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Abstract. We study a hypercyclical reaction-diffusion system which
arises in the modeling of catalytic networks and describes the emerg-
ing of cluster states. We construct single cluster solutions in full two-
dimensional space and then establish their stability or instability in terms
of the number N of components. We provide a rigorous analysis around
the single cluster solutions, which is new for systems of this kind. Our
results show that as N increases, the system becomes unstable.

1. Introduction

Recently there has been a great interest in the study of self-replicating

patterns observed in the many different types of models. We consider a

hypercyclical reaction-diffusion system which arises as a spatial model con-

cerning the origin of life similar to the one introduced by Eigen and Schuster

[17]. A number of RNA-like polymers (“components”) catalyse the replica-

tion of each other in a cyclic way. Examples in nature include Krebs and

Bethe-Weizsäcker cycles. Eigen and Schuster argue that the hypercycle sat-

isfies important criteria of natural selection: 1. Selective stability of each

component due to favorable competition with error copies, 2. Cooperative

behavior of the components integrated into the hypercycle, and 3. Favorable

competition of the hypercycle unit with other less efficient systems.

We show rigorously that this may lead to compartmentation (i.e., the

build-up of spatially small and essentially closed subsystems) due to sponta-

neous formation of clusters (also called “spots” or “spikes”).

We first study a general system of N + 1 equations, where N may be any

positive integer representing the number of components. For this general
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system we provide the existence of solutions with clusters which for the

different components have the same location but possibly different values.

Then we study the stability question for some particularly important ex-

amples.

At this point we should like to emphasize that we provide a rigorous anal-

ysis around cluster solutions, not around constant states. This approach is

new for the kind of (N + 1)-systems under investigation.

As suggested in [8], [9] we study the following reaction-diffusion system:⎧⎨
⎩

∂Xi

∂t
= DX∆Xi − gXXi + M

∑N
j=1 kijXiXj, i = 1, 2, . . . , N, x ∈ R2,

∂M
∂t

= DM∆M + kM − gMM − LM
∑N

i,j=1 kijXiXj, x ∈ R2, (1.1)

where Xi denotes the concentration of the polymers, and M is the concen-

tration of activated monomers. N is the number of different polymer species.

The replication of each polymer Xi is catalysed by each Xj at a rate con-

stant kij. Linear (non-catalytic) growth terms are neglected. The activated

monomers are produced at constant rate, kM ; gX and gM are decay rate

constants. L is the number of monomers in each polymer, and DX and DM

are constant diffusion coefficients.

If the coefficients kij are represented by a cyclical N × N matrix, namely

(e.g., for N = 5)

Khyper = (khyper
ij ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 k0

k0 0 0 0 0

0 k0 0 0 0

0 0 k0 0 0

0 0 0 k0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×N

, k0 > 0,

the system (1.1) is called “elementary hypercycle” by Eigen and Schuster [17]

as the polymers interact in pairs only. There are more complex hypercycles

if the polymers interact in triples, quadruples, etc. However, more complex

hypercycles are likely to be of less importance for an efficient start of evo-

lution than elementary hypercycles since they are more difficult to form in

the first place.

While Eigen and Schuster [17] use an assumption of constant organisation,

meaning that the total sum of all polymer concentrations is kept constant,
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in system (1.1) another mechanism for bounding the polymer concentrations

is present: Since each polymer consists of L monomers the polymer concen-

trations are bounded by the limited supply of activated monomers. This is

a nonlocal coupling in contrast to the local coupling in the model of Eigen

and Schuster.

We pose the problem in two-dimensional space which on the one hand

allows a rigorous analysis and on the other hand is relevant if the early

biochemical reactions take place in very thin layers like for example on the

surfaces of rocks.

A cluster may loosely be defined as a region of high concentration
∑N

i=1 Xi

of the polymers and low concentration of the monomer, as monomers are

consumed by the replication of polymers (if the region shrinks to a point,

then it is called point-condensation).

Let us mention some related results.

In [8] the parameter dependence of stability of clusters and spirals against

parasites (i.e., rival polymers which receive catalytic support from the hyper-

cycle but do not contribute to the catalysis of any other polymer) is studied

numerically. A parasite may or may not destroy the hypercycle depending

on the rate constants. In [9] clusters (for N = 5) are established numerically

for the elementary N -hypercycle system,

In [7] for a closely related reaction-diffusion model the dependence of clus-

ter states on diffusivities is shown numerically including the cluster size, their

shape, and the distance between different clusters.

The effect of faulty replication on the hypercycle has been studied by an

analysis of the geometry of bifurcations around steady states and numerical

computations in the framework of an ODE reaction model [1].

For a cellular automata model it was shown numerically that a spiral wave

structure may be stable against parasites [5]. The chaotic dynamics for this

type of model has been investigated numerically in [30], [39].

There are a number of recent results on the special case N = 1 of our

model, which is then also called Gray-Scott system [19], [20]. We would like

to recall them here. In [13], by using Mel’nikov method, Doelman, Kaper
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and Zegeling constructed single and multiple pulse solutions for (1.1) in the

one-dimensional case with DM = 1, DX = δ2 << 1, where Xi = X. In their

paper [13], it is assumed that kM = gM ∼ δ2, gX ∼ δ2α/3, k11 = 1, L = 1,

where α ∈ [0, 3
2
). In this case, they showed that M = O(δα), X = O(δ−

α
3 ).

Later the stability of single and multiple pulse solutions in 1-D are obtained

in [11], [12]. (The techniques are extended to other reaction-diffusion equa-

tions in [14].) Some related results on the existence and stability of solutions

to the Gray-Scott model in 1-D can be found in [15], [25], [26], [36] and [40].

In R2 and R3, Muratov and Osipov [31] have given some formal asymptotic

analysis on the construction and stability of spiky solution. In [49], the

system (1.1) for N = 1 is studied on the real axis in the shadow system

case, namely, DM >> 1, DX << 1 and kM = gM = O(1), gX = O(1), k11 =

1, L = 1. The shadow system can be reduced to a single equation. For spike

solutions for single equations, please see [3], [4], [10], [18], [21], [23], [24], [28],

[29], [38], [32], [33], [34], [35], [37], [42], [44], [43], [45], [46], [47], [48], [51],

[52], and the references therein.

In the general higher dimensional case, as far as we know, the only rig-

orous existence and stability results on the Gray-Scott system have been

established in [50]. The existence of one-spike solutions is proved. Their sta-

bility is established and rests upon the derivation and analysis of a related

NLEP (nonlocal eigenvalue problem).

In this paper, we study the existence and stability of a single-cluster solu-

tion in 2-D. Let us first reduce the system (1.1) to standard form. Dividing

by gX and gM , respectively, gives

1

gX

∂tXi =
DX

gX

∆Xi − Xi +
M

gX

N∑
j=1

kijXiXj,

1

gM

∂tM =
DM

gM

∆M +
kM

gM

− M − LM

gM

N∑
ji,=1

kijXiXj.

Rescaling M = (kM/gM)M̂, Xi =
√

L/gMX̂i, we get

1

gX

∂tX̂i =
DX

gX

∆X̂i − X̂i +
1

gX

kM

gM

M̂

√
gM

L

N∑
j=1

kijX̂iX̂j,
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1

gM

∂tM̂ =
DM

gM

∆M̂ + 1 − M̂ − M̂
N∑

i,j=1

kijX̂iX̂j.

Rescaling space variables x and time variable t:

x =

√
DM

gM

x̂, t =
1

gM

t̂,

renaming constants:

A =
kM

gXgM

√
gM

L
, ε2 =

DX

DM

gX

gM

, τ =
gX

gM

and dropping the hats, we finally arrive at the following standard form⎧⎨
⎩ ∂tXi = ε2∆Xi − Xi + AM

∑N
i=1 kijXiXj,

τ∂tM = ∆M + 1 − M − M
∑N

i=1,j kijXiXj.
(1.2)

We shall study (1.2) in the whole R2 for ε > 0 small. Different choices of A

might distinguish between stability and instability. Therefore we will treat

it as a parameter. We shall construct solutions of (1.2) which are radially

symmetric:

Xi = Xi(|x|) ∈ H1(R2), i = 1, . . . , N,

M = M(|x|) ∈ H1(R2).

