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An aerodynamic journal bearing that is capable of self-generating squeeze-film pressure is presented and its dynamic characteristics
investigated numerically and experimentally. A numerical method based on a time-marching static model was applied to assess
the orbit trajectory path of the rotor upon a perturbation. Experimental results were obtained to validate the effect of the self-
generated squeeze-film pressure on the stability of the rotor. Analyzing the Fast Fourier Transform (FFT) responses of the rotor
orbits enabled identification of self-excited whirling instabilities. Both numerical and experimental results showed that increasing
the squeeze-film effect of the bearing could raise the threshold speed of instability.

1. Introduction

Operational speed of gas bearings is limited by instabilities
associated with modal vibration and self-excited whirl of
the rotor. The latter is often considered to be the more
destructive of the two. Reynolds and Gross [1] experimented
on self-excited whirl of an aerodynamic journal bearing by
increasing the speed until whirling instability was observed
from the orbital path. It was found that an indication
of a developing self-excited whirl is a tendency of the
whirl circle to break into two connecting circles. It was
also concluded that running at high eccentricities either
with sufficient loading or imbalance of rotor can raise
the instability threshold. More recent techniques like Fast
Fourier Transform (FFT) [2] and bifurcation analysis have
been applied to rotor orbits in determining the dynamic
characteristics of the bearing.

Numerical techniques have been applied for the assess-
ment of the dynamic performance and stability of fluid-
film bearings. The linear perturbation method calculates
the linear stiffness and damping coefficients from a small
distance away from the rotor’s equilibrium position [3].
Using those coefficients, Lund [4] introduced the critical
mass parameter. The critical mass is the threshold mass
to which the rotor can operate stably, and consequently,

negative critical mass suggests the inevitability of self-
excited whirl instability. The flexibility of the nonlinear orbit
method, introduced by Castelli and Elrod [5], has been
recognized owing to the growth of computational power.
The orbit method consists of coupling the motion and fluid
equations and marching them together in time. If the journal
is displaced from its equilibrium position, the orbital path
of the rotor is used to assess the stability of the bearing. If
the rotor returns to the equilibrium position, the condition
is considered stable, and unstable if the journal spirals out
with increasing radius. Although the nonlinear orbit method
has no limitations or assumptions, the cost of the process is
still considered to be high as compared to other analytical
methods, particularly for parametric studies. Dynamics of
hydrostatic micro-gas journal bearing was studied by Liu and
Spakovszky [6]. In particular, they considered the effect of
bearing stiffness anisotropy on bearing’s dynamic behaviour.
In another paper by Teo et al. [7], dynamics of ultra-short gas
bearing is presented and discussed.

In the previous paper, the authors proposed an aero-
dynamic journal bearing with elastic hinges that utilizes
piezoelectric elements to actively deform the plain circular
bearing clearance to a three-lobe bearing clearance [8].
Experimental and numerical results show that the bearing
was capable of generating the squeeze-film pressure effect to
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Table 1: Dimensions of test bearing.

Variable Values

m0 650 g

l0 25 mm

r0 15 mm

c 40 μm

ew0 1.77 μm (60 V offset)

levitate the rotor. This self-generating squeeze-film pressure
was proposed as a substitute to aerostatic pressure. The
dynamic response of a rotor supported by squeeze-film
pressure at low rotational speeds is the main theme of this
paper. Experimental and numerical results are presented
to demonstrate the role of the self-generated squeeze-film
pressure in improving the dynamic characteristics of the gas
bearing. It is believed that for the first time this paper demon-
strates dynamic behaviour of the rotor supported purely
by the pressure generated due to squeeze-film mechanism
at rotational speeds of up to the initiation of aerodynamic
pressure generation.

2. Theoretical Analyses

The working principle of the bearing has been described
elsewhere [6] and shall not be repeated here. Figure 1(a)
shows the three-lobe test bearing and the dimensions
are summarized in Table 1. Figure 1(b) shows schematic
diagram of the shaft and the bearing; the bearing is preloaded
by the piezoelectric actuators to create the static three-lobe
bearing clearance. The active three-lobe film thickness [6] is
described as follows:

HW = hWO

c
+
hWA

c

= 1 + εY cos(θ) + εX sin(θ)− εWO cos(3θ)

+ |0.07986εWO cos(3θ)| − εWA sin(ωt) cos(3θ)

+ |0.07986εWA sin(ωt) cos(3θ)|.
(1)

A full transient analysis of the rotor and the journal bearing
involves two squeeze-film effects, one due to the constant
cyclic squeezing action of the bearing generated by the
piezoelectric actuators and the other due to the natural
translation of the rotor.

