

z=1, W, (z) is indeterminate of 0/0 form. Applying L'Hopitals Rule on equation 
(3.44), we obtain 

AE aE(R))+ U[a](paE(V) 
-I- aE(R))) (3.45) w (I)Ql(l+ 

AE(I)(I + aE(R))+ U[a](a + AE(I)(I + aE(R) - paE(V))) 

where C(l) = 1, C(l) = E(l) is the mean batch size of the arriving customers, 

B[O]=I, -B [0]=E(V) is the mean vacation time, (D[O]=I, and 

-(D [0] =E (R ) is the mean repair time. Therefore, adding Q to equation (3.45), 

equating to I and simplifying, we get 

Q=I-AE(I) I+ E(R) 
- E(R) + pE(V) (3.46) -I 

(ýT[-a] 

a U[a] 

and hence, the utilization factor, p of the system is given by 

p= AE(I) + 4E(--R) - E(R) + pE(V) (3.47) 
(aG 

[a] aG [a] 

where p<I is the stability condition under which the steady states exits. 

We derived the probability that the server is idle, Q as expressed by equation 
(3.46). Substituting for Q from (3.46) in (3.44), we have completely and explicitly 
determined Wq(z), the probability generating function of the queue size at 

a random epoch. 
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3.5 The Mean Queue Size and the Mean Waiting Time 

To find Lq, the mean number of customers in the queue under the steady state we 
write Wq(z) = N(z) / D(z) and then we use 

D'(I)N'(1) N'(I)D"(1) 
(3.48) 

2(D'(1))' 

Carrying out the derivatives at z=I we get 
N'(1) = AE(I)Ql(l + aE(R))+ U[a](paE(V) -1- aE(R))) (3.49) 

N'(1) = 2Q(AE(j))2 aE(R) +1 aE(R2) 
f( 

AE(I) 2 

U[a] pE(V) - 
aE(R) 

_I aE(R 2) +-LpaE(V2) AE(I) 22 

" U'[a)(I - paE(V) + aE(R)) 
I 

" QAE(I(I - 1))I(l + aE(R))+ U[a](paE(V) -I- aE(R))) (3.50) 

D'(1) = -AE(I)(I + aE(R)) + U[a]fa + AE(I)(I + aE(R) - paE(V))) 

2(AE(I)yl(- I aE(R) 
-! aE(R 2) 

AE(I) AE(I) 2 

+U[a] pE(V)+ aE(R) 
_I paE(V2) + 

IaE(R 2) 

AE(I) 22 

" U'[a] PaE(V)_, _ 
a- aE(R) AE(I) 

)I 

" AE(I(l - I))((- I- aE(R))+ U[a](I + aE(R) - paE(V))) (3.52) 

-N 2 -N 2 

where B [0] =E (V ) and (D [0] =E (R ) are the second moment of the vacation 

time and repair time, respectively, E(I(I-1)) is the second factorial moment of 

the batch size of arriving customers, and Q has been found in (3.46). Then if we 

substitute for N'(1), N'(1), D'(1), and D"(1) from (3.49) - (3.52) in (3.48) we 

obtain L, in a closed form. Dividing Lq by A we can find Wq , the mean waiting 

time in the queue. 

3.6 Particular Cases 

3.6.1 Exponential Vacation Time 

In this case we assume that the vacation times are exponentially distributed with 

rate y>0 and hence mean vacation time Ily, so we have 



Chapter 3 87 

r (V2) =2 R[A - AC(Z)] = E(V) E (3.53) 
A-AC(Z)+r y 

Using (3.53) in the main results obtained in this chapter we get 
w, (Z)= 

f3(Z)(1-67[fl(Z)])"(C(Z)-')Q+Pfl(Z)07[fl(Z)]A(C(Z)-I)Q 
+ f, (z ) V3 (z )f4(z )- ypU[f, (z )]I - azf3 (z )(D[A - AC (z )] (I - iff[f, (z 

azf3(z ) (I - U[f, (z )]) ((D[A - AC (z )] - I)Q 
- f, (z ) V3 (z )f4(z)-7pU[f, (z)])-azf3(z )(D[A - AC (z )] (I - iff[f, (z (3.54) 

where 
f, (z) =A- AC(z) +a 

A (Z) ="- *'C(Z) +Y 

f4(z) =z- (1 - p)U[A - AC(z) + a] 

Q=I-AE(I) 
I-- I+ E(R) 

- E(R) + 
(- 

(3.55) ýM[a] a U[a] y 

p= AE(I) 11+ E(R) 
_ E(R) + - 

(- L ) (3.56) ýM[ a] a U[a] Y 

La 
-I- aE(R))j N'(1) = AE(I)Qý(I + aE(R)) + U[a](. (3.57) 

y 

N'(1) (AE(l))2 
f(aE(R)+IaE(R2) 
Jýý(I) 2 

p aE (R) Iaa 
+(Y[a] aE(R2)+4E_ +(7ja] I-L-+aE(R) 2) AE(I) -2 

( )1 

y y 7 

+QAE(I(I-1)) I+aE(R)) +6[a](Ra -1-aE(R) (3.58) 
y 

Ea D'(1) = -AE(I)(I + aE(R)) + U[a]ýa + AE(I)(I + aE(R) -. (3.59) 
y 

D"(1) = 2(AE (, ))2 
1 aE(R) 

-I aE(R 
2) f(- 

- -' TE (I) AE(I) 2 

" U[a] L_. Ea + aE(R) +1 aE(R 2) 
2 

( 

AE(I) 2 Yy 

" U-'[a pa a- aE (R) 
7 AE(I) 

" AE(I(I - 1)) 1- aE(R))+ U[a)(I + aE(R) - 
pa (3.60) 
y 
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The results obtained in this special case agree with those obtained by Maraghi, 

Madan and Darby-Dowman (2009a). 

3.6.2 Exponential Repair Time 

If the repair time has an exponential distribution with parameter, 8, then 
fl 

=2 (D[A - AC(z)] = E(R) E(R') (3.61) A- AC(Z) +, 0 

Using (3.61) in the main results obtained in this chapter we get 
wq (Z) = 

f2 (Z) j(1 
-Ulfl(Z)1)4Z(C (Z)-') +Pfl(Z)Ulfl (Z )1('ä7[A - AC (Z)] - 1) 

fl(ZY2(Z)V4(Z)-P61fl(Z)151'l -AC(z)]l -a, 8z (I -U[fl(z)]) 

+ 
az (I 

- C(f, (z)]) A (C (z) - I)Q 
fl(ZY2(Z)V4(Z)-Poýlfl(Z)15[A-AC(z)])-apz(I-U[fl(z)]) (3.62) 

where 
fl(z)=A-AC(z)+a 

A2 (Z) ="- "C(Z) + #8 
A (Z)= 

z- (I - p)U[A- 2C(z) + a] 

Q=I-AE(I) + -= 
I-I-I+ 

pE(V) (3.63) 
(ýMl[-a] 

6G[a] a6 

p= AE(I) ++ pE(V) (3.64) 
(761[a] 

6G[a] a6 

a N'(I)=AE(I)Ql(l+. E +U[a](paE(V)-l - (3.65) 
16) P)l 

N"(1) = 2Q(AE(I))' a+a f(flAE(I) ; 
F) 

a 
__a + U[a](- pE(V) 6AE(l) 7+ 2 

PaE(V2 

+I- paE(V) +a 

+ QAE(I(I - 1))I(l ++ U[a] paE(V) -I-a (3.66) 
j6l 

0 

D'(I)=-AE(I) 1+. E +Ufa] a+AE(I) i+a-paE(V) (3.67) 
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D'(1) = 2(AE(I))2 aa 
1(-TE(I) 

-TAE(I) 7) 

+U[a] pE(V)+ 
a 

; aE(V2)+ 
a 

flAE(I) -p2 

+ U'[a] paE(V) -Iaa AE(I) fl)J 

+U[a] i+!!. -paE(V) (3.68) 
fl) 

(6 

Equations (3.62) - (3.68) agree with the results obtained by Maraghi, Madan and 

Darby-Dowman (2009b). 

3.6.3 Exponential Vacation Time and Repair Time 

In this case we assume that the vacation time and the repair time both have 

exponential distributions with parameters y and fl, respectively, which gives 

F[A - AC(Z)] =y E(V) -1, 
E(V2) 

=2 A-AC(Z)+y y7 

T[A - AC(Z)] =9 E(R) E(R 2) 
=2 

(3.69) 

A- AC(Z) +, 8' P2 

1 

Using the substitutions defined in (3.69) in the main results obtained in this 

chapter we get 
We (Z) = 

V2 (Z Y3 (Z (Z A) + Pfj (Z Y2 (Z )U[fj (Z )3) A (C (Z I)Q 
fl(ZY2(ZY3(ZY4(Z)-Pyfl(z)f2(z)j[fl(z)]-a, 6zf3(z)(1-6F[fl(z)]) 

azf3(z) (1 -j[fj (z)])A (C (z) - I)Q 
(3.70) fl(ZY2(ZY3(ZY4(Z)- p yf , (z )f, (z )U[fl (z )] - a, 8zf3 (z ) (I 

- 
d7[f, (z )]) 

where 
fl(z)=A-AC(z)+a 
A (Z) z- "- "C(Z) + 

46 
A (Z) "- 

O'C(Z) +y 

f4(z) z- (I - p)U[A - AC(z) + a] 

I- AE(I) . ...... +p (3.71) 
(aG[a] 

flG[a] a6 y) 

p= AE(I) I+ I-- I-I+ P) (3.72) 
(TM[-a] 

BG[a] aPy 
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La 
=, ZE(I)QI(l - ß) 

j[a]ý 
, -1-. 

0 
(3.73) 

N"(1) = 2Q(AE(I)Y a+a ý(flAE(I) 
7) 

pa 
__ 

a +pa + U[a]( 
. BAE(I) '82 

2,2 

pa+a 
7 P)l 

+U7[a](Pc, -j-l. 7 8)1 (3.74) 

I +. E pa 
y y -AE(I) 1++ U[a] a+ AE(I) L_)j (3.75) 

D'(1) = 2(AE(I))' _- 
I_a_ a) ý( 

IE (I) 6A E (1) 6' 

+ 67[a] p+ a 
_pa+ 

a (y 

PAE(I) 7 7) 

+ U'[a] pa_, 
_ 

a 
_a 

(Y 
AE(I) 6)1 

+ AE(I(I - 1))I(- I-a+ U[a] +a- pa 

18) 
py (3.76) 

The results obtained in (3.70) through (3.72) agree with the results obtained in 

chapter 2. Furthermore, using equations (3.73) - (3.76) in (3.48) gives the mean 

number of customers in the queue Lq which agrees with the expressions obtained 
in chapter 2. 

soca 



Chapter 4 

Batch Arrival Queue with Two-Stage Heterogeneous 

Service, Bernoulli Schedule General Vacations, Random 

Breakdowns and General Repair Times 

4.1 Introduction 
A number of papers have appeared recently in the queueing literature in which the 

server provides to each customer two stages (phases) of heterogeneous service in 

succession. Doshi (1991) studied a queueing system in which customers receive 

a batch service in the first stage and individual services in the second stage. 
A similar model was considered by Kim and Park (2003) who further assumed 
that when the system becomes empty at the moment of the completion of the 

second stage service, it is turned off and after an idle period, the server is turned 

on when the queue length reaches N (threshold). Bocharov, Manzo and Pechinkin 

(2005) analysed a two-stage queue with Markov arrival process and losses in 

which there are buffers of finite capacity in each phases. Selvam and Sivasankaran 

(1994) extended the model studied by Doshi (1991) by introducing vacations. 
They assumed that the server takes vacations as soon as the system becomes 

empty. 

Two-stage queueing systems with server vacations have been studied extensively. 
Madan (2000b) obtained steady state solutions for a single server queue with 

a two-stage heterogeneous service and Binomial schedule server vacations having 

exponential vacation times. He assumed that in both stages of service, customers 

are served individually. In another paper, Madan (2001) assumed deterministic 
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server vacations. Later, Madan and Choudhury (2005) generalised these results by 

deriving the steady state queue size distributions at a random epoch as well as at 

a departure epoch for generalised vacation time. They have also studied a two- 

stage batch arrival queueing system with a modified Bernoulli schedule vacation 

under N-Policy (Choudhury & Madan, 2005), and with restricted admissibility 

and random setup time (Madan & Choudhury, 2006). More recently, Choudhury 

(2008) investigated this model in depth by considering different vacation models. 

Choi and Kim (2003) introduced Bernoulli feedback in a two-phase queueing 

system with vacations. Katayama and Kobayashi (2606) studied the sojourn time 

analysis of a queueing system with two-phase service and server vacations. 

Choudhury (2007) and Kumar and Arumuganathan (2008) investigated batch 

arrival retrial queues with two stages of service and Bernoulli schedule server 

vacations. 

The motivation of two-stage queues with vacations comes from wide applications 

of these models in real situations. An example may well be found in some 

transportation system in which a ferry driver or a locomotive driver may like to go 

on a vacation after every round trip which essentially involves two phases of 

service that is a trip to a particular destination and back to a starting point. 
Another example is a production system where the machine producing certain 
items may require two phases of service in succession such as periodic checking 
followed by a usual process to complete the processing of raw materials. The 

machines need to be stopped once in a while for overhauling after these two 

phases of service. This overhauling may be utilized as a vacation time. Also, in 

some computer networks and telecommunication systems messages are processed 
in two stages by a single server (Madan & Choudhury, 2005). 

Although some aspects of a two-stage heterogeneous service systems with server 

vacations have been discussed in the literature of queueing theory as shown in the 

papers discussed earlier in this chapter, some questions still need to be addressed. 
What if the bus, locomotive, machines, or telecommunication systems in the 

examples discussed above have suddenly broken down? The breakdowns will 

occur randomly and hence a repair process must immediately start in order to 
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continue functioning. This will affect the queue size and the customers waiting 

time. All the above papers ignored the fact that in real situations a system might 
breakdown. Thus the purpose of this chapter is to consider a more general 

problem by deriving the steady state queue size distribution at a random epoch of 

queueing systems with two-stage heterogeneous service, Bernoulli schedule 

vacations and random breakdowns with rate (x > 0, in which the system enters 

a repair process once it breaks down and the customer whose service is 

interrupted goes back to the head of the queue waiting for the repair process to 

complete. We assume that the system might break down at either stages of 

service. Vacation times, repair times and both service times are all assumed to be 

generally distributed. The rest of this chapter is organised in the same manner as 
in chapter 3. 

