HIGHER-ORDER ENERGY EXPANSIONS AND SPIKE
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ABSTRACT. We consider the following singularly perturbed semilinear
elliptic problem:

Ay —u u) =0 in
0 { A + f(u) =0 inQ,

u>0 in and%zOonaQ,

where (2 is a bounded domain in RY with smooth boundary 92, € > 0 is
a small constant and f is some superlinear but subcritical nonlinearity.
Associated with (I) is the energy functional J. defined by

2
JoJu] = / <62|Vu|2 + %zﬁ - F(u)) dx  foru e HY(Q),
Q

where F(u) = [ f(s)ds. Ni and Takagi ([24], [25]) proved that for a
single boundary spike solution u., the following asymptotic expansion
holds:

)

Je[ue] = €V [;I[w] —c1eH(P,) + o(e)

where ¢; > 0 is a generic constant, P, is the unique local maximum point
of u. and H(P.) is the boundary mean curvature function at P, € 9.
In this paper, we obtain a higher-order expansion of J[u,] :

J[ue) = N

%I[w} —c1eH(P) + lea(H(Pe))* + es R(P)] + 0(62)]

where ca, c3 are generic constants and R(P.) is the Ricci scalar curvature
at P.. In particular ¢3 > 0. Some applications of this expansion are
given.

1. INTRODUCTION

We consider the following singularly perturbed semilinear elliptic problem:

eAu—bu+ f(u) =0 in Q, (1.1)
u>0 in Q and 2% =0 on 09, '
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where € is a bounded domain in BY with smooth boundary 99, € > 0 is

N 0?
j=1 6Ij8$j

stands for the unit outer normal to 92 and 9/dv for the normal derivative,
b > 0 is a positive constant and f(¢) is a function in C**7(R) N CE,.(0, +00)
such that f(0) = f'(0) = 0. Typical examples of the function —bu + f(u)

are

a small constant, A := denotes the Laplace operator in RV, v

—bu+ f(u) = —u+uf with uy = max(0,u), b=1, (1.2)
1
—bu+ f(u) =u(u—a)(l—u) With0<(l<§, b=a, (1.3)
where
N+2 N+2
l<p< <N1L2>+(— N1L2 when N > 3; = +o00 WhenN—l,Q).

(1.4)
Equation (1.1) with (1.2) or (1.3) arises in many branches of the applied
sciences. For example, it can be viewed as a steady-state equation for the
shadow system of the Gierer-Meinhardt system in biological pattern forma-
tion ([13], [29], [35]) or of parabolic equations in chemotaxis, population
dynamics and phase transitions ([2], [3],[23], [27]).
Without loss of generality, we may assume that b = 1.

Associated with (1.1) is the energy functional J. defined by

¢ o, 1y 1
T[] ::/Q SIVuf + St = Fu) ) de forue H'(%),

(1.5)
where F(u) =[5 f(s)ds.

It is known that any solution u of (1.1) is a critical point of J. and vice
versa. In this paper, we restrict ourselves to families of solutions {uc fo<c<e,

of (1.1) with finite energy, i.e.
e NV fu] < 400 for 0 < € < ¢. (1.6)

It can be proved that for e sufficiently small, any family of solutions of
(1.1) satisfying (1.6) can have at most a finite number of local maximum
points (see [24]). Let the local maximum points be {Pf, ..., Pt} C Q. If
P e d,j=1,.., K, we call ue a K—boundary spike solution. If K = 1,

we call u. a single boundary spike solution.
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In the pioneering papers [23], [24] and [25], Lin, Ni and Takagi established
the existence of least-energy solutions and showed that for € sufficiently small
the least-energy solution is a single boundary spike solution and has only one
local maximum point P, with P, € 9€). Moreover, H(P.) — maxpesq H(P)
as € — 0, where H(P) is the mean curvature of 00 at P.

Since then many works have been devoted to finding solutions with mul-
tiple spikes for the Neumann problem as well as the Dirichlet problem. See
(1], 2], [3], [4], [6], [7], [8], [9], [10], [11], [12], [15], [16], [17], [18], [19], [21],
22], [24], [25], [26], [27], [28], [31], [32], [36], [37], and the references therein.
Recent surveys can be found in [29], [35].

A common tool for proving the existence of spike solutions is the energy
expansion: In [24] and [25], Ni and Takagi proved, among others, that for
a single boundary spike solution u,., the following asymptotic expansion for
Je[ue] holds:

Ju] = €V [;I[w] —c1eH(P.) + o(e)|, (1.7)

where ¢; > 0 is a generic constant, P, is the unique local maximum point
of u., H(P,) is the mean curvature function at P, € 09, w is the unique

solution of the following ground-state problem:
Aw—w+ f(w)=0, w>0 in RY, (1.8)
w(()) = IMaxXyeRN w(y), lirn|y|—>-&-oo w<y) =0 .

and [[w] is the ground-state energy

1 1
I[w]:E/RN|Vw|2dy+i/RNMQdy—/RNF(w)dy. (1.9)

(Note that Ni and Takagi ([24], [25]) proved (1.7) for least-energy solutions.
But it is easy to see that it also holds for any single boundary spike solution.)