The stationary equation of (1.2) becomes⎧⎨
⎩ ε2∆Xi − Xi + AM

∑N
j=1 kijXiXj = 0, i = 1, ..., N,

∆M + 1 − M − M
∑N

i=1,j kijXiXj = 0.
(1.3)

We first construct cluster solutions to (1.3). To this end, we need to

introduce some assumptions and notations.

We assume that

the matrix (kij) is invertible. (1.4)

So the following equation has a unique solution (ζ̂1, ..., ζ̂N ):

N∑
j=1

kij ζ̂j = 1, i = 1, . . . , N. (1.5)

We assume that

ζ̂j > 0, j = 1, . . . , N. (1.6)

(The ζ̂j will be the scale of the height of each Xj.) We shall also use the

notation ζ̂ =
∑N

i=1 ζ̂i.



6 JUNCHENG WEI AND MATTHIAS WINTER

Let w be the unique solution of the following problem⎧⎨
⎩ ∆w − w + w2 = 0, w > 0 in R2,

w(0) = maxy∈R2 w(y), w(y) → 0 as |y| → +∞.
(1.7)

(The solution of (1.7) is radial and unique. See [22] and [27].)

Put

L :=

∑K
i=1 ζ̂i

2πA2
ε2 log

(
1

ε

) ∫
R2

(w(y))2dy, (1.8)

where ζ̂j are given by (1.5).

If 0 < L < 1
4
, then the following equation has two solutions:

η(1 − η) = L. (1.9)

We denote the smaller one by ηs, where 0 < ηs < 1
2

and the larger one by

ηl, where 1 > ηl > 1
2
.

We now state the existence result. In fact, this is quite easy. We search

for solutions of the following type

Xi = ζ̂iX0, i = 1, . . . , N. (1.10)

Substituting (1.10) into (1.3), we see that (X0,M) satisfies⎧⎨
⎩ ε2∆X0 − X0 + AMX2

0 = 0,

∆M + 1 − M − M
∑N

j=1 ζ̂jX
2
0 = 0.

(1.11)

Applying Theorem 1.1 of [50], we obtain the following existence theorem:

Theorem 1.1. Assume that

ε << 1 (1.12)

and

1

log 1
ε

<< L <
1

4
− δ0, (1.13)

where δ0 > 0 is any small positive constant (independent of ε << 1).

Then problem (1.3) admits two solutions (Xs
ε ,M

s
ε ) = (Xs

ε,1, . . . , Xs
ε,N , M s

ε )

and (X l
ε,M

l
ε) = (X l

ε,1 . . . , X l
ε,N , M l

ε) with the following properties:

(1) all components are radially symmetric functions.
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(2) Xs
ε,i = ζ̂i

AMs
ε (0)

(1 + o(1))w( |x|
ε
), i = 1, . . . , N,

X l
ε,i = ζ̂i

AM l
ε(0)

(1 + o(1))w( |x|
ε
), i = 1, . . . , N,

where w is the unique solution of (1.7).

(3) M s
ε (x) → 1 M l

ε(x) → 1 for all x �= 0 and M s
ε (0), M l

ε(0) satisfy

M s
ε (0) ∼ ηs, M l

ε(0) ∼ ηl,

0 < M s
ε (0) < M l

ε(0) < 1.
(1.14)

(4) There exist a > 0, b > 0 such that

1 − M s
ε (x) ≤ Ce−a|x|, 1 − M l

ε(x) ≤ Ce−a|x|,

Xs
ε,i(x) ≤ C 1

AMs
ε (0)

e−b
|x|
ε , X l

ε,i(x) ≤ C 1
AM l

ε(0)
e−b

|x|
ε

(1.15)

Finally, if L > 1
4

+ δ0 , then there are no single-cluster solutions.

The main goal of this paper is to study the stability and instability of the

cluster solution constructed in Theorem 1.1. To this end, we first linearize

the equations (1.3) around (Xs
ε ,M

s
ε ) or (X l

ε,M
l
ε), respectively. From now

on we omit the superscripts s or l where this is possible without confusing

the reader. The linearized operator is as follows:

L

⎛
⎜⎜⎝

φε,i

ψε

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

ε2∆φε,i − φε,i + AMε
∑N

j=1 kij(φε,jXε,i + Xε,jφε,i)

+Aψε
∑N

j=1 kijXε,iXε,j

∆ψε − ψε − ψε
∑N

i,j=1 kijXε,iXε,j

−Mε
∑N

i,j=1 kij(φε,jXε,i + φε,iXε,j)

⎞
⎟⎟⎟⎟⎟⎠ ,
(1.16)

where i = 1, . . . , N . The eigenvalue problem becomes

L
⎛
⎝ φε,i

ψε

⎞
⎠ =

⎛
⎝ λεφε,i

τλεψε

⎞
⎠ , i = 1, . . . , N. (1.17)

We assume that the domain of L is (H2(R2))N .

Certainly 0 is an eigenvalue of L. The criterion for linearized stability of

a cluster solution is that the spectrum σ(L) of L (except for 0) lies in a left

half plane {λ ∈ C : Re (λ) < −a0} where a0 > 0, and that 0 is a semi-

simple eigenvalue (with multiplicity 2), where C denotes the set of complex

numbers.

It turns out that the stability and instability of cluster solutions depend

highly on the matrix (kij). We now state various assumptions:
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The first assumption is the most restrictive one:

(H1)
N∑

i=1

kij ζ̂i = γ > 0. (1.18)

To introduce the second assumption, we need to consider the following

eigenvalue problem (EVP)⎧⎨
⎩ ∆φ − φ + µwφ = 0,

φ ∈ H1(R2)

By Lemma 4.1 of [43], (EVP) admits the following set of eigenvalues

µ1 = 1, µ2 = . . . = µN+1 = 2, µN+1 > 2. (1.19)

Put

B = (bij), bij = kij ζ̂j. (1.20)

Observe that by (1.5) the matrix B has an eigenvalue 1 and the associated

eigenvector is �e0 := (1, ..., 1)τ .

The second assumption is the following:

(H2) 1 + spec(B) ∩ spec(EVP) = {2}. (1.21)

Next, recall that ηs < ηl are defined by (1.9). The third and fourth

assumptions are:

(H3) γ ≤ 1, (1 − η)(1 + γ) > 1 +
√

1 − γ. (1.22)

and

(H4) (1 − η)(1 + γ) < γ. (1.23)

The following is our main result on the stability.

Theorem 1.2. Assume that

ε << 1,
1

log 1
ε

<< L <
1

4
, (1.24)

and assumptions (H1) and (H2) hold.

Let (Xs
ε ,M

s
ε ) and (X l

ε, X l
ε) be the solutions constructed in Theorem 1.1.

Then for ε << 1, we have the following.
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(1) (stability) Suppose that (H3) holds for η = ηs. Assume that σ = 1 is a

simple eigenvalue of B and that all other eigenvalues σ of B satisfy σ = Reiθ

with some R > 0 and

θ ∈
(

π

2
− θR

s ,
3π

2
+ θR

s

)
for some suitably chosen θR

s > 0. Then (Xs
ε ,M

s
ε ) is linearly stable.

(2) (Instability) Suppose that (H3) holds for η = ηs. If the eigenvalue

σ = 1 of B is not simple or there exists σ = Reiθ with θ ∈ (−θR
us, θ

R
us) for

some θR
us > 0. Then (Xs

ε ,M
s
ε ) is linearly unstable.

(3) (Instability) Suppose that (H4) holds for η = ηl. Then (X l
ε,M

l
ε) is

linearly unstable.

Remarks:

1. In many examples, γ = 1, so (1.22) holds automatically for η = ηs.

When L is small (1.22) holds for η = ηs and (1.23) holds for η = ηl.

2. The assumption (H1) allows that ζ̂i �= ζ̂j for some i �= j. If all ζ̂i are

equal, then necessarily γ = 1.