4.2 The Mathematical Model 

The following assumptions describe the mathematical model underlying the 

queueing system of this chapter. 

a) Customers arrive at the system in batches of variable size in a compound 

Poisson process. Let Acidt (i = 1,2,3, ... ) to be the first order probability 

that a batch of i customers arrives at the system during a short interval of 

time Q, t+ dt], where 0 :5 ci :51 and EA c, =I and A>0 is the mean 

arrival rate of batches. 

b) A single server provides service to one customer at a time. Each customer 

undergoes a two-stage service on a first come, first served basis. The 

service time of the two stages follow different general (arbitrary) 

distributions with distribution functions Gj<s) and density function gjýs), 
j=1,2. Let y, ýx)dx be the conditional probability density of the 

completion of theP stage of service during the time interval (x, x+ dx], 

given that the elapsed time is x, so that 

, ui (x) = 
gj (x) 

9j=1,2 1-GJ(X) 

thus 
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-i uj (x) dx 

gj (s) = u, (s)e 0j=1,2 (4.2) 

c) As soon as the second stage service of a customer is complete, then with 

probability p the server may decide to go on a vacation of random length, 

or with probability I-p he may continue to be available for the next 

service, where 0: 5p: 5 1. 

d) The server's vacation time follows a general (arbitrary) distribution with 
distribution function B(v) and density function b(v). Let Y(x)dx be the 

conditional probability of a completion of a vacation during the interval 

(x, x+ dx] given that the elapsed vacation time is x, so that 

Y(X) = 
b(x) 

(4.3) 1- B(x) 

thus 
v 

b(v) = y(v)e-! 
)'(x)dc (4.4) 

e) The system may break down while service of either stage is going on, and 
breakdowns are assumed to occur according to a Poisson stream with 

mean breakdown rate a>0. Further, we assume that once the system 
breaks down, the customer whose service is interrupted comes back to the 

head of the queue whether the breakdown occurred in the first or second 

stage. In either case, the customer restarts with the first service afler the 

repairs are complete. 
f) When the system breaks down, it enters a repair process immediately. The 

repair time follows a general (arbitrary) distribution with distribution 

function (D(r) and density function (9(r). Let P(x)dx be the conditional 

probability of a repair completion during the interval (x, x+ dx] given that 

the elapsed repair time is x, so that 

Ax) = IPW (4.5) 
1- (D(x) 

and, hence 
r 

-f, 8(x)dx 

fl(r)e 0 (4.6) 

g) The stocbastic processes involved in the system are assumed to be 

independent of each other. 
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4.3 Steady State Equations Governing the System 
Assuming that the steady state solutions exist, we define the following limits as 

the corresponding steady state probabilities. 
OD 

limP. llI(x, t)=Pl"(x), limP. "'(t)=IimfP(J)(x, t)dx=P. (J), J=1,2 
1-+W R 9-+w t-+W 0 

co 
limV,, (x, t)=V. (x), limV,, (t)=IimfV. (x, t)dx=V. 

0 
410 

limR,, (x, l)=R. (x), limR,, (t) =I'm fR. (x, t)dx=R. 
0 

IiMQ(t) =Q 1-. #Qo 
To find the steady state equations governing the system, we connect states of the 

system at time t+ dt with those at time t and take the limit as t --1' 00, we obtain the 

following set of differential equations 

d 1) n-1 
j P. 1 (x) + (A +A (x) + a)P�(1) (x) =AZc, P. ý1, ) (x), n 2: 1 (4.7) 

1-1 
d P. (1) (x) + (A + pl (x) + a)Po() (x) =0 (4.8) dx 

d 2) 
-jP., (X)+(, t+#, (x)+a)P. (2)(x)=, ZECP, (2, )(x), nkl (4.9) 

M 

d 2) )p(2) (X) =0 P. ( (x) + (A +, u2(x)+a (4.10) 
dx 

d V�(x)+(, t+Y(X»V, (x)=, tzc, V�-, (X), nkl (4.11) dx J-1 
d 

-Z Vo (x) + (A + r(x»Vo (x) =0 (4.12) 

d 
R. (x) + (A + ß(x»R. (x) =A E"-I c, R�-� nkl (4.13) dx J-1 

d4 (x) + (A + ß(X»4 (x) =0 (4.14) 
dx 

Go 00 00 
AQ = (1 - P) fpO(2)(X)P2(X)dX + fVo(x)y(x)dx + fRo(x), 6(x)dx (4.15) 

000 

These equations are to be solved according to the following boundary conditions 
00 Go OD 

1'. '(')(O)=(I-p)fY., ', )(x)A(x)dx+fR,,, 
I(x)fl(x)dx+fV., I(x)y(x)dx+k. +IQ, ný: O (4.16) i 

000 
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1)(x), u, (x)dx, n; ->O (4.17) f P. ( 

00 
V (0) p 

fp12) 
» 

(x)p2(x)dx, nk0 
0 

00 00 
R (0) =a 

fP, (') (x)dx +a IP(') (x)dx, n >- 1 n-1 i n-1 
00 

Ro(0) =0 (4.20) 

4.4 Queue Size Distribution at a Random Epoch 
First we need to define the probability generating functions for different states of 

the system 
00 Co 

p ("(X, 
Z)=zznpý, (X), Pq(J)(z)=EZ"P�(J), j =1,2, q 

n-0 n-0 

dD w 

-Z 
I: 

z" 
vv 

Ez PIVR vq (X9 Z) 
RW9q 

(z ), 

n-0 R-0 

00 00 
Rq(x, z)=I: Z"R. (X), R, (z)=j: z"R., 

n=o M-0 

00 C(Z) Z'Cj (4.21) 

Now, multiplying equation (4.7) by z", summing over n from I to oo, adding to 

(4.8), and using the generating functions defined in (4.2 1), we get 
d_ 

P() (x, z) + (A 
- AC(z) + p, (x) + a)P, (') (x, z) =0 (4.22) 

dxq 

Proceeding in the same manner, equations (4.9) and (4.10), (4.11) and (4.12), and 
(4.13) and (4.14) yield 

d 
2) )P(2) (X, Z) =0 j (x, z) + (A -AC(z) +M (x) +a (4.23) - 

pq( 
q 4 

-d j 
vq (X$ Z) + 

(A 
- 

Ac(Z) + r(x»vq (x) Z) =0 (4.24) 

d 
R, (x, z) + (A -AC(z) + ß(x»R, (x, z) z-- 0 (4.25) 

dx 

For the boundary conditions, we multiply equation (4.16) by Z"", sum over n 
from 0 to oo, use the generating functions defined in (4.2 1) and use equation (4.15) 



Chapter 4 97 

we get 
00 Co 

ZPO) (0, Z) = (1 - p) 
fP, (2) (x, z), u, (x)dx + 

fR, (x, z)ß(x)dx 
qq 

0 

00 fVq(x, 
z)y(x)dx + A(C(z) - I)Q (4.26) 

0 
Performing similar operations to equation (4.17), (4.18), (4.19) and (4.20) we get 

00 
P(')(0, z)= P(')(x, z), ul(x)dx (4.27) qfq 

0 

OD 
f (2) (XP V (O, z) p 

pq Z), U2(x)dx (4.28) 
0 

Co 00 
Rq (0, z) = c= fPqll) (x, z)dx + az 

f pql 2) (x, z)dx (4.29) 
0 

We integrate equations (4.22) - (4.25) between the limits 0 and x and obtain the 

following 
9 

P(l) (x z) = P(l) (0, z)e 
-(A-, W(z)+a x- 

0A 
(1)dt 

(4.30) 
q 

-(, Z-AC(z)+a)x-1#2 (1)dt 
(4.31) P(') (X Z) = p(, ) (0, Z) e0 q 

Vq (x, z) = Vq (0, z)e (4.32) 

-(, Z-. ZC(z»x-Iß(t)dt 
R, (x, z) = Rq (0, z)e 0 (4.33) 

where P()(O z) p(2) (0, Z), Vq (0, z) and R. (0, z) are defined in equations (4.26), q99q 

(4.27), (4.28) and (4.29), respectively. Again integrating equations (4.30) - (4.33) 

with respect to x gives 

P (1) 1- il [A -AC(z) +a] 
q 

(Z) = pq(l) (01 Z) (4.34) 
[ 

(A -, IC(z) + a) 

] 

2)(Z)=p(2)(0, Z) 
'-j2[A-'ZC(Z)+al 

pq( 
q (A - AC(z) + a) 

_ 

(4.35) 

Vq (Z) = Vq (0) Z) 
i- lipt -'tC(Z)l- (4.36) 

A -Ac(Z) 

Rq (z) = Rq (0, z) 
1 (D[, t -, ZC(Z)] 

> (4.37) 

-A -AC(z) - 
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where 6, [A-AC(z)+a]=feý4-Ac()4'ýx*cG, (x), 0'21A-X(Z)+alýfe -(A-AC(z)+a)x 'CG2 (x )0 

B [A dB(x) and iD-[A-AC(z)]= fe-(A-Ac(l))x -d<D(x) 

are the Laplace-Stieltjes transform of the first stage service time, second stage 

service time, vacation time and repair time, respectively. 

Now, we need to determine the integrals rp("(x, z)A(x)dx q 

. 
(x)dx, fV,, (x, z)y(x)dx and Rq(x, z), 6(x)dx which Pq(') (X 

IZ 
)IU2 

r 

appeared in the right hand sides of equations (4.26) - (4.28). To do so, we 

multiply equation (4.30) by ljl(x), equation (4.31) by p, (x), equation (4.32) by 

, v(x) and equation (4.33) by 6(x), integrate with respect to x and use equations 

(4.2), (4.4) and (4.6), we get 
00 fpq(l) (X, z), p, (x)dx =pq(I)(0, z)U, [, t-AC(z)+a] (4.38) 

00 fp(2) 
-Ac(Z) a) q 

(x, z)p, (x)dx = Pq(2) (0, z)j2 [A (4.39) 

0 

CO fV, (x, z)y(x)dx = Vq (0, zJ[A -, IC(z)] (4.40) 
0 

00 fRq(x, z), 8(x)dx = Rq (0, z)T[A - AC(z)] (4.41) 
0 

Using (4.34), (4.35) and (4.38) - (4.41), equations (4.26) - (4.29) become 

Zpq(])(0, z) = (I - p)Pq(') (0, z)U2[A - AC(z) + a] + Rq (0, z)T[A - 
AC(z)] 

+ vq (OP Z)! T[A - AC(Z)l + A(C(Z) - I)Q (4.42) 

Pq(2)(O, z) = Pq(') (0, z)U, [A - AC(z) + a] (4.43) 

q 
(0, Z) = pp(2) (0, Z)U V q AC(z) + a] 21A (4.44) 

I-G, [A-AC(z)+a] I-G 
R (0, z) = ozP-') (0, z+ WIPI(2) (OIZ) 2[A-AC(Z)+ a] (4.45) qq_ (A - AC(z) + a) 

]_ 
(A - W(z) + a) 

Using equation (4.43), equations (4.44) and (4.45) become 

(')(O, z)U, [A -AC(z) + a]U2[A - AC(z) + a] (4.46) Vq(O, z) = PPg 

C=pq(]) (0, Z) 
Rq (01 Z) = AC(z)+a]G2[A-AC(z)+a]) (4.47) (A - AC(z) + a) 

Using (4.43) in (4.35), (4.46) in (4.36) and (4.47) in (4.37) we get 
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(0, z)G, [A -AC(z) + a](l -J [A -AC(z) + a]) p12) 
pq( 2 (4.48) 

q (Z) =Z-, IC(Z) +a 

pp(l)(o, z)(I - jT[A - AC(z)])U, [A - AC(z) + aIU21'l - AC(z) + a3 (4.49) V, (Z) ="A- AC(Z) 

c, zp(l)(o, z)(I -T[A - AC(z)]XI - 
UI[A 

- AC(z) + a]U, [A - AC(z) +a]) 
R. (z) =I (A 

- AC(z) + aXA - AC(z)) (4.50) 

p12) Substituting for q 
(0, z), Vq(O, 

z) and Rq(O, z) from equations (4.43), (4.46) 

and (4.47) in equation (4.42) and solving the resulting equation for P(') (0, z) we q 

get 

pqll) (Oz) 
(Ä -, tC(Z) + a)A(C(Z) - 1)Q 

D(z) 

where 

D(z) = (A - AC(z) + a)fz - (I - p)? Tl [A - AC(z) + a]U2[A - AC(z) + a]) 

- p(A - AC(z) + a)U, [A - AC(z) + a]U2[A - AC(z) + a]! T[A - AC(z)] 

- oz7(D-[A - AC(z)](I - U, [A - AC(z) + a]ZT, [A - AC(z) + a]) 

Substituting for Pq")(O, z) from (4.51) in (4.34), (4.48), (4.49) and (4.50), we get 

the following probability generating functions for the number of customers in the 

queue at a random epoch 

P(I) (z) [A - AC(z) + a]ý(Qz) - I)Q 
q D(z) 

(4.52) 

p(2) 
G, [A -, IC(z) + al(1 - j2[, t -AC(z) + alý(C(z) - 1)Q 

q 
(Z) = (4.53) 

D(z) 

V, (Z) = 
p(, t-, ZC(z)+aX! i[, t-. ZC(z)l-1 [, t-AC(z)+a]U2[A-AC(z)+a]Q 

(4.54) 
D(z) 

R, (z) = 
az«_D[A -, ZC(z)1 - 111 - Zil [A -AC(z) + a]Zi2[, t -AC(z) (4.55) 

D(z) 

Accordingly, we can find the probability generating function of the queue size 

irrespective of the state of the system, W,, (z), by adding equations (4.52) - (4.55) 

as the following equation describes 

W (z) = P(') (z) + Pq(2) (z) + Vq(z)+Rq (z) (4.56) qq 

To find Q, we use the normalization condition 

W(1)+Q=l q 
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However, as in the previous chapters, for z=1, W, (z) is indeterminate and hence 

L'Hopital's Rule will be used. Applying this rule on equation (4.56), we obtain 

jfq VJ - 
AE(I)Qt(I + aE(R)) + U, [aIU2[a1(paE(V) -I- aE(R))j (4.57) 

- AE(I)(I + aE(R)) + U, [a]Ujalfa + AE(I)(I + aE(R) - paE(V))l 

where C(l) = 1, C'(1) = E(I) is the mean batch size of the arriving customers, 

B[O]=I, -B [0]=E(V) is the mean vacation time, q)[O]=I, and 

-(D [0] =E (R ) is the mean repair time. Therefore, it follows from the 

normalization condition that 

I- AE(I) 
I-I+- E(R) E(R) + pE(V) (4.58) 

(aU, 

[a]U2[a] a GI[a]G2[a] 

which gives 

p= AE(I) 
I-I+ E(R) E(R) + pE(V) (4.59) 

(aU, 

[a]G-2[a] a G-I[a]G-, [a] 

where p<I is the stability condition for the steady states to exist. 

Substituting for Q from (4.58) in (4.56), we have completely and explicitly 
determined Wq(z), the probability generating function of the queue size at a 

random epoch. 

