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LIST OF SYMBOLS 

The following list defines the principal symbols used in 

this thesis. Other symbols are defined in context. 

Rectangular and square matrices are indicated by square brackets 

[ ], and column vectors by braces { }. 

X, Y, Z: Right-hand Cartesian coordinate axis 
X,, '2: systems, 
X; Y', Z! 

EZ Ycung's Modulus of elasticity in Z 

coordinate direction. 

IIZx Poisson's ratio. Ratio of strain (passive) 

induced in X direction and the stress 
induced strain (active) in the Z direction. 

GXy Modulus of rigidity in the XY plane. 

CXx Normal stress component in X coordinate 

direction. 

Eyy Normal strain c. mponent in Y coordinate 

direction. 

TXy Shear stress component in the XY plane. 

YyZ Shear strain component in the YZ plane. 

u, v, w Nodal displacement components in the 

directions of the corresponding Cartesian 

coordinate directions. 

a Generalized coordinate. 
n 

ff j Column vector of displacement components. 

[A] Matrix of element nodal point coordinates. 

[q) Column vector of element nodal point 

displacements. 

Nn Interpolation function. 

6 , T) ,ß Local element coordinate directions. 
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f p) Column vector of element nodal point 

forces which are equivalent statically 
to the boundary stresses and internal 

distributed loading acting on the element. 

[k] Element stiffness matrix. 

{F 
d) Column vector of element nodal point 

forces required to balance any internal 

distributed loading acting on the element. 

fFt) Column vector of element nodal point 
forces required tc balance any initial 

internal strains in the element. 

[B] Matrix relating element nodal point 
displacements and the internal element strains. 

[D] Material elasticity matrix. 

fR) Column vector of structural nodal point forces. 

[K] Structural stiffness matrix. 

{d) Column vector of structural nodal point 
displacements. 

[nýK] Modified arrangement of the structural 

stiffness matrix. 

[J] Jacobian transformation matrix. 
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13 INTRODUCTION TO VOLUME TWO 

DENTAL STRUCTURAL STRESS ANALYSIS 

There are many different methods of structural 

stress analysis. The most commonly employed 

techniques for general engineering structures have 

already been discussed in Chapter Five. However, 

as explained in that chapter, some of the techniques 

available are either unsuitable for, or are incapable 

of handling the complexities which the dental 

structures present. 

Because it is difficult, if not impossible, to 

obtain solutions to many 'real' engineering problems 

involving either complex material behaviour or 

boundary conditions, engineers have resorted to 

various numerical methods of analysis in order to 

obtain approximate but nevertheless 'acceptable' 

engineering solutions. Numerical solutions 

generally yield only approximate values of the unknown 

quantities at a limited or finite number of positions. 

The process of selecting the finite number of positions 

in the body or structure has been called discretization. 

Structures, such as the simple frame shown in 

FIG. 13.1, are already discretized in that the structure 

consists physically of three separate members. By 

employing the displacement method of structural analysis 

the primary unknowns, i. e. the displacements of the frame 
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at the joints or nodes of the structure, can easily be 

determined. However, from this finite number of nodal 

displacements an estimate of the values of the stresses 

and strains in each of the three members can subsequently 

be evaluated. 

It is not therefore surprising that when solutions 

to continua or two and three-dimensional solid bodies 

were required that the engineer adopted this familiar 

and proven metrod of attack. Indeed, the forerunner of 

the finite element method proper, is known as the 

equivalent framework method, Hrennikoff (125) and 

Yettram and Robbins (126). In this method, small 

portions of two and three-dimensional structures are 

simulated by 'cells' which are made up of struts, ties 

and beam members. Hence, by prescribing predetermined 

properties to each of the various members making up 

each cell, (determined on an equivalent stiffness 

criterion), the mechanical behaviour of the complete 

cell or framework can be determined. Thus, complete 

structures can be subdivided into a number of cells 

whose individual mechanical characteristics are 

determined ab initio. 

The logical extension of the equivalent framework 

method was to divide structures up into cells or elements 

which are physically similar to the structure itself. 

Thus, in the finite element method, plate structures 
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are divided up and simulated by cells that are in fact 

small pieces z, f plate, and three-dimensional bodies by three- 

dimensional solid elements. Turner, Clough, Martin and 

Töpp (127), are generally acknowledged to have been the first 

to have adopted this approach. 

The development of the finite element method proper, was 

only made possible by the advent of the electronic digital 

computer. Obviously, the simple three member frame previously 

discussed can easily be solved by hand as only a small number 

of unknowns are involved. However, for structures consisting 

of a large number of members or cells, and with each cell or 

finite element having more complex mechanical behaviour 

patterns than the simple tension/compression members, numerical 

solutions are beyond the scope of 'hand' calculation. 

Consequently, as digital computers have increased in size 

(storage capacity), and speed, so the finite elements employed 

and the size of the structures investigated have become more 

sophisticated and complex. Simultaneously, the finite 

element approach which was initially conceived as a purely 

physical method of solving structural stress analysis problems, 

has been found to be equivalent to the more mathematically 

rigorous variational methods. In fact, the method has been 

developed to handle many other variational type field 

problems such as those due to fluid and heat flow phenomena. 
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The finite element method is treated in this thesis 

exclusively in terms of stress analysis. However, 

because the fundamentals of the method are very well 

documented, see for instance the works of Desai and 

Abel (128) and Zienkiewicz (129) only an outline of the 

important aspects are reiterated here. Nevertheless, 

a full and more detailed treatment is given for the 

derivation of the stiffness matrices of finite elements 

incorporating orthotropic material behaviour, as these, 

to the author's knowledge, are not yet available in the 

literature. These derivations appear in the later 

chapters which deal with the development of the computer 

programs employed for carrying out the dental structural 

analyses discussed in Volume One. Three types of finite 

elemerts were employed. These were axisymmetric, 

two-dimensional and three-dimensional elements. 

However, because of the small size of the computer 

installation available, each of the element types was 

incorporated into a separate analysis program. 

The programs were developed so as to suit 

Brunel University's I. C. L. 1903A series computer 

installation. However, during the course of the 

project the installation changed considerably and so 

the programs are perhaps not now so compatible with 

the machine's capability. Also, the computer staff 

were initially more conversant with ALGOL and so the 

programs were written in this language. 
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14. THE FINITE ELEMENT 1iTHOD 

.ý 

14.1 GENERAL DESCRIPTION OF THE METHOD 

The finite element method of structural stress 

analysis utilizing the displacement approach, can best 

be described by a sequential process which consists of 

a series of seven basic steps. The pattern of these 

steps is shown by the flow diagram in FIG. 14-1- 

14.2 DISCRETIZATION 

This step involves the subdivision of the structure 

to be analysed into a grid or meshwork of finite 

elements. The type of the elements chosen to represent 

the structure obviously depends upon the form of the 

structure being analysed. For example, structures 

which possess rotational symmetry are usually represented 

by axisymmetric finite elements, see FIG. 7.13. Other 

types of finite elements employed include two-dimensional 

planestress and planestrain elements, three-dimensional 

elements and elemtnts that have been developed for 

special applicaticns such as thick plate and shell 

structures. 

Sometimes it is possible to represent fully 

three-dimensional structures by only a planestrain 

system of finite elements, see for example Zienkiewicz 

(129) page 63. This legitimate simplification is very 

desirable purely from the economic viewpoint. However, 

0 
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this will become more apparent later on when the cost 

of using fully three-dimensional finite element models 

is discussed. 

The engineer must consider carefully the type, 

size and arrangement of the finite elements he is to 

employ to model the structure, in order that an effective 

structural representation is achieved. However, he 

must also consider at this juncture step two in the flow 

diagram of PIG. 14.1, and give some thought as to the 

type of the displacement models which will be used for 

the particular finite elements selected. This will 

ultimately affect the fineness of the subdivision and 

in particular the representation of the critical areas 

in the structure which are of special interest, e. g. areas 

of high stress concentration. 

Structural discretization demands skill, competence, 

experience and judgement on the part of the analyst. In 

some cases, the extent to which the structure should be 

modelled may not be clearly defined, e. g. to what extent 

should the supporting alveolar bone be included in an 

analysis which is to determine the force distribution 

around the root of a tooth? Of course, only the 

significant portion of the alveolar bone need be considered 

and discretized. Indeed, this must be so, again purely 

from the aspects of practical limitations and economics. 
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It is obvious therefore from the foregoing that 

the initial step of deciding upon the form of the 

discretization to be employed is a very important 

one. Indeed, it is one which will govern the validity 

of the solutions obtained from the ensuing analyses. 

SELECTING THE DISPLACEMENT MODELS 

As mentioned earlier in Chapter Thirteen, the 

numerical methods employed to solve general structural 

stress analysis problems provide approximate values 

of the desired unknown quantities only at a discrete 

number of points. Using the displacement approach 

of the finite element method, it is the displacements 

of the structure at these discrete points that are 

considered as being the primary unknown quantities. 

Although it is not essential, the discrete points or 

nodes in the structure are generally selected to occur 

along the boundaries of the individual elements forming 

the structural subdivision. Consequently, it is only 

through this system of boundary nodes that the elements 

are assumed to be interconnected. 

The number of nodes which each element is prescribed 

and the number of degrees of freedom prescribed to each 

node, is quite arbitrary. PIG. 14.2 shows two 

rectangular plane stress finite elements. Here, element 1 

has four nodes, one at each corner, with each node 

prescribed two separate degrees of freedom. That iss 
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one degree of freedom in the X coordinate di±ection, 

represented'by a lul displacement component, and one in 

the Y coordinate direction and represented by a 'v' 

displacement component. On the other hand, element 2 

has been prescribed eight nodes, one at each corner as 

before and also one node at the midpoint of each side. 

It must be pointed out that for this two-dimensional case, 

the elements have a specific thickness and so each node 

is not simply a point but is a line or a line node. 

To enable the mechanical behaviour of each element 

to be determined, that is, the element's influence or 

stiffness coefficients, it is necessary to define the 

variation of the displacement components within the 

element in terms of the nodal values. The form of the 

variations in the displacements throughout each element 

are prescribed by what are known as displacement functions 

or models. Obviously, this assumed or prescribed 

variation represents only approximately the actual 

displacement distribution of the actual or real structure. 

Consider for example element number 1 in FIG. 14.2. In 

this case, the variation of the u displacement within the 

element could be assumed to take the form of the 

polynomial 

u ý" al + a2x + a3y + a4xy 

Therefore, if the u displacements for nodes 1,2,3 and 

4 are substituted in turn into the above equation together 
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with the appropriate nodal coordinates, the four unknown 

quantities al, a2, a3 and a4 can be evaluated. 

Consequently, knowing the values of these four quantities 

and the four nodal displacements, the u displacement at 

any point within the element can be determined. Prom 

this example, it follows that for element 2 in FIG. 14.2 

which has eight nodes, a displacement model of the form 

u a1 + a2x + a3y + a4xy + cc5x2 + a6y2 

+ a7xy + agxy 

can be evaluated. 

With the first displacement model, the u displacement 

distribution within the element in the X coordinate 

direction could take a linearly varying form. This 

condition is illustrated along the side joining nodes 1 

and 2 in FIG. 14.3a. (Note that the 1variation' of 

the u displacement throughout the element can be 

u- a1 provided a2 a a3 a a4 ". 0 
This constant value of u signifies a pure rigid body 

movement and results in a no-strain condition. ) 

However, using the second displacement model the u 

displacement distribution throughout the element in the 

X coordinate direction, can take a quadratic varying 

form. FIG. 14.3b illustrates this case along the 

equivalent element side as before. The quadratic 

displacement model is obviously more refined than the 

linear model and can therefore represent, for the same 
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element mesh, a more rapidly varying displacement field, 

see FIG. 14.30. (Note that with the quadratic 

displacement model the condition of a pure rigid body 

movement can again be simulated provided that the as 

apart from al assume zero values. ) 

The simulation obtained by using the linear 

displacement model could be improved for the example 

discussed above by reducing the size of the element 

mesh, see FIG. 14.3c. Thus, the engineer has the choice 

of either using many of the simple 'linear' elements or 

fewer of the more refined 'quadratic' elements to 

simulate the displacement distribution. The choice 

depends upon the accuracy required and also upon 

economics. It may be cheaper from the computational 

aspect to use the quadratic type of displacement model. 

Also, it may be possible to use mixed elements, i. e. both 

linear and quadratic models in the same problem. 

However, as will be discussed later, the displacement 

compatibility at the junction of the two types of elements, 

(which mathematically is a necessary requirement), may be 

difficult to achieve. 

It is worthwhile to emphasize here that engineering 

experience and a general 'feel' for the problem is 

required as it is uneconomic to 'over mesht or bver model' 

a structure, i. e. to use too many elements to simulate 

the structure's displacement pattern. Also, it can be 
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seen from FIG. 14,30 that if the displacement variation 

across the element is in fact a linearly varying one in 

the actual structure, then the use of the higher order 

quadratic displacement model could not obviously improve 

the simulation. 

In selecting the order of the displacement model 

for a particular finite element, various criteria have to 

be observed. As the displacement model chosen limits 

the number of the degrees of freedom of the element, 

the derived stiffness of the element is consequently over 

estimated. Thus, it follows that for any given loading 

regime the simulated structure will deform less than 

the actual structure. However, if the subdivision of 

the structure is made finer, then the approximate 

displacement distribution obtained should CONVERGE to 

the actual displacement condition of the real structure. 

Nevertheless, in order that the finite element solution 

converges to the actual solution, the displacement models 

employed must be such that the displacements are 

continuous within each element. Also, the displacements 

along the edges or faces of the elements must be compatible 

with those of their neighbours. In addition, the 

displacement models should incorporate both rigid body 

(or zero strain) and constant strain states, see Desai and 

Abel (128) pages 80-81, and also the condition that the 

strains at the element interfaces are indeed finite values, 

Zienkiewicz (129) pages 35-36. 
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As well as satisfying the above conditions for 

convergence, other factors must be considered when 

selecting the displacement models. One of the more 

important aspects is that the model should not be 

dependent upon the orientation of the finite element. 

That is to say, the displacement model should be 

geometrically isotropic. One way of ensuring this 

is to select the variable terms of the polynomial on 

the basis of the Pascal triangle. FIG. 14.4 illustrates 

the Pascal triangle for variables in two, i. e. X and Y, 

dimensions. Using this figure, it can be seen that for 

an eight degree polynomial, either the x3 and y3, 

(or alternatively the x2y and the y2x), are the two 

additional cubic terms which should be selected to 

maintain geometric isotropy. 

In formulating the individual element stiffness 

coefficients, it is necessary to express the displacements 

anywhere within the element in terms of the element's 

nodal displacements. However, there are primarily 

two methods of doing this, either by employing 

generalised coordinates or by using interpolation 

functions. Consider the four-noded plane stress, 

element shown in FIG, 14.2a. Here we have two 

displacement variables, u corresponding to the X 

coordinate direction, and v corresponding to the Y 

coordinate direction. The displacement models selected 
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must have the same number of components as the element has 

degrees of freedom. Consequently, as the element has four 

each of both the u and v degrees of freedom, the displacement 

models must be of the form 

u a1 +a2 x+ a3y+a4xy 

. 
14.1a 

and va5+ a6x + a7y + a8agr 

The as are known as the generalized coordinates. 

Expressed in matrix form equation 14.1a becomes 

{f 
Ju(x, 

y) 
t 

t 

[a ] fa I 14.1b 
1v(x, y) 

Now by substituting the nodal coordinates into matrix 

[C] we can evaluate the corresponding nodal displacements 

u1 1 xl 71 xlyl 0 00 0 al 

vl 00 0 01 x1 yl xlyl a2 

U2 1 X2 y2 x2y2 0 00 0 a3 

v2 00 0 01 x2 y2 x2y2 a4 

u3 1 x3 Y3 x3y3 0 00 0 a5 

v3 00 0 01 x3 y3 x3y3 a6 

N l x4 y4 x4y4 0 00 0 a7 

v4 00 0 01 x4 y4 x4y4 a8 

14.2a 

or 

I qj- ° [A] Joe) 14.2b 

. 
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where {q} is a column vector of the element's nodal 

displacements. Therefore solving equation 14.2bb we 

get 

fa 1. 
Q [Aý-1 [q] 14.3 

and therefore by substituting this result into equation 

14.1b we are able to obtain the displacements anywhere 

within the element in terms of the elements nodal values. 

i. e. 

LfI [C] CA]-1 f4} 14.4 

or 
(f) [N] {q} 14.5a 

where 

[N] [C] (A]-' 

The main drawback with this generalized coordinate 

approach is that sometimes the inverse of the matrix [A] 

may not exist, that is to say [A] may be a singular 

matrix, Desai and Abel (128) page 85. In addition, 

considerable difficulty may be experienced in obtaining 

an inverse of [A] in general algebraic terms suitable for 

any element geometry. However, the interpolation function 

approach avoids these difficulties. 

To express the displacement variation within an 

element in terms of its nodal values using interpolation 

functions, it is more convenient if element or local 

coordinates are employed. Consequently, the isoparametric 

element concept, pioneered by Zienkiewicz and his team at 
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Swansea has been introduced, Ergatoudis (130). 

Isoparametric elements are elements whose displacement 

models not only express the displacement variation 

within the element in terms of its nodal values, but 

also, the coordinates of any point within the element in 

terms of the elements nodal coordinates. Using this 

approach, the four-noded plane stress quadrilateral 

element shown in FIG. 14.2a is described by a system of 

local or natural coordinates such that any point within 

the element can be specified by a set of dimensionless 

numbers whose magnitudes never exceed the value of unity, 

see FIG. 14.5. Thus, suitable interpolation functions * 

are selected such that equation 14.5a can be written as 

u(b, TJ) N10 N2 0 N3 0 N4 0 uZ 
ff) 

VOPO 0 N1 0 N2 0 N3 0 4j 
v1 

u2 

v2 

u3 

v3 

u4 

v4 

An interpolation function is basically a function which 
has the value of unity at a particular n^del point and 
a zero value at all the other nodal points. 

14.5b 
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where N1, N2v N3 and N4 are the interpolation functions. 

For this case these are 

N1 W1 (1-a)(1-ý) N2 a1 (1-s)(i+rý) 

44 

N3 -1 (1+6) ('+") N4 n1 (l+b)(1-i) 

44 

Note however, that the displacement components u and v 

are now functions of the local element coordinates 8 and 

T) and not the structural or global coordinates X and Y. 

Also, because the element is isoparametric the X and Y 

coordinates at any point within the element can be 

expressed in terms of the element's nodal coordinates 

using the same interpolation functions. Hence, 

x(6,. 9) a N1x1 + N2x2 + N3x3 + N4x4 

14.6 
and y(61n) ° Niyi + 112y2 + N3y3 + N4y4 

Because of the simplicity and generality of this 

method of defining the element's displacement variations, 

the interpolation function approach is more commonly 

employed than the generalized coordinate approach. 

14.4 DERIVATION OF THE ELEMEtIT STIFFNESS MATRIX AND 

THE NODAL FORCE VECTORS 

A system of nodal forces can be derived for a finite 

element such that they are equivalent statically to the 

boundary stresses and internal distributed loading acting 

on the element. Assuming therefore that the element 

behaves linearly elastically, it s characteristic relation- 

ship will be of the form, 
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iF) - [k] tq) + ýd) + {pJ 14.7 

where 
{F} is the column vector of element nodal forces 

which are equivalent statically to the 

boundary stresses and internal distributed 

loading acting on the element. 

[k] is the matrix of the elementts stiffness 

coefficients. 

[q) is the column vector of the element's nodal 

displacements. 

{ is the column vector of element nodal forces 

required to balance any internal distributed 

loading acting on the element, e. g. body 

weight forces. 

and (FI is the column vector of element nodal forces 

required to balance any initial internal 

strains in the element caused by, for example, 

a temperature variation. 

Note that the product [k] fq) 
represents the element 

nodal forces which are induced by the displacements of 

the nodes. 

In order that the system of nodal forces is 

equivalent statically to the boundary stresses and any 

internal distributed loading acting on the element, it 

is necessary that the forces acting at a node have the 

same number of components as the element's nodal 

displacements. Similarly, the internal distributed 

loading f p) say, acting on a unit volume of material, 

must be defined as having directions corresponding to 

those of the displacements [f] 
at any point. 

317 



However, to make the nodal forces acting on the element 

equivalent statically to the actual boundary stresses 

and internal distributed loading, the principle of 

virtual work can be invoked. Basically, the principle 

of virtual work is a more generalized statement of the 

principle of the conservation of energy. It states 

that if a body, in static equilibrium, is given an 

arbitrary set of compatible small displacements, the 

external virtual work done bfr the nodal forces moving 

through the virtual nodal displacements is equal to the 

total internal virtual work done. The internal 

virtual work is equal to the integral of the products 

of all the stress components acting throughout the 

body and the corresponding system of virtual strains. 

Now if a set of virtual displacements 10 
are 

applied to the nodes of an element in static equilibrium 

then the virtual displacement of any point within the 

element can be defined by equation 14.5a or b as 
ff] 

a [N] N) 14.8 

Similarly, the virtual strains produced within the 

element can be expressed by means of equation 24.21, see 

section 14.8, as 
re) [B] { q) 14.9 

Now the external virtual work is the sum of the products 

of the equivalent set of element nodal forces and the 

corresponding set of element virtual nodal displacements. 
T 

i. e. %xternal (J {F} 14.10 
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Similarly, the internal virtual work due to the stresses 

and the internal distributed forces acting on the 

elemental volume dV of the element is 

T dWinternal 
- 

{E) 
(1) ' 

ff) 
Tf 

p] 
dV 

Therefore, by substituting from equations 14.8 and 14.9 

we get* 

dWinternal 
- 

{q) 
T 

[B]T {c! } 
- 

{q) 
T 

[N]T 1p) 
dV 

Thus, the total internal virtual work of the element is 

obtained by integrating over the whole volume of the 

element and so 

Winternal J{) [B]T {d) dV /{)T [N] 
T 

(p} dV 

Therefore, by equating the total external virtual work 

with the total internal virtual work we get: - 

14.11 

14.12 

14.13 

q)T F) v 
/(jJT { ct) dV - q)T[N]T { p} dV 14.14 

Now as this equation is valid for any set of values for 

the nodal displacements, remember the values chosen were 

selected quite arbitrarily, the multipliers can be equal. 

* Note that*by the rules of matrix algebra if 
f! ) 

° 
[B] [Q) 

then { e)T ={ q) T [B]T 
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Therefore, 

{P) 
a 

J[B]T (Q) dV - 
/[N]T (p) dV 14.155 

Hence, by substituting for f(l) from equation 14.24, see 

section 14.9, 

IF] 
- 

/[B]T[D] (C) dV f[B]T[D] {e0) dV - [N]T(p)dV 

14.16 

and substituting for. { e) from equation 14.219 section 

14.8 

f) 
+Q 

/[B]T[D][B]{q)dV 
-/[B]T[D] 

{ELI dV -f [N]T{p)dV 14.17 

Therefore, by comparing equation 14°17 with equation 

14.7 we see that 

[k] - 
/[B]T[D][B]dv 

[J a _/[N]T [p) dV 

and 

e - -, s `/[B]T[D] 
{e0) dV ftj 

It is important to note that the element stiffness matrix 

[k] is a square symmetric matrix . The size of the 

matrix is equal to the number of nodes in the element 

multiplied by the number of degrees of freedom at each 

node. Hence, a 4-noded quadrilateral plane stress 

element having two degrees of freedom at each node will 

have a stiffness matrix of eight rows by eight columns, 

i. e. sixty four coefficients in all. 

If an element on the boundary of the structure is 

subjected to a distributed external loading of say [g] 

per unit area, a further loading term at the nodes will 

* Not only is the elasticity matrix [D] a symmetric matrix 

but any triple matrix product of the form [B]T[D][B] gives 

.. ý` 
ý.. 

a symmetric matrix. 320 



have to be added. This will be equivalent to, 

see sub-section 14.6.1, 

'b) - [N]T {g) dA 

In order to derive the element stiffness matrix 

and the element nodal force vectors, various integrals 

have to be evaluated. For elements having only linear 

displacement models in Cartesian coordinates, i. e. a 

constant strain element, the (B) matrix consists only 

of constant terms and hence the integrations are simple 

and straightforward. However, for elements having 

higher order displacement models, the integrations 

necessary to evaluate the stiffness and load matrices 

involve polynomials. Although it is not an easy 

matter to integrate these terms explicitly, it is a 

relatively straightforward process to carry out the 

integrations numerically. Indeed, the local element 
e 

coordinate system adopted for the interpolation 

displacement model approach lends itself readily to 

this method of solution. 

14.18 

14.5 PORMATION OP THE STRUCTURAL EQUILIBRIUM EQUATIONS 

The equilibrium equations for any statically loaded 

elastic structure take the form 

[R) 
R [K] (d) 

where 
(R) is the vector of the structural nodal forces 

[K] is the structural stiffness matrix or array of 

structural influencacoefficients 

14.19 
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and 
{d} is the vector of the structural nodal 

displacements* 

The object of this step is to derive the (R) and 

[K] matrices of the entire structure from the (P) 
and 

[k] matrices of the individual finite elements from 

which it is comprised. However, because the structural 

equilibrium equations can contain an enormous number of 

coefficients and unknowns, the sequence in which the 

equations are derived and physically stored in the 

computer, (that is in core or on backing storage 

facilities such as magnetic tape and disc files), 

depends upon the configuration of the computer 

installation available. Consequently, the type of 

computer installation also governs the type or method 

employed to solve the resulting system of simultaneous 

equations, see section 14.7. 

As an example of how the structural equilibrium 

equations are formed, consider the simple two-dimensional 

cantilever' structure depicted in FIG. 14.6a. The 

structure consists of two, 4-noded quadrilateral plane 

stress finite elements with each node possessing two 

degrees of freedom, namely au displacement in the 

X coordinate direction and av displacement in the Y 

coordinate direction. The nodes of the structure are 

numbered 1-6 with the two elements being interconnected 
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via nodes 3 and 4. Each element has the characteristic 

relationship expressed by equation 14.7 namely: 

{F} 
- [k] {q) + [Fd] + {F j 

Assume now that the {FdIand {F force vectors have 

been determined and have been added into the {F) 

vector so that for each element: 

{F) - [zJ I(-] 
FIG. 14.6b shows the two elements of the structure 

separated and with each element possessing it s own 

local or element node numbering system. The statically 

Jr. % 

14.20 

equivalent element nodal forces [Fj and the corresponding 

nodal displacements are also indicated; those for 

element number 2 are underlined so that they are easily 

distinguishable. Using equation 14.20 above, the 

characteristic relationship for each element can be 

written down as shown in FIG. 14.6c. Consider now the 

equilibrium and compatability of structural node number 

3, in the Y coordinate direction. Obviously, for 

equilibrium and compatability to exist, the following 

conditions must apply, see FIG. 14.6a and b. 

F6 + F2 R6 

and q8 - q2 d6 

Hence, by expanding the appropriate matrix equations 

from FIG. 14.6o and noting that: - 
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ql = dl 

q2 d2 

q3 d3 

q4 d4 

q5 °ý d7 

q6 °ý d8 

we find that: - 

q7 ql d5 

q6 q2 - d6 

d 

q6 - d12 

3m d9 

q8 ° d10 

R6 a k81d1 + k82d2 + k83d3 + k84d4 + (k87+kk )d5 + 

(k88+k22)d6 + (k85+k )d7 + (k86+k )d8 + 

kd9 +k 28 d10 + kd11 + k26d12 

FIG. 14.6d presents in matrix form this and the other 

structural equilibrium equations for the two element 

cantilever structure shown in FIG. 14.6a. 

It can be seen that the formation of the structural 

equilibrium equations; (equation number 14.19), is a 

relatively simple operation once the individual element- 

stiffness coefficients and equivalent nodal load vectors 

have been determined. Each of the element's stiffness 

" coefficients and nodal force components are merely added 

or 'dumped' into the appropriate position in the structural 

stiffness matrix or nodal force vector. The approrriate 

position is easily determined from the global or structural 

node numbering arrangement and the local or element node 

numbering system. 
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Two features of the structural stiffness matrix, 

which are shown in FIG. 14.6d, are of vital importance. 

First, as each element stiffness matrix [k] is symmetrical, 

see section 14.4 i. e. k21 - k12 or k81 - k18, the 

structural stiffness matrix [K] is also symmetric, 

i. e. K65 - k87 + k21 m K56 - k78 + k12. Secondly, 

although it is not so apparent from the small cantilever 

example illustrated, the array of the structural stiffness 

coefficients are confined within a band cf [K] and thereby 

constitute a 'banded stiffness matrix. The top right 

hand corner of [K] in FIG. 14.6d can be seen to contain 

all zero terms. The width of-the band of non-zero terms 

in [K] can be determined ab in itio from the structural 

node numbering system. Therefore, as it is important 

from the equation solution time aspect to keep the width 

of the band of coefficients tn. a minimum, see sub-section 

14.7.1, careful and judicious numbering of the structural 

nodes can have enormous economic consequences. 

4. b APPLICATION OF THE STRUCTURAL BOUNDARY CONDITIONS 

In this step of the finite element analysis procedure, 

the boundary conditions of the structure are applied to 

the finite element model. These consist basically of 

two types, namely, boundary loading and geometric or 

kinematic boundary conditions. 
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14.6.1 Boundary Loading Conditions 

Boundary loading type boundary conditions can be 

sub-divided into two groups. 

and 2) distributed loads. 

These are 1) point loads 

Point load boundary conditions 

are the easiest of the boundary conditions to apply. 

As an example consider again the 2 element cantilever 

structure discussed in the previous section. Suppose 

now that a known point load W is applied to the structure 

as shown in FIG. 14.7a. In the finite element analysis, 

this load is applied to the model simply by adding the 

value of W, (taking due account of the sign convention 

of the structural coordinate axis system), into the 

appropriate location of the structural nodal force 

vector 
{R) 

. Thus, for the case at land R2 will become 

equal to *F2 
+ t-W). However, if the boundary loading 

is distributed, such as for example due to fluid pressure 

or floor loading, the total load has to be apportioned or 

'lumped' between the adjacent nodes. For the case 

illustrated in'FIG. 14.7b, where the distributed load 

is purely vertical, the total load can simply be divided 

between nodes 1 and 3 in the I coordinate direction. 

Hence, the two resulting point loads, 'equivalent' to 

the total distributed loading would be applied to the 

finite element model structure as before, i. e. to 

R2 and R6 in [R) 
9 
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If however, the more refined element displacement 

models are employed, the distributed loading cannot be 

evenly distributed between the adjacent nodes. In these 

cases, it is necessary to employ equation 14.18 and to 

carry out the appropriate integration, 

i. e. ýF 
- 

/[N]T f g) dA 

(Note that if the above integration is carried out for the 

linearly varying displacement element and the structure 

is loaded as shown in FIG. 14.7b, the two equivalent 

nodal forces will, in fact, be equal to one half of the 

total distributed loading. ) 

14.6.2 Geometric Boundary Conditions 

As with the boundary loading boundary conditions the 

geometric boundary conditions can be one of two types. 

They are known as boundary or 'known' applied displacements 

and kinematic constraints respectively. Suppose that 

instead of applying a point or distributed load to the 

cantilever structure, a 'known' displacement is applied 

to node number 2 in the Y coordinate direction as 

illustrated in FIG. 14.70. Consequently, d4 is now a 

known displacement and so the number of unknown displacements 

is reduced by one. Clearly, it can be seen by expanding 

the first equation of the matrix shown in FIG. 14.6d and 

rearranging that 

R1"k14d4-k11d1+k12d2+1c13d3+k17d5+k18d6+k15d7+k16d8 
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Hence, the structural nodal forces LRI 
9 can be modified 

by multiplying the known applied displacement component 

with the appropriate structural stiffness terms as shown 

above. This obviously reduces the set of equilibrium 

equations down to eleven equations with eleven unknown 

nodal displacement components. 

Once the remaining eleven unknown displacements 

have been determined, it is a simple matter to calculate 

the reaction or nodal force R4 which was responsible for 

the applied known displacement d4. This is obtained by 

substituting all the now known ncdal displacements into 

equation four of the matrix arrangement of FIG. 14.6d, 

and multiplying out. 

Although theoretically, a system of twelve equations 

containing twelve unknowns can be solved, unless a 

minimum number of prescribed displacements or kinematic 

constraints are applied to the cantilever structure, the 

values of the nodal displacements cannot be uniquely 

determined. Physically, this is because the structure can 

move freely as a rigid body and therefore it possesses an 

infinite number of displaced configurations which will 

satisfy the equilibrium equations. Mathematically, 

this will be manifest by the fact that the structural 

stiffness matrix [K], shown in FIG. 14.6d, will be a 

singular matrix, i. e. it possesses no inverse. 

Consequently, it is necessary to prescribe a minimum 

number of kinematic constraints which will prevent all 

possible rigid body'movements of the structure. 
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For the simple cantilever problem there are three 

possible rigid body movements. Horizontal and vertical 

movements and also a rigid body rotation in the XY plane. 

FIG. 14.7d shows two alternative ways of eliminating 

these three rigid body movements, namely constraining 

nodes 5 and 6 in both the X and Y coordinate directions 

or by constraining node 6 in both the X and Y directions 

and node 5 in the X coordinate direction only. For the 

former case, d9, d10, d11 and d12 will all be ascribed 

zero values for the displacements, whereas for the 

latter case, zero values will only be ascribed to 

d99 d11 and d12. Either of these two alternatives will 

remove the rigid body displacement modes and will render, 

the matrix equation of FIG. 14.6d amenable to solution 

by making [K] non-singular. As before, once the 

remaining unknown nodal displacements have been determined, 

the vertical and horizontal $support' reactions can be 

calculated at the constrained nodes by back substitution 

into the equilibrium equations and multiplying out. 

It is worthwhile to point out before leaving this 

sub_sectioN that the methodology for applying the 

kinematic boundary conditions computationally, depends 

upon the type of equation solution routine employed, 

see following section. 
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14.7 SOLUTION OF THE STRUCTURAL EQUILIBRIUM EQUATIONS 

The solution of the struotural equilibrium 

equations is a very important step in the finite element 

analysis procedure. For large problems the total 

number of equations to be solved can be several hundred. 

Also, and especially for three-dimensional structures, 

the number of coefficients per equation-can approach 

two to three hundred. Consequently, enormous computer 

storage capacity is generally required to store all the 

coefficients of the structural stiffness matrix [K] and 

considerable amounts of computational time involved for 

the subsequent solution of the equilibrium equations. 

As an example of the storage capacity required for 

a simple two-dimensional problem using the 4-noded 

quadrilateral plane stress element, consider again the 

cantilever structure shown in FIG. 14.6a. Suppose that 

instead of the two element mesh shown in the figure, the 

structure was subdivided into a 10x5 element mesh. 

Hence, the finite element model would therefore consist of 

fifty elements, would have sixty six structural nodes and 

would possess one hundred and thirty two degrees of 

freedom. Thus, the overall size of the structural 

stiffness matrix [K]9 including all the zero terms, would 

be one hundred and thirty two terms square giving a total 

number of 17424 coefficients. However, because these 

coefficients are real numbers, each coefficient requires 
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two words of computer storage. Consequently, even for 

this very small problem, the computer storage required for 

[K] is approximately 35000 words. 

For all but the smallest engineering problems the 

capacity required to store the structural stiffness 

coefficients exceeds the 'ooret storage capacity of even 

today's largast machines. Consequently, external or 

peripheral devices have to be employed to store the 

coefficients, e. g. magnetic tape or disc files. This in 

itself again increases the solution time because of the 

extra and necessary transfer and search times involved. 

Because of the economic and storage capacity problems 

associated with the finite element method, much effort has 

been expended in trying to improve the efficiency of the 

solution of the equilibrium equations. Indeed, it has 

been shown that the type, of solution routine adopted should 

not only be governed by the size and type of the problem 

being analysed, but also by the particular computer 

installation employed, Brooks and Brotton (131). 

There are two basic approaches to the solution of 

large systems of linear simultaneous equations. These 

are commonly known as direct and indirect methods respectively. 

The direct approach attempts to obtain an'exact' solution 

of the equations, (within the limits of round-off accuracy), 

and includes the elimination methods of Gauss and Cholesky. 

The indirect approach on the other hand �aims only at an 
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approximate solution and relies upon successive corrections 

being made to an original estimate of the actuNl solution. 

However, because generally the true solution is approached 

asymptotically, a point has to be selected at which the 

correcting or iterative process is terminated. 

14.7.1 Direct Approach - Gaussian Elimination 

The Gauss elimination method consists of two 

distinct phases. In the first phase the structural 

stiffness matrix [K] is reduced to an upper triangular 

matrix by eliminating all the coefficients which fall 

The below the leading diagonal line. second phase then 

consists of a back-substitution process in which all the 

unknown quantities are determined. As an example, 

consider the trivial non-singular set of structural 

equilibrium equations: - 

RZ 1K11 K12 dl 

R2 K21 K22 d2 

The general procedure is to make the coefficients of one 

of the unknowns equal, such that by subtracting the two 

modified equations, a third equation is obtained which only 

contains one unknown. Hence, by dividing the first 

equation in the set above by 
l and then subsequently 

multiplying this equation by K21 and subtracting the 

result from the second equation we have: - 
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al 1 K12 
d 

KIl Kll 1 

R2-K21 RI 0 K22-K21 
-12 d 2 K]1 Y-11 J 

The second equation in the above, now unly contains one 

unknown quantity d2, therefore, d2 can be determined. 

Consequently, by back-substituting d2 in the first of 

the equations, dl can subsequently be evaluated. 

The procedure outlined above is not restricted to 

single term processing. Indeed, Kii, K12 """"""K22 

can be submatrices. There are two main advantages 

with the direct elimination methods. These arei- 

1) The solution time required can be determined 

at the outset and provided that the equations 

are well conditioned, an accurate solution is 

always ubtained. " Conditioning is not generally 

a problem with elastic analyses as with this 

class of structure, the main diagonal terms of 
[K] are always positive and are usually much 
larger than the off-diagonal coefficients. ** 

2) The solution to several different load cases, 

* Solution time is direotly proportional to the number of 

equations and directly proportional to the square of the 

bandwidth. 

** If the main diagonal terms are not predominant, pivoting 

can be carried out which rearranges the equations such 
that the larger coefficients then fall on the main 
diagonal. However, this procedure is undesirable as it 

obviously destroys the banded nature of the [K] matrix. 
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i. e. (R} veotnrs, can be obtained simultaneously 

with only a very modest increase in the 

computational time. 

The main disar: vantage with this method is that a vast 

amount of storage capacity is required to store all the 

coefficients of the structural stiffness matrix [K]: 

However, various techniques can be employed to reduce the 

number of cf'efficieats required. Because the [K] matrix 

is always symmetrical, only those terms which fall on or 

above the main diagonal line need be stored. Also, 

because of the banded nature of [K] only those terms which 

are contained within this band are required. The terms 

outside the bandwidth are all zero--valued and consequently 

play no part in the analysis. 

14.7.2 Indirect Approach - Conjugate Gradients 

The conjugate gradient meth'd basically minimizes a 

quadratic error function associated with the structural 

equilibrium equations, i. e. [K] {d] 
e 

{R} 
, Yettram 

and Hirst (132). Using an initial estimate {do) 
, the 

method looks for the minimum value along the steepest path 

towards the true solution. From each new position the 

subsequent direction of search is taken conjugate to its 

predecessor. Theoretically, the maximum number of 

corrections or iterations required to obtain convergence 

to the true solution is equal to the number of equations 

in the system. However, for well conditioned matrices the 

convergence should be faster and so far fewer iterations 

should be required. 
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The flow diagram of the conjugate gradient method 

is shown in FIG. 14.8. It can be seen from this figure 

that exit from the iterative process can be achieved by 

one of two ways. If convergence is achieved, (i. e. the 

residual falls below a prescribed acceptable level), before 

the specified number of iterations has been completed, the 

iterative process is automatically terminated. 

The great advantage of the method is that the 

structural stiffness matrix [K] is not required in its 

entirity at any one time. In fact, the product [K) } 
0 

and subsequently the [K][p products can be evaluated on 

a piecewise or sequential element basis. C(, nsequently, 

although each element's stiffness matrix [k] it required 

during each iteration and therefore should be stored; the 

method should not require the same storage capacity as 

the direct Gauss approach. Iterative methods are attractive 

also for non-linear problems, where repeated solutions of a 

similar structural. configuration are required. In such 

cases, a g'd initial 'gueos' to the nodal displacements can 

be derived from the solution of a previous analysis. 

The conjugate gradient method h'wever, has its 

disadvantages. The principal one being that it is as yet, 

impossible to predict the number c"f cycles required for 

convergence. It is probably due to this uncertainty and 

*This would be particularly attractive for regular type 

structures containing many of the same element. 
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the obvious inability to be able to specify accurately 

the computational time required for a specific analysis, 

that this and the other indirect methods have not become 

more popular. Another disadvantage with the conjugate 

gradient method lies in the fact that only one load case 

can be considered at a time. 

14.8 DERIVATION OF THE ELEMENT STRAINS 

One important quantity which the engineer sometimes 

requires to know, is the strain distribution throughout 

the structure he is investigating. In the finite 

element method, the state of strain anywhere within an 

element can be evaluated once the nodal displacements of 

the element have been determined. Of course, the 

strain-displacement relationship depends upon the element's 

particular material behaviour. However, for two-dimensional 

plane stress elements, and assuming linear elastic material 

behaviour, the strain-displacement relationships are: 

e um 8u 
äx 

ER 3v 
yy äY 

and y3cy - au + by 
Ty "ax . 

Consequently, irrespective of whether the generalized 

coordinate or interpolation approach is adopted, the 

element strains 
¬e} 

, can be expressed in terms of the 

element nodal displacements fq) by differentiating either 

equation 14.5a or 14-5b. 
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Thus, the element strains can be expressed by the matrix 

equation: - 

tcJ [B) [q! 

where the [B] matrix is made up from the terms of the [N] 

matrix which have been differentiated with respect to the 

X and Y structural coordinate system. Of orursel for 

the case of equation 14.5b, the displacement variation is 

expressed in terms of the local or element coordfnates# 

6 and -q. Hence, it is necessary in this case to 

transform the local element coordinate system into the 

global or structural X-Y coordinate system. 

14.9 DERIVATION OF THE ELEMENT STRESSES 

Once the element strain components have been 

evaluated, it is a relatively simple step to derive the 

corresponding element stress components. The only 

necessary additional requiste being a knowledge of the 

material's constitutive relationship. 

