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Abstract. In this paper, we rigorously prove the existence and sta-
bility of multiple-peaked patterns for the singularly perturbed Gierer-
Meinhardt system in a two dimensional domain which are far from spa-
tial homogeneity. The Green’s function together with its derivatives is
linked to the peak locations and to the o(1) eigenvalues, which vanish in
the limit. On the other hand two nonlocal eigenvalue problems (NLEPs),
one of which is new, are related to the O(1) eigenvalues. Under some geo-
metric condition on the peak locations, we establish a threshold behavior:
If the inhibitor diffusivity exceeds the threshold then we get stability, if
it lies below then we get instability.

1. Introduction

Morphogenesis is the development of an organism from a single cell. This

complex process can be understood by dividing it into several elementary

steps, such as the change of cell shapes, cell to cell interaction, growth, and

cell movement. One of the most important of these elementary steps is

the formation of a spatial pattern of cell structure, starting from an almost

homogeneous cell distribution.

Turing in his pioneering work in 1952 [29] proposed that a patterned distri-

bution of two chemical substances, called the morphogens, could trigger the

emergence of such a cell structure. He also gives the following explanation

for the formation of the morphogenetic pattern: It is assumed that one of

the morphogens, the activator, diffuses slowly and the other, the inhibitor,

diffuses much faster. In the mathematical framework of a coupled system of

reaction-diffusion equations with very different diffusion coefficients he shows
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by linear stability analysis that the homogeneous state may be unstable. In

particular, a small perturbation of spatially homogeneous initial data may

evolve to a stable spatially complex pattern of the morphogens.

Since the work of Turing, a lot of models have been proposed and analyzed

to explore this phenomenon, which is now called Turing instability, and its

implications for the understanding of various patterns more fully. One of the

most famous of these models is the Gierer-Meinhardt system [8], [19]. In two

dimensions after rescaling and considering a special case it can be stated as

follows:

(GM)

⎧⎪⎪⎨
⎪⎪⎩

At = ε2∆A − A + A2

H
, A > 0 in Ω,

τHt = D∆H − H + A2, H > 0 in Ω,
∂A
∂ν

= ∂H
∂ν

= 0 on ∂Ω.

The unknowns A = A(x, t) and H = H(x, t) represent the concentrations

of the activator and inhibitor at a point x ∈ Ω ⊂ R2 and at a time t > 0;

∆ :=
∑2

j=1
∂2

∂x2
j

is the Laplace operator in R2; Ω is a bounded and smooth

domain in R2; ν = ν(x) is the outer normal at x ∈ ∂Ω. Throughout this

paper, we assume that

ε << 1, ε does not depend on x or t,

τ ≥ 0 is a fixed constant which does not depend on x, t or ε,

D > 0 does not depend on x or t but may depend on ε,

D << e
δ
ε , where δ > 0 is small a constant which is independent of ε > 0.

In this paper, we further assume D → ∞ as ε → 0 (and call this the weak

coupling case).

Numerical studies by Gierer and Meinhardt [19] and more recently by

Holloway [12] and Maini and McInerney [18] have revealed that when ε is

small and D is finite, (GM) seems to have stable stationary states with

the property that the activator is mainly concentrated in K peaks which

are each placed near K different points in Ω whose locations satisfy suitable

conditions. Moreover, as ε → 0 the pattern exhibits a “point condensation

phenomenon”. By this we mean that these peaks become narrower and

narrower and eventually shrink to the set of points itself. In fact, their
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spatial extension is of the order O(ε). We also say that the solutions of the

spikes “concentrate” at the set of points. Furthermore, we remark that the

maximum value of activator and inhibitor, respectively, diverges to +∞.

Although it has been observed numerically that these patterns are stable,

it has been an open problem to give a rigorous proof of these facts. Namely,

how can one rigorously construct these solutions? Where are the peaks

located? Are these solutions stable?

In this paper we solve these questions. We explicitly give a rigorous

construction of K-peaked stationary states by using the powerful method

of Liapunov-Schmidt reduction. This enables us to reduce the infinite-

dimensional problem of finding an equilibrium state to (GM) to the finite-

dimensional problem of locating the K points at which the spikes concen-

trate. We give a sufficient condition for the locations of these points in terms

of the derivatives of Green’s function.

Furthermore, concerning stability one has to study the eigenvalues of the

order O(1) which are called “large eigenvalues” and the eigenvalues of the

order o(1) which are called “small eigenvalues” separately. We show that

the small eigenvalues are related to the derivatives of Green’s function and

to the spike locations. Suppose these small eigenvalues all have negative real

parts and that τ is large or K > 1, then the following result holds true which

is the main contribution of this paper:

For ε << 1 there are stability thresholds

D1(ε) > D2(ε) > D3(ε) > . . . > DK(ε) > . . .

such that

if limε→0
DK(ε)

D
> 1 then the K-peaked solution is stable

and if limε→0
DK(ε)

D
< 1 then the K-peaked solution is unstable.

Furthermore, we will show that

DK(ε) =
|Ω|

2πK
log

1

ε
as ε → 0.

In particular, if

lim
ε→0

D

log 1
ε

= 0 as ε → 0
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then for every positive integer K the K peaked solution is stable for ε small

enough. This recovers our earlier result in the strong coupling case, [40].

We now describe the results of the paper in detail.

We first introduce a Green’s function G0 which we need to formulate our

main results.

Let G0(x, ξ) be the Green’s function given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∆G0(x, ξ) − 1
|Ω| + δξ(x) = 0 in Ω,∫

Ω
G0(x, ξ) dx = 0,

∂G0(x, ξ)

∂ν
= 0 on ∂Ω

(1.1)

and let

H0(x, ξ) =
1

2π
log

1

|x − ξ| − G0(x, ξ) (1.2)

be the regular part of G0(x, ξ).

Denote P ∈ ΩK , where P is arranged such that

P = (P1, P2, . . . , PK)

with

Pi = (Pi,1, Pi,2) for i = 1, 2, . . . , K.

For the rest of the paper we assume that P ∈ Λδ, where for δ > 0 we define

Λδ = {(P1, P2, . . . , PK) ∈ ΩK : |Pi − Pj| > 4δ for i �= j

and d(Pi, ∂Ω) > 4δ for i = 1, 2 . . . , K}. (1.3)

For P ∈ Λδ we define

F (P) =
K∑

k=1

H0(Pk, Pk) −
∑

i,j=1,...,K,i �=j

G0(Pi, Pj) (1.4)

and

M(P) = (∇2
PF (P)). (1.5)

Here M(P) is a (2K) × (2K) matrix with components ∂2F (P)
∂Pi,j∂Pk,l

, i, k =

1, ..., K, j, l = 1, 2, (recall that Pi,j is the j-th component of Pi).

Note that F (P) ∈ C∞(Λδ).
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Set

D =
1

β2
, ηε :=

β2|Ω|
2π

log
1

ε
. (1.6)

Then D → +∞ is equivalent to β → 0.

The stationary system for (GM) is the following system of elliptic equa-

tions: ⎧⎪⎪⎨
⎪⎪⎩

ε2∆A − A + A2

H
= 0, A > 0 in Ω,

1
β2 ∆H − H + A2 = 0, H > 0 in Ω,
∂A
∂ν

= ∂H
∂ν

= 0 on ∂Ω.

(1.7)

Our first theorem concerns the existence of K−peaked solutions.

Theorem 1.1. Let P0 = (P 0
1 , P 0

2 , . . . , P 0
K) ∈ Λδ be a nondegenerate critical

point of F (P) (defined by (1.4)). Moreover, we assume that the following

technical condition holds

if K > 1, then lim
ε→0

ηε �= K, (1.8)

where ηε is defined by (1.6).

Then for ε sufficiently small and D = 1
β2 sufficiently large, problem (1.7)

has a solution (Aε, Hε) with the following properties:

(1) Aε(x) = ξε(
∑K

j=1 w(
x−P ε

j

ε
) + O(k(ε, β)) uniformly for x ∈ Ω̄. Here w is

the unique solution of the problem⎧⎨
⎩ ∆w − w + w2 = 0, w > 0 in R2,

w(0) = maxy∈R2 w(y), w(y) → 0 as |y| → ∞,
(1.9)

ξε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

K

|Ω|
ε2
∫
R2 w2(y) dy

if ηε → 0,

1

ηε

|Ω|
ε2
∫
R2 w2(y) dy

if ηε → ∞,

1

K + η0

|Ω|
ε2
∫
R2 w2(y) dy

if ηε → η0,

(1.10)

and

k(ε, β) := ε2ξεβ
2. (1.11)

(By (1.10), k(ε, β) = O(min{ 1
log 1

ε

, β2}).)
Furthermore, P ε

j → P 0
j as ε → 0 for j = 1, ..., K.

(2) Hε(x) = ξε(1 + O(k(ε, β)) uniformly for x ∈ Ω̄.
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Remark:

1.1). Condition (1.8) in Theorem 1.1 is a technical condition that is needed

for the Liapunov-Schmidt reduction process. In Appendix A we will explain

how it arises.

For existence and uniqueness of the solutions of (1.9) we refer to [9] and

[16]. We also recall that

w(y) ∼ |y|−1/2e−|y| as |y| → ∞. (1.12)

Next we study the stability and instability of the K-peaked solutions con-

structed in Theorem 1.1. To this end, we need to study the following eigen-

value problem

Lε

⎛
⎜⎜⎝

φε

ψε

⎞
⎟⎟⎠ =

⎛
⎝ ε2∆φε − φε + 2Aε

Hε
φε − A2

ε

H2
ε
ψε

1
τ
( 1

β2 ∆ψε − ψε + 2Aεφε)

⎞
⎠ = λε

⎛
⎝ φε

ψε

⎞
⎠ ,

(1.13)

where (Aε, Hε) is the solution constructed Theorem 1.1 and λε ∈ C – the set

of complex numbers.

We say that (Aε, Hε) is linearly stable if the spectrum σ(Lε) of Lε lies

in the left half plane {λ ∈ C : Re (λ) < 0}. (Aε, Hε) is called linearly

unstable if there exists an eigenvalue λε of Lε with Re (λε) > 0. (From

now on, we use the notations linearly stable and linearly unstable as defined

above.)

Our second main result, which is on stability, is stated as follows.

Theorem 1.2. Let P0 ∈ Λδ be a nondegenerate critical point of F (P) and for

ε sufficiently small and D = 1
β2 sufficiently large let (Aε, Hε) be the K−peaked

solutions constructed in Theorem 1.1 whose peaks approach P0.

Assume (1.8) holds and further that

(∗) P0 is a nondegenerate local maximum point of F (P).

Then we have

Case 1. ηε → 0 (i.e., 2πD
|Ω| >> log 1

ε
).

If K = 1 then there exists a unique τ1 > 0 such that for τ < τ1, (Aε, Hε)

is linearly stable, while for τ > τ1, (Aε, Hε) is linearly unstable.

If K > 1, (Aε, Hε) is linearly unstable for any τ ≥ 0.
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Case 2. ηε → +∞ (i.e., 2πD
|Ω| << log 1

ε
).

(Aε, Hε) is linearly stable for any τ > 0.

Case 3. ηε → η0 ∈ (0, +∞) (i.e., 2πD
|Ω| ∼ 1

η0
log 1

ε
).

If K > 1 and η0 < K, then (Aε, Hε) is linearly unstable for any τ > 0.

If η0 > K, then there exist 0 < τ2 ≤ τ3 such that (Aε, Hε) is linearly stable

for τ < τ2 and τ > τ3.

If K = 1, η0 < 1, then there exist 0 < τ4 ≤ τ5 such that (Aε, Hε) is linearly

stable for τ < τ4 and linearly unstable for τ > τ5.

The statement of Theorem 1.2 is rather long. Let us therefore explain the

results by the following remarks.

Remarks:

1.2). Assuming that condition (*) holds, then for ε small the stability

behavior of (Aε, Hε) can be summarized in the following table:

Case 1. Case 2. Case 3 (η0 < K). Case 3 (η0 > K).

K = 1, τ small stable stable stable stable

K = 1, τ finite ? stable ? ?