4.5 The Mean Queue Size and the Mean Waiting Time 
We find the mean queue size using the probability generating function of the 

number of customers in the queue obtained in equation (4.56) and the following 

fonnula 

D'(I)N'(I)-N'(I)D"(1) LV =. 2(D' (1))2 (4.60) 

where N(z) and D(z) are the numerator and denominator of the right hand side 

of (4.56), respectively, and primes and double primes in (4.60) denote first and 

second derivatives at z=1, respectively. Then finding the derivatives at z=I we 
have 

N'(1) = AE(I)Qf(l + aE(R))+ U, [a]U, [a](paE(V) -I -aE(R))) (4.61) 
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N'(1) = 2Q(AE(I)y 
raE(R) 

+! aE(R 2) 
Jý 

AE(I) 2 

pE(V)-aE(R)-! aE(R 2) +IpaE(V2) AE(I) 22 

" 
(G-, [a]U, '[a] + Uja]U2[a]XI - paE(V) + aE(R)) 

I 

" QAE(I(I - 1))I(l + aE(R))+ U, [a]U2[a](paE(V) -I - aE(R))) (4.62) 

D'(1) -AE(I)(I + aE(R)) + U, [a]Uja][a + AE(I)(I + aE(R) - paE(V))) (4.63) 

D"(1) 2(AE(I))' 
I 

-- 
R) 2) aE--! aE(R AE(I) AE(I) 2 

+U, [a]U, [a] pE(V)+"E(R)-IpaE(V2)+! aE(R 2) 
AE(I) 22 

+(G-j[a]ZT2'[a]+Ujja]U2[a] paE(V)-i- a 
-aE(R) AE(I) 

+AE(I(I-1))I(-I-aE(R))+Z7, [a]U, [a](I+aE(R)-paE(V))) (4.64) 

where Q is given by (4.5 8), B [0] =E (V 2) and ý; "[O]=E(R 2) are the second 

moment of the vacation time and repair time, respectively, and E(I(I - 1)) is the 

second factorial moment of the batch size of arriving customers. Then, utilizing 

(4.61) - (4.64) in (4.60) we obtain L., and hence the mean queueing time, Wq can 

be found using equation (1.3). 

4.6 Particular cases 
4.6.1 Exponential Vacation Time and Repair Time 

In this case we assume that the vacation times are exponentially distributed with 

rate y>0 and the repair time are also exponentially distributed but with rate P> 0, 

so we have 

F[A - AC(z)] =y A- AC(Z) 

T[A - AC(Z)] 
A-AC(Z)+P' 

E(V) -1, 
E(V2) 2 

y72 

E(R) E(R2) 22 
(4.65) 

Using the substitutions defined in (4.65) in the main results obtained in this 

chapter we get 
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W, (z) 2-- P(l) (z) + P. (2) (z) + V, (z) + R, (z) 
q 

where 

pq (1) (Z) Ac(z) + yX1 - j, [A -AC(z) + alý(C(z) - 1)Q (4.66) 
D(z) 

pq (2) (Z) = 
(, t -. ZC(z) + y)il [A -, IC(z) + a](l - U2 [A -AC(z) + alý(C(z) - 1)Q (4.67) 

D(z) 

K p(A -, IC(z) + a)UJA -AC(z) + a]j2[, t -AC(z) + al 
D(z) 

(4.68) 

cc 
A-AC(Z)+y )(I 

- UI[A - AC(z) + a]U2[A - AC(z) + a]ý(Qz) - I)Q 
R, (z)= 

(A-AC(Z)+, 
8 

D(z) (4.69) 

D(z) = (A - AC(z) + yXA - AC(z) + a$ - (I - p)Z71 [A - AC(z) + a]Z72 (A - AC(z) + a]) 

- 
aft (A - AC(z) + yXI - Z71 [A - AC(z) + a]Z72 [A - AC(z) + a]) (A-Ac(z)+, 6) 

- py(A - AC(z) + aT, [A - AC(z) + a]Z72 [A - AC(z) + a] (4.70) 

Q=I- AE(I) I-I+11+ 
(4.71) 

2[a] a 6Gja]G2[a] P y) 

(aUja]G- L 

p= AE(I) I--I++p 
(4.72) 

(aUja]G2[a] 

a flUja]U2[a] v) 

Similarly, to find the mean number of customers in the queue, we find N'(1), 

N"(1), D'(1), and D"(1) using equations (4.61) - (4.64) and the substitutions 
defted in (4.65) 

ay N'(1) = AE(I)Q a+U, [a]Ujal(pa (4.73) T) 
ýF) 

N'(1) = 
2Q(. ZE(l))2 I+ ar 

_a+ 
ar 

A, 6E(I) 

+U, [a]U, [a I-p- ay +a_ay A, 8E (1) 6 
ý2 ) 

y +(G-j[a]U2'[a]+U, Ta]U2[a] y+!! ---pa) 

+AQE(I(I-1))y+La-+U, [a]U2[a] y- Y+pa IpP 

(4.74) 

D'(I)=AE(I) -y(1+5)+U, [a]U, [a](-pa +Y+ýLy+ ay (4.75) 
,8 

AE(I))j 
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Dff(l) = 2(AE(I))2 I_r_ ay +a_ av) [( 

AE(I) A, 6E(I) 
.8 

P2 
) 

+ U, [a]U2[a] I+p- a+ av 
_a+ay AE(I) APE(I) ý6 

7) 

+(U, [a]U2'[a]+U, ja]U2[a] -Y- 
ar 

-! 
Y+pa 

AE(I) 6 

+AE(I(I-1)) y- ya +U, [a]U2[a] y+av-pa 
1(- 5) 

6 (4.76) 

4.6.2 No Server Vacations 

If the server can not take vacations, then we drop the assumption of server 

vacations by letting p=0 in the equations of this chapter. This gives Vq (z) = 0, 

and we have 

PO _ 
(1 - U, [A -AC(z) + alý(C(z) - 1)Q 

q, (Z) - D(z) 
(4.77) 

pq(2) (Z) 
U, [A -, IC(z) + al(1 - UJA -AC(z) + alý(C(z) - 1)Q (4.78) 

D(z) 

R, (z) = 
az 

r(D[A 
-, IC(z)1 - IXI - 

U, [A -AC(z) + ali, [A -AC (4.79) 
D(z) 

W (Z) = p(1) ()+ p(2) ) 
qq 

+R. (z)= 
q-Zý 

(Z 

(4.80) 
D(z) 

D(z) = (A-AC(z) +aXz- UJA -AC(z) +aIU2[A -AC(z) +a]) 
(4.81) 

- oz7(D-[A - AC(z)](I - U, [A - AC(z) + aIU2 [A - AC(z) + a]) 

Q=I-AE(I) I- 
-- 

I 
+== 

E(R) 
- E(R) (4.82) (aG-, [a]G, [a] a G, [a]G2[a] 

N'(I)=AE(I)Q((I+aE(R))+U, [a]U2[al(-I-aE(R))) (4.83) 

N"(1) = 2Q(AE(I)y aE(R) +1 aE(R 2) +Ul[a]U, [a aE(R) 
_I aE(R 2) 

[( 

AE(I) 2 AE(I) -2 

+(G-I[a]U, '[a]+Z7, '[a]U2[a]Xl+aE(R)) 
I 

+ AQE(I(I - 1))[(l + aE(R))+ U, [a]U, (a](- I- aE(R))] (4.84) 

a D'(I)=AE(I) (-I-aE(R))+U, [a]U2[a](I + aE(R) + AE(I))j 
(4.85) 
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D'(1) = 2(AE(I)y 
1 

-aE(R)-! aE(R 2) + U, [a]U2[a 
JaE(R) 

+1 aE(R 2 [(- 

AE(o AE(o 2 ýAE( 2 

+(G-, [a]U2'[a1+Uj'[a]Z72[al I- a 
-aE(R) 

(- 
AE(I) 

)l 

+AE(I(I-1))[(-I-aE(R))+ZTI[a]ZT, [a](I+aE(R))) (4.86) 

4.6.3 No System Breakdowns and Exponential Vacation Time 

In this case we assume that the system is not subject to breakdowns, i. e. a=0 and 

hence Rq(z) = 0. Also we assume an exponential distribution for vacation times. 

Using these assumptions in the main results of the chapter we get 
P (" (Z) = 9 

(A-AC(z) + Y)(I -(71v -Ac(z)])Q 
E(A-AC(Z)+Y)-P(A-Ac(z))Jdl[, t-AC(Z)162[A-AC(Z)]-z (A-AC(Z)+Y) (4.87) 

p(2) 
I 

(Z) 

(A-AC(Z) + Y)(YJA -AC(Z)](I -(Y, [A -AC(Z)])Q 
[(A-AC(Z)+Y)-P(A-AC(Z))J(71[A-AC(Z)lj2[A-AC(Z)I-Z (A-AC(Z)+Y) (4.88) 

Vq (Z) = 

P (A 
-AC(Z))(Y-IA - "CWAIA -'ZC(Z)](? 

("-X(Z)+Y) (4.89) 

W 
q(Z)=p(0(Z)+p(2)(z 

)+V 
q 

(z )= 
qq 

[(A-AC(Z)+Y)-P(A-AC(Z))JOIIA-"C(Z))j2[A-'AC(Z)I-Z (A-AC(Z)+Y) (4.90) 

To find Q, if we let a=0 in (4.58), we get 0/0 form, hence we apply L' Hopital's 

rule on (4.58), and obtain 

Q=I- AE(I) L+ E(S) + E(S2) 
( 

(4.91) 
Y 

where GJO] = 1, G2[0] = 1, -G, [0] =E (S, ) is the mean for the first service time, 

and -G2 (0] = 
E(S2) is the mean for the second service time. 

Further, we compute N'(1), N"(1), D'(1), and D"(1) using the expression 

obtained for Wq(z) in (4.90) 

N'(1) = -AE(I)Qý(E(Sj) + E(S2)) + p] (4.92) 
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N"(1) = 2Q(AE(I)Y (I - p)(E(SI) + E(S2)) 

- W(AE(I)y (E(S, 2) + 2E(S, )E(S2) + E(S22)) 

- AQE(I(I - 1)&(E(S) + E(S2)) + PI (4.93) 

D'(1) = vAE(I)(E(S, ) + E(S2)) + ApE (I) -y (4.94) 

D"(1) = 2AE(I) - 2(l - p)(AE(I)y (E(SI) + E(S2)) 

" y(AE(I)y 
(E(S, ) + 2E(S, )E(S, ) + E(S22)) 

" AE(I(I - 1))ý(E(Sj) + E(S2)) + p] (4.95) 

_of I, 
where G, [0] = E(S, 2) and U, [0]=E(S2") are the second moment of the first 

service time and the second service time, respectively. Using equations 

(4.92) - (4.95) in equation (4.60) we can easily find L, 7, and hence W.. 

The results obtained in this special case agree with the results obtained by Madan 

(2000b). 

4.6.4 No Server Vacations, No System Breakdowns 

In this case the server has no option to take a vacation and the system will never 

break down, hence Vq(z) =0= Rq(z). Letting p=0 in the results obtained in 

(4.87) - (4.91) we get the following results for the simple batch arrival queueing 

system with two stages of service 

Pq(]) (Z) = 
(1 

- U, [t -, ZC(Z)1)Q 
(4.96) Gl ['t -'ZC(Z)]G2 Ut - "C(Z)] -Z 

pq (2) (Z) = 
U, [A -, ZC(z)](i U, ut -, 1c(Z)i)Q (4.97) jll'Z 

- AC(Z)]j2[A - "C(Z)] -Z 

p(1) (Z) + p(2) (Z) Wq(Z) 
qq (4.98) 

Q=1-, tE(I)(E(S, ) + E(S2» (4.99) 

Equations (4.96) and (4.97) agree with equations (56) and (57) derived by Madan 

(2000b). Now, using equations (4.96) - (4.97), the probability generating function 

for the queue size takes the form 

Wq (Z) = 

(1 
- 

UJA 
-, ZC(z)IG, [, t - ZC(z)111 -, ZE(I)(E(S, ) + E(S2j) 

(4.100) 
ull'z 

-Ac(z)1U21A - Ac(z)1 -Z 

Further, we let p=0 in equations (4.92) - (4.95) to find N'(1), N'(1), D'(1), and 

D"(1), and obtain 
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N'(1) = -AE(I)Qy(E(SI) + E(S2)) (4.101) 

N'(1) =2 Q(AE(I)y (E(SI) + E(S2)) 

- ýQ(AEMY (E(S, 2)+ 2E(SI)E(S2) + E(S2) 

- AQE(IV - 1))Y(E(SI) + E(S2)) 
(4.102) 

D'(1) = YAE(I)(E(S, ) + E(S2))-y (4.103) 

D"(1) = 2AE(I) - 2(AE(I)y (E(S, ) + E(S2)) 

" y(AE(j))2 
(E(SI2 )+ 2E(S, )E(S2) + E(S22)) 

" AEVV - 1))Y(E(SI) + E(S2)) (4.104) 

Substituting the above derivatives in (4.60) and simplifying, we get the mean 

queue size in the following closed form 

(AE(I)y (E(S, ) + 2E(S, )E(S2) + E(S2))+ AE(I(I-1))(E(S, )+E(S2)) Lq =2 (4.105) 2[1 - AE(l)(E(SI) + E(S2))] 

and hence, using Little's formula discussed in chapter 1, the average waiting time 

in the queue is given by 

A(E(I)y (E(S, 2) + 2E(SI)E(S2) + E(S2 ))+ E(I(I - 1)) E(S) + E(S2)) 
W2 

q 2[1 - AE(I)(E(SI) + E(S2))] 
(4.106) 

4.7 A Numerical Illustration 

In order to see the effect of different parameters of the system, especially the 

vacation and breakdown parameter, on various states of the server, the proportion 

of idle time, the utilization factor, the mean queue size and the mean waiting time, 

we compute some numerical results along with some graphs. For the sake of 

convenience, we use the first special case in this chapter where both the vacations 

and repair times have exponential distributions. Further, we assume that arrivals 

come to the system one by one, i. e., E(I) =I and E(I(I - 1)) = 0, with arrival rate 

A=2, and that both service times have exponential distributions with rates p, =8 

and P2= 16. 

To monitor how the breakdown rate a and the probability that the server takes a 

vacation p affect the behavior of the queueing model, we fix the values of 6 and y 

to be 10 and 7, respectively, while a varies from I to 4 and p takes the values 
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0.25,0.5, and 0.75. These numerical illustrations are given in Table 4.1. All 

parameters were selected such that the steady state condition is satisfied. 