For the two-dimensional plane stress case and 

assuming linear elastic isotropic material behaviour, the 

14.21 

strain components are related to the stress components by: - 

Exx cr 
xx -" µ (1m 

.EE 

£YY _µ _x 
+ 

EE 

-XY 
Ya 

JM G 

(Note that for this particular material behaviour only, two 

material properties are independent, i. e. GE 
2(1+g) 
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Thus in matrix formt- 

exx 1 --fit 0 Qxx 
EE 

CyY_ 10 
yy EE 

Yxy 001 TXY 
G 

or 

( re) 

Therefore, by inverting [M] we can express the element's 

stress components in terms of the corresponding strain 

components. Hence, 

(Cfj IMI_1 (c). 

or 

The matrix [D], which is obviously equal to [M]Z, is 

the elasticity matrix of the material. For the 

two-dimensional plane stress isotropic case considered 

above 

61µ0 1E: xix 

cr yy MEµ10 eYY 
1-µ 

00 (1=0 Yx, 
2 

For anisotropio material behaviour, the properties making 

up the elasticity matrix must refer to the same relative 

coordinate axis system in which the stress and strain 

components are considered to act. 
1- - 

14.22 

14.23 
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If an element is subjected to initial strains (F-J 

due to, say a temperature change, then the stresses within 

the element will be caused by the difference between the 

actual total strains and these initial strains. Thus 

equation 14.23 becSomes: - 
{ ý} -[ D] ({ E} - 

{c J 

14.10 DERIVATION OF THE ELEMENT NODAL FORCES 

If the force distribution is required in any 

particular boundary or surface of the structure being 

analysed, it is a relatively straightforward process to 

determine this by simply calculating and summing the 

nodal forces of the elements adjacent to that boundary 

or surface. Therefore, by using equztion 14.7 

(F) 
- [k] (q) + - al + 

Of course, [k], and Ft} will have to be 

re-calculated for the appropriate elements, (if they have 

not been kept in store), and the appropriate nodal 

displacements 'picked' out of the now known structural 

nodal displacement vector {d) 
. 

If this process were to be carried out for all the 

elements in the structure, it would in fact provide a 

very useful check on the accuracy of the solution. 

Consider FIG. 14.9 where two elements, i and j meet at 

14.24 

node number no Obviously, for equilibrium at this node 
[R) 

n- 
[F) 

n° 
(O) 14.25 
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The size of the residual of this equation, at this and 

all the other nodes, gives an indication of the accuracy 

or 'out of equilibrium' of the solution obtained from 

the analysis. 

14.11 PROBLEM ORIENTATED DATA CHECK 

It will have become apparent that it is necessary 

to feed into the finite element analysis program all the 

separate finite element; ' nodal coordinate and connectivity 

data. Although ether items such as the elementar material 

property data and the various boundary conditions have 

also to be input, the nodal ocordinates and connectivity 

make up at least 95 9o of the input data required. Of 

course, the chances of wrongly determining a coordinate 

value or making data preparation punching errors are very 

great. Consequently, it is necessary to check the data 

which has been punched for each problem as obviously an 

incorrect dimension or nodal connection will yield an 

incorrect solution. After all, it is possille for a 

computer to continue an analysis quite oblivious to the 

fact that a nodal dimension may be wildly out. 

For all the work reported herein, simple programs 

were written to check the node coordinate data and node 

numbering syst3ms. This was achieved by employing the 

I. C. L's computer library plot procedures, I, C. L. Manual 

(133) and the computer installation's graph plotter facility. 

The data check process consisted of feeding into the 

computer the complete pack of data cards produced for the 
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particular problem together with the appropriate plot 

program. Hence, after suitably scaling the coordinate 

data, the computer and plotter produced a replica of the 

finite element model. The plotter could also be 

programmed to number the nodal points. Therefore, by 

examining the computer plot and the original meshed 

structural configuration, data errors could easily be 

detected. FIG. 14.10 shows part of a computer plot of 

the bridge construction analysed in Chapter Ten. The 

figure, which is drawn to a scale six times full size, 

clearly shows up three coordinate errors, narrely at node 

numbers 237,271 and 451. The plot also shows the 

directions assumed for the grain in the cortical bone 

elements. However, the node numbering system has been 

omitted frcm the plot for clarity. Even so, the 

numbering and writing capabilities of the plotter 6zo 

demonstrated by the clearly labelled and dimensioned 

Cartesian coordinate axis system employed. 

14.12 FINITE ELEMENT ANALYSIS PROGRAM CHECK 

Another aspect which must be considered is how to 

check the actual finite elemsnt analysis programs 

themselves. Clearly, the most logical way is to compare 

the finite element results with those obtained using some 

other proven method. Here, all the finite element 

programs developed are checked by solving problems which 

have 'known' analytical solutiono. However, certain 
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facets of the programs cannot be satisfactorily 

tested because analytical solutions do not yet exist 

for problems involving orthotropic materials. 
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15 AXISYMMETRIC FINITE ELEMENT ANALYSIS PROGRAM 

Stru'tures which possess rotational symmetry 

about an axis and are loaded and constrained 

axisymmetrically about this axis can be simulated 

using axisymmetric finite elements. For the dental 

analysis problem investigated in Chapter Seven section 

7.4p the second mandibular premolar with its class 

1 amalgam restoration was assumed to possess this 

rotational symmetry, see FIG, 7.12. The flow 

diagram of the axisymmetric finite element computer 

program is shown in FIG. 15.1 the notation in the 

boxes indicates the equivalent Algol variable 

declarations given in the program listing in 

Appendix Three. 

15.1 STRUCTURE DISCRETIZATION. 

To facilitate the grading of the finite element 

mesh, i. e. 'to have a fine element subdivision in areas 

of special interest and a coarse meshwork in more remote 

areas, the triangular type of finite element is most 

suitable, see FIG. 15.10. Therefore, for the axisymmetrio 

program, the 3-noded triangular finite element was 

selected. A typical element is shown in FIG. 15.2 

together with the local node numbering system ijm and 

the corresponding global Cartesian nodal coordinates. 

Note that the nodes in this case are actually rings and 

that the element is in the form of an annulus. Hence, 

the volume of material associated with the element is 
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that of a body of revolution. Consequently, all the 

necessary integrations have to be carried out on this 

basis. 

15.2 DISPLACEMENT MODELS. 

Due to the assumed rotational symmetry of the body, 

there is no displacement generated in the circumferential 

(theta) direction, see PIG. 15.2. Consequently, each node 

has only two degrees of freedom, namely the u and v 

displacements associated with the RZ plane. Thereforet 

equation 14.1 for this element will be 

u(r, z) al + a2r + a3z 
15-la 

and v(r, z) a4 + a5r + cc6z 

This linear displacement field ensures continuity of 

displacement between the elements since'lines' that are 

initially straight before deformation remain straight after 

deformation. Also, the displacement model incorporates 

both the necessary rigid body and constant strain states. 

Employing the generalized coordinate approach, 

equation 14.2a becomes : - 

u1 1 ri z1 000 a1 

vi 0001 ri zi a2 

u 1 3 
s 

v 0 ý 

U 1 
m 

v 0 
m 

rj 

0 

r m 

0 

Z3 

0 

Z 
m 

0 

000 

1 r z 3 ý 

0 0 0 

1 r z m m 

a3 

a4 

a5 

a6 

15-lb 
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Consequently, on solving the above equation (by inverting 

the [A] matrix), we obtain equation 14.3. Hence, by 

substituting this result into equation 14.1blthe 

displacements anywhere within the element can be 

determined, i. e. via equation 14.4. Hence, 

u(r, z) 1(ai+bir+oiz)ui + (a3+býr+cýz)uý + 
2.4 

(am+bmm+°mz)um 
J 

and v(r, z) -; 
((ai+bir+oiz)vi' + (ai+bir+ciz)vý + 

2A 
(ate+bmr+o z)vmt 

15.2a 

or u(r, z) - Niui + N3u3 + Nmum 

15.2b 
and v(r, z) "ý Nivi + N3v3 + Nmvm 

(Note that here the N functions are expressed in terms of 

the Cartesian coordinate directions. ) 

In the above 

1 ri 
24 determinant 1 r3 

1 rm 

and is equal to twice the cross-sectional 

triangular element ijm in the RZ. plane. 

Also, ai - rizm - rmz3 

zi 

zj 

z m 

area of the 

01 - ri - rm 

bis Zý z 

0f arm -r3 

aj rmzi -rizm 

bý a Zm - Zi 

am " riz3 - rýzi 

bm - zi - z3 

0mm rj - ri 
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15.3 DERIVATION OF THE FINITE ELEMENT STIFFNESS 

MATRIX AND NODAL THERMAL LOAD VECTOR. 

For the dental structural analysis problems, the 

effect of the body weight force component on the stress 

distribution is insignificant in comparison with all the 

other force components, i. e. Pd) 
" 

(0) 
. 

(Generally, 

the body weight or body force components are only 

significant in structures such as massive concrete 

gravity dams. ) Consequently, equation 14.7 reduces to : - 
[F) 

- (k] (q) + (Ft} 15.3 

There are four strain components associated with the 

axisymmetric finite element, see Timoshenko and Goodier 

(134) page 343" These are t- 
1l 1- 

E 
zz 

e rr 
{E} 

c ee 

Yrz 

ä9 
or 

k 

ar 

u 
r 

,+ 
by 

aZ ar 

vertical strain 

horizontal or 
radial strain 

hoop or circumfer- 
ential strain 

shear strain in 
the rz plane 

Hence the [B] matrix in equation 14.21 becomes, using 

equation 15.2b 
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E 
zz 

e 
rr 

C 00 

Yrz 

0 aN1 0 aN 0 aNm ui 

az az - az 

aNi 0 axe 0 aNm 0 vi 
Cr ar ar 

0 Nm 0 uj Ni 0N U 
"I r 

aNi aNi all aNa aNm aNm vj 

aZ ar aZ ar az ar 
u m 

v m 

where aNf 1 ci 

az 24 

8Ni =1 bi 

ör 2A 

(ai + bir + ciz) etc, and Ni 11 
r 2Ar 

0, 

Thus 

15.4 

0 ci 0 a1 0 cm 

bi 0b0 bm 0 

[B] 1 
2ä Ni 0N0 Nm 0 

rr 

ci bi ab am bm 

It can be seen that the [B] matrix does not consist purely 

of constant terms. Indeed, the hoop strain component is 

a function of the p'sition r. 

The corresponding stress components are related to 

the strains by the elasticity matrix, equation 14.23" 
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Hence, for an elastic isotropic material, the [D] matrix 

for the element of revolution is, Zienkiewioz (129) 

page 79 :- 

zz 

rr 

E lj 60e l+µ 1,2 µ 

1 
,L 

0 
1-µ 1-µ 

ý, 1 
, 
1L� 0 

1-µ 1-µ 

, L_, 1L.. 10 
1-µ 1-µ 

E 
zz 

c 
TT 

15.5 
Lee 

rz]. 
000 1-2a y 

r" 
TL 

2 (1- 

If If an axisymmetric finite element of an isotropic 

material is subjected to an initial temperature increase 

of T degrees above the datum temperature, the initial 

thermal strain components due to the associated thermal 

expansion within the element will be, see Zienkiewicz 

(129) page 76, 

lezzol aT 

E 
rr0 

Lee 
O 

w 

aT 

aT 1 5.6 

Yrz 0 

-1 
0j. 

where a is the material's coefficient of linear thermal 

expansion in units compatible with those of T degrees. 

Using the [B], [D] and {e1 matrices developed 

above, the element stiffness matrix [k] and the equivalent 

nodal thermal force vector 't} can be determined. In 

both instances, the integrations are taken over the 
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volume of the element which for the axisymmetric case 

is equal to :- 
JdV 

- 
/27t 

r dr dz 15.7 

Again, the integration of dV is, like that for the [B] 

matrix, a funotion of the variable r. Consequently, 

the integrations cannot be carried out simply. 

However, an approximate procedure is to evaluate the 

integrations and the [B] matrix at the element's 

centroid where 
r1 (ri + r4 + rm) 

3 

and z"1 (Zi + Z3 + zm) 
3 

Hence, 

[k] = 2n/[B]T[D][S]r dr dz - 2n[j]T[D][S]r A 

and 

Ft = -2n/[,; ]T[D] (ec r dr dz *" -2n[S]T[D]r L1 &o) 

The flow diagram for deriving the [k] and {Ft} 

matrices is shown in FIG. 15.3. The notation used in 

this figure refers to the equivalent Algol variables 

employed in the computer program, see listing in 

Appendix Three. 

15.8 

15.9 

15.4 FORMATION OF THE STRUCTURAL EQUILIBRIUM EQUATIONS. 

It was decided to solve the structural equilibrium 

equations by the direct Gauss elimination method, see 

14.7.1. Because of the limitation in the size of the 

computer installation available, the'frontal'solution 

technique was not a viable proposition, Irons (135), 
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and so the conventional elimination method was 

employed. Consequently, it was necessary, before 

commencing the solution process, to derive and store all 

the non-zero stiffness coefficients of the structural 

stiffness matrix [K]. However, because only approximately 

26000 words of core storage space was available after the 

analysis program itself had been entered into the computer, 

the structural equilibrium equations were stored on a 

magnetic disc backing store facility. Nevertheless, 

because the structural nodal force and displacement 

vectors are comparatively small matrices, it was possible 

to store them internally in the core of the computer. 

The Gauss elimination method of equation solution 

only operates on the stiffness coefficients of a single 

column of the [K] matrix at each stage of the forward 

elimination phase. Hence, because the structural 

stiffness matrix is and always remains symmetrical, the 

coefficients of the column under the pivotal term (which 

are to be eliminated in order to produce the lower 

triangle of zero terms), are the same as the coefficients 

which appear in the pivotal equation, see FIG. 14.6d. 

Consequently, there is no need to duplicate these terms 

and so only the coefficients which fall on or above the 

main diagonal of the [K] matrix are actually stored. 

Thus, the total number of storage locations required is 

almost reduced by half. 

Another way of conserving storage apace is to condense 

or modify the arrangement of the structural stiffness matrix. 
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This can be achieved by sliding all the rows of the upper 

triangle of the stiffness coefficients until all the main 

diagonal terms of the [K] matrix are made to coincide 

with the first column of the modified form of the 

structural stiffness matrix. As an example the 

structural stiffness matrix for the cantilever problem 

depicted in FIG. 14.6d is shown in this modified form 

in FIG. 15.4. It can be seen from this figure that the 

modified arrangement of the [K] matrix now only requires 

a rectangular matrix of the order of 12 rows by 8 columns. 

Because Algol library procedures were available 

for reading and writing to disc backing files, the rows 

of coefficients of the [K] matrix in the modified 

arrangement were stored sequentially in nodal block 

matrix form. For the axisymmetric element, each node 

has only two degrees of freedom. Consequently, each 

node is associated with a2x2 submatrix block of 

stiffness coefficients. The number of column blocks 
(NCB) in the modified arrangement of [K], i. e. [MBK], 

is equal to one plus the maximum node number difference 

(MANND) which exists in any one element of the structure. 

Also, the total number of row blocks (NRB) which exist in 

[IUBK] is equal to the total number of nodal points 

(NONOP). Hence, the space required on the disc to store 

[RiK] can be determined ab initio and the necessary 

initialising (erasure of a previous user's data) carried 

out before each element's stiffness contributions are 

added into the appropriate location. The total number 
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of locations required to store [MBKJ is equal to 

(2 x NRB) x (2 x NCB) 

or NRMBK x NCMBK 

where the Number of Rows in Modified Big K-2x NRD etc. 

The required coefficients of [k] are dumped into 

[MBK] by re-calling, in turn, from the disc backing file, 

the whole structural row block associated with the three 

nodes ijm of each element. Each row block is retrieved 

from the disc file and put temporarily in the array [MEX]. 

When all the coefficients have been added into this array, 

it is bimply returned to its., original position in the 

disc file. The program is written such that the first 

node i must be the lowest node number of the element. 

However, if node number j is greater than node number mp 

then the appropriate coefficients of [k] falling below 

its main diagonal have to b3 dumped into [MI3K]. Note 

though, that in this case, the submatrix block must be 

transposed before it is dumped. 

Because the nodal force vector is stored 'in core', 

it is a simple matter to dump any nodal thermal force 

components associated with any particular element, into 

the appropriate position in this vector. However, in the 

axisymmetric program, the element thermal nodal forces 

f TF) are initially dumped into a structural thermal force 

vector 
(STP) 

. Subsequently, the resulting 
(STF) vector 

for the whole structure is added to the total nodal force 

vector 
(P) 

at the time when the boundary conditions are 

being applied. 
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15.5 APPLICATION OF THE STRUCTURAL BOUNDARY CONDITIONS. 

Only two types of boundary conditions were allowed 

for in the axisymmetric analysis program. These were: - 

1) Boundary point loads* 

and 2) Kinematic constraints. 

(Although provision in part is indicated in the program 

listing for applied nodal displacements, this feature 

was not fully implemented. ) 

For all the degrees of freedom of the nodes which 

have no applied point loads, the corresponding locations 

in the structural nodal force vector 
LF) 

must have zero 

values. (In the program, the structural thermal force 

vector 
{STP) 

is added into [F) 
at a later stage. ) 

Consequently, as the number of nodes where actual point 

loads are applied is small, the whole of the 
{F) 

vector is initially zeroed. The applied luads are 

then subsequently added into the appropriate locations. 

For all the degrees of freedom of the nodes which 

are unconstrained and are'free' to move, the corresponding 

locations in the structural nodal displacement vector 
{XI 

* For an axisymmetric element, a node consists of a complete 
ring. Hence, the point load must be equal to the 

equivalent total load divided by the circumference of the 

ring. This obviously applies to all nodes except those 
which coincide with the axis of rotational symmetry. 
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must have zero values. As before, because the number 

of nodes where constraints are applied is small compared 

with the total number of degrees of freedom in the 

structural displacement vector, the whole of the {XJ 

vector is initially zeroed. The degrees of freedom 

which are actually constrained are then subsequently 

amended. This is achieveil by reading into the appropriate 

location in the 
(X) 

vector the value of 0.000001. The 

reason for this is so that the positions in the [MBK] 

matrix, where modifications have to be carried out in 

order to render it non-singular and therefore solvable, 

can be identified. This modifying process is carried 

out to [IBK] immediately after all the constraints have 

been read in. 

As an example for discussion purp, ses, consider the 

complete structural stiffness matrix [K] shown in FIG. 

14.6d for the two-dimensional cantilever. Suppose that 

for this problem node number 6 is to be constrained in 

both the X and Y coordinate directions and node 5 in the 

X direction only. Hence, d9, dlt. and d12 are therefore 

all zero values. Fcr the notation used in this 

program X9, X11 and X12 are made equal to zero and hence 

become known quantities. Consequently, the structural 

equilibrium equations corresponding to these constrained 

degrees of freedom can be eliminated. 

It is easier, when employing a digital computer, 

to effectively eliminate the appropriate equations by 
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simply zeroing all the stiffness coefficie_&s which would 

otherwise operate on the constrained displacements. The 

set of equations are then subsequently solved as if 

nothing had happened. However, in order to prevent 

the computer from trying to divide by zero pivotal terms 

when it comes to the constrained equations, a1 is 

placed in the appropriate pivotal positions. FIG. 15.5 

illustrates the eliminated equations using this technique 

for the constrained cantilever structure discussed above. 

Note that the appropriate locations in the nodal force 

vector have been zeroed and that the [K] matrix remains 

symmetric. Thus, the modified arrangement of [K], i. e. 

[MBK] is still amenable to this form of solution. FIG. 

15; 6: gives the modified form of [K] for exactly the same 

boundary constraints depicted in FIG. 15.5" 

15.6 SOLUTION OF THE STRUCTURAL EQUILIBRIUM EQUATIONS. 

The equilibrium equations were solved in the 

axisymmetric analysis program using the direct Gauss 

elimination method outlined in 14.7.1. However, because 

the number of degrees of freedom per node was two, the 

procedure developed was for block processing. Hence, all 

operations are performed on 2x2 sub-matrix blocks. The 

flow diagram for the procedure is shown in FIG. 15.7, see 

also the listing of the procedure DBLOKGAUSS 2 given in 

Appendix Three. 

The procedure developed, looks for zero sub-matrix 

blocks using the [BUG] matrix and is subsequently able 
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T1 
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Retuyrt, pivotal' vow blochz ba. cb. to disc f LLe 

Repeat Fov I= 1 Step 1 until NRB do 

R F ead _ next vow block f vorn. disc f ae and put La [WMBK] 
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unter END 

R. 15-.: 7 Flout &a vo. m a tie d vea Gauss eýim uwtion 
ProceduYe' DBLOKGAUS52. See listirt ýn. 
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to avoid all operations on these blocks by referring to 

the [MAP] matrix. The [MAP] matrix simply tells the 

procedure with a zero if the sub-matrix block is null; 

a one indicating that the sub-matrix block is non-zero. 

Although the storage and form of [MBK] required 

for the sub-matrix block approach is similar to that 

for single term processing, it must be remembered that 

the first column of [MBK] now consists of pivotal 

sub-matrix blocks. To illustrate this point, the 

arrangement of the [M$K] matrix shown in FIG. 15.6 

in the equivalent sub-matrix block form is given in 

FIG. 15.8. 

15.7. DETERMINATION OP THE ELEMIT STRAIN AND 

STRrSS COMPONENTS. 

The strain and stress components are determined 

at the centroid of each of the finite elements. This 

gives a fairly representative or average estimate of 

the state of strain and stress acting in the element. 

Hence, by employing equation 14.21 and evaluating the 

[B] matrix at the centroidal point, the total strain 

vector 
{c) 

can be derived for each element using the 

appropriate nodal displacements. 

Before the corresponding centroidal stress components 

can be evaluated, the element's thermal strains must first 

be deducted from the total strain vector. This done, 

the element's stresses can be determined using the 

appropriate material elasticity matrix and equation 14.24. 
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Both strain and stress are second order tensor 

quantities. Consequently, the strain and stress values 

determined, (which are the components corresponding to 

the directions of the Cartesian coordinate reference 

axis system selected for the problem), are not 

necessarily the maximum values actually present in 

the element. Hence, it is often these maximum or 

principal values which are required. These Are 

determined for the axisymmetric element by employing 

the standard equations given in Chou and Pagano (85). 

For principal strains, see page 44 

22 
max e +e +1 (e -E) +y e mý zz rr -_ zz rr rz 

2 

271 
y max + err - ezz)2 + Yrz 

min - 

and for principal stresses, see pages 10 and 11 

min 
s 

CY 
rr + ct zz ± irr 

zz. + Trz 
2 

22 15.10 

and t mmax in +dý,, 
2 

QZ2 
{ Trz2 

The appropriate directions in which these principal 

quantities act are also determined from the Cartesian 

coordinate stress and strain values. These are also 

derived in the program. The sign convention adopted is 

fully explained in the comment given in the program 

listing, see Appendix Three. 
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15.8 AXISYMMETRIC DATA CHECK 

The coordinate data for the axisymmetric program 

was checked by plotting the finite element subdivisions 

with the I. C. L. 1903A computer's plotting facility as 

outlined in 14.11. FIG. 7.12 shows a typical plot 

obtained using the axisymmetric data plot program 

(PLOTMESHAX3T). A listing of the program is given in 

Appendix Four. 

The plot program only allows for the construction 

and labelling of the Cartesian coordinate axes and the 

subsequent drawing of the finite element mesh to some 

predetermined scale. The flow diagram of the program is 

given in FIG. 15.9" 

1.2 AXISYMMETRIC PROGRAM TEST PROBLEMS 

Several problems which have known and accepted 

solutions were analysed using the axisymmetric finite 

element analysis program. The finite element results 

were then subsequently compared with the 'known' 

solutions in order to examine the correctness of the 

design and logic of the computer program. Only two 

of the test problems will be discussed here. 

The first problem examined was the well-known 

Bo: usinesq structure consisting of an infinite elastic 

half-space and loaded with a single point load, see 

Timoshenko and Goodier (134) page 364. Obviously, for 

finite element model purposes the infinite half-space had 
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to be restricted to one of finite size; in this case 

to one of 14 inches radius by 14 inches deep. The 

finite element model is shown in FIG. 15.10. As can be 

seen from the figure, the structure was modelled by 

186 elements having 114 nodes. The boundary conditions 

employed and the material properties are also shown in 

the figure. 

FIG. 15.11 shows both the axisymmetric finite 

element and the 'exact' solutions for the vertical 

displacement of both the top surface of the half-space 

and at a depth of 2 inches. Similarly, FIG. 15.12 

gives the vertical stress distribution obtained at two 

levels in the structure, one at a depth of 1 inch and 

the other at a depth of 3 inches. To obtain the values 

of the stresses at each point, the centroidal values of 

the elements adjacent to the point were averaged. 

It can be seen that both the displacements and 

stresses obtained from the finite element analysis agree 

very favourably with the analytical solutions. 

The second problem presented here was specifically 

selected to test the thermal analysis section of the 

program. For the Bousinesq problem, the whole structure 

was at ambient tempdratte and consequently, no thermal 

stresses were induced. The basic problem consisted of 

a disc 1 inch thick and having outside and inside 

diameters of 36 and 6 inches respectively. It was 

360 



Z (V) 

E- 5xIÖ6p. sl. 
ý. t = o" i5 

p= 106 ºbf pöLnt load 

BI 

12� 

l a16 

9N 

6" 

4" 

L 

O 

R(u) 
ýn 4ýý ön 

8e 1i0u (2N I4n 

FIG. 15.10 AXstjm nttvic fini±e. ve pesen ýn 
of Bousinej sbru uve. Model compvi, sed of -196 elements. 



dG 2" 6n 

0 

-0.08 

r 

12- It 

Radius R 

b Ve? t ,l displacemea of a surf=e o± a depk of a" 

FIGS 
. 

15.11 Compoxison. of tke ve l dlsplo. cement 
dis ibut. on. fov the. BOUSU* Lesýi stYUr-tuve o6tair d. f vom 
the axisymmety1c fix±a ýýýne s's and the "exoýct" 

ela5tk .t tiled rj, Tum. osllento ox"i oodw t3.4}. 

O it 4" Gn of tOu 12#1 4! 1 



FIG. 15.12 Co, ntipaarison f tie , taicoi (wmpvessi. ue) 
styes &stYLbutiron, f oY the Boust r es styuctw'e obtained 
fvorr the axisqrnm, etAc fin±e. ekrr e =oIHSLS and. the. 

exoýrt elo. tL", Timoshenito axed oocLe ' (134) 
. 

Oa 4" 6u ß" 10 n 12 " $4n 



assumed that the disc was subjected to a purely linear 

temperature gradient, having a temperature at the inner 

surface of 50 degrees C and at the outer surface 300 

degrees C. The finite element mesh of the structure 

is shown in FIG. 15.13. This figure also shows hoer the 

average temperature of the elements above that of the 

datum temperature were derived. FIG. 15.14 gives the 

complete layout of the data required for this problem 

together with the corresponding coding of the program 

listing. It must be pointed out that the dummy load 

of 0. O lbf , is only for programming convenience. 

Although the Algol language allows the use of 'dynamic 

arrays' a load pointer vector of zero length is not a 

legitimate declaration. 

A sample of the stress and strain components 

obtained from the computer output is given in FIG. 15.15. 

While FIG. 15.16 gives the analytical and finite element 

radial displacement distribution across the disc, 

FIG. 15.17 shows a comparison of the corresponding 

radial and hoop stress distributions. The analytical 

results were obtained from the formulae given in 

Timoshenko and Goodier (134) page 407. Again, there 

is very close agreement between the finite element and the 

analytical results. 

From the problemsinvestigated, it was possible 

to derive an equation through which the computational time 
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required for a specific structure could be estimated. 

For the axisymmetric program this was found to be: - 

Time (seconds) - NELEM + 0.01125 ([MANND + 1] 
2 

xNONOP) 15.11 
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CHAPTER SIXTEEN 

PLANE STRESS AND PLANE STRAIN FINITE 

ELEMENT ANALYSIS PROGRAMS 
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16 PLANE STRESS AND PLANE STRAIN FINITE ELIJIE'rTT 

ANALYSIS PROGRAMS. 

Structures which are subjected to stresses or strains 

in only one plane are said to be in a condition of plane 

stress or plane strain respectively. Hence, the system ff 

of stresses or strains are therefore only essentially 

two-dimensional in character, although in each case either 

a strain or a stress component can exist in the direction 

perpendicular to the two-dimensional plane. 

From the finite element pint of view, the6i. two- 

dimensional stress and strain systems can be simulated by 

using two-dimensional plane stress and plane strain 

finite elements. Indeed for some structures, reasonable 

engineering answers can be obtained for physically three- 

dimensional structures using these tiro-dimensional 

simulations. 

The technique for two-dimensional finite element 

analysis follows again the general procedural laycut of 

FIG. 14.1. Also, because the two-dimensional element has, 

like the axisymmetrio finite element, two degrees of freedom 

per node, the analysis programs are in many respects 

identical. The flow diagram for the plane stress finite 

element analysis program is given in FIG. 16.1. Again, 

the variables shorn in the matrix brackets eorresp, -nd to 

the Alal variable declarations of the computer program, 

a listing of which is given in Appendix Five. Because 
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BEGIN 

Dectave oil pro9Yom subroutines or pvoceäuves 

ýReod, in and 'output' all structu'o! dotes. 

Fovrn element [k] and clump nio [MBK] 

9 et. up strwctuvoi hod D1 äisplacernen±s and forces [x} =i (F 3 

Modif9 [MBK] for oppUed bow dayg condi inns. 

Solue {F} - [MBKI[X) for modal displacements. 

,I 
Output nodal dxsplacemen's. (NouJ in (F) ). 

Form elemer± displQzemertts [ELD1S} and coic o±e 

elern. ent strains (STN). 

Colcu o±e elemen± stresses from. [ST5) [D][STN]. 

Ou±put element stress an, & strain components. 

Ave 
No 

element nodal, forces ANN 
Nequired ? 

Yes 

Re- formt elemrent ýý? ý-..,.., 
_ . ý_ .. _,....,,. a.. 

77 

Re-form e. lemertt displacements {ELDIS}. 

rCaic1o±e. ' element nodal forces from. {ELNF) 
_ [1t]CELD15} 

Output elernex rtodoal forces. 

END 

FIG. 16.1 Flow dia9vam of the plane stress 
f ini e" element Onol L$ fW03vam" 



the plane stress and plane strain programs are very 

similar, only the former will be dealt with here in 

detail. However, the major differences between the 

two will be pointed out in the discussion. 

16.1 STRUCTURE DISCRETIZATION 

The arbitary shaped constant thickness quadrilateral 

finite element shown in FIG. 16.2 was selected for the 

two-dimensional finite element analysis programs. 

Although, as was stated earlier, the triangular shaped 

element enables an easier grading of the struotural sub- 

division, the extra node afforded by the quadrilateral 

element allows for a more refined and far superior form of 

displacement model to be employed. 

16.2 DISPLACEMENT MODELS 

P"r both the plane stress and plane strain cases, 

each node of the quadrilateral element was assumed to have 

only two degrees of freedom. That is the u and v 

displacement components associated with either the Cartesian 

coordinate directions X and Y or with the element local 

coordinate axes 6 and T), Hence, the displacement of any 

point within tho element can be expressed in terms of the 

local element coordinates and the nodal displacements by: - 
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coordirLotes. 
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FIG . 16.2 Typical 4-rwded plane stvess ov't6trop. c. 
f iziý element 1.2.3.4. sllowtn both the mztevLoi 
o. n& +hie elerrwx&s LocaL ov nQc LY 

. cooYdino± 



u(býrý) N1"i1 + N2u2 + 
:) 

'- T' � 

and v(5, ß) _= r vl N27` + N3v3 + N, r4 
16.1 

(Note that the N functions which are given in section 14.3, 

are also expressed in terms of the elemantPs loyal coordinates. ) 

16.3 DERIVATION OF THE P1. At1E STRESS AND PLANE STRAIN 

FINITE "LE JT STUMM TUTRICE" 

Neither body weightror thermal loading effects were 

included in the two-dimensional analysis programs. 

Consequently equstion"14.7 reduces to: - 
f FJ R [k] {q) 16.2 

For both the plane stress and plane strain cases there are 

only three strain components which contribute to the 

internal work of thn element. These are: - 
.tS.. _ 

C au I horizontal strain 
ax 

ra 
s cyy av vertical strain 16.3 

ay 

yxy au + 3v ghear__. str, ain in 
77 öx the XY plane. 

Although for the plane stress oase, the strain perpendicular 

to the plane of the element it nonzero, by definitions the 

corresponding norrºm l stress cz)mpenent is zero. Consequently, 

the product of these stress and strain components noes not 

contribute to the total internal work of the element. A 

similar a: gu ment car also be applied to the plane strain 

situation. However, in this caae, the normal strain 

component ie the zero quantity with the normal stress 

component being non-zero. 
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The [B] matrix required in equation 14.21 cannot 

be determined directly from equations 16.1 because the 

element displacements are expressed in terms of the element's 

local coordinates 6 and n. Consequently, these local 

coordinates must be transformed such that the derivatives 

required can be obtained in terms of the global or structural 

coordinates .t and Y. Hence by equation 14.5a r- 

, tf ) 
'ý [ ti t N2 N3 N4 ] ql 

2 
16.4 

q3 

q4 

And differentiating 

of aN 1 aN2 a3 -4 ql 

8s, as as as a3 
q 2 

of aN1 aN2 aN3 ON4 q3 

än an an an an q4 
or 

af. .. qi 
76- q2 16.5 
af- q3 
T) q4 

Now of ax. of + ay. of 
8s ö6 ax as ay 

end of ax. of + ay. of 
a11 TT) ax an ay 

or 
of ax of 
ab 

. as as ax 

of ax ay_ of 
I aý L81 an ay 
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and 

of of 
as ax 

.. [J] 16.6 
of of 
än ay 

where [J] is the Jacobian transformation matrix. Hence, 

the quantities required, i. e, of , of etc, can be obtained 8x ay 

by inverting equation 16.6 so that 

I of of 
äx 

. [j) -1 öb 16.7 

of of 
By TT-1 

By invoking the isoparametrio concept, the X and Y Cartesian 

coordinates of any point within the element can also be 

expressed in terms of the element's displacement models as 

shown by equation 14.6. Hence, by differentiating equation 

14.6 and rearranging, we obtain 

ax ay a_ aN2 aNN M4 xi yl 
as 8a a6 86 as ab x2 y2 

ax By a aN2 aN y3 
-4 

X3 

T) än aln an aln OT) x4 y4 

which we recognise to be equivalent to 

ýJ] (x] xl yl 

x2 y2 

X3 y3 

x4 y4 

Hence, [J]-l can easily be determined by inverting the 

product of the [X] matrix and the element's nodal 
coordinates. Therefore, substituting equation 16.5 into 

equation 16.7 we see that 

16.8 
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of ql 
äX {J]-1 [XI 
of q2 

16.9 
ay 

q3 

q4 

Thue, for the two-dimensional case where the nodal displace- 

ment components are u and v respectively, equation 16.9 

becomes :- 

au 8u ul vi öx 8y 

8v av u2 2 
8x öy 16.10 

L u3 v3 

u4 v4 
I 

Hence, the [B] matrix in equation 14.21 can simply be 

obtained from the terms of the [J]-1 [A] matrix product. 

For the plane stress ease, the stress components in e 

linear elastic orthotropic material are related to the strain 

components by :- 

Exx Qxx µa 6Yy 

Ex Ey 

Eyy -11 xx + 
Ex Ey 

Yxy a 
Gxy 

and rearranging into the form of equation 14.23 
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axx Ex 
, 
ýYX Ex 0 11 exx 

1- 
xµyx 

1 µXyµyX 

µxy Ey Ey 0e 16.11 as 
1- µxyµyX 1- µxyµy, x 

YY 
HJ 

00 Gxy yXy 

or 

[Dl] (e) 16.12 

Now the elasticity matrix [Dl] is only applicable 

provided that the orthotropic material axes coincide 

with those of the global axes X and Y, for example, property 

Ex is the Young's modulus of the material in the X 

coordinate direction. Suppose therefore that the material 

axes about which the mechanical properties are known, differ 

from the global axis system as shown by the general element 

in PIG* 16.2. In order to determine the elasticity matrix 

for this element with respect to the global directions, 

another coordinate transformation has to be carried out. 

This can be derived in one of two ways. For the general 

case it can be carried out using the Cartesian tensor approach. 

However, here it will be achieved by employing the two- 

dimensional principal stress and strain relationships. 

The stresses on any plane of a two-dimensional 

structure can be evaluated from the known stress components 

on any other plane by the well known principal stress 

relationships, Chou and Pagano (85) page 8. 
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1axx 

cost sin2ß 

Qyy .' 

[sin 
g 

cos2p 

I Txy' -sing coaß sing cosß 

or td'J _ [T] (Q) 

2sinp cosp axx 

-2sinp cosß 0yy 16.13 

(Cos 2ß-sin2ß) 
TXY 

16.14 

Here, the primed components refer to the primed ortho- 

tropie"material axes of the element shown in FIG. 16.2. 

The angle p is assumed positive when measured in an 

anticlockwise sense from the global X axis to the 

materials X' axis. The strain components on the primed 

axes can also be deduced from those on the global axes 

by a similar relationship, Chou and Pagano (85) pages 

43-44. 

ýxx' cos2ß sin2ß sing cosß exx 

yy' sin2ß cos2 -sinn cosy cý 6.15 

YXy -2sinß cosp 2sinp cosß (Cos 2ß-sin2ß) 
Yxy 

Unfortunately, the axes transformation matrix is not as 

it stands, the same for the strain components as it is 

for the stresses. However, if instead of using the 

engineering shear strain component yTy, we use the 

tensorial shear strain e (which is equal to yx we obtain: - 

(Xi 

Cos2ß sin2p 

n2p Cos2p ' si e1. yy.. 1 eXY ' -sing cosp sing cosp 

2 

2sinß cosß cxx 

-2sinp cosy 

(oos2ß-sin2ßj1e.. 

16.16 

EX, 
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i 
t. ,ý. 

f 
i, 

or {e'} 
s [T] {c) 16.17 

(The underline in the above is to signify tensorial 

strain vectors. ) If the elasticity matrix [Dl] in 

equation 16.12 is now modified so that the strain vector 

is also in tensor form, i. e. by multiplyirg Gxy by 2, 

then the stress components in the element's primed axis 

system can be written using equation 16.12 as : - 

(I') [D1] (0 16.18 

But substituting from equations 16.14 and 16417 we have 

[T] {ß} 
a [Dl] [T] (e} 

and 
{c) 

a [T]-1 [D1 [T] {e) 
16.19 

or tb} 
_ [D] c} 

where [D] a [T]-1 [D1] [T] 

Finally, if the (D) matrix is modified so that the tensor 

strain vector 
{S) 

can be replaced with the engineering 

strain vector 
(e) 

we obtain the elasticity matrix for the 

element in terms of the global coordinate axis system, i. e. 

Ici) - [D] N 
To obtain the [D] matrix, the third column of [D] must 

simply be divided by 2. 

The element etiffnees matrix [k] can be derived now 

that the [B] and [D] matrices have been evaluated, i. e. 

[k] - 
J[B]T [D] [B] dVol 

For this case the integral is 

/dVol /tdxdy 

However, the [B] matrix has been expressed in terms of the 

elements local coordinate system. Consequently, the 
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integral must be evaluated with respect to the 6 and il 

coordinates. Thus z- 
i r... 

a(x rdVol ffta 
69-T db dT) 

where 8x is equal to the determinant of the [J] 
5(6, n) 

matrix. Hence, the element stiffness matrix becomess- 

[k] fJ[B]T [D] [B] t det[J] db dry 16.20 

-Y -C This integral can be easily evaluated using the Gauss 

quadrature formula, Kopal (136). For the plane stress 

program, 3 by 3 integrating points were employed and 

hence equation 16.20 is evaluated at nine discrete points, 

see Appendix One. 

The flow diagram for the derivation of [k] in terms 

of the corresponding Algol variables used in the program 

is given in FIG. 16.3. 

The procedure for determining the stiffness matrix 

of the corresponding plane strain element is very similar 

to that for the plane stress case previously discussed. 

However, for the plane strain element, the strain-stress 

relationships are :- 

exx axx rµ (I 
YY 

µzx (I 
zz 

Ex E Ez 

as 
. _µ 

_, 
ý 

xx 
+µ6 

-ZE 
z, r zz 

Ex Ey Ez 

Ys 

Vii. 
Gxy 

because Qzz is nct zero. Howe-., -erg czz is, by definition 

zero so that :- 
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BEGIN 

Set pawameters for Galls s inte9Yatir points 

Set up element Co 'teswin. rwdol coo'd hohes [ELCO3 

Is 

material d: &f f eYent for this 
No 

element ? 

Yes 

Set up elastkitij matrix in tensor form [DI]. 

Is materiOi. 
orientation di ff event f vom. pvetrious 

No 

element ? 

Yes 

5et u. p cooed r ie tyansfornw . 
iori. matrix [TR]. 

Invert tvo. rtsfovmaitom moIvix LINVT] 

Fovm [D1][TR] = [DTR] 

Form [1NVT][DTR] _ [D] 

ModLf y [D] f vorn ten. so' to en neevuj fovrn. 

Set parametevs for this Go ss point 

Form [J'1 motvix f rom. Product [LAM]CELCO] 

C alculati , the, dztevmimant of. [T] DETT 

Cak 1o e [ýJ] [INVERSET. ] 

Form. [I] '[Aý 
-- [INVERSET][LAM] _ [INNTEAM] 

Form. [B] vno±vix from. [INVTLAM] 

Fovm [D][B] pº-odý. ut Cv]CB] [DBJ 

Fovm [B]T[D][B] 
product [e]TCD6 = SuBK JC] 

__. :ý 

ýx 



ý ýC 

I 

Foym [7'] motvix f Yom product [LAM][ELCO] 

Calculate: t ý%e determin. ar of [7'] -- DETT 

Caicuiote. [-If' . [INVERSET] 

Form, [Tý [X] ^LINVERSET][LAM) _ [INVTLAM] 

Form [B] motvix f vorn [INVJ'LAM] : 

Fonm [D][B] product - [D][B] - [DB] 

Fovm. [B]T[D)CB] 
product ^ LB, T[DB] 

= [5UBK] 

M LLUIptq [SuBK] by DEU an wei9l kin f o. ctor 

H crd adl. d. result into element Lk] -'- [K] 

Dump element [K] ' into [MBK3 

( 
EHO) 

FIG. - 16.3 F lour dl acygm f ov the detevffi n Lon. 

of +ke. Cp. ] ma x iri ih, e pLan, e stress f in: ±±e element 
ano19sts pvo9vam . 