Based on (1.7), Ni and Takagi [25] showed that the least energy solution
must concentrate at a maximum point of the mean curvature function.

If H(P) has more than one maximum points on Jf2, the asymptotic ex-
pansion (1.7) is no longer sufficient to derive the spike location and the next

order term in (1.7) becomes important. This is exactly the purpose of this

paper.
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Before stating our main result, we introduce some notation.

First we give some conditions on the function f(t):

(f1) f € C*(R)NC2,(0,+00) with 0 < o < 1, £(0) =0, £(0) =0 and
ft)y=0fort <O0.

(f2) The problem (1.8) in the whole space has a unique solution w, which

is nondegenerate, i.e.

(1.10)

Kernel (A — 1+ f'(w)) = span { Ow Ou } :

T o

By the well-known result of Gidas, Ni, and Nirenberg [14], w is radially
symmetric: w(y) = w(|y|) and strictly decreasing: w'(r) < 0 for r > 0,r =
ly|. Moreover, we have the following asymptotic behavior of w:

w(r) = Ayr—z e (1 +0 (1)> )

r

w'(r) = —Ayr T e (1 +0 (1)> (1.11)

r
as 1 — 0o , where Ay > 0 is a generic constant.

The uniqueness of w is proved in [20] for the case f(u) = u”. For a general
nonlinearity, see [5]. For f(u) defined by (1.3), the uniqueness of the entire
solution was proved by Peletier and Serrin [30].

In what follows we always assume that f(¢) satisfies (f1) and (f2).

Next, we introduce boundary deformations.

Let P € 092. We can define a diffeomorphism straightening the bound-
ary in a neighborhood of P. After rotation and translation of the coor-
dinate system we may assume that the inward normal to 02 at P points
in the direction of the positive xy-axis and that P = 0. Denote 2’ =
(z1,...,o5_1), B'(6) = {2’ € RN"' : |2/| < 6}, and Q; = QN B(P,6),
where B(P,6) ={z € RN : |z — P|<d}.

Then, since 0f) is smooth, we can find a constant 6 > 0 such that 92 N
B(P,§) can be represented by the graph of a smooth function

pp : B'(6) — R, where pp(0) = 0,Vpp(0) =0, and

QN B(P,6) ={(2',2n) € B(P,§) : xy — Py > p(z' — P')}.
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Moreover, we may assume that

1 N-1
pp(a’ — P') = 3 > ki(zi — B)?
=1
1 N2t , ,
+e > pin(0) (i — P)(x; — Py)(zx — B) + O(Jx — PY),
ig.k=1
where
0 pp(0)
i = , L5, k=1,... , N —1.
pjk(O) 8%8%8@ b

From now on we omit the P of pp and write p instead if this can be done
without causing confusion.

Here k;,2 = 1,..., N — 1, are the principal curvatures at P. Furthermore,
the average of the principal curvatures of 02 at P is the mean curvature

H(P) = 5 ¥ i

For N > 3, we also need to define
R(P) =) kikj, (1.12)
i#]
which is called Ricci scalar curvature at P (up to a constant). When N = 2,
we let R(P) = 0.
Throughout the paper, we use the following notation:

!

Y= (y/,?JN% Yy = (Y1, Yn-1), Rf ={y e RN . yn > 0}. ( )
1.13

Now we can state the main result of this paper.

Theorem 1.1. Let u, be a single boundary spike solution of (1.1) with local

mazimum point P. € 0S). Then, for € sufficiently small, we have

Ju] = €N ;I[w] — eH(P) + E[ea(H(P)) + esR(P)] + o()]
(1.14)
where
o = %; Rf(w/(|y]))2yNdy ) (1.15)

and co, c3 are generic constants to be defined later (see (3.26) of Section 3).

Moreover, we have c3 > 0.
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For multiple boundary spike solutions, we have a similar asymptotic ex-

pansion:

Theorem 1.2. Let u. be a K-boundary spike solution of (1.1) with local
mazimum point Py, ..., P € Q. Let Pf — PJQ € 9Q. Suppose that PP # PjQ
for v #£ j. Then, for e sufficiently small, we have

Ju] = €V [;I[w] — 1€ z_jl H(P§) + ¢ Z:[CQ(H(P]?))Q + csR(P)] + 02612)1}5)

From Theorem 1.1, we can give a refinement of the results of [24] and [25].