3. We do not know the optimal values for θR
s and θR

us. They are related

to an eigenvalue problem with complex coefficients. See Lemma 3.3. We

believe that in general, θR
s = θR

us.

4. By the same proof as in Theorem 1.2 of [50], we may relax the condition

that τ = O(1) to τ ∼ ε−l. We will not pursue this generality since our main

objective is to study the effect of the matrix (kij) on the stability of cluster

solutions.

A direct application of Theorem 1.2 is the following stability result for the

N-hypercycle case:

(khyper
ij ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 ... k0

k0 0 0 ... 0

0 k0 0 ... 0

... ... ... ... 0

0 0 ... k0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×N

, k0 > 0.

Theorem 1.3. For the N -hypercycle system, the small cluster solution is

stable for N ≤ 4 and is unstable for N > N0 for some N0 ≥ 5. The large

cluster solution is always unstable.
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Remark: The numerical computations in [9] suggest that, at least for

N = 5, the cluster solution is numerically stable. This implies that at least

numerically, θ1
s > cos(2π

5
).

The structure of the paper is as follows:

In Section 2 we give some examples and make a few remarks about our

results. In particular, Theorem 1.3 will be proved.

In Section 3, we study some local and nonlocal eigenvalue problems asso-

ciated with w.

In Section 4, we separate the eigenvalue problem into two cases: small

eigenvalues and large eigenvalues. The case of large eigenvalues is then re-

duced to a nonlocal eigenvalue problem (NLEP).

In Section 5, we analyze the NLEP for the case of large eigenvalues.

Throughout this paper, the letter C will always denote various generic

constants which are independent of ε, for ε sufficiently small. The notation

A ∼ B means that limε→0
A
B

= 1 and A = O(B) implies that |A| ≤ C|B|.

2. Applications of Theorem 1.2: Examples and Remarks

In this section, we apply our stability results of Theorem 1.2 to some

specific examples. We would like to point out that there are many matrices

which satisfy the assumptions in Theorem 1.2.

Example 1. (Proof of Theorem 1.3:)

For the hypercyclical network we have

bij = δi,j+1 modulo N.

The eigenvalues are e2πj
√−1/N , j = 1, . . . , N and are all simple. In this

case, γ = 1 and (H1) is satisfied. It is easy to check that assumption (H2)

holds. Assumption (H3) is satisfied since

(1 − ηs)(1 + γ) > 1.

By Theorem 1.2 (2), we obtain the stability of the small cluster solution for

N = 1, 2, 3, 4. We do not know if stability still holds for N = 5. However,

for N very large e2π
√−1/N is close to 1. By Theorem 1.2 (3), the small cluster

solution is unstable.
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For the large cluster solution, it is easy to check that (H4) holds and by

Theorem 1.2 (4), the large cluster solution is unstable.

This proves Theorem 1.3.

�
Example 2. For the (cyclical) bidiagonal matrix

bij = ((1 − α)δij + αδi,j+1) modulo N, 0 ≤ α ≤ 1

we obviously have (H1) with γ = 1. It is easy to calculate that the eigenvalues

are 1−α(1−e2πj
√−1/N), j = 1, . . . , N and are all simple. (H2) and (H3) hold

so that the small cluster solution is stable if (1 − cos(2πk/N))−1 ≤ α ≤ 1.

The last condition if equivalent to 1/2 ≤ α ≤ 1 for N = 2, 2/3 ≤ α ≤ 1 for

N = 3, and α = 1 for N = 4. Since we do not know θR
s or θR

us explicitly,

Theorem 1.2 does not give a stability or instability criterion for N ≥ 5. For

large N , however, 1− α(1− e2π
√−1/N)/2 is close to 1 uniformly in α and by

Theorem 1.2 (3) the small cluster solution is unstable for 0 ≤ α ≤ 1.

For the large cluster solution, it is easy to check that (H4) holds and by

Theorem 1.2 (4), the large cluster solution is unstable.

Example 3. For bij = δij the conditions (H1) and (H3) hold with γ = 1.

(H2) holds for N = 1 but not for N ≥ 2. Arguing as in Example 2 we

have stability of the small cluster solution for N = 1 but not for N ≥ 2.

Because of (H4) the large cluster solution is unstable. (For N = 1 this is

the Gray-Scott system, for which stability and instability was established by

[50]).

Example 4. For the (cyclical) tridiagonal matrix

bij = ((1 − 2α)δij + αδi,j+1 + αδi,j−1) modulo N, 0 ≤ α ≤ 1

we obviously have (H1) with γ = 1. It is easy to calculate that the eigenvalues

are 1 − 2α(1 − cos(2πj/N)), j = 1, . . . , N and are all real and simple. (H2)

and (H3) hold so that by Theorem 1.2 (3) the small cluster solution is stable

if and only if (2−2 cos(2πk/N))−1 ≤ α ≤ 1. The last condition is equivalent

to 1/4 ≤ α ≤ 1 for N = 2, 1/3 ≤ α ≤ 1 for N = 3, 1/2 ≤ α ≤ 1 for N = 4,
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(2 − 2 cos(2π/5)) for N = 5, and α = 1 for N = 6. There are no possible

values for α if N ≥ 7.

For the large cluster solution, it is easy to check that (H4) holds and by

Theorem 1.2 (4), the large cluster solution is unstable.

From all the previous examples, we see as a general trend that if the

system is not too much dominated by diagonal terms we have stability of

the small cluster solutions. Otherwise, an instability emerges. This means

that cooperative behavior is needed to stabilise the cluster.

The results also indicate that for many configurations the small cluster

solutions are stable if N is small but turn unstable as N increases. This is in

correspondence with the result of Eigen and Schuster [17] that the constant

nontrivial steady state for the hypercycle is stable if and only if N ≤ 4.

3. Some Important Lemmas

In this section, we collect some important properties associated with the

function w, which is defined by (1.7).

We first study some local eigenvalue problems.

Lemma 3.1. (1) The linear operator⎧⎨
⎩ L0φ := ∆φ − φ + 2wφ

φ ∈ H1(R2)

has the kernel

Ker (L0) = span

{
∂w

∂yj

∣∣∣∣∣ j = 1, . . . , N

}
.

(2) The eigenvalue problem (EVP)⎧⎨
⎩ ∆φ − φ + µwφ = 0,

φ ∈ H1(R2)

admits the following set of eigenvalues

µ1 = 1, v1 = span {w},

µ2 = . . . = µN+1 = 2, v2 = Ker (L0),

µN+1 > 2.
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(3) If µR > 0, then the following eigenvalue problem⎧⎨
⎩ ∆φ − φ + wφ + µRwφ = λφ,

µR > 0, φ ∈ H1(R2)

admits a positive (principal) eigenvalue λ1 such that

−λ1 = inf
φ∈H1(R2)\{0}

∫
R2 |∇φ|2 + φ2 − (1 + µR)wφ2∫

R2 φ2
< 0.

(4) Let φ (complex-valued) satisfy the following eigenvalue problem⎧⎨
⎩ ∆φ − φ + wφ + σwφ = λφ

Re (σ) ≤ 0, φ ∈ H1(R2), λ �= 0.

Then

Re (λ) ≤ −c0 < 0.

Proof: For (1) and (2) please see Lemma 4.1 of [43].

(3) follows by the variational characterization of the eigenvalues:

−λ1 = inf
φ∈H1(R2),φ�≡0

∫
R2 |∇φ|2 + φ2 − (1 + µR)wφ2∫

R2 φ2
< 0

since by the last inequality for φ = w

−µR

∫
R2 w3∫
R2 w2

< 0.

To prove (4) note that

σ = σR + iσI , φ = φR + iφI , λ = λR + iλI

and write the eigenvalue problem for real and imaginary parts separately:

∆φR − φR + (1 + σR)wφR − σIwφI = λRφR − λIφI , (3.1)

∆φR − φI + (1 + σR)wφI + σIwφR = λRφI + λIφR. (3.2)

Multiplying (3.1) by φR, (3.2) by φI , integrating over R2, and adding up, we

get∫
R2

[−|∇φR|2 − φ2
R + (1 + σR)wφ2

R] +
∫

R2
[−|∇φI |2 − φ2

I + (1 + σR)wφ2
I ]

= λR

∫
R2

φ2
R + φ2

I .