E 
zz "" 0 -1'xz 

axx 
-, 

0yy 
+ 

(I 
zz 

Ex Ey Ez 

Consequently, (1zz is expressed in terms of cr xx and 
ayy 

and the appropriate modifications made to the [Dl] 

matrix. The procedure is then identical to that 

followed for the plane stress element. 

16.4 FORMATION OF THE STRUCTURAL EQUILIBRIUM E(IIATIONS. 

The two-dimensional finite element, like the 

axisymmetric element discussed in Chapter Fifteen, 

possesses 'nly two degrees of freedom per node. 

Consequently, the same equation solution procedure 

DBLOKGAUSS2 was employed to solve the structural 

equilibrium equations. Therefore, the equilibrium equations 

were arranged and stored on the disc backing store file 

in the same manner as they were for the axisymmetric 

case. The only significant difference between the 

formation of the equilibrium equations for the axisymmetric 

and plane stress cases was that the latter element had 

four nodes rhereas the former only had three. Hence, 

the -' dumping" process had to be slightly modified so 

as to take this additional node into account. 

16.5 APPLICATION OF THE STRUCTURAL BOUNDARY CONDITIONS. 

As for the axisymmetrio program, only boundary point 

loads and kinematic constraint type boundary conditions 

were allowed for in the plane stress analysis program. 

-6 
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Consequently, they were applied and the corresponding, 

modifications made to the [MBK] matrix in exactly the 

same manner as before. Of course, in this case, the 

element's nodes are really lines extending through 

the total thickness 't' of the element. Thus, the 

nodal point loads and constraints are assumed to act 

over the whole thickness of the element. 

16.6 SOLUTION OF TAE STRUCTURAL EQUILIBRIUM EflUATIONS. 

Again, due to the similarity between the 

axisymmetrio and plane stress situations, exactly the same 

equation solution procedure was employed, see 15.6. 

16.7 DETERMINATION OF THE ELEMENT STRAIN AND 

STRESS CONPONE'TS. 

Although the strain and stress components can be 

determined at any point within the plane stress element, 

the position selected was again at the element's 

centroid. Thus, the [B] matrix is evaluated for the 

values of 6--0 and the element strain vector 

obtained using equation 14.21. The corresponding stress 

components are then subsequently obtained by equation 

14.23, after of course, the appropriate elasticity 

matrix for the element has been evaluated. 

The principal strains and stresses are again 

determined for each element using equation 15.10. 

(For the plane stress case the z subscript is merely 
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replaced by y and the r subscript by x. ) The 

directions in which these principal values occur are 

also determined. However, it must be remembered 

that with orthotropic materials the direction of the 

principal stresses do not necessarily coincide with 

the directions of the principal strains. 

16.8 DETERMINATION OF THE ELEMENT NODAL FORCES. 

For some of the dental structural analyses, it was 

desired to determine the force distribution occuring on 

the socket walls of teeth, subjected to lateral and/or 

intrusively applied loads. Although this could be 

obtained fro4n the principal stresses, the method employed 

here was to determine the equivalent nodal forces acting 

on the elements adjacent to the socket wall. 

In the plane stress program the number of elements 

for which the nodal forces are required is read into 

NELNF; the numbers of the individual elements themselves 

are read subsequently into the array (NOELF). The 

program then loops for each of these elements, deriving 

both the element stiffness matrix [k] and the nodal 

displacement vector [ELDIS]. The element nodal forces 

are then derived by equation 16.2. 

It is obvious that this aspect of tre program is 

inefficient as the stiffness matricos of the elEments at 

which the equivalent nodal forces are required, have 

already been determined during the formation of the 

structural equilibrium equations. Consequently, it 
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would be advantageous, if storage space were available, 

to store the appropriate [kj's so that they could be 

recalled for the subsequent nodal force calculation. 

16.9 PLANE STRESS AND PLANE STRAIN DATA CHECKS. 

The punched data for these programs was checked 

using the plotting technique discussed in 14.11. 

The flow diagram for the process is similar to that 

shown in FIG. 15.9. Various versions of the program 

were written to include either node numbering, element 

numbering or the indication of the principal material 

property direction, i. e. X' in FIG. 16.2 representing 

the direction of the major Young's Modulus Ex. Due 

to the size restriction of the plotting facility itself 

and the limited symbolic scales available, all these 

features are not desirable for the purposes of clarity 

on a single computer plot. 

A computer listing of a typical plot program is 

given in Appendix Six. 

16.10 PLANE STRESS PROGRAM TEST PROBLEMS. 

Various problems involving isotropic materials and 

having known solutions were examined using the plane 

stress finite element analysis program. However, 

known solutions to problems involving orthotropic 

materials are very scarce. Indeed, only one set of 

results. obtained from an experimental analysis employing 

electrical resistance strain gauges could be found, 

Greszczuk (83). 
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Consequently, the orthotropic feature of the program 

could not be rigorously tested. Only two of the 

test problems investigated will be discussed here. 

The first problem which involved only isotropic 

materials, was the simple cantilever structure having 

a length to depth aspect ratio of 3 to 1, shown in 

FIG. 16.4. This problem has been investigated by many 

authors and FIG. 16.5 gives a comparison of their 

results for the tip deflection and those obtained 

using the plane stress program. The structure was 

analysed using a9 by 3 "normal" element mesh as 

shown in FIG. 16.4a and by the 65 element "cross- 

grained" mesh shown in FIG, 16.4b. As can be seen, 

the tip deflectiorv obtained from bcth these meshes are 

quite accurate results although that of the more normal 

mesh arrangement is superior to that of the cross- 

grained mesh. This implies that even though a greater 

number of elements and degrees of freedom are employed, 

the cross-grained arrangement represents a much stiffer 

idealisation. 

The second problem was specifically chosen to test 

the orthotropic material section of the program. 

However, the only published work which could be found 

was by Greszczuk (83), who examined the differences in 

the directions of the principal stresses and strains in 

a simple tensile specimen of a fibre glass composite 

material. Greazczuk varied the direction of the 

unidirectional glass fibre reinforcement in his 
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specimens and determined the directions of the principal 

strains by means of a strain gauge rosette, see 

FIG. 16.6. This figure also gives the 48 element, 
65 node, one quarter finite element idealisation while 

FIG. 16.7 gives an abridged layout of the data required 

for the problem, together with the corresponding coding 

used in the computer program. PIG. 16.8 gives 

Greszczuk's and the finite element results for the 

differences in the directions of the principal stresses 

and strains for various fibre reinforcement orientations. 

The results are indeed in very close agreement. 

Due to the similarity in the axisymmetric and 

two-dimensional programs, an estimate of the computional 

time required for a plane stress or plane strain problem 

can be obtained from equation 15.11. 
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CHAPTER SEVENT 2N 

THREE-DIMENSIONAL FINITE ELEMEKT 

ANALYSIS PROGRAMS 
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17 THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS 

PROGRAMS 

Structures that are generally three-dimensional 

in characterf can in some cases be adequately 

represented and analysed using simple two-dimensional 

models. Even so, many problems arise where a full 

three-dimensional analysis has to be carried out if 

'acceptable' solutions are to be obtained. In the 

finite element approach, these three-dimensional 

structures must be represented by three-dimens onal 

type finite element models. 

The simplest three-dimensional finite element, 

(which corresponds to the 3-noded triangular element 

used in two-dimensional and axisymmetric analyses), 

is the 4-noded tetrahedron type element shown in 

FIG. 17.1a. However, it has been found that this 

element is inefficient with respect to the 

computational time required and the accuracy of the 

obtained solution when compared with the hexahedra 

type of elements, Clough (137). Consequently, the 

8-noded and 20-noded hexahedra finite elements also 

shown in FIG. 17.1 were adopted for the work 

reported herein, 

The computational time required for fully 

three-dimensional analyses is several orders of 

magnitude greater than that required for an equivalent 

Ski 



zIWI 

CO Tetrahedron. 3-D f intke 
element. 

b s- boded hexalzedva 3-D 
f i. rü±c element. 

Y(v) 

C) 20- noded h. exrohedva, 3-D 
f mite element. 

Xlul 

FIG. 17. 1 some ty*a twee- dýz+vexlstio, rval. 
fix%ae elements. 



two-dimensional or axisymmetric analysis having either 

a similar number of elements or nodal points. This 

is because of the increase in the time required to 

form the element stiffness matrices and due to the 

increased bandwidth of the resulting structural 

equilibrium equations. Consequently, much effort has 

been expended to find ways of improving the economics 

of three-dimensional finite element analyses& 

Here, the method of conjugate gradients has been 

employed to solve the structural equilibrium 

equations obtained from both 8 and 20-noded finite 

element idealisations. However, it was found that 

this method, at least, for the dental structural 

type of problems encountered, was inferior to that 

of the direct Gaussian elimination method employed 

for the axisymmetric and two-dimensional programs. 

For completeness however, a brief discussion of the 

work carried out is included in Appendix Two., 

The technique employed for the three-dimensional 

analyses using the direct Gaussian elimination approach 

follows again the general procedural layout of FIG. 14.1. 

The two three-dimensional elements employed, namely the 

8 and 20-noded elements shown in FIG. 17.1, were each 

incorporated into a separate program. Consequently, 

both programs follow the general pattern of the plane 

stress program discussed in the previous chapter. 
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Ageing because both the 8 and 20-noded programs were 

very similar, only the 20-noded version will be 

discussed in detail. However, the main 

differences between the two programs will be indicated. 

The flow diagram for the 20-noded program, expressed 

in terms of the corresponding Algol variables 

utilized in the program listing given in Appendix Seven, 

is shown in FIG. 17.2. 

17.1 STRUCTURE DISCRETIZATION 

FIG. 17.3 shows the arbitrary shaped 8 and 

20-noded isoparametric hexahadra type of finite elements 

selected for the three-dimensional finite element 

analysis programs. The figure also shows the 

correspondence between the global Cartesian XYZ and the 

orthogonal orthotropic material'XYZ axis systems. The 

elements' local coordinate directions are also shown 

together with the element node numbering sequence 

systems employed. 

17.2 DISPLACEMENT MODELS 

The nodes for both the 8 and 20-noded finite 

elements were each ascribed three degrees of freedom, 

namely, u, v and w displacements associated with the 

global XYZ Cartesian coordinate axis directions 

respectively. Consequently, the displacement of any 

point within either of the elements can be expressed 
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in terms of the local coordinates and the nodal 

displacement values by : - 

uss ý1 sýa N1u1 + N2u2 +.... Nm 
m 

Nlvl + N2V2 +.... Ný 
m 

17.1 

w N1W1 + N2w2 + Nmwm 

While each of the N functions is expressed in terms of 

the element's local coordinates, the number of functions 

required is equal to the element's corresponding number 

of nodal points, i. e. me8 or 20. The N functions for 

both of the elements employed, and expressed in terms of 

the node numbering sequence system shown in PIG. 17.3, 

are given in PIG. 17-4- 

17-3 DERIVATION OF THE a-NODED AND 20-NODED 

FINITE ELEMENT STIFFNESS MATRICES 

As for the two-dimensional analysis programs, 

both body weight and thermal loading effects were 

excluded. Consequently, equation 14.7 reduces down 

to equation 16.2. 

For three dimensional stress analysis, there are 

six separate strain components which contribute to the 

internal work of the element. 
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These are: - 

Normal strain in X direction 
öx 

E 8v it 1$ Y of 
ay 

c aw Z is 
ZZ az 

<Ej s iJ s 

y au + av Shear strain in XY plane xy ay ax 

y ay + aw ff it YZ is 
yz az ay 

yzx aw + 8u is it ZX It 
ax az 

Following the argument of section 15.3, we obtain for the 

three-dimensional ca se: - 

8f 8N1 8N2 aNm ql 

aS as as ab 

of aN1 aN2 aNm q2 

an all an an 
of aNl 

- 
8N2 8Nm q3 

T JR aV, aE. 

or 

of 
aä 

of 
all 

of 
aF, 

m [x] 

ql 

q2 

q3 

qm 
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where [xl is either a3 by 8 or a3 by 20 matrix 

depending upon whether mn8 or 20. 

Hence, 

of ax - ay az ar 
as 76 as as ax 
of ax ' u aZ of 
an Fn an a1 ay 
of ax ay, az of 

at at at at az 
or 

of of 
86 ax 

än [J].. ay 
._ 

17.4 

of of 
a az 

where [J] is the equivalent Jacobian transformation matrix 

for the three-dimensional case. Employing equation 14.6 

and rearranging, we obtain: - 
.. - ax ay az aNI aN2 . .. Om xi yl 21 
6 a6 6 56 ab aS 

x2 y2 z2 
ax ay az aNl aN2 . ... 0% 
TT) FT) FT) ST) al) 71 

ax ay az 8N1 a12 . 8% " 

. " " 

x y Z m m 
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which is equivalent to: - 

[J] [xI 

x1 y1 Z1 

x y z 2 2 2 

x y z m m m 

17.5 

Consequently, by inverting the result of the above matrix 

product, [J]-1 can be obtained for either the 8 or 20-noded 

finite elements. In this case 

a6 a 8x ax ax 

M BT) BE 
Ty By ay 
a6 an ArL 

aZ aZ az 
which is equivalent tot- 

öyaz - msz Paz '- Yz Bz - 8Y 

anal Kai ataa asap asal anas 

(jr, a1 
axaZ - axaz aXaZ - axaz axaz - axaz 

--- BUT) anat asap aas aas asain 
det[J] 

axay - axay aOay - Lily- axay - axe 

a+ýa ar, ari ar, ab agar, abari arias 
Hence, on substituting equation 17.3 into equation 17.4 

and rearranging we have 

17.6a 

17.6b 
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ar ql 
ax 

of a [J]-1[x] 
q2 

av 
of 
äZ 

qm 

which for the three-dimensional case having u, v and w 

displacement components becomes 

au au au 
ax ay az 

av ao ao [J]'1 [k] 
Tx- ay az (INVSLAM) 

aw aw av 
1 a.. 37 

u1 V1 wi 

u2. T2 w2 

II 

III 

u "" w 
m `m m 

Consequently, the [B] matrix in equation 14.21 can be 

obtained for either the 8 or 20-noded elements from the 

appropriate [J]+1[x], (i. e. INVJLAM) matrix product. 

The six independent stress components of a linear 

elastic orthotropio material are related to the 

corresponding strain components shown in equation 17.2 

by equation 14.22, that is: - 

ý77 

17.8 
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e1 -µ -µ x000c! xx 
Ex Ehr Ez 

en -- 1- µa 000 Gyy 

Ex Ey Ez 

ezz ~µxz 'µ z1000 
0zz 

Ex Ey Ez 

000100 Y 
Gxy 

Y0000 1- 0 
yZ Gyz yz 

Yzx 000001 
zx Gzx 

Inverting the above, we obtain 

{Q} 
- [M]-1 {s) 

where the [M]-l elasticity matrix is equivalent to 

the [Dl] matrix given by equation 16.12 for the plane 

stress case. Consequently, the [M]-1 matrix shown above 

is only applicable provided that the 7, ! *2 orthatropic 

material axes coincide with the structural XYZ coordinate 

axes. Therefore, for the general element whose material 

axes are arbitrarily orientated, the appropriate 

transformation has to be performed. For the three- 

dimensional case this is carried out more easily using 

the Cartesian tensor appruach. 

Consider a position vector orientated in the )CYZ 

Cartesian axes system to have the coordinates x,, x2 and 

x3 with respect to the X, T and Z coordinate directions 

respectively. In a new RT2 Cartesian coordinate system 
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having the same origin as the old XYZ system, the 

coordinates of the position vector will be: - 

", a11°1 + a21x2 + a31x3 

g2 s 

g3 

or in matrix form 
fl) 

812x1 + 822"2 + x32"3 

a13x] + a23x2 + x33"3 

[tr] (x) 

where the aijs are known as the direction oosines1 see 

FIG. 17.5. In indicial form, equation 17.9 can be 

written as 

xj aij"i i, 3 " 1,293 

Now if the strain components 
(c) 

are also known in the 

XYZ coordinate system, then, because strain is a second 

order tensor quantity, the corresponding tensorial 

strain components can be expressed in the 7$2 

coordinate system by the equivalent indicial equation: - 

cJ1 aijaklcilc i, j, k, l = 1,2,3 

Therefore, on expanding the above equation and by 

collecting the terms, remembering that c21=a12 etc, we 

obtain the matrix equation 17.10 which is shown in FIG. 

17.6. Hence, by substitutiag x, y and z for 1,2 and 3 

respectively and by expressing the strain components in 

17.9 

terms of the engineering strains, i. e. y 2c etc, 

we obtain equation 17.11 shown in FIG. 17.7, i. e. 

t z) - () (c) 17.11 
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Referring to the arbitrarily oricntatei coordinate 

axis system, Hooke's generalized law for an elastic 

orthotropic material can be written as 
[B. ) 

a [T)] {E) 17.12 

Similarly, for the global or structural XYZ coordinate 

axis system, Hooke's generalized law can be written in 

the form given by equation 14.23 i. e. 

La) (D] [c) 

Since the stress vectors 
(B] 

and 
(a) 

correspond to the 

strain vectors 
f i) and 

{a) 
respectively, for equality of 

the internal work of both systems 
(. ) T 

ta) . 
Cc) T (c) 17.13 

Hence, by substituting from equations 17.11,17.12 and 

14.23 we 'btain 
(c) T[m]T[ý][Tn] {E) 

_ 
(e) [D] {E) 

where (D) "" [TR]T[D][Th] 17.14 

Thus, the plasticity matrix [D] for a finite element in 

terms of the structural XYZ coordinate axis system can 

be determined from the known elasticity matrix [15] in an 

arbitrary % ': 2 coordinate ezis system, and the corresponding 

table of direction cosines. 

The element stiffness matrix [k] can now be evaluated 

as before by using the appropriate [B] matrix for the 8 

or 20-noded element and the elasticity matrix [D], i. e. 

[k] _ 
f[B]T[3)) [B] dVol 
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For the three-dimensional case 
/dVol /dxdydz 

However, the [B] matrices have been expressed in terms of 

the element's local coordinate systems and so the 

integrals must be evaluated with respect to these 

coordinate systems, i. e* 
/dVol 

s 
f//a(xyz) 

dödTd 

where axz is equal to the determinant of the [3] matrix. 
g-6 9 T) 

Thus 
:i . t...,. 

[k] a 
/J/[BJT[D][B]det[a] d6di)dt 17.15 

As before, the integral is evaluated by using the Gauss 

quadrature formula. Although 2 by 2 by 2 integrating 

points are sufficient for the simple g-noded element, a 

higher order integrating rule is required for the 20-noded 

element, particularly, when it is in a distorted form, i. e. 

when it s shape departs from that of a cube. However, 

because the computational time required to form the element 

stiffness matrix is directly proportional to the number of 

integrating points, 3 by 3 by 3 integrating points proved 

to be too expensive. Consequently, the 14 point 

integrating rule developed by Irons (138), was employed 

in order to combine economy with sufficient aocuracy, see 

Appendix One. 

A further point worthy of note is the procedure BTDB 

which has been incorporated into the three-dimensional 

.ý 
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analysis program. A large proportion of the 

computational time required to form the element stiffness 

matrix is taken to carry out the matrix triple product 

[B]T[D][B]. However, because the [k] matrix is always 

symmetric, there is no need to compute the coefficients 

below the main diagonal line. Indeed, procedure BTDB 

carries out the matrix triple product only on those terms 

falling on or above the main diagonal line. Consequently* 

this saves almost 50 0/0 
of the computer time 1"equire to 

form the full product. Any terms which are required 

below the main diagonal for the subsequent block 

dumping process are simply reflected from the appropriate 

coefficients determined above the main diagonal. 

17.4 FORMATION OF THE STRUCTURAL EQUILIBRIUM E UATIONS 

The direct Gauss elimination method of equation 

solution previously described, was again adopted for the 

three-dimensional finite element analysis programs. 

Therefore, it was necessary to form the complete modified 

arrangement of the structural stiffness matrix [MBK]. 

Of course, for the three-dimensional case, the number of 

degrees of freedom per node has been increased from two 

up to three. Consequently, the solution procedure and 

dump processes had to be modified from those used in the 

axisymmetrio and two-dimensional programs in order to 

handle the equilibrium equations in a3 by 3 submatrix 

block form. Nevertheless, apart from this, the formation 
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of the structural equilibrium equations followed exactly 

the same process as that previously described for the 

axisymmetrio program. 

It must be emphasized that the formation and dumping 

proceseAC incorporated into the 8 and 20-noded finite 

element analysis programs, determine the structural node 

numbering system that can be employed. In fact, the 

dumping process requires the node numbers of each of the 

elements in the structure to progressively increase when 

the element node numbering sequence depicted in FIG. 17.3 

is implemented. However, this sequence can generally 

be achieved if the structure is numbered in the Z, Y and 

X coordinats directions respectively, i. e. the node 

numbering sequence of the structure follows the same 

pattern as the node numbering sequence of tha elements, 

see PIG. 17.3. Although this node numbering sequence 

may not be attainable for hollow ring type structures, 

the reason for adopting this restriction was simply for 

one of economy. This method eliminated the need for 

any 'IF' statements in the programs. These would other- 

wise be required in order to check whether nne node number 

was greater than another so that the appropriate terms of 

the element stiffness matrix could be dumped* 
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27.5 APPLICATION Or THE STRUCTURAL BOUNDARY CONDITIONS 

Throb types of boindary conditions were required for 

the three-dimensional finite element analysis programs. 

In addition to tha kinematic constraint and boundary 

point loading conditions previously described for the 

axisymmetrio and twc-dimensional programs, it was 

required to incorporate the boundary type surface loading 

condition as well. 

The nodal. constraints of the ti. ree-dimensional 

finite element modeln were implemented in the programs 

in a similar manner to those of the axiaymmetric and 

two-dimensional cases. The only difference being in the 

way in which the data for the nodes, which have one or 

more of their three degrees of freedom constrained, is 

read in. The data simply consists of the node number 

followed by either a1 or a zero for each of the X, Y and 

Z coordinate axis directions. Constrained degrees of 

freedom are indicated by a1 while unconstrained degrees 

of freedom are indicated by a zero. The program P"oarches 

for the is and subsequently, assigns the appropriate degree 

of freedom in the structural displacement veotor, the value 

of 0.000001. As before, this value is used as a pointer 

which enables the program to carry out the necessary 

modifications required to the [MBK] matrix. 

The nodes where point forces are to be applied are 

handled in a similar manner. The node numbers are simply 
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read in as before but in this case they are followed by 

the actual values of the point loads applied to the 

structure. Thus, the node number is followed by three 

entries which correspond to the X, Y and Z coordinate 

directions respectively. A zero entry is used to signify 

a zero load component. The actual non-zero values are 

simply added into the appropriate location of the 

structural nodal force vector 
{F) 

. 

As discussed in 14.661, it is a relatively easy 

matter to apportion the distributed boundary loading 

applied to the surfaces of the simple types of finite 

element. This is achieved by dividing the total load 

applied to the element surface equally between that 

surface's nodes. While this is also true for the 8-noded 

three-dimensional element, equation 14.18 must be employed 

for the 20-noded element if an 'equivalent' or 'consistent' 

system of nodal point loads is to be derived. 

Consider the 20-noded finite element shown in FIG. 

17.8 to be loaded with a uniform pressure of g per unit 

area over the surface corresponding to 6 -1. Using 

equation 14.18 we have: - 

LFb{ ' 
/[N)TA 

However, as can be seen from FIG. 17.8, the surface of the 

element for b=-l does not lie parallel to the TZ plane. 

Consequently, the uniform normal surface leading will 

produce an equivalent set of X9 Y and Z nodal forces. 
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Therefore? before thase forces can be evaluated, the 

respective X, T and Z projected or vector areas associated 

with the surface must be determined. Again, consider 

FIG, 17.8 and let the area of the surface be represented 

by the vector dA, acting in a direction normal to the 

surface. It can be seen that the base vectors dtl and 

dV, will lie on the surface as shown and so the vector area 

dA will. be given by the cross prcduot of the two base 

vectors: - 

i. e. KA - dý xd 

or expressed in component form 

ax ax 
äT) at 

dA äý 
xä dhdr, 

az az 
an at 

which is equal to 

ayaz 
Rat al at 

dA azax - axaz dTid 17.16 

axay - aýax 
anat an at 

Comparing equation 17.16 with equation 17.6b, it can be 

seen that the columns of the [J]-1 metrix, which are 

respectively the 6, i an t contravariant base vectors, 

represent vector areas. Thus, the vector area of the 6--1 

face can be alternatively expressed by 

dA " det[J]. (S oontravariant base veotor). didV 
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Therefore, the equivalent system of nodal forces for the 

20-noded element loaded by a uniform pressure on the 

ö--l face as illustrated in FIG. 17.8 becomes: - 
Flx H1 00 

Fly 0 N1 0 

F1 
Z00 

Nl 

P2x N2 00g det[J] INVERSEJ [1,1] 

F2y 0 N2 0 

F2z 
f00 

N2 g det[J] INVERSEJ [2,1] ä 

" 

F8x 

Fe. 

F8z 

Thif 

J 

c can bi 

err 0 0 s 
0 N8 0 

0 0 N8 

3 evaluated usil 

g det[J] INVERSEJ [391] 

ig numerioal integration over 

the face for 6 -1, see Appendix One. If g was not 

tdV 17.17 

uniform over the surface of the element, then the variation 

would, of oourse, also have to be considered in the above. 

For the finite element analysis programs discussed 

here, the equivalent system of nodal forces for a 

particular element subjected to a surface loading, was 

determined separately outside the main analysis programs. 

Subsequently, once the equivalent nodal point forces had 

been determined, they were applied to the appropriate nodes 

of the structure at the time of analysis in exactly the 

same manner as were the actual boundary point 1k-ads. 

398 



17.6 SOLUTION OF THE STRUCTURAL EQUILIBRIUM EQUATIONS 

As previously mentioned, the Gauss elimination 

method in 3 by 3 sub-matrix block form, was employed to 

solve the structural equilibrium equations for the 

three-dimensional finite element analysis programs. 

The procedure is called DBLOKGAUSS in the computer 

listing of the 20-noded program given in Appendix Seven. 

17.7 DETERMINATION OF THE ELEMENT STRAIN AND 

STRESS COMPONENTS 

The six strain components given by equation 17.2 

together with the corresponding stresses, were 

determined for eadh of the 8-noded elements at the 

elements' centroid, i. e. at 6 fat=0. Thus, after 

evaluating the [B] matrix at these local coordinate 

values, the strain vector for each of the elements was 

obtained by equation 14.21. Subsequently, after the 

appropriate elasticity matrix was evaluated with respect 

to the global coordinate directions, the corresponding 

stress components were determined by applying equation 14.23" 

For the 20-noded elements, exactly the same process 

was adopted as described above. However, in this case 

the strain and stress components were evaluated at fifteen 

separate positions in each element. The program numbering 

sequence of these positions is clearly shown in FIG. 17.9. 
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17.8 THREE-DIMENSIONAL DATA CHECK 

As for the axisymmetric and two-dimensional 

programs, the three-dimensional data card packs were 

checked using the same procedure discussed in 14.11. 

However, because of the obvious difficulty of displaying 

a three-dimensional object on a two-dimensional drawing, 

the three-dimensional finite element model structures 

were drawn on the plotter in isometric type projection, 

see FIG. 9.5b< This was achieved by simply selecting 

the projection required and determining the corresponding 

nine direction cosines between the XYZ Cartesian global 

axis system of the structure and the X', D Z' Cartesian 

coordinate system of the graph plotter, see FIG. 17.10. 

(As can be seen from the figure, the Z1 axis of the plotter 

is taken as being normal to the plotter paper. ) Hence, 

by using the coordinate transformation matrix given by 

equation 17.9, each of the structural nodal coordinates 

was transformed to the plotter's 'new' coordinate system. 

The transformed nodal coordinates (multiplied by some 

suitable scaling factor), were then plotted by assigning 

the transformed X structural nodal coordinates to the 

plotter's Xe axis and the transformed Z structural 

coordinates to the plotter's 1' coordinate axis. Node 

and/or element numbering was subsequently carried out 

as before, see again FIG. 9.5b. 
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The flow diagram for the three-dimensional data 

plotting program is given in FIG. 17.11- 

17.9 THREE--DIMENSIONAL PROGRAM TEST PROBLEMS 

There is a dearth of published results on genuine 

three-dimensional structures which were suitable for 

testing the three-dimensional finite element analysis 

programs. Indeed, no results at all could be traced in 

which urthotropio materials were involved. Consequently, 

the working of the orthotropic material feature of the 

programs could not be examined. Consequently, various 

simple structures such as an end loaded cantilever and a 

tensile test specimen involving isotropic materials, 

were analyssd using both the 8 and 20-noded analysis 

programs. The deflections, stresses and strains 

obtained were in all cases in very close agreement with 

the generally accepted values derived by using conventional 

analytical techniques. As a more exacting test, the 

Bousin-: sq structure which was examined using the 

axisymme±rio program, see 15.9 was also analysed. 

However, because the results for this problem, obtained 

by using bcth the 8 and 20-noded finite elements and 

employing the conjugate gradient method of equation 

solution, are included in Appendix Trog the results will 

not be discussed here. Inatead9 another formidable 

problem for which results were available will be presented. 
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The problem c'nei. eted of a 21! incii a'luar a by 6 inches 

thick plate, simply 3uprtrted around the perimeter and 

loaded centrally with a single ti er'c ioa7. poiat load. 

Hence, because of the double sywüztry (like that of the 

Bousinesq structure), only one quarter of the plate needed 

to be modelled. The structure was modelled by using 

eight 20-noded elements as shown in FIG. 17.12. (Note 

that the structural node numbering sequence follows the 

required ZYX pattern. ) FIG, 17.13 shows a comparision 

between the displacemanta of the plate obtained by using 

the program and those obtained by McKinnon ; i39) and by 

Zienkiewi(, z (14.0). As can be seen, the agreement between 

the sets of results is very grod. Of course, the 

displacement, strain and stress values obtained from the 

finite eleme"it analysis program, were 7: aentical to the 

results supplied by Zienkiewicz down to the sixth decimal 

place. This is haraly surprieing however, as Zienkiawicz 

used e. _ac tom;, the same fi: zite element ideal. ieai., -'_on a! 3 

employed ieve. 

As befors, it was poosible to derive a formula by 

which the acaputat'. onal time required to analyse a specific 

structure could be c2timated. For the 20-noded finite 

element program e.. picfing the fourteen point integration 

rule this was found to be. -- 

Time(secs) a 184xNEL"Eid + 00014([M NND+1]2xNONOP) 

N. P. Li the above NELEM should be the number of 

different element [k]a which have to be derived. 

17.18 
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18 COMPARISON OF FINITE ELEMENT MODELS AND 

GENERAL CONCLUSIONS 

Many structures, and in particular many of the 

dental structures met with in this project, are 

three-dimensional in nature. However, full 

three-dimensional finite element analyses are very 

expensive in terms of the computational time required. 

Indeed, the computer installation employed for the work 

reported herein was in fact unsuitable for three- 

dimensional analysis due to the small amount of core 

storage space available. Consequently, it was found 

necessary to examine some of the dental structural 

problems by employing the cheaper less-demanding 

axisymmetric and two-dimensional finite element model 

simulations. Consequently, the aim here was to 

examine a simple dental type structure using varicuo 

finite element simulations in order to ascertain the 

limitations of these simplified models. 

18.1 MITE ELEMENT MODELS AND TEST PROCEDURE 

The structure employed for this comparative study 

was the shoulderless mesiooclusodistal (M. O. D. ) inlay 

configuration which was examined in section 5.5 in 

Volume One. The structure which consisted of a 

photoelastic resin superstructure supported on an 

aluminium base, was represented by various finite element 

model simulations the details of which are given in 
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FIG. 1811. As indicated by the figure, the models 

designed were such that the grade of the element meshes 

produced were very comparable. It must be realised 

ho? ever, that for the axisymmetriu model and for the 

three-dimensional model proper, the M. O. D. restoration 

reverted to that of a full crown type restoration. 

18.2 RESULTS 

Both the photoelastic restoration and the aluminium 

base materials were assumed to be isotropic. The 

mechanical properties employed were: - 

Photoelastia reuin EQ6.15 x 105p. s. i., µ-0.365 

Aluminium E= 10.5 x 106p. S. i., µ=0.33 

A single point load, equivalent to a 100 lbf 1^ad for 

the whole structure, was applied centrally to the finite 

element models, as shown in FIG. 18.1. The models, in 

addition to being 3onstrained on the appropriate planes 

or axes of symmetry, were all constrained distally in 

the -vertical direction. The vertical displacement and 

stress distributions obtained for the models at both a 

high and a low level are given in FIGS. 18.2 and 1803 

respectively. 

18.3 DISCUSSION OF RESULTS 

As expected, there were large differences between the 

magnitudes of the results obtained using the various 

finite element m odela. However, apart from the 

displacement distributions for the pseudo and the three- 

dimensional models, the displacement and stress 
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distribution patterns obtained were very similar in 

form. Of course, because the magnitudesof both the 

displacements and the stresses are directly prrportional 

to the thickness of the twn-dimensional models, one 

would expect a considerable variation between the values 

obtained from these models and those obtained from an 

equivalent three-dimensional model. For this reason, the 

two-dimensional slice type model using three-dimensional 

elements seemed to offer an interesting compromise 

between two and full three-dimensional analyses. 

However, as for the pinne stiess and plane strain 

cases, the displacement and stress components perpendicular 

to the plane of the model aze not effectively interpreted. 

Consequently, a compromise between the single layer and 

prismatic three-dimensional models might be a more 

promising approach. 

Although a certain amount of "smoothing" of finite 

element results has to be generally undertaken, the erratic 

displacement distributions obtained for the pseudo and 

full three-dimensional simulations using the 8-noded 

finite elements were very surprising. Indeed, it is very 

difficult to "smooth" the values obtained into a 

reasonably accurate and useful form. Even so the stress 

distributions determined were smooth and seemed to be 

reasonably correct. It is worthy to note however, that 

the displacement patterns obtained for structures using 
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the 20-noded elements have always been smooth. 

18.4 GENERAL CONCLUSIONS 

The finite element method of stress analysis is 

a versatile method which allows structures of intricate 

shape and form, and having complex material behaviour, 

to be analysed. Indeed, the method can provide 

solutions to problems which have hitherto been intractable. 

However, for the most efficient implementation of the 

method, a large sophisticated computer complex is 

required. In terms of economics full three-dimensional 

analyses are orders of magnitude more costly to perform 

than are equivalent axisymmetrio and two-dimensional 

analyses, (FIG. 18.4 gives a comparison of the cost of 

the various types of analyses carried out earlier in the 

chapter). Consequently, it is advantageous to represent 

three-dimensional structures where possible by the 

less expensive, simpler type of finite element model. 

Although the absolute values of the displacements and 

stresses may be exaggerated by using these simpler models, 

with care, the trend or pattern of the distributions can 

often be obtained. However, irrespective of which ever 

type of element is employed, it is essential to have some 

means of checking the sometimes voluminous data if analyses 

of incorrectly defined structures are to be avoided. The 

plotting technique employed here was simple, cheap and 

very flexible and although it did not eliminate the human 

element completely, proved to be very satisfactory. 

407 



Type of Type of Ne. of N2. of Ne. of Hoff Computer 
An L 5L5 E len ent Elements Nodes Derb. of Fv. Bondwdh T me(5ec) 

Axisrmetvic 3- noded 64 46 92, 14 65 
tvtzgles 

PLane 6tvess 
4-nodzd 32. 46 192 14 55 
vedangL s 

Plane swoon. 
4- nodz& 32 46 92 14 55 
Yedang" 

Pseudo 3-D ß- n'O 32 92 2.76 51 '710 
ýLeX4ý'LeCý. Y0. 

PrLSmat. c 3-D $r ded 12ß 230 690 96 41312, 

3-D $- '' 118 216 648 96 4466 
h. eýcaheýdýra 

F1G. 18.4 C om. Poari. son, of the com. puteY tt. +nes 
vcc 'ed. f ov anoILy xu ate various f in: äe elernertt 
MO" Of t M. O. D. tijpe äructw'e s overt in FtC,. 1B. 1. 
N. B. AU pro9Yams carp 9ccl the diYect Gauss 

el. +x, ý,. in. otýor Ln Submatrix block form. 
udýt tine stiff n. ess coe ff Lc e. n±s stored is a disc 
bachig stoYe f Lle. 

,, 



CHAPTER NINETEEU 

FURTHER DEVELOPMENTS AND RESEARCH 

408 



19 FURTRER DEVELOPMENTS AND RESEARCH 

19.1 INTRODUCTION 

In the past, analyses which have been concerned with 

biological structures have generally considered the 

tissues to undergo only small strains and to behave as 

linear elastic isotropic materials. However, it is well 

known that many of the tissues undergo large deformations 

and are highly directionally orientated structures, so as 

to provide optimum mechanical properties to meet the 

functional demands placed upon them. 

Although nnisotropio material behaviour and the 

associated mechanical properties of tissues are neither 

fully understood nor documented, the work reported in this 

thesis has attempted to take into account these directional 

variations. Even so, to do this it has been necessary to 

assume that the tissues undergo only small displacements 

and behave as linear elastic nrthotropic materials. 

However, it is becoming more apparent that even this model 

is still a very long way away from simulating actual tissue 

behaviour. Evidence is being accumulated which suggests 

that the tissues of the body are more nearly represented 

by linear viscoelastio material behaviour, Sedlir (21), 

Wills et al (81) and Edwards (141). Consequently, as the 

tissues' properties for this type of material behaviour 

become b¬tter known, methods of analysis which can incorporate 

and utilise this new data will be re; jaired. 
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The finite element method of stress analysis can be 

adapted for the analysis of structures involving visco- 

elastic material behaviour. Consequently, with this 

added facility, the method has an even wider field of 

application in the area of Bioengineering. While the 

next section outlines how viscoelasticity can be 

incorporated into the finite element method, the final 

section of the chapter discusses some other non-dental 

medical problems where the method could or has been 

fruitfully applied. 

19.2 EXTENSION OF THE FINITE ELEMENT METHOD OF ANALYSIS 

TO PROBLEMS INVOLVING VISCOELASTIC MATERIAL 

BEHAVIOUR 

For problems involving small strains and linear elastic 

material behaviour, the constitutive equation assumes that 

the stress-strain relationship is independent of time. 

However, fcr materials which exhibit linear viscoelastic 

behaviour, the strains and stresses are dependent upon 

the loading history of the material, see Chapter Three 

and Lee (142). Nevertheless, even though the constitutive 

equation for a viscoelastic material is dependent on time, 

the general conditions of displacement continuity and 

equilibrium still have to be satisfied, Zienkiewicz (129). 

Consequently, the only relationship which has to be 

modified in the finite element procedure outlined in 

Chapter Fourteen, is equation 14.24, namely: - 
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[Q} [D]( [c) 
- 

[e} 

The equivalent relationship for a linear viscoelastic 

material can take the form of either 

{Dý a [D((E})] 

(cl) f( LEI ) 

or{e} - f( (Q) ) 

Therefore, by varying one or more of [D], [) or IJ an 

iterative type solution to the structural equilibrium 

equations given by equation 34.19 can be obtained. 

Obviously, the quantity which is varied, depends upon the 

nature or physical law defining the constitutive equation 

for the material. If adjustments are made to the [DJ 

matrix the process is known as one of variable stiffness 

whereas if (E) 
or 

(1) 
are adjusted, then the approach is 

termed either one of 'initial strain' or 'initial stress'. 

The main disadvantage with the variable stiffness 

approach is that at each step in the solution process the 

structural stiffness matrix has to be reformed and a 

completely new solution found to the resulting equilibrium 

equations. For problems involving creep however, it is 

usual to determine the increments of the strains in terms 

of the corresponding stresses. Consequently, equality 

between the elastio relationship given by equation 14.24 

and the corresponding viscoelastic constitutive relationsh'p, 

is achieved by making adjustments to the value of 
[e, 

Hence, as 
{eJ 

affects the value of the nodal forces [R) 
, 
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the iterative procedure is one of solving 

[K]td)- R((d)) -0 

Zienkiewicz et al (143). 

Initially, a solution is sought to 

jd0 
s [K0]_1 [R j 

in which 
fRj. 

are the actual loads applied to the 

structure. The element elastic strains and stresses are 

then determine# in the usual way. Consequently, by 

assuming these stresses to remain constant throughout the 

time interval At, the true or actual strains are 

subsequently determined from the constitutive equations- 

Cc) 
° f( (o) ) 

Equality between these actual strains and the elastic 

strains, determined by solving the equilibrium equations, 

is obtained by adjusting the value of 
U in equation 

14.24. The additional nodal forces required to balance 

these 'initial strains' 
[C) 

are then computed as shown 

by equation 14.17, in a manner similar to that used for the 

thermal crfects in the axisymmetrio program discussed in 

15.3. Hence, by taking the new overall nodal force vector. 

, the new nodal displacements are obtained from 

(do 
° [Ho]_l {R1) 

This iterative type process is then repeated for all time 

increments as indicated by the flow diagram shown in FIG. 

19.1. Of course, the question arises as to what values 

must be ascribed to the elastic constants. 
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If the material behaves in an essentially elastic manner 

with only small departures from linearity, then the original 

values of the properties are probably accurate enough. 

However, if it is apparent that non-linearity occurs at 

all stress levels, it may be necessary to make adjustments 

to the elastic properties during the iterative process. 

It is of course, advantageous if the same structural 

stiffness matrix can be used at every stage of the 

solution process. If the matrix can be left in a 

partially inverted state after the first solution, then 

each additional iteration can be carried out in only a 

fraction of the time required for the first solution. 

An algiernative approach to the one outlined above, 

is to determine only the increments in the nodal 

displacements resulting from the additional nodal forces 

required to balance the 'initial strains' 
{ecj 

, i. e. 

{Qdlý 
_ [K(, ]-1 {QR1} 

eto. 

In this case, the additional forces [CSR} 
required at each 

stage of the iterative process, can be considered simply 

as being the unbalanced residual forces acting on the 

structure. 