To this end, we assume that f satisfies (f1) and
(f3) For t > 0, f admits the following decomposition in C'*7(R):

ft) = [i(t) = fat)

where (1) fi(t) > 0 and fo(t) > 0 with f,(0) = f,(0) = 0, whence it follows
that f2(0) = f,(0) = 0 by (f1); and (i) there is a ¢ > 1 such that f;(t)/t?
is nondecreasing in ¢t > 0, whereas fy(¢)/t? is nonincreasing in ¢ > 0, and
in case ¢ = 1 we require further that the above monotonicity condition for
fi(t)/t is strict,

(f4) f(t) = O(t") as t — +oo where p satisfies (1.4),

(f5) There exists a constant § € (0,1) such that F(¢) < 0tf(t) for t > 0.

By taking a function e(z) = k for some constant k in €2, and choosing k
large enough, we have J.[e] < 0, for all € € (0,1). Then for each ¢ € (0,1),

we can define the so-called mountain-pass value

c. = inf max J.[h(t)] (1.17)

hel 0<t<1
where I' = {h : [0,1] — H'()|h(t) is continuous , h(0) = 0,k(1) = e}.

In [24] and [25], it is proved that there exists a mountain-pass solution .
which is also a least-energy solution. Moreover, as ¢ — 0, u. develops a spike
layer behavior near a maximum point of the mean curvature function. Now

we have

Corollary 1.3. Suppose that f(u) satisfies (f1), (f3), (f4) and (f5). Let
ue be a least energy solution of (1.1) (constructed in [24]) and let P, be the
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unique local mazimum point of u.. Then, for € sufficiently small, we have

H(P. H(P), P. i :
(Fe) = max H(P),  R(F) = om0 e @)

(1.18)

Remark: 1. If N =2, (1.18) yields no new result. In that case, we have to
expand J[u/] up to the order O(€*) to obtain more information on the spike
locations.

2. The asymptotic expansion (1.14) shows that the Ricci scalar curvature

can play an important role in the case of constant mean curvature boundary.
The proof of Theorem 1.1 is divided into three steps:

Step 1: We choose a good approximate function, concentrating at a bound-

ary point P and called w p, such that
E AW p — W p + flep) = O(e), (1.19)
where o is the Holder exponent of f  (see assumption (f1)).

This is done in Section 2.

Step 2: Our key observation is that in order to obtain the term of order €2
in the asymptotic expansion of J[u], we do not need to expand u, up to the

order O(e?). In fact, it is enough to have
Ue = We p, + O(€7) (1.20)

for some 7 > 1. We choose 7 = 1 + 2. We do not even need to know the
term of order € in the asymptotic expansion of u.. From (1.20) we derive
that

Je[ud) = Jc[ie.p.] + o(eNT2). (1.21)
This is proved in Section 5.
Step 3: It then remains to compute the energy of w.p. A higher-order

energy expansion is derived Section 3 and in Section 4 it is shown that

c1 > 0 and c3 > 0.
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Finally, the proofs of Theorem 1.1, Theorem 1.2, and Corollary 1.3 are

contained in Section 6.
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2. A SUITABLE APPROXIMATE FUNCTION W, p

In this section, we introduce a suitable approximate function w p.
Let  be a smooth domain in RV and w be the unique solution of (1.8).
For P € 09, we define w, p(z) to be the unique solution of the following

problem:

(2.1)

€
ek — 0 on I
v

{gAmy—my+fmﬁfw:ﬂinQ

The function w, p was first introduced and studied in [36]. It can be consid-

ered as a projection of w(*=F) € H*(2) into

H(Q) = {u c H'(Q) : gu =0at 09}.

v

Set

wﬁ,p:w(

Then h p satisfies

Phep _ Bw(=E) oo (2.2)

ov ov

{8Amf—mf:01na

We deform the boundary near P as in Section 1. For z € ; = QN B(P,9),
set now

/ / /

ey =v — P, eyN:xN—PN—p(x/—P

/

). (2.3)



HIGHER-ORDER ENERGY EXPANSIONS 9

This transformation is denoted as y = T.(z). Note that the Jacobian of T.

equals e V. Its inverse is called z = T."!(y). One computes that

t =P +ey, xy=Py+eyn+ p(ey/). (2.4)
In our coordinate system, for x € wy := 0Q2 N B(P,)), we have

o) = ——

—=Vup. 1),
Y1+ Vypl?

0 1 =0 0

o oo | = Yor,  doy
v 14+ ‘V ,p’2 j=1 Z; TN

and the Laplace operator becomes

Y

N —Pn=p(z'=P’)

2 N-1 2

0 0
A, —A+V/2——2 i —€eAy
A\ 7 ZpaaN D

We need to analyze the behavior of h. p up to the order O(e*). To this

(2.5)

end, we recall the following three functions introduced in [36].