Consideration of both squeeze terms yields to a highly
nonlinear transient problem, with an increase of computa-
tional time and instabilities. For this reason, the full transient
method proposed by Castelli and Elrod [5] had never been
applied to squeeze-film air bearings. However, by assuming
the rotor translation speed to be negligible compared to
the bearing’s active squeeze-film frequency the latter squeeze
term may be neglected and a quasistatic method developed.

2.1. Comparison between the Static and Transient Orbit
Method. The comparison between the static and transient

orbit method was investigated on the plain, three-wave
aerodynamic bearing. Here, the self-generated squeeze-film
frequency is zero, εWA = 0, ω = 0. The governing
equations for the transient and static orbit method are
shown in (2a) and (2b), respectively; details of solution
procedures are shown in the next section. The static method
is different to the transient method by neglecting the natural
squeeze term in the Reynolds equation, and consequently the
rotor’s translational inertia was also neglected. However, the
solution procedure is the same for both methods when an
attempt is made to search for the equilibrium position by a
time-marching technique. Although the true rotor trajectory
path may only be obtained from the full transient solutions,
if stable, it will yield to the same steady-state solution as the
static analysis.

∂

∂θ

(
PH3 ∂P

∂θ

)
+

∂

∂Z

(
PH3 ∂P

∂Z

)
= Λ

∂(PH)
∂θ

+ 2Λ
∂(PH)
∂T

,

ε̇Y = ε̈Y0ΔT + ε̇Y0, ε̇X = ε̈X0ΔT + ε̇X0,

εY = ε̇YΔT + εY0, εX = ε̇XΔT + εX0,
(2a)
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(
PH3 ∂P
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+

∂

∂Z

(
PH3 ∂P

∂Z

)
= Λ

∂(PH)
∂θ

,

ε̇Y = ε̈Y0ΔT, ε̇X = ε̈X0ΔT,

εY = ε̇YΔT + εY0, εX = ε̇XΔT + εX0.

(2b)

Figures 2(a)–2(c) show the orbital paths of the rotor
obtained from the static and transient method for a
plain circular journal bearing with increasing external load.
Remarkable differences in the two trajectories can be seen, in
particular at the presence of self-excited whirl. The transient
solution of Figure 2(a) showed an increasing whirling orbital
path, whereas the static solution showed a converging
solution. Figures 2(a)–2(c) showed that the stability of the
rotor could be improved by increasing the external load; here
the static and transient analysis showed fast convergence of
the same solution.

Figures 3(a)–3(d) show the effect of the rotor’s trajectory
paths with the size of the static three-lobe clearance. With
a light load of 56.65 g and small static amplitude (εwo),
the results showed that the rotor’s equilibrium position was
never reached, and instead, the rotor undergoes a periodic
orbit as shown in Figures 3(a) and 3(b). However, as a
result of neglecting the rotor’s inertia, the sizes of the orbits
obtained from the static solution are much smaller than
those from the transient solution. Figures 3(c) and 3(d)
showed that the stability of the plain three-lobe bearing could
be improved by increasing the lobe eccentricity. Here the
static and transient solutions showed good agreements with
the absence of whirling.

Although the trajectory paths obtained from the static
analysis differ from those produced by the true transient
analysis, they might still be applied to assess the dynamic
characteristic of the bearing. If the bearing is operating
stable, the static solutions should yield to a converged
value; however, if excess oscillations are found, self-excited
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Figure 1: (a) Photograph of the test bearing shell with arrangements of piezoelectric actuators. (b) The static three-lobe geometry of the
bearing (not to scale).

whirl instability is most likely to occur. Self-excited whirling
is commonly found in lightly loaded bearings with small
eccentricities εY . However, it has to be emphasized that
the correct method is the true transient orbit method even
though it is time consuming.

2.2. Application of the Static Orbit Method. With the
assumptions generally used in gas film bearing analysis [6],
the pressure of the film can be obtained by solving the
quasisteady-state Reynolds equation, as shown in (3) in its
nondimensional form.