K = 1, τ large unstable stable unstable stable

K > 1, τ small unstable stable unstable stable

K > 1, τ finite unstable stable unstable ?

K > 1, τ large unstable stable unstable stable

1.3). The condition (*) on the locations P0 arises in the study of small

(o(1)) eigenvalues. For any bounded smooth domain Ω, the functional F (P),

defined by (1.4), always admits a global maximum at some P0 ∈ Λδ (for

some small δ > 0). The proof of this fact is similar to the appendix in

[40]. We believe that in generic domains, this global maximum point P0 is

nondegenerate.

It is an interesting open question to numerically compute the critical points

of F (P) and link them explicitly to the geometry of the domain Ω.
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We believe that for other types of critical points of F (P), such as saddle

points, the solution constructed in Theorem 1.1 should be linearly unstable.

We are not able to prove this at the moment, since the operator Lε is not

self-adjoint.

1.4). Case 1 and Case 3 with η0 < K resemble the shadow system and

Case 2 and Case 3 with η0 > K are similar to the strong coupling case.

Theorem 1.2 contains a new result even in the shadow system case: for the

limiting nonlocal eigenvalue problem (NLEP), we have shown the uniqueness

of Hopf bifurcation at τ1 (Lemma 2.4), compare [24], [34]. Note that our τ

is fixed. If we allow τ to vary with respect to ε, we conjecture that there is

a unique τ1(ε) = τ1 + o(1) such that Hopf bifurcation occurs for Lε.

1.5). We conjecture that in Case 3, τ2 = τ3. This will imply that for

any τ ≥ 0 and η0 > K, multiple spikes are stable, provided condition (*)

is satisfied. (It is possible to obtain explicit values for τ2 and τ3. See the

Remark 2.2 after the proof of Theorem 2.5.)

1.6). Roughly speaking, assuming that condition (*) holds and that τ

is small, then for ε << 1, DK(ε) = |Ω|
2πK

log 1
ε

is the critical threshold for

the asymptotic behavior of the diffusion coefficient of the inhibitor which

determines the stability of K-peaked solutions. Thus we have established a

result which is similar as in the one-dimensional case, [14], [41]. In [14] the

case when τ is small is studied by a matched asymptotic analysis approach.

A rigorous proof of the results of [14] is contained in [41]. A dynamics

approach which covers the case of general τ ≥ 0 but is restricted to the

whole R1 or to periodic boundary conditions is contained in [6]. However,

in higher dimensions the analysis is very different since it has to reflect the

geometry of the domain, which is trivial for an interval on the real line (where

the peaks are placed equidistantly).

Let us recall the result in the one-dimensional case. It is shown ([14]) for

K ≥ 2 that the critical thresholds DK(ε) = DK are in leading order indepen-

dent of ε. Moreover, the critical thresholds arise in the computation of the

small eigenvalues. Here in R2, DK(ε) → +∞ as ε → 0. Furthermore, DK(ε)

is obtained in the study of the large eigenvalues. Since these thresholds are
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independent of the peak locations they can be studied without considering

higher-order terms of the equilibrium.

1.7). We have obtained the leading order asymptotics for the critical

threshold DK(ε) which is the order log 1
ε
. This is true if we take ε sufficiently

small. In practice, it will be very useful to obtain the next order term in the

asymptotic expansion of DK(ε), which we believe should be O(1).

We now comment on some related work.

Generally speaking system (1.7) is quite difficult to solve since it does

neither have a variational structure nor a priori estimates. One way

to study (1.7) is to examine the so-called shadow system. Namely, we let

D → +∞ first. It is known (see [15], [20], [27]) that the study of the shadow

system amounts to the study of the following single equation for p = 2:

⎧⎨
⎩ ε2∆u − u + up = 0, u > 0 in Ω,

∂u
∂ν

= 0 on ∂Ω.
(1.14)

Equation (1.14) has a variational structure and has been studied by nu-

merous authors. It is known that equation (1.14) has both boundary spike

solutions and interior spike solutions. For existence of boundary spike solu-

tions, see [1], [10], [21], [22], [23], [32], [37], [38], and the references therein.

For existence of interior spike solutions, please see [11], [26], [31], [33], and

the references therein. For stability of spike solutions, please see [2], [13],

[24], [25], [34], [35]. For dynamics we refer to [3].

Now we describe some previous results for the two-dimensional strong

coupling case, i.e. for finite D ∼ 1. In [39], we constructed single interior

spike solutions to (1.7) (without loss of generality, we assumed that D = 1).

Then in [40] we continued that study: After constructing interior K-peaked

solutions we also proved that they are stable for τ = 0 provided that the

limiting peaks P0 = (P 0
1 , ..., P 0

K) is a nondegenerate local maximum point of

the following functional

F1(P) =
K∑

k=1

H1(Pk, Pk) −
∑

i,j=1,...,K,i �=j

G1(Pi, Pj), (1.15)
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where G1(P, x) is Green’s function of −∆+1 under the Neumann boundary

condition, i.e., G1 satisfies⎧⎨
⎩ −∆G1 + G1 = δP in Ω,

∂G1

∂ν
= 0 on ∂Ω.

Here δP is the Dirac delta distribution at a point P and

H1(P, x) = K1(|x − P |) − G1(P, x),

where K1(|x|) = 1
2π

log 1
|x| is the fundamental solution of −∆ + 1 in R2 with

singularity at 0.

Therefore for any finite D ∼ 1, the stability of K−peaked solutions does

not depend on D but on the peak locations only.

In the case of boundary spikes for the weak coupling case the boundary

mean curvature may interact with the Green’s function. We will study this

effect in a forthcoming paper.

Finally we remark that some of the results of Theorem 1.1 and Theorem

1.2 may be extended to the following generalized Gierer-Meinhardt system

(Generalized GM)

⎧⎪⎪⎨
⎪⎪⎩

At = ε2∆A − A + Ap

Hq , A > 0 in Ω,

τHt = D∆H − H + Ar

Hs , H > 0 in Ω,
∂A
∂ν

= ∂H
∂ν

= 0 on ∂Ω,

where the exponents (p, q, r, s) satisfy the following conditions

p > 1, q > 0, r > 0, s ≥ 0,
qr

(p − 1)(s + 1)
> 1.

For example, the existence result Theorem 1.1 can be applied to the above

system without any technical difficulty. For the stability result Theorem

1.2 there should be some restrictions on the (p, q, r, s). See [4], [24], [25],

[36] and [42] for related studies on NLEPs. We shall leave this to further

investigations.

Other work on concentrated solutions for reaction-diffusion systems in-

cludes [5], [28], [30], and the survey [20].

The structure of the paper is as follows:

Preliminaries.

⎧⎨
⎩ Section 2: Study of Two NLEPs

Section 3: Calculations on the Heights of the Peaks
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Existence: Proof of Theorem 1.1.

⎧⎨
⎩ Section 4: Reduction to Finite Dimension

Section 5: Solving the Reduced Problem

Stability: Proof of Theorem 1.2.

⎧⎨
⎩ Section 6: Study of Large Eigenvalues

Section 7: Study of Small Eigenvalues

The proof of the invertibility of the linearized operator is delayed to the

Appendix A.

Throughout the paper C > 0 is a generic constant which is independent

of ε and β and may change from line to line and δ is a very small but

fixed constant. We always assume that P,P0 ∈ Λδ, where Λδ was defined

in (1.3) and that |P − P0| < 4δ. To simplify our notation, we use e.s.t. to

denote exponentially small terms in the corresponding norms, more precisely,

e.s.t. = O(e−δ/ε). The notation A(ε) ∼ B(ε) means that limε→0
A(ε)
B(ε)

= c0 >

0, for some positive number c0.
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2. Preliminaries I: Some Properties of w and the Study of

Two nonlocal eigenvalue problems (NLEPs)

Let w be the unique solution of (1.9). In this section, we study some

properties of w as well as two NLEPs.

Let

L0φ = ∆φ − φ + 2wφ, φ ∈ H2(R2). (2.1)

We first recall the following well-known result:
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Lemma 2.1. The eigenvalue problem

L0φ = µφ, φ ∈ H2(R2), (2.2)

admits the following set of eigenvalues

µ1 > 0, µ2 = µ3 = 0, µ4 < 0, ... . (2.3)

The eigenfunction Φ0 corresponding to µ1 can be made positive and radially

symmetric; the space of eigenfunctions corresponding to the eigenvalue 0 is

K0 := span

{
∂w

∂yj

, j = 1, 2

}
. (2.4)

Proof: This lemma follows from Theorem 2.1 of [17] and Lemma C of

[22]. �
Next, we consider the following two nonlocal eigenvalue problems

Lφ := ∆φ − φ + 2wφ − γ

∫
R2 wφ∫
R2 w2

w2 = λ0φ, φ ∈ H2(R2), (2.5)

where either (a) γ =
µ

1 + τλ0

, where µ > 0, τ ≥ 0, or

(b) γ =
2(K + η0(1 + τλ0))

(K + η0)(1 + τλ0)
, where η0 > 0, τ ≥ 0.

Case (a) will be studied in Theorem 2.2 and Case (b) in Theorem 2.5.

Problem (2.5) plays the key role in the study of large eigenvalues (Section

6 below). It is here that the critical stability thresholds arise.

We consider case (a) first:

Theorem 2.2. Let γ = µ
1+τλ0

where µ > 0, τ ≥ 0 and let L be defined by

(2.5).

(1) Suppose that µ > 1. Then there exists a unique τ = τ1 > 0 such that

for τ < τ1, (2.5) admits a positive eigenvalue, and for τ > τ1, all nonzero

eigenvalues of problem (2.5) satisfy Re(λ) < 0. At τ = τ1, L has a Hopf

bifurcation.

(2) Suppose that µ < 1. Then L admits a positive eigenvalue λ0 > 0.

Proof of Theorem 2.2:

Theorem 2.2 will be proved by two lemmas below.

Lemma 2.3. If µ < 1, then L has a positive eigenvalue λ0 > 0.
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Proof: By arguments similar to [4] or [42], we may assume that φ is a radially

symmetric function, namely, φ ∈ H2
r (R2) = {u ∈ H2(R2)|u = u(|y|)}. Let

L0 be given by (2.1). Then by Lemma 2.1 L0 is invertible in H2
r (R2). Let

us denote the inverse as L−1
0 . By Lemma 2.1, L0 has a unique positive

eigenvalue µ1. It is easy to see that λ0 �= µ1 since
∫
R2 wΦ0 > 0.

Then λ0 > 0 is an eigenvalue of (2.5) if and only if it satisfies the following

algebraic equation:∫
R2

w2 =
µ

1 + τλ0

∫
R2

[((L0 − λ0)
−1w2)w]. (2.6)

Equation (2.6) can be simplified further to the following

ρ(λ0) := ((µ − 1) − τλ0)
∫

R2
w2 + µλ0

∫
R2

[((L0 − λ0)
−1w)w] = 0.

(2.7)

Note that ρ(0) = (µ−1)
∫
R2 w2 < 0. On the other hand, as λ0 → µ1, λ0 < µ1,

we have
∫
R2((L0 −λ0)

−1w)w → +∞ and hence ρ(λ0) → +∞. By continuity,

there exists a λ0 ∈ (0, µ1) such that ρ(λ0) = 0. Such a positive λ0 will be an

eigenvalue of L.

�
Next we consider the case µ > 1. As in [4], we may consider radially

symmetric functions only. By Theorem 1.4 of [34], for τ = 0 (and by per-

turbation, for τ small), all eigenvalues lie on the left half plane. By [4], for

τ large, there exist unstable eigenvalues.

Note that the eigenvalues will not cross through zero: in fact, if λ0 = 0,

then we have

L0φ − µ

∫
R2 wφ∫
R2 w2

w2 = 0

which implies that

L0(φ − µ

∫
R2 wφ∫
R2 w2

w) = 0

and hence by Lemma 2.1

φ − µ

∫
R2 wφ∫
R2 w2

w ∈ K0.

This is impossible since φ is radially symmetric and φ �= cw for all c ∈ R.
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Thus there must be a point τ1 at which L has a Hopf bifurcation, i.e., L

has a purely imaginary eigenvalue α =
√−1αI . To prove Theorem 2.2 (1),

all we need to show is that τ1 is unique. That is

Lemma 2.4. Let µ > 1. Then there exists a unique τ1 > 0 such that L has

a Hopf bifurcation.