Table 4.1 Computed values of various queue characteristics. 1br vacation queue 
with breakdown and two-stage service, A=2, pl = 8, p, = 16,13 = 10,7 =7 

a p p Lq W,, pq(l)(1) P, (2)(i) VIO) R, (I) W, (I) 

1 0.25 0.499 0.501 0.4569 0.2285 0.2656 0.1249 0.0714 0.0391 0.501 
1 0.5 0.4276 0.5724 0.6464 0.3232 0.2656 0.125 0.1429 0.0391 0.5726 
1 0.75 0.3561 0.6439 0.9115 0.4558 0.2656 0.1249 0.2143 0.0391 0.6439 

2 0.25 0.4411 0.5589 0.6968 0.3484 0.2812 0.125 0.0714 0.0812 0.5588 
2 0.5 0.3697 0.6303 0.9653 0.4827 0.2813 0.125 0.1429 0.0813 0.6305 
2 0.75 0.2982 0.7018 1.362 0.681 0.2812 0.125 0.2143 0.0812 0.7017 

3 0.25 0.3802 0.6198 1.0344 0.5172 0.2969 0.125 0.0714 0.1266 0.6199 
3 0.5 0.3087 0.6913 1.4371 0.7186 0.2968 0.125 0.1428 0.1265 0.6911 
3 0.75 0.2373 0.7627 2.0828 1.0414 0.2968 0.125 0.2143 0.1265 0.7626 

4 0.25 0.3161 0.6839 1.5359 0.768 0.3124 0.125 0.0714 0.175 0.6838 
4 0.5 0.2447 0.7553 2.1955 1.0978 0,3124 0.125 0.1429 0.175 0.7553 
4 0.75 0.1733 0.8267 3.399 1.6995 0.3125 0.125 0.2143 0.175 0 R268 

0. 

QO0 

,I FigurC4.1 Effect oj'a and p on the proportion (Y'time that theserver is idle 
(A = 2, p, = 8, p2 = 16,8 = 10,7 = 7) 
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pa 

Figure 4.2 Efjýct oj'a andp on the utilizalion. Mclor p 
(A = 2, p, = 8, p2 = 16,8 = 10, ;v= 7) 

Lq 

Figure 4.3 Effect of a andp on the mean quette size Lq 
(A = 2, p, = 8, p2 = 16,8 = 10, y= 7) 

wq 
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Figure 4.4 Effect of a andp on the mean waithýq time W,, 
(A = 2, pi = 8, p2 = 16,8 = 10, y= 7) 
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P, 
10)m 

Figure 4.5 Efjýct of a&p on theprobability that the server is Providing thefirst 
stage of service (A = 2, p, = 8, p,, = 16,8 = 10, y= 7) 

Vq(l) ' 

Figure 4.6 Effect of a andp on the probabiliýv that the set-vei- is on vacalion 
(A = 2, p, = 8, p2 = 16,8 = 10,7 = 7) 

R, (1) 

Figure4.7 Tlieiýffec-tof'aatidpoiitlieprobabiliti, iiiiittlie. 9, steiiiisiiiiii(, t-i-t, 1)iiit- 
(, Z = 2, u, = 8, pý, = 16, ß= 10, y= 7) 
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Now, in Table 4.2 we fix the values of a and p to be 3 and 0.5, respectively, and 

let 8vary from 6 to 9 and )/ takes the values 4,6 and S. Again all parameters were 

selected such that the steady state condition is satisfied. 

Table 4.2 Computed values of various queue characteristics. 1br vacation queue 
with breakdown and rwo-stage service, A=2, pl = 8, P2 = 16, a=3, p=0.5 

P y Q p L, wq pq(l)(1) P,, (2)(i) r. 
j(I) R, (I) IV, (I) 

6 4 0.1172 0.8828 6.2413 3.1207 0.2968 0.125 0.2499 0.2109 0.8826 
6 6 0.2006 0.7994 3.1278 1.5639 0.2969 0.125 0.1667 0.2109 0.7995 
6 8 0.2422 0.7578 2.4162 1.2081 0.2968 0.125 0.125 0.2109 0.7577 

7 4 0.1474 0.8526 4.565 2.2825 0.2969 0.125 0.2501 0.1808 0,8528 
7 6 0.2307 0.7693 2.4621 1.2311 0.2968 0.125 0.1667 01808 0.7693 
7 8 0.2724 0.7276 1.9319 0.966 0.2969 0.125 0.125 0.1808 0.7277 

8 4 0.17 0.83 3.7074 1.8537 0.2969 0.125 0.25 0.1582 0.8301 
8 6 0.2533 0.7467 2.0743 1.0372 0.2968 0.125 0.1667 0.1582 0.7467 
8 8 0.295 0.705 1.6395 0.8198 0.2969 0.125 0.125 0.1582 0.7051 

9 4 0.1875 0.8125 3.1879 1.594 0.2968 0.125 0.2499 0,1406 0.8123 
9 6 0.2709 0.7291 1.8219 0.911 0.2969 0.125 0.1667 0.1406 0.7292 
9 8 0.3125 0.6875 1.4446 0.7223 0.2968 0.125 0.125 0.1406 0.6874 

0. 

91 

Figure 4.8 9#ýct oj', 8and yon theproportion oj'lime thal the set-vet- is idle 
(A = 2, p, = 8, p2 = 16, a=3, p= 0-5) 
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p0. 

9q 

Figure 4.9 Effect of 8 and yon the utilizationfix-for p 
(A = 2,, ul = 8, p2 = 16, a=3, p=0.5) 

Lq 

1 .1 
Figure4.10 Ejfect of 8 and v on the inean queue size Lq 

(A = 2, p, = 8, p,, = 16, a=3, p=0.5) 

w'/ 

ý, q 

Figure4.11 Ejftct oj', 8 and yon the mean waiting litne fVi 
(A = 2, pi = 8, p2 = 16, a=3, p=0.5) 



Chapter 4 112 

0.2 

V110) 

Figure 4.12 Effect of, 8 and yon the probabilhýv that the server is on vacation 
(A = 2, pi = 8, p2 = 16, a=3, p=0.5) 

11 
Rq(I) 

, .1 
Figure 4.13 Efjýcl offiand 7on theprobabilhý, thal thesystem is under repail- 

(A = 2, p, = 8, p,, = 16, a=3, p=0.5) 

Table 4.1 and graphs 4.1 to 4.4 clearly show that as a or p increases, the server 

idle time decreases, while the utilization factor, the mean queue SIZC MW tile mean 

waiting time of customers, all increase. Table 4.2 and graphs 4.8 to 4.11 clearly 

show that as 6 or )/increases, the server idle time increases, while tile utilization 

factor, the mean number of customers in the queue and the mean waiting time all 

decrease. Also tile tables and graphs show that cither increasing 1) or decreasing '/ 

increases the probability that the server is on vacation. Similarly, increasing (Z or 

decreasing 8 increases the probability that the system is under repair. Tile trends 

shown by the tables and graphs are as expected. 

loca 
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Batch Arrival Queue with Second Optional Service, 

Bernoulli Schedule General Vacations, Random 

Breakdowns and General Repair Times 

5.1 Introduction 
In chapter 4 we investigated a two-stage queueing system with vacations and 
breakdowns in which both service were essential and provided to all arriving 

customers. In this chapter, we consider a queueing model with vacations and 
breakdowns in which all customers demand the first "essential" service, whereas 

only some of them demand the second "optional" service. Some aspects of this 

model were first studied by Madan (1994; 2000a). He cited some important 

applications of this model in many real life situations. Some of these applications 

are mentioned as follows: 

* At a gifts shop, every customer may need to buy a gift, but only some of these 

customers may ask for wrapping. 

In a small town one finds many shops, which sell coffee beans and grains of 

various kinds. All such shop-keepers normally have a grinding machine. All 

customers coming to such a shop buy grains or coffee beans, but only some of 
these customers want to utilize the grinding facility. 

* All passengers wish to travel to a big town or a metropolitan city on 

a particular airline, but only some of these customers take the airline's further 

flight to an interior destination of tourist's interest. 

9 All students joining a particular department of a university want to complete 
their undergraduate program of study, but only some of them may join the 
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postgraduate programme soon after completing the undergraduate programme. 

All ships arriving at a port may need an unloading service on arrival, but only 

some of them may require a re-loading service soon after the unloading. 

Choudhury (2003b) derived the queue size distribution at a stationary point of 

time and waiting time distribution for an MIGII queueing system with optional 

second service where both services are provided by the same server. In another 

study, he assumed that the optional service is provided in an additional service 

channel in which case another customer at the head of queue is taken up for the 

first essential service (Choudhury, 2003a). Later, this work was generaliscd to a 
batch arrival queueing system with the second optional service channel under D- 

policy where the server is turned off after the service facility becomes free, and it 

is turned on when the cumulative service times of the primary customer at the 

service facility exceed the level D (Choudhury, 2005), and under N-policy where 

the server is turned on when the queue size reaches the number N (Choudhury & 

Paul, 2006). 

The queueing system with a second optional service was further investigated. 

Madan and Baklizi (2002) and Choudhury and Paul (2005) studied this model 

with the assumption that after receiving the first phase or second phase of 

unsuccessful service, a customer may immediately join the end of the original 

queue as feed back customer to have another regular service. Artalejo and 
Choudhury (2004) and Atencia and Moreno (2006) studied retrial queues with an 

additional second phase of service. 

Although queues with a second optional service have been studied in various 
forms by numerous authors, one important fact has been overlooked is that 

perfectly reliable servers are virtually nonexistent. There might be times of 

unavailability of service due to scheduled vacations or unexpected breakdowns. 

To the best of our knowledge, very few authors considered server vacations or 
breakdowns in queues with a second optional service. Madan, Abu-Dayyeh and 
Saleh (2002) studied AVG1I queue with second a optional service where after 

completion of a service, the server takes Bernoulli schedule vacations. They 
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assumed a general distribution for the first essential service times and exponential 
distributions for both the optional service times and vacation times. They obtained 

time dependent probability generating functions and their corresponding steady 

state results. 

On the other hand, Kumar, Arivudainambi & Vijayakumar (2002) investigated an 
MIGII queue with second optional service and server breakdowns, where 
breakdowns may occur with a fixed rate while servicing customers in either 

phase. They assumed that the customer leaves the system upon breakdown. All 

time periods were generally distributed in this study. . 

Wang (2004) obtained transient and steady state solutions for both the queueing 

and reliability measures of a queueing model similar to the one considered by 

Kumar, Arivudainambi & Vijayakumar (2002) with the following differences: 

the breakdown rates are different for the two phases of service, exponential 
distribution for the second optional service times, and the customer just being 

served before server breakdown waits for the server to complete its remaining 

service. 

In this chapter we consider a batch arrival queueing system with a single server, 

a second optional service, Bernoulli schedule server vacation and random 
breakdowns. We assume general (arbitrary) distributions for the first essential 

service time, second optional service time, vacation time, and repair time. This 

extends the work done by Madan, Abu-Dayyeh and Saleh (2002) by adding the 

assumption of breakdowns to their queueing model, generalising the second 

optional service time and the vacation time and considering batch arrival. The 

current chapter also extends the work done by Kumar, Arivudainambi & 

Vijayakumar (2002) and Wang (2004) by adding the assumption of server 

vacation to the queueing model. The model of this chapter generalises the 

classical AlMIG11 queue with Bernoulli vacations, the AP11GII queue with 

random breakdowns and the AýMlGll queue with a second optional service. The 

detailed assumptions underlying the queueing model considered in this chapter are 

presented in the following section. 
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5.2 The Mathematical Model 

In this chapter, the assumptions of batch arrivals, vacations and breakdowns are 

similar to those considered in the previous chapter, but the introduction of an 

optional service makes the model differ from those considered earlier. The 

detailed assumptions of this chapter are as follows: 

a) Customers arrive at the system in batches of variable size in a compound 

Poisson process. Let Acdt (i = 1,2,3, ... ) to be the first order probability 

that a batch of i customers arrives at the system during a short interval of 

time (t, t+ dt], where 0 -, -ý ci :51 and c, =I and A>0 is the mean 

arrival rate of batches. 

b) There is a single server who provides both the first essential service and 
the second optional service. The first essential service is provided to all 

arriving customers. As soon as the essential service of a customer is 

completed, then with probability k, he may opt for the second service, in 

which case his second service will immediately commence or else with 
probability I- k, he may opt to leave the system, in which case another 
customer at the head of the queue (if any) is taken up for his first essential 

smice. 
c) The service time of the two services (essential and optional) follow 

different general (arbitrary) distributions with distribution functions Gj(S) 

and density function g, (s), j=1,2. Let pj(x)dx be the conditional 

probability density of the completion ofP service during the time interval 

(x, x+ dx], given that the elapsed time is x, so that 

jui (x) = 
gj (x) 

1,2 
1-GJ(X)' 

and, therefore 
9 

-J, U, (X)ýü 
gi (s) = u, (s) e09j=1,2 (5.2) 

d) As soon as a service is completed, no matter whether it is the first essential 
service or the second optional service, the server takes a vacation with 
probabilityp, and decides to stay in the system with probability I-p, where 
0 :5p :51. We further assume that whenever a customer requires a second 
optional service, the server is not allowed to take a vacation unless the 
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optional service of the customer is completed. 

e) The server's vacation time follows a general (arbitrary) distribution with 

distribution function B(v) and density function b(v). Let y(x)dx be the 

conditional probability of a completion of a vacation during the interval 

(x, x+ dx] given that the elapsed vacation time is x, so that 

Ax) = 
b(x) 

(5.3) 
1- B(x) 

and, therefore 
v 

b(v) = y(v)e (5.4) 

f) The system may break down at random while the first essential service is 

going on. It is assumed that the optional service never breaks down (e. g. 

a manual service). Breakdowns are assumed to occur according to 

a Poisson stream with mean breakdown rate a>0. 

g) Once the system breaks down, the system enters a repair process 
immediately, and the customer whose service is interrupted comes back to 

the head of the queue waiting for the service to resume. The repair time 

follows a general (arbitrary) distribution with distribution function (D(r) 

and density function (9(r). Let P(x)dx be the conditional probability of 

a repair completion during the interval (x, x+ dx] given that the elapsed 

repair time is x, so that 

, 6(x) = 
q7(x) (5.5) 1 (D (x) 

and, therefore 
r 

-ffl(. )A 
(p(r) = P(r)e 0 (5.6) 

h) The stochastic processes involved in the system are assumed to be 

independent of each other. 

