
Automated Metamorphic Testing on the Analyses of Feature Models✩

Sergio Segura∗,a, Robert M. Hieronsb, David Benavides∗∗,a, Antonio Ruiz-Cortésa

aDepartment of Computer Languages and Systems, University of Seville
Av Reina Mercedes S/N, 41012 Seville, Spain

bSchool of Information Systems, Computing and Mathematics, Brunel University
Uxbridge, Middlesex, UB7 7NU United Kingdom

Abstract

Context. A Feature Model (FM) represents the valid combinations of features in a domain. The auto-
mated extraction of information from FMs is a complex task that involves numerous analysis operations,
techniques and tools. Current testing methods in this context are manual and rely on the ability of the
tester to decide whether the output of an analysis is correct. However, this is acknowledged to be time-
consuming, error-prone and in most cases infeasible due to the combinatorial complexity of the analyses,
this is known as the oracle problem.
Objective. In this paper, we propose using metamorphic testing to automate the generation of test
data for feature model analysis tools overcoming the oracle problem. An automated test data generator
is presented and evaluated to show the feasibility of our approach.
Method. We present a set of relations (so-called metamorphic relations) between input FMs and the
set of products they represent. Based on these relations and given a FM and its known set of products,
a set of neighbouring FMs together with their corresponding set of products are automatically generated
and used for testing multiple analyses. Complex FMs representing millions of products can be efficiently
created by applying this process iteratively.
Results. Our evaluation results using mutation testing and real faults reveal that most faults can be
automatically detected within a few seconds. Two defects were found in FaMa and another two in
SPLOT, two real tools for the automate analysis of feature models. Also, we show how our generator
outperforms a related manual suite for the automated analysis of feature models and how this suite can
be used to guide the automated generation of test cases obtaining important gains in efficiency.
Conclusion. Our results show that the application of metamorphic testing in the domain of automated
analysis of feature models is efficient and effective in detecting most faults in a few seconds without the
need for a human oracle.

Key words: Metamorphic testing, test data generation, mutation testing, feature models, automated
analysis, product lines.

1. Introduction1

Software Product Line (SPL) engineering is a reuse strategy to develop families of related systems2

[19]. From common assets, different software products are assembled reducing production costs and3

time–to–market. Products in SPLs are defined in terms of features. A feature is an increment in product4

functionality [3]. Feature models [32] are widely used to represent all the valid combinations of features5

(i.e. products) of an SPL in a single model in terms of features and relations among them (see Figure 1).6

The automated analysis of feature models deals with the computer–aided extraction of information7

from feature models [5]. Typical operations of analysis allow determining whether a feature model is8

✩A preliminary version of this paper was presented in [47]
∗Principal corresponding author
∗∗Corresponding author

Email addresses: sergiosegura@us.es (Sergio Segura), benavides@us.es (David Benavides)

Preprint submitted to Information and Software Technology October 14, 2010

void (i.e. it represents no products), whether it contains errors (e.g. features that cannot be part of9

any product) or what is the number of products of the SPL represented by the model. Catalogues with10

up to 30 analysis operations on feature models have been reported [5, 44]. Analysis solutions can be11

mainly categorized into those using propositional logic [2, 20, 26, 34, 36, 55, 61], constraint programming12

[4, 52, 59], description logic [23, 57] and adhoc algorithms [24, 54, 56]. Additionally, there are both13

commercial and open source tools supporting these analysis capabilities such as AHEAD Tool Suite [1],14

Big Lever Software Gears [7], FaMa Framework [22], Feature Model Plug-in [25], pure::variants [42] and15

SPLOT [35, 51].16

Feature model analysis tools deal with complex data structures and algorithms (FaMa framework17

contains over 20 000 lines of code). This makes the implementation of analyses far from trivial and18

easily leads to errors increasing development time and reducing reliability of analysis solutions. Gaining19

confidence in the absence of faults in these tools is especially relevant since the information extracted from20

feature models is used all along the SPL development process to support both marketing and technical21

decisions [3]. Thus, the lack of specific testing mechanisms in this context appears as a major obstacle22

for engineers when trying to assess the functionality and quality of their programs.23

In [45, 46], we gave a first step to address the problem of functional testing on the analyses of feature24

models. In particular, we presented a set of manually designed test cases, so-called FaMa Test Suite25