Proof:

Let λ0 =
√−1αI be an eigenvalue of L. Without loss of generality, we

may assume that αI > 0. (Note that −√−1αI is also an eigenvalue of L.)

Let φ0 = (L0 −
√−1αI)

−1w2. Then (2.5) becomes∫
R2 wφ0∫
R2 w2

=
1 + τ

√−1αI

µ
(2.8)

Let φ0 = φR
0 +

√−1φI
0. Then from (2.8), we obtain the two equations∫

R2 wφR
0∫

R2 w2
=

1

µ
, (2.9)

∫
R2 wφI

0∫
R2 w2

=
ταI

µ
. (2.10)

Note that (2.9) is independent of τ .

Let us now compute
∫
R2 wφR

0 . Observe that (φR
0 , φI

0) satisfies

L0φ
R
0 = w2 − αIφ

I
0, L0φ

I
0 = αIφ

R
0 .

So φR
0 = α−1

I L0φ
I
0 and

φI
0 = αI(L

2
0 + α2

I)
−1w2, φR

0 = L0(L
2
0 + α2

I)
−1w2. (2.11)

Substituting (2.11) into (2.9) and (2.10), we obtain

∫
R2 [wL0(L

2
0 + α2

I)
−1w2]∫

R2 w2
=

1

µ
, (2.12)

∫
R2 [w(L2

0 + α2
I)

−1w2]∫
R2 w2

=
τ

µ
. (2.13)
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Let h(αI) =

∫
R2 wL0(L2

0+α2
I)−1w2∫

R2 w2 . Then integration by parts gives h(αI) =∫
R2 w2(L2

0+α2
I)−1w2∫

R2 w2 . Note that h
′
(αI) = −2αI

∫
R2 w2(L2

0+α2
I)−2w2∫

R2 w2 < 0. So since

h(0) =

∫
R2 w(L−1

0 w2)∫
R2 w2

= 1,

h(αI) → 0 as αI → ∞, and µ > 1, there exists a unique αI > 0 such that

(2.12) holds. Substituting this unique αI into (2.13), we obtain a unique

τ = τ1 > 0.

Lemma 2.4 is thus proved.

�
Theorem 2.2 now follows from Lemma 2.3 and Lemma 2.4.

�
Remark:

2.1). Theorem 2.2 is true in RN , N ≤ 4. The existence of a Hopf bi-

furcation has been studied in [4], [24], [25], [42]. Here we have proved the

uniqueness of such a Hopf bifurcation, which is new and interesting in its

own right.

Finally we study case (b), namely the following NLEP:

∆φ − φ + 2wφ − 2(K + η0(1 + τλ0))

(K + η0)(1 + τλ0)

∫
R2 wφ∫
R2 w2

w2 = λ0φ, φ ∈ H2(R2),
(2.14)

where 0 < η0 < +∞ and 0 ≤ τ < +∞ .

Then we have

Theorem 2.5. (1) If η0 < K, then for τ small problem (2.14) is stable while

for τ large it is unstable.

(2) If η0 > K, then there exists 0 < τ2 ≤ τ3 such that problem (2.14) is

stable for τ < τ2 or τ > τ3.

Proof: Let us set

f(τλ) =
2(K + η0(1 + τλ))

(K + η0)(1 + τλ)
. (2.15)

We note that

lim
τλ→+∞

f(τλ) =
2η0

K + η0

=: f∞.
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If η0 < K, then by Theorem 2.2 (2), problem (2.5) with µ = f∞ has a

positive eigenvalue α1. Now by perturbation arguments (similar to those in

[4]), for τ large, problem (2.14) has an eigenvalue near α1 > 0. This implies

that for τ large, problem (2.14) is unstable.

Now we show that problem (2.14) has no nonzero eigenvalues with non-

negative real part, provided that either τ is small or η0 > K and τ is large.

(It is immediately seen that f(τλ) → 2 as τλ → 0 and f(τλ) → 2η0

η0+K
> 1

as τλ → +∞ if η0 > K. Then Theorem 2.2 should apply. The problem is

that we do not have control on τλ. Here we provide a rigorous proof.)

We apply the following inequality (Lemma 5.1 in [34]): for any (real-valued

function) φ ∈ H2
r (R2), we have∫

R2
(|∇φ|2 + φ2 − 2wφ2) + 2

∫
R2 wφ

∫
R2 w2φ∫

R2 w2
−

∫
R2 w3

(
∫
R2 w2)2

(
∫

R2
wφ)2 ≥ 0,

(2.16)

where equality holds if and only if φ is a multiple of w.

Now let λ0 = λR +
√−1λI , φ = φR +

√−1φI satisfy (2.14). Then we have

L0φ − f(τλ0)

∫
R2 wφ∫
R2 w2

w2 = λ0φ. (2.17)

Multiplying (2.17) by φ̄ – the conjugate function of φ – and integrating over

R2, we obtain that∫
R2

(|∇φ|2 + |φ|2 − 2w|φ|2) = −λ0

∫
R2

|φ|2 − f(τλ0)

∫
R2 wφ∫
R2 w2

∫
R2

w2φ̄.
(2.18)

Multiplying (2.17) by w and integrating over R2, we obtain that∫
R2

w2φ = (λ0 + f(τλ0)

∫
R2 w3∫
R2 w2

)
∫

R2
wφ. (2.19)

Taking the conjugate of (2.19) we have∫
R2

w2φ̄ = (λ̄0 + f(τ λ̄0)

∫
R2 w3∫
R2 w2

)
∫

R2
wφ̄. (2.20)

Substituting (2.20) into (2.18), we have that∫
R2

(|∇φ|2 + |φ|2 − 2w|φ|2)

= −λ0

∫
R2

|φ|2 − f(τλ0)(λ̄0 + f(τ λ̄0)

∫
R2 w3∫
R2 w2

)
| ∫R2 wφ|2∫

R2 w2
.

(2.21)
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We just need to consider the real part of (2.21). Now applying the inequality

(2.16) and using (2.20) we arrive at

−λR ≥ Re

(
f(τλ0)(λ̄0 + f(τ λ̄0)

∫
R2 w3∫
R2 w2

)

)
−2Re

(
λ̄0 + f(τ λ̄0)

∫
R2 w3∫
R2 w2

)
+

∫
R2 w3∫
R2 w2

,

where we recall λ0 = λR +
√−1λI with λR, λI ∈ R.

Assuming that λR ≥ 0, then we have

∫
R2 w3∫
R2 w2

|f(τλ0) − 1|2 + Re(λ̄0(f(τλ0) − 1)) ≤ 0. (2.22)

By the usual Pohozaev’s identity for (1.9) (multiplying (1.9) by y · ∇w(y)

and integrating by parts), we obtain that∫
R2

w3 =
3

2

∫
R2

w2. (2.23)

Substituting (2.23) and the expression (2.15) for f(τλ) into (2.22), we

have

3

2
|η0+K+(η0−K)τλ|2+Re ((η0+K)(1+τ λ̄0)((η0+K)λ̄0+(η0−K)τ |λ0|2)) ≤ 0

which is equivalent to

3

2
(1 + µ0τλR)2 + λR + (µ0τ + τ + µ0τ

2|λ0|2)λR

+ (
3

2
µ2

0τ
2 + µ0τ − τ)λ2

I ≤ 0 (2.24)

where we have introduced µ0 := η0−K
η0+K

.

If η0 > K (i.e., µ0 > 0) and τ is large, then

3

2
µ2

0τ
2 + µ0τ − τ ≥ 0. (2.25)

So (2.24) does not hold for λR ≥ 0.

To consider the case when τ is small, we have now derive an upper bound

for λI .

From (2.18), we have

λI

∫
R2

|φ|2 = Im

(
−f(τλ0)

∫
R2 wφ∫
R2 w2

∫
R2

w2φ̄

)
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Hence

|λI | ≤ |f(τλ0)|
√√√√∫

R2 w4∫
R2 w2

≤ C (2.26)

where C is independent of λ0.

Substituting (2.26) into (2.24), we see that (2.24) can not hold for λR ≥ 0,

if τ is small.

�
Remark:

2.2). From the proof of Theorem 2.5, it is possible to obtain explicit values

for τ2 and τ3. (In fact, from (2.25), we obtain a value for τ3. From (2.26)

and (2.24), we obtain a value for τ2.)

3. Preliminaries II: Calculating the heights of the peaks

In this section we formally calculate the heights of the peaks as needed in

the sections below. In particular, we introduce the scale ξε given in (1.10). It

is found that in the leading order the heights depend on the number of peaks

but not on their locations. This is a leading order asymptotic statement that

is valid for ε → 0 and D → ∞.

For β > 0 let Gβ(x, ξ) be the Green’s function given by

⎧⎪⎪⎨
⎪⎪⎩

∆Gβ − β2Gβ + δξ = 0 in Ω,

∂Gβ

∂ν
= 0 on ∂Ω.

(3.1)

Let G0(x, ξ) be the Green’s function given by (1.1). Then we can derive a

relation between Gβ and G0 as follows. From (3.1) we get

∫
Ω

Gβ(x, ξ) dx = β−2.

Set

Gβ(x, ξ) =
β−2

|Ω| + Gβ(x, ξ). (3.2)
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Then ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∆Ḡβ − β2Ḡβ − 1
|Ω| + δξ = 0 in Ω,∫

Ω
Ḡβ(x, ξ) dx = 0,

∂Ḡβ

∂ν
= 0 on ∂Ω.

(3.3)

(1.1) and (3.3) imply that

Ḡβ(x, ξ) = G0(x, ξ) + O(β2)

in the operator norm of L2(Ω) → H2(Ω). (Note that the embedding of H2(Ω)

into L∞(Ω) is compact.) Hence

Gβ(x, ξ) =
β−2

|Ω| + G0(x, ξ) + O(β2) (3.4)

in the operator norm of L2(Ω) → H2(Ω).

We define cut-off functions as follows: let χ be a smooth cut-off function

which is equal to 1 in B1(0) and equal to 0 in R2 \ B2(0). Let P ∈ Λδ.

Introduce

χε,Pj
(x) = χ

(
x − Pj

δ

)
, x ∈ Ω, j = 1, . . . , K. (3.5)

Let us assume that a multiple spike solution (Aε, Hε) of (1.7) is given by

the following ansatz:⎧⎨
⎩ Aε(x) ∼ ∑K

i=1 ξε,iw(
x−P ε

i

ε
)χε,P ε

i
(x),

Hε(P
ε
i ) ∼ ξε,i,

(3.6)

where w is the unique solution of (1.9), ξε,i, i = 1, ..., K are the heights of the

peaks, to be determined later, and Pε = (P ε
1 , ..., P

ε
K) ∈ Λδ are the locations

of K peaks. Then we can make the following calculations. In Sections 4

and 5 we will rigorously prove Theorem 1.1 which includes the asymptotic

relations given in (3.6) with suitable error estimates.

Then from the equation for Hε,

∆Hε − β2Hε + β2A2
ε = 0,

we get by using (3.4)

Hε(P
ε
i ) =

∫
Ω

Gβ(P ε
i , ξ)β

2A2
ε(ξ) dξ
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=
∫
Ω
(
β−2

|Ω| + G0(P
ε
i , ξ) + O(β2))β2

⎛
⎝ K∑

j=1

ξ2
ε,jw

2(
ξ − P ε

j

ε
) + e.s.t.

⎞
⎠ dξ

=
∫
Ω
(

1

|Ω| + β2G0(P
ε
i , ξ) + O(β4))

⎛
⎝ K∑

j=1

ξ2
ε,jw

2(
ξ − P ε

j

ε
) + e.s.t.

⎞
⎠ dξ.

Thus

ξε,i =
K∑

j=1

ξ2
ε,j

ε2

|Ω|
∫

R2
w2(y) dy + ξ2

ε,iβ
2
∫
Ω

G0(P
ε
i , ξ)w

2(
ξ − P ε

i

ε
) dξ +

K∑
j=1

ξ2
ε,jO(β2ε2).