Since in the last equation l.h.s.≤ 0 we also get r.h.s.≤ 0. Therefore λR ≤ 0.

Now assume that λR = 0. Then by (2) we get φR = c1w, φI = c2w (with
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c1, c2 ∈ R) and σR = 0. But this implies λI = 0, σI = 0 and we get λ = 0,

contrary to what we assumed. Therefore λR can not be zero and we conclude

Re λ ≤ −c0 < 0.

�
By a perturbation to (3), (4) of Lemma 3.1 we immediately get the fol-

lowing.

Lemma 3.2. Let φ (complex-valued) satisfy the following eigenvalue problem⎧⎨
⎩ ∆φ − φ + wφ + σwφ = λφ

σ = σR + iσI = Reiθ, φ ∈ H1(R2).

Then

(1) If

θ ∈
(

π

2
− θR

s ,
3π

2
+ θR

s

)
,

then

Re (λ) ≤ −c0 < 0.

(2) If

θ ∈ (−θR
us, θ

R
us),

for some θR
us > 0, then there exists an eigenvalue λ with Re (λ) > 0.

Proof: Since it is a straightforward perturbation we omit it. �
Remarks: (1) We do not know if θR

s = θR
us.

(2) It is an interesting and difficult problem to obtain the optimal values

for θR
s and θR

us.

(3) By a continuity argument there is a θ = θR
h such that we have a Hopf

bifurcation at θR
h .

Next we study a nonlocal eigenvalue problem.

Lemma 3.3. Consider the following eigenvalue problem

∆yφ − φ + (1 + γ)wφ − µ

∫
R2 wφdy∫
R2 w2 dy

w2 = λ0φ, φ ∈ H2(R2).
(3.3)

(1) Suppose that 0 < γ ≤ 1, µ > 1 +
√

1 − γ. Let λ0 �= 0 be an eigenvalue

of (3.3). Then we have Re(λ0) ≤ −c1 for some c1 > 0.
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(2) Suppose that µ < γ, then problem (3.3) admits a real eigenvalue λ0

with λ0 ≥ c2 > 0 for some c2 > 0.

Proof:

(1). When γ = 1, this has been proved in Theorem 2.1 of [49]. For

0 < γ < 1, we proceed by the same proof. The key is to use the following

inequality (Lemma 2.3 of [49]): there exists a positive constant a1 > 0 such

that

L1(φ, φ)

:=
∫

R2
(|∇φ|2 + φ2 − 2wφ2) +

2
∫
R2 wφ

∫
R2 w2φ∫

R2 w2
−

∫
R2 w3

(
∫
R2 w2)2

(
∫

R2
wφ)2

≥ a1d
2
L2(R2)(φ,X1) (3.4)

for all φ ∈ H1(R2), where X1 := span {w, ∂w
∂yj

|j = 1, ..., N} and dL2(R2) means

the distance in L2-norm.

Suppose that (α0, φ) satisfies (3.3) and α0 �= 0. Let α0 = αR + iαI and

φ = φR + iφI . Since α0 �= 0, we can choose φ ⊥ Ker (L0). Then we obtain

two equations

L0φR + (γ − 1)wφR − µ

∫
R2 wφR∫
R2 w2

w2 = αRφR − αIφI , (3.5)

L0φI + (γ − 1)wφI − µ

∫
R2 wφI∫
R2 w2

w2 = αRφI + αIφR. (3.6)

Multiplying (3.5) by φR, (3.6) by φI , integrating over R2, and adding

together, we obtain

−αR

∫
R2

(φ2
R + φ2

I)

= L1(φR, φR) + L1(φI , φI) + (1 − γ)
∫

R2
(wφ2

R + wφ2
I)

+(µ − 2)

∫
R2 wφR

∫
R2 w2φR +

∫
R2 wφI

∫
R2 w2φI∫

R2 w2

+

∫
R2 w3

(
∫
R2 w2)2

[(
∫

R2
wφR)2 + (

∫
R2

wφI)
2]

Multiplying (3.5) by w, (3.6) by w, and integrating over R2 we obtain

γ
∫

R2
w2φR − µ

∫
R2 wφR∫
R2 w2

∫
R2

w3 = αR

∫
R2

wφR − αI

∫
R2

wφI ,
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γ
∫

R2
w2φI − µ

∫
R2 wφI∫
R2 w2

∫
R2

w3 = αR

∫
R2

wφI + αI

∫
R2

wφR.

Hence we have

γ
∫

R2
wφR

∫
R2

w2φR + γ
∫

R2
wφI

∫
R2

w2φI

= (αR + µ

∫
R2 w3∫
R2 w2

)((
∫

R2
wφR)2 + (

∫
2
wφI)

2).

Therefore we get

−αR

∫
R2

(φ2
R + φ2

I)

= L1(φR, φR) + L1(φI , φI) + (1 − γ)
∫

R2
(wφ2

R + wφ2
I)

+(µ − 2)(
1

γ
αR +

µ

γ

∫
R2 w3∫
R2 w2

)
(
∫
R2 wφR)2 + (

∫
R2 wφI)

2∫
R2 w2

+

∫
R2 w3

(
∫
R2 w2)2

[(
∫

R2
wφR)2 + (

∫
R2

wφI)
2].

Set

φR = cRw + φ⊥
R, φ⊥

R ⊥ X1,

φI = cIw + φ⊥
I , φ⊥

I ⊥ X1.

Then ∫
R2

wφR = cR

∫
R2

w2,
∫

R2
wφI = cI

∫
R2

w2,

d2
L2(R2)(φR, X1) = ‖φ⊥

R‖2
L2 , d2

L2(R2)(φI , X1) = ‖φ⊥
I ‖2

L2 .

By some simple computations we have

L1(φR, φR) + L1(φI , φI) + (1 − γ)
∫

R2
(wφ2

R + wφ2
I)

+(
µ − 2

γ
+ 1)αR(c2

R + c2
I)

∫
R2

w2 + (
µ2 − 2µ + γ

γ
)(c2

R + c2
I)

∫
R2

w3

+αR(‖φ⊥
R‖2

L2 + ‖φ⊥
I ‖2

L2) = 0.

Note that since µ > 1 +
√

1 − γ, we have

µ − 2

γ
+ 1 > 0, µ2 − 2µ + γ > 0.

Hence by (3.4), we must get

αR ≤ −c1 < 0

for some c1 > 0.

This proves (1) of Lemma 3.3.
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(2). Assume that µ < γ. Let

Lγ−1 = L0 + (γ − 1)w = ∆ − 1 + (1 + γ)w.

By Lemma 3.1 (3), Lγ−1 has a positive eigenvalue aγ > 0. Consider the

following function

h(α) =
∫

R2
((Lγ−1 − α)−1w)w.

It is easy to see that

h
′
(α) > 0, lim

α→aγ
h(α) = +∞.

Hence there must exist an α0 > 0 such that

(
γ

µ
− 1)

∫
R2

w2 − α0

∫
R2

((Lγ−1 − α0)
−1w)w = 0.

It is easy to see that this α0 > 0 is an eigenvalue of (3.3).

�

4. Reduction to NLEP

Let (Xε,Mε) be one of the two solutions constructed in Section 1. We now

study the eigenvalue problem associated with (Xε,Mε). We assume that

1

log 1
ε

<< L <
1

4
.

We need to analyze the following eigenvalue problem (letting x = εy)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆yφε,i − φε,i + AM
∑N

j=1 kij(Xjφε,i + φε,jXi)

+Aψε
∑N

j=1 kijXiXj = λεφε,i, y ∈ R2,

∆ψε − ψε − ψε
∑N

i,j=1 kijXiXj

−M
∑N

i,j=1 kij(Xjφε,i + Xiφε,j) = τλεψε, x ∈ R2,

λε ∈ C.