19.3 SCOPE AND APPLICATION OF THE FINITE ELII', T'KT METHOD 

TO OTHER MEDICAL PROBLEMS 

The finite element method of analysis has been limited 

in this thesis almost exclusively to problems in the field 

of dentistry. Although suggestions for further research 

in this field were proposed in Chapter Twelve, it is 
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apparent that the method can b' appli''d '; o a wide variety 

of other medical problems. In fact, Ghista ý144), has 

employed the method to estimate the level of the stresses 

which can occur in the left ventricle of the heart during 

the cardiac cycle, and Matthews and West (145), to study 

the mechanical behaviour of the lung loaded bfr the 

action of it s own weight. This work, which is still in 

lb ^ early stages, has like nearly all work in Bl. omechanics, 

been hampered by the paucity of data available concerning 

the mechanical properties of the tissues involved. 

The finite element method may also have other 

applications in the cardiovagcalar field in helping to 

understand how the chanv`2s which occur in the blood 

vessels, affect the course of heart diseazje. The method 

could be emplcyed to study blood flow in the arteries and 

to look at the effect-, on the flow and flow patterns 

caused by the hardening of the vessel walls as a result 

of the d13 ase process. 

Another area of medicine in which the finite element 

method of analysis could play a significant role, is in 

the field of orthopaedics. Indeed, there are numerous 

situations where the m, ethM could be applied to investigate 

skeletal structural problems. An c'rvious example lies 4. n 

the area of implant surgery. Here, the majority of total 

joint replacements rely upon a filler material or cement 

for the fixation of the prosthesis into the marrow cavitýr 

of the bone. In the case of the hip replacement for 
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example, it is not known how the forces applied to the 

head of the prosthesis are transfered into the cortex of 

the femur. It may be that high stress concentrations 

are created in the bone in some instances. Subsequently, 

this may lead to the'melting away'of the bone tissue in 

these areas and to the eventual loosening of the 

prosth6Bis. 

The stems of many currently available hip prostheses 

sometimes fail in service as a result of fatigue. The 

finite element method may therefore prove to be a very 

useful technique for insestigating new designs of 

I 
prosthese$ stems in order tc reduce the very high bending 

stresses induced in these components during normal 

locomotion. 

The fo: eegoing discussion is by no means an exhaustive 

list of all the possible areas in medicine and biology 

where the finite element method could be fruitfully 

employed. However, as with any other process, method 

or technique which attempts to bridge the disciplines of 

medicine and engineering, the extent of the successful 

application of the finite element method to problems in 

the biomedical field depends finally upon the interchange 

of ideas and the cooperation of the various parties 

involved. It is hoped that this thesis is a small step 

in this direction. 
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APPENDIX ONE 

Numerical Intimation in Two and Three-Dimensions 

using the Gauss Quadrature Formula 

In order to determine the finite element stiffness 

matrices and boundary surface load vectors, integrals 

of the form 
It 

[k] fJ[B)T(D][B]tdet[J]dodt, (equation 16.20) 

-1 -I 
11 

[k] r[B]T[D][B]det[J]dbdTdE (equation 17.15) 

-a -t 1 
and 

jjT 
{Fb} 

_ 
{g} dijdF (equation 17.17) 

-1 -1 
have to be evaluLted. However, the fur. ction f(6) shown 

in FIG. A1.1, can be integrated approximately by using 

the Gaussian Quadrature formula, Kopa1 (136), i. e. 

/f(S)do 
- Hlf(S1) + 112f(b2) +.... nf(6n) 

-1 

in 

or 
/f(8)d8 

s _z 
E1f(6i) Al. l 

_% i=1 

where n is the total number of sampling points. 

f(Si) is the value of the function at the 

sampling point L. 

and Hi is a weighting coefficient for the 

sampling point i. 

If the value of the function varies steeply, then an 

increase in the number of sampling points used in the 
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evaluation of the integral will obviously improve the 

accuracy of the solution obtained. 

For the two-dimensional finite element, the most 

obvious way of obtaining the integral 

[k] J/[B]T[D][B]tdet[J]d6dT) 

or 

[k] /Jf(o, 
T))dodT) 

-t .4 is to svaluate the inner integral by making 6 equal to a 

constant, i. e. 
if(a, 

11)drl 
iý-n+. 

H j f(S, ý 3) L 
i-i 

which we will call "(S). Hence, by evaluating the outer 

integral in a similar manner w4 
i i-n fQ (S)0 a 

.1 
1-1 

Therefore, 
11'. ian 

fIff(5, 
ý7)d6dý 

or 

a have 

H ý(Si) 

j=n 
Hi 

. 
E_ H f(6ifl) 
j-l 

1 i=n J .n //f(6qn)d6dTj 
.. E HiHjf(bi0. t j) 

-1.4 i°1 j 

Similarly, for three-dimensions 
J 

/l! 
f Ca 

rýl 
}dbdýd 

"J . -J_"1.. 

hin 

i. 1 

jan 

j-1 

1an 
ý.. "iHj". f Oin 

jEl) 1.1 

The sampling points at which to evaluate the function 

in order to achieve the greatest accuracy have been 

determined and are tabulated by Knpal (136) together with 

the corresponding weighting factors. 
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For example, for three Gauss points, i. e. nsz3, 

Sampling Point 

+a 

0.77459667 
0.00000000 

Weighting Paotc, r 

H 

0.55555556 
0.88888889 

For a two-dimensional finite element therefore, employing 

this three point rule, 3 by 3 evaluations of the function 

f(8,1)) would be required, see FIG. Al. lb. In three- 

dimensions however, and in particular for the 20-noded 

finite elements, the corresponding 3 by 3 by 3 Gauss 

points requiring 27 evaluations of the function 

f(b, i, E), i. e. [B]T[D][B]det[J], proved to be far too 

expensive in terms of computation time. Consequently, 

the much less expensive but reasonably accurate 14 point 

integrating rule described by Irons (138) was implemented. 

For this scheme, the integral becomes: - 

f(b, n, ý)dbdndt - HH6 {f(a, 0,0) + f(-a, 0,0) + 

f(O, a, O) + f(0, -a, 0) + f(0909a) + f(0,0, -a)) + 

Rn8 tf(b, b, b) + f(-b, -b, -b) + f(b, -b, b) + f(-b, -b, b) + 

f(b, b, -b) + f(-. b, b, -b) + f(b, -b, -b) + f(-b, b, b)) 

where 

Sampling Point Combined Weighting Factor 

HE (equals HiXE xHl ) 

a=0.795822426 

b-0.758786911 

I= - 0.886426593 

HH8 m 0.335180055 
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APPS DIX TWO 

The Conjugate Gradient Method of 
Equation Solution 

The great advantage of the conjugate gradient 

method of equation solution is that it is not necessary 

to form either the complete or the modified arrangement 

of the structural stiffness matrix. Consequently, 

although each of the finite element's stiffness matrices 

have to be stored throughout the solution process, (as 

they are required for each itera+ion), for structures 

such as the thick plate and Bousinesq problems where all 

the elements are the same, the amount of storage space 

required for the element [k]s is relatively small. For 

such problems therefore, the amount of storage space 

required for the conjugate gradient method, should not 

be as great as that required for the direct Gauss 

elimination method. Hence, for a computer installation 

having a relatively small core storage capacity, the 

method seems to be most attractive. 

As discussed earlier, the conjugate gradient method 

proceeds by making adjustments to the displacement 

vector, until the residual forces acting on the structure 

are reduced to an insignificantly low level, see FIG. 14.8. 

Consequently, the iterative procedure is terminated once 
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the residual force vector has converged to this preselected 

low level. However, certain difficulties arise because. 

1). It is difficult to predetermine the required 
level of the residual forces for a specific 
problem such that the solution obtained is 
"acceptable", (The acceptable residual size 
is in some way governed by the boundary 
conditions applied to the structure). 

and 2). It is impossible to predetermine the number of 
iterations required to achieve the predetermined 
residual force level. 

From the computer operational aspect therefore, the methnd 

is far from satisfactory as the computational time required 

for a specific problem cannot be determined ab initio. 

In order to overcome this drawback the complete problem 

analysis procedure was broken down into five separate 

sections and programs as shown by FIG. A2.1. Consequently, 

it was possible using this scheme to predetermine 

approximately the computational time required for each 

particular section. In addition, it was possible with 

the major section INTERSOLV, to tailor the number of 

iterations requested sC as to utilize the amount of 

computer time available. It was also possible using 

this scheme to examine the displacements, (and also the 

element stresses by running the STRESS program), after 

each run of INTERSOLV to see if the solution had 

converged. If the degree of convergence was not 

considered sufficient then the INTERSOLV program was run 

again and the process repeated. 
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The conjugate gradient method was examined by 

testing the process described above on two problems. 

The first was the thick plate problem discussed previously 

in 17.9. The structure which consisted of eight 

identical 20-noded finite elements, is shown in 

PIG. 17.12. Using the conjugate gradient method, eighty 

iterations were required to obtain nodal displacements 

and element strain and stress components of the same order 

of accuracy, i. e. to six decimal places, as those obtained 

by using the direct Gauss elimination method. Therefore, 

as each iteration took 28 seconds to complete, on comparing 

the solution times required by the two methods we have: - 

Conjugate Gradient Method 2268 seconds 

Gauss Elimination Method 1314 seconds 

Consequently, although six places of decimals may not be 

necessary for acceptable engineering solutions, it is 

apparent that the conjugate gradient method was 

approximately 25"/( more expensive for this particular 

problem. In addition, during the analysis the 

intermediate residual force and displacament vectors 

were'h. ost" due to a computer malfunction after 

30 iterations, and so the whole analysis had to be 

restarted from the beginning. In fact, the accidental 

erasure or loss of files was found to make the whole 

analysis scheme a very hazardous operation and could 

result in a considerable waste of computer time. 
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The square of the sum of the residual forces, which 

gives an indication of the 'out of equilibrium' of the 

solution and which was printed out after each iteration, 

is plotted in FIG. A2.2. It can be seen that apart from 

small perturbations, the value falls fairly rapidly after 

30 iterations. At the final solution stage, i. e. after 

80 iterations, the value is seen to be approximately 10-5. 

The second problem oxamined was the same Bousinesq 

structure which was discussed in 15.9. The one-quarter, 

14 inch cube model of the elastic half-space, was meshed 

by using seven by seien by seven 8-noded elements and by 

using three by three by three 20-noded elements, as 

illustrated in FIG. A2.3. Again, tbis problem was ideal 

from the point of view of the storage apace required as 

all the elements were identical in each of the 8 or the 

20-noded element idealisations. 

It was found that the solution to both finite 

element models had converged when the size of the residual 

had attained a value of approximately 103. As can be seen 

from FIG. A2.4, while this value was attained for the 

8-noded elament model after cnly 50 iterations, the 

20-noded element model required a further 30 iterations. 

However, as each iteration for the 8-noded element model 

took 110 seconds to complete and that for the 20-noded 

element model only 36 seconds, the latter element mesh was 

the more efficient. Even so, as can be seen from FIG. A2.5, 

the vertical displacement distribution obtained from the 
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8-noded element idealisation follcred slightly more 

closely the generally accepted " exact " solution. 

PIG. A2.6 shows how the displacement distribution 

obtained for the 8-noded element model converged to 

the final solution. 

The equation solution time required (in seconds) 

for both finite element models using both solution 

methods is as follows z- 

Model 

7x7x7 Bousine sq 
8-noded elements 

3x3x3 Bousinesq 

20-noded elements 

Conjugate Gauss Elimination 
Gradients (Solutions not Attempted) 

5610 39252 

291r, 14269 

In complete contrast to the thick plate problem, it is 

apparent from the above that the conjugate gradient 

solution method is far superior to that of the direct 

Gauss elimination method for the Bousinesq structure. 

Consequently, it is apparent that the number of 

iterations required for conrergence varies greatly 

upon the conditioning of the structural equilibrium 

equatiox. s. In addition, it must be pointed out that 

the problems discussed above are not really a fair 

comparison between the conjugate gradient and 

elimination methods. sinceý the former represents 

essentially an 'in-core' solution while the latter is 

essentially an 'out-of-core' solution. For the 
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conjugate gradient method applied to dental structures, 

in which all of the finite elements would probably be 

different, the element [k]s, for the size of the 

computer employed, would have to be stored during the 

solution process on disc and would therefore have to be 

retrieved during each iteration. It is in fact the 

reading and writing of data to the disc files which 

greatly escalates the computer time required to solve 

a particular problem. Indeed, with the Gauss 

elimination method an 'in-core' solution takes 

approximately only one third of the time it takes to 

solve the same system of equations stored on disc. 

Although the direct Gauss elimination method was 

adopted for the work reported in this thesis due to its 

greater predictability, it is evident that more effort 

should be devoted to developing the conjugate gradient 

method as this may well be a more profitable approach for 

certain types of problems. (For further discussions on 

the conjugate gradient method and a computer listing of 

the solution Algorithm, the interested reader is 

referred to Yettran and Hirst (132). ). 
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APPENDIX THREE 

(LIST' (LP) 
'PWOGRAM' (AXITHERMDISC) 
'INPUT' 1sCR0 
'OUTPUT' 2: LPO 
1EXTENDED' 
'BEGIN' 
'COMMENT' 
A PROGRAM FOR AXISYMMETRIC STRESS ANALYSIS USING TRIANGULAR 
SECTION ANNULARa3. NODED 29DEGREE OF FREEDOM PER NODE 
LINEAR DISPLACEMENT FORMULATED FINITE ELEMENTS, 
THERMAL EFFECTS ARE INCLUDED. AVERAGE ELEMENT 
CENTROIDAL TEMPERATURES ABOVE DATUM ARE +VE WHILE THOSE 
BELOW ARE AVE. THOSE AT DATUM TEMPERATURE (I. E. NO 
THERMAL CONTRIBUTION) ARE ZERO, 
THE MODIFIED FORM OF THE STRUCTURAL STIFFNESS MATRIX (MBK3 IS 
FORMED ON DISC BACKING FILE UDVKWZMBKAXI AND THE NODAL FORCE 
AND DISPLACEMENT VECTORS ARE HELD IN CURE. THE EQUATIONS ARE 
SOLVED BY DIRECT GAUSS ELIMINATION IN BLOCK FORM. 
NODAL DISPLACEMENTS AND ELEMENT STRESS AND STRAIN COMPONENTS 
ARE OUTPUT, 
THIS VERSION ALLOWS ZERO"VALUED DISPLACEMENTS ONLY. 
MK, 5 5TH, JUNE 1972. 
KEITH W. Jr WRIGHT# 
DEPT. MECH, ENG. 
BRUNEL UNIVERSITY, 
UXBRIDGE. I 
IINTEGERI 
NR81NCB, 
NCMBK, NRMBKI 

COUNTER, 
JOB' NELEM, NONOP, LOrCOtMANND, NOMATI 

'PROCEDURE' TIMENOWI 
1EXTERNAL': 
'PROCEDURE' COPYSTRING1 
'BEGIN' 

'INTEGER' CS: 
L1lCS, READCHI 

'IF' CS#CODE ('( '' ')')'THEN' 'GOTO' Of 
1,21CSiRREADCHI 

'IF' CS#CODE('('' ')') 'THEN' 
'BEGIN' 

PRINTCH(CS)I 
'GOTO' L21 

'END'1 
'END' OF COPYSTRINGI 

'PROCEDURE' USESTORE(N, S, T, G, L)I 
'VALUE' N, L, GI 
'INTEGER' N, L, GI 
'STRING' SrTI 
'EXTERNAL'I 
'PROCEDURE' PUT PART(N, K, A, X, Y)p 
'VALUE' NJ 
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'INTEGER' N, KI 
'REAL' X, Y; 
'ARRAY' AI 

EXTERNAL'I 
'PROCEDURE' GET PART(N, K, A, X, Y)1 
'VALUE' No 
'INTEGkR' N, KI 
'REAL' X, Y; 
'ARRAY' Al 

EXTERN*L'1 
PROCEUURF' MATMULT(Arß, C. X, Y, Z)1 

'VALIDE' X, Y, Z1 
'INTEGkºt' X, Y, ZI 
'REAL' 'ARRAY' 
A, BsCI 
'COMMENT' 
THIS PROCEDURE POSTrMULTIPLIES THE MATRIX A(X*Y) BY THE 
MATRIX S(Y*Z) AND PUTS THE PRODUCT IN C(X*Z)1 
'9EGIN' 
'INTESER' 
IIJIKI 
'FORe I181 'STEP' I 'UNTIL' X 'DO' 
'FURL Ksal 'STEPS I 'UNTIL' 2 IDO' 
'BEGIN' 
C(I, KIIa01 
'FOR' Jsr-1 ISTEPI 1 'UNTIL' Y 'DO' 
C(I, K)s: C(l, K)+A[I, J)*BrJ, K)I 
'END'I 
'ENDe OF MATMULTI 
'PROCEDURE' MATRANMULT(G, H, F, X, Y, Z)1 
'VALUE' X, Y, ZI 
'INTEGER' X, Y, ZI 
'REAL' 'ARRAY' G, H, Fj 

'ICOMMENT' 
THIS PROCEDURE PRE. MULTIPLIES THE MATRIX H(Y*Z) BY THE 
TRANSPOSE OF A MATRIX G(Y*X)"N, B, THE TRANSPOSE 
OF G IS CARRIED OUT DURING THE PROCEDURE SO THAT ONLY 
THE MATRIX G IS REQUIRED,; 
'BEGIN' 
'INTEGER' I, J, KJ 
'FOR' 1s=1 'STEP' 1 'UNTIL' X 'DO' 
'FORS JI31 'STEP' 1 'UNTIL' 2 'DO' 
'BEGIN' 
FCI, Jas=01 
'FOR? K1 1 $STEP$ 1 'UNTIL' Y 'DO' 
FCI, J1s*F(I, J3+G(K, I3*H(K, J]1 
'ENDBI 
'ENDO OF MATRANMULTI 
'PROCEDURE' MATINVERSE(A, N, INVERSEA)f 
'VALUE' NJ 
'REAL' 'ARRAY' A, INVERSEAJ 
'INTEGER' NI 
'COMMENT' 
THIS PROCEDURE INVERTS THE MATRIX (A) OF ORDER (N*N) AND 
STORES THE RESULT IN INVERSEA. THE INVERSION PROCEDURE 
UTILISES THE GAUSS ELIMINATION METHOD WHICH REDUCES THE MATRIX 

451 



(A] TO AN UPPER TRIANGULAR MATRIX, TO CONSERVE MAXIMUM 
ACCURACY THE DIAGONAL PIVOTAL TERMS ARE RE-ºARRANGFD BY 
INTERCMANGING THE ROWS - THIS BRINGS THE LARGER TERMS OF A 
PARTICULAR COLUMN ONTO THE MAIN DIAGONAL AND HENCE ARE 
SUBSEfUENTLY USED AS THE PIVOTAL TERMS. ' 
'BEGINI 
'REAL' 'ARRAY' BCIINº1i2*N]ºXI1$Nº1IN]i 
'REAL' PIVOTºTTI 
'INTEGER' M, IrJ, K; 
Mimt*NI 
'FOR' I1o1 'STEP' 1 'UNTIL' N 'DO' 
'BEGI'J 
'FUR' Ji¢1 'STEP' I 'UNTIL' N 'DO' 
BL1. J]: aA[IºJ]1 
'FOR, JisN+1 'STEP' 1 'UNTILI M 'DO' 
B(IºJli"'IF' I+NsJ 'THEN' I 'ELSE' 0 
'END'1 
'FOR' Ii=1 'STEP' I 'IiNTIL' N 'DO' 
'BEGIN' 
PIVOOTi"R(1, I]: 
'FOR' JisI+1 'STEP' 1 'UNTIL' N 'DO' 
'IF' ABS(PIVOT)<ABS(8(IºJ3) (THEN' 
'BEGIN' 
'FAR' Kill 'STEP' 1 'UNTIL' M EDO' 
18EGIN' 
TTi=BtI, K]I 
B(IºK)12B(JºK]1 
BCJºK]iaTT0 
IEND '1 
PIVOTiOD(Irl]1 
'END II 
'FOR' K1iM 'STEP' 0 'UNTIL' I 'D0' 
8(1. K]i29(1, K]/B(I. I]1 
'FORe JieI+1 'STEP' 1 'UNTILI N 'DO' 
'FOR' K: sM 'STEP' .1 'UNTIL' I 'DO' 
BCJºK): NBtJºK]u8(IºK)*BtJ, I]1 
IEND '1 
'FOR1 Ji111 'STEP' 1 'UNTIL' N 'DO' 
XtN, J] i=8t'4, N+J3I 
'FOR' Ii3Ns1 'STEP' e1 'UNTIL' 1 'DO' 
'BEGIN' 
'FOR' J121 ISTEPi 1 'UNTIL' N 'DO' 
XCI. Jlia8(I. N+J]1 
'FOR' KI'N 1STEP' w1 'UNTIL' 1+1 'DO' 
'FOR' Jill 1STEP' I 'UNTIL' N 'DO' 
XCIºJI: =XCI. J]«B(I*K]*X(KºJ)$ 
'END 'I 
'FOR' 1121 'STEP' I 'UNTIL' N 'DO' 
'FOR1 JIs1 1STEP1 1 'UNTIL' N 'DO' 
INVERSEACI, J]t=Xtl, J]i 
'END' OF PROCEDURE MATINVERSE1 
'PROCEDURE' DBLOKGAUSS2(F. NCB. NRB)1 
'VALUE' NCB, NRBI 
'INTEGER' NCBºNRBJ 
'REAL' 'ARRAY' Fj 
'COMMENT' 
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THIS PROCEDURE SOLVES THE SET OF LINEAR SIMULTANEOUS EQUATIONS 
(M$K3[D)a[Fa USING THE GAUSS ELIMINATION METHOD IN BLOCK FORM, 
THE MATRIX (MRKI IS PARTITIONED INTO 2 BY 2 SUB-MATRICES OR 
BLOCKS AND IS A MODIFIED ARRANGEMENT OF A BANDED SYMMETRICAL 
MATRIX OF ORDER 2+NRB ELEMENTS SQUARE, 
THE SOLUTION (D) WHICH IS WRITTENOOVER THE MATRIX 
(F)# IS OBTAINED BY EFFECTIVELY REDUCING THE ORIGINAL SYMMETRIC 
MATRIX TO AN UPPER TRIANGULAR MATRIX AND THEN BACK SUBSTITUTING. 
THESE PROCESSES ARE CARRIED OUT DIRECTLY ON THE MODIFIED FORM 
OF THE SYMMETRIC MATRIX, WHICH IS STORED ON DISC RACKING STORE 
IN BLOCK FORM IN T$E FILE UDVKW2MBKAXI, THE BLOCKS ARE STORED 
AS A STRING BEGINNING AT BLOCK NCBa1 OF NRBa1 TO 
NCB'NCB OF NRBa1 ETC, RIGHT THROUGH TO NCBmNCB 
OF NRRaNRR, THE FORCE MATRIX (F] IS STORED IN CORE,; 
'BEGIN' 
'INTEGER' 
SrT0 
PlPPIPWr 
II. JJ'K, I, JI 
'REAL' 

BUGI 
'INTEGER' 'ARRAY' 
MAPC1tNCB7 
'REAL' 'ARRAY' 
PRMBK, WRMBKt112rjt2*NCB), FFI, FF2(112r1s1)r 
A, A2rA3rINVERSEA(112º1t2a, DD(IINCBr112rii2]1 
'FOR1 II: 1 'STEP' 1 'UNTIL' NRB 'D0' 
'BEGIN' 
PI*PPta4+NCB*(Ie1)*11 
GET PART(1O, P, PRMBK, PRMBK(1r1], PRMBK(2,2*NCBj), 
'FOR' 11111 'STEP' I 'UNTIL' 2 'D0' 
'FOR' JJI81 'STEP' I 'UNTIL' 2 'DO' 
A(II, JJ)iaPRMBK(II, JJ)1 
MAT INVERSE( A, 2, INVERSEA)I 

SIa2*Ie21 
'FOR' Ilia S*1 'STEP' I $UNTIL' S+2 'DO' 
FF1(II-SrI]taF(11.131 
MATMULT(INVERSEArFF1, FF2r2.2,1)f 
'FOR' IIs'S}1 'STEP' I 'UNTIL' S*2 'DO' 
F(II, 1)IaFF2(II? Sr1)1 
'FOR' KIaNC8 'STEP' P1 'UNTIL' 1 'DOT 
(BEGIN' 

'IFs I, (NRBi'NCB+i)40NCB 'THEN' 'GOTO' Lii 
BUGIa01 

Ssm2*Ke21 
'FUR' II1a1 'STEP' 1 'UNTIL' 2 'DOT 
'FOR' JJt: S+1 'STEP' 1 'UNTIL' S. 2 'DO' 
'BEGIN' 
DDJK, II'JJ, -S)IuA(II'JJNS3isPRMBK(II. JJ]I 
BUGI, BUG*PRMBK(II, JJ)1 
'END'$ 
'IF' BUGiO 'THEN' 
'8EGIN' 
MAP(K)Ia01 
'GOTO' L11 
IENDII 
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MATMULT(! NVFRSEA, A, A2, Zº2º2)1 
'FOp' 11: 21 'STEP' I 'UNTIL' 2 'DO' 
'FOR1 JJ: aS+1 'STFp' I 'UNTIL' S+Z 'DO' 
PRMSK(ll#JJ]: XA2IIIºJJAS]1 
MAP(K]:: II 
LIe'END 'I 
'FOR' Ji'1 'STEP' I 'UNTIL' NCO-1 'DO' 
'8EGIN' 
'IF' 1+J>NRR 'THEN' 'GOTO' V1l 
'IF' MAP[J+1): U 'THEN' 'GOTO' V11 
'FOR' 11181 'STEP' I 'UNTIL' 2 'DO' 
'FOR' JJs: 1 'STEP' i 'UNTIL' 2 'DO' 
A3(JJº11)laDD(J+1pIiºJJ)I 
P, IPWIo4*NCB*(I+J"1)+1; 
GET PART(IUrPºWRMBKºWPMRKf1r1]ºWRM8K(2,2*NCB]) 
'FOR' Kiwi 'STEP' 1 'UNTIL' NCB-J 'DO' 
'8EGIN' 

Si=2*(J+K), 21 
'FOR' II181 'STEP' I 'UNTIL' 2 'DO' 
'FOR' JJ: "S*1 'STEP' I 'UNTIL' S+2 'DO' 
MATMULT(A3, A, A2,2,2,2)1 

Sia2*K, 21 
'FUR' I11'1 'STEP' 1 'UNTIL' 2 'DO' 
'FORt JJi=S*1 'STEP' I 'UNTIL' S+2 'DO' 
ACII, JJ'S): PRMBK(II. JJ1I 
WRMBKIIt, JJIIRWRMBK(II. JJI-A2IIIPJJ-S]; 
'END'I 
PIS PW1 
PUT PART(IO, p, WRMRK, WRMRK(1'I]tWRMBK(2i2*NCBI)I 
MATMULT(A3#FF2, FFI, 2,2,1)I 

Sis2*(T+J)w2J 
'FOR' Ilia Sf1 'STEP' I 'UNTIL' S+2 'D0' 
F(IIr1]iRF(II, 1) -, FFI(II-Still 
V1IIENDII 
PiaPP1 
PUT PART(10, PrPRMBKºPPMRKI1r1), PRMBK(2r2*NCD])I 
'END' OF FORWARD ELIMINATION, 
WRITE TEXT('(''('2C')'TIME%AT%END%OFXFORWARD%FLIMINATION')')I 
TIMENOWI 
'FUR' II NRD"1 'STEP' Al 'UNTIL' 1 'DO' 
'BEGIN' 
P1aPWi$4*NCA*(IQ1)+1I 
GET PART(1O, PtWRMRK, WRMRK(1I1)'WRMBK(2,2*NCB])1 
'FORT J1=2 'STEP' 1 'UNTIL' NCO 000' 
'BEGIN' 
'IF' I*J. I>NRB 'THEN' 'GOTO' V21 
BUGi*01 
'FOR' II191 iSTEP' 1 'UNTIL' 2 'DPI 
'FORT JJis2*J"1 'STEP' I 'UNTIL' 2*J 'DO' 
'BEGIN' 
ACII, JJ,, (2*J-2)IIRWRMBK(II, JJ)1 
BUG, *GUG+WRMBK(II'JJII 
'END'? 
'IF$ RUG80 'THEN' 'GOTO' V21 

Ss*2*(I+J-I)-2i 
'FORT I1i'S*1 'STEP' I 'UNTIL' S*2 'DO' 
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FF1(11-S, 1)iaF(II. 1) 
MATMULT(A, FF1ºFF2r2,2r1)t 
'FOR' Its 2*I-1 'STEP' 1 'UNTIL' 2*1 'DO' 
FIIIr1)'; Ft1I, I) - FF2t1I, '(2*I-2), Ii1 
V2; 'ENDI I 
'END' OF BACK SUBSTITUTION) 
'END' OF PROCEDURE DBLOKGAUSS2.1 
SELECT 1NPUT(1)J 
SELECT OUTPUT(2)I 
'COMMENT' 

THE JOB NO, AND GENERAL STRUCTURE DATA ARE READ IN, $ 
PAPERTHROWp 

JUB=aREADI 
WRITE TF_XT(l(''('2C')'JOB%N0. %%%')'); 
PRINT(JOB, 3.0)i 
NEWL. IN (1); 
COPY5TRINGI 

NELEMaaREADI 
NONOPI READº 
LOiaREADI 
COl; READI 
MANNDIRREADº 
NOMATiaRFADº 
NRMBKi62*NONOPI 
NCMBKIa2*(MANND, 1)p 
NRBaaNONOPI 
NCRSaMANND41I 

WRITE TEXT(I(II(; 2C')114UMRER%OF%ELEMENTS%%%I)')t 
PRINT(NELEM, 3,0aº 
WRITE TEXT('(''('2C')'NUMBER%OF%NODAL%POINTS%%X')')1 
PRINT(NONOP, 3, U)1 
WRITE TEXT('(''('2C')'NUMBER%OF%APPLIED%LOADS%%%')')p 
PRINT(LO, 3*0)I 
WRITE TEXT 
('(''('2C')'NUMBER%OF%APPLIED%DISPLACEMENTS/RESTRAINTS%%')')f 
PRINT(CO, 3, Q)1 
WRITE TEXT 
('(''('2C')'MAX, %NODE%NO, %DIFFERENCE%IN%ANY%ONE%ELEMENT%%')')i 
PRINT(MANNDr3, Q)º 
WRITE TEXT('('I('2C')'NO. XOFXMATERIAL, %TVPESX%%$)')º 
PRINT(NOMAT, 3,0)1 
WRITE TEXT(I(hl(a2Ca)INO, %OF%ELEMENTS%REQIRED%FOR%(MBK)a%%%')')1 
PRINT(NRMBK*NCMBK, Or6)p 
PAPERTHRQWº 
'BEGIN' 

'REAL' 'ARRAY' 
MAT[IsNOMAT, 1i3), B(1t4.1t6)ºD(114º1i4] BDI1i6, Ii4)º 
ETFC1i6. Ii1)ºETS(1: 4.1i1)º 
STN1[1i4#111), 

TR! (116)ºCOORD(IiNONOPº1t2)º 
KE116,1$6)ºWMSKC1s2,1i2*NCBI, 

F, X, N1ºciºSTF(1iNRMBKº1t1jºELDIS[1: 6,1=1IºSTNºSTS(1t4º1t1)1 
1 REAL' 
REAR, ZGAR, Ax, BI, C1, AJ, BJ, CJ, AM, BM, CM"AREA, FACT. PREVELEM, 
FXCOF, TEMP1ºTEMP2, EPSMAX, EPSMINºGAMMAX, ßETAI, BETA, 
SIGMAXºSIGMIN, TORMAXºALPHAI, ALPHAr 
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TERMI 
OINTFGER' 

PREVMAT, 
K1, J1ºTI, JJ, KK1ºKK2, KJ1ºKJ2º 

I, JºNEtS, T., PºPM8KI 
'INTEGER' 'ARRAY' 
NUN[1=NELEMº1=611 

'CUMMENT' 
THE DATA REGARDING THE DIFFERENT MATERIALS OF THE ELEMENTS 
ARE NUW READ IN. THE SEQUENCE BEING E MU AND EXCOFº (THE 
COEFFICIENT OF THERMAL EXPANSION N. B. UNITS MUST BE 
COMPLEMENTARY TO DEGREES IN ELEMENT DATA. 1 

'FUR' Ila1 'STEP' I 'UNTIL' NOMAT 'DO' 
'FOR' Jia1 'STEP' 1 'UNTIL' 3 'DO' 
MAT(IºJ3: 'READi 

WRITE TEXT('(''('2C')'MATERIALXNQ. '('11S')'E'('13S')'MU'('13S')' 
EXCOF')')I 
NEWLINE(1)1 
'FOR' 1121 'STEP' I 'UNTIL' NOMAT 'DO' 
'BEGIN' 

NEWLYNE(1)I 
SPACE (S)I 
PRINT(Iº3,0)) 
SPACE(8)1 
PRINT(MAT(I, 1)º0,4)1 
SPACE(2)I 
PRINT(MAT(Ir23.0,6)I 
SPACF(2)I 
PRINT(MAT(Ir3). 0,4)I 

'ENDI1 
'COMMENT' 

THE COORDINATES OF THE NODES OF THE STRUCTURE ARE READ IN, 
NODE NO. 1R (RADIAL) Z (AXIAL) 
NODE NO. 2R (RADIAL) 2 (AXIAL) ETC. «; 

'FOR' 1181 'STEP' 1 'UNTIL' NONOP 'DO' 
'FOR' JI81 'STEP' I 'UNTIL' 2 'DO' 

COORD(IºJ)I'READI 
PAPERTHROWI 
WRITE TEXT 
(1(91(12C')I'(16S1)'NODEXNQ., (I? S')'RXCQQRDINATE 
1('3$')'ZX000RDINATE')')g 
NEWLINE(1)i 
'FOR# I1=1 ISTEP' 1 'UNTIL' NONOP 'DO' 
'BEGIN' 

NEWLINE(1)i 
SPACE(8)1 
PRINT (1,3,0)1 
SPACE(6) I 
'FOR' J1a1 'STEP' I 'UNTIL' 2 'DO' 
PRINT(COARDCI, J3º0º6)1 

'END'I 
'COMMENT' 

EACH ELEMENT NO, MATERIAL NO, TEMPERATURE NO, (NO. OF 
DEGREES ABOVE/BELOW DATUM AND NODE NOS. ARE READ IN, 
THE NUDE NOS, MUST BE GIVEN IN AN ANTICLOCKWISE DIRECTION; 
'FOR' I1111 'STEP' I 'UNTIL' NELEM 'DO' 
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'FOR' Jta1 'STEP' 1 'UNTIL' 6 'DO' 
NONtI. J3 $RFAn$ 

PAPERTHRQW; 
WRITE TEXT(1('1('2C')'ELEMENT'('2S')'MATERIAL 
%%TEMPERATURE%%%%ELEMFNT%NODE%NUMBERS%(ANTICLOCKWISE%DIRECTION) 
'('1C')'X%XX%NO, '('ES')'NO. '('kS')'NO. '('8S')'I 
f('8S')'J'('8S')IKI('IC')'')I)1 
'FOR' Itat 'STEPI I 'UNTIL' NELEM 'DO' 
'BEGIN' 

NEWLINE(1)I 
'FUR' Jta) 'STEP' 1 'UNTIL' 6 'DO' 
PRINT(NQNti#Jjº7,0)1 

ENDII 
'COMMENT' 
THE DISC BACKING STORE FILE IS 0PENED, UDVKW2MBKAXI. 
THE WORKING AREA OF CORE USED TO FORM THE ROW-BLOCKS OF (MBK] 
BEFORE TRANSFERRING TO BACKING FILE IS INITIALISED. THIS IS 
THEN USED TO INITIALISE THE REQUIRED FILE AREA TO STORE CMBKI; 
USESTORE(1Urt('ED')', '('UDVKW2MBKAXI')'. 1ºNRMBK*NCMBK); 
'FOR' It; 1 'STEP' 1 'UNTIL' 2 'DO' 
'FOR' J1a1 'STEP' 1 'UNTIL' 2*NCB 'DO' 

WMBK(I, J]saO! 
'FOR' 100 'STEP' 1 'UNTIL' NRB 'D0' 
'BEGIN' 

Pta4*NCB*(! w1)*Il 
PUT PART(10rP, WMBKºWMBK(1i1), WMBKL2,2*NCB])I 

'END' OF INITIALISING DISC FILE FOR (MBK3. t 
'FOR' I1411 'STEP' I 'UNTIL' NRMDK 'DO' 

STF[I, llt=0I 
'COMMENTt 

EACH ELEMENT STIFFNESS MATRIX IS NOW CALC. 
AND SUBSEQUENTLY DUMPED INTO (MBKJ. ) 

PREVMATiao; 
WRITE TEXT(1('1(12C')'ELEMENT%NO, ')'); 
'FOR' NEia1 'STEP' I 'UNTIL' NELEM 'DO' 
1BEGIN' 
NEWLINE(I)I 
PRINT(NE, 3.0)$ 
'COMMENT' 

THE COORDINATES OF EACH ELEMENT ARE NOW SET UPI 
TRI(1)i*C00RD(NON(NE, 4]. 1]I 
TRIt231aCO0RD(NONtNEr43,2]1 

TRI(3)i! COORD(NON(NEº53,1]i 
TRI(4110000RD(NON(NEº53i23: 
TRI(53II000RDtNON(NF, 6)r1]1 
TRI(6)ia000RDtNON(NE. 63'2]I 

'COMMENT' 
THE (8) MATRIX IS NOW SET UP, I 

RBARia(TRIt1]*TRIt33, TRI(53)/31 
ZBARia(TRIt23+TRIt41*TRI(61)/31 
Ali'TRIt31*TRII63 TRIt5]*TRI(43: 
B! 1FTRIt43-TRI(631 
C! i$TRI(5I'TRIt331 A3-1 
AJiITRI15]*TRI(2)-, TRI(I]*TRI(6)I 
BJi@TRIt63-TRI(2); 
CJiaTRI(1]-TRIt5]1 
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AM1: TRI(1]*TRI(41"TRI(31*TRI(2)1 
BMt=TRI(2a+TRT(431 
CMtaTRIt33-TRT(131 
'FUR' I1491 'STEP' 1 'UNTIL' 4 'DO' 
'; OR' J=e1 'STEP' I 'UNTIL' 6 IDQ' 

8(1ºJII=01 
B[1º23 B(4,1at8CIl 
B(1,4): =B[4,31i"CJ1 
B[1,6): aB[4,5]t'CMI 
B(2111: ¢B(4,23: aBTI A3.1 
8(2,3): Q8(4,4]t 8JI 
B(2,5l: 3B[4,61, RBM1 
8(3, I3 AT/RBAR+BI+CI*ZBAR/RBARI 
8(3,3): sAJ/RBAR+BJ+CJ+ZBAR/RBARI 
B(3º5]: xAM/RBAR+BM+CM*ZBAR/RBARI 
AREAI"ARS((TRT(1)*(TRI[4)rTRI(61)+TRI[3]*(TRI(6]0*TRI(21) 
+TRI(5]+[TRI(2)ý+TRt(6)))/2)1 
PRINT(AREA, 0r6)1 
FACT, ®1/(Z*AREA)1 
'FOR' It81 'STEP' I 'UNTIL' 4 'DO' 
'FOR' J191 'STEP' I 'UNTIL' 6 'DO' 

B( I, J)tsFACT*e(I, J31 
_ 'COMMENT' 

THE ELASTICITY MATRIX (D] IS FORMED FOR THE ELEMENT IF IT 
DIFFERS FROM THAT USED FOR THE PREVIOUS ELEMENT,; 
'IF' NON(NEr2) # PREVMAT 'THEN' 

'BEGIN' 
WRITE TEXT(! ('EI. ASTICITY%%%t)')T 

TERM, 'MAT(NON(NEr23r1j/(1+MAT(NON[NEr2], 2]) 
+t1-! oMATINON[NFr2), 21)/(i4o2*tIAT(NON(NE, 21r21)1 

D(1º4)t: D(2r4)t3DI3,47$ID[4º1]t=D[4º21$DD(4,3]1uOI 
D[1,1]tmD(2r21o D[3,3]tsTERtAi 
D[1 , 2]t19 D(1r3) at'(2º1]1 90 (2,311aD[3r1a140 D(3,21 
TERM*F4AT[NON[NE, 2), 2]/(INMAT[NON(NEr2), 21)1 
D[4r4J0sTERM/2+(1"2*MAT(NON(NE, 1), 23)/(1MMAT[NON(NEr2], 2))t 
PREVMATt=NON(NEr2]; 

'END'; 
'COMMENT' 

THE PRODUCT (B3T[D) IS FORMEDI 
MATRANMULT(B, Dr8Dº6,4r4)1 
'COMMENT' 

THE PRODUCT (B3T(DU(B) IS FORMED; 
MATMULI(BD, B, Kr6r4r6)1 
'COMMENT' 

FINALLY THE ELEMENT STIFFNESS MATRIX IS FORMED; 
FACTta2+3.14159*RBAR*AREAI 

'FOR' I181 'STEP' I 'UNTIL' 6 'DO' 
'FOR' J181 'STEP' I 'IJNTIL' 6 'DO' 

K(I, J)==K(I, J]*FACT1 
'COMMENT' 

THE ELEMENTS OF (KI ARE NOW DUMPED INTO (MRK) 
IN THE DISC BACKING FILE UDVKW2MBKAXI, t 

$FOR$ II G4 'STEP' 1 'UNTIL' 6 'DO' 
'0EGIN' 

P: PMBKia4*NCB*(NON(NE, I3eI)+II 
GET PART(1O, P, WMBK. WMBK(IrI3, WMBK[2r2*NCß))i 
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'FOR' J124 'STEP' I 'UNTIL' 6 'DO' 
'BEGIN' 

'IF' NON(NE, II>NON(NE, J] 'THEN' 'GOTO' NODUMP; 
KI; 2*(t-3)x+1 i 
JI =s2+(J'3)"1 i 
KK11aK11 
KK21: K1+11 
KJ1saJ1+11 
KJ2taJIi 
T: s2*(NONtNF#J)"NONGNE#I))1 
WMBK(1ºT+13tsWMBK(1. T+11 + KCK1ºJl31 
WMBKCI, T+2)1: WMBK(1ºT+2] + KLKK1ºKJ1)1 
WMBK(Z, T+11s WMAKt2ºT+1] + KLKK2ºKJ2)i 
WMBK(Z, T+2)IsWMBK(2ºT+2] f KLKK2ºKJ1)i 

NUDUMPt'END'i 
P: aPMBKI 
PUT PART(1O, P, WMBK, WMBK(1,1jºWMBK(2º2*NCB])i 

'END' OF DUMPING (K391 
WRITE TEXT(l('DUMPED%O. K, ')')1 

'IF' NON(NEº3) 00 'THEN' 
'BEGIN' 

'COMMENT' 
THE ELEMENT THERMAL FORCE VECTOR IS NOW DERIVED AND 

SUBSEQUENTLY DUMPED INTO THE STRUCTURAL THERMAL FORCE 
VECTOR, FIRST THE INTEGRAL OF (9]T[D] MATRIX IS FORMED; 
'FOR' Ita1 'STEP' I 'UNTIL' 6 'DO' 
'FOR' JI21 'STEP' 1 'UNTIL' 4 'DO' 

BD(I, J){$BDtIºJ] * FACTi 
'COMMENT' 

THE ELEMENT THERMAL STRAIN VECTOR IS NOW FORMED; 
EXCQFIsMAT(NON(NE, 2)º3]I 
ETS(1,1]iSEXCOF * NONNEº33i 
ETS(2,111'ETS(301i6ETS(1º131 
ETS(4,1]ta0i 

'COMMENT' 
SHE ELEMENT THERMAL FORCE VECTOR IS OBTAINED; 

MATMULT(BD, ETS, ETF. 6,4º1)I 
'COMMENT' 

THE ELEMENT THERMAL FORCES ARE NOW DUMPED INTO 
THE STRUCTURAL THERMAL FORCE VECTOR.; 

STF(2*NON(NEº43 ' 1,1)1aSTF(2*NONCNE. 41 1,1) + ETF(1º1]i 
STF(2*NON(NEr4]º1)1ISTF(2*NON(NEº4]º1) * ETF12,1]1 
STF(2*NONCNE, SJ " 1,1)t'STF(2*NONLNE, 51 1,1] + ETF13º1]1 
STF(2*NON(NE, 5)º1)tsSTF(2*NON(NEº5]º1I " ETF(4º1]1 
STF(2*NON(NE, 61 r 1,1)t=STF(2*NONLNE, b1 1,1] * ETFI5,1]i 
STF(2*NON(NEº6]º1a1*STF(2*NON(NEr6]º13 ; ETF(6º131 

$END' OF CALL. ELEMENT THERMAL FORCE CUNTRIBUTIONI 
'END' OF SETTING UP MOD. STRUCTURAL STIFF, MATRIX; 
'COMMENT' 

THE FORCE AND DISPLACEMENT VECTORS ARE NOW FORMED. 
THE VECTOR NUMBERING SEQUENCE IS-" 

NODE NO, I R-DIRECTION (RADIAL) U-DISPLACEMENT. 
NODE NOS 1 Z-DIRECTION (AXIAL) VP'DISPLACEMENT. 
NODE NO, 2 Rw ETCº 

THE NODAL FORCES HAVE THE VALUE OFw 
1) ITS PRESCRIBED VALUE 
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UR 2) ZFRO19(THIS IMPLIES EITHER NO APPLIED FORCE OR 
THAT OF A RESTRAINT). 