(3.7)

Using the expansion for G0 in (3.7) gives

ξε,i =
K∑

j=1

ξ2
ε,j

ε2

|Ω|
∫

R2
w2(y) dy

+ξ2
ε,iβ

2
∫
Ω

(
1

2π
log

1

|P ε
i − ξ| − H0(P

ε
i , ξ)

)
w2(

ξ − P ε
i

ε
) dξ +

K∑
j=1

ξ2
ε,jO(β2ε2)

=
K∑

j=1

ξ2
ε,j

ε2

|Ω|
∫

R2
w2(y) dy + ξ2

ε,i

β2

2π
ε2 log

1

ε

∫
R2

w2(y) dy

+
K∑

j=1

ξ2
ε,jO(β2ε2). (3.8)

Note that H0 ∈ C2(Ω̄ × Ω).

Define

ξε,i =
ξ̂ε,i|Ω|

ε2
∫
R2 w2

. (3.9)

Then (3.8) is equivalent to

ξ̂ε,i =
K∑

j=1

ξ̂2
ε,j + ξ̂2

ε,iηε +
K∑

j=1

ξ̂2
ε,jO(β2), i = 1, ..., K, (3.10)

where we recall from (1.6) that

ηε =
β2|Ω|
2π

log
1

ε
.

We assume that as ε → 0, the heights of the spikes are asymptotically

equal, i.e.

lim
ε→0

ξε,i

ξε,j

= 1, for i �= j. (3.11)

(The case of asymmetric patterns will be discussed elsewhere.)
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We solve (3.10) in three cases.

Case 1: ηε → 0 :

Then from (3.10) we get

ξ̂ε,i =
1

K
+ O(ηε), i = 1, . . . , K. (3.12)

This is clearly equivalent to

ξε,i =
1

K

|Ω|
ε2
∫
R2 w2(y) dy

(1 + O (ηε)), i = 1, . . . , K. (3.13)

Case 2: ηε → ∞ :

Then from (3.10) we get

ξ̂ε,i = ηεξ̂
2
ε,i +

K∑
j=1

ξ̂2
ε,jO(1)

and so, in the same way as in Case 1, it follows that

ξε,i =
|Ω|

ηεε2
∫
R2 w2(y) dy

(
1 + O

(
1

ηε

))
, i = 1, . . . , K.

(3.14)

Case 3: ηε → η0 (0 < η0 < ∞) :

Then from (3.10) we get

ξ̂ε,i = (1 + η0)ξ̂
2
ε,i +

∑
j �=i

ξ̂2
ε,j +

K∑
j=1

ξ̂2
ε,jO(β2).

This implies

ξ̂ε,1 = . . . = ξ̂ε,K =
1

K + η0

(1 + O(β2)), i = 1, . . . , K

or, equivalently,

ξε,i =
1

K + η0

|Ω|
ε2
∫
R2 w2

(1 + O(β2)), i = 1, . . . , K. (3.15)

Note that in all three cases the heights satisfy the relation

ξε,i = ξε(1 + O(h(ε, β)), i = 1, . . . , K,

where ξε is given in (1.10) of Theorem 1.1 and

h(ε, β) =

⎧⎪⎪⎨
⎪⎪⎩

ηε if ηε → 0,

η−1
ε if ηε → ∞,

β2 if ηε → η0.

(3.16)
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The analysis in this section calculates the height of the peaks under the

assumption that their shape is given. In the next two sections we provide a

rigorous proof for the existence of equilibrium states.

4. Existence I: Reduction to finite dimensions

Let us start to prove Theorem 1.1.

The first step is to choose a good approximation to an equilibrium state.

The second step is to use the Liapunov-Schmidt process to reduce the prob-

lem to a finite dimensional problem. The last step is to solve the reduced

problem. Such a procedure has been used in the study of Gierer-Meinhardt

system in the strong coupling case [39], [40].

Motivated by the results in Section 3 we rescale

x = εy, x ∈ Ω, y ∈ Ωε = {y|εy ∈ Ω}, (4.1)

Â(y) =
1

ξε

A(εy), y ∈ Ωε,

Ĥ(x) =
1

ξε

H(x), x ∈ Ω,

where ξε is given in (1.10).

Then an equilibrium solution (Â, Ĥ) has to solve the following rescaled

Gierer-Meinhardt system:⎧⎨
⎩ ∆yÂ − Â + Â2

Ĥ
= 0, y ∈ Ωε,

∆xĤ − β2Ĥ + β2ξεÂ
2 = 0, x ∈ Ω.

(4.2)

(This rescaling is chosen to achieve Â = O(1), Ĥ = O(1) in terms of the

maximum values.)

For a function Â ∈ H1(Ωε), let T [Â] be the unique solution of the following

problem

∆T [Â] − β2T [Â] + β2ξεÂ
2 = 0 in Ω,

∂T [Â]

∂ν
= 0 on ∂Ω. (4.3)

In other words, we have

T [Â](x) =
∫
Ω

Gβ(x, ξ)β2ξεÂ
2(

ξ

ε
) dξ. (4.4)
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System (4.2) is equivalent to the following equation in operator form:

Sε(Â, Ĥ) =

⎛
⎝ S1(Â, Ĥ)

S2(Â, Ĥ)

⎞
⎠ = 0, H2

N(Ωε) × H2
N(Ω) → L2(Ωε) × L2(Ω),

(4.5)

where

S1(Â, Ĥ) = ∆yÂ − Â +
Â2

Ĥ
: H2

N(Ωε) × H2
N(Ω) → L2(Ωε),

S2(Â, Ĥ) = ∆xĤ − β2Ĥ + β2ξεÂ
2 : H2

N(Ωε) × H2
N(Ω) → L2(Ω).

Here the index N indicates that the functions satisfy the Neumann boundary

conditions
∂Â

∂ν
= 0, y on ∂Ωε,

∂Ĥ

∂ν
= 0, x on ∂Ω.

Let P ∈ Λδ and

wε,j(y) := w(y − Pj

ε
)χε,Pj

(εy), y ∈ Ωε, (4.6)

where w is the unique solution of (1.9) and χε,Pj
was defined in (3.5).

We choose our approximate solutions as follows:

Aε,P(y) :=
K∑

j=1

wε,j(y), Hε,P(x) := T [Aε,P](x), x = εy ∈ Ω.
(4.7)

Note that Hε,P satisfies

0 = ∆xHε,P − β2Hε,P + β2ξεA
2
ε,P

= ∆xHε,P − β2Hε,P + β2ξε

K∑
j=1

w2
ε,j + e.s.t.

Hence

Hε,P(Pj) = β2ξε

∫
Ω

Gβ(x, ξ)
K∑

j=1

w2
ε,j(

ξ

ε
) dξ + e.s.t.

Similar to the computation in Section 2 (using the definition (1.10) of ξε),

we obtain

Hε,P(Pj) = 1 + O(h(ε, β)), j = 1, ..., K. (4.8)

We insert our ansatz (4.7) into (4.5) and calculate

S2(Aε,P, Hε,P) = 0, (4.9)

S1(Aε,P, Hε,P) = ∆yAε,P − Aε,P +
A2

ε,P

Hε,P
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=
K∑

j=1

[
∆yw(y − Pj

ε
) − w(y − Pj

ε
)] +

K∑
j=1

w2(y − Pj

ε
)H−1

ε,P + e.s.t.

=
K∑

j=1

w2(y − Pj

ε
)(H−1

ε,P − 1) + e.s.t.

=
K∑

j=1

w2(y − Pj

ε
)(H−1

ε,P(Pj) − 1) +
K∑

j=1

w2(y − Pj

ε
)(H−1

ε,P(x) − H−1
ε,P(Pj)) + e.s.t.

(4.10)

On the other hand, we calculate for j = 1, ..., K and x = Pj + εz, |εz| < δ:

Hε,P(Pj + εz) − Hε,P(Pj) = β2
∫
Ω
[Gβ(Pj + εz, ξ) − Gβ(Pj, ξ)]ξεA

2
ε,Pdξ

= β2ξε

∫
Ω
[Gβ(Pj + εz, ξ) − Gβ(Pj, ξ)]w

2
ε,jdξ

+β2ξε

∫
Ω
[Gβ(Pj + εz, ξ) − Gβ(Pj, ξ)]

∑
l �=j

w2
ε,ldξ + e.s.t.

= k(ε, β)
∫

R2

1

2π
log

|ζ|
|z − ζ|w

2(ζ)dζ

− k(ε, β)(
2∑

k=1

∂F (P)

∂Pj,k

εzk

∫
R2

w2) + O(εβ2k(ε, β)|z|), (4.11)

where k(ε, β) is given by (1.11), and F (P) is defined at (1.4).

Substituting (4.11) into (4.10), we have the following key estimate

Lemma 4.1. For x = Pj + εz, |εz| < δ we have

S1(Aε,P, Hε,P) = S1,1 + S1,2, (4.12)

where

S1,1(z) = k(ε, β)(Hε,Pj
(Pj))

−2(
∫

R2
w2)w2(z)

(
ε∇Pj

F (P) · z + O(εβ2|z|)
)

(4.13)

and

S1,2(z) = k(ε, β)w2(z)R(|z|) + O(εk(ε, β)β2|z|), (4.14)

where R(|z|) is a radially symmetric function with the property that R(|z|) =

O(log(1 + |z|)).
Furthermore, S1(Aε,P, Hε,P) = e.s.t. for |x − Pj| ≥ δ, j = 1, 2, ..., K.
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The above estimates will be very important in the following calculations,

where (4.5) is solved exactly.

Now we study the linearized operator defined by

L̃ε,P := S ′
ε

⎛
⎝ Aε,P

Hε,P

⎞
⎠ ,

L̃ε,P : H2
N(Ωε) × H2

N(Ω) → L2(Ωε) × L2(Ω),

where ε > 0 is small, P ∈ Λ̄δ.

Set

Kε,P := span {∂Aε,P

∂Pj,l

|j = 1, . . . , K, l = 1, 2} ⊂ H2
N(Ωε)

and

Cε,P := span {∂Aε,P

∂Pj,l

|j = 1, . . . , K, l = 1, 2} ⊂ L2(Ωε).

L̃ε,P is not uniformly invertible in ε and β due to the approximate kernel

Kε,P := Kε,P ⊕ {0} ⊂ H2
N(Ωε) × H2

N(Ω). (4.15)

We choose the approximate cokernel as follows:

Cε,P := Cε,P ⊕ {0} ⊂ L2(Ωε) × L2(Ω). (4.16)

We then define

K⊥
ε,P := K⊥

ε,P ⊕ H2
N(Ω) ⊂ H2

N(Ωε) × H2
N(Ω), (4.17)

C⊥
ε,P := C⊥

ε,P ⊕ L2(Ω) ⊂ L2(Ωε) × L2(Ω), (4.18)

where C⊥
ε,P and K⊥

ε,P denote the orthogonal complement with the scalar prod-

uct of L2(Ωε) in H2
N(Ωε) and L2(Ωε), respectively.

Let πε,P denote the projection in L2(Ωε) × L2(Ω) onto C⊥
ε,P. (Here the

second component of the projection is the identity map.) We are going to

show that the equation

πε,P ◦ Sε

⎛
⎝ Aε,P + Φε,P

Hε,P + Ψε,P

⎞
⎠ = 0 (4.19)

has the unique solution Σε,P =

⎛
⎝ Φε,P(y)

Ψε,P(x)

⎞
⎠ ∈ K⊥

ε,P if ε, β are small enough.
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Set

Lε,P = πε,P ◦ L̃ε,P : K⊥
ε,P → C⊥

ε,P. (4.20)

As a preparation in the following two propositions we show the invertibility

of the corresponding linearized operator Lε,P.

Proposition 4.2. Assume that (1.8) holds. Let Lε,P be given in (4.20).

There exist positive constants ε, β, C such that for all ε ∈ (0, ε), β ∈ (0, β)

‖Lε,PΣ‖L2(Ωε)×L2(Ω) ≥ C‖Σ‖H2(Ωε)×H2(Ω) (4.21)

for arbitrary P ∈ Λδ, Σ ∈ K⊥
ε,P.