(4.1)

We assume that (φε,1, ..., φε,N , ψε) ∈ (H2(R2))N ⊕ H2(R2). Here we equip

(H2(R2))N ⊕ H2(R2) with the following norm

‖(X, u)‖2
(H2(R2))N⊕H2(R2) = ‖X(y)‖2

(H2(R2))N + ‖u(x)‖2
H2(R2).
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Since Xi = ζ̂iX0, problem (4.1) becomes⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∆yφε,i − φε,i + AMX0
∑N

j=1 kij(ζ̂iφε,j + ζ̂jφε,i)

+Aψεζ̂iX
2
0 = λεφε,i,

∆ψε − ψε − ψε
∑N

j=1 ζ̂jX
2
0

−M
∑N

i,j=1 kij(ζ̂iφε,j + ζ̂jφε,i)X0 = τλεψε.

(4.2)

Let us first formally derive the limiting eigenvalue problems.

Since (X0,M) satisfies (1.11), we have

X0(y) ∼ (AM(0))−1(1 + o(1))w(y). (4.3)

and

M(0)(1 − M(0)) ∼ L :=
ζ̂

2πA2
ε2 log

(
1

ε

) ∫
R2

w(y)2dy. (4.4)

The eigenvalue problem is changed into⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∆yφε,i − φε,i +
∑N

j=1 kij(ζ̂iwφε,j + ζ̂jwφε,i)

+ 1
AM(0)2

ψεζ̂iw
2 = λεφε,i,

∆ψε − ψε − ψε

A2M(0)2
∑N

i=1 ζ̂iw
2

− M
AM(0)

∑N
i,j=1 kij(ζ̂iwφε,j + ζ̂jwφε,i) = τλεψε.

(4.5)

From the equation for ψε, we formally have

ψε(0) ∼ − ψε(0)

A2M(0)2

ε2 log 1
ε

2π

∫
R2

ζ̂w2

− M(0)

AM(0)

ε2 log 1
ε

2π

N∑
i,j=1

kij

∫
R2

(ζ̂iwφε,j + ζ̂jwφε,i).

This implies

ψε(0) ∼ − A−1

1 + (AM(0))−2ζ̂
ε2 log 1

ε

2π

∫
R2 w2

ε2 log 1
ε

2π

N∑
i,j=1

kij

∫
R2

(ζ̂iwφε,j + ζ̂jwφε,i).

By (4.4), we have

ψε(0) ∼ −M(0)A−1 ε2 log 1
ε

2π

N∑
i,j=1

kij

∫
R2

(ζ̂iwφε,j + ζ̂jwφε,i).

Substituting this relation into the equation for φε, we obtain the following

nonlocal eigenvalue problem:

∆φε,i − φε,i + wφε,i +
N∑

j=1

kij ζ̂iφε,jw (4.6)



HYPERCYCLICAL REACTION-DIFFUSION SYSTEM 19

−M(0)(AM(0))−2ζ̂i

ε2 log 1
ε

2π

∫
R2(

∑N
i,j=1 kij(ζ̂iwφε,j + ζ̂jwφε,i)∫

R2 w2
w2 = λεφε,i.

By (4.4), we have

M(0)(AM(0))−2ζ̂i

ε2 log 1
ε

2π
=

(1 − M(0))ζ̂i

ζ̂
∫
R2 w2

Set

lim
ε→0

(1 − M(0))
ζ̂i

ζ̂
= (1 − η)

ζ̂i

ζ̂
:= Λi

and

lim
ε→0

φε,i := φi, i = 1, ..., N.

Then we obtain the following nonlocal eigenvalue problem (NLEP)

∆φi − φi + wφi + w
N∑

j=1

kij ζ̂iφj (4.7)

−Λi

∫
R2(

∑N
i,j=1 kij(ζ̂iwφj + ζ̂jwφi)∫

R2 w2
w2 = λ0φi, i = 1, ..., N,

where

λ0 = lim
ε→0

λε.

In fact, we can rigorously prove the following separation of eigenvalues.

Theorem 4.1. Let λε be an eigenvalue of (4.2).

(1) Suppose that λε → 0 as ε → 0. Then we have λε = 0 if ε is small

enough and

(φε, ψε) ∈ span {(∂y1Xε, ∂y1Mε), (∂y2Xε, ∂y2Mε)}.
(2) Suppose that λε → λ0 �= 0. Then λ0 is an eigenvalue of NLEP (4.7).

Proof:

(1). If λε → 0, we can proceed exactly as in Section 4 of [49]. Let

us denote the linear operator on the left hand side of (4.7) as L, where

L : H2(R2) → L2(R2). The key point is to prove the following lemma:

Lemma 4.2. (1). Let φ be an eigenfunction of (4.7) with λ0 = 0. Then we

have

φ ∈ K0 := span {∂y1w�e0, ∂y2w�e0},
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where �e0 = (1, . . . , 1)τ . (This implies that Ker (L) = K0.)

(2). The operator L is an invertible operator if restricted as follows

L : K⊥,1
0 → K⊥,2

0 ,

where

K⊥,1
0 = {u ∈ (H2(R2))N |

∫
R2

u∂yi
w�e0 = 0, i = 1, 2},

K⊥,2
0 = {u ∈ (L2(R2))N |

∫
R2

u∂yi
w�e0 = 0, i = 1, 2}.

Proof: (1). Recall that L0 = ∆ − 1 + 2w. It is easy to check that

∂y1w�e0, ∂y2w�e0 ∈ Ker (L). All we need to show is that the dimension of

Ker (L) is at most 2. To this end, let φ ∈ Ker (L). We first show that

the nonlocal term vanishes. In fact, summing all the equations together, we

obtain

∆(
N∑

j=1

φj)− (
N∑

j=1

φj)+ (1+ γ)w(
N∑

j=1

φj)− (1+ γ)(1− η)

∫
R2 w(

∑N
j=1 φj)∫

R2 w2
w2 = 0.

That is

∆(
N∑

j=1

φj − cw) − (
N∑

j=1

φj − cw) + (1 + γ)w(
N∑

j=1

φj − cw) = 0,
(4.8)

where

c =
1

γ
(1 + γ)(1 − η)

∫
R2 w(

∑N
j=1 φj)∫

R2 w2
.

By assumption (H2), either γ = 1 or γ �= µ3, µ4, . . . . So we have either

N∑
j=1

φj − cw ∈ Ker (L0)

or
N∑

j=1

φj − cw = 0.

In any case, we have ∫
R2

(
N∑

j=1

φj − cw) = 0.

Putting this into (4.8) we get

∫
R2

w
N∑

j=1

φj = 0,
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since
1

γ
(1 + γ)(1 − η) �= 1.

Thus the nonlocal term vanishes and we obtain the following system of

equations

∆φi − φi + wφi +
N∑

j=1

bijwφj = 0, i = 1, ..., N.

Decompose

bij =
N∑

k,l=1

pikdklp
−1
lj ,

where dkl has Jordan form (i.e., it is composed of Jordan blocks⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 1 0 · · · 0

0 σ 1 · · · 0

0 0 σ · · · ...
...

...
...

... 1

0 0 0 · · · σ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

)

and
∑N

k=1 pikp
−1
kj = δij. Set

Φi =
N∑

j=1

p−1
ij φj.

Then the operator L can be expressed in terms of Φ as follows:

∆Φi − Φi + wΦi +
N∑

j=1

dijΦjw = 0.

If 1 + σ �∈ spec (EVP) (recall that (EVP) was defined in Lemma 3.1 (2))

then by the last line of the corresponding Jordan block we get Φi = 0 using

Lemma 3.1. Using this in the previous line we get Φi−1 = 0, etc. This implies

all components of Φ corresponding to the Jordan block vanish.

If σ = 1 then by Lemma 3.1 we get Φi ∈ span
{

∂w
∂yj

∣∣∣ j = 1, . . . , N
}

.

However the (i − 1)-th line gives

L0Φi−1 + Φi = 0,

which is impossible since Ker (L0) = Coker (L0).
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Thus Φi = 0. Going backwards with respect to the lines of the Jordan

block, we see that

Φi = Φi−1 = ... = Φ2 = 0, L0Φ1 = 0

Thus we have Φ1 ∈ Ker (L0).

