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Abstract. We consider the following singularly perturbed semilinear
elliptic problem:

(I)

{
ε2∆u − u + f(u) = 0 in Ω,

u > 0 in Ω and ∂u
∂ν = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, ε > 0 is
a small constant and f is some superlinear but subcritical nonlinearity.
Associated with (I) is the energy functional Jε defined by

Jε[u] :=
∫

Ω

(
ε2

2
|∇u|2 +

1
2
u2 − F (u)

)
dx for u ∈ H1(Ω),

where F (u) =
∫ u

0
f(s)ds. Ni and Takagi ([24], [25]) proved that for a

single boundary spike solution uε, the following asymptotic expansion
holds:

Jε[uε] = εN

[
1
2
I[w] − c1εH(Pε) + o(ε)

]
,

where c1 > 0 is a generic constant, Pε is the unique local maximum point
of uε and H(Pε) is the boundary mean curvature function at Pε ∈ ∂Ω.
In this paper, we obtain a higher-order expansion of Jε[uε] :

Jε[uε] = εN

[
1
2
I[w] − c1εH(Pε) + ε2[c2(H(Pε))2 + c3R(Pε)] + o(ε2)

]

where c2, c3 are generic constants and R(Pε) is the Ricci scalar curvature
at Pε. In particular c3 > 0. Some applications of this expansion are
given.

1. Introduction

We consider the following singularly perturbed semilinear elliptic problem:⎧⎨
⎩ ε2∆u − bu + f(u) = 0 in Ω,

u > 0 in Ω and ∂u
∂ν

= 0 on ∂Ω,
(1.1)

1991 Mathematics Subject Classification. Primary 35B40, 35B45; Secondary 35J25.
Key words and phrases. Higher-Order Energy Expansions, Singularly Perturbed Neu-

mann Problem, Spike Locations, Ricci Curvature.
1



2 JUNCHENG WEI AND MATTHIAS WINTER

where Ω is a bounded domain in RN with smooth boundary ∂Ω, ε > 0 is

a small constant, ∆ :=
∑N

j=1
∂2

∂xj∂xj
denotes the Laplace operator in RN , ν

stands for the unit outer normal to ∂Ω and ∂/∂ν for the normal derivative,

b > 0 is a positive constant and f(t) is a function in C1+σ(R)∩C2
loc(0, +∞)

such that f(0) = f
′
(0) = 0. Typical examples of the function −bu + f(u)

are

− bu + f(u) = −u + up
+ with u+ = max(0, u), b = 1, (1.2)

− bu + f(u) = u(u − a)(1 − u) with 0 < a <
1

2
, b = a, (1.3)

where

1 < p <
(

N + 2

N − 2

)
+

(
=

N + 2

N − 2
when N ≥ 3; = +∞ when N = 1, 2

)
.

(1.4)

Equation (1.1) with (1.2) or (1.3) arises in many branches of the applied

sciences. For example, it can be viewed as a steady-state equation for the

shadow system of the Gierer-Meinhardt system in biological pattern forma-

tion ([13], [29], [35]) or of parabolic equations in chemotaxis, population

dynamics and phase transitions ([2], [3],[23], [27]).

Without loss of generality, we may assume that b = 1.

Associated with (1.1) is the energy functional Jε defined by

Jε[u] :=
∫
Ω

(
ε2

2
|∇u|2 +

1

2
u2 − F (u)

)
dx for u ∈ H1(Ω),

(1.5)

where F (u) =
∫ u
0 f(s)ds.

It is known that any solution u of (1.1) is a critical point of Jε and vice

versa. In this paper, we restrict ourselves to families of solutions {uε}0<ε<ε0

of (1.1) with finite energy, i.e.

ε−NJε[uε] < +∞ for 0 < ε < ε0. (1.6)

It can be proved that for ε sufficiently small, any family of solutions of

(1.1) satisfying (1.6) can have at most a finite number of local maximum

points (see [24]). Let the local maximum points be {P ε
1 , ..., P

ε
K} ⊂ Ω̄. If

P ε
j ∈ ∂Ω, j = 1, ..., K, we call uε a K−boundary spike solution. If K = 1,

we call uε a single boundary spike solution.
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In the pioneering papers [23], [24] and [25], Lin, Ni and Takagi established

the existence of least-energy solutions and showed that for ε sufficiently small

the least-energy solution is a single boundary spike solution and has only one

local maximum point Pε with Pε ∈ ∂Ω. Moreover, H(Pε) → maxP∈∂Ω H(P )

as ε → 0, where H(P ) is the mean curvature of ∂Ω at P .

Since then many works have been devoted to finding solutions with mul-

tiple spikes for the Neumann problem as well as the Dirichlet problem. See

[1], [2], [3], [4], [6], [7], [8], [9], [10], [11], [12], [15], [16], [17], [18], [19], [21],

[22], [24], [25], [26], [27], [28], [31], [32], [36], [37], and the references therein.

Recent surveys can be found in [29], [35].

A common tool for proving the existence of spike solutions is the energy

expansion: In [24] and [25], Ni and Takagi proved, among others, that for

a single boundary spike solution uε, the following asymptotic expansion for

Jε[uε] holds:

Jε[uε] = εN

⎡
⎣1

2
I[w] − c1εH(Pε) + o(ε)

⎤
⎦, (1.7)

where c1 > 0 is a generic constant, Pε is the unique local maximum point

of uε, H(Pε) is the mean curvature function at Pε ∈ ∂Ω, w is the unique

solution of the following ground-state problem:⎧⎨
⎩ ∆w − w + f(w) = 0, w > 0 in RN ,

w(0) = maxy∈RN w(y), lim|y|→+∞ w(y) = 0
(1.8)

and I[w] is the ground-state energy

I[w] =
1

2

∫
RN

|∇w|2 dy +
1

2

∫
RN

w2 dy −
∫

RN
F (w) dy. (1.9)

(Note that Ni and Takagi ([24], [25]) proved (1.7) for least-energy solutions.

But it is easy to see that it also holds for any single boundary spike solution.)

Based on (1.7), Ni and Takagi [25] showed that the least energy solution

must concentrate at a maximum point of the mean curvature function.

If H(P ) has more than one maximum points on ∂Ω, the asymptotic ex-

pansion (1.7) is no longer sufficient to derive the spike location and the next

order term in (1.7) becomes important. This is exactly the purpose of this

paper.
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Before stating our main result, we introduce some notation.