Proposition 4.3. Assume that (1.8) holds. There exist positive constants

ε, β such that for all ε ∈ (0, ε), β ∈ (0, β) the map Lε,P is surjective for

arbitrary P ∈ Λ̄δ.

The proofs of Propositions 4.2 and 4.3 are delayed to Appendix A.

Now we are in a position to solve the equation

πε,P ◦ Sε

⎛
⎝ Aε,P + φ

Hε,P + ψ

⎞
⎠ = 0. (4.22)

Since Lε,P|K⊥
ε,P

is invertible (call the inverse L−1
ε,P) we can rewrite (4.22) as

Σ = −(L−1
ε,P ◦ πε,P)(Sε

⎛
⎝ Aε,P

Hε,P

⎞
⎠) − (L−1

ε,P ◦ πε,P)(Nε,P(Σ)) ≡ Mε,P(Σ),
(4.23)

where

Σ =

⎛
⎝ φ

ψ

⎞
⎠ ,

Nε,P(Σ) = Sε

⎛
⎝ Aε,P + φ

Hε,P + ψ

⎞
⎠− Sε

⎛
⎝ Aε,P

Hε,P

⎞
⎠− S ′

ε

⎛
⎝ Aε,P

Hε,P

⎞
⎠
⎡
⎣ φ

ψ

⎤
⎦

and the operator Mε,P is defined by (4.23) for Σ ∈ H2
N(Ωε)×H2

N(Ω). We are

going to show that the operator Mε,P is a contraction on

Bε,η ≡ {Σ ∈ H2(Ωε) × H2(Ω)|‖Σ‖H2(Ωε)×H2(Ω) < η} (4.24)

if η is small enough. We have by Lemma (4.1) and Propositions 4.2 and 4.3

that

‖Mε,P(Σ)‖H2(Ωε)×H2(Ω) ≤ C(‖πε,P ◦ Nε,P(Σ)‖L2(Ωε)×L2(Ω)
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+

∥∥∥∥∥∥πε,P ◦ Sε

⎛
⎝ Aε,P

Hε,P

⎞
⎠
∥∥∥∥∥∥

L2(Ωε)×L2(Ω)

)

≤ C(c(η)η + k(ε, β)),

where C > 0 is independent of η > 0 and c(η) → 0 as η → 0. Similarly we

show

‖Mε,P(Σ) − Mε,P(Σ′)‖H2(Ωε)×H2(Ω) ≤ Cc(η)‖Σ − Σ′‖H2(Ωε)×H2(Ω)

where c(η) → 0 as η → 0. If we choose η small enough, then Mε,P is

a contraction on Bε,η. The existence of a fixed point Σε,P plus an error

estimate now follows from the Contraction Mapping Principle. Moreover

Σε,P is a solution of (4.23).

We have thus proved

Lemma 4.4. There exist ε > 0, β > 0 such that for every triple (ε, β, P)

with 0 < ε < ε, 0 < β < β, P ∈ Λδ there exists a unique (Φε,P, Ψε,P) ∈ K⊥
ε,P

satisfying Sε(

⎛
⎝ Aε,P + Φε,P

Hε,P + Ψε,P

⎞
⎠) ∈ Cε,P and

‖(Φε,P, Ψε,P)‖H2(Ωε)×H2(Ω) ≤ Ck(ε, β). (4.25)

More refined estimates for Φε,P are needed. We recall that S1 can be

decomposed into the two parts S1,1 and S1,2, where S1,1 is in leading order

an odd function and S1,2 is in leading order a radially symmetric function.

Similarly, we can decompose Φε,P:

Lemma 4.5. Let Φε,P be defined in Lemma 4.4. Then for x = Pi + εz,

|εz| < δ, we have

Φε,P = Φε,P,1 + Φε,P,2, (4.26)

where Φε,P,2 is a radially symmetric function in z and

Φε,P,1 = O(εk(ε, β)) in H2
N(Ωε). (4.27)
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Proof: Let S[v] := S1(v, T [v]). We first solve

S[Aε,P + Φε,P,2] − S[Aε,P] +
K∑

j=1

S1,2(y − Pj

ε
) ∈ Cε,P, (4.28)

for Φε,P,2 ∈ K⊥
ε,P.

Then we solve

S[Aε,P + Φε,P,2 + Φε,P,1] − S[Aε,P + Φε,P,2] +
K∑

j=1

S1,1(y − Pj

ε
) ∈ Cε,P,

(4.29)

for Φε,P,1 ∈ K⊥
ε,P.

Using the same proof as in Lemma 4.4, both equations (4.28) and (4.29)

have unique solutions for ε << 1. By uniqueness, Φε,P = Φε,P,1 + Φε,P,2.

Since S1,1 = S0
1,1 + S⊥

1,1, where ‖S0
1,1‖H2(Ωε) = O(εk(ε, β)) and S⊥

1,1 ∈ C⊥
ε,P, it

is easy to see that Φε,P,1 and Φε,P,2 have the required properties.

�

5. Existence II: The reduced problem

In this section, we solve the reduced problem and prove Theorem 1.1.

Let P0 be a nondegenerate critical point of F (P).

By Lemma 4.4, for each P ∈ Bδ(P
0), there exists a unique solution

(Φε,P, ψε,P) ∈ K⊥
ε,P such that

Sε

⎛
⎝ Aε,P + Φε,P

Hε,P + Ψε,P

⎞
⎠ =

⎛
⎝ vε,P

0

⎞
⎠ ∈ Cε,P.

Our idea is to find P = Pε ∈ Bδ(P
0) such that

Sε

⎛
⎝ Aε,P + Φε,P

Hε,P + Ψε,P

⎞
⎠ ⊥ Cε,P. (5.1)

Let

Wε,j,i(P) :=
1

k(ε, β)

∫
Ωε

(S1(Aε,P + Φε,P, Hε,P + Ψε,P)
∂Aε,P

∂Pj,i

),
(5.2)

j = 1, ..., K, i = 1, 2,

Wε(P) := (Wε,1,1(P), ...,Wε,K,2(P)). (5.3)

Here we recall k(ε, β) = ε2βξε.
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Note that Wε(P) is a map which is continuous in P and our problem is

reduced to finding a zero of the vector field Wε(P).

Let

Ωε,Pj
= {y|εy + Pj ∈ Ω}. (5.4)

We calculate the asymptotic expansion of Wε,j,i(P):

1

k(ε, β)

∫
Ωε

S1(Aε,P + Φε,P, Hε,P + Ψε,P)
∂Aε,P

∂Pj,i

=
1

k(ε, β)

∫
Ωε

[
∆(Aε,P + Φε,P) − (Aε,P + Φε,P) +

(Aε,P + Φε,P)2

Hε,P + Ψε,P

]
∂Aε,P

∂Pj,i

=
1

k(ε, β)

∫
Ωε

[
∆(Aε,P + Φε,P) − (Aε,P + Φε,P) +

(Aε,P + Φε,P)2

Hε,P

]
∂Aε,P

∂Pj,i

+
1

k(ε, β)

∫
Ωε

[
(Aε,P + Φε,P)2

Hε,P + Ψε,P

− (Aε,P + Φε,P)2

Hε,P

]
∂Aε,P

∂Pj,i

= I1 + I2,

where I1 and I2 are defined at the last equality.

For I1, we have by Lemma 4.5

I1 =
1

k(ε, β)

( ∫
Ωε

[
∆(Aε,P + Φε,P) − (Aε,P + Φε,P) +

(Aε,P + Φε,P)2

Hε,P(Pj)

]
∂Aε,P

∂Pj,i

−
∫
Ωε

(Aε,P + Φε,P)2

H2
ε,P(Pj)

(Hε,P − Hε,P(Pj))
∂Aε,P

∂Pj,i

)
+ o(1)

=
1

εk(ε, β)

(
−

∫
Ωε,Pj

[∆(wε,j + Φε,P) − (wε,j + Φε,P) + (wε,j + Φε,P)2]
∂wε,j

∂yi

+
∫
Ωε,Pj

(wε,j + Φε,P,2)
2(y)

(Hε,P(Pj))2
(Hε,P(Pj + εy) − Hε,P(Pj))

∂wε,j(y)

∂yi

dy
)

+ o(1).

Note that by Lemma 4.5∫
Ωε,Pj

[∆Φε,P − Φε,P + 2wε,jΦε,P]
∂wε,j

∂yi

=
∫
Ωε,Pj

Φε,P,1
∂

∂yi

[∆w − w + w2] + o(εk(ε, β)) = o(εk(ε, β)),
(5.5)

∫
Ωε,Pj

(Φε,P)2 ∂wε,j

∂yi

=
∫
Ωε,Pj

(Φε,P,1)
2 ∂wε,j

∂yi

= o(εk(ε, β)). (5.6)
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Now by (4.11), (5.5) and (5.6),

I1 = o(1) − 1

εk(ε, β)

∫
Ωε,Pj

w2
ε,j(y)(Hε,P(Pj + εy) − Hε,P(Pj))

∂wε,j(y)

∂yi

dy

= o(1) +
2∑

k=1

∂F (P)

∂Pj,k

∫
R2

w2yk
∂w

∂yi

∫
R2

w2

= o(1) +
∂F (P)

∂Pj,i

∫
R2

w2yi
∂w

∂yi

∫
R2

w2

= o(1) − 1

3

∫
R2

w3
∫

R2
w2∂F (P)

∂Pj,i

. (5.7)

Similar to the estimate for I1, we obtain that for I2:

I2 =
1

k(ε, β)

∫
Ωε

[
(Aε,P + Φε,P)2

Hε,P + Ψε,P

− (Aε,P + Φε,P)2

Hε,P

]
∂Aε,P

∂Pj,i

= − 1

k(ε, β)

∫
Ωε

(Aε,P + Φε,P)2

H2
ε,P

Ψε,P
∂Aε,P

∂Pj,i

+ o(1)

= − 1

εk(ε, β)

∫
Ωε,Pj

1

3

∂w3
ε,j

∂yi

(Ψε,P − Ψε,P(Pj)) + o(1). (5.8)

Now we recall that Ψε,P satisfies

∆Ψε,P − β2Ψε,P + 2β2ξεAε,PΦε,P + β2ξεΦ
2
ε,P = 0.

Similar computations as those leading to (4.11) show that

Ψε,P(Pj + εy) − Ψε,P(Pj)

=
∫
Ω
(Gβ(Pj + εy, ξ) − Gβ(Pj, ξ))β

2ξε(2Aε,P(
ξ

ε
)Φε,P(

ξ

ε
) + Φ2

ε,P(
ξ

ε
))dξ

= o(εk(ε, β)|∇Pj
F (P)| |y|) + k(ε, β)R1(|y|) (5.9)

where R1(|y|) is a radially symmetric function.

Substituting (5.9) into (5.8), we obtain that

I2 = o(1) (5.10)

Combining the estimates for I1 and I2, we obtain

Wε(P) = c0∇PF (P) + o(1),

where c0 = −1
3

∫
R2 w3

∫
R2 w2 �= 0. Here o(1) is a continuous function of P

which goes to 0 as ε → 0.
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At P0, we have ∇P|P=P0F (P0) = 0, det(∇P∇P|P=P0(F (P0)) �= 0. Then,

since Wε is continuous and for ε, β small enough maps balls Bδ(P
0) into

(possibly larger) balls, standard Brouwer’s fixed point theorem shows that

for ε << 1 there exists a Pε such that Wε(P
ε) = 0 and Pε → P0.

Thus we have proved the following proposition.

Proposition 5.1. For ε sufficiently small there exist points Pε with Pε → P0

such that Wε(P
ε) = 0.

Finally, we prove Theorem 1.1.

Proof of Theorem 1.1: By Proposition 5.1, there exists Pε → P0 such

that Wε(P
ε) = 0. In other words, S1(Aε,Pε + Φε,Pε , Hε,Pε + Ψε,Pε) = 0.

Let Aε = ξε(Aε,Pε + Φε,Pε), Hε = ξε(Hε,Pε + Ψε,Pε). It is easy to see that

Hε = ξεT [Aε,Pε + Φε,Pε ] > 0. Hence Aε ≥ 0. By the Maximum Principle,

Aε > 0. Therefore (Aε, Hε) satisfies Theorem 1.1.