NODAL DISPLACEMENTS CAN HAVE ONE OF THREE VALUES, 
1) ITS PRESCRIBED VALUE 

UR 2) ZERO-(IF IT IS FREE TO MOVE AND UNPRESCRIBED) 
OR 3) U. 000001. (IF IT IS RESTRAINED). 

N, B. NU PRESCRIBED VALUES WITH THIS VERSION. 5/6/1972. 
INITIALLY 80TW VECTORS ARE ZEROED AND THEN ONLY PRESCRIBED 
FORCES AND THFN PRESCRIBED DISPLACEMENTS AND RESTRAINTS ARE 
ACTUALLY READ IN. THE SEQUENCE BEING IN BOTH CASTS 

-EQUATION NO. FOLLOWED BY FORCE/DISPLACEMENT, 
FINALLY THE COMPLETED DISPLACEMENT VECTOR IS SCANNED AND 
IF THERE IS AN APPLIED DISPLACEMENT THE PROCEDURE BANDMULT 
IS CALLED WHICH MODIFIES THE APPLIED FORCE VECTOR-AND 
ZEROES THE APPROPRIATE TERMS OF (MBK] LEAVING A1 ON THE 
MAIN DIAGONAL TERM (I. E. IN THE FIRST COLUMN OF (MSK)). 
IF THERF IS AN APPLIED RESTRAINT THEN AGAIN THE 
NECESSARY LEROEING IS CARRIED OUT TO (MBK]. I 
'FURZ Ita1 'STEP' 1 'UNTIL' NRMBK 'DO' 

Ft i, 1]taX(I, 1) 'NI(I'1]s Q(I#I) U3 
pAPERTHROW; 
WRITE TEXT('(''('2C')'CO%XNO. '('6S')'EOUATIONXNO. '('6$')' 
APPLIFD%DISPLACEMENTS%%(CONSTRAINTo0.000001) 
'('IC')'' ('3TS')'(INCHES)')')I 
NEwLINE(1)i 
'FOR' I10 'STEP' 1 'UNTIL' CO 'DO' 

'BEG! NI 
JJOREADI 
X(J, 1]I'READI 

NEWLINE(1); 
SPACE(3)1 
PRINT(1#3,0)1 
SPACE(6)I 
PRINT(J'4,0)J 
SPACE(13)1 
PRINT(XCJ. 1). 0,6)1 

'END' OF SETTING 
WRITE TEXT('('' ('2C') 
APPL! ED%FORCES'('IC') 
NEWLINE(1)1 

UP DISPLACEMENT VECTOR; 
'LOX%NO. '('6$')'EQUATION%NO, '('6S')' 
" (134S')'LBF. ')'); 

'FOR' 11: 1 'STEP' 1 'UNTIL' 10 'DO' 
ýSEGINI 

J; 2READI 
FUtiliaREADI 

NEWLINE(1)I 
SPACE(3)1 
PRINT(1,3, O)I 
SPACE(6)1 
PRINT(J, 4, U)1 
SPACE(13)1 
PRINT(FIJ, 13, O, 6)1 

'END' OF SETTING UP LOAD VECTORI 
COMMENT' 

ThF STRUCTURAL NODAL THERMAL FORCES ARE NOW ADDED TO 
THE ELASTIC FORCES.: 

'FOR' I131 'STEP' I 'UNTIL' NRMBK 'DO' 
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F[I, 1)taFCI, 1] + STFtI, 1]t 
'FUR' I1=1 'STEP' 1 'UNTIL' NRB 'DO' 
'AEGIN' 

P; mpMBK; m4*NCB+(I. 1) + 11 
GET PART(10, P, WMSK, WMBK(1i1j'WMBKL2,2*NCR]); 
'FOR' J1=1 'STEP' I 'UNTIL' 2 'D0' 
'8EGIN' 

'IF' Xt2"(Is1)*J, 1]#0 'THEN' 
BEGIN' 

'FOR' III 'STEP' 1 'UNTIL' NCMBK 'DO' 
WMBK(Jill)tsO; 
'FOR' IIt0 'STEP' 1 'UNTIL' 2 'DO' 
WMBK(II, J)$10I 
WMRKCJ"JJ$ii, 
F(2*(Iw1)+J, 1]; s0I 

'FND'I 
'END'! 
'FAR' J,: 1 'STEP' 1 'UNTIL' NCB--1 'DO' 
'BEG! N1 

'IF' I+J>NRB 'THEN' 'GOTO' NURAWI 
'FOR' II1i1 'STEP' I 'UNTIL' 2 'DO' 
'BEGIN' 

'IF' X(2*(i. Je1)+II, I)#U 'THEN' 
'BEGIN' 

'FOR' JJti1 'STEP' 1 'UNTIL' 2 'DO' 
WMBK(JJ, 2+J+II]1: 0; 

END'I 
'END'I 

NORQWt'END'I 
PIaPM8KI 
PUT PART(10, P, WMBK, WM"1BK(1'1), WMBKI2,2*NCB])1 

'END' OF MODS, TO (MgK3 FOR CONSTRAINTS,; 
WRITE TEXT 
('(" ('2C')'TIME%AT%COMMENCEMENTXOF%EQUATIONXSOLUTION%X')')I 
TIMENOwI 
DBLOKGAUSS2(F, NCB, NRB)j 
WRITE TEXT 
C'(''C'2C')'TIME%AT%COMPLETIONXOF%EQUATION%SOLUTION%%')')t 
TIMENOW; 
'COMMENT' 

THE NODAL POINT DISPLACEMENTS AND FORCES ARE NOW OUTPUT; 
PAPERTPuROWI 

WRITE TEXT 
('('I('2C')'%XNODE'('225')'NODAL%%%DISPLACEMENTS 
0('29$')'NODAL%%%FORCFS'('IC')'%%%NO, '('27S')'(INCHES) 
'C' 41S')'(LBF)'('IC') '' ('22$l)'RADIAL'('20S')'AXIAL'('20S')' 
RADIAL'('19$')'AXIAL'('IC')' 
1C '245')'U'('24S')'V'('24S')'FR'('23$')'FZ'('IC') '' )')1 
'FOR' I; s1 tSTEP' I'UNTIL' NONOP 'DO' 

'BEGIN' 
NEWLINE(1)1 
SPACE (2) 1 
PRINT(I, 3,0)I 
SPACE(10)I 
PRINT(F(2*I'1,1), 0,6)I 
SPACF(10)I 
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PRINT(F(2*I, lj, Or6)I 
SPACE(10)I 
SPACE(10)1 
'ENI)'I 

'CUMMFNT' 
THE ELEMENT DISPLACEMENT VECTOR IS FORMED AND THE 
CENTRUIDAL STRAIN AND STRESS VALUES CALC. BY REFORMING THE 
IBI AND (D) MATRICES,; 

PAPFRTHP0W1 
WRITE TEXT(1(11('2C') " ('28S')'*****%%XXELEMENT%%%CENTROTDAL%%% 
STRESSZ%%COMPONFNTSX%%%*****'(12C')' 
ELEMENTX%%STRESSXZ%%%%%%STRESSXRXX%%STRESS%THETA%%%%STRESSXRZ 
%%ZXSIGMA%MAX%%%%%SIGMA%MIN%%%%%%%TOR%MAX%%%%%%ALPHA 

(' IC') 

%XNO, %%%%ZSTRAIN%Z%%%%%'STRAIN%R% %STRAINZTHET4%%%%STRAIN%RZ 
%%%EPS1LON%MAX%%%EPSILONXMIN%%%Z%GAMMAXMAX%%%%%%BETA'('IC') '' )')f 

COUNTER 111 1 
PREVMATi10J 
'FOR' NEId 'STEP' 1 'UNTIL' NELEM 'DO' 
'GEGIi' 
'IF' CGUNTERII? ATHEN' 
'BEGIN' 
PAPERTHROwl 
WRITE TEXT(1(11(12C')$'(128S#)'*****%%%%ELEMENT%%%CENTROIDAL%%X 
STRFSSZ%%COMPONENTS%%%%*****'('2C')' 
ELEMENT%X%STRESS%ZZ%Z%Z%STRESS%R%%%%STRESS%THETAZ%%%STRESS%RZ 
%%%%SIGMA%MAX%%%%%SIGMA%MTNX%%%% %TOR%MAX%%%%%%ALPHA 
'('IC'), 

%%NO, %%%%%STRAIN%Z%%%%%%STRAIN%R%%%%STRAIN%THETA%%%%STRAIN%RZ 
%%%EPSILON%MAX%X%FPS! LON%MIN%%%%%GAMMA%MAX%Z X%%BETA'('IC') '' )')1 

C©UNTERt@11 
IEND'1 
'COMMENT' 
EACH ELEMENTS COORDINATES AND DISPLACEMENT VECTORS ARE SET UP: 

TRI(131: C00RD(NON(NE, 43.111 
TRI(2312COORD(NONCNE, 41,231 

TRI(311sCOORh(NON(NEº5)º1)1 
TRTt4a1=000RDtNONCNEº5), 211 
TRIt53I'COORDCNON(NEr6)º131 
TRIt63$IC0ORDIN0N(NEº63º2)1 

ELDISt1,1i1*Ft2*NON(NEº43 " 1.111 
ELDIS(2,131aFt2*NON(NE, 4). 131 
ELDIS(3º111'Ft2*N0N(NEº5) w 1,131 
ELDISt4º1a1IFt2*NON(NE, 53º1a1 
ELDIS(5,1)IIF(2*NONINE, 63 A 1.131 
ELDIS(6,191 F(2. NONtNE, 6), 131 
'CUMMENT' 

THE tB) MATRIX IS NOW SET Up. 1 

**INSERT A3,1 AS ABOVE** 

'COMMENT' 
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THE ELASTICITY MATRIX (Da IS FORMED FOR THE ELEMENT IF IT 
DIFFERS FROM THAT USED FOR THE PREVIOUS ELEMENT.; 
'IF' NANINEt2] 8 PREVMAT (THEN' 

IBEGIN' 
TERMIeMAT(NON(NE, 21º1)/(1+MAT(NON(NE. l1,2)) 

*(I. MAT(NON(NE, 23,21)/(1e2*MAT(NON(NE, 2]r2])1 
D(1,4]'aD(2,4)tnD(3,4], D(4º1a1=D(6,2], D(4,3)ImOI 

DLI, 1]taD(2r2), sD(3,3)=sTERMJ 
D(1,2)I=D(1,3)iaD(2,1)t. D(2,33taD(3º13i D(3º2]tx 
TERM*MAT(NON(NE, 23,23/(1. MAT(NONINEº2), 2))f 
D[4º41 ETERM/2*(1-2*MATINON(NE, 2]º2])/(1+*MAT(NON(NEº2). 2]): 
PREVMAT, NON(NE, 2); 

ENDE 
'COMMENT' 

THE ELEMENT STRAINS ARE CALC. BY POST MULTIPLYING (B] BY THE 
ELEMENT NODAL DISPLACEMENTS, 
FROM THESE THE PRINCIPAL STRAINS ARE EVALUATED. 

I, E, EPSMAX, EPSMINº AND THE MAX SHEAR STRAIN GAMMAX. 
GAMMAX IS "VE IF STRAIN R> STRAIN Z, 
BETA IS THE ANGLE MEASURED FROM THE HORIZONTAL R AXIS TO 
THE PLANE OF EPSMAX. THE ANGLE IF +VE IS MEASURED 
ANTICLOCKWISE AND IF 'VE CLOCKWISE.; 

MATMULT(8ºELDIStSTNº4,6, I)I 
TEMP11=SQRT((STN(2º1] " STNI1º1])t2 + STNC4,1IT2)1 
TEMP218(STN(1º1) t STN(2111)/21 
EPSMAX3xTEMP2 + TEMPI/21 
EPSMINS: TEMP2 - TEMPI/21 
GAMMAX;; TEMPII 
'IF' STN(2o1) > STN(1º1] 'THEN# GAMMAXa a. GAMMAX; 
BETAI$'90*ARCTAN(STN(4,1)/(STN(2t13 - STN(I. 1]))/3.141592651 
'IF' STN(4,1)/(STNC2t1] R STN(1º1]) >V 'THEN' 

'BEGIN' 
'IF' STN(4#il >0 'THEN' 

BETA'RBETAI 
'ELSE' 

SETAIRBETAI " 901 
'END' 
'ELSE' 
'BEGIN' 

'IF' STN(4,1) >0 'THEN' 
EFTA,; BETAI P 90 

GELSE' 
BETA, RBETA1t 

'END 'I 
OCOMMENT' 

FINALLY THE ELEMENT STRESS COMPONENTS ARE CALC. 
BY SUBTRACTING THE ELEMENT THERMAL STRAIN COMPONENTS 
FROM THE ELEMENT TOTAL STRAIN COMPONENTS AND PRE* 
MULTIPLYING THEM BY THE ELASTICITY ED) MATRIX. 
FROM THESE THE PRINCIPAL STRESSES ARE EVALUATED 

I. E, SIGMAX, SIGMIN, AND THE MAX, SHEAR STRESS TORMAX. 
TORMAX IS -VE IF STRESS R> STRESS Z, 
ALPHA IS THE ANGLE MEASURED FROM THE HORIZONTAL R AXIS TO 
THE PLANE OF SIGMAX, THE ANGLE IF +VE IS MEASURED 
ANTICLOCKWISE AND IF "VE CLOCKWISE.; 
EXC0FIsMAT(NON(NEr2]r3) 
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FTS11,1y1=EXCOF * NONtNEº3)1 
ETS(2,131=ETS(3,111 ETSt1,1)1 
ETS(4,1)1uO; 

FOR I1 a1 'STEP' I 'UNTIL' 4 'DO' 
STNj[j, 1)jsSTNIIº1J - ETSCIº111 

MATMULT(DºSTNI, STS, 4,4º1)1 
TEMP1t=SQRT((STS(2,13 m STS(1º1l)t2 f 4*STS(4º11t2)1 
TEMP21X(STSC1º1I * STS(2,11)/21 
SI6MAx: %TEMP2 t TEMPI/2; 
SIGMIN; *TEMP2 " TEMPI/21 
TORMAX: TEMPI/21 
'IF' STS[20) > STSI1º11 'THEN' TORMAXI="TORMAXI 
ALPHAI: =9O*ARCTAN(2*STS(4º1)/(STSI2º13 " STS(1,1)))/3,141592651 
'IF' 2*STSL4r11/(STS(2,11 v STS(1i13) >0 'THEN' 

'$FGINI 
'IF' 2*STSt4º13 >0 'THEN' 

ALPHA; IALPHAI 
'ELSEI 

ALPHAI. ALPHAI + 90; 
'END' 
'ELSE' 
'8EGINI 

'IF' 2*STSI4º11 >0 'THEN' 
ALPHAI. ALPHAI - 90 

ELSE' 
ALPHAI"ALPHA11 

'END'I 
NFWLINE(2)1 
PRINT(NF, 310)1 
SPACE( C)J 
'FOR' l1: 1 ISTEPI I 'UNTIL' 4 $DO' 

PRINT(STS(Ir1]º0º5); 
PRINT(SIGMAX, 0,5); 
PRINT(SIGMIN, 0,5)1 
PRINT(TORMAX, 0,5)1 
SPACE(I)I 
PRINT(ALPHA, 3,1)l 
NEWLINE(1)1 
SPACE (8); 
'FOR' 1121 'STEP' 1 'UNTIL' 3 'DO' 
PRjNT(STNII, 1I, 0,5)I 
PRINT(STN(4º1a/2,0,5)1 
PRINT(EPSMAX, 0,5)1 
PRINT(EPSMINº0,5); 
PRINT(GAMMAX, 0,5)p 
SPACE(1)1 
PRINT(BFTA, 3,1)I 
COUNTER18COUNTER * 11 
SEND' OF STRESS AND STRAIN CALC. $ OUTPUT.; 
'END'1 
'END' OF (AXITHERMDTSC) WK, BEG, 5/6/1972.: 
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APPENDIX FOUR 

THE AXISYMMETRIC FINITE ELEMENT ANALYSIS 

DATA CHECK PLOT PROGRAM LISTIN( 
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APPENDIX FOUR 

'LIST' (LP) 
'LIBRARY' (EDºSUBGROUPSRA3) 
'LIBRARY' (ED. SUBGROUPSRGP) 
'LIBRARY' (EDºSUBGROUPS. ºRS) 
'PROGRAM' (PLOTMESHAX3T) 
'COMPACT DATA' 
'MIXED SEGMENTS' 
'INPUT' ¶ CRQ 
'OUTPUT' 24LPO 

TRACE' 2 
'8EGIN' 

'COMMENT' 
A PROURAM FOR PLOTTING INDIRECTLY THE MESH PATTERN OF A 
STRUCTURE TO BE ANALYSED USING K, WRIGHTS AXISYMMETRIC 
FINITE ELEMENT ANALYSIS PROGRAM. THIS PROGRAM USES 
3"NODED-2"DEGREE OF FREEDOM PER NODE LINEAR 
DISPLACEMENT FORMULATED TRIANGULARLY SHAPED 
ANNULI TYPE ELEMENTS, 
KEITH W, J, WRIGHT# 
DEPT, MECH, ENG,. 
BHUNEL UNIVERSITY, 
UXBRIDGE, I 
'INTEGER' 

NELFMºNONOPºI, JºNE1 
'REAL' 

SCALERºXI, Y1ºX2ºY2"X3ºY3ºX4, Y61 
'REAL' 1ARRAY' 
£UMMYºMTFNAM, PICNAM(1t5] 
TITLEºXAXISºYAXIS(1s531 
'INTEGER' 'PROCEDURE' INSTRARR(SºA)1 
'STRING' SI 
'REAL' 'ARRAY' At 
'EXTERNAL'I 

'PROCEDURE' HGPTAPE(LºBCDºISºIG. IR)7 
(INTEGER' L, ISºIG. iRI 
'REAL' 'ARRAY' BCD( 
'EXTERNAL'I 

'PROCEDURE' HGPLOT(XºYºIC, L); 
'REAL' X#YI 
$INTEGER' ICºLI 
'EXTERNAL'I 
'PROCEDURE' HGPAXISV(XºYrBCD, NCºSºTHETAºXMINºDXºGApºNH), 
'REAL' XºYºSºTHETA, XMINºDXºGAP1 
'INTEGER' NCºNH1 
'REAL$ 'ARRAY' BCD; 
'EXTERNAL'I 
'PROCEDURE' HGPSYMRL(X, YºHEIGHTºBCDºTHETAºN)I 
'REAL' XºY. HEIGHT, THETAI 
'INTEGER' N1 
'REAL' 'ARRAY' BCD; 
'EXTERNAL'I 
SELECT INPUT(1)1 
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SELECT OUTPUT(2)1 
COMMENT 

THE FOLLOWING ARE NOW READ IN. 
SPACES MAY BE USED TO MAKE UP THE NO, OF CHARACTERS, 
SPACES MAY BE USED TO MAKE UP THE NO, OF CHARACTERS. 

ALL CHARACTER STRINGS SHOULD BE ON ONE CARD 
N. 9, XAXIS#YAXIS ETC. MUST BE TERMINATED $Y* 
MTFNAM. STRING OF 12 CHARACTERS NAMING MAG TAPE FILE 
PICNAM"STRING OF 12 CHARACTERS NAMING THE PIC TO BE PLOTTED 
XAXIS-STRING OF 20 CHARACTERS FORMING R-AXIS LABEL. 
MAXIS-STRING OF 20 CHARACTERS FORMING ZwAXIS LABEL. 

SCALER-THE QUANTITY WHICH SCALES THE COORDINATES 
TO FIT THE PLOTTER PAPER. 
NELEN-THE NO. OF ELEMENTS IN THE STRUCTURE. 
NONOP"THE NO, OF NODES IN THE STRUCTURE., 

INSTRARR('('*')''MTFNAM)I 
INSTRAWR('('*')'iPICNAM)l 

INSTRARR(I('*')', XAXIS)l 
INSTRARR('('*')', YAXIS)I 
SCALERiaREADI 
NELEMt'READ; 
NONOPi'READI 
'8EGIN' 

'REAL' 'ARRAY' 
COORD(1gNONOP, 112]I 

'INTEGER' 'ARRAY' 
NON(1: NELEM, 1: 637 

'COMMENT' 
THE COORDINATES OF THE NODES OF THE STRUCTURE ARE READ INS 

NODE NO 1 R(RADIAL) COORDINATE Z(AXIAL) COORDINATE 
NODE NO 2 R(RADIAL) COORDINATE Z(AXIAL) COORDINATE--; 

'FUR' I:: 1 'STEP' 1 'UNTIL' NONOP 'DO' 
'FOR' J191 'STEP' 1 'UNTIL' 2 'DO' 

COORDCI, Jat'READI 
PAPERTHROWI 
WRITE TEXT 
(1(0'('2C')R1(16S')'NODEXNO. I(I? S')'R%COORDINATE'('3SI)' 
Z%COORDINATE')')I 
NEWLINE(1); 
'FOR' 1121 'STEP' I 'UNTIL' NONOP 'DO' 
'BEGIN' 
NEWLINE(1)I 
SPACE (8) ; 
PRINT(1,3,0)1 
SPACE (Ö); 
'FOR' J1'1 'STEP' 1 'UNTIL' 2 'DO' 
'BEGIN' 
PRINT(COORDLI"J3'1,5)1 
SPACE(S); 
'END'1 
'END'1 
'COMMENT' 

EACH ELEMENT NO. o MATERIAL NO,, TEMPERATURE NO.. (NO. OF 
DEGREES ABOVE/BELOW DATUM) AND NODE NOS. ARE NOW READ IN. 
THE NODE NOS, MUST BE GIVEN IN AN ANTICLOCKWISE DIRECTION= 
'FOR' I1'1 'STEP' I 'UNTIL' NELEM 'DO' 
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'FOR' Jts1 'STEP' I 'UNTIL' 6 'DO' 
NON(I, J]i°READ; 

PAPERTHROW1 
WRITE TEXT('(''('2C')'ELEMENT'('2S')'MATERIAL 
%%TEMPERATURE%%%%ELEMENT%NODE%NUMBERSV(ANTICLOCKWISE%DIRECTION) 
'('IC')'%%%%%NO. '('8$')'NO. '('BS')'NO. '('8S')'I 
'C'BS')'J'C'85')'K. '('1C')'')')1 
NEWLINE(1); 
'FuR' list 'STEP' I 'UNTIL' NELEM 'DO' 
'BEGIN' 
NEWLINE(1)I 

'FOR' Jis1 'STEP' I 'UNTIL' 6 'DO' 
PRINT(NON(Iri)r7.0)i 
'END'I 

'COMMENT' 
THE COORDINATES ARE NOW SCALED READY FOR PLOTTING, 
BY MULTIPLYING THEM BY SCALER, 1 
'FOR' Iis1 'STEP' I 'UNTIL' NONOP 'DO' 
'FOR' Jts1 'STEP' I 'UNTIL' 4 'DO' 
COORD(1, J) sCOORD(I, J]*SCALER; 

'COMMENT' 
A MAG TAPE FILE IS PICKED UP AND NAMED; 
HGPTAPE(O, MTFNAM, 0,0,0)1 

'COMMENT' 
THE PLOTTER IS NOW INITIALISED,; 

HGPLOT(0.0,0g0,15.1)1 
'COMMENT' 

THE SERIAL NO. AND PICTURE NAME ARE WRITTEN ON THE 
MAG, TAPE FILE.; 
HGPTAPE(1, PICNAM, 0º0,0); 

'COMMENT' 
THE ORIGIN IS SET AT Y VALUE OF 26 CM, 
AND X VALUE OF 10 CMI 

HGPLOT(10.0,26,0,0,4)f 
'COMMENT' 
THE PLOTTER X AND Y AXES, (CORRESPONDING TO THE R AND Z 
PROBLEM AXES), ARE NOW DRAWN AND LABELLED.; 

HGPAXISV(0.0, O. 0, XAXISr-25,6, O, O, O. UiO. Z, 2.032r4); 
HGPAXISV(O, 0'o'0rYAXIS'25'17'90.0'0.0.0.2'2.032,4)1 

'COMMENT' 
THE PLOT TITLE IS DRAWN ON THE GRAPH,; 
'COMMENT' 
EACH ELEMENTS NODAL COORDINATES ARE NOW SET 
UP AND THE ELEMENT SUBSEQUENTLY DRAWN,; 
'FOR' NEi=1 'STEP' I 'UNTIL' NELEM 'DO' 
'BEGIN' 
X1i=COORD(NON(NEr43,1I; 
Y11: 000RD(NON(NEr6)'23; 
X2$$000RD(NON(NE, 53,1]f 
Y21=COORD(NON(NE. 5)'2]; 
X3i2C00RD(NONINE, 63r1); 
Y3, '000RD(NON(NEj63.2j; 

HGPLOT(X1, Y1o3tt)f 
HGPLOT(X2, Y2r2r0)1 

HGPLOT(X3. Y3,2,0)T 
HGPLOT(X1, Y1r2r0)1 
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'ENn'I 
'COMMENT' 
THE PLOTTER BUFFER 1S EMPTIED.; 
HGPLOT(0,0,0. O, 0,2)1 

'COMMENT' 
MME MAG TAPE FILE IS NOW CLOSED= 
H(3PTAPE(2vDUMMY#0,0.0)I 
1END'1 

'ENDO OF (PLOTMESHAX3T) WK, BEGl29/1/737 
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APPENDIX FIVE 

TOE PLANE STRESS FINITE BL MENT ANALYSIS 

PROGRAM LISTING 
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APPENDIX FIVE 

'LIST' (LP) 
'PROGRAM' (PLANESTRDISC) 

'INPUT' InCRO 
'OUTPUT' 28LP0 
'EXTENDED' 
18 EGIN' 
' CI)MMENT' 

A PROGRAM FOR PLANEwSTRESS ANALYSIS USING 
RECTANGULAR 4-NODED02PDEGREE OF FREEDOM PER NODE LINEAR 
DISPLACEMENT FORMULATED FINITE ELEMENTS, 
E3 BY 3 GAUSS INTEGRATING POINTS], 

THE MODIFIED FORM OF THE STRUCTURAL STIFFNESS MATRIX (MBK] IS 
FORMED ON DISC BACKING STORE AND THE NODAL FORCE AND DISPLACEMENT 
VECTORS ARE HELD IN CORE, THE EQUATIONS ARE SOLVED BY DIRECT 
GAUSS ELIMINATION. NODAL DISPLACEMENTS AND ELEMENT STRESS AND 
STRAIN COMPONENTS ARE OUTPUT, 
VERSION ALLOWS ZERO. VALUED DISPLACEMENTS(CONSTRAINTS) ONLY, 
MK, 2 ALLOWS FOR ELEMENT NODAL FORCE OUTPUT REQUFST. 3/4/73. 
KEITH W, J, WRIGHT, 
DEPT, MECH, ENG, 
BRUNEL UNIVERSITY, 
UXBRIDGE. 1 
'INTEGER' 
NELNF, 
NOJOBS#NOJ, 
NCB. NRB, 
NOTHICK, 
NCMBKoNRMBK, 

JOB' NELEFI, NONOP, LO, CO, MANND, NOMATI 
'PROCEDURE' TIMENAWI 
'EXTERNAL'I 
'PROCEDURE' COPYSTRINGI 

**SEE AppEN Ix THREE FOR COMPLETE LISTING** 

'END' OF COPYSTRING) 
'PROCEDURE' USESTORE(N, S, T, G, L)I 

**SEE APPENDIX THREE FOR COMPLETE LISTING** 

'EXTERNAL'I 
'PROCEDURE' PUT PART(N, K, A#X, Y)= 

**SEE APPENDIX THREE FOR COMPLETE LISTING** 

'EXTERNAL'; 
'PROCEDURE' GET PART(N, K, A, X, Y); 

**SEE APPENDIX THREE FOR COMPLETE LISTING** 

tFXTERNAL'I 
'PROCEDURF' MAT INVERSE(A, N, INVERSEA)I 
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**SEE APPENDIX THREE FUR COMPLETE LISTING** 

'END' OF PROCEDURE MATINVERSEI 
'PROCEDURE' MATMULT(A, B, C, X, Y, Z) 

**SEE APPENDIX THREE FOR COMPLETE LISTING** 

'END' OF MATMULTI 
'PROCFDURE' MATRA'4MULT(G, H, E, X, Y, Z)I 

**SEE APPENDIX THREE FOR COMPLETE LISTING** 

'END' GF MATRANMUL1I 
'PROCEDURE' DRLOKGAUSS2(F, NCB, NRB)j 

**SEE APPENr! x THREE FOR COMPLETE LISTING** 

'END' OF PROCEDURE DBLQKGAUSS2"I 
SELECT INPUT(1)i 
SELECT OUTPUT(2)) 
'COMMENT' 

THE JOB NO, AND GENERAL STRUCTURE DATA ARE READ IN. I 
PAPERTHROW; 

JUBtsREADI 
WRITE TEXT('(''('2C')'J0B%N0. %%%')')1 
PRINT(JOB, S, Q)1 

NEWLINE(1)I 
COPYSTRTNGI 

NEtEMSCREAD1 
NONOP; READ1 
LUIOREADI 
CUIaREA01 
MANNDIRREADI 
NUMATI: READI 
NOTHICK131READ; 
NELNFIGRFADI 
NRMBKI*2+ºNONOPI 
NCMBK122*(MANND*1)l 
NRBIaNONOPI 

NCBIRMANND+11 
WRITE TEXT('(''('2C')'NUMBER%OF%ELEMENTS%%%')')f 
PRINT(NELFM, 3,0)1 
WRITE TEXT('(''('2C')'NUMBER%AFXNODAL%POINTSX%%')')j 
PRINT(NONOP, 3, O)i 
WRITE TEXT('(" ( 2C')'Nl)MBER%OF%APPLIED%LOADS%%%')')1 
PRINT(LO, 3, O)l 
WRITE TEXT 
(! (1I('2C')INtJMBER%OF%APPLIED%DISPLACEMENTS/RESTRAINTS%%I)')I 
PRINT(CO, 3, O); 
WRITE TEXT 
('(''('2C')'MAX, XNODEXNO, %DIFFERENCE%IN%ANY%ONE%ELEMENT%%')')i 
PRINT(MANND, 3,0)I 
WRITE TEXT('(''('2C')'NO, %OFXMATERIAL%TVPES%%%')')_ 
PRINT(NOMAT, 3, Q)l 
WRITE TEXT('(''('2C')'NO. %OF%MATERIAL%THICKNESSESX%%1)I)1 
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PPINT(NOTHICK, 3.0)1 
WRITE TEXT('(''('2C')'NO, %OFXELEMENTS%WHERE%ELEMENT%NODAL%FORCES% 
ARE%RE1UIREDX%X1)')1 
PRINT(NELNF, 3,0)1 
WRITE TEXT( '(''('2C')'NO, %OF%ELEMENTS%REQIRED%FOR%EMBKIa%%%')'), 
PRINT(NRM9K*NCMBK, Gº6)1 
PAPERTHROW1 
'BEGIN' 

'REAL. ' 'ARRAY' 
ELNFEI : 8f1 tilt 

Dl(1: 3.1: 3)º 
TR, COFºINVTºDTRI113,113], 

ELDIS(1=8.1t13, STN, STS(1p3,1: 13, 
MATCIINOMAT'1; 5), ELTHICKI1: NOTHICK)r 
CUnRD(1$NONOP, 1t2y, WMBK(112,1i2*NCRI, 
HHpXIi, ETAIL1i33ºELCO(1,4º1i2). 
LAMC112,1i4), JAY, INVERSEJ(1i2,1t2], 
Dt1: 3,1: 3]. INVJLAM(1t2.114], 
9. D9t1,3,1t8], SURK, K(1i8,1181º 
F, X, N1. Q(1: NRMRKr1: 1)1 

REAL' 
RAD, DETT, 

XI, ETA, HI, H2, HºX1ºX2ºX3, X4. DETJ'TERM, 
EPSMAX, EPSMIN, GAMMAX, BETA1ºBETAº 

TEMPI, TEMP2rSIGMAX, SIGMIN, TORMAXºALPHAºALPHAI, 
THICKNESS: 
'INTEGER' 

NOF, 
COUNTER, 
K1rJIPII, JJºKKIºKK2, KJ1ºKJ2r 

IºJºPRFVMAT, PREV(RIN'NE, ET. XIIºSºTºPºPMBKI 
'INTEGER' 'ARRAY' 

NOELF(1pNELNF, 1i1)r 
NONCI; NELEM01831 

'COMMENT' 
THE DATA REGARDING THE DIFFERENT MATERIALS OF THE ELEMENTS 
ARE NOW READ IN, THE SE(UENCE IS EX MU-XY EY MU+YX AND G"XY. 1 
'FORT I1=1 'STEP' 1 'UNTIL' NOMAT 'DO' 
'FOR' Jß$1 'STEP' I 'UNTIL' 5 'DO' 

MATtI. J]t READ; 
PAPERTNROWI 
WRITE TEXT 
('(" ('2C')'MATERIAL%NO. '('11S')'EX'('14S')'MUXXY'('12S')' 
EY'('15S')'MU%YX'('12S')'G%XY')'); 
NEWLINE(1); 
'FOR' I1: 1 'STEP' I 'UNTIL' NOMAT 'DO' 
'BEGIN' 

NEWLINE(1)I 
SPACE(5)I 
PRINT(Ir3.0)I 
SPACE(8)I 
'FOR' J181 'STEP' I 'UNTIL' 5 'DO' 

'8EGIN' 
PRINT(MAT(IºJ], 0,4)1 

SPACE (4)I 
'END': 
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'FND'1 
'COMMENT' 

THE ELEPIENT MATERIAL THICKNESSES ARE READ IN, º 
'FUR' Ilal 'STEP' I 'UNTIL' NOTHICK 'DO' 

ELTHICK(131; READI 
WRITE TF T('(''C'2C')'MATERIAL%THICKNESS'('1OS')'THICKNESS 
'('1C') '' ('IUS')'N0, '('15S')'CINCHES), ')')7 
NEWLINEt1)I 
'FUR' AlaI 'STEP' 1 'UNTIL' NOTHICK 'DO' 
18EGIN' 

NEWLINF(I)1 
SPACE (8); 

PRINT(T. 3,0)7 
SPACE(13)1 

PRINT(F_LTHICK(13,0,4)º 
'END, I 
'COMMENT' 

THE COORDINATES OF THE NODES OF THE STRUCTURE ARE READ IN. 
NODE NO, 1X COORDINATE-. -Y COORDINATE 

NODE NO, 2X COORDINATEr'ETC, 1 
'FUR' 1181 'STEP' 1 'I. 1NTIL' NONOP 'DO' 
'FORe JIs1 'STEP' I 'UNTIL' 2 'DO' 

C0ORDLI'J)smREADº 
PAPERTHROWI 
WRITE TEXT 
('(''('2C')''('6S')'NODE%Np, '(I? S')'XX000RDINATE'('3S')' 
Y%C00RDINATE')')I 
NF_WLINE(1); 
'FOR' I{s1 'STEP' 1 'UNTIL' NONOP 'DO' 
19EGIN' 
NEWLINE(1)7 
SPACE (d) I 
PRINT(1,3,0)1 
SPACEC6)I 
'FOR' J1m1 'STEP' 1 'UNTIL' 2 'DO' 
'BEGIN' 
PRINT(COORD(I, J1,1l5)º 
SPACE(5)1 
'END'º 
'END II 
'COMMENT' 

EACH ELEMENT NO, MATERIAL NO, ORIENTATION NO. AND NODE 
NOS. ARE NOW READ IN, 
THE NUDE NOS, MUST BE GIVEN IN A CLOCKWISE DIRECTION, º 
'FOR' !p1 'STEP' I 'UNTIL' NELEM 'DO' 
'FOR' Jº=1 'STEPS I 'UNTIL' 8 'DO' 

NONtI, J3i READ1 
PAPERTHROW1 
WRITE TEXT('(" ('2C')'ELEMENT'('2S')'MATERIAL'('2S')'ORIENTATION 
%%THICKNESS'('85')tELEMENTXNODE%NUMBERS 
Z%%(CLUCKWISEXDIRECTION) 
'('1C')'%XXXXNO'('8S')'NO'('8S')'NO'('9S')'NO'('9S')' 
I'('9S')'J'('9S')'K'('9S$)'M'C'IC')'')')I 
NEWLINE(1)1 
'FOR' I1: 1 'STEP' 1 'UNTIL' NELEM 'DO' 
'BEGIN' 
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NEWLINE(l)f 
'FOR' JIu1 'STEP' I 'UNTIL' 8 'r0' 
PRINT(NON(l, J), 7,0)1 
'END II 
'CUMMFNT' 
THE DISC BACKING STORE FILE IS OPENED. 
THE WORKING AREA nF CORE USED TO FORM THE ROW"BLOCKS 
OF tMSK) BEFORE TRANSFERRING TO BACKING FILE IS INITIALISED. 
THIS IS THEN UIED TO INITIALISE THE REQUIRED FILE AREA 
TO STORE tMRKa, I 
USESTORF(1U, '('ED')' 
'FOR' 1181 'STEP' I 
'FOR' J1=1 'STEP' 1 
WMBK(I, J1l OI 
'FOR' Its1 (STEP' I 
'0EGIN' 

, '('UDVKW2MBK2D1')', l, NRMBK*NCMBK)I 
'UNTILI 2 'DO' 
'UNTIL' 2*NCB 'DO' 

'UNTIL' NR$ 'DO' 

P184eNrB*(1N1)+1i 
PUT PART(1QrP, WMBK, WMBK(1r13, WMBK12r2*NCBJ)I 

'ENI' OF INITIALISING DISC FILE AREA (MBKI, l 
PREVMAT{ OJ 
PREVQRIN; 00000; 
'COMMENT' 

EACH ELEMENT STIFFNESS MATRIX IS NOW CALC, 
AND SUBSEQUENTLY DUMPED INTO (MSKJ. 1 

HHC13f=HHC31180,55555561 

HH (21120,8888 891 
XI1(1)t=ETA1(13 a. 0,774596671 
XIl(2)1*ETAI(23; O, 000OOO00j 
XI1(31; aETAI(3): O, 77459667i 
WRITE TEXT('(''('IC')'ELEMENT%N0, ')')I 
'FOR' NEsI 'STEP' 1 'UNTIL' NELEM 'DO' 
'BEGIN' 
NEWLII (1)I 
PRINT(NEº3ºD)I 
'COMMENT' 

THE COORDINATES OF EACH ELEMENT ARE NOW SET Up; 
ELCOC10), NC00RD(NON(NEº5)º1]f 
ELCO(1,23i'COQRD(NON(NE, 57,2); 
ELCO(2º1j1x000RD(NON(NEº63º1)f 
ELC0C2º23i'C0ORD(NON(NEf6]ºZ)i 
ELCO(3º13taCO0RD(NON(NEr7]º1]f 
ELCO(3,2) *CO0RD(NON(NEr7]º23; 
ELCO(4º13 ICOORD(NON(NEº$)r1); 
ELC0(4º2) CUORD(NON(NE, 8), 2JI 

'CUMMENT' 
THE ELASTICITY MATRIX [D1] FOR EACH ELEMENT IS SET UP 
IF THE MATERIAL DIFFERS FROM THAT OF THE PREVIOUS ELEMENT,; 

'IF' NON(NE, 21#PREVMAT 'THEN' 
'BEGIN' 