(FaMa TeS), to validate the implementation of the analyses on feature models. Although effective, we26

found several limitations in our manual approach that motivated this work. First, evaluation results with27

artificial and real faults showed room for improvement in terms of efficacy. Second, the manual design of28

new test cases relied on the ability of the tester to decide whether the output of an analysis was correct.29

We found this was time–consuming, error–prone and in most cases infeasible due to the combinatorial30

complexity of the analyses. As a result, we were force to use small and in most cases oversimplistic input31

models whose output could be calculated by hand. This limitation, also found in many other software32

testing domains, is known as the oracle problem [58] i.e. impossibility to determine the correctness of a33

test output.34

Metamorphic testing [12, 58] was proposed as a way to address the oracle problem. The idea behind35

this technique is to generate new test cases based on existing test data. The expected output of the new36

test cases can be checked by using known relations (so–called metamorphic relations) among two or more37

input data and their expected outputs. Key benefits of this technique are that it does not require an38

oracle and it can be highly automated.39

In this paper, we propose using metamorphic testing for the automated generation of test data for40

the analyses of feature models. In particular, we present a set of metamorphic relations between feature41

models and their set of products and a test data generator based on them. Given a feature model42

and its known set of products, our tool generates a set of neighbouring models together with their43

associated sets of products. Complex feature models representing million of products can be efficiently44

generated by applying this process iteratively. Once generated, products are automatically inspected45

to get the expected output of a number of analyses over the models. Key benefits of our approach are46

that it removes the oracle problem and is highly generic being suitable to test any operation extracting47

information from the set of products of a feature model. In order to show the feasibility of our approach,48

we evaluated the ability of our test data generator to detect faults in three main scenarios. First, we49

introduced hundreds of artificial faults (i.e. mutants) into three of the analysis components integrated into50

the FaMa framework (hereafter referred to as reasoners) and checked the effectiveness of our generator51

to detect them. As a result, our automated test data generator found more than 98.5% of the faults in52

the three reasoners with average detection times under 7.5 seconds. Second, we developed a mock tool53

including a motivating fault found in the literature and checked the ability of our approach to detect it54

automatically. As a result, the fault was detected in all the operations tested with a score of 91.4% and55

an average detection time of 23.5 seconds. Finally, we evaluated our approach with recent releases of two56

real tools for the analysis of feature models, FaMa and SPLOT, detecting two defects in each of them.57

This article extends our previous work on automated test data generation for the analyses of feature58

models [47] in several ways. First, we show how our generator can be used to automatically test the59

detection of dead features in feature models (i.e. those that cannot be selected). Second, we explain60

how we evaluated our approach by trying to find faults in SPLOT, a real on-line tool for the automated61

2

analysis of feature models, finding two bugs on it. Third, we show how our automated test data generator62

outperforms our manual suite for the analyses of feature models by experimental results with both mutants63

and real faults. Finally, we present a refined version of our generator using the manual test cases of FaMa64

TeS as an initial test set to guide the generation of follow-up test cases. Experimental results reveal that65

refining our approach in this way lead to important gains in efficiency.66

The rest of the article is structured as follows: Section 2 presents feature models, their analyses and67

metamorphic testing. A detailed description of our metamorphic relations and test data generator is68

presented in Section 3. Section 4 describes the evaluation of our approach in different scenarios as well69

as the comparison with FaMa TeS. We show how our approach can be refined by combining it with other70

test case selection strategies in Section 5. Section 6 discusses the main threats to validity of our work. In71

Section 7, we present the related works in the field of metamorphic testing and compare them with our72

approach. Finally, we summarize our conclusions in Section 8.73

2. Preliminaries74

2.1. Feature Models75

A feature model defines the valid combination of features in a domain. A feature model is visually76

represented as a tree–like structure in which nodes represent features, and edges illustrate the relationships77

among them. Figure 1 shows a simplified example of a feature model representing an e–commerce SPL.78

The model illustrates how features are used to specify and build on–line shopping systems. The software79

of each application is determined by the features that it provides. The root feature (i.e. E-Shop) identifies80

the SPL.81

Feature models were first introduced in 1990 as a part of the FODA (Feature–Oriented Domain82

Analysis) method [32] as a means to represent the commonalities and variabilities of system families.83