5.3 Steady State Equations Governing the System 

We assume that the steady state solutions exist. Accordingly, we define the 

following limits as the corresponding steady state probabilities. 
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P(e) e) (t) = lim (X, t)dx = p"(") lim 
» 

(X, t)=p"(0)(x), limp", ( fp. ( 
0 

limp", 01(X, t)=P. 101(X), limp"10>(t)=lim 0) 
m 

t->W 
fp-, (X ,t )dx = p', lo 
0 

Co 
limv"(X, t)=V�(x), limv. (t)=lim X=V 
E-+M I-+CO _,. 

fV� (x, t)d 

co 
limR. (x, t)=R,, (x), limR,, (t)=Iim x=R,, 
t-+-o 1-+w _. 

fR,, (x, t)d 

IiMQ(t) =Q t-+QQ 
Then, we formulate the equations governing the system in the same manner we 
did in previous chapters, and get the following set of steady state differential 

equations 
d n-1 

P. (e)(x)+(, t+A(x)+a)P. (')(x)=, tZc, P�ý", )(x), nkl (5.7) 
dx 

d 
27p"(")(x) + (A + juý (X)+ a)PO(II)(X) =0 (5.8) 

d P»(") (x)+ (A +m (x »p. (") (x) =, týc, P. ý") (X), n 2: 1 (5.9) 
dx 1-1 

d 
P. (0) (x) + (A +m (x» P. (0) (x) =0 (5.10) 

dx 

d 
-zV�(x)+(�+r(x»V. (x)=, ZEC, V�-, (X), n2: 1 (5.11) 

d-1 
d Vo (x) + (A + Y(X»Vo (x) =0 (5.12) 
dx 

d R. (x)+(, 1+ß(x»R, (x)=, tj: c, R. 
-� n2A (5.13) j 

1-1 

d4 (x) + (A + ß(x»RO (x) =0 (5.14) 
dx 

go 00 
AQ = (I - p) fPo(o) (x)p2 (x)dx + (I - k)(I - p) fP(, () (x)A (x)dx 

00 
00 90 fVO(x)y(x)dx+ fR, (x)ß(x)dx 
00 

The above equations are to be solved subject to the boundary conditions 
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00 Co 
P. (6) (0) = (1 - p)(1 - k) fP�(. '1) (x)A (x)dx + (1 - p) 

01) (X ), U, (X)dx f P»(10 00 40 +fR.,., (x)ß(x)dx+fV.. �(x)y(x)dx+Ac�,. IQ, n2: 0 

"0 
P�(0)(0)=kfP�(')(x), u, (x)dx, nk0 (5.17) 

V�(0)=p(1-k)fP�(")(x), u, (x)dx +pfP�(*)(x)#, (x)dx, n 2: 0 (5.18) 
00 

00 
R. (0) =a fP�ý', ) (x )dx ,n2: 1 

0 

Ro(0) =0 (5.20) 

5.4 Queue Size Distribution at a Random Epoch 

We define the following probability generating functions 

e p(0) znp(#), p 
q 
()(X, 

z) = 
Zz np. (e)(x), 

q 
(Z 1 

n-O n. 0 

.0 00 

p (*'(x, z)=EZ»P. (*, (x), q 
n-0 

m 00 
V(X, Z)=EZ»V»(X), vq(Z)=EZ"V�, 

q 

R. (x, z)=1: z»R�(x), R. (z)=1: z»R., 
n. 0 a«0 

00 C(Z) Z, cj (5.21) 

Now, we multiply the differential equations in (5.7) - (5.20) by appropriate 

powers of z, sum over all possible values of n and use the generating functions 

defined in (5.2 1), we obtain 
d 

P()(x, z)+(A-AC(z)+A(x)+a)P()(x, z)=O (5.22) 
Xqq d 

d_P, 0)(x, z) + ('Z _ K(z) + M(x»P(0)(X, z) =0 dx 'q (5.23) 

d 
V, (X, Z) + (t - "C(Z) + Y(X»Vq (X, Z) =0 (5.24) 

dx 
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dR (x, z) + (A - AC(z) +, 6(x))Rq (XI Z) =0 (5.25) 
, 

go 
zP")(o, z)=(I-p)fP(')(x, z)p2(x)dx +(I-p)(1-k)fP(')(x, z)A(x)dx qqq 00 

00 00 

(x, z)y(x)dx +A(C(z)-I)Q (x, z)fl(x)dx + fV + fR 5 26 q ,, 00 
( . ) 

Pq(') (0, zk fPq(") (x 
,z 

(x )dx (5.27) 
0 

CO aD 

V. (0, z) =p 
fPq(*)(x, 

z)p2(x)dx + p(l - k) fPq(*)(x, z)pi(x)dx (5.28) 
00 

R. (O, z) = azfpq(e)(x, z)dx (5.29) 
0 

We solve the differential equations (5.22) - (5.25) by integrating between the 

limits 0 and x and obtain 

Pq(e) (X 
9Z 

Pq(e) (OP Z )e (5.30) 

Pq(0) (X 
sZ 

Pq(0) (0) Z )e 
-(A-AC(Z))X- 

0 
p2(1)dt (5.31) 

-(A-AC(Z))X- jy(t)dt 
Vq (XP Z) = Vq (Os Z)e 0 (5.32) 

-(A-X(. ))x-j, 6(t)dI 
Rq (XI Z)= Rq(O, z)e (5.33) 

where P(e)(O, z), P(O)(O, z), Vq(O, z) and Rq(O, z) are given by (5.26), (5.27), qq 

(5.28) and (5.29), respectively. Again integrating equations (5.30) - (5.33) by 

parts with respect to x yields 

jD (e) (z P (C) (O, z 
(z + a] 

qq[ (A-AC(z)+a) (5.34) 

Pq(0) (Z Pq(0) (Os Z1- 
lff2 I" 

- 
AC (Z A 

(A-AC(z)) 

I 
(5.35) 

Vq (Z) = Vq (0) Z) 
I-B [A - AC(z)] 

(5.36) 

-A- 
AC(Z) 

- 

Rq(z) = Rq(O, z) 
I-T[A-AC(Z)]] 

(5.37) 
A- AC(Z) j 
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where 0, [A-, r(z)+a]= fe-ýA-Ac(")+* 
*dG, (x), 02[A-X(Z)+al 

= fe -(A-AC(z)+a)x *CV2(x)t 

B[A-AC(z)1=fe4'('))'-dB(x) and iD-[A-AC(z)]=fe-("-*c())-d(D(x) 

are the Laplace-Stieltjes transform of the first essential service time, second 

optional service time, vacation time and repair time, respectively. 

Now, we determine the integrals appearing in the right hand sides of equations 
(5.26) - (5.28). We multiply equations (5.30), (5.31), (5.32) and (5.33) by P, (x), 

p, (x), y(x) and 8(x) , respectively, integrate with respect to x and use equations 

(5.2), (5.4) and (5.6), we obtain 
co fP, (e)(x, z)A(x)dx =p(e)(O, z)U, [A-AC(z)+a] 

qq (5.38) 
0 

00 fp, (0)(X, 
Z), U2(X)dx =P, (')(0, z)(j, [, t-. iC(z)] 

q (5.39) 

Co fV, (x, z)y(x)dx = Vq (0, zJ[A -, tC(z)] (5.40) 
0 

90 fR, (x, z)ß(x)dx = Rq (0, z)j[A - AC(z)] (5.41) 

Using equations (5.34) and (5.38) - (5.41), we can write equations (5.26) - (5.29) 

in the following forms 

zP, (. )(Oz) =0 -p)P, (O) (Oz)(Y, [A - AC(z)] +(I -pXI - k)Pq(')(Oz)(Y, [A-AC(z)+a] 
+R, (Oz)iD-[A - AC(z)] +V, (o, z)ff[A - AC(z)] + A(C(z) - I)Q (5.42) 

P(*)(O, z) = kP,, ()(O, z)j, [A - AC(z) +a] q (5.43) 

V, (O, z)=pP, (')(O, z)j2[A - AC(z)] + p(I - k)P, (')(O, z)9j [A - AC(z) +a] (5.44) 

Rq (Oz) =C'ZPq(e)(OZ) 
I-G, [A-AC(z)+al 

(5.45) 

_ 
(A-, IC(z)+a) 

Using equation (5.43) in (5.44) and simplifying, we get 

Vq(O, z)=pPq(')(O, z)U, [A - AC (z) + a](kd7, [A - AC(z)] + (I - k)) (5.46) 

Using (5.43) in (5.35), (5.46) in (5.36) and (5.45) in (5.37) yields 

Pq (a) (z )= 
kP, (')(O, z)(Y, [A - AC(z) + a](I -j2[A -AC(z)]) (5.47) 

(A - AC (z)) 
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vq (Z) = 

pp(e)(o, z)GI[A-AC(z)+a](kG -AC(z)+a]+(I-k))(l-F3[A-AC(z)] 2V 

(A -, ZC (Z ) 

122 

(5.48) 

azP')(0, z)(1 -, IC(z) + a»(1 - ZD-[, t -, ZC(z)]) 
Rq (Z ) z-- 

q 

(A -AC(z) + a)(. t -AC(z» 
(5.49) 

We now substitute the expressions for P()(O, z), V, (O, z) and R, (O, z) from 
q 

equations (5.43), (5.46) and (5.45) in (5.42) and after some algebraic 

manipulations, we obtain the expression for P (') (0, z) as follows q 

p(e)(O, Z)= 
(A - AC(z) + a)A(C(z) - I)Q 

(5.50) q D(z) 

where 

D(z) =(A -AC(z)+ a)fz-k(l -p)U, [A -AC(z) + a]U, [A -AC(z)]) 

-(I - p)(I -k)(A -AC(z) + a)U, [A - AC(z) +a] 

- p(A - AC(z) + a)! T[A - AC(z)]U, [A - AC(z) + a](kU2[A - AC(z)] + (I - k)) 

- oý-(D[A -AC(z)](I - UJA - AC(z) +a]) 

Substituting for P(") (O, z ) from (5.50) in (5.34), (5.47), (5.48), and (5.49), we get q 

the probability generating functions of the queue size for the different states of the 

system as follows 

Pql"(z 
(I -UJA - AC(z) + al)A(C(z) -I)Q 

D(z) 

(Z 
kG, [A - AC (z + al «72 [A - AC (Z 1) (A -AC (Z + a) Q 

D(z) 

vq (Z) = 
p(A -, IC(z) + aX! i[, t -, IC(z)] - ig [A -AC(z) + a](ki, [A -, tC(z)1 + (1 - k)ý 

(5.53) 
D(z) 

R, (z) = 
ca r(D[, t -, W(z)] - IXI - U, [A -, IC(z) + al)Q (5.54) 

D(z) 

Adding equations (5.51) - (5.54) we obtain the probability generating function of 

the queue size at a random epoch irrespective of the state of the system 

Wq(z)=Pq(") (z) + Pq() (z )+ Vq(z)+Rq (Z ) (5.55) 

It remains to derive the probability that the server is idle, Q. Using the 

nonnalization condition 

W(I)+Q=l q 

we get 
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AE(I) kE(S2) + pE(V) +I-I+ 
E(R) 

- E(R) (5.56) 
aG, [a] a Gja] 

where C(l) = 1, C(I) = E(I) is the mean batch size of the arriving customers, 

[0]=E(S2) is the mean service time for the second optional G2101=19 -G2 

service, ff[O] = 1, -B [0] =E (V ) is the mean vacation time, (D[O] = 1, and 

-(D [0] =E (R) is the mean repair time. Using the expression for Q obtained in 

(5.56), the utilization factor, p of the system is given by 

p= AE(I) kE(S2) + pE(V) +I-I+ 
E(R) 

_ E(R) (5.57) 
all, [a] a Uja] 

where p<I is the stability condition under which the steady state exits. 

To this point, we have completely and explicitly determined W, (z), the probability 

generating function of the queue size at a random epoch, and this will be used in 

the next section to derive some performance measures of the system. 

5.5 The Mean Queue Size and the Mean Waiting Time 
Using the expression for W. (z) obtained in (S. 5 5) and the formula 

D'(I)N"(I)-N'(I)D"(1) Lq = 
2(D l(l))2 (5.58) 

which was proved in chapter 1, we derive the mean queue size for the system 

considered in this chapter. Carrying out the derivatives required in (5.58) at z=I 

we get 
N'(1) = AE(I)Qý + aE(R) + U, [a l(kaE(S2)+ apE (V) - aE (R) - 1)) (5.59) 

Y(I) = (AE(I)y (2aE(R) 
+aE(R2 

+U, (+aE(V2) -2pE(V)- 
2aE(R) 

_ aE(R 2) + kaE(S22) + 2kE(S2)(paE(V) -I AE(I) 

+ 2Z7, ta](I + aE(R) - paE(V) - kaE(S2)) I 

+M(I(I -1))Qfl +aE(R) + Uja](paE(V) -1 -aE(R) + c*E(S2))) 
(5.60) 
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D'(I)=AE(I) I-aE(R)+Ul[al a 
-kaE(S2)-apE(V)+aE(R)+l (5.61) 

I- (AE(l) )I 

D"(1) = (AE(I)y 
f( 

-2 2aE(R) 
-aE(R2) JýF(T) AE(I) 

+ZT, [a 2pE(V)-cpE(V )+ 
2aE(R) 

+ aE(R2) + kaE(S, 2) - 2kE(S, )(paE(V) -I AE(I) 

a + 2ZTjaýetpE(V) -I- AE(I) - aE(R) - kaE(S, ))l 

+ AE(I(I - 1))I- I- aE(R) + U, [a](I - paE(V) + aE(R) + akE(S2))l (5.62) 

where Q has been found in (5.56), G [0] =E2), B [0]=E (y 2) and 2 
(S2 

ý; " [0] =E (R 2) are the second moment of the optional service time, vacation 

time, and repair time, respectively, and C"(1) = E(I(I - 1)) is the second factorial 

moment of the batch size of arriving customers. Using the results obtained in 

(5.59) - (5.62) and equation (5.58), we can find L,, the mean number of customers 

in the queue, and hence Wq, the mean waiting time in the queue. 

5.6 Particular Cases 

5.6.1 No Customer Requires the Second Optional Service 
In this case, we assume that all customers require only the first essential service 
and that they have no option to opt for the second service. Accordingly, we set 
k=0 in the main results of this chapter, and obtain 

P(e)(z) 
JI -UJA -AC(z) + a])A(C(z) -I)Q (5.63) 

q D(z) 

pq (0)(z) 
=o (5.64) 

V, (Z) = 
p(A - AC(z) + aXff[, t - AC(z)] - IA [A - AC(z) + a]Q (5.65) 

D(z) 

R. (z) = 
cc r(D[A 

- AC(z)) - IXI - U, [A - AC(z) + a])Q (5.66) 
D(z) 

D(z) =(A - AC(z) + aXz- (I -p)U, [A -AC(z) +a] - p! T[A -AC(z)]U, [A -AC(z) +a]) 
(5.67) 

- oz7(D-[A - AC(z)](I - U, [A - AC(z) + a]) 

Wq (z) =Pq(")(z) +V, (z) +Rq (Z) (5.68) 



Chapter 5 125 

Q=I-AE(I - 
1- 

-I+ pE(V)+ 
E(R) 

- E(R) (5.69) 
ýtMja] 

a Uja] 

p= AE(l) -I+ pE(V)+ 
E(R) 

- E(R) (5.70) 
a Uja] 

N'(1) = AE(I)Q + aE(R) + U, [a )(apE (V) - aE(R) - 1)) (5.71) 

N"(1) = (AE(I)y Q 
(2aE(R) 

+ aE(R2) 
J( 

AE(l) 

+U, [a paE(V')-2pE(V)- 
2aE(R) 

_ aE(R 2) 
AE(I) 

" 2Uja](I + aE(R) - paE(V)) 
I 

" AE(I(I - 1))Qý + aE(R) + U, [al(paE(V) -I- aE(R))) (5.72) 

a D'(1) = AE(I+ I- aE(R) + U, [a]( 
AE(I) - apE(V) + aE(R) + I)j (5.73) 

D'(1) = (AE(I)y 2_ 2aE(R) 
_ aE(R2) 

('ýim 
AE(I) 

+Uja 2pE(V)-opE(V2)+ 2aE(R) 
+ aE(R2) AE(I) 

+2U, ja qpE(V)-I- a 
-aE(R) AE(I) 

+ AE(I(I - I))[- I- aE(R) + Uja](I - paE(V) + aE(R))) (5.74) 

The results obtained in (5.63) - (5.74) agree with the results obtained in chapter 3 

in which we studied a queueing system providing single service. 