∂

∂X

(
PH3 ∂P

∂X

)
+

∂

∂Z

(
PH3 ∂P

∂Z

)
= Λ

∂(PH)
∂X

+ σ
∂(PH)
∂τ

.

(3)

The squeeze number σ is given by

σ = 12μωr2
0

pac2
(4)

and the bearing number Λ is represented by

Λ = 12μΩτ0

p0c2
. (5)

Here Λ characterizes the self-acting aerodynamic pressure
generated by the rotational speed Ω of the rotor at an eccen-
tric position and σ characterizes the self-acting squeeze-film
pressure generated by cycling three-lobe bearing clearance at
a frequency of ω.

The nonlinear Reynolds equation was discretised using
the Finite Difference Method (FDM) and solved iteratively
using an under-relaxation technique with the following
boundary conditions.

P|z=0 = P|z=1 = 1. (6)

The initial conditions are

P|τ=0 = 1, εy|τ=0 = εY0|τ=0 = εX=0|τ=0 = 0. (7)

For a continuous film,

P|θ=0P|θ=2π . (8)

For constant periodicity at quasisteady-state,

P|τ = P|τ+2π , H|τ = H|τ+2π. (9)

The forces arising from the pressure in the air film were
estimated as the integrals of the pressure over the spatial
domains for a complete cycle (see (10a) and (10b)). Then the
timed averaged of the pressure forces was estimated for one
cycle as shown in (11a) and (11b). This time averaged force
is the load-carrying capacity of squeeze-film air bearings.

FPY = −
∫ 1

0

∫ 2π

0
P cos(θ)dθ dZ, (10a)

FPX = −
∫ 1

0

∫ 2π

0
P sin(θ)dθ dZ, (10b)

FPY = 1
2π

∫ 2π

0
FPYdτ, (11a)

FPX = 1
2π

∫ 2π

0
FPXdτ. (11b)

The equations of motion for a perfectly balanced, rigid rotor
in the y and x direction are shown in (12a) and (12b),
respectively,

M0ε̈Y = FPY +WY , (12a)

M0ε̈X = FPX , (12b)
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Figure 2: Trajectories path of rotor’s center (expressed as a ration of rotor centre position over bearing clearance), comparison between
transient and static results for plain circular journal bearing, Ω = 1000 rpm, c = 40μm, l0 = 25 mm, and r0 = 15 mm, with loads of
(a) 56.65 g, (b) 113.4 g, and (c) 170.2 g.

where the dimensionless quantities of mass and external
gravitational load are shown in the following:

M0 =
m0cΩ2

p0r
2
0

, (13a)

WY =
m0g

p0r
2
0
. (13b)

By coupling the Reynolds equation and the equations of
motion, the quasisteady-state position was solved iteratively
using the Euler method. Firstly, the acceleration due to

unbalanced forces was obtained by solving the equations
of motion. Then the velocities and displacements were
estimated from (14a) and (14b), respectively, in which the
subscripts Y0 and X0 denote values from the previous time
step. The Eulerian time step ΔT does not need to be as
small as Δτ but, more conveniently, it is often related to
rotor rotational speed rather than squeeze-film frequency,
ΔT(Ω) > Δτ(ω).

ε̇Y = ε̈YΔT, ε̇X = ε̈XΔT, (14a)

εY = ε̇YΔT + εY0, εX = ε̇XΔT + εX0. (14b)
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Figure 3: Trajectories path of rotor center (expressed as a ration of rotor centre position over bearing clearance), comparison between
transient and static results for plain three-lobe bearings with load of 56.65 g, Ω = 1000 rpm, c = 40μm, l0 = 25 mm, and r0 = 15 mm and
lobe eccentricities (εW0) of (a) 0.0875, (b) 0.25, and (c) 0.375, (d) 0.5.

With the new rotor position, the next film pressure cycle was
solved again using the Reynolds’ equation. This procedure
is repeated until convergence is achieved, where the rotor
eccentricities εY and εY converge to a steady-state solution
for one cycle.

3. Experimental Apparatus and Procedure

The test rig, consisting of the housing for the bearing and the
rotor, is shown in Figure 4.