In conclusion, we have proved that except for one i ∈ {1, . . . , N}, where

Φi ∈ Ker (L0), for all other i ∈ {1, . . . , N}, Φi = 0. This implies that the

dimension of L is at most 2.

This finishes the proof of (1).

(2). To show that L is invertible from K⊥,1
0 → K⊥,2

0 , we just need to show

that the conjugate operator of L – denoted by L∗ – has the kernel K0. In

fact, let φ ∈ ker(L∗). Then we have

∆φi − φi + wφi + w
N∑

j=1

kjiζ̂jφj

−
∫
R2 w2 ∑N

i=1 Λiφi(1 +
∑N

j=1 kjiζ̂j)∫
R2 w2

w = 0, i = 1, ..., N.

Recall that

Λi =
(1 − η)ζ̂i

ζ̂
.

Let

ζ̂iφi = φ̂i.

By assumption (H1) we have

∆φ̂i − φ̂i + wφ̂i + w
N∑

j=1

kjiζ̂iφ̂j

−ζ̂i

∫
R2(1 − η)w2 ∑N

i=1 φ̂i(1 + γ)

ζ̂
∫
R2 w2

w = 0, i = 1, ..., N.

Summing all the equation together, we have

∆
N∑

i=1

φ̂i −
N∑

i=1

φ̂i + 2w
N∑

i=1

φ̂i − (1 − η)(1 + γ)

∫
R2 w2 ∑N

i=1 φ̂i∫
R2 w2

w = 0.
(4.9)

Multiplying (4.9) by w and then integrating over R2, we obtain

(1 − (1 − η)(1 + γ))
∫

R2
w2

N∑
i=1

φ̂i = 0
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By the assumption (H3) or (H4), (1 − η)(1 + γ) �= 1, and

∫
R2

w2
N∑

i=1

φ̂i = 0.

That is the nonlocal term vanishes. The rest of the proof of Theorem 4.1 is

similar to (1) since spec B) = spec (Bτ ).

�
The rest of the proof is exactly the same as in Section 4 of [49]. For the

sake of limited space, we omit the details here. However, we shall sketch it

in the appendix.

5. Analysis of NLEP

In this section we analyze the nonlinear eigenvalue problem (NLEP) which

we have obtained in Section 4. We will discuss the case of Xs
ε ,M

s
ε in detail

and prove stability in certain situations. Modifying the argument it can

easily be seen that the solution X l
ε,M

l
ε is always unstable.

By Lemma 3.1, it is enough to exclude the eigenvalues of (4.7) with

Re (λ0) ≥ 0 and λ0 �= 0.

We first take care of the nonlocal terms.

Adding these equation for i = 1, . . . , N , we get

∆(
N∑

i=1

φi) − (
N∑

i=1

φi) + (1 + γ)w(
N∑

i=1

φi)

−(1 + γ)(1 − η)

∫
R2(

∑N
i=1 φiw)∫

R2 w2
w2 = λ0φi.

Since (1 + γ)(1 − η) > 1 +
√

1 − γ by Lemma 3.3 we have

N∑
i=1

φi = 0 if Re (λ0) ≥ 0. (5.1)

Therefore the nonlocal terms in (NLEP) all vanish. We end up with the

following:

∆φi − φi + wφi +
N∑

j=1

bijφjw = λ0φi. (5.2)
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To finish the proof we have to transform this to Jordan form. We will see

that the stability of (NLEP) can be expressed in terms of the eigenvalues of

B.

Decompose

bij =
N∑

k,l=1

pikdklp
−1
lj ,

where dkl has Jordan form (i.e., it is composed of Jordan blocks⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 1 0 · · · 0

0 σ 1 · · · 0

0 0 σ · · · ...
...

...
...

... 1

0 0 0 · · · σ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

)

and
∑N

k=1 pikp
−1
kj = δij. Set

Φi =
N∑

j=1

p−1
ij φj.

Then (NLEP) can be expressed in terms of Φ as follows:

∆Φi − Φi + wΦi +
N∑

j=1

dijΦj
ζ̂

N
w = λ0Φi.

We have the following theorem.

Theorem 5.1. (1) Assume that σ = 1 is a simple eigenvalue of bij and that

all other eigenvalues σ of bij satisfy Re σ ≤ 0. Then (NLEP) is stable.

(2) Assume that the eigenvalue σ = 1 of bij is not simple or there exists

σ > 0 with σ �= 1. Then (NLEP) is unstable.

Proof. We have to study the eigenvalue problems for each Jordan block.

For stability our argument basically is as follows: Suppose that λ0 is an

eigenvalue with Re (λ0) ≥ 0. Then for the corresponding components of

the eigenfunction Φ we conclude that they vanish. This is a contradiction.

Therefore λ0 can not be an eigenvalue.

Assume that σ with Re σ ≤ 0 is a simple eigenvalue of B. Suppose that

the corresponding i-th component Φi of the eigenfunction satisfies

∆Φi − Φi + (1 + σ)wΦi = λ0Φi (5.3)
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with Re (λ0) ≥ 0. Then from Lemma 3.1 we know that Φ = 0. This is a

contradiction. Therefore Re (λ0) ≤ −c0 < 0. We have stability. We argue

in the same way if σ with Re (σ) ≤ 0 has multiplicity bigger than 1 and

is semi-simple. Suppose now that the multiplicity of the eigenvalue σ with

Re(σ) ≤ 0 of B is larger than 1 and it is not semi-simple. Then we end up

with the Jordan block ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 1 0 · · · 0

0 σ 1 · · · 0

0 0 σ · · · ...
...

...
...

... 1

0 0 0 · · · σ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalue problem corresponding to the last line is (dropping the index

of the eigenfunction)

∆Φi − Φi + (1 + σ)wΦi = λ0Φi.

But from Lemma 3.1 we know that Φi = 0.

Putting this into the (i−1)-th equation we get (for the eigenfunction Φi−1)

∆Φi − Φi + (1 + σ)wΦi−1 = λ0Φi−1 (5.4)

and we conclude Φi−1 = 0. Continuing in the same way we see that those

components of Φ corresponding to the Jordan block of σ all vanish. Finally

we have shown for the corresponding components that they are all zero.

Therefore Re λ0 ≥ 0 is not possible for Re σ ≤ 0. We must have Re

λ0 ≤ −c0 < 0. We get stability of (NLEP).

By assumption we know that σ = 1 is an eigenvalue of B with eigenvector

�e0. After transformation (5.3) has an eigenvalue λ0 = 1 with corresponding

eigenfunction Φi = w. However, condition (5.1) is equivalent to Φi = 0. This

excludes the eigenfunction w. If σ = 1 is a simple eigenvalue we get stability

of (NLEP).

If σ = 1 is a multiple eigenvalue we get from (5.4) Φi−1 = w with corre-

sponding eigenvalue λ0 = 1 and (NLEP) becomes unstable. To summarize,

if σ = 1 is a simple eigenvalue of bij we have stability of (NLEP). However,
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if the multiplicity of σ = 1 is strictly greater than 1, then (NLEP) becomes

unstable.

(2) If σ > 0 with σ �= 1 is an eigenvalue of bij then by Lemma 3.1 (3) the

eigenvalue problem

∆Φi − Φi + (1 + σ)wΦi = λ0Φi

admits a positive real eigenvalue. This results in instability of (NLEP).

Theorem 5.1 is proved. �

6. The Appendix: Proof of Theorem 4.1

In this appendix, we shall give a proof of Theorem 4.1 (1) by using Lemma

4.2. This is similar to Section 4 of [50]. We shall give a sketch.

The purpose of this section is to study the small eigenvalues of (4.2):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∆yφε,i − φε,i + AMX0
∑N

j=1 kij(ζ̂iφε,j + ζ̂jφε,i)

+Aψεζ̂iX
2
0 = λεφε,i,

∆ψε − ψε − ψε
∑N

j=1 ζ̂jX
2
0

−M
∑N

i,j=1 kij(ζ̂iφε,j + ζ̂jφε,i)X0 = τλεψε.