TEQM=OImMATCNON(NE, 23'2]*MAT(NON(NEº2)'4]; 
Dl(1,13$"MAT(NON1NEº2]r1]/TERM; 
D1C1'fl11MAT(NONCNEº2jº4]*D1(1,1); 
D1(2,23$UMATCN0NCNEr23,3)/TERM; 
D1(2º1311MAT(NONCNEº2]º2)*D1(2.23; 

U1(3º3]IIMAT(NON(NEº23º5)*2, 
D1(1,331101(2,3)11D1(3,13I1DI(3,2384OI 
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PREVMATIoNON(NEi2)1 
'(OTO' IIABII 

'END OF SETTING Up 
'COMMENT' 

(D13 FOR THIS MATERIAL; 

THE ELASTICITY MATRIX FORMED ABOVE IS FOR 
PLANESTRESS ANALYSIS WITH 
A MATERIAL WHOSE ORTHOTROPIC AXES COINCIDE WITH 
THOSE OF THE GLOBAL AXES OF THE STRUCTURE, 
IF THE AXES DIFFER THE CDI] MATRIX IS NOW TRANSFORMED 
FROM ITS LOCAL TO THE STRUCTURE GLOBAL AXES,; 

'IF' NONtNE, 3]#PREVORIN 'THEN' 
'BEG1N' 

Laste 
! BEGIN' 

'COMMENT' 
THE TRANSFORMATION MATRIX (TR) IS SET UP.; 

RADSsNONINEr33*3,14159265359/180; 
TRt1º1)s=TR(2,2)1x(CQS(RAD))f2t 
TRt1º2)I. TR(2,1)1=(SIN(RAD))? 2t 
TRt3º3'I=TR(1º13'TR(1,2)1 
TRt3,2jjmSIN(RAD)*COS(RAD)I 
TRt3º13t8. TR(3,2)f 
TRt1'33i 2*TRt3,2]; 
TRt2º3j1="2+TRt3º2! f 

'COMMENT' 
(TR3 IS NOW INVERTED; 

MATINVERSE(TR, 3, INVT); 
'COMMENT' 

CD1)(TR3 IS NOW FORMED$ 
MATMULTtfl1, TRºDTR, 3,3,3)I 

1COMMENT' 
FINALLY (TRIINVERSE IS POST MULI 

MATMULT(TNVT, DTR, D, 3,3v3)1 
PREVORIN, PNQNCNE, 311 

'ENDI1 
DLI'3Jsib(1.33/21 

DI2.33ssD(2,31/21 
Dt3,3]iXD(3,33/21 

BY (D13(TR) 9 PUT IN CD]1 

'ENDO OF TRANSFORMATION OF (D1) RESULT IN (D]1 
'FOR' IIm1 'STEP' I 'UNTIL' 8 'D0' 
lFQRO J1u1 'STEP' I 'UNTIL' 8 'DO' 

K[I, JIim0l 
THICKNESSI*ELTHICKINONINEr4311 
'FOR' ET181 'STEP' I 'UNTIL' 3 'DO' 
'FOR' XIIta1 'STEP' 1 'UNTIL' 3 'DO' 
'BEG P4' 

XIsiXII(XII>> 
ETA=RETA1(ET)I 
H1,! HH(XII3J 
H2I. HH(ET] 1 
HiiFH1*HZ*THICKNESS; 

'COMMENT' 
THE TERMS MAKING UP (LAMBDA) 

X1I*1*XII 
X2141OXII 

X3101 *ETA I 

ARE CALL,; Ag. 1 
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X41o1. ETAJ 
'COMMENT' 

THE MATRIX (LAMBDA] IS FORMED; 
LAM(1 r11 i! '^0,25*X4f 
LAMt1r21i="0.25+x31 
LAMtI. 33i=0,25+X3! 
LAMt1r41i=0,25sX4J 
LAMt2,11imR0.25*X20 
LAM(2r21i=0,25*X21 
LAMt2'331=0,25+x1I 
LAMt2,43 . O. 25*X1i 

'COMMENT' 
(JAY) IS FORMEb RY POST MULTIPLYING [LAMBDA] BY 

THE ELEMENT NODAL COORDINATES., 
MATMULT(LAM, ELCO, JAVi2.4.2)1 
'COMMENT' 

THE DETERMINANT OF (JAV] IS CALC,; 
DETJi° JAY[1'1)*JAY12,23 JAV(2,1a*JAyt1r2)1 

'IF' ABS(JAYI1,17) ( ABS(JAY(1r2)) 'THEN' A5.1 'BEGIN' 
'IF' JAY(2º13=0 'THEN' 

BEGIN' 
NEWLINE(1)I 
PRINT(XIrir6)I 

PRINT(ETA, 1,6)I 
WRITE TEXT('('%%JACOBIAN%IJAV]%MATRIX%FORXTHIS% 

GAUSS%PAINT')')I 
NEWLINF(1)f 
PRINT(JAY(1'13,0,6): 
PRINT(JAY(1#2)r0.6)I 
NEWLINE(1)I 
PRINT(JAYr2,1], Q, 6)1 
PRINT(JAY(2,2)r0,6)1 

'END'J 
'END'I 

'COMMENT' 
THE INVERSE OF (JAY) IS NOW FOUND s; 

MAT INVERSE(JAY, 2, INVERSEJ)t 
(COMMENT' 

THE PRODUCT CINVERSEJ3CLAMj IS CALC,; 
MATMULT(INVERSEJ, LAM, INVJLAM, 2,2,4)I 
'COMMENT' 

THE MATRIX EBj IS FORMED FROM THE TERMS OF (INVJLAM3. t 
'FOR' 1121 'STEP' 1 'UNTIL' 3 'DO' 
'FOR' J1F1 'STEP' 1 'UNTIL' 8 'DO' 
BCI, J11wOf 
Bt1r13; Bt3,231°1NVJLAM(1r1I 
ß(1,3)i*B(3,41jPINVJLAM(1,2)1 
6(1,53igB(3,6) INVJLAM(1,3aj 
8(1,7ai1Bt3,83$RINVJLAM(1,431 
Bt2,2JimSE3,13IxINVJLAM(2,131 
B( , 4)txe(3,3114INVJLAM(2,2)1 
B(2,6)$ Bt3,571NINVJLAMt2,33I 
S(2,8I1mS13,7Ii@1NVJLAM(2v4I1 
'COMMENT' 
THE PRODUCT OF (DIES] IS NOW FORMED.; 
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MATMULT(D, B, 08,3,3,8)I 
OCoMMENT' 
THE MATRIX (D] (8) IS PRE'MULTIPLIED BY ES) TRANSPOSEDI 
MATRANMULT(R, DB, SUDK, 8,3r8)J 
'COMMENT' 
FINALLY THE SUNK FOR THIS GAUSS POINT 1S MULTIPLIED BY DETJ 
THE ELEMENT THICKNESS AND THE WEIGHTING FACTOR H ARE ADDED 
INTO THE ELEMENT STIFFNESS MATRIX (K). t 
'FOR' I;. 1 'STEP' I $UNTIL# 8 'DO' 
'FUR' JIv1 'STEP' I 'UNTIL' 8 'DO' 
KII, J]IRK(I, J)+DETJ*H*SUBKII, JlI 
'ENDI OF ELEMENT STIFFNESS FORMATION, j ---- 
'COMMENT' 

THE ELEMENTS OF IK1 ARE NOW DUMPED INTO (MBK) 
IN THE DISC BACKING FILE UDVKW2MBK2D1.1 

'FORe 1185 'STEP' I 'UNTIL' 8 'DO' 
'BEGIN' 
PIRPMBKs; 4*NCB*(NON(NE, I3-1)*1I 
GET PARTIIU, P, WMBK, WMBKII, I), WMBK(2.2*NCB))1 
'FOR' Ji'5 'STEP' I 'UNTIL' 8 'DO' 
'BEGIN' 

'IF' NONINE, I3)NON(NE, J3 (THEN' 'GOTO' NODUMP; 
K11*2*(I-4)uII 
JI1; 2*(J-4). 11 

KK11sKII 
KK21aK1+1I 
KJ11"J1+1I 
KJ214JI I 

Tim2*(NON(NE'J). NON(NE, I))1 
WMBKC1, T+13t=WMBKC1, T+13 + K(K1, J1]; 
WMBKII, T. 23 5WMBK(1,1+2) + KIKKI, KJ1)1 
WMBK(i, T*1)IsWMBKt2, T+13 * KCKK2, KJ23; 
WMBK(2, T*2)1=WMBKf2, T+2) + K(K1*1'J1+1)I 

NODUMPI'END'; 
P18PMBKI 
PUT PART(IU, P, WMBK, WMBKt1,1), WMBK(2,2*NCB])i 

LENDL 
WRITE TEXT('('DUMPEOX0, K, ')')I 
'ENDI OF SETTING UP MOD. STRUCTURAL STIFF, MATRIX; 
'COMMENT' 

THE FORCE AND DISPLACEMENT VECTORS ARE NOW FORMED. 
THE VECTOR NUMBERING SEQUENCE IS-- 

NODE NO, 1 X*DIRECTION (U, -DISPLACEMENT) 
NODE NO, I Y. 'DIRECTION (V', DISPLACEMENT) 
NODE NO, 2 XADIRECTION -, ETC. 

THE NODAL FORCES HAVE THE VALUE OF. ' 
1) ITS PRESCRIBED VALUE 

A5.1 

OR 2) ZERO, (THIS IMPLIES EITHER NO APPLIED FORCE OR A REST. ) 
NODAL DISPLACEMENTS CAN HAVE ONE OF THREE VALUES. 

1) ITS PRESCRIBED VALUE 
OR Z) ZEROm(IF IT IS FREE TO MOVE AND UNPRESCRIBED) 
OR 3) 0.000001'(IF IT IS RESTRAINED). 

N1B. NO PRESCRIBED VALUES WITH THIS VERSION 2/3/1972 
INITIALLY BOTH VECTORS ARE ZEROED AND THEN ONLY PRESCRIBED 
FORCES AND THEN PRESCRIBED DISPLACEMENTS AND RESTRAINTS 
ARE ACTUALLY READ IN, THE SEQUENCE IS IN BOTH CASES 
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-EQUATION NO, FOLLOWED BY FORCE/DISPLACEMENT, 
FINALLY THE COMPLETED DISPLACEMENT VECTOR IS SCANNED AND 
IF THERE IS AN APPLIED DISPLACEMENT THE PROCEDURE BANDMULT 
IS CALLED WHICH MODIFIES THE APPLIED FURCE VECTOR-AND 
ZEROES THE APPROPRIATE TERMS OF (MBK) LEAVING A1 ON THE 
MAIN DIAGONAL TERM (I, E. IN THE FIRST COLUMN OF (MBK1), 
IF THERE IS AN APPLIED RESTRAINT THEN AGAIN THE 
NECESSARY ZFROEING IS CARRIED OUT TO (Max),; 
'FUR' I191 'STEP' 1 'UNTIL' NRMBK 'DO' 

Ftlrtat'X(1,1) 'N1(lrl)t'W[Ir13tmut 
PAPERTHROWI 
WRITE TEXT( '(''('2C')'COX%NO, '('6Se)'EQUATION%NO. '('ÖS') 
APPLIFD%DISPLACEMENTS%X(CONSTRAINTs0,000001) 
'('IC')''('37S')'(INCHES)')'); 
NEWLINE(1); 
'FUR' I181 'STEP' 1 'UNTIL' CO 'DO' 

'BEGIN' 
JIsREADI 
XtJr1)taREAD; 

NEWLINE(1); 
SPACE(3)I 
PRINT(I, 3,0); 
SPACE (6); 
PRINT(Jr4,0); 
SPACE (13); 
PRINT(XIJ. 1)r0,6); 

'END' OF SETTING UP DISPLACEMENT VECTORI 
WRITE TEXT('(''('2C')'LO%%NO, '('6S')! EWUATION%NO, '('6S')' 
APPLIEP%FORCES'('1C')''(I34SI)5LBF. 1), ); 
NEWLINE(1); 
'FOR' I181 'STEP' I 'UNTIL' LO 'DO' 

'BEGIN' 
JIaREADI 
F(JrlltsREAD1 

NEWLINE(1); 
SPACE(3)1 
PRINT(lr3,0); 
SPACE(6)1 
PRINT(Jr4, U); 
SPACE ( 13)1 
PRINT(F(J. 13,0,6); 

'END' OF SETTING UP LOAD VECTOR; 
'FUR' I1; 1 'STEP' 1 'UNTIL' NRB 'DO' 
'BEGIN' 

P: RPMBKI24+NCS*(1e1)+11 
GET PART(10rP, WMRK"WMBK(1r13, WMBKL2r2aNCRI); 
'FOR' J101 'STEP' 1 'UNTIL' 2 'DO' 
'BEGIN' 
'IF' X(2*(1p1)+J, 1)#0 'THEN' 

'DEGINI 
'FOR' IIss1 'STEP' I 'UNTIL' NCMBK 'DO' 

WMBK(J, II)ta); 
'FOR' Iits1 'STEP' I 'UNTIL' 2 'DO' 

WMBK[II'J)tsOI 
WMBKGJ'J3salp 

'END'; 
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IEND II 
'FOR' J1111 'STEP' 1 'UNTIL' NCB«1 'DO' 
'bEOIN' 

'1F' T+J>NRS 'THEN' 'GOTO' NQROW; 

'FOR' IZi61 'STEP' 1 'UNTIL' 2 '00' 
'REGINI 

'IF' Xt2*(T*J"1). II, 13#O 'THEN' 
1BEGIN' 
'FOR' JJ1s1 'STEP' I 'UNTIL' 2 'DO' 
WMRKtJJ, 2*J+II3 OJ 
'END'; 

'END 'I 
NOROWj'END'; 

PIRPMRKI 
PUT PART(1U. P, WMBK, WMRKt1rI3, WMRK[2.2*NCB])I 
'END' OF MUDS. TO [MBK) FOR APPLIED CONSTRAINTS.; 

WRITE TEXT ('('' ('2C')'TTME%AT%COMMENCEMENT%AF%EQUATION%SOLUTION%X')I)I 
TIMENOWI 
DBL0KGAUSS2(FsNCB, NR8); 
WRITE TEXT 
('(''('2C')'TIMEXAT%COMPLETION%OF%EQUATION%SOLUTION%%')'); 
TIMENOW1 
'COMMENT' 

THE NODAL POINT DISPLACEMENTS AND FORCES ARE NOW OUTPUT; 
PAPERTMRQW; 
WRITE TEXT('(''('2C')'%%NODE'('22S')'NUDAL%%%DISPLACEMENTS 
1('29S')'NUDAL%X%FORCES'('IC')'%%XNO, '('27S')'(INCHES) 
'('41$')'(LBF)'('IC') ''('20$')'X%DIRECTION'('14S')'Y% 
DIRECTION'('14S')'X%DIRECTION'('14S')'Y%DIRECTION'('1C')' 
'('24S')'U'('24S')'V'('26S')'FX'('23S')'FY'('IC') '')')I 
'FOR' I121 'STEP' 1'UNTIL' NONOP 'DO' 

'BEGIN' 
NEWLINF(1); 
SPACE(2)1 
PRINT(Ii3, O)1 

SPACE (12) 1 
PRINT(F(2*Ii*1,1), 1.6); 
SPACE(15)1 
PRINTCF(2*I. 13 1.6)1 
SPACE (10) 
SPACE(10)7 
'END'; 

'COMMENT' 
EACH ELEMENT DISPLACEMENT VECTOR IS NUW FORMED 
AND THE [Bi AND (D3 MATRICES RE"CALL. THE CENTROIDAL 
STRAIN AND STRESS COMPONENTS ARE THEN EVALUATED AND OUTPUT 
I. E. AT XIsETARO; 

PAPERTHROW$ 
WRITE TEXT('(''('2C')''(I28S')I*****%% %ELEMENT%%% 
CENTROIDAL%%%STRESS%XXCOMPONENTS%%%%*****1('2C')' 
I('IC')'ELEMENT%%%%STRESS%XX'('? S')'STRESSXYY'('7S')' 
STRESS%XY'('? S')'SIGMA%MAX'('7S')'SIGMA%MIN'('8S')'TOR%MAX 
'('8S')'ALPNAI('IC')I 
%%%NO, '('5S')'STRAINXXX'('7S')'STRAIN%YY'('7S')' 
STRAIM%XY'(16SI)IEPSIL0N%MAXI(I5S')IEPSILON%MINI('6S')IGAMMA%MAX 
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'('8S')IB ('IC')'')' '' )' )1 
COUNTEKim1; 
PREVt1AT NO 
PPEVORIN=x10001 
'COMMFNT' 

THE POSITIONS WHERE THE ELEMENT STRAIN 
COMPONENTS ARF EVALUATED ARE CAIC. AND 
(LAMBDA) REFORMED-THIS IS THE SAME FOR 

XIIgo I 
ETA 

'CUMMFNT' 
TN: TERMS MAKING 

*1a1+XI; 
xzal-XI1 

X3ta1+ETAI 
X41a1'ETAI 

lCUMMENT9 

UP (LAMBDA) ARE CALC. S 

THE NATPIX (LAMBDA) IS FOAMED; 
LAMM . 1) O, 25*X41 
0M[1r2]j=R0,25*X3t 
LAMM . 3) O, 25*x31 
LAMM . 4) O , 25*X41 
LAMi2,13i'. O, 25*X21 
LAM(2,2at: 9,25*X2l 
LAM(2,331E0,25*X11 
LAMt2,43: u'O, 25*X1; 

'FOR' NF181 'STEP' 1 'UNTIL' NELEM 'DO' 
'BEGIN' 
OCOMMENT' 

THE COORDINATES OF EACH ELEMENT ARE 
ELCO(1,1) COORD(NON(NE, 5j, 1a1 
ELC0(1,21 xCOORD(NON(NE, 53º23; 
ELCM(2º13: a000RD(NON(NE, 63º1is 
ELC0(Z, 21, UCOORD(NON(NE, 63,2Ji 
ELCf(3,1) C04RD(NON(NE, 71º1)1 
ELCO(3,2] iCU0RD(NON(NEº73 rfl I 
ELCO(4,13: 'COORD(NON(NE, 8)rii; 
ELCO(4,2)txCQORD(NON(NE, 81,2JJ 

'IF' COUNTERa17 'THEN' 

AND STRESS 
THE MATRIX 
ALL ELEMENTS, 

NOW SET Up= 

'BEGIN' 
PAPERTHRQW; 
WRITE TEXT('(''('2C') ''('28SI)R*****%%%%ELEMENT%%% 
CENTROIrAL%%%STRESS%%%COMPONENTS%%%%*****'('2C')' 
'('IC')'ELEMENT%%%%STRESS%XX'('7S')'STRESS%YY'('7S')' 
STRESS4XY'('7S')'SIGMA%MAX'('7S')'SIGMA%MIN'('8S')'TORXMAX 
'('8S')'ALPHA'('IC')' 
%%%NO, '('5S')'STRAIN%XX'('7S')'STRAIN%VY'('TS')' 
STRAIN'XY'('6S')'EPSILON%MAX'('5S')'EPSILON%MIN'('6S')'GAMMA%MAX 
'('8S')'BETA'('1C')'')'); 

COUNTERtvI: 
'ENDII 
1CUMMENT' 

THE DISPLACEMENT VECTOR OF EACH ELEMENT IS SET Up,; 
ELDIS(1,1lsaF(2*(NfNLNEr53-1)+1r1]1 
ELPISC2r1]lwF(2+(NON(NEt5l"1)*2º1)0 
ELDISL3,1310F(2*(NON(NE, 6). 1)+1'1]1 
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FLD1S(4,1j; IF(2*(NON(NE, 6]N1)+2,1J; 
ELDISI`5,1, aj F(2*(NON[NE, 7]«1)+1,11f 
FLDIS(6,1 a laF[Z*(NON(NE, 73.1 ). 2,1 at 
FLD1S['P, 1J IFL2*(NON[NE, H)N1)+1,1JI 

ELPISt8,1)i=F[2*(NONCNE, ö)u1)+2,1]t 
'COMMENT' 

TIE FLASTICITY MATRIX (D1) FOR EACH ELEMENT IS SET UP 
IF THE MATERIAL DIFFERS FROM THAT OF THE PREVIOUS ELEMENT; 

'Is' NUN(NEv2)#PREVMAT 'THEN' 
IREGIN' 

TERMI'I"MATINON(NE#21,23*MAT[NON[NEf27r4ai 
D1[1,1]$aMAT(NON[NE, 2], 1]/TERM; 
n1[1ºZnIOMATtNON[NE, 23r4)*D1(1,13v 
01[2r23jcMAT[N4N[NE#21#31/TERM; 
D1[?,, 1JIsMAT[NQN[NEr23o2]*D1[2f27i 

D1[3,3i1*MATCNON(NE, 2), 5)*2; 
D1(1 '. $1: 1(2,33i 1(3,131*D1[3,23iuo; 

PREVMAT=MN0N(NEr2]1 
'GUTA' LAR41 
$ENDO OF SETTING UP (DII FOR THIS MATERIAL; 
'Cu 

THE ELASTICITY MATRIX FORMED ABOVE IS FOR 
PLANESTRESS ANALYSIS WITH 
A MATERIAL WHOSE ORTHOTROPIC AXES COINCIDE WITH 
THOSE OF THE GLOBAL AXES OF THE STRUCTURE, 
IF THE AXES DIFFFR THE (Dl) MATRIX IS NOW TRANSFORMED 
FROM ITS LOCAL TO THE STRUCTURE GLOBAL AXES,; 

! IF' NQN(NE,. I#PREVORIN 'THEN' 
EGIN' 

LAB2t 
86GIN' 

'COMMENT' 
THE TRANSFORMATION MATRIX (TR3 IS SET tip. J 

RADIaNnN(NE, 3J*3.14159265359/1801 
TR(1 º1 l: TR(2º23i=(COS(RAD))t2r 
Tai(lt2liaTR(2r1)Ia(SIN(RAD))t2t 
TW(3º3) iaTRI1ºi)'+TR(1º2) 1 
TR(3r211=SiN(RAD)*COS(RAr)I 
TR(3º1l$A*TR(3º2)I 
TR(1r3)1m2*TR(3º21i 
TR(2,311a'+2*TRt3º21! 

CUMMENT' 
(TRJ IS NOW INVERTEDI 

MATINVERSE(TRr3, INVT)l 
'COMMENT' 

(DIIETRI IS NOW FORMED: 
MATMULT(D1, TR#, DTRr3,3,3)J 

'COMMENT' 
(TRIINVFRSE IS POST«MULTIPLIEt BY 

MATMUUT(INVT, DTR, D, 3,3,3)t 
PREVORINfaNON(NEr3)1 

(DIIETR) AND PUT IN (D); 

'END If 
DL1,3)t: D0r31/2º 

Dti, 3)t=D(2,3)/21 
D(3,3) 3D(3,31/2: 

'END' OF TRANSFORMATION OF (DI] RESULT IN ED); 
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' C, UMNIFNT' 
(JAY) IS FORMED BY POST MULTIPLYING (LAMBDA) BY 

THE ELEMENT NODAL COORDINATES. t 
MATMULT(LAM, ELCOºJAY, 2,4, Z)j 
'COMMENT' 

THE DETERMINANT nF (JAY) IS CALC, I 
DETJIa JAY[1º1]*JAY(2,2J-nJAY(2º1]*JAY[1,21 
'COMMENT' 

IMF INVERSE OF (JAY) IS NOW FOUND,; 
M4TINVERSE(JAYº2ºINVERSEJ)t 

'CUMMENTO 
THE PRODUCT (INVERSEJ](LAM] IS CALC"t 

MATMULT(INVERSEJºLAM. INVJLAM, 2,2,4); 
'CUMMFNT' 

THE MATRIX (8) IS FORMED FROM THE TERMS OF IINVJLAM], t 
'FOR' Ii0 'STEP' I 'UNTIL' 3 '00' 
'FUR' Ji'I 'STEP' I 'UNTIL' 8 'DO' 
BC! ºJI: a0; 
B[1,1): mD13,23a: INVJLAM[1r1)J 
B[1.3): e8(3,41: =INVJLAMt1º2)J 
B[1º5): 08[3º67f; INVJLAM[1r311 
B[1º71: "B(3,81=IINVJLAM(1º4); 
B(2,23: xB(3,171aINVJLAMt2,13J 
B[2º43 aß(3,3): mINVJLAM[2v2)1 
B[Zº6]: 28(3,5) INVJLAM(2"3); 
8(2,8): aß(3,1)IaINVJLAM(2,43; 
'COMMENT' 

THE ELEMENT STRAINS ARE CALC, BY POST"MULTIPLYING (B] BY 
THE ELEMENT NODAL DISPLACEMENTS. 
FROM THESE THE PRINCIPAL STRAINS ARE THEN EVALUATED 

I. E. EPSMAX, EPSMINº AND THE MAX, SHEAR STAIN GAMMAX, 
GAMMAX IS "VE IF STRAIN XX > STRAIN YY. 
BETA IS THE ANGLE MEASURED FROM THE +VE HORIZONTAL X AXIS 
TO THE PLANE OF EPSMAX. THE ANGLE IF +VE IS MEASURED 

ANTICLOCKWISE AND IF 'VE CLOCKWISE. t 
MATMULT(B, ELDIS, STNr3º8º1)f 

TEMPI: "SQRT((STN[1º1)"STN(2r13)t2 + STNE3º1]T2)1 
TEMP2: 8(STNCI, 1] * STN(2,1])/21 
EPSMAX, ITEMP2 + TEMPI/2i 
EPSMINtaTEMP2 " TEMPI/21 
GAMMAXIaTEMPII 
BETA11x90*ARCTAN(STNf3r1]/(STt1(1º1] M STN(2r13))/ 
3.141592ä5359t 

'IF' STN(3º1)/(STN(1º1] A STN(2º1]) >0 'THEN' 
'BEGIN' 

'IF' STN(30] >0 'THEN' 
BETAT; BETA1 

'ELSE' 
BETA1=BETAI + 901 

ENDS 
ELSE' 
'BEGIN' 

'IF' STN(3r11 >0 'THEN' 
BFTA, sBETAI " 90 

ELSE' 
BETAt=BETA1I 
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IFND'J 
'COMMENT' 

FINALLY THE ELEMENT STRESS COMPONENTS ARE CALC. 
FROM THESE THE PRINCIPAL STRESSES ARE THEN EVALUATED 
I. E. S! GMAX, SIGMTN" AND THE MAX, SHEAR STRESS TORMAX 
TURMAX IS 'VE IF STRESS XX > STRESS YY. 
ALPHA IS THE ANGLE MEASURED FROM THE +VE 
AXIS TO THE PLANF OF SIGMAX. THE ANGLE IF 

ANTICLOCKWISE AND IF «VE CLOCKWISE,; 
MATMULT(D, STN, STSº3º3º1)I 

1EMPil SQRT((STSi1º1a-STS(2º11)t2 
TEMP21c(STS(1,11 + STSr2º1])/2i 
SIGMAXs TEMP2 i TEMPI/21 
SIGMINOaTEMP2 - TEMPI/2I 
TURMAX: XTEMP1/2I 

HORIZONTAL X 
+VE IS MEASURED 

4 4*STS13111t2); 

'1F' STS(1r1] > STS(2,1] 'THEN' TORMAX=R. TORMAXI 
ALPHA1$sQO*ARCTAN(2*STS(3,13/(STSL1,11 * STS(2.1]))/ 
3041592653591 

'IF' ? *STS(3,1)/(STS(i, 1). STS(2,1]) >0 'THEN' 
1BEGIN' 

'IF' 2*STSE3,1j >0 'THEN' 
ALPHAtIALPHA1 

FELSEI 
ALPHA,: ALPHAI+901 

'ENPI 
ELSE 

BEGIN' 
'IFS 2*STS(3,1] >0 'THEN' 

ALPHAI: ALPHAI. 90 
FELSEI 

'END'; 
NEWLINE(2)1 
PRINT(NE, 3,0)J 
SPACE (5); 
'FOR' Itlm1 'STEP' 1 
'BEGIN' 
PRINT(STSI1,13,6,1)i 
SPACE(5aI 
IEND'1 
PRINT(SIGMAX, 6, l)f 
SPACE (5); 
PRINT(SIGMIN, 6,1)( 
SPACE(5)1 
PRINT(TORMAX,. 6,1)I 
SPACE(S)i 
PRINT(ALPHA, 3,3)1 
NEWLINE(1)I 
SPACE(9) I 
SPACE(2)I 
PRINT(STN(1,13,1o6)I 
SPACE ()i 
PRINT(STNC., 13r1,6)1 

ALPHAt: ALPHA1I 

'UNTIL' 3 'DO' 

SPACEC5)I 
PR! NT(STN(3,1)/2r1r6)1 
SPACE(5)I 
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PRINT(EPSMAX, 1,6)1 
SPACE(5)1 
PRINT(EPSMIN, 1,6)I 
SPACE(5)1 
PRINT((3AMMAX, 1,6); 
SPACE (5 )1 
PRINT(BETA, 3,3)1 
COUNTERIaCOUNTER01 
'END' OF STAIN AND STRESS CALC, I 
'IF' NELNFa0 'THEN' 'GOTO' HOMEANDRYI 
'FUR' 1181 'STEP' 1 'UNTIL' NELNF 'DO' 
NOEIF(1,1) . RFAD1 
PREVMATINDI 
PREVORIN=8100001 
CoUNTERial; 
PAPERTHROWI 
WRITE TEXT 
(1(" ('2C') " (1195')I****%ELEMENT%%NODALX%FORCES%***+'('2C')' 
ELEMENT'('2BS')'ELEMENT%%%NODE%%%NUMBERS'('IC')' 
%%rMO1('26S')'FX%%%ANDXX%FY%%%FORCE%%%CUMPONENTS'('IC')' 

('20S')'I'('1PS')IJ'('1FS')lKl('17S')'M'('IC')' 
('19S')'FK'('16S')'FX'('16S')'FX'('16S')'FX'('IC')' 
C' 19S')'FY'('16S')'FY'('165')'FY'('16S')'FY'('IC') '' )')I 

'FOR' NOFIal 'STEP' 1 'UNTIL' NELNF 'DU' 
'BEGIN' 

NEtaNOELF(NOF, 13, 
'IF' CUUNTERa13 'THEN' 
'BEGIN' 
PAPERTHROWI 
WRITE TEXT 
C' (''('2C') " ('19S1)'****%ELEMENT%%NODAL%%FORCES%***+'('2C')' 
ELEMENTt('28S')(ELEMENT%%%NODE%%%NUMBERS'('1C')' 
%%N O'('26S')'FX%%%AND%%%FY%%%FORCE%%XCUMPONENTS'('IC')' 
1('2VS')'I'(l17S')'J'('17S')IKl('1? S')'M'('IC')' 
l('19S')'FX'('16S')'FX$('16SO)'FX'('16S')'FX'('IC')' 
'C'19S')'FYI('16S')'FY'('16S')'FY'('16S')'FY'('IC') '')')I 
COUNTER . 11 
'ENDII 
'COMMENT' 

THE COORDINATES OF EACH ELEMENT ARE NOW SET UPI 
ELCOCI, 11sFC00RD(NON(NE, 5), 1)t 
EL0001,2) 000RD(NON(NEp5)#2JI 
ELCO(2,131sC04RD(N0N(NE, 6), 11I 
ELC0(2,2)t"CUORD(NON(NE, 6), 2JJ 
ELC0C3,1, tICOORD(NON(NE. 73.11: 
ELCO(3,23, EC00RDINON(NE, 73,2J; 
ELCO(4,1)$*C00RD(N0N(NE, 81,1)1 
ELCOI4,2)1'COORDINON(NE, 83,2); 

'COMMENT' 
THE ELASTICITY MATRIX (01) FOR EACH ELEMENT IS SET UP 
IF THE MATERIAL DIFFERS FROM THAT OF THE PREVIOUS ELEMENT.; 

'IF' NONINE, 23#PREVMAT 'THEN' 
'BEGIN' 

TERM, a1+MAT(NON(NE. 2)22)+MAT(NON(NEr2)'4)1 
D1[1,1]tIMATINON(NE, 2)r11/TERM, 
D1(1,2)I3MAT(NON(NE, 23,43*01(1,11; 
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D1(2,2)1aMAT[NON[NEr21#31/TERMI 
D1[2,1jiaMAT[NON[NE#2jr2I+D1[2.21i 

U1f3#3J: aMAT(NON[NE#2]r5J*27 
h111º3]iaD1(2,33aaf1(3.1)$ D1(3v2]1=OI 

PREVMATjwN0NCNE, 2)$ 
'GOT01 LAB31 

'FND' OF SETTING Up [D1) FOR THIS MATERIAL; 
$COMMENT' 

THE ELASTICITY MATRIX FORMED ABOVE IS FOR 
PLANFSTRESS ANALYSIS WITH 
A MATERIAL WHOSE ORTHOTROPIC AXES COINCIDE WITH 
THOSE OF THE GLOBAL AXES OF THE STRUCTURE, 
Ii THE AXES DIFFER THE CDI) MATRIX IS NOW TRANSFORMED 
FROM ITS LOCAL TO THE STRUCTURE GLOBAL AXES,; 

'IF' NUN[NEr31#PRFVORTN 'THEN' 
1REGIN' 

LA831 
REGIN 

'COMMENT' 
THE TRANSFORMATION MATRIX (TR] IS SET Up,; 

RAD; NON[NEr3)*3,1415926S359/18O; 
TR(j, 1]1'TR(2r2)1=(CAS(RAD))t2i 
TºtLlr4118 TRt2rljlx(SIN(RAD))T2I 
TK(3,3)1'TRt1,13RTRf1r2i1 
TR(3, l3 SiN(RAD)*COS(RAD)l 
TR(3,1)1a"TR(3r2)I 
TR(1,33; u2*TR(3,2]; 
TRf2,311""2*TRI3,2l1 

'COMMENT' 
ITRI IS NOW INVERTEDI 

MATINVERSE(TR, 3, INVT)l 
'COMMENT' 

(D1)CTR) IS NOW FORMED; 
MATMULT(D1rTR, DTRr3r3r3)1 
'COMMENT' 
FINALLY (TR)INVERSE IS POST MULTIPLIED BY 
(D13(TR) AND PUT IN (DII 
MATMULT(! NVT, DTR, D, 3r3r3)1 
PREVORINInNONCNEr311 

'END'1 
D(f, 3]iuD(1,3)/21 

D[2,31iwDt2r33/21 
D(3r33t=Dt3,3)/21 

'END' OF TRANSFORMATION OF (DI) RESULT IN [D)l 
'FUR' 1181 'STEP' 1 'UNTIL' 8 'DO' 
'FOR' J1111 'STEP' 1 'UNTIL' 8 'DO' 

KCI#J11801 
THICKNESStaELTHICK(NON(NE, 4311 
'FOR' ET1=1 'STEP' 1 'UNTIL' 3 'Dnl 
'FOR' XTlIa1 'STEP' I 'UNTIL' 3 'DO' 
'BEGIN' 

**INSERT A5,1 AS ABOVE** 
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'ENDS OF ELEMENT STIFFNESS FORMATION, 
'COMMENT' 

THE DISPLACEMENT VECTOR OF EACH ELEMENT IS SET UP.; 
FLDIS(1º1jssF(2+(NON(NEº53-1)*1,1j; 
FLDIS(2º1)ssF(2*(NONINE, 5)'1)+2º1J; 
FLDIS(3º13; SF(2*(NONtNE, 61-1)+1,1J; 
ELDISt4, l3: iF(2*(NON(NE, 63'l)+2º1J; 
ELDIS(5º13IsF(2+(NnN(NE, 71-1)+1,1)1 
ELDIS(6,1)IRF(2*(NON(NE. 73.1)+2º1at 
ELDISL7,1118Ft2*(NON(NEº8)-1)+1º1J; 

ELDISIB, 1]s=F(2+(NON(NEº87qo1)+2,111 
'COPMENT' 

THE ELEMENT NODAL FORCES ARE OBTAINED BY POSTRMULTIPLYING 
THE ELEMENT STIFFNESS MATRIX (K] BY THE ELEMENT 
DISPLACEMENT VECTOR (ELDISa. 1 

MATMULT(KºELDISºELNF, 8"8,1)J 
NEWLINE(2)i 
PRINT(NEº3,0)I 
SPACE(10)1 
'FOR' 1125 'STEP' 1 'UNTIL' 8 'DA' 
'BEGIN' 

PRINT(NON(NE, 13,4,0)1 
SPACE(11)1 

' END' I 
NEWLINE(1)I 
SPACE( 14); 
'FUR' Isa1,3r5,7 'DO' 
'BEGIN' 

PRINT(FLNF(Iº13,3,6): 
SPACE(5)) 

'END': 
NEWLINE(1)1 
SPACE(14)I 
'FOR' I1r-2º4º6,8 'DO' 
'BEGIN' 

PRINT(ELNFIIº13º3,6)1 
SPACE(5)i 

'ENDsf 
COUNTERIUCOUNTER + 1j 
'END' OF ELEMENT NODAL FORCES CALCS,; 
HOMEANDRYs 
'END'I 
'END' OF (PLANESTRDISC) WKA BEG, 2/4/73; 
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APPENDIX SIX 

THE PLANE STRESS/STRAIN FINITE EL E ANALYSIS 

DATA CHECK PLOT PROGRAM LISTING 
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APPENDIX SIX 

'LIST' (LP) 
'LIBRARY' (ED. SUBGROUPSRA3) 
'LIBRARY' (ED, SUBGROUPSRGP) 
'LIBRARY' (ED, SUBGROUPS+RS) 
'PROGRAM' (PLOTMESH4N2D) 
'COMPACT DATA' 
'MIXED SEGMENTS' 
'INPUT' 1RCRO 
'OUTPUT' ZRLPO 
ITRACE'2 
18EGIN' 

'COMMENT' 
A PROGRAM FOR PLOTTING INDIRECTLY THE MESH PATTERN OF A 
STRUCTURE TO BE ANALYSED USING K. WRIGHTS PLANE 
STRESS/STRAIN FINITE ELEMENT ANALYSIS PROGRAMS, 
THESE PROGRAMS USE RECTANGULAR 4'NODEDP20DEGREE OF FREEDOM 
PER NODE LINEAR DISPLACEMENT FORMULATED FINITE ELEMENTS, 

MK, 2 PLOTS CORTICAL DONE GRAIN DIRECTION MATERIAL NO 1.1/1/73, 
KEITH W, J, WRIGHT# 
DEPT, MECH, ENG., 
BRUNEL UNIVERSITY, 
UXBRIDGE,? 
#INTEGER' 

NELEM, NONOP, I'JsNE1 
REAL' 

XAVrYAVrAPGRAD. XMINrXMAX, YMIN#YMAX#XBAR, YBAR, 
SCALERrXl, Y1"X2, Y2, X3, V3, X4, V4; 

'REAL' 'ARRAY' 
DUMMY, MTFNAM, PICNAMtIII53, 

TITLE, XAXIS, YAXISI1t5): 
'INTEGER' 'PROCEDURE' INSTRARR(S. A)i 
'STRING' Si 
'REAL' 'ARRAY' Al 
'EXTERNAL'I 
'PROCEDURE' HGPLOT(X, Y, IC, L); 
'REAL' X, YI 
'INTEGER' IC. L1 
'EXTERNAL'I 

'PROCEDURE' HGPTAPE(L, 8CD, IS, IG. IR)J 
'INTEGER' 01S, IG, IRI 
'REAL' 'ARRAY' BCDI 
'EXTERNAL'l 

'PROCEDURE' HGPAXISV(X, Y. BCD, NC, S, THETA, XMIN, DX, GAP, NH)I 
'REAL' X, Y, S, THETA, XMIN, DX, GAPJ 
1INTEGER' NC, NHI 
'REAL' 'ARRAY' BCD$ 
'EXTERNAL'1 
'PROCEDURE' HGPSYMBL(X, V, HEIGHT, BCD, THETA, N)I 
'REAL' X, Y, HEIGHT, THETAJ 
'INTEGER' NJ 
'REAL' 'ARRAY' BCDJ 
'EXTERNAL'1 
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}ý 

THE FOLLOWING ARE NOW READ IN. 
MTFNAM"STRING OF 12 CHARACTERS NAMING MAG TAPE FILE 
PICNAM. STRING OF 12 CHARACTERS NAMING PIC TO BE PLOTTED 

TITLE-STRING OF 30 CHARACTERS FORMING JOB TITLE. 
XAXI$"STRING OF 20 CHARACTERS FORMING X-AXIS LABEL. 
YAXIS"STRING OF 20 CHARACTERS FORMING V"AXIS LABEL. 