Let v; be the unique solution of

{ Av; — vy = 0 in Rf, (2.6)
b won
v be the unique solution of
{ Avy = vy = 25N kg — (SN k)22 =0 in RY,

bye = it kg on ORY, (2.7)

and vz be the unique solution of
Avg —v3 =0 in RY,
{ gﬁ = —% SN ket PigkYil Yk on ORY. (28)

Note that vy, vy are even functions in y/ = (y1,...,yn—1) and vg is an odd
function in ¢ = (y1,...,yn-1) (ie. vy, yn) = vi(=y,yn), 3y, yn) =
—v3(—y ,yn)). Moreover, it is easy to see that |v], |va|,|vs] < Ce~¥! for
some a > 0.

Let x(z) be a smooth cut-off function such that y(z) = 1 for = € B(0, 2)
and x(x) =0 for x € B(0,9).

Set

he,p(x) = evi(Te(x))x(z — P) + € [va(Te(x))x(z — P)



10 JUNCHENG WEI AND MATTHIAS WINTER
+u3(Te(z))x(z — P)] + 63\116713(.1'), (2.9)

where y = T¢.(x) is given in (2.3).
Then we have the following asymptotic expansion, whose proof can be

found in Proposition 2.1 of [36].

Proposition 2.1. For e sufficiently small,

We p(T) = w <x _e P) —evy(Te(x))x(z — P)
— €(va(Te(x)) + v3(Te(2)))x(x = P) + €W, p(x), (2.10)
where U, p satisfies
e—N/Q (EIVepl + W p?) do < C, (2.11)
W p(T 7 (y))] < Cem (2.12)

for some constant a > 0.

Next we study the properties of the following linear operator:
Lo:=A—1+ f(w): H*RN)— L*(RM). (2.13)

By assumption (£2),

Kernel (Lg) = span ow cj=1,...,N.
dy;

If we restrict Lg to
ou

H2 N :H2 N
) = i) 0 {

=0 on aRf}

then we have

Kernel (Lo) N HZ(RY) = span {gw :jzl,...,N—l}.
Yi (2.14)

By (2.14), there is a unique solution to

Ady — &g + [ (w)Py — f (w)vy =0 in RY,
9% on ORY, (2.15)

Oyn
. . /
®y is even in y .
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We call this solution ®j. We modify @ to a new function ®, p which satisfies

the Neumann boundary condition. To this end, let ¢, p be the solution of

€2A¢6P - ¢5P =0 inQ
’ ’ ’ 2.16
{ 892;13 _ 3(¢0(Te(:22/)x(50—13)) on 99. ( )
Put
O p(z) = o(Te(x))x(z — P) = de.p(). (2.17)

It is easy to see that ®. p satisfies the Neumann boundary condition and
. p(T(y)) = Po(y) + O(ee™ ). Furthermore, |®. p(T(y))| < Ce !
for some a > 0.

Finally, we introduce the following approximate function:
’II)E,p(I) = wgp(.l’) + ECI)EJD(JZ), x € Q. (218)

Note that w0, p(x) satisfies the Neumann boundary condition.

Our next lemma says that . p satisfies the equation (1.1) up to the order
O(e'*7).
Lemma 2.2. Let
S [ p] := €AW, p — W p + f(We.p). (2.19)
Then, for € sufficiently small, we have
|Sc[tep]| < Cettoealvl, (2.20)
Proof: We expand S.[w, p]:
S. [ p] = Sc[we.p] + €[EAD p — O p + f (We.p) P p]

(2.21)
+[f(w€,P + ECI)E,P) - f(we P) - Ef (ws P) ] Sl ‘l’ SQ + 83,
where S7, S and S35 are defined by the last equality.
By (2.1), Proposition 2.1 and (2.15),
S+ 83 = fluwer) = f (w0 (0) )+ deB0p = ep o+ f (wer) 00 )

= [ptmr = (w0 (7)) £ oo (w ()]

+€ {EZA(I’QP— 5P+f (We,p)Pe,p — ( (x;P))UIX}
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= 0(626_a|y|>.
On the other hand, it follows by the mean-value theorem that
|[f(a+b) = fla) = f(a)b] < Clal”[p|'* (2.22)
for any a,b such that [b| < 2|a] < C. Thus
Sy = O(7 |we p|7| P p| ) = O(eFoeal), (2.23)

This proves the lemma.

3. THE COMPUTATION OF J W, p]

In this section, we compute the energy of the approximate function w, p.
In the next section, we will show that w, p contributes the energy expansion
up to the order o(e?).