The rotor is supported axially by an aerostatic thrust
bearing and in the radial direction by the test bearing.
Prior to testing, the compressible squeeze-film effect was
generated by piezoelectric actuators to levitate the rotor
from the test bearing. The apparatus used to drive the
piezoelectric actuators consists of a function generator and
an amplifier [6]. The photograph of the test rig and the
apparatus is shown in Figure 5. The voltage waveform to
the actuators controlled the compressible squeeze-film effect.
The rotor was driven by an air turbine system, and an
optical sensor monitored the rotational speed of the rotor.
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Figure 4: Schematic of the experimental test rig.
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Figure 5: Overview of experimental test rig and apparatus: (A) Test
Rig, (B) Speed Optical Sensor, (C) Speed Meter, (D) Displacement
Probe Actuator, (E) Sine Wave Generator, (F) Piezoelectric Ampli-
fier, (G) Oscilloscope, (H) Voltmeter.

It was found that when the squeeze-film action was activated,
little or no frictional contact existed between the rotor
and the test bearing, and the rotor was then driven with
very little effort by the pressurized air jet (air turbine).
Two capacitance displacement sensors, mounted in an X-Y
configuration, monitor the rotor translation motion. All test
data are monitored and saved using a computer-based data
acquisition system.

Fast Fourier Transform (FFT) of the rotor’s X and Y
amplitudes shows the behavior of the rotor vibration. The
magnitude and frequency of the vibration was summarized
by the magnitude of the peaks on the frequency spec-
trum. Peaks below the rotational frequency showed subsyn-
chronous whirling and the peak at the rotational frequency
shows the unbalance response of the rotor. Subsynchronous
whirling of the rotor is often shown as evident of self-excited
instability [1], the mode of whirl may be translational,
conical, or a combination of both [1].

Table 2: Test parameters for experimental and numerical studies.

Variable Settings Values

mα 0◦, 5◦, 10◦, 20◦ tilt 0 g, 56.65 g, 113.4 g, 170.2 g, 222.3 g

ew 30 V, 40 V, 50 V 0.45 μm, 0.65 μm, 0.85 μm

ω/2π 1500 Hz 1500 Hz

The whole test rig was clamped to a tilting base. By
tilting the test rig to an inclined angle, loading to the test
bearing was provided by the gravitational force of the rotor.
The load on the bearing was calculated from the expression:
W = m0g sinα.

It was found that although the test bearing was capable
of supporting a load of 222.3 g corresponding to 20◦ tilt [6],
the large steady state eccentricities (εY > 0.9) indicated that
the practical maximum static load of the bearing is 56.65 g
(5◦ tilt). It was also found that the effect was governed by
eW and ω. For the range tested, results showed that eW has
more pronounce effect at nonresonance frequencies. For this
study, the squeeze-film effect was investigated by varying eW
as summarized in Table 2.

4. Results and Discussions

Figures 6(a)–6(c) show the numerical results of the rotor
trajectory paths using the static analysis for a load of 56.65 g.
It can be seen that with the absence of the self-generated
squeeze-film effect, the rotor will undergo periodic orbits
and possibly whirling which points to its instability. For this
reason, the self-generating squeeze-film effect is necessary
not only to levitate the rotor at start up and coast down
stages, but also in operation, where the rotor is driven to
speed.

Figure 6(c) shows that for a load of 56.65 g (rather light
load) the rotor is limited to speed of 1020 rpm where self-
excited whirling is inevitable. Stability of the rotor can be
improved by increasing the load on the bearing or by increas-
ing the magnitude of pressure generated by the squeeze-
film mechanism. The results show that the squeeze-film
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Figure 6: Quasistatic results for three-lobe bearing with squeeze-film effect, ω = 1500 Hz, 56.65 g load: (a) Ω = 320 rpm, (b) Ω = 630 rpm,
(c) Ω = 1020 rpm. Trajectories path of rotor centre are expressed as a ration of rotor centre position over bearing clearance.

effect improves the threshold of instability by increasing the
vertical eccentricity of the rotor, εY .