N. B. EACH STRING SHOULD BE ON A SEPARATE CARD WITH * PUNCHED 

SELECT INPUT(1)J 
SELECT OUTPUT(2)1 

COMMENT' 

IN COLUMN 80 
SCALER-THE QUANTITY WHICH 
TO FIT THE PLOTTER PAPER. 
NFLFM-THE NO. OF ELEMENTS 
NONOP"THE NO. OF NODES IN 

INSTRARR('('*I)'ºMTFNAM); 
INSTRARR('('*')'ºPICNAM)I 

INSTRARR('('+')'ºTITLE)I 
INSTRARR('('*')'. XAXIS)J 
INSTRARR('('*')'ºYAXIS)I 
SLALFRssREADI 
NELEMiaREADI 
N(NOp: "READ) 
ýBEGINI 

'REAL' 'ARRAY' 
COORDCI'NONOPr11Z); 

'INTEGER' 'ARRAY' 
NON(1iNELEMº11$); 

NUDE NO, IX CUORDINATE--'V COORDINATE 
NODE NO, 2X COORDINATE-"ETC. 1 

'FOR' Ital 'STEP' 1 'UNTIL' NONOP 'DO' 
$FOR' J1=1 'STEP' I 'UNTIL' 2 'DO' 

COORD[I, J)1DREADI 
PAPERTHROW; 
WRITE TEXT 
('(I'('2CJ) '' ('6S')'NODE%NO. '('7S')'X%000RDINATE'('3SI)' 
YXCOORPINATE')')I 
NEWLINE(1)1 
'FOR' Is=1 'STEP' 1 'UNTIL' NONOP 'DO' 
(BEGIN' 
NEWLINE(1)I 
SPACE(b)7 
PRINT(1r3, O)J 
SPACE (8) ; 
'FUR' Jts1 'STEP' I 'UNTIL' 2 $DO' 
'BEGIN' 
PRINT(000RD(I, J)r1,5)1 
SPACE(5)1 
'END '1 
IEND1 
'COMMENT' 

EACH ELEMENT NO, MATERIAL NO. ORIENTATION NO, AND NODE 
NUS, ARE NOW READ IN, 
THE NODE NOS. MUST BE GIVEN IN A CLOCKWISE DIRECTION. 1 

SCALES THE COORDINATES 

IN THE STRUCTURE. 
THE STRUCTURE.; 

'COMMENT' 
THE COORDINATES OF THE NODES OF TNE'STRUCTURE ARE READ IN, 
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IFOR I II=1 
'FOR' J1=1 

NONII 

'STEP' I 
'STEP' 1 

"JliaREADJ 

'UNTIL' NELEM 'DO' 
'UNTIL' 8 'DO' 

PAPFRTMROW$ 
WRITE 1FXT('('' ('2C')'ELEMENT'('2S')'MATERIAL' 
%XTNICKNESS'('8S')'ELEMENT%NODE%NUMBERS 
%%%(CIUCKWISE%DIRECTION) 
'('IC')'XXZ%%NQ'('8S')'NO'('8S')'NO'('9S')'NO' 
1'('9S')'J'('9S')'K'('9S')'M'('IC') '')')I 
NEWLINE(1)t 
'FUR' 1101 'STEP' 1 'UNTIL' NELEM 'DO' 
'8EGIN' 
NEWLINE(1); 
'FOR' J1a1 STEP' 1 'UNTIL' 8 'DO' 
PRINT(N0NII. J),?, Q)1 
'END'I 

('2$')'ORIENTATION 

('9&' )' 

'COMMENT' 
THE COORDINATES ARE NOW SCALED READY FOR PLOTTING. 
BY MULTIPLYING THEM BY SCALER. $ 
'FOR' Iizi 'STEP' I 'UNTIL' NONOP '40' 
'FOR' JIzI 'STEP' 1 'UNTIL' Z 'DO' 
CDURDII, J]sSCOURDCI, J)*SCALERJ 

'COMMENT' 
A MAG TAPE FILE IS PICKED UP AND NAMEDI 

HGPTAPE(Q, MTFNAM, Or0,0)I 
'COMMENT' 
THE PLOTTER IS NOW INITIALISED.; 

HGPIOT(0.0. Or0r15.1)1 
'COMMENT' 

THE SERIAL NO, AND PICTURE NAME ARE WRITTEN ON 
THE MAG, TAPE FILE. 1 

HGPTAPE(1rPICNAMr0r0r0); 
'COMMENT' 
THE ORIGIN IS SET AT Y VALU5 OF 26 CM. 
AND X VALUE OF 0.5 CM. J 
NGPLOT(0,5,26.0,0,4)1 
'COMMENT' 
THE X AND Y AXIS ARE NOW DRAWN AND LARELED. I 

HGPAXISV(0º0,0.0, XAXISº"25,20.0,0.0º0. U, 1.0, S. 08,4)1 
HGPAXISV(O, O, O. O, MAXIS, 25º20.0,90. Or0. U. 1,0º5.08º4)J 

'COMMENT' 
THE PLOT TITLE IS DRAWN ON THE GRAPH.; 

HGPSYMBL(5.0º259Oº0º5, TITLErO. 0,35)I 
'COMMENT' 
EACH ELEMENTS NODAL COORDINATES ARE NOW SET 
UP AND THE ELEMENT SUBSEQUENTLY DRAWN. t 
'FOR' NEto1 'STEP' I 'UNTIL' NELEM 'DO' 
'BEGIN' 

X1i COORD(NON(NE, S]rl)1 
V11=000RD(NON(NE, 53,23; 
X214000RD(NON(NE, 61,1)1 
V2=XCOORD(NON(NE, 6]. 231 
X3tsC00RD(NON(NE, 7). 13; 
Y3izCOORD(NON(NE, 7], 2)1 
X4: sC00RD(NON(NE. 8], 1)1 
V41=COORD(NON(NE'83.2)1 
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HGPLOT(X1, Y1,3.0); 
HGPLOT(X2. Y7,2,0)1 

HGPLOT(X3, Y3,2, O)1 
HGPLOT(X4, Y4,2, O)1 
HGPLOT(XI, VI,? '0)1 

'END 'I 
'COMMENT' 

THE NUDE NOS. ARE NOW ADDED TO THE PICTURE; 
'FUR' NEta1 'STEP' I 'UNTIL' NONOP 'Do' 
'8EGIN' 

INSTRARR(1('*l)', DUMMY)I 
'IF' NF>99 'THEN' 1=s41 
'IF' NE<100 'THEN' Itc3i 
'IF' NE<10 'THEN' Its21 
HGPSYMBL(COORD(NE, I], COORDCNE, 2], U. 2, DUMMV, O, I)i 
JsaREADCHI 
'IF' JsCODE('('t')') 'THEN' 

EGIN' 
L1t Jt=READCHI 
'IF' JaCODE('('EL')') 'THEN' 
'GOTO' L2 'ELSE' 'GOTO' 111 

'END'I 
L2 

'ENDI1 
'COMMENT' 

THE ELEMENT NUS. ARE NOW ADDED TO HT3 PICTURE; 
'FUR' NEIs1 'STEP' I 'UNTIL' NELEM 'DO' 
'BEGIN' 

INSTRARR(1(I* )'#DUMMY)I 
'IF' NE>99 'THEN' I1041 
lIF' NE<100 'THEN' I1=31 
'IF' NE<10 'THEN' Its21 

XAVts COORD(NnN(NE, S]"1] + COORD(NON(NE, 63,1) 
i CUORDINON(NE, 7Ir1) * COORD(NON(NE, 8], 1]1 

YAVts COORD(NON(NE, 5), 2] + COORD(NON(NE, 6), 2) 
+ COORD(NON(NE, 7), 2) 4 COORD[NON(NE, 8], 2]1 

XAVIsxAV/41 
YAV: CVAV/41 
NGPSYMBL(XAV, YAV, 0,3, DUMMY, O, I); 

JtaRFADCHI 
'IF' J=CODE('('1')') 'THEN' 
'BEGIN' 
Lit JIaREADCH; 

'IF' JaCODE('('EL')') 'THEN' 
'G0T0' L4 'ELSE' 'GOTO' L31 
'END'I 

L41 
'END' I 

'COMMENT' 
THE PLOTTER BUFFER IS EMPTIED.; 
HGPLOT(0,0.090,0,2)1 

'COMMENT' 
THE MAG TAPE FILE IS NOW CLOSED; 

HGPTAPE(2ºDUMMYº0º0º0)i 
'END'; 

'END' UF (PLOTMESH4N2D) WK, BEG. 24/7/1972,1 
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APPENDIX SEVEN 

THE THREE. DIMENSIONAL FINITE ELEMENT ANALYSIS 

PROGRAM LISTING (20-NODED ELEMENTS) 
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APPENDIX SEVEN 

'LIST' (LP) 
'PROGRAM' (ANIS03D20N) 
'INPUT' 12CRO 
'OUTPUT' 29LPO 
'EXTENDED' 
'BEGIN' 
'COMMENT' 
A PROGRAM FOR 3eDIMENSIONAL STRESS ANALYSIS USING 20"NODED, 
3-DEGREES"UFmFREEDOM PER NODE, LINEARLY VARYING STRAIN 
BRICK"SHAPED FINITE ELEMENTS, 
THE MATERIALS CAN BE ORTHOTROPIC, THE PROPERTIES BEING FED IN 
WITH RESPECT TO THE ELEMENTS LOCAL XBAR, YBAR, ZBAR, CARTESIAN 
COORDINATE DIRECTIONS IN THE SEQUENCE 

EX, EY, EZ, MU*VX, MU"ZX, MU'ZY, G^XY, G"YZ, G"*ZX" 
THE ELEMENTS ORIENTATION MUST BE GIVEN IN DEGREES MEASURED FROM 
THE +VE STRUCTURAL X, Y, Z AXES TO THE ELEMENTS +VE LOCAL 
XBAR, YB*R, ZBAR AXES IN THE SEQUENCE 
XIXBARrYIXBAR, ZIXBAR#XgYBAR'Y=MBAR. ZIYBAR, XIZSARPY1ZBAR'2 ZBAR, 
THE STRUCTURE IS ARRANGED IN A RIGHT. HAND COORD, AXIS SYSTEM AND 
THE NODES MUST BE NUMBERED IN THE +VE Z, Y AND X COORDINATE AXIS 
DIRECTION RESPECTIVELY, THIS ENSURES THE ELEMENT NODE NOS, 
(WHICH ARE NUMBERED IN THE SAME SYSTEM), INCREASE PROGRESSIVELY. 
ELEMENT (K) FORMED USING NUMERICAL INTEGRATION, 
14 POINT INTEGRATION. REF. IRONS, 
THE MODIFIED FORM OF THE STRUCTURAL STIFFNESS MATRIX (MBK) IS 
FORMED ON DISC BACKING STORE AND THE NUDAL FORCE AND DISPLACEMENT 
VECTORS ARE HELD IN CORE. THE EQUATIONS ARE SOLVED BY DIRECT 
GAUSS ELIMINATION, NODAL DISPLACEMENTS ARE OUTPUT AND STRESS 
AND STRAIN COMPONENTS ARE ALSO OUTPUT AT THE FOLLOWING POSITIONS 

POST, 1 CENTROID OF FACE AT XI s +1, 
POST, 2 CENTROID OF FACE AT XI   "1. 
POST, 3 CENTROID OF FACE AT ETA a +1, 
POST, 4 CENTROID OF FACE AT ETA a ^1. 
POST, 5 CENTROID OF FACE AT ZETA = +1, 
POST, 6 CENTROID OF FACE AT ZETA = "1, 
POST. 7 CENTROID OF ELEMENT AT XI = ETA " ZETA s U. 
POST, 8 ELEMENT SEQUENCE NODE NO, 1, 
POST, 9 ELEMENT SEQUENCE NODE NO. 5, 
POST, 10 ELEMENT SEQUENCE NODE NO. 61 
POST, 11 ELEMENT SEQUENCE NODE NO. 8, 
POST. 12 ELEMENT SEQUENCE NODE NO. 13, 
POST, 13 ELEMENT SEQUENCE NODE N0.15, 
POST, 14 ELEMENT SEQUENCE NODE NO. 18, 
POST, 15 ELEMENT SEQUENCE NODE NO. 20, 

VERSION ALLOWS FOR ZERO.. RESTRAINTS ONLY, 
MK, 2 14 SEPT. 1972, 
KEITH W, Jo WRIGHT, 
DEPT. MECH, ENG, 
BRUNEI. UNIVERSITY, 
UXBRIDGE. 1 
'INTEGER' 

NRMBK, NCMBK, NRB, NCB, 
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lUB, NELEM, NONOP, LO CO, MANND, NOMATT 
'PROCEDURE' TIMENOWJ 
'EXTERNAL'I 
'PROCEDURF' CnP: STRINGI 

**SEE APPENDIX THREE FOR COMPLETE LISTING** 

'FND' OF COPYSTRINGI 
OPKOCEDURE' USESTORE(N, S, T, G, L)t 

**SEE APPENDIX THREE FOR COMPLETE LISTING** 

*EXTERNAL') 
'PROCEDURE' PUT PART(N"K, A, X, Y)l 

**SEE APPENDIX THREE FOR COMPLETE LISTING** 

'EXTERNAL'= 
'PROCEDURE' GET PART(N, K, A, X, Y)J 

**SEE APPENDIX THREE FOR COMPLETE LISTING** 

'EXTERNAL'; 
'PROCEDURE' MATINVERSE(A, N, INVERSEA)i 

**SEE APPENDIX THREE FOR COMPLETE LISTING** 

'END' OF PROCEDURE MAT! NVERSE7 
'PROCEDURE' MATMULT(A, 9, C, x, y, Z)I 

**SEE APPENDIX THREE FOR COMPLETE LISTING** 

'ENDI OF MATMULTº 
'PROCEDURE' BTDB(B, D, K, X, Y)º 
'VALUE' X, YJ 
'INTEGER' X, Yº 
'REAL' 'ARRAY' R, D, K; 
'COMMENT' 

THIS PROCEDURE FORMS THE DIAGONAL TERMS AND THOSE ABOVE 
OF A SYMMETRIC FINITE ELEMENT STIFFNESS MATRIX (K]. 
THE MATRIX (K] IS FORMED FROM THE TRIPLE PRODUCT (B]T(D][B], 
WHERE IB] IS OF ORDER (X BY Y), (D) OF ORDER (X BY X) 
AND (K] OF ORDER (Y BY Y)"º 

'BEGIN' 
'REAL' 'ARRAY' BTD(IsY. IsX]º 
'INTEGER' I, J, Lº 

#FOR$ Ilm1'STEP' 1 'UNTIL' Y 'DO' 
IFORI J151 ! STEP' I 'UNTIL' X 'DO' 

'BEGIN' 

BTD(I. J]1201 
'FOR' LIm1 'STEP' I 'UNTIL' X 'DO' 

BTD(I, J): NBTD(I, J) + B(LEI)*D(L, J]º 
ENDII 

'FOR' I12Y 'STEP' -1 'UNTIL' I 'DO' 
'8EGINI 

'FOR$ Jt41 'STEPS I 'UNTIL' I 'DO' 
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'FOR' Lsi 'STEP' 1 'UNTIL' X 'DO' 
KtJ, I]$; KIJºI1 + BTDIJºL]*B(L. I]; 

'END'I 
'ENn' OF PROCEDURE RTDB. 1 
'PROCFDURE' DBLOKGAUSS(FºNCB, NRB)I 
'VALUF' NCB, NPBI 
'INTEGER' NCB, NRBI 
'REAL' (ARRAY' F) 
'COMMENT' 
THIS PROCFDURF SOLVES THE SET OF LINEAR SIMULTANEOUS EQUATIONS 
IMBK)(D]i(F) USING THE GAUSSIAN ELIMINATION METHOD IN BLOCK FORM, 
THE MATRIX ! MPK] IS PARTITIONED INTO 3 BY 3 SUB-MATRICES 
OR BLOCKS AND IS A MODIFIED ARRANGEMENT OF A BANDED SYMMETRICAL 
MATRIX OF ORDER 3*NRB ELEMENTS SQUARE, 
THE SOLUTION (D) WHICH IS WRITTEN"OVER THE MATRIX 
CF)s IS OBTAINED PY EFFECTIVELY REDUCING THE ORIGINAL SYMMETRIC 
MATRIX TO AN UPPER TRIANGULAR MATRIX AND THEN BACK SUBSTITUTING. 
THESE PROCESSES ARE CARRIED OUT DIRECTLY ON THE MODIFIED FORM 
OF THE SYMMETRIC MATRIX, WHICH IS STORED ON DISC BACKING STORE 
IN BLOCK FORM IN FILE KWwWORKFILE2. THE BLOCKS ARE STORED 
AS A STRING BEGINNING AT BLOCK NCBuI OF NRBc1 TO 
NCB*NCS OF NRBs1 ETC, RIGHT THROUGH TO NCB=NCB 
OF NRBWNRR, THE FORCE MATRIX (F] IS STORED IN CORE .1 'BEGIN' 
'INTEGER' 
S, T, 
PºPP, PW, 
II, JJ, KºIºJI 
'REAL' 
BUG( 
'INTEGER' 'ARRAY' 
MAPl11NCB31 
'REAL' VARRAY' 
PRMBKrWRMBK(113º1l3*NCB)j 
FF1, FF2(1,3r111IºA, A2, A3, INVERSEA(1t3º1t3], DD(1, NCB, 1t3,1=3]1 
'FOR' I1u1 (STEP' 1 'UNTIL' NRB 'DO' 
'BEGIN' 
P IxPP I "9*NCB* (I, 1 ), 1 1 
GET PART(1O, P, PRMBK, PPMBK(1º1]'PRMBK(3º3*NCB))1 
'FOR' 11191 'STEP' 1 'UNTIL' 3 'DO' 
'FOR' JJ101 'STEP' 1 'UNTIL' 3 'DO' 
AC II, JJ31 PRMBKtII, JJ]f 
MATINVERSE(Ar3ºINVERSEA)1 
'FOR' IIln3*I"2 'STEP' 1 'UNTIL' 3*I 'DO' 
FFICII'(3*1e3)03 aF(II, 1]1 
MATMULT(INVERSEA, FFI, FF2,3,3º1)1 
'FOR' Iii 3*1 2 'STEP' 1 'UNTIL' 3*1 'DO' 
FCII, i)1"FF2(IIe(3*I. 3)'131 
'FOR' KIsNCR 'STEP' "I 'UNTIL' I 'DO' 
'BEGIN' 
'IF' I"(NRB. MANND)fK? NCB 'THEN' 'GOTO' L11 
BUG=401 
'FOR' II1u1 'STEP' I 'UNTIL' 3 'DO' 
, FOR, JJIR3*K'2 'STEP' 1 'UNTIL' 3*K 'DO' 
'BEGIN' 
DDCK, II, JJ. (3*Ko3)3I A(II, JJ1(3*K-X3)]1=PRMBK(II, JJ]1 
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BUGtlDUG+PRMBK(TI, JJI1 
I END I 
'IF' AUG30 'THEN' 
1BEGIN' 
MAP( KIINOI 
'GOTO' Of 
'END 'I 
MATMULT(INVFRSEArA, A2,3,3r3)1 
'FOR' IIl: 1 'STEP' 1 'UNTIL' 3 'D0' 
'FOR' JJ103*K-2 'STEP' I 'UNTIL' 3*K 'Da' 
PRMBK(II, JJ)I AZ(! IrJJ"(3*Kr3)11 
MAP( K3: siI 
L1t'END 'I 
'FOR' J141 'STEP' 1 'UNTIL' NCB"1 'DO' 
'BEGIN' 
'IF' I+J>NRR 'THEN' 'GOT0' Vil 
'IF' MAP(J+I3aQ 'THEN' 'GOTO' Vil 
'FOR' Iitm1 'STEP' i 'UNTIL' 3 'DO' 
'FOR' JJt¢1 'STEP' I 'UNTIL' 3 'DO' 
A3(JJ, II1l8DD(J*1, II, JJ]1 
Pt3PWf89*NC8*(I*J"1)+11 
GET PART(10, PrWRMBK, WRMRK(1r13, WRMBK(3r3*NCB3)1 
'FOR' KI111 'STEP' 1 'UNTIL' NCSRJ 'DO' 
'BEGIN' 
'FOR' 11121 'STEP' I 'UNTIL' 3 'DO' 
(FOR' JJ183*(J+K)w2 'STEP' 1 'UNTIL' 3*(J+K) 'DO' 
A(Ii, JJa(3*(J+K)-3)112PRMRK(It, JJ)t 
MATMULT(A3, A, A2'3,3,3)I 
SIa3*K"31 
'FOR' Thai 'STEP' I 'UNTIL' 3 'DO' 
'FOR' JJIIS+1 'STEP' 1 'UNTIL' S+3 'DO' 
WRMBK(II, JJ)IsWRMBKIII, JJIRA2(II, JJ-SJ; 
'ENDII 
PI=PWI 
PUT DART(1UrPrWRMBK, WRMBK(1r1), WRMBK(3p3*NCB])) 
MATMULT(A3, FF2, FF1,3,3,1)I 
'FOR' I11a3+(I+J)+2 'STEP' 1 'UNTIL' 3*(I+J) 'DO' 
F(I1,1]IsF(1I'1)eFF1(II"(3*(I+J)-3)EI); 
Vii 'END I 
P19PP1 
PUT PART(1U, PrPRMBK, PRMBK(1r13, PRMBK(3.3*NCB3); 
'END1 OF FORWARD ELIMINATION; 
WRITE TEXT('(''('2C')'TIME%AT%END%OF%FORWARDXELIMINATION')'); 
TIMENOW1 
'FOR' IIlNRB"I 'STEP' *1 'UNTIL' I 'DO' 
18EGIN' 
P, lPWI19*NCB*(Io1)+i1 
GET PART(IOrPrWRMBK, WPMBK(1r1), WRMBK(3r3*NCB3)1 
'FOR' J102 'STEP' I 'UNTIL' NCB 'DO' 
'BEGIN' 
'IF' I+J01>NRB 'THEN' 'GOTO' V21 
BUGIR01 
'FOR' 11121 'STEP' I 'UNTIL' 3 'DO' 
'FOR' JJlx3*J-2 (STEP' 1 'UNTIL' 3*J 'DO' 
(BEGIN' 
A(II, JJ, (3*Jw3)11aWRMAK(II, JJ31 
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BUGt9BUG+WRMBK(II'JJ)1 
'END'I 
'IF' SUGsO 'THEN' 'GUTO' V21 
'FAR' II103*(I+Jvt1)-2 'STEP' 1 'UNTIL' 3*(I+Jo1) 'DO' 
FF1(I1-(3*(1+1.1)1,3), 1]e'F(11,1]I 
MATMULT(A, FF1, FF2,3,3,1)I 
'FUR' I11a3*I. 2 'STEP' 1 'UNTIL' 3*I 'DO' 
FIII, 1JI; F(TIr1)"FF2(11-(3*I+3)r1]i 
V2IIENDII 
'ENDO OF BACK SUBSTITUTION, 
'END' OF PROCEDURE DBLUKGAUSS, I 
SELECT INPUT(1)1 
SELECT OUTPUT(2)1 
'COMMENT' 

THE GENERAL STRUCTURE DATA ARE READ IN, THE SEQUENCE IS.. 
THE JOB NO, 
'J06 TITLE' (IN QUOTES). 
NUMBER OF ELEMENTS. 
NUMBER OF NODES. 
NO, OF NODES WHERE LOADS ARE APPLIED, 
NO, OF NODES WHERE CONSTRAINTS ARE APPLIED, 
MAX, NODE NO, DIFFERENCE IN ANY ELEMENT, 
NO, OF MATERIALS IN STRUCTURE, 

PAPERTHROWI 
JOBS READI 

WRITE TFXT(R(''('2C')'JOB%NO, %%%')')1 
PRINT(JOB, 3,0)1 

NEWLINE(1)P 
COPYSTRINGI 

NELEMIsREADI 
NUNOPIsREADI 
LOi'READI 
COisREAD1 
MANNDI. READI 
NOMATi'RFAD1 

NRB, *NONOPI 
NCB; IMANND+11 
NRMBKIsNONOP*31 
NCMBKts3+(MANND. i)1 
WRITE TEXT('(''('2C')'NUMBER%OF%ELEMENTS%X%')')1 
PRINT(NELEM, 3,0)J 
WRITE TEXT(1(11(12C')(NUMBER%OF%NODAL%POINTSX%%$)')f 
PRINT(NONOP, 3,0)1 
WRITE TEXT 
('(''('2C')+NOS%OFXNODES%WHERE%LOADS%AKEXAPPLIEO%X%')'); 
PRINT(LO, 3,0)P 
WRITE TEXT 
('(" ('2C')'Nl, %OF%NODES%WNERE%CONSTRAINTS%ARE%APPLIED%%%')')i 
PRINT(CO, 3r0)1 
WRITE TEXT 
C' (" (' 2C')'MAX9%NODE%NO. %DIFFERENCE%IN%ANY%ONE%ELEMENT%%')')p 
PRINT(MANND, 3,0)1 

WRITE TEXT('(''('2C')'NO, XOFXMATERIAL%TYPES%%%')')i 
PRINT(NOMAT, 3,0)1 
WRITE TEXT('(''('2C')'N(i. %OF%ELEMENTS%REQIRED%FOR%(MBK)=X%%')')i 
PRINT(NRMBK*NCMBK, 0,6)I 
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PAPERTHROWI 
'BEG)N0 
'REAL' 'ARRAY' 

HºI, XI1 sETA1'ZETA1 (1 1273 o 
MATII INOMAT, 119)#TRID20I11601 W1A(1: 3,113)r 
COORDLIINONOP, 113)'WMBKt113,113*NCBa, XI2, ETA2, ZETA2[1i6ae 
ELCO(1,2n"ß=33, K11=60,116011LAM( 113,11201, 
JAY, INVERSEJt1i3,1131, 
INVJLAM[Ig3.1120), 8(1; 6,116O1, D, D1(1=6,1{6l, 
DIS, (1 $NRMBK, 1$1a, ELDIS(1I6Ar1$1j, 
STN, STS(1j6,1=1j1 

'REAL' 
HItH2, N3. 
TERM, 
N, XI, ETA, ZETA, X1, X2rX3, X4, X5, X6, Xi. X8, X9, X O, X11, X12rX13, 
X14oDETJpTEMPl 

'INTEGER' 

U. El, XII, 
IrJºPREVTYPE. LOOP"P, NE, P1, PZ, II, JJr COUNTER#PREVMAT"POST I 

'INTEGER' 'ARRAY1 
NON(iINELEM, 1$333; 

'COMMENT' 
THE DATA REGARDING THE DIFFERENT MATERIALS OF THE ELEMENTS 
ARE NOW READ IN, THE SEQUENCE BEING 

EX, EY. E Z, MU, YX, MUu ZX, MU^ ZY' G"XY, G"YZ r G"ZX. 
THESE PROPERTIES ARE IN THE DIRECTIONS OF THE ELEMENTS 
LOCAL COORDINATES. THE ANGLES BETWEEN THESE LOCAL ELEMENT 
AXES AND THE STRUCTURE GLOBAL AXES ARE FED IN WITH THE 
ELEMENT DATA AND USED AS DIRECTION COSINES FOR THE 
ELASTICITY TRANSFORMATION MATRIX (TR). I 

'FOR' 11'1 'STEPS I 'UNTIL' NOMAT 'DO' 
'FOR$ JI¢1 'STEP' I 'UNTIL' 9 'DO' 

MAT(I#J1tsREADf 
PAPERTNRQWI 
WRITE TEXT('(''('2C')'MATERIAL'('24S')'M%A%T%E%R%I%A%L'('10S')' 
P%RXQ%P%E%R%T%I%E%S'('IC')'%%NO. '('7S')'EX'('IOS')'EY'('105')' 
EZ'('1US')'MU'1YXI('7S')'MU"wZX'('75I)'FEU-ZY'('7S')'G-XY'('8S')' 
G'. YZ'('as')'G'Zx')')I 
'FOR' 1121 'STEP' 1 'UNTIL' NOMAT 'DO' 
'BEGIN' 
NEWLIME(1)f 
PRINT(I, 3,0)J 
SPACE(3)I 
'FOR' J1111 'STEP' I 'UNTIL' 9 'D0' 
'BEGIN1 

PRINT(MATCI, J3'0,2)1 
SPACE(D) 

END'I 
IEND II 
'COMMENT' 

THE COORDINATES OF THE NODES OF THE STRUCTURE ARE READ IN. 
THE SEQUENCE IS... 

NODE NO. 1 X"+COQRDINATE YNCOORDINATE Z«COORDINATE 
NODE MOB 2 X-, COORDINATE Y*COURDINATE ETC. 1 

'FOR' 1140 'STEP' 1 'UNTIL' NONOP 'DO' 

'FOR' Jr'1 'STEP' 1 'UNTIL' 3 'DO' 
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CuORb(I, J); sREAD: 
PAPFRTHROWJ 
WRITE TEXT(1(11(11C') " ('z5S')'*****XSXT%RXUXC%T%U%R%E%%%%% 
N%O%D%A%L%%%%%C%O%O%R%D%l%N%A%T%E%S%****#I)')1 
WRITE TEXT 
('(''('2C')" ('6S')'NODE%NO. '('7S')'XXCOORDINATE'('3S')' 
Y%COORDINATE'('3S')'ZXCOORDINATE'('IC') " )')1 
'FOR' 1181 'STEP' 1'UNTTL' NONOP 'DO' 
ý8EGIN' 

NEWLINE(1)I 
SPACE (8) 1 
PRINT(1,3,0)1 
SPACE (8) 8 
'FOR' J;: 1 'STEP' 1 'UNTIL' 3 'DO' 
'BEGIN' 
PRINT(COORD(I, J3,2r6)1 
SPACE(S)I 
1END11 
'END11 
'COMMENT' 

EACH ELEMENT DATA ARE NOW READ IN. THE SEQUENCE IS- 
ELEMENT NO, 
MATERIAL NO, 
ELEMENT TYPE NO, THIS ALLOWS THE PROGRAM TO SKIP FORMING 

STIFFNESS MATRICES FUR ELEMENTS HAVING THE SAME 
DIMENSIONS AND MATERIAL PROPERTIES OF ITS PREDECESSOR, 

ANISOTROPIC NO. IF THE ELEMENT MATERIAL AXES ARE 
COINCIDENT WITH THE STRUCTURE AXES A ZERO IS PUNCHED, 
IF NOT A 1. 

THE NINE ANISOTROPIC ANGLES*THE ANGLES BETWEEN THE STRUCTURE 
AXES X, Y, Z, AND THE ELEMENT MATERIAL AXES XBAR, YBAR, ZBAR. 
THE SEQUENCE IS 
Y; ZBAR, ZIZBAR, IF THE ANISOTROPIC NO, 'ZERO, 
X; XBAR, YIXBAR, ZIXBAR, XIYBAR, V1YBAR, 2: YBAR, X; ZBAR, 
THEN THE NINE ANGLES MUST BE ZERO, 
AND FINALLY THE 20 NODE NOS, GIVEN IN THE Z, Y AND X 
COORDINATE DIRECTIONS RESPECTIVELY, COMMENCING AT THE NODE 
NEAREST TO THE ORIGIN, I. E. THE SMALLEST NODE NO. 
THE STRUCTURE MUST BE NO, SUCH THAT THE ELEMENT NODE NOS, 
ARE IN AN ASCENDING ORDER WHEN NUMBERED IN THE Z, Y AND X 
CARTESIAN COORDINATE DIRECTIONS RESPECTIVELY, 
THIS SIMPLIFIES THE ELEMENT STIFFNESS DUMPING PROCESSI 

'FOR' 11141 'STEP' 1 'UNTIL' NELEM 'DO' 
'FOR' J1s1 , STEP' 1 'UNTIL' 33 'DO' 

NON(i'J3; sREADI 
PAPERTHROWI 
WRITE TEXT 
(1(11('IC')''('25S')'*****%%%%%E%%%L%%%E%%%M%X%E%%%N%%%T 

'('12S')'D%%%A%%%T%XXA%%%%%*****')t)1 
WRITE TEXT 
(l(11(12C')IELEMENT%MATER. %TYPE%ANISO. %ANISOTROPIC%%ANGLES 
%%ELEMENT%%NODE%%NUMBERS%%(SEQUENCE%Z"Y. XX%COORDINATE%%DIRECTIONS) 

('IC')I%%%%%NO, %%%NO. %%%NO. %%%NO. %%X%X%%%%%Y%%%XXZ 

%%%%%%1 %%%%%%2%%%%XX3%%%%%%6X%%%%%5%%%%%%6%%%S Z? %%X%%8XX%%ZX9 
%%X%%1U'('IC')''('485')'11%%%%%12%%%%%13%%%ZX14%%%%%15%%%%X16 
%%%%X17%%%X%18%%%%%19%%%%X20'(01C') ")')I 
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'FOR' 1181 'STEP' I 'UNTIL' NELEM 'DO' 
'9 EG IN' 
NEWLINEC2)I 
SPACE(3)I 

'FOR' J1a1 'STEP' 1 'UNTIL' 7 'DO' 
PRINT(NON(IpJ3p3#0)1 
'FOR' J1414 'STEP' I 'UNTIL' 23 'D0' 
PRINT(NON(I, J), 4,0)J 
NEWLINE(1)I 
SPACE(27)1 
'FORT J1; 8 'STEP' 1 'UNTIL' 10 'DO' 
PRINT(NQNC1, J)r3,0)1 
'FOR' J1u24 'STEP' 1 'UNTIL' 33 'DO' 
PRINT(NON(1, JI'4, U)I 
NEWLINF(1)J 
SPACE(27)I 
'FOR' J1ß11 'STEP' I 'UNTIL' 13 'D0' 
PRINT(N0N(I, J3,3,0)1 

'END'1 
'COMMENT' 

THE DISC BACKING STORE FILE IS OPENED, 
THE WORKING AREA OF CORE USED TO FORM THE 
RUWwRLnCKS OF (MPK) BEFORE TRANSFERRING TO BACKING 
FILE IS INITIALISED. THIS IS THEN 
USED TO INITIALISE THE REQUIRED FILE AREA TO STORE (MBK3,; 

USESTORE(1O, (IEDI)'Rl('KWI, WORKFILE2')', 1, NRMBK*NCMBK)1 
'FOR' 1s01 'STEP' 1 'UNTIL' 3 'DO' 
'FOR' J10 'STEP' 1 'UNTIL' 3*NCB 'DO' 
WMBV(I. J]ta01 
'FOR' Ii=1 'STEP' 1 'UNTIL' NRB 'DO' 
'BEGIN' 
P1: 9+NCB*(1: 1)4'1I 
PUT PART(1U, P, WMBK, WMBK[1'1], WMBK(3,3*NCB])f 
'END$ OF INITIALISING DISC FILE AREA.; 

COMMENT' 
EACH ELEMENT STIFFNESS MATRIX IS NOW CALC, IF THE ELEMENT 
TYPE DIFFERS FROM ITS PREDECESSOR AND IS SUBSEQUENTLY 
DUMPED INTO [MBK) IN THE DISC BACKING FILE KWwWORKFILE2, 
14 POINT INTEGRATION.; 

HH[1]IXHHt2]isHH(31: nHHt41txHH[51is 
HH[6]12HHt731"HH[8]tuO, 3351800551 
HH[9]18WHt1O3luHH[11], sH$4tl2]isHH[13)1zHH(14]$RO, 8866265931 
XI1(1)i; XI1tx]I'XI1[5)I X! 1(6) «O , 

7581869111 
XI1t3]=mXI1[4112xI1(73isXI1(8)ie0,758786911S 
ETAI(1)i"FTA1t23IaETAI(3)t ETA1(4)tAO, (587869111 
ETA; [5)iNETA1(6)$=ETAI(7)I! ETAI(8]ta. 0.758786911I 
ZETAI(I), sZETAI(31$CZFTA1t5]1=ZETA1t7]=x! 0,7567869111 
ZETAI(23IaZETA1(411$ZETA1t6]1'ZETAI(8]is0,7587869111 
XI1t9]IIXI1(11]IiXI1[12)i6XI1t16)iisO, OQOO; 
ETA1(1U2tmETA1(113imETA1(12) 5ETA1(13)s'O. 000Q; 
ZETAI(9]=8ZETA1(10]t ZETAI(13]IUZETA1(14]=a0,0000f 
XIi(13)1*ETAI(9]i ZETA1[12]IRO. 7958224e61 
XII(10]iiETA1(14]t zETA1(113s O , 795822426; 
PREVTYPFis0I 
PAPERTHROWI 
'FURZ NE131 'STEP' I 'UNTIL' NELEM 'DO' 
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IAEG1N0 
NEWLINE(1)I 
WRITE TEXT('(" ('1C')'ELEMENT%NQ, ')')S 
PRINT(NON(NE, 13,3,0)I 
'IF' NUN(NE, 3): PREVTVPE 'THEN' 
1DEGIti1 
WRITE TEXT('('SAME%AVERALL%DIMENSIQNS%&%MATERIAL% 
PRUPS, ZAS%PREDECESSOR')')I 
'GQTU' SAMEKI 
'END'I 
lCUMMENT' 

THE ELEMENT STIFFNESS MATRIX (K) IS INITIALISED. 
'FOR' 1141 'STEP' I 'UNTIL' 6O 'Do' 
'FURS J101 'STEP' I 'uJNTIL' 60 'DO' 
K(I, J): aßI 
'COMMENT' 

THE COORDINATES OF EACH ELEMENT 
'FOR' I1814 'STEP' 1 'UNTIL' 33'DO' 
'FURZ Jir-1 'STEP' I 'UNTIL' 3 'DO' 
ELCO(I-13, J3Ia000RD( NON( NE, I], J]I 
'COMMENT' 

THE CM3 MATRIX FOR THIS MATERIAL 
INVERTED TO FIND THE ELASTICITY 
PROPERTY AXES COINCIDES WITH THE 

'FUR' I1; 1 'STEPI I 'UNTIL' 6 'DO' 
, FOR, J181 'STEP' 1 'UNTIL' 6 'DO' 

ME It JJ aOI 
J1=NON(NE, 211 
Mt1,1]: at/MAT(Jp13; 
Mtz, f]i=1/MAT(J, 2]1 
Mt3,3);: 1/MATtJ, 3]1 
Mt4,43ia1/MAT(J, T)1 
M(5,5)ip1/MAT(J, 8]1 
Mt6,61: =1/MAT(J, 911 
M(112liOM(itiliPoMAT(JP43/MATtJP211 
Mt1,3]iaM(3,111nwMAT(J, S)/MATtJ, 331 
M(2,3]isM(3,2)IU MAT(J, 6)/MAT(J, 3]1 
MATINVERSE(M, 6iDl)I 
WRITE TEXT(I('MATERIAL%NO')')I 
PRINT(NON(N! '23,3,0)J 
'IFS NON(NE, 4)101 'THEN' 
'DE61NI 
'COMMENT' 

THE ARRAY OF THE NINE DIRECTION 
A(1,1]19NONENE, S3I 
A(2,13i; NONtNEr6a1 
A(3, l) aNONCNE, 7l1 
Atl, 2];! NON(NE, 8)I 
A(2,2)i. NONtNE, 93, 
At3,2)tgNON[NEt10]i 
A(l, 3]: mNON(NE, 1131 
A(Z, 33 NON(NE'f2); 
A(3,3118NON(NE, 1311 

ARE NOW SET UP.; 

IS SET UP. THIS IS THEN 
MATRIX WHOSE 

STRUCTURE AXES,; 

COSINES ARE SET UP. I 

A7.1 

'FORT Il$1 'STEPS 1 'UNTIL' 3 'DO' 
IFOR' J1a1 'STEP' 1 'UNTIL' 3 IDO' 
AII, JIIuCOS(A(I, J3*3.14159265359/180)f 
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fCOMMFNT' 
THE ELASTICITY TRANSFORMATION MATRIX CTR) IS NOW SET UP, 

TR[1r1Jt; AL1º1a*A(1.1]1 
TR11,2J; AL2,13*At2r1]1 
TRLIr33 At3rll*At3º1)1 
TRtMr41s At1i1)*A(2,111 
TRC1,5Jt. At201)*A(3#1]J 
TR(1,63 A(1,1)*A13,1)i 
TRt2,13j A(1,2)*A(1'21; 
TR(2,231: A(2r2a*A(2,2); 
TR(2,3J, IA(3r2)*A(3,2)1 
TRI2r4J{uAL1r21*A[2,2)l 
TR(2r5JjuAL2º2]*A(3r2)1 
TRt2r6JjwA[1,21*At3,2)1 
TR[3,1JssA(1º33*A(1r311 
TR(3,23 A(2r3)*AI2r3]1 
TR[3,31tvAt3r33*A(3r3)1 
TR[3r4)1sAt1r3J*A(2r3)1 
TR[3,5Jj9A(2º3)*A(3r31; 
TRt3º6J; A(1,3l*A(3º311 
TR[4,13ta2*A(1r1)*A(1,231 
TR(4r2Jis2*A[2,1]*A(2r2)1 
TR(4,33I12*A(3,11*AI3,2)1 
TR(4r47s1A[1,13*A(2.21+A(2º1j+A(1r21; 
TR[4,51, IAt2,11*A(3.21+At3,1j*A(2r2); 
TRt4r63, IA(1r13*A(3r21*A(3r1)*A(1r23; 
TR(5º13; 2*A(1,23*At1r33P 
TRt5#2J1s2*A(2º2l*AE2r3)1 
TR(5,33Is2*AI3,23*A(3r3)1 
TR(5º43puAtl, 23*A(2,33+A(2º23*A(1º311 
TRI3r5]saAi2º2]+At3º3]+A(3,2)*At2º3]I 
TRtSº6JIsAt1,2)*At3r31+A(3,21*AC1r3lt 
TR(6º111x2*A(1,3j*AI1,1)1 
TRt6i27, s2*A(2,3)*A(2r1]1 
TR(6,3)t12*A(3v3)*A(3º131 
TR[6,4JlsA[1,3]*AI2r1a+A(2r31*A(1º11i 
TR(6º5JIIA[2r33*A(3r1l+A(3,3]*A(2r111 
TR(6r631sAt1,33*AI3,11+A(3,3]*A(1r1)1 
'COMMENT' 
(D23 IS NOW FORMED BY THE TRIPLE PRODUCT (TRIT(D1](TRI AND 

THE RESULT PUT IN (D1]. NECESSARY TERMS ARE REFLECTED,; 
'FORt 1141 'STEP' I 'UNTIL' 6 'DO' 
TORT J181 'STEP' 1 'UNTIL' 6 VD0' 

D2(IºJlIs01 
BTDB(TR, Dl"D2,6,6)1 
'FOR' 1181 'STEP' I 'UNTIL' 6 'DO' 
'FOR' J;: I 'STEP' I 'UNTIL' 6 'DO' 
D1(IºJ3='D2(IrJ)1 
'FOR' Iia1 'STEP' 1 'UNTIL' 5 'DO' 
'FURS JIo1+1 'STEP' 1 'UNTIL' 6 'DO' 
Dl(Jrl)f! D3IIrJ31 
WRITE TEXT('('ELASTICITYXMATRIXXTRANSFURMED O. K. ' '1C' '')'); 
'ENDI OF TRANSFORMING ELASTICITY MATRIX: 
'FOR' LOOP1'1 'STEP' 1 'UNTIL' 14 'DO' 
'BEGIN' 
WRITE TEXT('('INT. %PT. X%')')1 

A7"1 
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PRIN'r(LOQP, 2,0)I 
XItcXI1(LOOPal 
FTA1'ETAI(LOOP)I 
ZETA, =ZETA1CLOOPII 
H: HH(LOOP]1 