5.6.2 No System Breakdowns 

In this case, we assume that the system does not break down, and hence a=0 and 

Rq(z) = 0. Using this assumption in the main results of the chapter we get 

P, ("(z)= (5*75) 

P, (0, (Z )= 
-Z 

k(jý [A -, IC (z)](l - 62 [, Z -, ZC (z)])Q 
(5.76) 

-rp (1 -ff[A -, IC(z)]) - llr(1 - k)(j, [, t -. IC(z» + k(j, [, t -, ZC(z»ij, [, Z -, ZC(z)11 

p(1 -eA - A(; (Z)1)Lil [A - AC; (Z)jýk(i2[A - AC; (Z)j+ (1 - k»g 
V (Z) =- f-z- [p(1 - ä[A -, ZC(z)])- lj[(l - k)UJA -AC(z)] + kUJA -, tC(z)]G2[, t -, ZC(z)]] 

(5.77) 

wq (Z ) ý- pq (0)(z)+pq (0)(z)+vq(Z)= 

1+ [p(1 
-, ff[A -, ZC(z)]) -1][(l -k)(j, [, Z -X (z)]+ (z)i])Q (5.78) 
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To find Q, we use W. (1) +Q=I and the expression for W. (z) obtained in (5.78). 

We see that for z=1, W, (z) is indeterminate of 0/0 form. Therefore, we apply 

L'Hopital's Rule on equation (5.78). Consequently, we get 
Q=I- AE(I)[E(SI) + kE(s2)+ pE(V)] (5.79) 

where G, [0] =I and -G, [0] =E (S) is the mean for the first essential service 

time. Further, we compute N'(1), N'(1), D'(1), and D"(1) using the expression 

obtained for W. (z) in (5.78) 

N'(I)'ý-- -41E(I)Q(E(Sl) + kE(S2) + PE(17)) (5.80) 

N'(1) = Q(AE(I)Y[-2pE(VXE(S, )+kE(S2))-E(SI 2 )-kE(S22)-2kE(S, )E(S, )-pE(V2)] 

+ QIE(I(I - IX-E(SI) -kE(s2) + pE(P)) (5.81) 

D'(1) = -1 +AE(I)(E(S, ) + kE(S2) + PEM) (5.82) 

2 ý2) 
_2kE(S, )E(S2) _pE(V2)] , V(I) = 4AE(I)Y[-2pE(VXE(S, )+kE(S2))-E(SI )-kE(S2 

-AE(I(I-1)(-E(S, )-kE(S2)+pE(V)) (5.83) 

where [0] = E(S, 2) is the second moment of the first essential service time. 

Using equations (5.80) - (5.83) in (5.58) we can easily find Lq, and hence Wq. 

Madan, Abu-Dayyeh and Saleh (2002) studied a special case of this model; 

vacation queue with a second optional service where the optional service times 

and the vacation times were assumed to be exponential and the arrivals were 

single. 

If the server has no option to take vacations; that is p=0, and the arrivals were 

single, then the model will be reduced to the one considered by Al-Jaraha and 
Madan (2003) and we get similar results. 

5.7 A Numerical Illustration 

For the numerical illustration purpose, we use the general results obtained in 

equations (5.51) through (5.62). We assume that the essential service time, 

optional service time, vacation time and repair time are all exponential with rates 

1j, 9 p2, v and fl, respectively. Accordingly, we use the following substitutions 
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in equations (5.5 1) through (5.62) 

-f -A 
a 

Uja] =AG, [a] = -C 
a+A a+ A)2 

A-I 2)= 
22 

U2 (A - 
AC(Z)l = 

It -'tC(Z) + 
E(S2) = E(S2 

Pi 

r E(V2) =2 AC(z)l = -9 E(V) =2 
A- AC(Z) +, v yy 

T[A-AC(Z)]- 8 
-, E(R) E(R 2)= 2 

A-AC(Z)+fl 7 

Further, we assume A=6, p2=10, a=8, fl=10 and y=7, whilep and k 

both taking the values 0.25,0.5 and 0.75. Also we assume single arrivals with rate 

A=2, hence 

C(z) = z, E(I) = 1, E(I(I - 1)) =0 

All the values of system parameters were chosen such that the steady state 

condition is satisfied. 

In chapters 2 and 4, we presented numerical tables and graphs showing how 

vacation and breakdown parameters affect the queue characteristics for different 

queue models, whereas in this chapter we fix most of those parameters and seek 
the effect of the two parameters p and k; the probability of taking a vacation and 
the probability that a customer requires the optional service. Table 5.1 gives the 

numerical values of some queue characteristics for the chosen values of 

parameter. 

Table 5.1 Computed values ofvarious queue characteristicsfor vacation queue 
with breakdown and optional service, A=2, pi = 6. p2 = 10, a=8, P= 10, y=7 

pk 

0.25 0.5 
0.25 0.75 

0.5 0.25 
0.5 0.5 
0.5 0.75 

0.75 0.25 
0.75 0.5 
0.75 O. Vi-j 

Q p 
Lq W9 Pq(")(1) Pq(*)(1) V, 

1(1) 
Rj(l) W, (I) 

092786 0.7214 2.0443 1.0222 0.3332 0.05 0.0714 0.2666 0.7212 
0.2286 0.7714 2.5001 1.2501 0.3332 0.1 0.0714 0.2666 0.7712 
0.1786 0.8214 3.1927 1.5964 0.3332 0.15 0.0714 0.2666 0.8212 

0.2072 0.7928 2.9679 1.484 0.3333 0.05 0.1428 0.2666 0.7927 
0.1572 0.8428 3.9315 1.9658 0.3332 0.1 0.1428 0.2666 0.8426 
0.1072 0.8928 5.7641 2.8821 0.3333 0.15 0.1428 0.2666 0.8927 

0.1358 0.8642 4.8635 2.4318 0.3333 0.05 0.2143 0.2667 0.8643 
0.0858 0.9142 7.752 3.876 0.3334 0.1 0.2144 0.2667 0.9145 
0.0358 09642 18.6077 9.3039 0.3334 0.15 0.2144 0.2667 0.9646 
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Q- 

Figure 5.1 Effect ofp and k on the proportion qf time that the sen, er is i(fle Q 
(A= 2, pl = 6, p2= 10, a= 8,8= 10, y= 7) 

p 

Figure 5.2 Effiect qfp and k on the utilizationfixtor 
(A = 2, p, = 6, p2 = 10, a=8,8 = 10, y= 7) 

Lq 

Figure 5.3 -ý#ýcl qf'p and k on the mean queue size Lq 
(A = 2, p, = 6, p2 = 10, a=8,8 ý 10, yý 7) 
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fvq 

Figure 5.4 Effect ofp and k on the mean waiting time Wq 
(A = 2, p, ý 6, p2 = 10, a=8.8 = 10, y= 7) 

pl, (o) 

(1) 

129 

Figure 5.5 Efftct ofp and k on the probabilhýv that the server is providinýq the 
second optional service (A = 2, p, = 6, u2 = 10, a=8,8 ý 10, yý 7) 

VII(l) 

Figure 5.6 -ý#ýct ofp &k on the probability that the sen, er is on vacation 
(A = 2, p, ý 6, pý, = 10, a=8,8 = 10, yý 7) 
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Table 5.1 and graphs 5.1 - 5.4 clearly show that asp or k increases, the server idle 

time decreases, while the utilization factor, the mean queue size and the mean 

waiting time of customers, all increase. Figure 5.5 shows that increasing k 

increases the probability that the server is providing the second optional service to 

customers, as it should be. 

J; Qca 
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Batch Arrival Queue with Two Kinds of General 

Heterogeneous Service, Bernoulli Schedule General 

Vacations, Random Breakdowns and General Repair 

Times 

6.1 Introduction 

Some service stations provide more than one kind of service. Just before a service 

starts, a customer has the option to choose one of the different kinds of service 

provided. Such a model may find applications in many day-to-day life queueing 

situations encountered at post offices, banks, automobile stations, computer 

centres, beauty centres, and so forth. Such queueing systems were investigated by 

Beja and Teller (1975). They studied a single station service system with bounded 

queue capacity operates in discrete time and many types of service. They assumed 
K possible types of service in which an arriving customer has the option to choose 

one. The expected cost per served customer in each kind of service was compared 
to the expense of losing him. 

Anabosi and Madan (2003) studied a single server queue with two types of 

service, optional server vacations based on Bernoulli schedule and a single 

vacation policy. They assumed that the server provides two types of 
heterogeneous exponential service and a customer may choose either type of 

service. Under the single vacation policy, it is assumed that whenever the server 
takes a vacation, it is always a single vacation with exponentially distributed 

vacation period. Explicit steady state results for the probability generating 
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functions of the queue size and the system size, the expected number of customers 

and the expected waiting time in the queue and in the system have been derived. 

This work was generalised by Madan, Al-Rawi and Al-Nasser (2005) in which 

they assumed general arbitrary distributions for both types of service times and for 

vacation times. In this chapter, we ftulher generalise the work done by Madan, 

AI-Rawi and Al-Nasser (2005). 

In chapter 4 we analysed a single server batch arrival queueing system with two- 

stage heterogeneous service, server vacations and random breakdowns where each 

arriving customer undergoes both essential services. In chapter 5, the arriving 

customers are provided an essential service, and once this service completes, 

she/he has the option to take the second additional service. It was assumed that the 

server takes Bernoulli vacations and the system may break down while providing 

the first essential service to a customer. In the current chapter, we consider 

a single server batch arrival queue in which the server provides two types of 

service to arriving customers. A customer may choose the first kind of service 

with probability 0, or the second kind of service with probability I-0. The times of 
both kinds of service are generally distributed. It is also assumed that after the 

service completion of any kind of service, the server may leave for a vacation of 

random length. Vacations are assumed to follow Bernoulli schedule under a single 

vacation policy and the vacation times are generally distributed. We further 

assume that the system may break down at random during any kind of service. 
This is followed by a repair process of random length and general repair time 

distribution. 

The model of this chapter extends the work done by Madan, Al-Rawi and 
Al-Nasser (2005) in which a more realistic queueing system is considered by 

adding the assumption of server breakdowns. 

6.2 The Mathematical Model 

The mathematical model of this chapter is described by the following 

assumptions: 
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a) Customers arrive at the system in batches of variable size in a compound 

Poisson process. Let Acidt (i = 1,2,3, ... ) to be the first order probability 

that a batch of i customers arrives at the system during a short interval of 

., c, =l andA> 0 is the mean time (t, t+ di], where 0 :5 ci :51 and E', ", 

arrival rate of batches. 

b) There is a single server who provides two kinds of general heterogeneous 

(one by one) service to customers on a first come, first served basis. 

Before his service starts, each customer has the option to choose the first 

service with probability 0 or the second service with probability 1-0. 

c) The service time of the two kinds of services follow different general 
(arbitrary) distributions with distribution functions G, <s) and density 

function X(s), j = 1,2. Let p, (x)dx be the conditional probability density of 

the completion ofj' kind of service during the time interval (x, x+ dx], 

given that the elapsed time is x, so that 

. ui (x) = 
gj (x) 

1,2 
1-G, (x)' 

And, therefore 

(X)& 

p, (s)e 0j=1,2 (6.2) 

d) As soon as the service is completed, the server takes a vacation with 

probability p, or decides to stay in the system with probability I -p, where 
O: sp: 5 1. 

e) The server's vacation time follows a general (arbitrary) distribution with 
distribution function B(v) and density function b(v). Let y(x)dx be the 

conditional probability of a completion of a vacation during the interval 

(x, x+ dx] given that the elapsed vacation time is x, so that 

r(x) = 
b(x) 

(6.3) 
1- B(x) 

And, thcrefore 

b(v) = y(v)e (6.4) 

f) Ile system may break down at random while the service of either kind is 

going on. Breakdowns are assumed to occur according to a Poisson stream 
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with mean breakdown rate a>0. Further, we assume that once the system 
breaks down, the customer whose service is interrupted comes back to the 

head of the queue. 

g) Once the system breaks down, it enters a repair process immediately. The 

repair time follows a general (arbitrary) distribution with distribution 

function (D(r) and density function (p(r). Let fl(x)dx be the conditional 

probability of a repair completion during the interval (x, x+ dx] given that 

the elapsed repair time is x, so that 

Ax) = 
V(X) (6.5) 

1- (D(x) 

And, therefore 

(p(r) = P(r)e (6.6) 

h) The stochastic processes involved in the system are assumed to be 

independent of each other. 

6.3 Steady State Equations Governing the System 
We shall find the steady state equations governing the system, but first we define 

the following limits which correspond to steady state probabilities. 

limpl, cl, (x, t)=P. ll)(x), limp.,, rl)(t)=Iim x=P fP,, "j) (x ,t )d j=1,2 
0 

00 
limv. (X, t)=V. (X), limv. (t)=Iim x=V 
1-+00 

fV. (x, t)d 

go fR. (x, t)d limR. (x, t)=R. (x), limR,, (t)=Iim x=R. 
0 

limQ(t) =Q (-+CO 

Connecting states of the system at time t+ dt with those at time t we obtain the 
following set of steady state equations 

d 
p. "ri) (x)+ (A + A(x) + a)P. (")(x) ýc, P. ý'r, ')(x), nkl (6.7) dx i-1 

d PO(II, 1)(x) + (A +A (x)+ a)PO(")(x) =0 (6.8) dx 
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"ý, 12) 
(X dp (jr2) p(jr2)( )=AýnClp -1 

R 
(x + lj2(x)+a) xn (6.9) 

x 
d 2) )p(ir2) )=O 

O(Ir 
(x) + (A +, u2(x) +a (, -P , (x (6.10) dx 

dv 
. (x)+(A+y(x))V. (x)=Al: ciV. -i(x), ný: l (6.11) 

dx 
d 

- VO W+ (A + AXWO W=0 (6.12) Z 

d ft-, R. (X) + (A + 6(x))R. (x) = AJ: cR. -, .ný: 1 (6.13) 

d 
-E RO (x) + (A + P(x))RO (x) =0 (6.14) 

Jp(-2) AQ=(J-pý3P. (-')(x)A(x)dr+ (x)A(x)dx)+fVo(x)y(x)dx+fRo(x)P(x)dx (6.15) 
000 

Equations (6.7) - (6.15) should be solved subject to the following boundary 

conditions 

p(Irl) + Jp (+KI2) (X 
-p)O(QfP. (. ', ')(x)A(x)dx (0) = (1 

.14), 
U2 (X)dx 

go 40 
+OfV I(x)y(x)dx+OfR . I(x)fl(x)dx+AOc ., ýQ, n-? -O .+ . . (6.16) 