We begin with

Je[We p] = JJwe p + €D p]

= Je[we,P] + €/Q<€2vwe,Pv<De,P + we,P(I)E,P - f(we,P>q)e,P) dz

2 1 1 ’
+¢2 (62/Q|V<I>E,P|2 dx + §/Q|(I>E,P|2 dx — §/ﬂf (we,p)®? p di”)

2
€ ’
— [ | Flwer + e@cp) = Flwer) = ef (wep)®ep = 5 (wep)|@cpl? | do.
@ (3.1)
The last term in (3.1) can be estimated using (2.22):
2
€
/Q F(we,P + 6(136,]3’) - F(we,P) - Ef(we,P)(I)e,P - Ef (we,P)|(I)e,P‘2 dx
< CGQ“L”/ W p| e p|*T dr < CNTE (3.2)
Q )

Using (2.1) and (3.2), we see that

Je[We p] = Je[we p] +E/Q <f (w(

62

-l—? |:€2/Q|vq)€7p|2dl'+4|®57P|2d$—/Qf/(w67p)¢z7pdfﬂ:| + o(eNT?)

=1+ I+ I+ o(e"?), (33)

rz—P

>) — f(w67p)) O pdx
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where [, I and I3 are defined by the last equality.

We compute I3 first. In fact, it is easy to see that

1 /
N2 o [ (1900 + 00 — f (w)0F) dy (3.4)
R+

1 /
=3 /Rf [ (w)vPq dy.

The last equality follows from equation (2.15).
Next, for I, we get:

e N - /Rﬁ F(w)v, @ dy. (3.5)
Combining (3.4) and (3.5), we deduce that
(N2 / N
Ll = ﬁwf@wmﬁﬂy+de ). (3.6)
+

Now it remains to compute I;. Using equation (2.1) and Proposition 2.1,

we deduce that
I, = 622/Q|Vwe,p|2 dx + ;/wa’P dr — /QF(wap) dx
:;Aﬂmmfm—AFmﬂmx
= L ) = ey — (e + v e
— /Q F(w — evix — €2(vy + v3)x) dx + o(eV2)
= [ [0f) - Ft)] de+ 5 [ sy ds

+ % /Q(f(w)vg — f(w)v?) dx + o(eN ). (3.7)

Here we have used the fact that vs is odd in y' and hence [ RY f(w)vsdy = 0.
Let

I, :/Q Bwf(w)—F(w) dx, 1172:/Qf(w)v1 dx.

Now we compute these two terms up to o(e€?). To this end, let us calculate

m;f' under the transformation (2.3):
e =P _ 1 5 /
— = g\/ﬁgly 2+ (eyn + pley))?

€
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2

N-1 2 N-1 2
[P+ e kivtyn + 5 D puriyiveyn + (Z ky) + O(eXyf).
i=1 i,5,k=1 =1 (38)

We state the following useful lemma.

Lemma 3.1. Suppose that A(|y|) is a radially symmetric function such that

"

A (D] + 14" (JyD| + 14" (Jy])| < Cee

for some a > 0. Then, for e sufficiently small, we have

(") =+

A’ 1 N-1 2

+€2 (’y|> Z PijkYiY; Y Yn + - <Z kz.%)
2’3/‘ 3@jk 1
A'(lyl) Ay 2

Y Y 2 3 _—aly|/2
+ € — kz ; +O(e’e™ Y 3.9
and
A ’.CL’—P‘ _ N A —1N+1HP A d' N+2
de=c [ Allydy — SHP) [ Ayl dy +of ).
Q € R+ 8R+ (310)

Proof: Equation (3.9) follows by using Taylor expansion.
By (3.9), we have
N-1

|f75 — P| N N A/(|y|)
A dx = A(ly|)d +1 Y kiy? d
/Q < € v /Rﬁ (fyl)dy + € /Rﬁ 2|y| pa Yiyn | 4y

JFENH/Rf A'(lyl) (Z’f) L (Ig‘l ’/Iyl <Zkyz >2

dy 4 0<€N+2)'

8yl \i= i=1 (3.11)

The last term can be estimated as follows:

/RN (ly)) (Zk”>2+< <|g||y>’/|y| (Z,% )]dy

8|y| =1 =1

D (] e () o

‘y’ =1

_ L 9 (Al
- 8 Jry Oyn ( [yl (Z lw,) ) =0 (3.12)
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Substituting (3.12) into (3.11), we obtain the lemma. O
From Lemma 3.1, it follows that

Ly=¢€" /RN [;wf(w) — F(w)} dy

+

1N—1 1 , 1 2
4Vt ; kz/Rf [4wf (w) _Zf( )} |y|yNyzdy+O( N+ )

_ N1 N IH(P) 23/ N+2
= el = = [ o) =2y + ol o1

Using Lemma 3.1 and (2.6), we see that

" /N-1
Ly= eN/ flw)oy dy+€N“/ flww (Z k‘iy?yfv> v1(y)dy + O(e™*?)