Since then, feature modelling has been widely adopted by the software product line community and a84

number of extensions have been proposed in attempts to improve properties such as succinctness and85

naturalness [44]. Nevertheless, there seems to be a consensus that at a minimum feature models should86

be able to represent the following relationships among features:87 � Mandatory. If a child feature is mandatory, it is included in all products in which its parent88

feature appears. For instance, every on–line shopping system in our example must implement a89

Catalogue of products.90 � Optional. If a child feature is defined as optional, it can be optionally included in products in91

which its parent feature appears. For instance, offers is defined as an optional feature.92 � Alternative. A set of child features are defined as alternative if only one feature can be selected93

when its parent feature is part of the product. In our SPL, a shopping system has to implement94

high or medium security policy but not both in the same product.95 � Or-Relation. A set of child features are said to have an or-relation with their parent when one96

or more of them can be included in the products in which its parent feature appears. A shopping97

system can implement several payment modules: bank draft, credit card or both of them.98

Notice that a child feature can only appear in a product if its parent feature does. The root feature99

is a part of all the products within the SPL. In addition to the parental relationships between features, a100

feature model can also contain cross-tree constraints between features. These are typically of the form:101 � Requires. If a feature A requires a feature B, the inclusion of A in a product implies the inclusion of102

B in this product. On–line shopping systems accepting payments with credit card must implement103

a high security policy.104 � Excludes. If a feature A excludes a feature B, both features cannot be part of the same product.105

Shopping systems implementing a mobile GUI cannot include support for banners.106

3

E-Shop

Search

Basic Advanced

Catalogue

Info

Image Price

Description

Security

MediumHigh

Payment

PCBank DraftOffers Mobile

GUI

Credit Card

Visa American Express

Mandatory

Optional

Alternative

Or

Requires

Excludes

Banners

Figure 1: A sample feature model

A generalization of the classical notation presented in this section are the so-called cardinality–based107

feature models [20]. In this notation, alternative and or–relations are replaced by a so-called group108

cardinality of the form [n..n′], with n as lower bound and n′ as upper bound limiting the number of109

child features that can be part of a product. Hence, a set relationship with a group cardinality [1..1]110

is equivalent to an alternative relationship while a group cardinality of [1..N], being N the number of111

children of the set relationship, is equivalent to an or-relation.112

2.2. Automated Analysis of Feature Models113

The automated analysis of feature models deals with the computer–aided extraction of information114

from feature models. From the information obtained, marketing strategies and technical decisions can be115

derived. Catalogues with up to 30 analysis operations identified on feature models are reported in the116

literature [5, 44]. Next, we summarize some of the analysis operations we will refer to through the rest117

of the article.118 � Determining if a feature model is void. This operation takes a feature model as input and119

returns a value stating whether the feature model is void or not. A feature model is void if it120

represents no products. [2, 4, 20, 23, 26, 34, 36, 44, 53, 54, 55, 56, 57, 61].121 � Finding out if a product is valid. This operation checks whether an input product (i.e. set of122

features) belongs to the set of products represented by a given feature model or not. As an example,123

let us consider the feature model of Figure 1 and the following product P={E-Shop, Catalogue, Info,124

Description, Security, Medium, GUI, PC, Banners}. Notice that P is not a valid product of the125

product line represented by the model because it does not include the mandatory feature ‘Payment’.126

[2, 4, 20, 26, 34, 44, 53, 57, 59].127 � Obtaining all products. This operation takes a feature model as input and returns all the128

products represented by the model. A feature model is void if the set of products that it represents129

is empty. [2, 4, 26, 34, 53, 54, 56].130 � Calculating the number of products. This operation returns the number of products repre-131

sented by a feature model. The model in Figure 1 represents 504 different products. [4, 20, 24, 34,132

53, 54, 56].133 � Calculating variability. This operation takes a feature model as input and returns the ratio134

between the number of products and 2n − 1 where n is the number of features in the model [4, 53].135

This operation may be used to measure the flexibility of the product line. For instance, a small136

factor means that the number of combinations of features is very limited compared to the total137

number of potential products. In Figure 1, Variability = 0.00012.138

4

� Calculating commonality. This operation takes a feature model and a feature as inputs and139

returns a value representing the proportion of valid products in which the feature appears [4, 24, 53].140