00 

. (0) =0 p(, r2) -P)(1-0)(IP. (. P(X)A(xý*+'O K)(X)P2(X)dc fp. (. 411 00 

+(I-O)fr.., (x)y(x)dc +(I-O)fR.,. I(x), 6(xA +A(I-0ýc..,, Q, n; ->O 

(6.17) 

00 
aD 

lp Ir2) V. (O)=p 1P("')(x)A(x)dr +. naO 
(X )P2 (X)dx (0 0 (6.18) 

00 fp 

11 P R. (0) =a (x )dx + 
8ý4 12) 

(X A on2: 1 JfJ (6.19) 

RO(O) =0 (6.20) 

6.4 Queue Size Distribution at a Random Epoch 
Defining the probability generating functions of different states of the system, we 
have 
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.D GO 

P, ('r"(x, z)=ZznP. (l'(x), P, ("J)(z)=j: znP. ("J), j=1,2, 
n-0 M-0 

w CIO 
V(X, Z)=EZ"V. (X), V, (Z)=Ez"v., q 

R-0 R-0 

R,, (x, z)=2: z"R. (x), R, (z)=2: zR., 
9-0 X-0 

C(z) Z'C, 

136 

(6.21) 

Proceeding in the same manner as in the previous chapters we get the following 

differential equations involving the probability generating functions 

d 1) 
dx 

p. ll' (x, z)+(, t-, ZC(z)+A(x)+a)P, (")(x, z)=0 (6.22) 

d. 
r2) (x 2i p( z) + (A-AC(z) +A(x) + a)P, ('2)(x, z) =0 (6.23) 

d 
vq(X, z) + (A 

-AC(z) + Y(X»vq (x, z) =0 (6.24) 
dr 

d 
R. (x, z) + (A -AC(z) + ß(x»R, (x, z) =0 (6.25) dx 

zpqllrl) «), Z -Ao(kýII) 
2) (x, z)A(x)dx +fp, (" (X, Z), U2(X)dx 

+OfVq(x, z)y(x)dr +OfRq(x, z)ß(x)dx +, ZO(C(z)-1)Q (6.26) 
00 

4 
zpf"r"(O, Z) = (I -P)(I - OOP(111) jr2) 

t 
(X, Z)A(X)dc+IP, ( (x, z)A(x)dc 

00 

+(I-4fV, (x, z)Y(xA +(I-O)fR, (x, z), 6(x)* +A(I-0)(C(z)-I)Q (6.27) 
00 

(irl)(X, Z)p2(XA + fp(,, 2) V, F(O, Z)=P(fP, . (x, z)A(x)dc (6.28) 
00 

q 
jr2) (x ,z )dx R, (O, z az 

(3P, 
("') (x, z )dx + 

Of*pq( 

(6.29) 
00 

We integrate equations (6.22) - (6.25) from 0 to x and obtain 

-(A-AC(z)+a)x-jA(t)dt 
p(jrl) 0 (6.30) 

V 
(x z P, (lrl) (0, z )e 

-(A-AC (z)+a)x - jpz (t)dt 
jr2) (x 

IZ)=p 
(v2) (O, Z )C 1, (6.31) pq 
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-(, Z-, ZC(z»x- jy(1)di 
V, (x, Z) = V, (0, Z)e 0 (6.32) 

R, (x, z) = Rq (0, z)e (6.33) 

where P('rl)(0 z), P(r)(0 z), V (O, z) and R, (O, z) are given by (6.26), (6.27), 
q9q19 

(6.28) and (6.29), respectively. Again integrating equations (6.30) - (6.33) by 

parts with respect to x gives 

P irl) =P(irl)(0, z) 
I (Z ) (6.34) q q (A -AC (z) + a) 

p (jr2)(z)=P(jr2)(0, z) 
1-G, [A-, ZC(z)+a] 

(6.35) qe 

_ 
(A-AC(z)+a) 

vq (Z) = vq (031 Z) 
i li[, t -. ZC(Z)] 

(6.36) 
A -Ac(Z) 

Rq(Z)=R, (0, z 
1- (D[, t -, ZC(Z)] 
- (6.37) A -Ac(Z) 

where 0. [A-, IC(z)+al=fe-(*-*r()")'-oG, (x), (3, [A-AC(z)+al= fe-(A-Ac(*-)x cG, (x), 

B[A-AC(z)]= fe-("-"c("))' -dB(x) and iD-[A-AC(z)]= fe-(A-Ac(z))x 
-d(D(x) 

are the Laplace-Stieltjes transform of kind I service time, kind 2 service time, 

vacation time and repair time, respectively. 

Now, we multiply equations (6.30), (6.31), (6.32) and (6.33) by p, (x), p2 (x), 

y(x) and fl(x), respectively, integrate with respect to x and use equations (6.2), 

(6.4) and (6.6), we obtain 
3p(, 

Wl) 

. 
(xz)A(x)dc =P, ("')(O, z)U, [A-AC(z)+a] (6.38) 

0 
3 

(jr2)(X, Z), U2(X)dX =p(jr2)(O, Z)dý pq 
q 2[A -AC(z)+a] (6.39) 

0 

fV, (x, z)y(x)dx = V, (0, zJ[A -. ZC(z)1 (6.40) 

IR, 
(x, z)ß(x)dx = Rq (0, z)ý5[, t - AC(z)] (6.41) 

Using equations (6.34), (6.35) and (6.38) - (6.41) in equations (6.26) through 
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(6.29) we get 

zP,, ("')(O, z) = (I -p)O(P, (")(O, zA[A-AC(z) + a]+P,, (2)(Oz)dr2[A-AC(z)+a]) 

+ 6V, (Oz), ff[A -AC(z)]+OR, (Oz)ZD-[A -AC(z)]+ AO(C(z) -I)Q (6.42) 

Zp(, r2) Irl) +p(,, 2)(OZ -AC(z)+a]) (O-z)=('-Px'-O)(P., (Oz)g, [A-AC(z)+a] f )92 [A 

+(I-OYII(O, z)k[A-AC(, )]+(I-O)R#(O, zM, t-AC(z)]+A(I-0)(C(z)-I)Q (6.43) 

+pp(', 2)(O, Z)U -AC(z)+a] (6.44) V, (O, z)=pP("')(O, z)j, [, t-AC(z)+a] f 2[A 

R, (O, z)=az P., Irl)(O, Z) 
1-U, [A-AC(z)+al +P(")(O, Z) 

I-j2[A-AC z)+al I 
(A-AC(Z)+ 

19L(, 
t-, zc(z). 

1) 
(6.45) 

Equations (6.42) - (6.45) need to be solved simultaneously. We use Cramer's Rule 

to solve these equations. First we rewrite the four equations as follows 

q 
(z -(I-p)Off, [A-AC(z)+a])P, ("')(O, z)-(I-p)Off2[A-AC(z)+ajp(K2)(O, Z) 
-Off[A - 

AC (z )yq(Oz)-O[A-AC(z)]Rq(O, z)=AO(C(z)-I)Q 

p(td)(o Z) -(I-pXI-6fi. [A-AC(z)+a]P, ("')(0ýz)+(z-(I-pXl-o)(92[A-, ZC(z)+a]) 

-(I-O)ff[A-AC(z)jl (Oz)-(1-0)4(A-AC(z)]R, (Oz)=A(I-0)(C(z)-I)Q q 

1 -AC(z)+a]P, 
(Irl) (O, z) + pG -AC(z)+a]p(K2)(O, Z) _Vq 

(O, Z) =0 pGJA 21A q 

az (I [A -AC(z)+a])P,, ("')(O, z)+az (1-(Y, [A-AC(z) +a])P, (")(O, z) 

-(A -AC(z) + a)R,, (Oz) =0 

Using the coefficients appearing in the previous equations, we form the following 

matrices 

4ý I a, 2 % ai4'1 P. "rl)(OIZ)' AO(C(Z)-I)Q 

a, , a. a. 3 
a24 PqK2)(O, Z) A(I-0)(C(Z)-I)Q 

ai, a32 a33 a34 vq (Olz 0 

a, l a4, a43 a441ý R, (O, z) 0J 

where 

a,, =z -(I-p)09, [A-AC(z)+a] 

a., -(I - p)(I - 0)0', [A - AC (z) + a] 

a3, pd7l[A - AC (z) + a] 

a4, az (I 
-OI[A - AC (z) + a]) 

a, 2 -(I - p)O(T2[, t - AC (z) + a] 
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a22 Z- (I - p)(I - 0)(T2[A-AC(z)+a] 

a32 pd-2[A-AC(z)+a] 

a42= az (I -d-2[A-AC(z)+a]) 

a, 3 -05[A - 
Ac (z A 

a23 O)Y[A 
- 4zc 

(z A 

a33 

a43 0 

a14 -0ý[A - 
Ac (z A 

a24 -(l - 
051A 

- 
Ac (z A 

a34 0 

a44= -(A -AC(z)+ a) 

Solving the system, we get 
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Pq('rl)(OIZ) 
AOz (A - AC (z) + a) (C (z) - I)Q 

(6.46) 
D(z) 

pl, r2) - 
A(l - O)z (A - AC (z) + a) (C (z) - I)Q 

. q (O, Z) = D(z) 
(6.47) 

V, 
r 
(O, Z) = 

Apz (A - AC(z) + a)(Od7, [A - AC(z) + a] + (I - O)ff2 [A - AC(z) + a]) (C (z) - I)Q (6.48) 
D(z) 

R. (O, z) = 
Aaz'(O(l -U, [A -AC(z)+a])+ (I -0)(1-U2[A -AC(z) + a])l (C (z) - I)Q (6.49) 

D(z) 

where 
D(z)=z (A-, IC(z)+a)fz -(6ff, [A-, IC(z)+a]+(1-0)92[A-Ac(z)+a])(pff[A-, Ic(z)]+(I-p))) 

- az'&D(A -, IC(z)]10(1 -jjA -AC(z) +a])+ (I - 0)(I -(Y, [A -AC(z) +a])) 

Substituting for P 1)(0, z), P("')(O, z), V, (O, z), and R,, (O, z) from equations , 
(Ir 

q 

(6.46) - (6.49) in equations (6.34) - (6.37) we get the probability generating 
functions of queue size for different states of the system 
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0(1 -UJA -, IC(z) + a]), 1(C (z) - 1)Q 
D(z) 

(6.50) 

(1-0)(1-(j 
pq (, r2) (Z) = 

2[A-X(z) + ctl)A(C(z) -1)Q 

D (z) 

vq (Z) = 
(A-AC(z) [A-AC(z)+ a] +(1-0)(j2[, t - (6.52) 

D(z) 

R, (z) = 

az [A -AC(z)+ a])+ (1-0)(I-(Y, [A -AC(z)+a]))Q (6.53) 

D(z) 

where 
D(z)=(A-AC(z)+a)fz -(6tg, [A-AC(z)+a]+(1-0502[A-, Ic(z)+al)(p5[A-ýC(z)]+(I-p))) 

Irrespective of the state of the system, the probability generating function of 

queue size is given by 

Tjý,, (z )=P, (") (z )+ Pq("2)(z)+V, (z)+R,, (z) (6.54) 

Using the nonnalization condition W, (1) +Q=I to find the proportion of server's 

idle time, Q, we get 

=I-AE(I) 
I+aE(R) 

---L-E(R)+pE(V) (6.55) 
(a 

(09, [a] + (I - O)U2[a]) a 

where C(l) = 1, C(I) = E(I) is the mean batch size of the arriving customcrs, 

B[O]=I, -B [0]=E(V) is the mean vacation time, (D[O] = 1, and 

-(D [0] =E (R) is the mean repair time. Hence, the utilization factor, p of the 

system is given by 

p=AE(I)( 
I+ aE (R) 

-1 -E(R)+pE(V) (6.56) 
,a 

(09, [a] + (I - O)U2[al) a 

where p<I is the stability condition under which the steady states exits. 

Equation (6.55) gives the probability that the server is idle. Substituting for Q 

from (6.55) in (6.54), we have completely and explicitly determined W, (z), the 

probability generating function of the queue size. 
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6.5 The Mean Queue Size and the Mean Waiting Time 

To find Lq, the mean number of customers in the queue under the steady state we 

write Wq (z ) obtained in (6.54) in the form Wq (z) = N(z) / D(z) and then we use 

(6.57) 

Carrying out the derivatives at z=I we get 

N'(1) = AE(I)Q 1(1+aE(R))+(Offl[a]+ (I -O)U, [a])(paE(V)- I -aE(R))) (6.58) 

N'(1) = 2Q (AE (I))' 
(aE(R) 

+! aE(R2)) 
ýrAE 

(1) 2 

+(Off, [a]+(I-O)(T2[al) -pE(V)- 
aE (R) 

_I aE(R2)+ 
I 

paEjy2) AE (1) 22 

+ (619, la] + (I - O)U2[a]) (I - paE (V) + aE (R)) 
I 

+QAE(I(I -1))((I+aE(R))+(6t7, [a]+(I-O)U2[a])(paE(V)-l-aE(R))I (6.59) 

D'(1) =-AE(j)(I +aE(R)) +(Qa]+(1-6)d2[a])(a+AE(I)(I +aE(R) -PaE(y))) (6.60) 

D'(1) =2 (AE (j))2 
1 aE(R) 

_I aE(R 
2) ý( 

AE (I) AE (1) 2 

+ (Off, [a] + (I - O)U2 [a]) 
(pE 

(V) + 
aE(R) 

_I paE(V2) +! aE(R2) 
AE (1) 22 

+(0(7, la]+(I-O)(Y2'[a])(paEly)-l- a- 
aE(R))l 

AE(I) 

+AE(I(I -1))((-I-aE(R))+(OtYl[a]+(l-O)j2[a])(I+aE(R)-paE(Y))) (6.61) 

where E(R') is the second moment of the repair time, E(V') is the second 

moment of the vacation time, E(I(I-1)) is the second factorial moment of the 

batch size of arriving customers, and Q has been found in (6.55). Then, 

substituting for N'(1), N"(1), D'(1), and D"(1) from (6.58) - (6.61) in (6.57) we 

obtain Lq in a closed form. Dividing Lq by A we can find the mean waiting time 

in the queue. 