First we give some conditions on the function f(t):

(f1) f ∈ C1+σ(R) ∩ C2
loc(0, +∞) with 0 < σ ≤ 1, f(0) = 0, f

′
(0) = 0 and

f(t) ≡ 0 for t ≤ 0.

(f2) The problem (1.8) in the whole space has a unique solution w, which

is nondegenerate, i.e.

Kernel (∆ − 1 + f
′
(w)) = span

{
∂w

∂y1

, ...,
∂w

∂yN

}
. (1.10)

By the well-known result of Gidas, Ni, and Nirenberg [14], w is radially

symmetric: w(y) = w(|y|) and strictly decreasing: w
′
(r) < 0 for r > 0, r =

|y|. Moreover, we have the following asymptotic behavior of w:

w(r) = ANr−
N−1

2 e−r
(
1 + O

(
1

r

))
,

w
′
(r) = −ANr−

N−1
2 e−r

(
1 + O

(
1

r

))
(1.11)

as r → ∞ , where AN > 0 is a generic constant.

The uniqueness of w is proved in [20] for the case f(u) = up. For a general

nonlinearity, see [5]. For f(u) defined by (1.3), the uniqueness of the entire

solution was proved by Peletier and Serrin [30].

In what follows we always assume that f(t) satisfies (f1) and (f2).

Next, we introduce boundary deformations.

Let P ∈ ∂Ω. We can define a diffeomorphism straightening the bound-

ary in a neighborhood of P . After rotation and translation of the coor-

dinate system we may assume that the inward normal to ∂Ω at P points

in the direction of the positive xN -axis and that P = 0. Denote x′ =

(x1, . . . , xN−1), B′(δ) = {x′ ∈ RN−1 : |x′| < δ}, and Ω1 = Ω ∩ B(P, δ),

where B(P, δ) = {x ∈ RN : |x − P | < δ}.
Then, since ∂Ω is smooth, we can find a constant δ > 0 such that ∂Ω ∩

B(P, δ) can be represented by the graph of a smooth function

ρP : B′(δ) → R, where ρP (0) = 0,∇ρP (0) = 0, and

Ω ∩ B(P, δ) = {(x′, xN) ∈ B(P, δ) : xN − PN > ρ(x′ − P ′)}.
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Moreover, we may assume that

ρP (x′ − P ′) =
1

2

N−1∑
i=1

ki(xi − Pi)
2

+
1

6

N−1∑
i,j,k=1

ρijk(0)(xi − Pi)(xj − Pj)(xk − Pk) + O(|x′ − P
′|4),

where

ρijk(0) =
∂3ρP (0)

∂xi∂xj∂xk

, i, j, k = 1, . . . , N − 1.

From now on we omit the P of ρP and write ρ instead if this can be done

without causing confusion.

Here ki, i = 1, ..., N − 1, are the principal curvatures at P . Furthermore,

the average of the principal curvatures of ∂Ω at P is the mean curvature

H(P ) = 1
N−1

∑N−1
i=1 ki.

For N ≥ 3, we also need to define

R(P ) =
∑
i�=j

kikj, (1.12)

which is called Ricci scalar curvature at P (up to a constant). When N = 2,

we let R(P ) = 0.

Throughout the paper, we use the following notation:

y = (y
′
, yN), y

′
= (y1, ..., yN−1), RN

+ = {y ∈ RN : yN > 0}.
(1.13)

Now we can state the main result of this paper.

Theorem 1.1. Let uε be a single boundary spike solution of (1.1) with local

maximum point Pε ∈ ∂Ω. Then, for ε sufficiently small, we have

Jε[uε] = εN

⎡
⎣1

2
I[w] − c1εH(Pε) + ε2[c2(H(Pε))

2 + c3R(Pε)] + o(ε2)

⎤
⎦,
(1.14)

where

c1 =
N − 1

N + 1

∫
RN

+

(w
′
(|y|))2yNdy > 0 (1.15)

and c2, c3 are generic constants to be defined later (see (3.26) of Section 3).

Moreover, we have c3 > 0.
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For multiple boundary spike solutions, we have a similar asymptotic ex-

pansion:

Theorem 1.2. Let uε be a K-boundary spike solution of (1.1) with local

maximum point P ε
1 , ..., P

ε
K ∈ ∂Ω. Let P ε

j → P 0
j ∈ ∂Ω. Suppose that P 0

i 
= P 0
j

for i 
= j. Then, for ε sufficiently small, we have

Jε[uε] = εN

⎡
⎣K

2
I[w] − c1ε

K∑
j=1

H(P ε
j ) + ε2

K∑
j=1

[c2(H(P ε
j ))2 + c3R(P ε

j )] + o(ε2)

⎤
⎦,

(1.16)

From Theorem 1.1, we can give a refinement of the results of [24] and [25].

To this end, we assume that f satisfies (f1) and

(f3) For t ≥ 0, f admits the following decomposition in C1+σ(R):

f(t) = f1(t) − f2(t)

where (i)f1(t) ≥ 0 and f2(t) ≥ 0 with f1(0) = f
′
1(0) = 0, whence it follows

that f2(0) = f
′
2(0) = 0 by (f1); and (ii) there is a q ≥ 1 such that f1(t)/t

q

is nondecreasing in t > 0, whereas f2(t)/t
q is nonincreasing in t > 0, and

in case q = 1 we require further that the above monotonicity condition for

f1(t)/t is strict,

(f4) f(t) = O(tp) as t → +∞ where p satisfies (1.4),

(f5) There exists a constant θ ∈ (0, 1
2
) such that F (t) ≤ θtf(t) for t ≥ 0.

By taking a function e(x) ≡ k for some constant k in Ω, and choosing k

large enough, we have Jε[e] < 0, for all ε ∈ (0, 1). Then for each ε ∈ (0, 1),

we can define the so-called mountain-pass value

cε = inf
h∈Γ

max
0≤t≤1

Jε[h(t)] (1.17)

where Γ = {h : [0, 1] → H1(Ω)|h(t) is continuous , h(0) = 0, h(1) = e}.
In [24] and [25], it is proved that there exists a mountain-pass solution uε

which is also a least-energy solution. Moreover, as ε → 0, uε develops a spike

layer behavior near a maximum point of the mean curvature function. Now

we have

Corollary 1.3. Suppose that f(u) satisfies (f1), (f3), (f4) and (f5). Let

uε be a least energy solution of (1.1) (constructed in [24]) and let Pε be the
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unique local maximum point of uε. Then, for ε sufficiently small, we have

H(Pε) → max
P∈∂Ω

H(P ), R(Pε) → min
Q∈∂Ω,H(Q)=maxP∈∂Ω H(P )

R(Q).
(1.18)

Remark: 1. If N = 2, (1.18) yields no new result. In that case, we have to

expand Jε[uε] up to the order O(ε3) to obtain more information on the spike

locations.