RY 2[y| i—1

H(P , : ’ R
— ENQ /aRN ww |y|dy + ¥ /RN f(wjw (Z klyny> v1(y)dy + O(eN 1),
+ +

2 2[y] i=1 (3.14)
Combining the estimates for I 1, [ 9, I, I3, we arrive at
N
Je[’(’[)e’p] = %I(U}) - Cl€N+1H(P) + €N+2A0 + O(€N+2)7
(3.15)
where
1 wwl /
== — 2F(w) — 2——| |y|*d 3.16
i [wﬂw) w -2 e @)
and
2/ ’U1 (I)Q—’Ul>dy+2/ 'Ugdy
1 N 1 f

Now we are going to snnphfy AO. Let ®;,,7 =1,..., N — 1, be the unique

solution of the following problem:
A®; — ®; + f(w)®; =0 in RY,
g@%’ = I(y‘?ﬂ)yl on ORY, (3.18)
d, is even in 3.
Note that ®;,7 = 2,..., N — 1, can be obtained from ®; by rotation. This
fact will be used frequently.
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We claim that

Lemma 3.2.

2
1 (N—l ) 0P, —®y)
~ (K Oy 4= Zk:k/ o, N&2 = P0) 1
8 \ixd orY  Oyn Yn (3.19)
Proof: First, using the equations (2.6) and (2.15), we obtain
1
2/ ’U1 @0—vl)dy——§ Ul(Aq)o—q)Q)d

1 w’ /
— 2 (Avy—v)® —f/ By 2Ly = }:ki/ W By dy.

5 Ry ( U1 U1 ody oRY ayN y 4 Z N 0Y; ay
Next, using (2.7),

1 1
3 Jon fw)vydy = —§/N(Aw — w)vy dy

+ Ry
1 1 ow 0vy /
= —— Avy — d —— d
2/RN( vy — V2)w y+2 - (UzayN w@yN> Yy

Nl w) Ovy 1= vy 1= o(wy;)
k/ w) on 1 k/ w2k gy = / g
i=1 ayl ayN 2 ; + ayN 2 Zz; Rf ! ayl
N-1 a a N a 1 N 1 /
_ / w U1 Z / U1 d + / 1
p (9y2 8yN - RY 3?/1
N-1 ow 81}1 1= ow 1= ow
= Yig— 5 / dy+= ) ki / VY= dy
= / 9y 0yx 2 Z; RY Oy Zl v Oy,
1 N-1 a 1 N—1 w/ ’
= Yi vy dy — k; / v k; / v —yf dy
Z / oy Oyn Z Yoyn 221 OR 1|y| (3.21)
Finally,
1 N-1 , /
n kz/ d / d
4 P R_ij\_f f ( ) | |y7, Ynvypay = Z RN Y; 8 Yy
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1N1

1N ov ow
ZZ /aRNvly’\ydy_Zk/ [ ii3;+2vlldy

Oyn

ZN L, ow
; / 0y (3.22)

Combining (3.20), (3.21) and (3.22), we have

/
1N1

Ay = / (g — d
oRY 0 Ul)‘y’yz y
1 4=l od,
_ - k:k/ .2, 3.93
3 7 Jory T Ay Y ( )

By symmetry, we have

oD, ob, .

®, y = O—dy, i=1,..,N—1,
N
ORY Y

Oyn ORY  Oyn
d Dy
/ 0, 2% 4/ 0, 2% 0 k=1 N1 k4L
orY “Oyn  Jory loyn (3.24)
Hence
1 8<I>1 | O(Py — D)
Ay = - / 0,220 gy 4 - k;k/ o, 2227 %0
0= 8( ) UE. y+8§ JaRfl Dun Y
1#]
= co(H(P))? + c3R(P), (3.25)
where
—1)2 _
62:(]\71)/ Q)@dy, 03:1/ @1Mdy{
8 oRN  Oyn 8 Jory oyn (3.26)

In summary, we have derived the following proposition.
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Proposition 3.3. Let P € 02 and W p be defined at (2.18). Then, for €

sufficiently small, we have

1
J [ p] = €V il[w] — c1eH(P) + €[cy(H(P))? + csR(P)] + o(€?) |,
(3.27)
where ¢y, ca, c3 are the generic constants defined by (3.16) and (3.26), respec-
tively.

4. THE SIGNS OF ¢; AND c3

In this section, we study the constants c¢; and c3. Even though we can not
compute them explicitly, we can determine their signs.

We begin with ¢;. Since w is radially symmetric, integration by parts gives
1 / 2 2 2 /
=- —2F dy .
=g - [(w) +w (w)] ly|* dy

By Lemma 3.3 of [24],

N -1 ) /
6127/ [(w )2—|—w2_2F(w)] yn dy
4 Rf
N -1 . ,
“ N1 Rf(w (ly))*yw dy > 0. (4.1)

The sign of ¢35 is more difficult to determine. To this end, we begin with

the following lemma.

Lemma 4.1. Consider the following eigenvalue problem:

{ Ap— ¢+ f(w)p = Ap, ¢ € HXRY),

99 __ N
ayiN—O 0”8R+.