6.6 Particular cases 
6.6.1 No Customer Chooses the Second kind of Service 

if all customers choose the first kind of service and no one chooses the second, 
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then O= I and I- O= 0. Using this in the main results of the chapter, we get 

(I -57JA - AC(z) + a])A(C(z) - I)Q 
Pq(IvI) (Z) = D (z) 

(6.62) 

p (K2) 
9 (Z) =0 (6.63) 

p (A -, AC(z) +a) (ff[A-AC(z)1-I)J, [A -AC(z) +a]Q 
v 64) (6 

e 
(Z) = D(z) . 

az (ýD[A-AC(z)1-1)(i-6, [A -Ac(z)+a])Q Rq (Z)=- D(z) 
(6.65) 

D(z)=(A-AC(z)+a)fz -U, [A-AC(z)+a](pff[A-AC(z)]+(I-p))) 

-azZD-[A-AC(z)](I-U, [A-AC(z)+a]) 
(6.66) 

Wq(Z)=p(Kl)(Z)+V, (Z) 
q +Rq (Z) (6.67) 

Q =I-AE(I) 
(I + aE (R) 

-I-E (R) + pE (V --- (6.68) ý aGja] a 

p= AE (I) I+aE(R) I_E (R) + pE (V 
( 

(6.69) 
aj, [al a 

N'(1) = AE (I)Q ((I + aE (R)) + 07, [a] (p aE (V I- aE (R))) (6.70) 

N "(1) = 2Q (AE (j))2 
(aE(R) 

+1 aE(R 
2) 

2 

+j, [a] -pE(V)- 
aE(R) 

_I aE(R2)+IpaE(V2) AE (I) ý2 

+ (7, [a] (I -p aE (V )+ aE (R)) 
I 

+QAE(I(I -1))I(I+aE(R))+(7, [a](paE(V)-l-aE(R))) (6.71) 

D'(1) =-AE(I)(I +aE(R)) +6, [a]la+AE(I)(I +aE(R) -paE(Y))) (6.72) 

D"(I)=2(AE(I))2 
I aE(R) 

-! aE(R 2) 
ý( 

AE V) AE (1) 2 

+Ul[a](pE (V) + aE (R) 
_1 paE(V2)+! aE(R 2) 

AE (1) 22 

+U, Ta](paE(V)-l- a- aE(R))l AE(I) 

+ AE (I (I - 1)) j(-I - aE (R)) + J, [a] (I + aE (R) - paE (V))l (6.73) 

The results obtained in (6.62) through (6.73) agree with the results obtained in 

chapter 3 in which we studied a queueing system providing single service. 



Chapter 6 143 

6.6.2 No System Breakdowns 

Assuming that the system never fails implies a=0 and hencc 

R, (z) = 0. Using this assumption in the main results of the chapter we get 

-, zc (Z ), + (1 - 0)u2 Et-, zc(Z)1)(p ý -, zc (Z ), + (1 - p» 
(6.74) pqllll) (Z )=- (O(j) ft -ft 

pq("2) (Z) 
(1-0)(u2[, t-Ac(Z)i- 1)Q 

ut -, ZC(Z)] + (1 - O)u2[, t - ZC(Z)1)(, Pjlt -, IC (Z)] + (1 (6.75) 

ve (Z) =- 
p(ff[A-AC(z)]-1)j619, 

[A 
-'IC(Z)] + (1-0)6F2 [A -AC(Z (6.76) 

Z -(66][A-AC(Z)]+('-O)(72[A-AC(Z)])(Pff(A-AC(Z)]+(I-P)) 

Wq (Z)2 P, ("1) (Z) +P, ("2) (Z) +Vq (Z) «2 

-1 + (oi, [A -, tc (Z)]+ (1- oApt -, ic (Z)1)(PF[, t -, ZC (Z)]+(, -P»)Q (6.77) 
Z- 

(0j7. [, Z -, ic (Z )i + (1 _ 
0)U2 [, Z _, 

ZC (Z )]) (pä7[, t _, ZC (Z )] + (1 _ p» 

We find Q using the expression for Wq. (z) obtained in (6.77) and the 

normalization condition. Hence we get 

I- AE (I) [OE (S) + (I - O)E (S2)+pE(V)] (6.78) 

where UJOI = 1, -G, [0] =E (SI) is the mean time for the first kind of scrvicc 

and -Zý-21E03=E(SO is the meantime for the second kind of service. Further, we 

compute N'(1), N"(1), D'(1), and D"(1) using Wq(z) as appeared in (6.77) 

)V'(1) = AE (I)Q (OE (SI) + (I - 
O)E(S2) + pE (V)) (6.79) 

N'(1) =Q(AE(j))2 [2pE(V)(OE(S, ) +(I _6)E(S2)) +pE(V2) + OE(S, 2) + (I- 6)E(S22)] 
(6.80) 

+Q, IE(I(i 
-1)(pE(V)+OE(S, )+(1-65E(S2)) 

D'(1) =I- AE (I) (OE (S) + (I - O)E (S2) + pE (V)) (6.81) 
D"(1) ý'(1W))2 [2pE(V)(OE(Sj) +(I -O)E(S2)) +pE(V2) +OE(S 1 

2) + (I - O)E(s2l)] 
(6.82) 

-AE(I(I -1)(pE(V)+OE(S, )+(I-O)E(S2)) 

where E(S, 2) and U. "[0] 
=E (S2) is the second moment of kind I and 2 

kind 2 service times, respectively. Using equations (6.79) - (6.82) in equation 
(6.57) we can obtain Lq, and therefore Wq. 

This special c4se, where no breakdowns occur, was the model studied by Madan, 
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AI-Rawi and Al-Nasser (2004). 

6.7 A Numerical Illustration 
For the numerical illustration purpose, we use the general results obtained in 

equations (6.50) through (6.61). We assume that the service times, vacation time 

and repair time are all exponential with rates u, , u2, y and P, respectively. 
Accordingly, we use the following substitutions in equations (6.50) through (6.61) 

-A 
a+ A (a + A)" 

2 
E(V)= 1, E(V2) = 

y 
71 

G2[a]=ý 
a+ P2 

G, [a]= 
(a + p2) 2 

2 E(R) E(R2) =2 fl j6 

Further, we assume A=5, u2= 6, a=8, fl = 10 and y=7, whilep and Oboth 

taking the values 0.25,0.5 and 0.75. Also we assume single arrivals with rate 
A=2, which requires the following substitutions 

C(z) = z, E(I) =I and E(I(I - 1)) = 0. 

We select values of system parameters such that the steady state condition 
holds. 

Table 6.1 Computed values ofvarious queue characteristicsfor vacation queue 
with hreakdown & two kinds ofservice, A=2. pi = 5, p2 = 6, a=8. fl - 10, y-7 

p 0 Q p 
Lq Wq Pq('I)(1) Pq(2)(1)' V90) Rq(l) Vq(l) 

0.25 0.25 0.301 0.699 1.9907 0.9954 0.0921 0.2566 0.0714 0.2789 0.699 
0.25 0.5 0.2718 0.7282 2.3419 1.171 0.1892 0.1756 0.0714 0.2919 0,7281 
0.25 0.75 0.2411 0.7589 2.8097 1.4049 0.2917 0.0903 0.0714 0.3056 0.759 

0.5 0.25 
0.5 0.5 
0.5 0.75 

0.75 0.25 
0.75 0.5 
0.75 0.75 

0.2296 0.7704 2.8078 1.4039 0.0921 0.2566 0.1429 0.279 0.7706 
0.2004 0.7996 3.4084 1.7042 0.1892 0.1757 0.1428 0.2919 0.7996 
0.1696 0.8304 4.2732 2.1366 0.2917 0.0903 0.1428 0.3055 0.8303 

0.1581 0.8419 4.3606 2.1803 0.0921 0.2565 0.2142 0.2789 0.8417 
0.129 0.871 5.6589 2.8295 0.1892 0.1757 0,2143 0.292 0.8712 
0.0982 0.9018 7.8663 3.9332 0.2917 0.0903 0.2143 0,3055 0.0018 
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Figure6.1 EffictofpandOontheproportionoftitnethattlieseri, ei-i. vitilt, Q 
(, Z = 2, u, = 5, p2= 6, a=8, ß= 10, y= 7) 

0. 
0. 

Figure 6.2 Effect ofp and Oon the utilizationfiic -tor p 
(A = 2, pl = 5, p2 = 6, a=8,13 = 10, y= 7) 

Lq 

Figure 6.3 gffect ofp and Oon the inean queue sizze Lq 
(A = 2, p, = 5, p2 = 6, a=8,8 = /0, ý, ý 7) 
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Wq 

Figure 6.4 Effect ofp and 0 on the mean wailing time PY, 
(A =2, p, =5, p2= 6, a= 8,, 8= 10, y= 7) 

0.2 

pI 
(KI) (1) 

G'. 

146 

Figure6.5 Effect oj'P and Oon the probabiliýy that the server is providing tht, 
first kind qfservice (A = 2, p, = 5, p2 = 6, a=8, #= 10, y- 7) 

P()I1\ 
q ') 

Figure 6.6 Effect ofp and 0 on the probabiliý ,v that the set-ver is providing the 
second kind of service(A = 2, p, = 5, p2 = 6, a=8, f) -- / 0, y- 7) 
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VIO) 
I 

Figure 6.7 Effect ofp &0 on the probability that the server is on vacation 
(A =2, p, =5, p2= 6, a= 8,, 8= 10, y= 7) 

Rq(l) 

Figure 6.8 Eflýct o) vstem is unih-r fp and 0 on the probability, that the s' 
repair (A = 2, p, = 5, p,, = 6, a=8,13 = 10, y= 7) 

Table 6.1 and graphs 6.1 to 6.8 show the effect of' changing 1) and () oil Liliclic 

characteristics. We can see that as 0 increases, tile server idic tinic decreases, 

while the utilization factor, the mean queue size and the inean waiting tillic of 

customers, all increase. This is acceptable knowing that the assunicd service raic 

for the first kind of service is smaller than the service rate For Ilic sccond kind of' 

service. Accordingly, as more customers require the firs( service, the (Iticue 
becomes larger because this type of service requires more time. These numerical 

trends agree with the tables presented by Anabosi and Madan (2003), 
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Conclusions 

In this research, the classical AP31GII vacation queue and the classical AJAJ IGI I 

with breakdowns have been extended by considering an AJAIIGII queueing system 

which takes into consideration both phenomena. 

A batch arrival queueing system with Bernoulli schedule server vacations and 

random breakdowns has been analysed. In this queueing system, it has been 

assumed that the customers arrive to the system in batches of variable size, but are 

served individually by a single server in a first come, first served basis. It has been 

assumed that the service times have a general distribution. After any service 

completion, the server may take a single vacation of random length. On the other 
hand, it has also been assumed that the system is subject to random breakdowns. 

Whenever the system breaks down, the customer whose service is interrupted 

comes back to the head of the queue and the system undergoes a repair process of 

variable length. 

Introducing the elapsed service time as a supplementary variable cnablcd us to 

obtain a set of time dependent differential equations. It has been shown how to 

solve these equations to obtain the queue length at an arbitrary point of time. The 

solutions to these equations were derived in equations (2.33) - (2.37). These 

results have been used to obtain steady state solutions given in equations (2.38) - 
(2.41). 

This queueing model has been generalised by assuming arbitrary distributions for 

vacation times and repair times in which extra supplementary variables are needed 
to represent the elapsed vacation time and the elapsed repair time. Steady state 
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probability generating functions for queue length have been obtained as expressed 
by equations (3.41) - (3.44). 

Assuming the service consists of two heterogeneous stages extends the above 

mentioned problem to a wider range of queues. In this case, it has been assumed 
that both stages of service are subject to breakdowns, and the server is allowed to 

take a vacation only after serving a customer, that is after the second stage of 
service. Steady state results of such a queueing system have been derived in 

equations (4.52) - (4.56). 

A batch arrival queueing system with a second optional service, Bernoulli 

vacations and random breakdowns have been studied as well. In this model, the 

customers are provided with an essential service followed by an optional service 
in which only a portion of arriving customers require the second optional service. 
Equations (5.51) - (5.56) have been derived to provide the steady state queue size 
distribution at a random epoch for this queueing model. 

In a different queueing system, but under similar assumptions of vacations and 
breakdowns, it has been assumed that the server provides two types of 
heterogeneous service in which both services are subject to random breakdowns. 

For this model, equations (6.50) - (6.55) have been derived for the steady state 
queue size distribution. 

For each of the above mentioned queueing models, the necessary and sufficient 

condition for the system to be stable and some useful performance measures such 

as the mean queue size and the mean waiting time in the queue have been derived. 

Also some important particular cases have been discussed especially when 
dropping the assumption of vacations or breakdowns which reduces the problcm 
to some models investigated earlier by queueing theorists, in an attempt to 

connect the current research with the literature on queueing theory. Numerical 

results have been calculated and some three-dimensional graphs have bccn 

presented for each of the queueing models discussed. These illustrations show the 

effect of queue parameters, especially vacation and breakdown parameters, on 
different queue measures such as the mean queue size, the mean waiting time, tile 
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utilization factor, the proportion of time that the server is idle, etc. Overall these 

results illustrate the general point that introducing vacations and breakdowns in 

the queueing model affects the queue behavior. When the probability that the 

server takes a vacation or the rate of breakdowns increase, the utilization factor, 

the mean queue size and the mean waiting time all increase while the proportion 

of time that the server is idle decreases. On the other hand, it has been shown that 

when the rate of vacation completion or repair completion increases, the 

proportion of server's idle time increases, while the utilization factor, the mean 

queue size and the mean waiting time all decrease. The trends that have been 

discovered were not unexpected. 

The queueing systems have been investigated in this research and the results 

obtained, can model many practical problems where the server are not 

continuously available for providing service for arriving customers. These results 

provide vital information useful for management, manufacturing industry, 

communication networks and other fields in which the need to take decisions on 

systems having queues is essential. 

Based on the findings of this research, the researcher suggests further studies to be 

conducted on the following queueing systems: 
Batch arrival queueing systems with random breakdowns and server 

vacations based on multiple vacation policy or N-policy. These vacation 

models are more complicated than the single vacation policy. 
Single server vacation queue with batch arrival and breakdowns in which 

the system does not enter a repair process once it fails, but it nccds to wait 
for some time of random length till it starts being repaircd. This problcm 

requires introducing a random variable for the waiting time of a system to 

be repaired. 
Batch arrival queueing systems with random breakdowns and Bcrnoulli 

server vacations in which the server is not allowed to take vacations until 

the system becomes empty. In this problem, the server provides an 

exhaustive service. 
Batch arrival queueing systems with random breakdowns, Bernoulli 

schedule vacations and two-stage heterogeneous service in which tile 
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breakdown rates are different for the two stages of service. Having 

different breakdown rates makes the problem a more complicated one than 

the one discussed in chapter 4. However, this is a more generic model. 
Batch arrival queueing systems with random breakdowns, Bernoulli 

schedule vacation based on a single vacation policy and a second optional 

service in which both services are subjected to breakdowns. This will be a 

generalization of the results obtained in chapter 5. 

Batch arrival queueing systems with random breakdowns, Bernoulli 

schedule vacation based on a single vacation policy and a second optional 

service provided in an additional service channel. This is not a single 

server queueing model anymore. 
Single server finite capacity queue with vacation time and repair time. 

Having finite system capacity makes it a more complicated model because 

we have to keep tracking of when the service facility becomes full. 

Single server queueing system with server vacations and random 
breakdowns in which customers arrive to the system in batches of variable 

size and the service is provided to the customer in batches of variable size. 
In this case, a new random variable should be introduced for the size of 

batches of customers in the service. 

Queueing systems with server vacations, random breakdowns and 
impatient customers. It could be assumed that a customer leaves the 

service station upon system breakdown or when vacation time or rcpair 

time exceeds a given limit. 

A batch arrival queueing system with server vacations and random 
breakdowns in which the stochastic processes involved in the system are 

not independent of each other. 

9; )(A 
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