2. The asymptotic expansion (1.14) shows that the Ricci scalar curvature

can play an important role in the case of constant mean curvature boundary.

The proof of Theorem 1.1 is divided into three steps:

Step 1: We choose a good approximate function, concentrating at a bound-

ary point P and called w̃ε,P , such that

ε2∆w̃ε,P − w̃ε,P + f(w̃ε,P ) = O(ε1+σ), (1.19)

where σ is the Holder exponent of f
′
(see assumption (f1)).

This is done in Section 2.

Step 2: Our key observation is that in order to obtain the term of order ε2

in the asymptotic expansion of Jε[uε], we do not need to expand uε up to the

order O(ε2). In fact, it is enough to have

uε = w̃ε,Pε + O(ετ ) (1.20)

for some τ > 1. We choose τ = 1 + σ
2
. We do not even need to know the

term of order ετ in the asymptotic expansion of uε. From (1.20) we derive

that

Jε[uε] = Jε[w̃ε,Pε ] + o(εN+2). (1.21)

This is proved in Section 5.

Step 3: It then remains to compute the energy of w̃ε,P . A higher-order

energy expansion is derived Section 3 and in Section 4 it is shown that

c1 > 0 and c3 > 0.
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Finally, the proofs of Theorem 1.1, Theorem 1.2, and Corollary 1.3 are

contained in Section 6.
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2. A suitable approximate function w̃ε,P

In this section, we introduce a suitable approximate function w̃ε,P .

Let Ω be a smooth domain in RN and w be the unique solution of (1.8).

For P ∈ ∂Ω, we define wε,P (x) to be the unique solution of the following

problem: ⎧⎨
⎩ ε2∆wε,P − wε,P + f(w(x−P

ε
)) = 0 in Ω,

∂wε,P

∂ν
= 0 on ∂Ω.

(2.1)

The function wε,P was first introduced and studied in [36]. It can be consid-

ered as a projection of w(x−P
ε

) ∈ H1(Ω) into

H1
ν (Ω) =

{
u ∈ H1(Ω) :

∂u

∂ν
= 0 at ∂Ω

}
.

Set

wε,P = w
(

x − P

ε

)
− hε,P (x).

Then hε,P satisfies ⎧⎨
⎩

ε2∆hε,P − hε,P = 0 in Ω,
∂hε,P

∂ν
=

∂w(x−P
ε

)

∂ν
on ∂Ω.

(2.2)

We deform the boundary near P as in Section 1. For x ∈ Ω1 = Ω∩B(P, δ),

set now

εy
′
= x

′ − P
′
, εyN = xN − PN − ρ(x

′ − P
′
). (2.3)
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This transformation is denoted as y = Tε(x). Note that the Jacobian of Tε

equals ε−N . Its inverse is called x = T−1
ε (y). One computes that

x
′
= P

′
+ εy

′
, xN = PN + εyN + ρ(εy

′
). (2.4)

In our coordinate system, for x ∈ ω1 := ∂Ω ∩ B(P, δ), we have

ν(x) =
1√

1 + |∇x
′ρ|2

(∇x′ρ,−1),

∂

∂ν
=

1√
1 + |∇x

′ρ|2

⎧⎨
⎩

N−1∑
j=1

ρj
∂

∂xj

− ∂

∂xN

⎫⎬
⎭
∣∣∣∣∣∣
xN−PN=ρ(x′−P ′)

,

and the Laplace operator becomes

ε2∆x = ∆y + |∇x
′ρ|2 ∂2

∂y2
N

− 2
N−1∑
i=1

ρi
∂2

∂yi∂yN

− ε∆x
′ρ

∂

∂yN

. (2.5)

We need to analyze the behavior of hε,P up to the order O(ε3). To this

end, we recall the following three functions introduced in [36].

Let v1 be the unique solution of⎧⎨
⎩ ∆v1 − v1 = 0 in RN

+ ,
∂v1

∂yN
= −w′(|y|)

2|y|
∑N−1

i=1 kiy
2
i on ∂RN

+ ,
(2.6)

v2 be the unique solution of⎧⎨
⎩ ∆v2 − v2 − 2

∑N−1
i=1 kiyi

∂2v1

∂yi∂yN
− (
∑N−1

i=1 ki)
∂v1

∂yN
= 0 in RN

+ ,
∂v2

∂yN
=
∑N−1

i=1 kiyi
∂v1

∂yi
on ∂RN

+ , (2.7)

and v3 be the unique solution of⎧⎨
⎩ ∆v3 − v3 = 0 in RN

+ ,
∂v3

∂yN
= − w′

3|y|
∑N−1

i,j,k=1 ρijkyiyjyk on ∂RN
+ .

(2.8)

Note that v1, v2 are even functions in y
′
= (y1, ..., yN−1) and v3 is an odd

function in y
′

= (y1, ..., yN−1) (i.e. v1(y
′
, yN) = v1(−y

′
, yN), v3(y

′
, yN) =

−v3(−y
′
, yN)). Moreover, it is easy to see that |v1|, |v2|, |v3| ≤ Ce−a|y| for

some a > 0.

Let χ(x) be a smooth cut-off function such that χ(x) = 1 for x ∈ B(0, δ
2
)

and χ(x) = 0 for x 
∈ B(0, δ).

Set

hε,P (x) = εv1(Tε(x))χ(x − P ) + ε2[v2(Tε(x))χ(x − P )
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+v3(Tε(x))χ(x − P )] + ε3Ψε,P (x), (2.9)

where y = Tε(x) is given in (2.3).

Then we have the following asymptotic expansion, whose proof can be

found in Proposition 2.1 of [36].

Proposition 2.1. For ε sufficiently small,

wε,P (x) = w
(

x − P

ε

)
− εv1(Tε(x))χ(x − P )

− ε2(v2(Tε(x)) + v3(Tε(x)))χ(x − P ) + ε3Ψε,P (x), (2.10)

where Ψε,P satisfies

ε−N
∫
Ω

(
ε2|∇Ψε,P |2 + |Ψε,P |2

)
dx ≤ C, (2.11)

|Ψε,P (T−1
ε (y))| ≤ Ce−a|y| (2.12)

for some constant a > 0.

Next we study the properties of the following linear operator:

L0 := ∆ − 1 + f
′
(w) : H2(RN) → L2(RN). (2.13)

By assumption (f2),

Kernel (L0) = span

⎧⎨
⎩ ∂w

∂yj

: j = 1, ..., N

⎫⎬
⎭.