�

6. Stability Analysis I: Study of Large Eigenvalues

We consider the stability of (Aε, Hε) constructed in Theorem 1.1.

Linearizing the system (GM) around the equilibrium states (Aε, Hε) we

obtain the following eigenvalue problem⎧⎪⎨
⎪⎩

∆yφε − φε + 2Aε

Hε
φε − A2

ε

H2
ε
ψε = λεφε,

1
β2 ∆ψε − ψε + 2Aεφε = τλεψε.

(6.1)

Here D = 1
β2 , λε is some complex number and

φε ∈ H2
N(Ωε), ψε ∈ H2

N(Ω). (6.2)

Let

Âε = ξ−1
ε Aε = Aε,Pε + Φε,Pε , Ĥε = ξ−1

ε Hε = Hε,Pε + Ψε,Pε . (6.3)

Then (6.1) becomes

⎧⎪⎨
⎪⎩

∆yφε − φε + 2 Âε

Ĥε
φε − Â2

ε

Ĥ2
ε
ψε = λεφε,

1
β2 ∆ψε − ψε + 2ξεÂεφε = τλεψε.

(6.4)
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In this section, we study the large eigenvalues, i.e., we assume that |λε| ≥
c > 0 for ε small. Furthermore, we may assume that (1 + τ)c < 1

2
. If

Re(λε) ≤ −c, we are done. (Then λε is a stable large eigenvalue.) Therefore

we may assume that Re(λε) ≥ −c and for a subsequence ε → 0, λε → λ0 �= 0.

We shall derive the limiting eigenvalue problem which are NLEPs.

The key references are Theorem 2.2 and Theorem 2.5.

The second equation in (6.4) is equivalent to

∆ψε − β2(1 + τλε)ψε + 2β2ξεÂεφε = 0. (6.5)

We introduce the following

βλε = β
√

1 + τλε (6.6)

where in
√

1 + τλε we take the principal part of the square root. (This

means that the real part of
√

1 + τλε is positive, which is possible since Re

(1 + τλε) ≥ 1
2
.)

Let us assume that

‖φε‖H2(Ωε) = 1. (6.7)

We cut off φε as follows: Introduce

φε,j(y) = φε(y)χε,P ε
j
(εy), (6.8)

where χε,P ε
j
(x) was introduced in (3.5).

From (6.4) using Lemma 4.4 and Re(λε) ≥ −c and the exponential decay

of w (see (1.12)) it follows that

φε =
K∑

j=1

φε,j + e.s.t. in H2(Ωε). (6.9)

Then by a standard procedure we extend φε,j to a function defined on R2

such that

‖φε,j‖H2(R2) ≤ C‖φε,j‖H2(Ωε), j = 1, . . . , K.

Since ‖φε‖H2(Ωε) = 1, ‖φε,j‖H2(Ωε) ≤ C. By taking a subsequence of ε, we

may also assume that φε,j → φj as ε → 0 in H1(R2) for j = 1, . . . , K.

We have by (6.5)

ψε(x) =
∫
Ω

2β2ξεGβλε
(x, ξ)Âε(

ξ

ε
)φε(

ξ

ε
) dξ. (6.10)
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At x = P ε
i , i = 1, . . . , K, we calculate

ψε(P
ε
j ) = 2β2

∫
Ω

Gβλε
(P ε

i , ξ)
K∑

j=1

ξεw(
ξ − P ε

j

ε
)φε,j(

ξ

ε
) dξ + e.s.t.

= 2β2
∫
Ω
(
(βλε)

−2

|Ω| + G0(P
ε
i , ξ) + O(|βλε|2))

K∑
j=1

ξεw(
ξ − P ε

j

ε
)φε,j(

ξ

ε
) dξ + e.s.t.

= 2
∫
Ω
(

1

|Ω|(1 + τλε)
+ β2G0(P

ε
i , ξ) + O(|βλε|4))ξεw(

x − P ε
i

ε
)φε,i(

ξ

ε
) dξ

+2
∑
j �=i

∫
Ω
(

1

|Ω|(1 + τλε)
+ β2G0(P

ε
i , P

ε
j ) + O(|βλε|4))ξεw(

ξ − P ε
j

ε
)φε,j(

ξ

ε
) dξ

=

⎛
⎝2

K∑
j=1

1

|Ω|(1 + τλε)
ξεε

2
∫

R2
w(y)φε,j(y) dy

+ 2ξε
β2

2π
ε2 log

1

ε

∫
R2

w(y)φε,i(y) dy + O(|βλε |2ξεε
2)

⎞
⎠. (6.11)

We distinguish the same three cases as in Section 3.

Case 1: ηε → 0

We get from (6.11):

ψε(P
ε
i ) = 2

K∑
j=1

1

|Ω|(1 + τλε)
ξεε

2
∫

R2
wφε,j(1 + o(1)). (6.12)

Substituting (6.12) into the first equation (6.4), letting ε → 0 and using

(3.13) we arrive at the following nonlocal eigenvalue problem (NLEP)

∆φi − φi + 2wφi −
2
∑K

j=1

∫
R2 wφj

K(1 + τλ0)
∫
R2 w2

w2 = λ0φi, i = 1, ..., K.
(6.13)

If K = 1, by Theorem 2.2, problem (6.13) is stable if τ < τ1, which implies

that the large eigenvalues of (6.4) are stable.

If τ > τ1, by Theorem 2.2, problem (6.13) has an eigenvalue λ0 with Re

(λ0) ≥ a0 > 0 for some a0. We now claim that problem (6.4) also admits

an eigenvalue λε with λε = λ0 + o(1), which implies that problem (6.4) is

unstable. To this end, we follow the argument given in Section 2 of [4], where
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the following eigenvalue problem was studied:⎧⎪⎨
⎪⎩

ε2∆h − h + pup−1
ε h − qr

s+1+τλε

∫
Ω

ur−1
ε h∫

Ω
ur

ε
up

ε = λεh in Ω,

h = 0 on ∂Ω, (6.14)

where uε is a solution of the single equation⎧⎨
⎩ ε2∆uε − uε + up

ε = 0 in Ω,

uε > 0 in Ω, uε = 0 on ∂Ω.

Here 1 < p < N+2
N−2

if N ≥ 3 and 1 < p < +∞ if N = 1, 2, qr
(s+1)(p−1)

> 1 and

Ω ⊂ RN is a smooth bounded domain.

If uε is a single interior peak solution, then it can be shown ([34]) that the

limiting eigenvalue problem is a NLEP

∆φ − φ + pwp−1φ − qr

s + 1 + τλ0

∫
RN wr−1φ∫

RN wr
wp = λ0φ (6.15)

where w is the corresponding ground state solution in RN :

∆w − w + wp = 0, w > 0 in RN , w = w(|y|) ∈ H1(RN).

Dancer in [4] showed that if λ0 �= 0, Re(λ0) > 0 is an unstable eigenvalue

of (6.15), then there exists an eigenvalue λε of (6.14) such that λε → λ0.

We now follow his idea. Let λ0 �= 0 be an eigenvalue of problem (6.13)

with Re(λ0) > 0. We first note that from the equation for ψε, we can express

ψε in terms of φε. Now we write the first equation for φε as follows:

φε = Rε(λε)

⎡
⎣2

Âε

Ĥε

φε − Â2
ε

Ĥ2
ε

ψε

⎤
⎦, (6.16)

where Rε(λε) is the inverse of −∆ + (1 + λε) in H2
N(Ωε) (which exists if

Re(λε) > −1 or Im(λε) �= 0) and ψε = F [φε] is given by (6.10), where F is

a compact operator of φε. The important thing is that Rε(λε) is a compact

operator if ε is sufficiently small. The rest of the argument follows exactly

that in [4]. For the sake of limited space, we omit the details here.

This finishes the case K = 1.

If K > 1, problem (6.13) admits a positive eigenvalue: We can choose for

example

φ1 = −φ2 = Φ0, φ3 = . . . = φK = 0, λ0 = µ1,
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where Φ0 is the principal eigenfunction of L0 given in Lemma 2.1.

By the same argument as in the unstable eigenvalue case for K = 1, we

conclude that there is an eigenvalue of (6.4) with positive real part. Thus

this corresponds to the “shadow” system case: All multiple-peaked solutions

are unstable.

Case 2: ηε → ∞
In this case, similar to Case 1, we get from (6.11)

ψε(P
ε
i ) = 2ξε

ηε

|Ω|ε
2
∫

R2
wφε,i(1 + o(1)). (6.17)

and, for any τ ≥ 0, in the limit ε → 0 we obtain the following NLEP:

∆φi − φi + 2wφi − 2
∫
R2 wφi∫
R2 w2

w2 = λ0φi, i = 1, ..., K.
(6.18)

By Theorem 2.2, (6.18) has only stable eigenvalues.

In conclusion, if ηε → ∞, then the large eigenvalues of a K-peaked solution

are all stable. This is similar to the “strong coupling” system case.

Case 3: ηε → η0

Similar to Case 1, we get from (6.11)

ψε(P
ε
i ) = (2

K∑
j=1

1

|Ω|(1 + τλ0)
ξεε

2
∫

R2
wφε,j + 2ξε

η0

|Ω|ε
2
∫

R2
wφε,i)(1 + o(1))

(6.19)

and in the limit ε → 0 we obtain the following nonlocal eigenvalue problem

(NLEP):

∆φi − φi + 2wφi

− 2[(1 + η0(1 + τλ0))
∫
R2 wφi +

∑
j �=i

∫
R2 wφj]

(K + η0)(1 + τλ0)
∫
R2 w2

w2 = λ0φi, i = 1, ..., K.
(6.20)

Let

G =

⎛
⎜⎜⎜⎜⎜⎝

1 + η0(1 + τλ0) 1 · · · 1

1 1 + η0(1 + τλ0) · · · 1
...

...

1 · · · · · · 1 + η0(1 + τλ0)

⎞
⎟⎟⎟⎟⎟⎠ .

G is symmetric and the eigenvalues of G are given by

ρ1 = . . . = ρK−1 = η0(1 + τλ0), ρK = K + η0(1 + τλ0).
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Let P be an orthogonal matrix such that

PGP−1 =

⎛
⎜⎜⎜⎜⎜⎝

η0(1 + τλ0) 0 · · · 0

0 η0(1 + τλ0) · · · 0

0 · · · η0(1 + τλ0) 0

0 · · · 0 K + η0(1 + τλ0)

⎞
⎟⎟⎟⎟⎟⎠ .

From (6.20) using the notation

Φ =

⎛
⎜⎜⎜⎝

φ1

...

φK

⎞
⎟⎟⎟⎠

we get

∆Φ − Φ + 2wΦ − 2G ∫
R2 Φw

(K + η0)(1 + τλ0)
∫
R2 w2

w2 = λ0Φ.

Let PΦ = Φ̄. Then we get

∆Φ̄ − Φ̄ + 2wΦ̄ − 2

(K + η0)(1 + τλ0)
∫
R2 w2

×

⎛
⎜⎜⎜⎜⎜⎝

η0(1 + τλ0) 0 · · · 0

0 η0(1 + τλ0) · · · 0

0 · · · η0(1 + τλ0) 0

0 · · · 0 K + η0(1 + τλ0)

⎞
⎟⎟⎟⎟⎟⎠ [

∫
R2

wΦ̄]w2 = λ0Φ̄,

and, written in components,

∆Φ̄i − Φ̄i + 2wΦ̄i − 2ρi

(K + η0)(1 + τλ0)
∫
R2 w2

[
∫

R2
w(y)Φ̄i(y) dy]w2 = λ0Φ̄i,

i = 1, . . . , K. (6.21)

For i = 1, ..., K − 1, (6.21) becomes

∆Φ̄i − Φ̄i + 2wΦ̄i − 2η0

(K + η0)
∫
R2 w2

[
∫

R2
w(y)Φ̄i(y) dy]w2 = λ0Φ̄i,

i = 1, . . . , K − 1. (6.22)

For i = K, (6.21) becomes

∆Φ̄K − Φ̄K + 2wΦ̄K − 2(K + η0(1 + τλ0))

(K + η0)(1 + τλ0)
∫
R2 w2

[
∫

R2
w(y)Φ̄K(y) dy]w2 = λ0Φ̄K .