$COMMENT' 
THE TERMS MAKING UP ILAMRDA3 ARE NOW CALC, f 

xi tai+xII 
X21m1vvXI1 
X3tß1*ETA1 
X4tý1*ETAI 
X5i'i+ZETAr 
X61MIRZETAI 
X7iml'IXIt21 
X81wlmETAt21 
X9ta1RZETA? 21 
X1Uts2*XI; 
X111*2*ETAI 
X121@2*ZETAI 
X13tmO. 1251 
X141; 0.251 
ICOMMENT I 
THE MArRIx (LAMBDA) IS NOW SET UPI L---- 
LAM(1,1)iaX13*X4*)(6*(X104ETA*ZETAe1)I 
LAM(lo4ljmsX14*X9*x4l 
LAMt1,3li X13*X4*XS*(X10*ETAeZETA* 1)i 
LAM(lp43j swX14*X8*X61 
LAMt1,5li*wX14*X8*X5f 
LAM(j, 6]taX13*X3*X6*(X10"ETA. ZETA*1)I 
LAMt1, t3t8+X14*X9*X31 
LAM(1r8linX13*X3*X5*(X10eETA"ZETA; 1)f 
LAMM 9)i'+'0,5*XI*X6*X6i 
LAMt1,103i sO. 5*XI*X4*X5I 
LAMt1,11]issu. 5*XI*X3*X61 
LAMf1,12JIs,, Q, 5*XI*X3*X51 
LAM(1,13]t; X13*X4*X6*(X1Q+ETAoZETA*1)1 
LAMf1,141I*X14*X9*X4I 
LAMt1,1S]t X13*X4*XS*(XlOwETA+ZETAn1)f 
LAM(I#16]i=X14*X8*X6) 
LAMM'17) isX14*X8*X5f 
LAMA , 18]tsX13*X3*X6*(X10+ETA-ZETA, 1)1 A7*2 
LAM(1,1931sX14*X9*x3i 
LAMt1,20)taX13*X3*X5*(X1O+ETA+ZETA, "1)1 
LAM(2r1li: X13*XZ*X6*(X11. XIfZETA+1)1 
LAMt2,2l$ RX14*X9*X21 
LAMCZ, 3114x13*X2*X5*(X11eXIwZETA+1)I 
LAM(2,4jtsw0,5*ETA*X2*X6j 
LAMI2,51tm"0,5*ETA*X2*X5i 
LAM(2,69isx13*X2*X6*(X11"XI"ZETA, w1)1 
LAM(2,7]i. X14*X9*X21 
LAMt2,81tsX13*X2*X5*(X11PXI+ZETA-1)j 
LAM(2,9)ts! X14*X? *X61 
LAM(2, la]tssX14*X7*X51 
LAM(2,11atxX14*X7*X61 
LAMt2,12itxX14*X? *X5) 
LAM(2,13lizX13*X1*X6*(X11«XI+ZETA+1)t 
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LAMt2º141t='X14*X9*X1I 
LAM(2,15)'=x13*X1*X5*(X11*XIwZETA+1)I 
LAMt2º16]1a*0.5*ETA*X1*X61 
LAM[2º17]ta. 0.5*ETA*XI*x5f 
LAM(2,18)sIX13*X1*X6*(X11+XI, ZETA, 1)I 
LAM(2º10) 1 X14. X9*X1 I 
LAM[2º[0]=ax13*X1*X5*(X11+XI+ZETA*. 1), 
LAM[3,13:. X13*x2*x4*(x12*xI*ETA*I )1 
LAM[3º2lttiw0,5*ZETA*X2*X41 
LAM(3,3): sx13*Xi*X4*(x12eXI, ETA"1), 
LAM[3º4): ''x14ex8*x21 
LAMt3p5); wX14*X8*X21 
LAM[316111X13*X2*X3*(X12*XI, ETA+1)1 
LAM[3º7)1u"0,5*ZETA*X2*X31 g7ý2 

LAMt3,89: =X13*x7*x3*(x12*XI*ETA, *1)1 
LAM(3,9)i3"x14*X7*X41 
LAMC3º1011aX14*X7*X61 
LAM[ 3º11)ImloX14*X7*X31 
LAMt3º12]tzX14*X7*X31 
LAM(3º13)1SX13*X1*X4*(x12, xi*ETA+1), 
LAMt3,14]t: w0,5*ZETA*X1*X4, 
LAM13º15)IOX13*X1*X4*(X12*XIl. ETA. 1)1 
LAM[3,16)t". X14*X8*X11 
LAM[3º171jxX14*X8*X1j 
LAM[3,18]t1X13*X1*X3*(X12. xI+ETA*1)I 
LAMt3º193! ""0. S*ZFTA*X1*X3, 
LAMt3º20]tnX13*X1*X3*(X12+XI+FTA"1)1 

COMMENT' 
(JAY) IS NOW FORMED BY POST+MULTIPLYING [LAMBDA] BY 

THIS ELEMENTS NODAL COORDINATES. 1 
MATMULT(LAM, ELCOºJAYº3º20º3)J 
'COMMENT' 
THE DFTERMINANT OF (Ja IS NOW CALC. 1 
DFTJIDJ4V(1º11*(JAY(2º2)*JAY(3º3)"JAY[3.2]*JAY(2º33) 
,, JAY(2º13*(JAY(1,2]*JAV(3,33 JAY(3,2)*JAY(1,3)) 
*JAV(3º1)*(JAVt1,2)*JAY(2º3)wJAYt2,2]*JAYt1º33)7 
'COMMENT' 
THE INVERSE OF [J] IS NOW FOUND,, 
MATINVERSE(JAV, 3, INVERSEJ)1 
WRITE TEXT(t('JAY%INVT%O, K')t)1 

COMMENT' 
THE PRODUCT OF (INVFRSEJ) AND (LAMBDA) IS NOW FOUND. i 
MATMULT(INVERSEJ, LAMºINVJLAM, 3,3,20)1 

COMMENT' 
THE MATRIX (B) IS NOW FORMED FROM THE TERMS OF (INVJLAM), = 
'FOR' 1121 'STEP' 1 'UNTIL' 6 'DO' 
'FOR' J1!! 1 'STEP' I 'UNTIL' 60 'DO' 
EI! . J] 1401 

'FOR' 1121 'STEP' I 'UNTIL' 20 'DU' 
'BEGINI 

Jt! 3*II 
8(1, Jw23 iB (4ºJ'. 1)tsB(6, J)taINVJLAM(1,1]1 

EN011 
'FOR' lial 'STEP' I 'UNTIL' 20 'DO' 

'BEGINI 
Jf; 3*II 
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s[2ºJet]l2B[4, J-921I: 18[5ºJI==INVJLAM(2#1)1 
'FNDI 

'FOR' 11=1 'STEP' I 'UNTIL' 20 'DU' 
"REGIN' 

JI s3*I; 
B[; ºJllnB[SºJ-l 3l=8[öºJw2]lxlNVJLAM[3ºI11 

ENO II 
'CUMMFNT' 

THE ELASTICITY MATRIX tD) INCORPORATING DETJ AND THE 
WEIGHTING FACTOR H IS SET UP FOR THIS INTEGRATING POINT; 

'FOR' 1121 ISTEPI I 'UNTIL' 6 'DO' 
'FOR' J; 81 'STEP' 1 'UNTIL' 6 'DO' 
DCI'J) $DiCI, J)*DETJ. HJ 
'COMMENT' 

FINALLY THE ELEMENT STIFFNESS MATRIX (K) FOR THIS GAUSS PT. 
IS OBTAINED BY FORMING THE TRIPLE PRODUCT (B)TIDI[B) 
(INCLUDING WEIGHTING FACTOR AND DETJ). i 

BTDB(RcD, K, 6,60)J 
'END' ELEM, STIFF. FORM. FOR THIS GAUSS PT.! 
'COMMENT' 

THE ELEMENT STIFFNESS MATRIX FORMED CONTAINS THE MAIN 
DIAGONAL TERMS AND THOSE ABOVE IT. 
THE OTHER TERMS REQUIRED BELOW THE DIAGONAL TERMS 
ARE OBTAINED BY REFLECTION.; 

'FOR' 11z1 'STEP' I 'UNTIL' 20 'D0' 
'9EGIN' 
Jsa3*I«21 

K(J+1ºJI1vKrJºJs1II 
KtJ+2ºJllxKtJºJ*2i1 
KCJ*2ºJ*1a; mK(J+1ºJ#2); 
'ENDI OF tKI TERM REFLECTION. 1 
WRITE TExT('('[KI%FORMED%O. K, I)'); 
SAMEKs 
'COMMENT I 

THE ELEMENT STIFFNESS MATRIX IS NUW DUMPED INTO [MBK]. 
THIS IS DONE BY READING THE APPROPRIATE ROW BLOCKS FROM THE 
BACKING STORE FILE ON DISCS DUMPING THE CONTRIBUTIONS 
AND REwWRITING THE RESULT INTO THE 
FILE INTO ITS ORIGINAL POSITION! 

'FOR' I(: 14 'STEP' 1 'UNTIL' 33 'DO' 
'BEGIN' 
PIXP1169*NCB*(NON(NE, Iio1)+I; 
GET PARTi1OºPºWMBK, WMBKIjºI)ºWMBK(3º3*NCB))1 
'FOR' J1aI 'STEP' 1 'UNTIL' 33 'DO' 
'BEGIN' 
'FOR' IIia1 'STEP' 1 'UNTIL' 3 'DO' 
'FURZ JJ; e1 'STEP' 1 'UNTIL' 3 'DO' 
WMBK[II, 3*(NON[NEºJ]"NUN(NE, 1))*JJ)IP 
WMBK(IIº3*(NOP[NE, J), NON[NEºI3)+JJ)+ 
Kt3*(I^14) * IIº3*(J. 14) + JJ), 
'FNDII 
PIMP1I 
PUT PART(10ºP, WMBKºWMBKCIº1), WMBK(3º3*NCBI)I 
'END'I 
PREVTVPE=PNONCNEº3)I 
WRITE TEXT('('X%%DUMPED%O. K, ')$); 
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'END' OF MOD, STRUCT. STIFFN. FORMULATION.; 
'COMMENT' 

THE DISPLACEMENT AND FORCE VECTORS ARE NOW FORMED, 
THE VECTOR NUMBERING SEQUENCE IS "" 

NODE NO, 1 X. DIRECTION "- DISPLACEMENT/FORCE 
NODE NO, I Y. DIRECTION DISPLACEMENT/FORCE 

NODE N0,1 Z,. DIRECTION DISPLACEMENT/FORCE 
NODE NO. 2 XeDIRECTION ". DISPLACEMENT/ ETC, 

THE NODAL DISPLACEMENTS CAN HAVE THE VALUE OF -- 
1) ZERO "(IF IT IS FREE TO MOVE AND UNPRESCRIBED). 

OR 0 0.000001 "(IF IT IS CONSTRAINED). 
THE NODAL FORCES CAN HAVE THE VALUE OF -9 

1) ZERO -, (THIS IMPLIES EITHER NO APPLIED FORCE OR THAT 
OF A CONSTRAINT), 

OR 2)ITS PRESCRIBED VALUE, 
INITIALLY BOTH VECTORS ARE ZEROED AND THEN ONLY THE DATA OF 
THE NODES WHERE THE CONSTRAINTS/LOADS ARE APPLIED ARE READ IN 
FOR APPLIED CONSTRAINTS THE SEQUENCE IS,. 

NUDE NO, X DIRECT. Y DIRECT, Z DIRECT, 
IF THE DEGREE OF FREEDOM IS CONSTRAINED A ONE IS PUNCHED IF FREE 
THEN A ZERO. (N, B. THE PROG. SETS THE CONSTRAINT TO 0.000001), 
FOR APPLIED FORCES THE SEQUENCE IS... 

NODE N0, X DIRECT. Y DIRECT. Z DIRECT. 
IF THE DEGREE OF FREEDOM HAS AN APPLIED LOAD THE VALUE 
OF THE LOAD IS PUNCHED IF NOT ZERO, 

FINALLY THE COMPLETED DISPLACEMENT VECTOR IS SCANNED AND IF 
THERE IS AN APPLIED CONSTRAINT THE APPROPRIATE TERMS IN (MBK) 
ARE ZEROED LEAVING A1 IN THE MAIN DIAGONAL POSITION IN THE 
FIRST COLUMN BLOCK IN CMBK], 1 

'FOR' I, 81 'STEP' 1 'UNTIL' NRMBK 'DO' 
DIS[t, 1)I9FI1031901 
PAPERTHROWI 
WRITE TEXT(+(''('2C')'COX%NO. '('BS')'NODE%NO, '('? S')' 
APPLIED%DISPLACEMENTSXX(CONSTRAINTs0.000001) 
X%INCHES'('IC')''('3? S')'X'('21S')'V'('21S')'Z')')I 
NEwLINE(1)I 
'FOR' It81 'STEP' 1 'UNTIL' CO 'DO' 

BEG IN I 
Js READI 

NEwIINE(1)1 
SPACE(3)1 
PRINT(Io3,0)7 
SPACE(6); 
PRINT(J14.0)1 
JJi=3*(Je1)I 
'FOR' III81 'STEP' 1 'UNTIL' 3 'DO' 
'BEGIN' 

TEMP, sREAD1 
'iF' TEMP#O 'THEN' 

'BEGIN' 
TEMPIRO, 000001j 
DIS(JJ*I1.13 TEMPI 
SPACE(10) I 
PRINT(TEMP, 1.6)1 
SPACE (i 
'END' 
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'ELSE' 
ýAEAIN 
SPACE(14)1 
PRINT(TEMP, 1,0)1 
SPACE (4) 
'END eº 

iEND II 
'END1 nF SETTING UP DISPLACEMENT VECTORI 

PAPFRTHROWI 
WRITE TEXT('(''(02C')'L4%%NO. '('8S')'NUDE%NO, '(1175')t 
APPLIED%N0DAL%F0RCES%(LPF) 
'('IC' )" ('37S')'X'('21S')'V'('21S')'2')')I 
NEWLINE(1)1 
'FOR' ItaI 'STEP' I 'UNTIL' LO 'DO' 

'BFGINI 
JiPRE AD I 

NEWLINE(1)1 
SPACE (3); 
PRINT(1,3,0)1 
SPACE (6) 1 
PRINT(J, 4,0); 
J. 1s83+(J"1)1 
'FOR1 I11a1 'STEP' I 'UNTIL' 3 'DO' 
'BEGIN' 

TEMPINREADI 
'IF' TEMP#0 'THEN' 

BEGIN' 
F(JJ*II, 1)i'TFMPI 
SPACE(8) I 
PRINT(TEMP, 0,6)1 
'END' 

ELSE' 
'BEGIN' 
SPACE(13) P 
PRINT(TEMP, 1,0)I 
SPACE(4)1 
'END0º 

'END'º 
'END' OF SETTING UP LOAD VECTORI 

'FOR' 1181 1STEP' 1 'UNTIL' NRB 'DO' 
'BEGIN' 

PISP1tl9*NCB*(Is. 1)+11 
GET PART(10, P, WMBK, WMBK(1r1), WMBKt3,3*NCSI)º 
'FOR' Jill 'STEP' I 'UNTIL' 3 'DO' 
'BEGIN' 

'IF' DIS(3*(I. 1)+J, l)#0 'THEN' 
'BEGIN' 

'FOR' I1111 'STEP' I 'UNTIL' NCMBK 'D0' 
WMBK(J, II]PRO; 

'FOR' IIlal 'STEP' I 'UNTIL' 3 'DO' 
WMBKIII#J3IR01 
WMtK(J, J]1.11 

'END'I 
'ENDOI 
'FOR' JI'l 'STEP' I 'UNTIL' NCa', 'p0' 
'BEGIN' 
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'IF$ I+J>NRB 'THEN' 'GOTO' K11 
'FOR' Mal 'STEP' 1 'UNTIL' 3 'DO' 

'8EGINI 
'IF' RIS[3+(I+I«1)*II, l3*O 'THEN' 

aEGINI 
'FOR' JJts1 'STEP' I 'UNTIL' 3 aDO' 

WMBK(JJr3*J+IIjtoo, 
IEND'I 

'END'I 
K1i'END' I 

PIaP1I 
PUT PART(1Q. PrWM8K, WMPK(1.1lºWMBK(3,3*NC63)1 
'ENDI OF MODS. TO (MBK) FOR APPLIED CONSTRAINTS. ) 
WRITE TEXT('(" ('2C')'TIMEXATXCOMMENCEMENT%OF% 
EQUATION%SGLUTIONI)')I 
TIMENOWI 
DDLOKGAUSS(F, NCB, NRB)I 
WRITE TEXT('(''('2C')'TIME%AT%COMPLETIUNXOF% 
EQUATIUN%SOLUTION')')J 
TIMENOWI 
PAPFRTHROWI 
'COMMENT' 
THE NODAL POINT DISPLACEMENTS ARE NOW PRINTED OUT AS OUTPUT-1 
WRITE TEXT(+(" ('2C') ''('40S')'NODAL%%%DISPLACEMENTS%%(INCHES). 
'('2C')''('8S')'NQDEXNO. '('16S')'DX'('Z8S')' 
DY'(12dS')'DZ'C'2C')'')l)f 
'FOR' 1191 'STEP' 1 'UNTIL' NONOP 'DO' 
'BEGIN' 
NEWLINE(1)I 
SPACE (8) 1 
PRINT(1,3,0); 
SPACE(15); 
PRINT(F13*I, 2,1J, 1,7)1 
SPACE(18)1 
PRINT(F(3*I'1,13,1,7)I 
SPACE(18)1 
PRINT(Ff3*Ir1), 1,7)I 
'ENDII 
'COMMENT' 

THE POSITIONS WHERE THE ELEMENT STRAIN AND STRESS 
COMPONENTS ARE EVALUATED ARE SET.; 

'FUR' I1*1 'STEP' 1 1UNTIL' 15 'DO' 
X11LIJ,! ETAl(I), RZETAI(I]IaOi 

XI1t2]1aETA1(4]t'ZETA1t6]toi 
XI1t1]txETA1t3]IEZETAl(5), Ir1i 
xl1t81tuxil(9)sax11(10]tax11t11]txe15 
XII(12)tiXI1t13)1xI 1(14]txXI1(15]t=1= 
ETAI(8]tsETA1t93s'ETAI(12)s'ETA1t131s 11 
ETA1(1U)tRETA1t11l, IETAIt14]taETA1(15]t=1t 
ZETA1I6jtuZETAICIO)S. ZETAI(1211aZETAII14]t°qy1I 
ZETA1(9)tIZETAI(113tiZETA1t133t ZETA1(15]t411 
COUNTERIP31 
PREVTYPEiIUI 
'FOR' NEt 1 'STEP' I 'UNTIL' NELEM 'DO' 
'BEGIN' 

PAPERTNROWI 
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WRITE TEXT('(''('2C') " (I3OSI)'****ELEMENT%%CENTROIDALX%STRESS%% 
AND%%STRAIN%%COMPONENTS****I)')I 

WRITE TEXT(1(" ('4C')'ELEMENT%POST%%%% 
STRESSXXX'('$S')'STRESS%YY'(IRS')'STRESS%ZZ'('8S')' 
STRESSZXY'('8S')'STRESSXVZ'('$S')'STRESS%ZX'('IC')' 
%%? O, %%%%NO. %%%%STRAIN%XX'('85')'STRAIN%YV'('8S')'STRAIN%ZZ 
'('8S')'STRAIN%XY'(18S')'STRAIN%YZI('8S')'$TRAIN%ZX'('1C') '' )')_ 
'COMMENT' 

THE NODAL DISPLACEMENT VFCTOR OF EACH ELEMENT IS SET UP, 1 
'FOR' I104 'STEP' 1 'UNTIL' 33 'DO' 
'BEGIN' 

II1: 3*(Ivi 4)1 
JJ's3*(NON(NE, I)'l)i 

1FfR' J$s1 'STEP' I 'UNTIL' 3 'DO' 
FLDISIII. Jº111: F(JJ*Jº131 

'END' OF SETTING UP ELMT. DISPL, VECTOR. 1 
'COMMENT' 

THE COORDINATES OF EACH ELEMENT ARE NOW SET Up. 1 
'FORe I1=14 'STEP' 1 'UNTIL' 33 'DO' 
'FOR' J; 1 'STEP' 1 'UNTIL' 3 'DO' 

ELCO(Ie13ºJ)$sCOORD(NON(NEºI)ºJ31 
'COMMENT' 

THE ELASTICITY MATRIX IS FORMED FUR THIS ELEMENT. 
N, B, NO WEIGHTING FACTOR OR DETJ REWD, FOR STRESS MATRIX= 

'IF' NON(NEº33#PRFVTYPE 'THEN' 
'8EGIN' 
'COMMENT' 

THE tMI MATRIX FOR THIS MATERIAL IS SET UP, THIS IS THEN 
INVERTED TO FIND THE ELASTICITY MATRIX WHOSE 
PROPERTY AXES COINCIDES WITH THE STRUCTURE AXES. t 

'FOR' 1181 'STEP' I 'UNTIL' 6 'DO' 
'FOR' J1s1 'STEP' 1 'UNTIL' 6 'DO' 

ME IºJIIRol 
JI8NONINEº231 
M(1º1 ]ts1/MATtJº1I1 
M(2,2)1s1/MATtJr2)1 
Mt3,31is1/MATtJr331 
M(4,4)t"1/MAT(J. 73; 
M(5,5); 111/MAT(Jº83) 
M(6,61; =1/MAT(J. 9)1 
Mt102)'IMtaº1a1GwMATCJº43/MATtJ, 2)1 
M(1,37:  M(3º111, PoMAT(J, 5)/MATtJ, 311 
M(2,33$uMt3r2)sI*MATCJ16)/MATCJº311 
MATINVERSF(Mº6ºD1)1 
'IF' NONENEº41s1 'THEN' 
'BEGIN' 
'COMMENT' 

THE ARRAY OF THE NINE DIRECTION COSINES ARE SET UP, 1 

**INSERT A791 AS ABOVE** 

'END$ OF TRANSFORMING ELASTICITY MATRIXI 
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'FOR' ltsl 'STEP' I 'UNTIL' 6 'DO' 
'FOR' Jts1 'STEP' 1 'UNTIL' 6 'DO' 

DrIrJlIsD1(I, J3l 
PREVTVPEs8NON(NE, 311 

'END' OF ID) FORMATION FOR THIS ELEMENT; 
'COMMENT' 
THE STRAIN AND STRESS COMPONENTS ARE NOW EVALUATED 
AT THE 15 POSITIONS AS GIVEN IN THE FROG. DESCRIPTION; 

'FOR' POSTts1 'STEP' 1 'UNTIL' 15 'DO' 
REG I N' 

xiisxII(P0ST)= 
ETAt'ETAI(POST)1 
ZETAIIZETAI(POST)1 

'COMMENT' 
THE TERMS MAKING UP (LAMBDA) ARE NOW CALC, 1 

**INSERT A7.2 AS ABOVE** 

'COMMENT' 
(JAY) IS NOW FORMED BY POST-MULTIPLYING (LAMBDA) BY 

THIS ELEMENTS NODAL COORDINATES.; 
MATMULT(LAM, ELCO, JAY, 3r20º3)I 
'COMMENT' 
THE INVERSE 0; (J] IS NOW FOUND,, 
MATINVERSE(JAV, 3, TNVERSEJ)1 
'COMMENT' 
THE PRODUCT OF tINVERSEJ) AND [LAMBDA] IS NOW FOUND.; 

MATMULT(INVERSE)ºLAM, INVJLAMr3,3,20)i 
'COMMENT' 
THE MATRIX (B] IS NOW FORMED FROM THE TERMS OF (INVJLAM], i 
'FOR' I121 'STEP' I 'UNTIL' 6 'DO' 
'CUR' J1"1 'STEP' I 'UNTIL' 60 'DO' 
atI, J]s; 01 

'FOR' Isst 'STEP' 1 'UNTIL' 20 'DU' 
'BEGINI 

Js03+I1 
B(1, Jw2]isB(4, Jn1]s"B(6, J]ssINVJLAMCI, T3; 

'END'I 
'FOR' is=1 'STEP' I 'UNTIL' 20 'DO' 

'BEGIN' 
J; u3*II 

9(2, J. 1]s; B(4, J"2]*IB(S, Jas=INVJLAMC2, I]I 
'END'1 

'FORt flu 'STEP' I 'UNTIL' 20 '00' 
'BEG IN 

Jsa3+I1 
8(3rJ]1sB(5ºJ. 1]tuB(6, J,, 2]12INVJLAM(3, I]t 

'END'I 
'COMMENT' 

THE STRAINS ARE CALC" AT THIS POSITION IN THE ELEMENT BY 
POSTsMULTIPLYING (B) BY THE ELEMENT NODAL DISPLACEMENTSI 

MATMULT(B, ELDIS, STNº6#60r1)1 
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'COMMENT' 
FINALLY THE STRESS COMPONENTS ARE CALC. AT 
POSITION IN THE ELFMENT BY POSTPMULTIPLYING 
THE CORRESPOND1N, STRAINS (STN).; 

MATMULT(D, STN, STSr6r6r1)1 
(COMMENT' 

REFOQE THE STRESS AND STRAIN COMPONENTS ARE 
THE THREE SHEAR STRAINS HAVE TO BE HALVED 

). F. STRAIN XYRGAMMA XY/2. i 
'FOR' 1184 'STEP' 1 'UNTIL' 6 'DO' 
STNIIr1)taSTNII0)/21 
NEtLINE(2)1 
PRINT(NON(NFr1)"3, O)$ 
SPACE(1)I 
PRINT(P(lST, 2,0)1 
SPACE(S); 
'FUR' Ila1 'STEP' 1 'UNTIL' 6 1D0' 

AEGIti' 
PRINT(STS(1,1]r6,1), 
SDACE(6)1 
'END'; 
NEWLINE(1); 
SPACE(16)I 
'FOR' I181 'STEP' I 'UNTIL' 6 $DO' 

REGIN' 
PRINT(STN(1,1), 1,6)1 
SPACE(6)I 
IENDII 

THIS 
(D3 BY 

OUTPUT 

IENDI OF STS, & STN. CALC. FOR THIS ELEM. POSITION.; 
COUITFR1sCOUNTEReII 
IENDI OF STS AND STN CALCS, FOR THIS ELEM.; 
IENDII 
'END' OF ANIS0302ON WK, BEG, 11 SEPT 1972; 
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APPENDIX EIGHT 

THE THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS 

DATA CHECK PROGRAM LISTING (20-NODED ELIIMUTTS) 
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APPENDIX EIGHT 

'LIST' (LP) 
LIBRARY' (ED, SUBGROUPSRA3) 
LIBRARY' (ED, SUBGROUPSRGP) 
LIBRARY' (ED, SUBGROUDS. RS) 

'PROGRAM' (PLOTMESH2ON3) 
'COMPACT DATA' 
'MIXED SEGMENTS' 
'INPUT' 1wCR0 
'OUTPUTS 2 LPO 
'TRACE' 2 
'BEGIN' 

'COMMENT' 
A PROGRAM FOR PLOTTING INDIRECTLY THE MESH PATTERN OF A 
STRUCTURE TO BE ANALYSED USING K. WRIGHTS 3-DIMENSIONAL 
ANISOTRUPIC FINITE ELEMENT ANALYSIS PROGRAM WHICH USES 
20"NODED-3-DEGREE OF FREEDOM PER NODE LINEAR STRAIN, 
(QUADRATIC DISPLACEMENT) FORMULATED FINITE ELEMENTS. 
KEITH W, J, WRIGHT# 
DEPT. MECH, ENG,, 
RRUNEL UNIVERSITVr 
UXRRIDGE, I 
'INTEGER' 

NELEM, NONOP, I. J, NEI 
RFAL' 

SCALER, X1, VI, X2rY2. X3rV3, X4, V4J 
'REAL' 'ARRAY' 
DUMMYCI$5), 

MTFNAM, PICNAM(1i51r 
AN, TRANI113r113), 
TITLE. XAXISrYAXIS(Ii5)1 
'INTEGER' 'PROCEDURE' INSTRARR(S, A)J 
'STRING' SI 
'REAL' 'ARRAY' At 
'EXTERNAL'1 
'PROCEDURE' HGPLOT(X, Y, IC, L)I 
'REAL' X. Y1 
'INTEJFR' IC, L1 
'EXTERNAL'P 
(PROCEDURE' HGPAXISV(XrYrBCD, NC, S, THETA, XMIN, DX. GAP, NH)I 
'REAL' X"Y, S. THETA, XMIN, DX, GAP: 
'INTEGER' NC, NHJ 
'REAL' 'ARRAY' BCDI 
'EXTERNAL'I 
'PROCEDURE' HGPSYMRL(X, Y, HEIGHT, BCD. THETArN)I 
'REAL' XrYrHEIGHTrTHETA7 
'INTEGER' Nf 
'REAL' 'ARRAY' BCD; 
'EXTERNAL': 

'PROCEDURE' HGPTAPE(L, BCD, IS, IGrIR)1 
'INTEGER' L, IS, IG. IRI 
'REAL' 'ARRAY' BCD= 
'EXTERNAL'$ 
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OPROCEDIJRE' MATMUL! (A, $, C, X, Y. Z)l 

**SEE APPENDIX THREE FOR COMPLETE LISTING** 

'END' UF MATMULTI 
SELECT INPUT(1); 
SELECT OUTPUT(2)1 
'COMMENT' 
THE FOLLOWING ARE NOW READ INS 

MTFNAM'STRING OF 12 CHARACTERS NAMING MAG TAPE FILE 
PICNAMOSTRING OF 12 CHARACTERS NAMING THE PIC TO BE 
PLOTTED. BOTH MTFNAM & PICNAM TO BE TERMINATED BY 
SCALER-THE QUANTITY WHICH SCALES THE COORDINATES 
TO FIT THE PLOTTER PAPER. 
NELEM'THE NO. OF ELEMENTS IN THE STRUCTURE, 

NUNOP-THE NO. OF NODES IN THE STRUCTURE. 
THE NINE AXES TRANSFORMATION ANGLES BETWEEN THE 
PLOTTER AXES XºY, Z. AND THE ROTATED STRUCTURAL AXES 

XBAR, V6ARr2BARr THE SEQUENCE IS. 
X=XBARrY1XBARrZXBARrX1YBAR'VgYBARrZtYBARºXTZBAR" 
YIZBARri1ZBAR1 
INSTRARR(I(0*0)1rMTFNAM)1 
INSTRARR('('*')', PICNAM)7 
SCALERS READI 
NELEMI+sREAD1 
NUNQPIPREAD1 

'FUR' Ilml 'STEP' 1 'UNTIL' 3 'DO' 
'FURZ J1$1 'STEP' I 'UNTIL' 3 'DO' 
AN[I. J]; --READ; 
WRITE TEXT(1(10(02C')'TRANSFORMATION%ANGLES')')1 
'FOR' Isil 'STEP' I 'UNTIL' 3 'DO' 

EG IN' 
NLWLINE(I)1 
'FOR' Jlml 'STEP' I 'UNTIL' 3 'DO' 
PRINT(AN(I, J)r3r2)1 

'END'I 
'COMMENT' 

THE ANGLES NOW HAVE THEIR COSINES TAKEN AND ARE 
ARRANGED INTO THE AXES TRANSFORMATION MATRIX [TRANI; 

'FOR' Ii 1 'STEP' 1 'UNTIL' 3 'DO' 
'FOR' JI; 1 'STEP' 1 'UNTIL' 3 'DO' 

TRAN(JºIIiPCOS(AN(IºJ)*3.14159265359/1S0)1 
'BEGIN' 

TREALº 'ARRAY' 
CUQRDºN(1INONOPr1; 3] 
CURDºSTt1 13º1 t1) rCi1 t2Or1 t3) 1 

'INTEGER' 'ARRAY' 
NUNLIINELEM0033; 

'COMMENT' 
THE COORDINATES OF THE NODES OF THE STRUCTURE ARE READ IN. 
THE SEQUENCE IS... 

NODE NO. 1 X*COORDINATE Y., COORDINATE Z. -COORDINATE 
NODE NO. 2 X, -COORDINATE Y-COORDINATE ETC.; 

'FOR' I1a1 'STEP' I 'UNTIL' NONOP 'DO' 
'FOR' J1; 1 'STEP' 1 'UNTIL' 3 'DO' 

CUORDCI, J)10READI 
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PAPERTHROWI 
WRITE TEXT('(" C'1C') ''('25S')'*****%SZT%R%U%C%T%U%R%E%%%XX 
N%U%D%A%L%%%%%C%O%O%R%D%I%N%A%T%E%S%*****')')1 
WRITE TEXT 
C' (" ('2C') '' ('6S')'NODFXNO, '('7$')'X%000RDINATE'('3S')' 
Y%LOURDINATE'('3S')'Z%COORDINATE'('IC') " )')1 
'PUR' Ii=1 'STEP' 1'UNTIL' NONOP 'DO' 
(BEGIN, 

NLWLINE(1)J 
SPACE(8)1 
PRINT(I. 3,0)1 
SPACE(S); 
'FOR' Jt: 1 'STEP' 1 'UNTIL' 3 'DO' 
'BEGIN' 
PRIRT(COORDLIºJir2r4)1 
SPACE(5)1 
'END 'E 
'END'E 
'COMMENT' 

EACH ELEMENT DATA ARE NOW READ IN. THE SEQUENCE IS" 
ELEMENT NO, 
MATERIAL NO, 
ELEMENT TYPE NO, THIS ALLOWS THE PROGRAM TO SKIP FORMING 

STIFFNESS MATRICES FOR ELEMENTS HAVING THE SAME 
DIMENSIONS AND MATERIAL PROPERTIES OF ITS PREDECESSOR. 

ANISOTROPIC NO. IF THE ELEMENT MATERIAL AXES ARE 
COINCIDENT WITH THE STRUCTURE AXES A ZERO IS PUNCHED, 
IF NOT A 1, 

THE NINE ANISOTROPIC ANGLES-THE ANGLES BETWEEN THE STRUCTURE 
AXES XºY, Zº AND THE ELEMENT MATERIAL AXES XBAR, VBARºZBAR, 
THE SEQUENCE IS 
XtXBAR, V XBARºZtXBARºXtYBARºY1YBAK"ZtYBARºXtZBAR, 
Y; ZBARºZ: ZBAR, 
IF THE ANISOTROPIC NONZERO THEN THE NINE ANGLES MUST BE 
ZERO, AND FINALLY THE 20 NODE NO, GIVEN IN THE ZºY AND X 
COORDINATE DIRECTIONS RESPECTIVELY. COMMENCING AT THE NODE 
NEAREST TO THE ORIGIN, I. E. THE SMALLEST NODE NO, 
THE STRUCTURE MUST BE NUMBERED SUCH THAT THE ELEMENT NODE 
NU$, ARE IN AN ASCENDING ORDER WHEN NUMBERED IN THE ZºY &X 
CARTESIAN COORDINATE DIRECTIONS RESPECTIVELY, 
THIS SIMPLIFIES THE ELEMENT STIFFNESS DUMPING PROCESS( 

'FOR' I1: 1 'STEP' 1 'UNTIL' NELEM 'D0' 
'FOR' JIa1 'STEP' I 'UNTIL' 33 'DO' 

NUN(I. J3t READ; 
PAPERTHROWI 
WRITE TEXT 
('C' ('IC') '' ('25S')'*****%%%%%E%X%L%%%E%%%M%%%E%%%N%%%T 
'('12$')'D%%%A%%%T%%%A%%%%%*****')I), 
WRITE TEXT 
('(''('2C')'ELEMENT%MATER. XTYPE%ANISO. XANISOTROPIC%% 
ANGLES%%ELEMENT%%NODEX%NUMBERS%%(SEQUENCE%Z"Y"X%%COORDINATE%% 
DIRECTIONS)'('IC')'x%%%%NO. %%%NQ, %%%N0. %%%N0, %%%%X%%%%%Y%%%%%Z 
%%%%%%1%%%%%%2%x%%%%3%%%%%%4%%%%%%5%%%%%%6X%%%%%7%%%%%%8%%%%%%9 
X%X%%1Ut('1C') " ('48S')'II%%%Xx12%%%%%13XXXXX14%%XX%15X% %X16 
Z% %%1? %%%%%18x%%%x19%XX%%2o'('IC') '' )')s 
'FUR' I1: 1 'STEP' I 'UNTIL' NELEM 'DO' 
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'6EGINI 
NFWLINE(2) I 
SPACE(3)1 

'FnR' Jt=1 'STEP' I 'UNTIL' I 'DO' 
PRINT(NON(I'J)r3,0)1 
'FUR' Ji: 14 'STEP' 1 'UNTIL' 23 'DO' 
PRINT(NON[I, J3'4, U)I 
NEWLINE(1)P 
SPACE(27)1 
'FOR' Jima 'STEP' I 'UNTIL' 10 'DU' 
PRINT(NON(I, J3'3r0)1 
'FOR' J1324 'STEP' I 'UNTIL' 33 'D0' 
PRTNT(NQN(IrJ1r4r0)0 
NEWLINE(I)1 
SPACE(21)1 
'FOR' J=a11 'STEP' I 'UNTIL' 13 'PO' 
PRTNT(NONCI, J3.3.0)1 

'END 'I 
'COMMENT' 
THE COORDINATES ARE NOW SCALED READY FOR PLOTTING, 
BY MULTIPLYING THEM BY SCALER.; 
'FUR' I181 'STEP' 1 'UNTIL' NONOP 'DO' 

'FOR' J1s1 'STEP' I 'UNTIL' 3 'DO' 
COURD(I, Jal. 000RD(I, J3*SCALERJ 

'COMMENT' 
THE COORDINATES ARE NOW TRANSFORMED AND PUT IN (N); 

'FUR' 1121 $STEP' I 'UNTIL' NONOP 'DO' 
'BEGIN' 
'FOR' Jul 8'STEP' I 'UNTIL' 3 ADO' 
CORO(Jii]u CQORD(I, J)1 
MATMULI(TRAN, CORD, ST. 3,3,1)1 
'FOR' JIa1 'STEP' I 'UNTIL' 3 'DO' 
N(1, J) ST(J, 1jl 
'END' OF TRANS. COORDS1 
PAPERTHROW; 
WRITE TEXT('(''(12C')'TRANSFORMED%AND%SCALED%COORDINATESl)I)1 
WRITE 1EXT('(''('1C')''('25S')'*****%SXT%R%U%C%T%U%R%E%%%%% 
N%U%D%A%L%%%%%CXO%O%R%D%IXN%A%T%E%S%*****')I); 
WRITE 1EXT 
(1(01('2CI)I'(16SO)INODE%NU. 1(17S')'X%000RDINATE'('3S')' 
Y%COORDINATE'('3S')'ZZ000RDINATE'('1C') " )')i 
'FOR' 1181 'STEP, 1'UNTIL' NONOP 'DO' 
'BEGIN' 

NEWLINE(1)I 
SPACE (8) 1 
PRINT(Ir3, Q); 
SPACE(8)1 
'FOP' J1 1 'STEP' 1 'UNTIL' 3 'DO' 
'REGI N' 

PRINT(N(I, J3,2,4)1 
SPACE(S); 

ENDE 
'END'S 
'COMMENT' 

A MAG TAPE FILE IS PICKED UP AND NAMED; 
HGPTAPE(O, MTFNAM, O. OrO)i 
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'COMMENT' 
THE PLOTTER IS NOW INITIALISED.; 

WGPlor(O. O, 0.0º15,1), 
'CUMMENT' 

THE SERIAL NO, AND PICTURE NAME ARE WRITTEN ON THE 
MAG. TAPE FILE. 1 
M(2PTAPE(1, PICNAM, U, Oº0)1 

'COMMENT' 
THE ORIGIN IS SET AT Y XALUE OF 24 CM AND X VALUE OF 10 CM! 

HGPL0T(10º24,0r4)f 
'COMMENT' 
EACH ELEMENTS NODAL COORDINATES ARE NOW SET 
UP AND THE ELEMENT SUBSEQUENTLY DRAWN.; 
'FOR' NE 101 'STEP' 1 'UNTIL' NELEM 'DO' 
'REGIN' 

'FOR' 1t04 'STEP' 1 'UNTIL' 33 'DO' 
'FUR' J181 'STEP' 1 'UNTIL' 3 'DO' 
C(I. 13, J]t: N(NON(NErl). JI 

HGPLOT(C[1r13rC(1'33,3,0)1 
HGPLOT(C(2,1). C(2,3), 2,0); 
HGPLUT(C(3.13. C(3.3). 2º0)7 
HGPLOT(C(Sr1], C(5,3ar2, O)1 
HGPLOT(C(1.1). C(7,3). 2,0)1 
HGPLOT(C18,1]rC(8,31r2r0)1 
IGPLOT(C(6,1)rC(6,3), 2,0)1 
HGPLUT(C(4,1], C(4,3 )r2t0)l 
HGPL0T(C(1.1]"Ct1,33,2,0): 
HGPLOT(C(9r1], C[9,3], 7,0), 
HGPL0T(C(13.1)rC(13'33r2.0)1 
HGPLOT(Ct14,11, C(14,3)º2r0)1 
HGPLQT(C(15,1)rC(15,3)º2,0)1 
HGPLOT(C(1', 1)rC(17,3). 2,0)l 
HGPLOT(C(20,1IrC(20,3], 2,0): 
HGPLQT(CC19,1), C(19,3), 2,0) 1 
HGPLOT(C(18,1)rC(18º3)r2,0); 
HGPLOT(C(16r1), C(16,3]r2r0), 
HGPL0T(CI13,1), C(13º3)r2r0)I 

HGPLOT(C(6F1a, C(6,3], 3,0)l 
HGPL0T(C(11º1], C(11r3)r2,0)1 
HGPLOT(C(18,1), C(18,33r2,0)1 

HGPLOT(C(80)rC(8.3) 3,0); 
HGPLOT(CI12,1)rC(12º3)º2,0)7 
HGPIOT(CL20 r1 ), Ct20º3) r2r0) l 

HGPLOT(C[3,11rC(3r3]r3,0)1 
HGPLOT(C(10r1)rC(10.3). 2.0)0 
HGPLOT(C(15r1], C(15r3], Z, O)l 

'END'; 
'COPAMFNT' 

THE NUDE NOS. ARE NOW ADDED TO THE PICTURE; 
'FOR' NE101 'STEP' 1 'UNTIL' NONOP 'DO' 
'BEGIN' 
INSTRARR('(tf')lrDUMMY)1 
'IF' NE>99 'THEN' I1941 
'IF' NE<I00 'THEN' I1831 
'IF' NE410 'THEN' It 2i 
HGPSYM@L( N[ NE, 13rN(NE. 3)r0,2. DUMMY, 0r1)I 
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J IEREA )CNß 
'IF' J=COnE('('1')') 'THEN' 

EG1N' 
01 J; DREADCHI 
'IF' JsCODE('('EL')') 'THEN' 
'GnT'' L2 'ELSE' 'GOTO' 01 

IEND 
12 
'FNDI1 

OCOMMENT' 
THE PLOTTER BUFFER IS EMPTIED.; 
MGPL0T(0,0r0.0,0º2)1 

'COMMENT' 
THE MAG TAPE FILE IS NOW CLOSEDI 
HGPTAPE(2ºt)U'4MYº0º0º0) 1 
'END'; 

'END' OF (PLOTMESHiON3D) WK BEG 22/1/73; 
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