If we restrict L0 to

H2
ν (RN

+ ) = H2(RN
+ ) ∩

{
∂u

∂yN

= 0 on ∂RN
+

}

then we have

Kernel (L0) ∩ H2
ν (RN

+ ) = span

⎧⎨
⎩ ∂w

∂yj

: j = 1, ..., N − 1

⎫⎬
⎭.

(2.14)

By (2.14), there is a unique solution to⎧⎪⎪⎨
⎪⎪⎩

∆Φ0 − Φ0 + f
′
(w)Φ0 − f

′
(w)v1 = 0 in RN

+ ,
∂Φ0

∂yN
= 0 on ∂RN

+ ,

Φ0 is even in y
′
.

(2.15)
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We call this solution Φ0. We modify Φ0 to a new function Φε,P which satisfies

the Neumann boundary condition. To this end, let φε,P be the solution of⎧⎨
⎩ ε2∆φε,P − φε,P = 0 in Ω,

∂φε,P

∂ν
= ∂(Φ0(Tε(x))χ(x−P ))

∂ν
on ∂Ω.

(2.16)

Put

Φε,P (x) = Φ0(Tε(x))χ(x − P ) − φε,P (x). (2.17)

It is easy to see that Φε,P satisfies the Neumann boundary condition and

Φε,P (T−1
ε (y)) = Φ0(y) + O(εe−a|y|). Furthermore, |Φε,P (T−1

ε (y))| ≤ Ce−a|y|

for some a > 0.

Finally, we introduce the following approximate function:

w̃ε,P (x) = wε,P (x) + εΦε,P (x), x ∈ Ω. (2.18)

Note that w̃ε,P (x) satisfies the Neumann boundary condition.

Our next lemma says that w̃ε,P satisfies the equation (1.1) up to the order

O(ε1+σ).

Lemma 2.2. Let

Sε[w̃ε,P ] := ε2∆w̃ε,P − w̃ε,P + f(w̃ε,P ). (2.19)

Then, for ε sufficiently small, we have

|Sε[w̃ε,P ]| ≤ Cε1+σe−a|y|. (2.20)

Proof: We expand Sε[w̃ε,P ]:

Sε[w̃ε,P ] = Sε[wε,P ] + ε[ε2∆Φε,P − Φε,P + f
′
(wε,P )Φε,P ]

(2.21)

+[f(wε,P + εΦε,P ) − f(wε,P ) − εf
′
(wε,P )Φε,P ] = S1 + S2 + S3,

where S1, S2 and S3 are defined by the last equality.

By (2.1), Proposition 2.1 and (2.15),

S1 + S2 = f(wε,P ) − f
(
w
(

x − P

ε

))
+ ε[ε2∆Φε,P − Φε,P + f

′
(wε,P )Φε,P ]

=
[
f(wε,P ) − f

(
w
(

x − P

ε

))
+ εv1χf

′
(
w
(

x − P

ε

))]

+ε
[
ε2∆Φε,P − Φε,P + f

′
(wε,P )Φε,P − f

′
(
w
(

x − P

ε

))
v1χ
]
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= O(ε2e−a|y|).

On the other hand, it follows by the mean-value theorem that

|f(a + b) − f(a) − f
′
(a)b| ≤ C|a|σ|b|1+σ (2.22)

for any a, b such that |b| ≤ 2|a| ≤ C. Thus

S3 = O(ε1+σ|wε,P |σ|Φε,P |1+σ) = O(ε1+σe−a|y|). (2.23)

This proves the lemma.

�

3. The computation of Jε[w̃ε,P ]

In this section, we compute the energy of the approximate function w̃ε,P .

In the next section, we will show that w̃ε,P contributes the energy expansion

up to the order o(ε2).

We begin with

Jε[w̃ε,P ] = Jε[wε,P + εΦε,P ]

= Jε[wε,P ] + ε
∫
Ω
(ε2∇wε,P∇Φε,P + wε,P Φε,P − f(wε,P )Φε,P ) dx

+ε2

(
ε2

2

∫
Ω
|∇Φε,P |2 dx +

1

2

∫
Ω
|Φε,P |2 dx − 1

2

∫
Ω

f
′
(wε,P )Φ2

ε,P dx

)

−
∫
Ω

⎡
⎣F (wε,P + εΦε,P ) − F (wε,P ) − εf(wε,P )Φε,P − ε2

2
f

′
(wε,P )|Φε,P |2

⎤
⎦ dx.

(3.1)

The last term in (3.1) can be estimated using (2.22):

∫
Ω

∣∣∣∣∣∣F (wε,P + εΦε,P ) − F (wε,P ) − εf(wε,P )Φε,P − ε2

2
f

′
(wε,P )|Φε,P |2

∣∣∣∣∣∣ dx

≤ Cε2+σ
∫
Ω

wσ
ε,P |Φε,P |2+σ dx ≤ CεN+2+σ. (3.2)

Using (2.1) and (3.2), we see that

Jε[w̃ε,P ] = Jε[wε,P ] + ε
∫
Ω

(
f
(
w
(

x − P

ε

))
− f(wε,P )

)
Φε,P dx

+
ε2

2

[
ε2
∫
Ω
|∇Φε,P |2 dx +

∫
Ω
|Φε,P |2 dx −

∫
Ω

f
′
(wε,P )Φ2

ε,P dx
]

+ o(εN+2)

= I1 + I2 + I3 + o(εN+2), (3.3)
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where I1, I2 and I3 are defined by the last equality.

We compute I3 first. In fact, it is easy to see that

ε−N−2I3 → 1

2

∫
RN

+

(
|∇Φ0|2 + |Φ0|2 − f

′
(w)Φ2

0

)
dy (3.4)

= −1

2

∫
RN

+

f
′
(w)v1Φ0 dy.

The last equality follows from equation (2.15).