(6.23)
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If K > 1 and 2η0

K+η0
< 1 (i.e. η0 < K), then by Theorem 2.2, problem

(6.22) is unstable for all τ ≥ 0, which implies that problem (6.4) is linearly

unstable for all τ ≥ 0.

If K ≥ 1 and 2η0

K+η0
> 1, or what is equivalent, η0 > K, then by Theorem

2.2, problem (6.22) is stable. By Theorem 2.5 problem (6.23) is stable if

0 ≤ τ < τ2 or τ > τ3 for suitable τ2 ≤ τ3.

If K = 1 and η0 < 1, we only have problem (6.23). By Theorem 2.5,

problem (6.23) is stable if 0 ≤ τ < τ4 and unstable for τ > τ5, for suitable

τ4 ≤ τ5.

This finishes the proof of Theorem 1.2 in the large eigenvalue case.

7. Stability Analysis II: Study of Small Eigenvalues

We now study (6.4) for small eigenvalues. Namely, we assume that λε → 0

as ε → 0. We will show that the small eigenvalues are related to the matrix

M(P0) given in (1.5).

Let us assume that condition (*) holds true. That is, all eigenvalues of

the matrix M(P0) are negative. Our main result in this section says that if

λε → 0, then

λε ∼ ε2k(ε, β)σ0 (7.1)

where σ0 is an eigenvalue of M(P0). From (7.1), we see that all small eigen-

values of Lε are stable, provided that condition (*) holds.

Again let (Aε, Hε) be the equilibrium state of (1.7) which has been rigor-

ously constructed in Theorem 1.1 and (Âε, Ĥε) be the rescaled solution given

by (6.3).

We cut off Âε as follows:

Âε,j(y) = χε,P ε
j
(εy)Âε(y), j = 1, ..., K, (7.2)

where χε,P ε
j

was defined in (3.5).

Then it is easy to see that

Âε(y) =
K∑

j=1

Âε,j(y) + e.s.t. in H2(Ωε). (7.3)
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We now give a formal argument which should motivate to the reader our

choice of decomposition of φε which will be given in (7.8) below. Later, in

Step 1 of the proof it will be shown that this choice gives the correct answer

in leading order.

In Section 6, we have derived three NLEPs (6.13), (6.18), (6.21). Let us

now set λ0 = 0 in (6.13). We have that

∆φi − φi + 2wφi −
2
∑K

j=1

∫
R2 wφj

K
∫
R2 w2

w2 = 0, i = 1, ..., K,

which is equivalent to

L0(φi −
2
∑K

j=1

∫
R2 wφj

K
∫
R2 w2

w) = 0, i = 1, ..., K,

where L0 is defined at (2.1). By Lemma 2.1, we have

φi −
2
∑K

j=1

∫
R2 wφj

K
∫
R2 w2

w ∈ span { ∂w

∂yj

, j = 1, 2}, i = 1, ..., K.
(7.4)

Multiplying (7.4) by w and integrating over R2 and summing up, we have

K∑
j=1

∫
R2

wφj = 0

and hence

φj ∈ K0 = span { ∂w

∂yk

, k = 1, 2}, j = 1, ..., K. (7.5)

Setting λ0 = 0 in (6.18) and (6.21) and using the technical condition (1.8),

we also obtain (7.5). We omit the details. (Please see Appendix A for similar

arguments.)

(7.5) suggests that at least formally, we should have

φε ∼
K∑

j=1

2∑
k=1

aj,k
∂w

∂yk

(y − P ε
j

ε
) (7.6)

where aj,k are some constant coefficients.

Next we find a good approximation of ∂w
∂yk

(y − P ε
j

ε
).

Note that Âε,j(y) ∼ w(y − P ε
j

ε
) in H2(Ωε) and Âε,j satisfies

∆yÂε,j − Âε,j +
(Âε,j)

2

Ĥε

+ e.s.t. = 0.
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Thus ∂Âε,j

∂yk
satisfies

∆y
∂Âε,j

∂yk

− ∂Âε,j

∂yk

+
2Âε,j

Ĥε

∂Âε,j

∂yk

− ε
(Âε,j)

2

Ĥ2
ε

∂Ĥε

∂xk

+ e.s.t. = 0,
(7.7)

and we have ∂Âε,j

∂yk
= (1 + o(1)) ∂w

∂yk
(y − P ε

j

ε
).

We now decompose

φε =
K∑

j=1

2∑
k=1

aε
j,k

∂Âε,j

∂yk

+ φ⊥
ε (7.8)

with complex numbers aε
j,k, where

φ⊥
ε ⊥ K̃ε := span {∂Âε,j

∂yk

|j = 1, . . . , K, k = 1, 2} ⊂ H2
N(Ωε).

(7.9)

Our main idea is to show that this is a good choice since the error φ⊥
ε is

small in a suitable norm and thus can be neglected. Then we obtain algebraic

equations for aε
j,k which are related to the matrix M(P0).

Accordingly, we decompose ψε

ψε(x) =
K∑

j=1

2∑
k=1

aε
j,kψε,j,k + ψ⊥

ε , (7.10)

where ψε,j,k is the unique solution of the problem⎧⎪⎨
⎪⎩

1
β2 ∆xψε,j,k − (1 + τλε)ψε,j,k + 2ξεÂε,j

∂Âε,j

∂yk
= 0 in Ω,

∂ψε,j,k

∂ν
= 0 on ∂Ω, (7.11)

and ψ⊥
ε satisfies⎧⎨

⎩
1
β2 ∆xψ

⊥
ε − (1 + τλε)ψ

⊥
ε + 2ξεÂεφ

⊥
ε = 0 in Ω,

∂ψ⊥
ε

∂ν
= 0 on ∂Ω. (7.12)

Suppose that ‖φε‖H2(Ωε) = 1. Then |aε
j,k| ≤ C since

aε
j,k =

∫
Ωε

φε
∂Âε,j

∂yk∫
R2( ∂w

∂y1
)2

+ o(1).

Substituting the decompositions of φε and ψε into (6.4) we have

ε
K∑

j=1

2∑
k=1

aε
j,k

(Âε,j)
2

(Ĥε)2

[
−1

ε
ψε,j,k +

∂Ĥε

∂xk

]
+ e.s.t.
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+∆yφ
⊥
ε − φ⊥

ε + 2
Âε

Ĥε

φ⊥
ε − (Âε)

2

(Ĥε)2
ψ⊥

ε − λεφ
⊥
ε

= λε

K∑
j=1

2∑
k=1

aε
j,k

∂Âε,j

∂yk

in Ωε. (7.13)

Set

I3 := ε
K∑

j=1

2∑
k=1

aε
j,k

(Âε,j)
2

(Ĥε)2

[
−1

ε
ψε,j,k +

∂Ĥε

∂xk

]
(7.14)

and

I4 := ∆yφ
⊥
ε − φ⊥

ε + 2
Âε

Ĥε

φ⊥
ε − (Âε)

2

(Ĥε)2
ψ⊥

ε − λεφ
⊥
ε . (7.15)

We divide our proof into two steps.

Step 1: Estimates for φ⊥
ε .

The main contribution of this step is to obtain good error bounds for φ⊥
ε .

We use equation (7.13). Since φ⊥
ε ⊥ K̃ε, then similar to the proof of

Proposition 4.2 it follows that

‖φ⊥
ε ‖H2(Ωε) ≤ C‖I3‖L2(Ωε). (7.16)

Let us now compute I3.

Let ξε and k(ε, β) be the same as in Theorem 1.1 then we calculate that

for x ∈ Bδ(P
ε
l ):

∂Ĥε

∂xk

(x) = ξεβ
2
∫
Ω

∂

∂xk

Gβ(x, ξ)(Âε(
ξ

ε
))2 dξ

= ξεβ
2

⎛
⎝∫

Ω

∂

∂xk

(K0(|x − ξ|) − H0(x, ξ))(Âε,l(
ξ

ε
))2 dξ

+
∫
Ω

∑
s �=l

∂

∂xk

G0(x, ξ)(Âε,s(
ξ

ε
))2 dξ + O(β4ε2)

⎞
⎠

and by (3.4)

ψε,l,k(x) = 2β2ξε

∫
Ω

Gβλε
(x, z)Âε,l

∂Âε,l

∂yk

dz

= εξεβ
2
∫
Ω
(K0(|x − ξ|) − H0(x, ξ) + O(β2))

∂

∂ξk

(Âε,l)
2 dξ.
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Thus for x ∈ Bδ(P
ε
l ), we have

∂Ĥε

∂xk

(x) − 1

ε
ψε,l,k(x)

= ξεβ
2

⎡
⎣(∫

Ω
[

∂

∂xk

K0(|x − ξ|)(Âε,l(
ξ

ε
))2 − K0(|x − ξ|) ∂

∂ξk

(Âε,l(
ξ

ε
))2]dξ

)

−
∫
Ω
[

∂

∂xk

H0(x, ξ))(Âε,l(
ξ

ε
))2 − H0(x, ξ)

∂

∂ξk

(Âε,l(
ξ

ε
))2]dξ

+
∫
Ω

∑
s �=l

∂

∂xk

G0(x, ξ)(Âε,s(
ξ

ε
))2 dξ + O(ε2β4)

⎤
⎦.

Using the fact that

∂

∂xk

K0(|x − ξ|) +
∂

∂ξk

K0(|x − ξ|) = 0 for x �= ξ (7.17)

and integrating by parts we get

∂Ĥε

∂xk

(x) − 1

ε
ψε,l,k(x)

= k(ε, β)
∫

R2
w2(− ∂

∂xk

Fl(x) + o(ε)) (7.18)

where

Fl(x) = H0(x, P ε
l ) −∑

j �=l

G0(x, P ε
j ). (7.19)

Observe that
∂

∂xm

Fl(x)|x=P ε
l

= o(1)

since Pε → P0 and P0 is a critical point of F (P).

Hence we have

‖I3‖L2(Ωε) = o(εk(ε, β)
K∑

j=1

2∑
k=1

|aε
j,k|) (7.20)

and

‖φ⊥
ε ‖H2(Ωε) ≤ C‖I3‖L2(Ωε) = o(εk(ε, β)

K∑
j=1

2∑
k=1

|aε
j,k|). (7.21)

Using the equation for ψ⊥
ε and (7.21), we obtain that

ψ⊥
ε (x) = o(εk(ε, β)

K∑
j=1

2∑
k=1

|aε
j,k|). (7.22)
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We calculate∫
Ωε

(I4
∂Âε,l

∂ym

)dξ =
∫
Ωε

(
Â2

ε,l

H2
ε

(ε
∂Ĥε

∂xm

φ⊥
ε − ∂Âε,l

∂ym

ψ⊥
ε ))dξ − λε

∫
Ωε

φ⊥
ε

∂Âε,l

∂ym

=
∫
Ωε,Pε

l

Â2
ε,l

Ĥ2
ε

(ε
∂Ĥε

∂xm

(P ε
l + εy) − ε

∂Ĥε

∂xm

(P ε
l ))φ⊥

ε

+
∫
Ωε,Pε

l

Â2
ε,l

Ĥ2
ε

(ε
∂Ĥε

∂xm

(P ε
l ))φ⊥

ε

−
∫
Ωε,Pε

l

Â2
ε,l

Ĥ2
ε

∂Âε,l

∂ym

(ψ⊥
ε (P ε

l + εy) − ψ⊥
ε (P ε

l )))dξ

−λε

∫
Ωε

φ⊥
ε

∂Âε,l

∂ym

= o(ε2k(ε, β)
K∑

j=1

2∑
k=1

|aε
j,k|) (7.23)

by using (7.12) and the estimate

∂Ĥε

∂xm

= O(k(ε, β)) in Ω.

Step 2: Algebraic equations for aε
j,k.

This step gives us algebraic equations for aε
j,k.