Then we can arrange the eigenvalues in such a way that
AL >0=X > A3 > ...,

where the eigenspace to Ay is spanned by a radially symmetric eigenfunc-

tion Wy which can be made positive. The eigenspace to Ay = 0 is (N — 1)-

dimensional and is spanned by g—;, j=1,...,N—1.
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Proof: The fact that the eigenspace to Ay = 0 is spanned by g—;,j =

1, ..., N—1 follows from assumption (f2). The first eigenvalue \; is called prin-

cipal eigenvalue and it is a standard result that the corresponding eigenspace

is spanned by a radially symmetric eigenfunction which can be made positive.
The fact that A\; > Ay = 0 follows from Proposition 1.3 of [2]. O
We define the following quadratic form:

~(|IV 2 2—f ? d
ly (VO + 0" = TN ¢ e iirY) 620

Qlo) = fRf $2 dy (43)

Lemma 4.1 implies the following inequality.

Lemma 4.2. We have

—\s3 = inf Ql¢] > 0. (4.4)
fRﬁ Py dy:fRﬁ B dy=0,j=1,...N -1

Now we claim
Lemma 4.3. We have c3 > 0.

. . . !/
Proof: Since ®; is even in y , we see that

ow
Oy —Dy)—dy=0, j=1..,N—-1, 4.5
Jo @1 = @5y =0, (45)

Since W, is radially symmetric, we also get
/ (@) — ®o) W, dy = 0. (4.6)
R
Now we compute

[ IV(@1 = @)+ 01 = @ = f (w)(@1 — €)% dy

O(P; — D9)
=— D) — Oy)——d
Rf< 1 2) By Y
O(Py — D) (P — dy)
= o ———2d —|—/ Oy ——F dy.
RY ! Oyn Y RY 2 YN 4
By symmetry of ®; and ®5, we see that
6’( (P — s)
o, Vay + / 0,2 d
RY 0yN Y
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0(Py — @)
=2 ¢ ———= dy = 16¢3. 4.7
RY 1 By Y 3 (4.7)
By (4.5), (4.6) and Lemma 4.2, we have
1&3:Q4N@1_¢ﬂ%@)cm¢y—¢ﬂ>o. (4.8)
+
U

5. THE ASYMPTOTIC BEHAVIOR OF u, AND J [u]

Let u. be a single boundary spike solution of (1.1) and P, be its local
maximum point. In this section, we compute the energy of u.. The key
observation is that by using w. p as our approximating function, we just
need to expand . up to O(e”) for some 7 > 1. Now we choose 7 =1 + §.

We first prove the following theorem.

Theorem 5.1. For e sufficiently small, we have
Ue = we,Pe + €T¢ea (51)

where ¢. satisfies
[ocllimioy + €™ [ (€IVo + o) < €. (52)
Let us first assume that Theorem 5.1 holds. We then have
Lemma 5.2. For e sufficiently small, we have
Jlu] = Jc[we p| + o(e¥T?). (5.3)

Proof of Lemma 5.2: Note that both w,. p and ¢, satisfy the Neumann

boundary condition. So we have

Je[ue) = Je[We p]

+€T /Q(EQVQDQPV¢6 + ﬁ)e,P¢e - f(wG,P>¢e) d$
2T
+ 5 ([@Ivor +lol)de = [ 1 ot ar)

2T
= [t 00 - Flien) — e ftino - G k| ao
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By Theorem 5.1, the last two terms are O(¢¥+?7). Now, integrating by parts,

we obtain that
€ /Q(€2VU~J€7PV¢E + we,P¢E - f(w€7P>¢€> dx

= [ Sl plocde = O(+7H4),
Q
This finishes the proof of Lemma 5.2. U
We are now ready to prove Theorem 5.1. The key step is the following

lemma.

Lemma 5.3. For e sufficiently small, we have

[¢ell Loy < C. (5.4)
Proof: Recall
Selu] = EMu—u+ f(u), S [u)(9) = EA¢ = ¢+ f (u)o.

Then, substituting u. = W, p, + € ¢, into equation (1.1), we see that ¢,

satisfies

{ EAG. — ¢+ f (@Wep)be = —€ " Se[ep] + NJod in Q,
Ode __
oy 0 on 897 (55)

where

Nelod = =€ [f (e, +€70c) = [(der) = € [ (@ep)od.  (5.6)
From Lemma 2.2, we have
7S fip) = O(e1?). (5.7)
By the mean value theorem, we get

[Ne[@e]| = o(1)] el (5.8)
Now we can prove Lemma 5.2. Suppose not, that is there exists a sequence
ex — 0 such that |[¢c, || ~@ — +oo. For simplicity of notation, we still
denote €, as €. Set
M = [|§e]| oo (@) — +o0.
Let M, = |¢.(z.)], where x. € €. Without loss of generality, we may
assume that x. is a maximum point of ¢..