Next, for I2 we get:

ε−N−2I2 →
∫

RN
+

f
′
(w)v1Φ0 dy. (3.5)

Combining (3.4) and (3.5), we deduce that

I2 + I3 =
εN+2

2

∫
RN

+

f
′
(w)v1Φ0 dy + o(εN+2). (3.6)

Now it remains to compute I1. Using equation (2.1) and Proposition 2.1,

we deduce that

I1 =
ε2

2

∫
Ω
|∇wε,P |2 dx +

1

2

∫
Ω

w2
ε,P dx −

∫
Ω

F (wε,P ) dx

=
1

2

∫
Ω

f(w)wε,P dx −
∫
Ω

F (wε,P ) dx

=
1

2

∫
Ω

f(w)(w − εv1χ − ε2(v2 + v3)χ) dx

−
∫
Ω

F (w − εv1χ − ε2(v2 + v3)χ) dx + o(εN+2)

=
∫
Ω

[
1

2
wf(w) − F (w)

]
dx +

ε

2

∫
Ω

f(w)v1 dx

+
ε2

2

∫
Ω
(f(w)v2 − f

′
(w)v2

1) dx + o(εN+2). (3.7)

Here we have used the fact that v3 is odd in y
′
and hence

∫
RN

+
f(w)v3 dy = 0.

Let

I1,1 =
∫
Ω

[
1

2
wf(w) − F (w)

]
dx, I1,2 =

∫
Ω

f(w)v1 dx.

Now we compute these two terms up to o(ε2). To this end, let us calculate
|x−P |

ε
under the transformation (2.3):

|x − P |
ε

=
1

ε

√
ε2|y′ |2 + (εyN + ρ(εy′))2
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=

√√√√√|y|2 + ε
N−1∑
i=1

kiy2
i yN +

ε2

3

N−1∑
i,j,k=1

ρijkyiyjykyN +
ε2

4

(
N−1∑
i=1

kiy2
i

)2

+ O(ε3|y|5).
(3.8)

We state the following useful lemma.

Lemma 3.1. Suppose that A(|y|) is a radially symmetric function such that

|A′
(|y|)| + |A′′

(|y|)| + |A′′′
(|y|)| ≤ Ce−a|y|

for some a > 0. Then, for ε sufficiently small, we have

A

( |x − P |
ε

)
= A(|y|) + ε

A
′
(|y|)

2|y|
N−1∑
i=1

kiy
2
i yN

+ε2

⎡
⎣A

′
(|y|)

2|y|

⎛
⎝1

3

N−1∑
i,j,k=1

ρijkyiyjykyN +
1

4

(
N−1∑
i=1

kiy
2
i

)2
⎞
⎠
⎤
⎦

+ ε2

[
A

′′
(|y|)

8|y|2 − A
′
(|y|)

8|y|3
](

N−1∑
i=1

kiy
2
i

)2

y2
N + O(ε3e−a|y|/2) (3.9)

and∫
Ω

A

( |x − P |
ε

)
dx = εN

∫
RN

+

A(|y|)dy − 1

2
εN+1H(P )

∫
∂RN

+

A(|y|)|y| dy
′
+ o(εN+2).

(3.10)

Proof: Equation (3.9) follows by using Taylor expansion.

By (3.9), we have∫
Ω

A

( |x − P |
ε

)
dx = εN

∫
RN

+

A(|y|)dy + εN+1
∫

RN
+

A
′
(|y|)

2|y|
(

N−1∑
i=1

kiy
2
i yN

)
dy

+ εN+2
∫

RN
+

⎡
⎣A

′
(|y|)

8|y|
(

N−1∑
i=1

kiy
2
i

)2

+
(A

′
(|y|)/|y|)′
8|y|

(
N−1∑
i=1

kiy
2
i yN

)2
⎤
⎦ dy + o(εN+2).

(3.11)

The last term can be estimated as follows:∫
RN

+

⎡
⎣A

′
(|y|)

8|y|
(

N−1∑
i=1

kiy
2
i

)2

+
(A

′
(|y|)/|y|)′
8|y|

(
N−1∑
i=1

kiy
2
i yN

)2
⎤
⎦ dy

=
1

8

∫
RN

+

A
′
(|y|)
|y|

(
N−1∑
i=1

kiy
2
i

)2

dy +
1

8

∫
RN

+

yN
∂(A

′
(|y|)/|y|)
∂yN

(
N−1∑
i=1

kiy
2
i

)2

dy

⎤
⎦

=
1

8

∫
RN

+

∂

∂yN

⎛
⎝A

′
(|y|)
|y| yN

(
N−1∑
i=1

kiy
2
i

)2
⎞
⎠ dy = 0. (3.12)
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Substituting (3.12) into (3.11), we obtain the lemma. �
From Lemma 3.1, it follows that

I1,1 = εN
∫

RN
+

[
1

2
wf(w) − F (w)

]
dy

+εN+1
N−1∑
i=1

ki

∫
RN

+

[
1

4
wf

′
(w) − 1

4
f(w)

]
w

′

|y|yNy2
i dy + o(εN+2)

= εN 1

2
I[w] − εN+1 H(P )

4

∫
∂RN

+

[wf(w) − 2F (w)]|y|2dy
′
+ o(εN+2).

(3.13)

Using Lemma 3.1 and (2.6), we see that

I1,2 = εN
∫

RN
+

f(w)v1dy + εN+1
∫

RN
+

f
′
(w)w

′

2|y|
(

N−1∑
i=1

kiy
2
i yN

)
v1(y)dy + O(εN+2)

= εN H(P )

2

∫
∂RN

+

ww
′|y|dy

′
+ εN+1

∫
RN

+

f
′
(w)w

′

2|y|
(

N−1∑
i=1

kiy
2
i yN

)
v1(y)dy + O(εN+2).

(3.14)

Combining the estimates for I1,1, I1,2, I2, I3, we arrive at

Jε[w̃ε,P ] =
εN

2
I(w) − c1ε

N+1H(P ) + εN+2A0 + o(εN+2),
(3.15)

where

c1 =
1

4

∫
∂RN

+

[
wf(w) − 2F (w) − 2

ww
′

|y|
]
|y|2dy

′
(3.16)

and

A0 =
1

2

∫
RN

+

f
′
(w)v1(Φ0 − v1) dy +

1

2

∫
RN

+

f(w)v2 dy

+
1

4

N−1∑
i=1

ki

∫
RN

+

f
′
(w)w

′

|y| y2
i yNv1(y)dy. (3.17)

Now we are going to simplify A0. Let Φi, i = 1, ..., N − 1, be the unique

solution of the following problem:⎧⎪⎪⎨
⎪⎪⎩

∆Φi − Φi + f
′
(w)Φi = 0 in RN

+ ,
∂Φi

∂yN
= w′(|y|)

|y| y2
i on ∂RN

+ ,

Φi is even in y
′
.

(3.18)

Note that Φi, i = 2, ..., N − 1, can be obtained from Φ1 by rotation. This

fact will be used frequently.
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We claim that

Lemma 3.2.