Multiplying both sides of (7.13) by
∂Âε,l

∂ym
and integrating over Ωε, we obtain

r.h.s. = λε

K∑
j=1

2∑
k=1

aε
j,k

∫
Ωε

∂Âε,j

∂yk

∂Âε,l

∂ym

= λε

K∑
j=1

2∑
k=1

aε
j,kδjlδkm

∫
R2

(
∂w

∂y1

)2

dy(1 + o(1))

= λεa
ε
l,m

∫
R2

(
∂w

∂y1

)2

dy(1 + o(1))

and by (7.18) and (7.23)

l.h.s. = ε
K∑

j=1

2∑
k=1

aε
j,k

∫
Ωε,Pε

l

(Âε,j)
2

(Ĥε)2

[
−1

ε
ψε,j,k +

∂Ĥε

∂xk

]
∂Âε,l

∂ym

+
∫
Ωε

(I4
∂Âε,l

∂ym

)dξ
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= ε
K∑

j=1

2∑
k=1

aε
j,k

∫
Ωε,Pε

l

(Âε,j)
2

(Ĥε)2

[
−1

ε
ψε,j,k +

∂Ĥε

∂xk

]
∂Âε,l

∂ym

+o(ε2k(ε, β)
K∑

j=1

2∑
k=1

|aε
j,k|). (7.24)

Using (7.18), we obtain

l.h.s. = εk(ε, β)
K∑

j=1

2∑
k=1

aε
j,k

×
∫
Ωε

(Âε,j)
2

(Ĥε)2
(− ∂

∂xk

Fj(x))
∂Âε,l

∂xm

+o(ε2k(ε, β)
K∑

j=1

2∑
k=1

|aε
j,k|)

= ε2k(ε, β)
∫

R2
w2 ∂w

∂ym

ym

K∑
j=1

2∑
k=1

aε
j,k

(
− ∂

∂P ε
l,m

∂

∂P ε
j,k

F (Pε)

)

+o(ε2k(ε, β)
K∑

j=1

2∑
k=1

|aε
j,k|). (7.25)

Note that ∫
R2

w2 ∂w

∂ym

ym = −1

3

∫
R2

w3

Thus we have

l.h.s. =
ε2k(ε, β)

3
(
∫

R2
w3)

K∑
j=1

2∑
k=1

aε
j,k

(
∂

∂P ε
l,m

∂

∂P ε
j,k

F (Pε)

)
(7.26)

+o(ε2k(ε, β)
K∑

j=1

2∑
k=1

|aε
j,k|).

Combining the l.h.s. and r.h.s, we have

ε2k(ε, β)

3
(
∫

R2
w3)

K∑
j=1

2∑
k=1

aε
j,k

(
∂

∂P ε
l,m

∂

∂P ε
j,k

F (Pε)

)

+o(ε2k(ε, β)
K∑

j=1

2∑
k=1

|aε
j,k|)

= λεa
ε
l,m

∫
R2

(
∂w

∂y1

)2

dy(1 + o(1)). (7.27)
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From (7.27), we see that the small eigenvalues with λε → 0 satisfy |λε| ∼
ε2k(ε, β). Furthermore,

λε

ε2k(ε, β)
→

∫
R2 w3

3
∫
R2( ∂w

∂y1
)2dy

σ0

as ε → 0, where σ0 is an eigenvalue of the matrix M(P0), and Pε → P0 as

ε → 0 . (The vector �aε = (aε
1,1, a

ε
1,2, ...., a

ε
K,2)

T approaches an eigenvector of

M(P0) corresponding to σ0.) By condition (*), the matrix M(P0) is negative

definite, it follows that Re(λε) < 0. Therefore the small eigenvalues λε are

stable for (6.4) if ε is small enough.

Completion of the proofs of Theorem 1.2:

Theorem 1.2 now follows from Section 6 and Section 7.

�

8. Discussion

Let us discuss what has been achieved in this paper and which important

questions are still left open. We have investigated the Gierer-Meinhardt

system which is a very important reaction-diffusion system within the class

of Turing systems. We study the weak coupling case, i.e. the diffusion

coefficient D of the inhibitor tends to infinity, for small diffusion coefficient

ε2 of the activator. In a bounded domain we rigorously prove existence

of multi-peaked solutions and are able to locate the peaks in terms of the

Green’s function and its derivatives.

Furthermore, we derive rigorous results on linear stability. There are o(1)

eigenvalues which are given to leading order in terms of the Green’s function

and its derivatives and are implicitly linked to the spike locations. It would

be desirable to find conditions on the small eigenvalues which are not given

in terms of the Green’s function and its derivatives but explicitly in terms

of the domain Ω.

On the other hand, there are also O(1) eigenvalues which are given as

eigenvalues of related nonlocal eigenvalue problems in R2. For many cases

we can show that these O(1) eigenvalues lie on the left or right half of the
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complex plane. Some of the cases, in particular in the borderline case ηε → K

and in the case τ is finite, are still missing.

There are no results in either the weak or the strong coupling case on the

dynamics of the full Gierer-Meinhardt system in a two-dimensional domain.

Furthermore, there are no results at all about existence or stability of K-

peaked solutions in a three-dimensional domain. These important questions

are still open.

9. Appendix A: Invertibility of the linearized operator and

the proofs of Propositions 4.2 and 4.3

In this appendix we prove the propositions 4.2 and 4.3. This establishes

the invertibility of the linearized operator.

Proof of Proposition 4.2: We follow the Liapunov-Schmidt reduction

method which has been used in [7] and [37] before. Suppose that (4.21) is

false. Then there exist sequences {εk}, {βk}, {Pk}, and {Σk} with εk > 0,

εk → 0, βk > 0, βk → 0, Pk ∈ Λδ, Σk =

⎛
⎝ φk(y)

ψk(x)

⎞
⎠ ∈ K⊥

εk,Pk
such that

‖Lεk,Pk
Σk‖L2(Ωεk

)×L2(Ω) → 0, (9.1)

‖Σk‖H2(Ωεk
)×H2(Ω) = 1, k = 1, 2, . . . . (9.2)

Written explicitly, we have the following situation:

∆yφk − φk + 2Aεk,Pk
H−1

εk,Pk
φk − A2

εk,Pk
H−2

εk,Pk
ψk = f 1

k + f 2
k ,

(9.3)

where

‖f 1
k‖L2(Ωεk

) → 0, f 2
k ∈ C⊥

εk,Pk
,

∆xψk − β2
kψk + 2β2

kξεk
Aεk,Pk

φk = gk, (9.4)

‖gk‖L2(Ω) → 0,

φk ∈ K⊥
εk,Pk

, (9.5)

‖φk‖2
H2(Ωεk

) + ‖ψk‖2
H2(Ω) = 1. (9.6)

We now show that this is impossible. To simplify notation, we set Ak =

Aεk,Pk
, Ωk = Ωεk

, ξk = ξεk
.
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In the first step of the proof we show that the linearized problem given

by (9.3), (9.4) tends to a limit problem as ε → 0. This analysis is very

similar to the one given in Section 6 in the case λ0 = 0. In fact, the analysis

in Section 6 also covers this case (but does not give the leading order of

the o(1) eigenvalues and their eigenfunctions). Therefore we may introduce

φεk,j, j = 1, . . . , K as before by cut-off and extension.

If we decompose

φk =
K∑

j=1

φk,j + φk,K+1

it is easy to see that φk,K+1 = o(1) in H2(Ωk) since it satisfies the equation

∆yφk,K+1 − φk,K+1 = o(1) in H2(Ωk).

This implies

φk,K+1 = o(1) in H2(Ωk).

We define Ψk,i for i = 1, . . . , K + 1 by

∆xΨk,i − β2
kΨk,i + 2β2

kξε,kAεk,Pk
φk,i = 0,

∂Ψk,i

∂ν
= 0 on ∂Ω.

Note that as ‖gk‖L2(Ω) → 0 we have

‖ψk −
K+1∑
k=1

ψk,i‖H2(Ω) → 0.

Since φk,K+1 = o(1) in H2(Ωk) we also have ‖ψk,K+1‖H2(Ω) = o(1).

Letting k → ∞ it can be shown as in Section 6 that

φεk,j → φj in H2(R2).

Then for i = 1, . . . , K we have

φi ∈
{

φ ∈ H2(R2) |
∫

R2
φ

∂w

∂yj

dy = 0, j = 1, 2

}
= K⊥

0

and φi has to satisfy the following nonlocal linear problem:

Case 1: ηε → 0

∆φi − φi + 2wφi −
2
∑K

j=1

∫
R2 wφj

K
∫
R2 w2

w2 ∈ C⊥
0 . (9.7)

Case 2: ηε → ∞
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∆φi − φi + 2wφi − 2
∫
R2 wφi∫
R2 w2

w2 ∈ C⊥
0 . (9.8)

Case 3: ηε → η0

∆φi − φi + 2wφi − 2[(1 + η0)
∫
R2 wφi +

∑
j �=i

∫
R2 wφj]

(K + η0)
∫
R2 w2

w2 ∈ C⊥
0 ,

(9.9)

where

C0 := span

{
∂w

∂yj

, j = 1, 2

}

and K⊥
0 , C⊥

0 denotes the orthogonal complement with respect to the scalar

product of L2(R2) in the space H2(R2) and L2(R2), respectively.

After transforming the functions (φ1, . . . , φK) in Case 3 in the same way

as in Section 6 (i.e. diagonalizing the matrix G) and in Case 1 diagonalizing

the matrix

H =

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1

1 1 · · · 1
...

...
...

...

1 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎠ ,

we get the following decoupled equations for φi:

∆yφi − φi + 2wφi − 2ρi

∫
R2 wφi∫
R2 w2

w ∈ C⊥
0 , (9.10)

where

ρi =

⎧⎪⎪⎨
⎪⎪⎩

0, . . . , 0, K in Case 1,

1, . . . , 1 in Case 2,
η0

K+η0
, . . . , η0

K+η0
, 1 in Case 3.

Since L0w = w2, (9.10) can be written as

(∆y − 1 + 2w)(φi − 2ρi

∫
R2 wφi∫
R2 w2

w) ∈ C⊥
0 .

Since the operator

L0 = ∆y − 1 + 2w : K⊥
0 → C⊥

0

is one-to-one and invertible map (by Lemma 2.1) we have

φi − 2ρi

∫
R2 wφi∫
R2 w

= 0. (9.11)
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Now we multiply by w and integrate. This gives

(1 − 2ρi)
∫

R2
wφi = 0. (9.12)

If ρi �= 1
2

then by (9.12) ∫
R2

wφi = 0

which implies that

L0φi = 0, i = 1, ..., K

and by Lemma 2.1 that

φi ∈ K0, i = 1, ..., K.

Therefore by (9.11)

φi = 0, i = 1, ..., K.

Now we can explain why Remark 1.1) is important: It is easy to see that

ρi = 1
2

for some i if and only K > 1 and η0 = K. In this case the method of

Liapunov-Schmidt reduction is not readily applicable.

By taking the limit in (9.4) we see that this implies ψi → 0 in H2(Ω).

Furthermore, the assumption (9.6) implies that

K∑
i=1

(‖φi‖2
H2(R2) + ‖ψi‖2

H2(Ω)) = 1.

This contradicts φi = ψi = 0. and the proof of Proposition 4.3 is completed.

�
Proof of Proposition 4.3: We just need to show that the conjugate op-

erator of Lε,P (denoted by L∗
ε,P) is injective from K⊥

ε,P to C⊥
ε,P. Suppose not.

Then there exist φ ∈ K⊥
ε,P, ψ ∈ W 2,t

N (Ω) such that

∆yφ − φ + 2Aε,PH−1
ε,Pφ + 2ξεβ

2Aε,Pψ ∈ C⊥
ε,P,

∆xψ − β2ψ − A2
ε,PH−2

ε,Pφ = 0,

‖φ‖2
H2(Ωε) + ‖ψ‖2

H2(Ω) = 1.

Similar to the proof of Proposition 4.2, we obtain

Lε,Pφ + o(1) ∈ C⊥
ε,P, φ ∈ K⊥

ε,P.

By Proposition 4.2, ‖φ‖H2(Ωε) = o(1) and hence ‖ψ‖H2(Ω) = o(1). This is a

contradiction and the proof of Proposition 4.3 is finished.
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