We proceed in two claims.
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Claim 1: @ <C.
In fact, suppose not. That is @ — +o0. Then —1+4f (e p, () < -1

for € small. Since % = 0, by the Hopf boundary Lemma, z. ¢ 9. So
x. € €2, which implies that

Age(ze) < 0.
From (5.5) we deduce that
(1- f/(we,Pe (ze)))Mc + o(1) M, + 0(6771) <0

and hence M, is bounded. A contradiction.
This proves Claim 1.
Let

bdy) = 43

x(x—Fo), y=Tx), (5.9)

where y = T,(x) is given in (2.3) (replacing P by P.).
Claim 2: ¢.(y) — 0 in CL.(RY) as e — 0.
In fact, from the equation for (/56, we see that as ¢ — 0, qge — qAbO which

satisfies
Agy — do + f (w)do =0, || <1 in RY,

90
9% _ on R,
dyn

By the nondegeneracy of w (see (2.14)), there exist N — 1 constants

ai,...,an_1 such that

N-1
(50 = Z Cljaiw (510)

j=1 ayj .
On the other hand, we know that V,, u.(P.) =0,k = 1,.., N — 1 and

hence
0= Vg, (wE,Pe(PE) + € ¢e(Fe))
xz— P.

= 0(6*) + V,, (w < > —evrx — €2(vy + U3)X> + MV, 6.(0)

= O(e) + €7 M.V, 6(0).



HIGHER-ORDER ENERGY EXPANSIONS 23

(Note that V,,v1(0) = V,,v2(0) = 0.) Thus we have V,, ¢.(0) — 0 which
shows that V,, ¢o(0) = 0, k = 1,..., N — 1. This implies that

N—-1 aw
vyk ( Z a; )

Thus a1 = ... = ay_1 = 0.

=0, k=1,...,N—1.

This proves Claim 2.

Lemma 5.3 now follows from Claim 1 and Claim 2: Let y. = LP& then
by Claim 1, |y < C. So we may assume that y. — yo as € — 0 Since
de(ye) = 1, we have ¢o(yo) = 1 which contradicts Claim 2.

O

Theorem 5.1 now follows from Lemma 5.3: In fact, multiplying (5.5) by

¢ and integrating over €2, we obtain

62/Q|V<b6]2dx+/9]¢6]2d1:
= | £ r)sde = [ NioJo.do+ e [ Slir)écda

< CEN+O(1>/Q|¢€|2dx.

This finishes the proof of Theorem 5.1.
O

6. THE PROOFS OF THEOREM 1.1, THEOREM 1.2, AND COROLLARY 1.3

Theorem 1.1 follows from Lemma 5.2 and Proposition 3.2.
To prove Theorem 1.2, we follow the proof of Theorem 1.1: first we note

that
K

SE[; We,pe] = 3 Sl pe] + O(e™"") (6.1)

j=1

for some § > 0, since min,; [P — Pf| > 0. Then we decompose

K
Ue = Z we,P; + ET(be
j=1

and show that ||¢c|| ) < C. The rest of the proof is exactly the same.
Finally, we prove Corollary 1.3.
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Proof of Corollary 1.3: Let u. be a least energy solution of (1.1). By

Theorem 1.1, we have

Ce := J|uc]
Nl 2 2 2
=€ il[w] —c1eH(P,) 4+ € (co(H(P.))* + csR(F,)) 4+ o(€7) | .
(6.2)
On the other hand, let

ﬂ(t) = Je[th,PL t> 07 (63)

where w, p is given by (2.18).

By Lemma 3.1 of [24],

ce < max B(t). (6.4)

By assumption (f3) (see (3.16) of [24]), there exists a unique ¢ = ¢, p such
that

/

B (tep) =0, Bltep) = max 5(t).
Note that

A1) = /Q €2V, pVibe p + 02 p — f(ep )i p] da

- /Q S.[@e p|e p dr = O(N+H1+9).
Similar to (3.16) of [24], one can show that
tep=1+0(1). (6.5)
Then
B(tep) = B) + B (1) (tep — 1) + O(N|tep — 1]?)
= B(1) +o(e")
which implies that

Ce < max B(t) = J[tepivep) = J [ p] + o(eNT?)

<N ;I[w] — ey eH(P) + E(es(H(P))? + csR(P)) + o)
(6.6)

for any P € 0f).
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Now we take P = () such that

H(Qo) = max H(P), R(Qo) = min R(Q).

PcoQ QENN, H(Q)=maxpeon H(P)
Comparing (6.6) with (6.2), we arrive at
c1H(Qo) — e[ca(H(Qo))* + s R(Qo)] + o(e)
< c1H(P,) — €lea(H(P.))? + csR(P.)] + o(e).
Since ¢; > 0, c3 > 0, (the sign of ¢, is not important), we conclude that
H(FP) — max H(P), R(F)— o win o ;@)

as € — 0.
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