A0 =
1

8

(
N−1∑
i=1

ki

)2 ∫
∂RN

+

Φ1
∂Φ1

∂yN

dy
′
+

1

8

∑
i�=j

kikj

∫
∂RN

+

Φ1
∂(Φ2 − Φ1)

∂yN

dy
′
.

(3.19)

Proof: First, using the equations (2.6) and (2.15), we obtain

1

2

∫
RN

+

f
′
(w)v1(Φ0 − v1) dy = −1

2

∫
RN

+

v1(∆Φ0 − Φ0) dy

= −1

2

∫
RN

+

(∆v1 − v1)Φ0 dy − 1

2

∫
∂RN

+

Φ0
∂v1

∂yN

dy
′
=

1

4

N−1∑
i=1

ki

∫
∂RN

+

w
′

|y|Φ0y
2
i dy

′
.

(3.20)

Next, using (2.7),

1

2

∫
RN

+

f(w)v2 dy = −1

2

∫
RN

+

(∆w − w)v2 dy

= −1

2

∫
RN

+

(∆v2 − v2)w dy +
1

2

∫
∂RN

+

(
v2

∂w

∂yN

− w
∂v2

∂yN

)
dy

′

= −1

2

∫
RN

+

(
2

N−1∑
i=1

kiyi
∂2v1

∂yiyN

+
N−1∑
i=1

ki
∂v1

∂yN

)
w dy − 1

2

∫
∂RN

+

w
N−1∑
i=1

kiyi
∂v1

∂yi

dy
′

=
N−1∑
i=1

ki

∫
RN

+

∂(yiw)

∂yi

∂v1

∂yN

dy−1

2

N−1∑
i=1

ki

∫
RN

+

w
∂v1

∂yN

dy+
1

2

N−1∑
i=1

ki

∫
∂RN

+

v1
∂(wyi)

∂yi

dy
′

=
N−1∑
i=1

ki

∫
RN

+

yi
∂w

∂yi

∂v1

∂yN

dy+
1

2

N−1∑
i=1

ki

∫
RN

+

w
∂v1

∂yN

dy+
1

2

N−1∑
i=1

ki

∫
∂RN

+

v1
∂(wyi)

∂yi

dy
′

=
N−1∑
i=1

ki

∫
RN

+

yi
∂w

∂yi

∂v1

∂yN

dy− 1

2

N−1∑
i=1

ki

∫
RN

+

v1
∂w

∂yN

dy+
1

2

N−1∑
i=1

ki

∫
∂RN

+

v1yi
∂w

∂yi

dy
′

= −
N−1∑
i=1

ki

∫
RN

+

yi
∂2w

∂yi∂yN

v1 dy − 1

2

N−1∑
i=1

ki

∫
RN

+

v1
∂w

∂yN

dy − 1

2

N−1∑
i=1

ki

∫
∂RN

+

v1
w

′

|y|y
2
i dy

′
.

(3.21)

Finally,

1

4

N−1∑
i=1

ki

∫
RN

+

f
′
(w)

w
′

|y|y
2
i yNv1 dy =

1

4

N−1∑
i=1

ki

∫
RN

+

y2
i

∂f(w)

∂yN

v1 dy

= −1

4

N−1∑
i=1

ki

∫
RN

+

y2
i

(
∆

∂w

∂yN

− ∂w

∂yN

)
v1 dy
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=
1

4

N−1∑
i=1

ki

∫
∂RN

+

v1y
2
i

w
′

|y| dy
′ − 1

4

N−1∑
i=1

ki

∫
RN

+

[
4yi

∂v1

∂yi

+ 2v1

]
∂w

∂yN

dy

=
1

4

N−1∑
i=1

ki

∫
∂RN

+

v1
w

′

|y|y
2
i dy

′
+

N−1∑
i=1

ki

∫
RN

+

yi
∂2w

∂yi∂yN

v1 dy

+

∑N−1
i=1 ki

2

∫
RN

+

v1
∂w

∂yN

dy. (3.22)

Combining (3.20), (3.21) and (3.22), we have

A0 =
1

4

N−1∑
i=1

ki

∫
∂RN

+

(Φ0 − v1)
w

′

|y|y
2
i dy

′

=
1

8

N−1∑
i,j=1

kikj

∫
∂RN

+

Φj
∂Φi

∂yN

dy
′
. (3.23)

By symmetry, we have∫
∂RN

+

Φi
∂Φi

∂yN

dy
′
=
∫

∂RN
+

Φ1
∂Φ1

∂yN

dy
′
, i = 1, ..., N − 1,

∫
∂RN

+

Φk
∂Φl

∂yN

dy
′
=
∫

∂RN
+

Φ1
∂Φ2

∂yN

dy
′
, k, l = 1, ..., N − 1, k 
= l.

(3.24)

Hence

A0 =
1

8

(
N−1∑
i=1

ki

)2 ∫
∂RN

+

Φ1
∂Φ1

∂yN

dy
′
+

1

8

∑
i�=j

kikj

∫
∂RN

+

Φ1
∂(Φ2 − Φ1)

∂yN

dy
′

= c2(H(P ))2 + c3R(P ), (3.25)

where

c2 =
(N − 1)2

8

∫
∂RN

+

Φ1
∂Φ1

∂yN

dy
′
, c3 =

1

8

∫
∂RN

+

Φ1
∂(Φ2 − Φ1)

∂yN

dy
′
.
(3.26)

�
In summary, we have derived the following proposition.
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Proposition 3.3. Let P ∈ ∂Ω and w̃ε,P be defined at (2.18). Then, for ε

sufficiently small, we have

Jε[w̃ε,P ] = εN

⎡
⎣1

2
I[w] − c1εH(P ) + ε2[c2(H(P ))2 + c3R(P )] + o(ε2)

⎤
⎦,
(3.27)

where c1, c2, c3 are the generic constants defined by (3.16) and (3.26), respec-

tively.

4. The signs of c1 and c3

In this section, we study the constants c1 and c3. Even though we can not

compute them explicitly, we can determine their signs.

We begin with c1. Since w is radially symmetric, integration by parts gives

c1 =
1

4

∫
∂RN

+

[
(w

′
)2 + w2 − 2F (w)

]
|y|2 dy

′
.

By Lemma 3.3 of [24],

c1 =
N − 1

4

∫
RN

+

[
(w

′
)2 + w2 − 2F (w)

]
yN dy

′

=
N − 1

N + 1

∫
RN

+

(w
′
(|y|))2yN dy > 0. (4.1)

The sign of c3 is more difficult to determine. To this end, we begin with

the following lemma.