Assume that λε → 0. Moreover, we consider (X,M) = (Xs,M s) only. It

is easy to see that (Φl
i, Ψ

l) := Aη(ζ̂i
∂X0

∂xl
, ∂M

∂xl
), i = 1, . . . , N, l = 1, 2 are

solutions of (4.2) with λε = 0. We also denote this solution by (Φl, Ψl). Since

X0,M are radially symmetric functions, we have that (Φ1, Ψ1) ⊥ (Φ2, Ψ2) in

(L2(R2))N ⊕ L2(R2). Here we equip (L2(R2))N ⊕ L2(R2) with the following

inner product

< (X1,M1), (X2,M2) >= ε−2
∫

R2

N∑
i=1

(X1)i(X2)i dx +
∫

R2
M1M2 dx.

We denote

‖(X,M)‖2 =< (X,M), (X,M) > .

Again we let x = εy. The proof of Theorem 4.1 (1) consists of the following

steps:

Step 1: We first decompose (φε, ψε) as follows

φl
ε,i = a1εAηζ̂i

∂X0

∂x1

+ a2εAηζ̂i
∂X0

∂x2

+ φ⊥
ε,i, (6.1)
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ψε = a1εAη
∂M

∂x1

+ a2εAη
∂M

∂x2

+ ψ⊥
ε , (6.2)

where (φ⊥
ε , ψ⊥

ε ) = ((φi
ε)

⊥, ψ⊥
ε ) ⊥ span {(Φ1, Ψ1), (Φ2, Ψ2)}. We assume that

‖(φε, ψε)‖ = 1. (6.3)

Since Ψl satisfies

∆Ψl − Ψl − 1
A2η2 Ψ

l ∑N
j=1 ζ̂jX

2
0

− 2
Aη

M
∑N

j=1 ζ̂jX0Φ
l
j = 0, l = 1, 2,

(6.4)

we have

|Ψl| = O(Aη
1

ε log 1
ε

). (6.5)

Estimate (6.5) implies∫
R2

(Aηε
∂M

∂xl

)2 dx = O(A2η2 1

(log 1
ε
)2

) = O(ε2), (6.6)

since

A2 = O(
ε2 log 1

ε

η
).

By (6.6) and the fact that ε∂X0

∂xl
= ∂w

∂yl
+ o(1), l = 1, 2, in H1(R2), we obtain

that

‖εΦ1
i ‖2 = (ζ̂i)

2
∫

R2

(
∂w

∂y1

)2

dy + o(1),

‖εΦ2
i ‖2 = (ζ̂i)

2
∫

R2

(
∂w

∂y2

)2

dy + o(1).

This implies

a1 = O(1), a2 = O(1); ‖(φ⊥
ε , ψ⊥

ε )‖ = O(1).

Step 2: We now estimate ψε. We calculate

ψε(0) = −
(

ε2

A2η2
(log

1

ε
)ψε(0)

N∑
j=1

ζ̂j

∫
R2

X0(εy)2 dy

− ε2

Aη
(log

1

ε
)η

N∑
i,j=1

kij

∫
R2

(ζ̂iφε,j + ζ̂jφε,i)X0(εy) dy
)
(1 + O(

1

log 1
ε

)) + o(‖φε‖2).

This implies

1

Aη2
ψε(0) = −(1 − M(0))

∑N
i,j=1 kij

∫
R2(ζ̂iφε,j + ζ̂jφε,i)X0(εy) dy

Aη
∑N

j=1 ζ̂j

∫
R2 X0(εy)2 dy
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×(1 + O(
1

log 1
ε

)) + o(‖φε‖L2
y
)

= −(1 − M(0))
∑N

i,j=1 kij

∫
R2(ζ̂iφ

⊥
ε,j + ζ̂jφ

⊥
ε,i)X0(εy) dy

Aη
∑N

j=1 ζ̂j

∫
R2 X0(εy)2 dy

×(1 + O(
1

log 1
ε

) + o(‖φε‖L2
y
)

= O(‖φ⊥
ε ‖L2

y
) + o(‖φε‖L2

y
)

and

1

Aη2
(ψε(x) − ψε(0)) = O(

1

η log 1
ε

‖Φε‖L2
y
log(1 +

|x|
ε

)). (6.7)

Step 3: From (4.5) we see that the equation for (φ⊥
ε , ψ⊥

ε ) is⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∆yφ
⊥
ε,i − φ⊥

ε,i +
∑N

j=1 kij(ζ̂iwφ⊥
ε,j + ζ̂jwφ⊥

ε,i)

+ 1
AM(0)2

ψ⊥
ε ζ̂iw

2 = λεφ
⊥
ε,i + λε(a1εAηζ̂i

∂X0

∂x1
+ a2εAηζ̂i

∂X0

∂x2
),

∆ψ⊥
ε − ψ⊥

ε − ψ⊥
ε

A2M(0)2
∑N

i=1 ζ̂iw
2 − M

AM(0)

∑N
i,j=1 kij(ζ̂iwφ⊥

ε,j + ζ̂jwφ⊥
ε,i)

= τλεψ
⊥
ε + τλε(a1εAη ∂M

∂x1
+ a2εAη ∂M

∂x2
).

Now we study the equation for ψ⊥
ε . By the representation formula,

ψ⊥
ε (x) = −ε2 1

A2η2

∫
R2

Kβ(|x − εy|)ψ⊥
ε

N∑
i=1

ζ̂iw
2

−ε2 1

Aη
M(0)

∫
R2

Kβ(|x − εy|)
N∑

i,j=1

kij(ζ̂iwφ⊥
ε,j + ζ̂jwφ⊥

ε,i)

−τλε

∫
R2

Kβ(|x − z|)(a1εAη
∂M

∂x1

+ a2εAη
∂M

∂x2

) dz

= −E1(x) − E2(x) − E3(x),

where Kβ(|x − z|) = K(β|x − z|) is the fundamental solution of −∆ + β2

in R2, β2 = 1 + τλε = 1 + o(ε), and Ei, i = 1, 2, 3, are defined by the last

equality.

We now estimate each of these terms. First,

E1(0) = −ε2 log
1

ε

1

A2η2
ψ⊥

ε (0)
N∑

i=1

ζ̂i

∫
R2

w2 dy

= −1 − η

η
ψ⊥

ε (0).
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Furthermore, we have

E1(x) − E1(0) = O(
1

η log 1
ε

ψ⊥
ε (0) log(1 + |y|)).

Here we have used the lemma

Lemma 6.1. Let g(y) be a function in L2(R2) such that

|g(y)| ≤ Ce−a|y|.

Then we have

|
∫

R2
log

|y − z̄|
|z̄| g(z̄)|dz̄| ≤ C log(1 + |y|).

Proof: This follows from standard potential analysis. See e.g., [6]. �
For E2, we have

E2(0) = Aη(1 − η)

∫
R2

∑N
i,j=1 kij(ζ̂iwφ⊥

ε,j + ζ̂jwφ⊥
ε,i)

ζ̂
∫
R2 w2 dy,

E2(x) − E2(0) = O(Aη
1

log 1
ε

‖φ⊥
ε ‖L2 log(1 +

|x|
ε

)).

E3 can be estimated as follows: E3 satisfies the equation

∆E3 − β2E3 = τλε(a1εAη
∂M

∂x1

+ a2εAη
∂M

∂x2

)

in R2. Hence,

|E3| ≤ |τλεβ
−2||a1εAη

∂M

∂x1

+ a2εAη
∂M

∂x2

|L∞

= O(|λε|Aη
1

log 1
ε

(|a1| + |a2|)) (by (6.5)).