Figures 7(a)–7(c) show the experimental results of the
rotors’ orbits obtained for rotational frequencies of 320 rpm,
630 rpm, and 1020 rpm. Their corresponding FFT responses
are shown in Figures 8(a)–8(c). The periodic circular orbits
with FFT responses showing the vibration amplitude at the
same frequency as the rotational frequency are a direct result
of rotor imbalance from machining tolerances. Instabilities
are apparent when the rotor executes a chaotic orbit; this is

shown on the FFT responses as peaks below the rotational
frequency. These peaks are at frequencies about half the
rotational frequency; hence instabilities of such nature are
often referred as “half-frequency whirl”. The results show
that the size of the orbit increases as rotational frequency
increases; this is again the effect of rotors imbalance.
However, at rotational speed of 1020 rpm, the elliptical orbits
of the rotor with larger radiuses than the bearing radial
clearance suggested the rotor to bearing wall contacts in a
conical whirling mode. It was found that in the attempt to
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Figure 7: Rotor orbits with squeeze-film effect, ω = 1500 Hz, zero load: (a) Ω = 320 rpm, (b) Ω = 630 rpm, and (c) Ω = 1020 rpm.
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Figure 8: FFT responses [μm] of rotor orbits ω = 1500 Hz, zero load: (a) Ω = 320 rpm, (b) Ω = 630 rpm, and (c) Ω = 1020 rpm.

increase the rotational speed pass this threshold, the bearing
failed and the rotor was ground to a halt.

When the squeezing frequency excites a resonant fre-
quency of the bearing, a substantial gain in the vibration
response was observed. This gain in amplitudes results
in increased squeeze-film effect. However, the periodic
but chaotic motion generates an unsymmetrical pressure
distribution, and the self-rotating effect of the rotor was
observed.

5. Concluding Remarks

The study presented in the paper demonstrated the feasibility
of a squeeze-film mechanism and the self-lifting effect by

squeeze-film generated pressure. This study may be extended
to improve this self-generated squeeze-film capacity of the
bearing and, in turn, the threshold speed of instability will
be increased. The use of ultrasonic piezoelectric elements
may also be considered as this offers noise-free operation.
The bearings may also be developed to create travelling
waves, and the possibility of a noncontacting ultrasonic
motor would also be an interesting investigation. The
theoretical analysis may be extended to a full transient
analysis of the squeeze-film bearing. The computational
demand for this analysis is best met with the use of parallel
computing. However, efforts should also be considered for
improving the computational efficiency of the numerical
scheme.
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The trajectory paths based on the numerical results gen-
erated by the time-marching static analysis were considered
to be appropriate in assessing the dynamic stability of the
bearing. Numerical results showed that the stability of the
bearing could be improved by increasing the static lobe
eccentricity, increasing the external load, or increasing the
self-generating squeeze-film pressure. Experimental results
showed that the bearing’s self-generated squeeze-film pres-
sure supporting the load on the bearing can be used during
the startup phase of gas bearing operation. However, it could
raise the instability threshold of the rotor up to the speed at
which aerodynamic mechanism of pressure generation for a
given bearing becomes active. In the case of the gas bearing,
test results presented that speed was found to be 1020 rpm.

Nomenclature

c: Undeformed radial bearing clearance
eX : Horizontal eccentricity of rotor
eY : Vertical eccentricity of rotor
eW : Dynamic amplitude of three-lobe motion
eW0: Static amplitude of three-lobe bearing clearance
FPX : Dimensionless force due to pressure in the x

direction
FPY : Dimensionless force due to pressure in the y

direction
FPX : Time averaged dimensionless force due to pressure

in the x direction
FPY : Time averaged dimensionless force due to pressure

in the y direction
g : Acceleration due to gravity
h: Film thickness
l0: Bearing axial length
mα: Mass of load
m0: Mass of shaft
M0: Dimensionless mass (see (13a))
p0: Ambient pressure
p: Film pressure
P: Film dimensionless pressure, P = p/pa
r0: Radius of rotor
t: Time
T: Dimensionless time, T = Ωt
z: Length displacement
Z: Dimensionless bearing length displacement,

Z = z/l0
α: Tilting angle
εWA: Dimensionless dynamic amplitude of three-lobe

motion, εWA = eWA/c
εWO: Dimensionless static amplitude, εWO = eWO/c
εX : Horizontal eccentricity ratio of rotor, εX = eX/c
εY : Vertical eccentricity ratio of rotor, εY = eY /c
εX0: Horizontal eccentricity ratio of rotor at previous

time step
εY0: Vertical eccentricity ratio of rotor at previous time

step
θ: Angular length of film
μ: Viscosity of fluid film
τ: Dimensionless time, τ = ωt
ω: Frequency of the three-lobe motion
Ω: Rotational frequency of rotor.
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