Lemma 4.1. Consider the following eigenvalue problem:⎧⎨
⎩ ∆φ − φ + f

′
(w)φ = λφ, φ ∈ H2(RN

+ ),
∂φ

∂yN
= 0 on ∂RN

+ .
(4.2)

Then we can arrange the eigenvalues in such a way that

λ1 > 0 = λ2 > λ3 > ...,

where the eigenspace to λ1 is spanned by a radially symmetric eigenfunc-

tion Ψ1 which can be made positive. The eigenspace to λ2 = 0 is (N − 1)-

dimensional and is spanned by ∂w
∂yj

, j = 1, ..., N − 1.
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Proof: The fact that the eigenspace to λ2 = 0 is spanned by ∂w
∂yj

, j =

1, ..., N−1 follows from assumption (f2). The first eigenvalue λ1 is called prin-

cipal eigenvalue and it is a standard result that the corresponding eigenspace

is spanned by a radially symmetric eigenfunction which can be made positive.

The fact that λ1 > λ2 = 0 follows from Proposition 1.3 of [2]. �
We define the following quadratic form:

Q[φ] :=

∫
RN

+
(|∇φ|2 + φ2 − f

′
(w)φ2) dy∫

RN
+

φ2 dy
for φ ∈ H1(RN

+ ), φ 
≡ 0.
(4.3)

Lemma 4.1 implies the following inequality.

Lemma 4.2. We have

−λ3 = inf∫
RN

+
φΨ1 dy=

∫
RN

+
φ ∂w

∂yj
dy=0, j=1,...,N−1

Q[φ] > 0. (4.4)

Now we claim

Lemma 4.3. We have c3 > 0.

Proof: Since Φi is even in y
′
, we see that∫

RN
+

(Φ1 − Φ2)
∂w

∂yj

dy = 0, j = 1, ..., N − 1, (4.5)

Since Ψ1 is radially symmetric, we also get∫
RN

+

(Φ1 − Φ2)Ψ1 dy = 0. (4.6)

Now we compute∫
RN

+

[|∇(Φ1 − Φ2)|2 + |Φ1 − Φ2|2 − f
′
(w)(Φ1 − Φ2)

2] dy

= −
∫

RN
+

(Φ1 − Φ2)
∂(Φ1 − Φ2)

∂yN

dy

=
∫

RN
+

Φ1
∂(Φ2 − Φ1)

∂yN

dy +
∫

RN
+

Φ2
∂(Φ1 − Φ2)

∂yN

dy.

By symmetry of Φ1 and Φ2, we see that∫
RN

+

Φ1
∂(Φ2 − Φ1)

∂yN

dy +
∫

RN
+

Φ2
∂(Φ1 − Φ2)

∂yN

dy
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= 2
∫

RN
+

Φ1
∂(Φ2 − Φ1)

∂yN

dy = 16c3. (4.7)

By (4.5), (4.6) and Lemma 4.2, we have

16c3 = (
∫

RN
+

|Φ1 − Φ2|2 dy ) Q[Φ1 − Φ2] > 0. (4.8)

�

5. The asymptotic behavior of uε and Jε[uε]

Let uε be a single boundary spike solution of (1.1) and Pε be its local

maximum point. In this section, we compute the energy of uε. The key

observation is that by using w̃ε,Pε as our approximating function, we just

need to expand uε up to O(ετ ) for some τ > 1. Now we choose τ = 1 + σ
2
.

We first prove the following theorem.

Theorem 5.1. For ε sufficiently small, we have

uε = w̃ε,Pε + ετφε, (5.1)

where φε satisfies

‖φε‖L∞(Ω̄) + ε−N
∫
Ω
(ε2|∇φε|2 + |φε|2) ≤ C. (5.2)

Let us first assume that Theorem 5.1 holds. We then have

Lemma 5.2. For ε sufficiently small, we have

Jε[uε] = Jε[w̃ε,P ] + o(εN+2). (5.3)

Proof of Lemma 5.2: Note that both w̃ε,Pε and φε satisfy the Neumann

boundary condition. So we have

Jε[uε] = Jε[w̃ε,P ]

+ετ
∫
Ω
(ε2∇w̃ε,P∇φε + w̃ε,P φε − f(w̃ε,P )φε) dx

+
ε2τ

2

(∫
Ω
(ε2|∇φε|2 + |φε|2) dx −

∫
Ω

f
′
(w̃ε,Pε)φ

2
ε dx
)

−
∫
Ω

[
F (w̃ε,Pε + ετφε) − F (w̃ε,Pε) − ετf(w̃ε,Pε)φε − ε2τ

2
f

′
(w̃ε,Pε)φ

2
ε

]
dx.
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By Theorem 5.1, the last two terms are O(εN+2τ ). Now, integrating by parts,

we obtain that

ετ
∫
Ω
(ε2∇w̃ε,P∇φε + w̃ε,P φε − f(w̃ε,P )φε) dx

= ετ
∫
Ω

Sε[w̃ε,Pε ]φε dx = O(εN+τ+1+σ).

This finishes the proof of Lemma 5.2. �
We are now ready to prove Theorem 5.1. The key step is the following

lemma.

Lemma 5.3. For ε sufficiently small, we have

‖φε‖L∞(Ω̄) ≤ C. (5.4)

Proof: Recall

Sε[u] = ε2∆u − u + f(u), S
′
ε[u](φ) = ε2∆φ − φ + f

′
(u)φ.

Then, substituting uε = w̃ε,Pε + ετφε into equation (1.1), we see that φε

satisfies ⎧⎨
⎩ ε2∆φε − φε + f

′
(w̃ε,Pε)φε = −ε−τSε[w̃ε,Pε ] + Nε[φε] in Ω,

∂φε

∂ν
= 0 on ∂Ω, (5.5)

where

Nε[φε] = −ε−τ [f(w̃ε,Pε + ετφε) − f(w̃ε,Pε) − ετf
′
(w̃ε,Pε)φε]. (5.6)

From Lemma 2.2, we have

ε−τSε[w̃ε,Pε ] = O(εσ/2). (5.7)

By the mean value theorem, we get

|Nε[φε]| = o(1)|φε|. (5.8)

Now we can prove Lemma 5.2. Suppose not, that is there exists a sequence

εk → 0 such that ‖φεk
‖L∞(Ω̄) → +∞. For simplicity of notation, we still

denote εk as ε. Set

Mε = ‖φε‖L∞(Ω̄) → +∞.

Let Mε = |φε(xε)|, where xε ∈ Ω̄. Without loss of generality, we may

assume that xε is a maximum point of φε.