Combining the estimates for Ei, i = 1, 2, 3, we have

ψ⊥
ε (0) = Aη22(1 − η)(1 + o(1))

∫
R2

∑N
i,j=1 kij(ζ̂iwφ⊥

ε,j + ζ̂jwφ⊥
ε,i)

ζ̂
∫
R2 w2 dy (6.8)

and
1

Aη2
(ψ⊥

ε (x) − ψ⊥
ε (0)) = O(η

1

log 1
ε

‖φ⊥
ε ‖L2

y
log(1 +

|x|
ε

))

+O(η
1

log 1
ε

(|a1| + |a2|)).
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Substituting this into the equation for φ⊥
ε,i, we get

∆yφ
⊥
ε,i−φ⊥

ε,i+
N∑

j=1

kij(ζ̂iwφ⊥
ε,j + ζ̂jwφ⊥

ε,i)−µ̃

∫
R2

∑N
i,j=1 kij(ζ̂iwφ⊥

ε,j + ζ̂jwφ⊥
ε,i)

ζ̂
∫
R2 w2 dy

ζ̂iw
2

+o(‖φ⊥
ε ‖2)

= λεφ
⊥
ε,i + λε(a1εAηζ̂i

∂X0

∂x1

+ a2εAηζ̂i
∂X0

∂x2

)

+O

(
η

1

log 1
ε

‖φ⊥
ε ‖L2

y
log(1 +

|x|
ε

) + η
1

log 1
ε

(|a1| + |a2|)
)

w2,

where

µ̃ = (1 − η + o(1)).

By our assumption

ε−2
N∑

i=1

∫
R2

φ⊥
ε,iAη

∂X0

∂xl

dx +
∫

R2
ψ⊥

ε Aη
∂M

∂xl

dx = 0, l = 1, 2,

which implies that that∫
R2

φ⊥
ε,i(εy)

∂w

∂yl

→ 0, l = 1, 2.

Therefore we get the following equation for φ⊥
ε,i:

L̃µ̃,iφ
⊥
ε,i(εy) = λεφ

⊥
ε,i + λε(a1εAηζ̂i

∂X0

∂x1

+ a2εAηζ̂i
∂X0

∂x2

) (6.9)

+O(η
1

log 1
ε

‖φ⊥
ε ‖L2

y
log(1 +

|x|
ε

) + η
1

log 1
ε

(|a1| + |a2|))w2,

where

L̃µ̃,iφ = ∆yφ−φ+
N∑

j=1

kij(ζ̂iwφj + ζ̂jwφi)−µ̃

∫
R2

∑N
i,j=1 kij(ζ̂iwφj + ζ̂jwφi)

ζ̂
∫
R2 w2 dy

ζ̂iw
2

and ∫
R2

φ⊥
ε,i(εy)

∂w

∂yl

= o(1), l = 1, 2. (6.10)

Note that the linear operator on the left hand side of (6.9) is asymptoti-

cally close to the limit linear operator L in (4.7). Furthermore, from (6.10)

we know that φ⊥
ε,i is almost perpendicular to Ker (L). By a perturbation

argument similar to Lyapunov-Schmidt reduction (compare Lemma 4.2 of
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[50]), which is based on Lemma 4.2 of the present paper, we can invert the

equation (6.9) to get

‖φ⊥
ε ‖H2(R2) ≤ C‖πε ◦ L̃µ̃φ

⊥
ε ‖L2

y

= O(η
1

log 1
ε

(‖φ⊥
ε ‖L2

y
+ |a1| + |a2|)),

where πε is the projection of L2 onto (span{ε∂X0

∂x1
, ε∂X0

∂x2
})⊥ (componentwise).

This implies

‖φ⊥
ε ‖H2(R2) = O(η

1

log 1
ε

(|a1| + |a2|)). (6.11)

From (6.8) and (6.11), we get

1

Aη2
|ψ⊥

ε (x)| = O(η
1

log 1
ε

(|a1| + |a2|)). (6.12)

Step 4: Multiplying the equation for φ⊥
ε,i by ∂X0

∂x1
and integrating over R2,

we have

λεζ̂i(
∫

R2
a1εAη(

∂X0

∂x1

)2 dx) + λε

∫
R2

φ⊥
ε,i

∂X0

∂x1

dx (6.13)

=
∫

R2

∂X0

∂x1

[ε2∆xφ
⊥
ε,i −φ⊥

ε,i +
1

Aη2
ψ⊥

ε ζ̂iw
2 +

N∑
j=1

kij(ζ̂iwφε,j + ζ̂jwφε,i)] dx+ o(1).

The left hand side of (6.13) is

l.h.s. = ελεζ̂i(
∫

R2
a1(

∂w

∂y1

)2 dy + o(a1)) + O(ελε(|a1| + |a2|) 1

η log 1
ε

).

The right hand side of (6.13) is

r.h.s. =
∫

R2
[
∂X0

∂x1

1

Aη2
ψ⊥

ε ζ̂iw
2 − φ⊥

ε,i

1

η

∂M

∂x1

ζ̂iw
2] dy

= O(ε(|a1| + |a2|) 1

η log 1
ε

)

(by (6.12), (6.11), (6.5)).

Hence, from (6.13) we obtain

λε|a1| ≤ O((|a1| + |a2|) 1

η log 1
ε

). (6.14)

In the same way, we have

λε|a2| ≤ O((|a1| + |a2|) 1

η log 1
ε

). (6.15)
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From (6.14) and (6.15), we get

λε(|a1| + |a2|) ≤ O(
1

η log 1
ε

(|a1| + |a2|)|). (6.16)

Now (6.16) implies that

λε(|a1| + |a2|) = 0

if ε is small enough. Thus (6.12) and (6.11) give

φ⊥
ε ≡ 0, ψ⊥

ε ≡ 0.

In conclusion, we have

λε = 0, (φε, ψε) ∈ span{(Φ1, Ψ1), (Φ2, Ψ2)}.
The proof of Theorem 4.1 (1) is now completed.

The proof of Theorem 4.1 (2) uses very similar estimates and is omitted.

�

7. Discussion

We have studied a general system of N +1 equations describing the inter-

action of N polymer species which catalyse each other in a cyclic way and

are all composed of the same type of monomer. In the special case N = 1

the system reduces to the well-known Gray-Scott system.

Although there have rigorous been results in 1-D and formal results in 2-D

on existence and stability of concentrated solutions these are first rigorous

results in 2-D. We study the case of single-cluster solutions in the whole 2-D

space. These are in some sense the simplest concentrated solutions in 2-D.

This case appears to be relevant if the early biochemical reactions take place

in very thin layers for example on the surface of rocks.

At this point we would like to summarize the various conditions we put

on the coupling matrix K. We start with the elementary hypercycle which is

given explicitly on page 2. The assumptions for the existence result (Theorem

1.1) are more general: We merely assume that K is invertible and positive in

some sense given in equation (1.6). This condition determines the relative

concentration of different polymers uniquely. Thus the system reduces to a

system of just two equations and existence follows by existence results on the
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Gray-Scott system. The existence result gives two types of solutions: Large

ones and small ones.

Regarding stability the story is not so easy: The problem is truly (N +1)-

dimensional. Stability of solutions is determined by the spectrum of certain

nonlocal eigenvalue problems in N variables which essentially depends on the

spectrum of the matrix K. These nonlocal eigenvalue problems are derived in

Section 4 (with some technicalities postponed to Section 6, The Appendix)

and analyzed in Section 5 (with the help of a few lemmas which are proved in

Section 3). To make any treatment possible the additional conditions (H1)

– (H4) on the matrix K and the closely related matrix B are assumed. Inter-

estingly enough for the hypercyclical system the conditions (H1) – (H4) are

satisfied. The same is true for (cyclical) bidiagonal and tridiagonal matrices

B (see Section 2).

Under these assumptions the stability result reveals that the small solution

is stable if N ≤ 4. On the other hand, we show that the small solution is

unstable if N is big enough. We do know the exact threshold value of N for

which stability turns into instability. We also show that the large solution is

always unstable.

Finally, let us recall attention to the point made in the introduction nu-

merically it is known that parasites may destroy stable cluster states. Our

results complement the picture by the rigorously proved fact that even pure

cluster states may turn unstable if they become two large. This implies that

the hypercycle although it has some very preferable properties (see the be-

ginning of the introduction) on the other hand it has an inherent instability

behaviour which may be an obstruction to the evolution of large biological

systems.
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