We proceed in two claims.
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Claim 1: |xε−Pε|
ε

≤ C.

In fact, suppose not. That is |xε−Pε|
ε

→ +∞. Then −1+f
′
(w̃ε,Pε(xε)) ≤ −1

4

for ε small. Since ∂φε

∂ν
= 0, by the Hopf boundary Lemma, xε 
∈ ∂Ω. So

xε ∈ Ω, which implies that

∆φε(xε) ≤ 0.

From (5.5) we deduce that

(1 − f
′
(w̃ε,Pε(xε)))Mε + o(1)Mε + O(ετ−1) ≤ 0

and hence Mε is bounded. A contradiction.

This proves Claim 1.

Let

φ̂ε(y) =
φε(x)

Mε

χ(x − Pε), y = Tε(x), (5.9)

where y = Tε(x) is given in (2.3) (replacing P by Pε).

Claim 2: φ̂ε(y) → 0 in C1
loc(R

N
+ ) as ε → 0.

In fact, from the equation for φ̂ε, we see that as ε → 0, φ̂ε → φ̂0 which

satisfies

∆φ̂0 − φ̂0 + f
′
(w)φ̂0 = 0, |φ̂0| ≤ 1 in RN

+ ,

∂φ̂0

∂yN

= 0 on ∂RN
+ .

By the nondegeneracy of w (see (2.14)), there exist N − 1 constants

a1, ..., aN−1 such that

φ̂0 =
N−1∑
j=1

aj
∂w

∂yj

. (5.10)

On the other hand, we know that ∇xk
uε(Pε) = 0, k = 1, ..., N − 1 and

hence

0 = ∇xk
(w̃ε,Pε(Pε) + ετφε(Pε))

= O(ε2) + ∇xk

(
w
(

x − Pε

ε

)
− εv1χ − ε2(v2 + v3)χ

)
+ ετ−1Mε∇yk

φ̂ε(0)

= O(ε) + ετ−1Mε∇yk
φ̂ε(0).
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(Note that ∇yk
v1(0) = ∇yk

v2(0) = 0.) Thus we have ∇yk
φ̂ε(0) → 0 which

shows that ∇yk
φ̂0(0) = 0, k = 1, ..., N − 1. This implies that

∇yk

⎛
⎝N−1∑

j=1

aj
∂w

∂yj

⎞
⎠
∣∣∣∣∣∣
y=0

= 0, k = 1, ..., N − 1.

Thus a1 = ... = aN−1 = 0.

This proves Claim 2.

Lemma 5.3 now follows from Claim 1 and Claim 2: Let yε = xε−Pε

ε
, then

by Claim 1, |yε| ≤ C. So we may assume that yε → y0 as ε → 0. Since

φ̂ε(yε) = 1, we have φ̂0(y0) = 1 which contradicts Claim 2.

�
Theorem 5.1 now follows from Lemma 5.3: In fact, multiplying (5.5) by

φε and integrating over Ω, we obtain

ε2
∫
Ω
|∇φε|2 dx +

∫
Ω
|φε|2 dx

=
∫
Ω

f
′
(w̃ε,Pε)φε dx −

∫
Ω

Nε[φε]φε dx + ε−τ
∫
Ω

Sε[w̃ε,Pε ]φε dx

≤ CεN + o(1)
∫
Ω
|φε|2 dx.

This finishes the proof of Theorem 5.1.

�

6. The proofs of Theorem 1.1, Theorem 1.2, and Corollary 1.3

Theorem 1.1 follows from Lemma 5.2 and Proposition 3.2.

To prove Theorem 1.2, we follow the proof of Theorem 1.1: first we note

that

Sε[
K∑

j=1

w̃ε,P ε
j
] =

K∑
j=1

Sε[w̃ε,P ε
j
] + O(e−δ/ε) (6.1)

for some δ > 0, since mini�=j |P ε
i − P ε

j | ≥ δ. Then we decompose

uε =
K∑

j=1

w̃ε,P ε
j

+ ετφε

and show that ‖φε‖L∞(Ω̄) ≤ C. The rest of the proof is exactly the same.

Finally, we prove Corollary 1.3.
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Proof of Corollary 1.3: Let uε be a least energy solution of (1.1). By

Theorem 1.1, we have

cε := Jε[uε]

= εN

⎡
⎣1

2
I[w] − c1εH(Pε) + ε2(c2(H(Pε))

2 + c3R(Pε)) + o(ε2)

⎤
⎦.

(6.2)

On the other hand, let

β(t) = Jε[tw̃ε,P ], t > 0, (6.3)

where w̃ε,P is given by (2.18).

By Lemma 3.1 of [24],

cε ≤ max
t>0

β(t). (6.4)

By assumption (f3) (see (3.16) of [24]), there exists a unique t = tε,P such

that

β
′
(tε,P ) = 0, β(tε,P ) = max

t>0
β(t).

Note that

β
′
(1) =

∫
Ω
[ε2∇w̃ε,P∇w̃ε,P + w̃2

ε,P − f(w̃ε,P )w̃ε,P ] dx

=
∫
Ω

Sε[w̃ε,P ]w̃ε,P dx = O(εN+1+σ).

Similar to (3.16) of [24], one can show that

tε,P = 1 + O(ε1+σ). (6.5)

Then

β(tε,P ) = β(1) + β
′
(1)(tε,P − 1) + O(εN |tε,P − 1|2)

= β(1) + o(εN+2)

which implies that

cε ≤ max
t>0

β(t) = Jε[tε,P w̃ε,P ] = Jε[w̃ε,P ] + o(εN+2)

≤ εN

⎡
⎣1

2
I[w] − c1εH(P ) + ε2(c2(H(P ))2 + c3R(P )) + o(ε2)

⎤
⎦

(6.6)

for any P ∈ ∂Ω.
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Now we take P = Q0 such that

H(Q0) = max
P∈∂Ω

H(P ), R(Q0) = min
Q∈∂Ω,H(Q)=maxP∈∂Ω H(P )

R(Q).

Comparing (6.6) with (6.2), we arrive at

c1H(Q0) − ε[c2(H(Q0))
2 + c3R(Q0)] + o(ε)

≤ c1H(Pε) − ε[c2(H(Pε))
2 + c3R(Pε)] + o(ε).

Since c1 > 0, c3 > 0, (the sign of c2 is not important), we conclude that

H(Pε) → max
P∈∂Ω

H(P ), R(Pε) → min
Q∈∂Ω,H(Q)=maxP∈∂Ω H(P )

R(Q)

as ε → 0.

�
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