This operation may be used to prioritize the order in which the features are to be developed and141

can also be used to detect dead features [52]. In Figure 1, Commonality(Search) = 75%.142 � Detecting dead features. This operation takes a feature model as input and returns the set of143

dead features included in the model. A feature is dead if it cannot appear in any of the products144

derived from the model. Dead features are caused by a wrong usage of cross-tree constraints and145

are clearly undesired since they give a wrong idea of the domain. As an example, note that features146

‘Mobile’ and ‘Banners’ in Figure 1 are mutually exclusive. However, Figure ‘Banners’ is mandatory147

and must be included in all the products of the product lines. This means that feature ‘Mobile’148

can never be selected and therefore is dead. [3, 20, 36, 52, 53, 54, 61].149

These operations can be performed automatically using different approaches. Most translate feature150

models into specific logic paradigms such as propositional logic [2, 20, 26, 34, 36, 55, 61], constraint151

programming [4, 52, 59] or description logic [23, 57]. Others propose ad-hoc algorithms and solutions152

to perform these analyses [24, 54, 56]. Finally, these analysis capabilities can also be found in several153

commercial and open source tools such as AHEAD Tool Suite [1], Big Lever Software Gears [7], FaMa154

Framework [22], Feature Model Plug-in [25], pure::variants [42] and SPLOT [35, 51].155

2.3. Metamorphic Testing156

An oracle in software testing is a procedure by which testers can decide whether the output of a157

program is correct [58]. In some situations, the oracle is not available or it is too difficult to apply. This158

limitation is referred to in the testing literature as the oracle problem [62]. Consider, as an example,159

checking the results of complicated numerical computations or the processing of non-trivial outputs like160

the code generated by a compiler. Furthermore, even when the oracle is available, the manual prediction161

and comparison of the results are in most cases time–consuming and error–prone.162

Metamorphic testing [12, 58] was proposed as a way to address the oracle problem. The idea behind163

this technique is to generate new test cases based on existing test data. The expected output of the new164

test cases can be checked by using so–called metamorphic relations, that is, known relations among two165

or more input data and their expected outputs. As a positive result of this technique, there is no need166

for an oracle and the testing process can be highly automated.167

Consider, as an example, a program that compute the cosine function (cos(x)). Suppose the program168

produces output −0.3999 when run with input x = 42 radians. An important property of the cosine169

function is cos(x) = cos(−x). Using this property as a metamorphic relation, we could design a new test170

case with x = −42. Assume the output of the program for this input is 0.4235. When comparing both171

outputs, we could easily conclude the program is not correct.172

Metamorphic testing has shown to be effective in a number of testing domains including numerical173

programs [13], graph theory [14] or service–oriented applications [8].174

3. Automated Metamorphic Testing on the Analyses of Feature Models175

3.1. Metamorphic Relations on Feature Models176

In this section, we define a set of metamorphic relations between feature models (i.e. input) and their177

corresponding set of products (i.e. output). These metamorphic relations are derived from the basic178

operators of feature models, that is, the different types of relationships and constraints among features.179

In particular, we relate feature models using the concept of neighbourhood. Given a feature model, FM ,180

we say that FM ′ is a neighbour model if it can be derived from FM by adding or removing a relation-181

ship or constraint R. The metamorphic relations between the products of a model and the one of their182

neighbours are then determined by R as follows:183

184

Mandatory. Consider the neighbours models and associated set of products depicted in Figure 2. FM ′
185

in Figure 2(a) is created from FM by adding a mandatory feature (‘D’) to it, i.e. they are neighbours. The186

5

B

A

C

B

A

C D

B

A

C D

B

A

C D EB

A

C D E

B

A

C

B

A

C

P1 = {A,C}
P2 = {A,B,C}

P1' = {A,C,D}
P2' = {A,B,C,D}

a) FM’ = FM + Mandatory

P1' = {A,C}
P2' = {A,B,C}
P3' = {A,C,D}
P4' = {A,B,C,D}

b) FM’ = FM + Optional

P1' = {A,C,D}
P2' = {A,C,E}
P3' = {A,B,C,D}
P4' = {A,B,C,E}

c) FM’ = FM + Alternative

P1' = {A,C,D}
P2' = {A,C,E}
P3' = {A,B,C,D}
P4' = {A,B,C,E}
P5' = {A,C,D,E}
P6' = {A,B,C,D,E}

d) FM’ = FM + Or

P1' = {A,B,C}

e) FM’ = FM + Requires

f) FM’ = FM + Excludes

FM

P1' = {A,C}

Figure 2: Some examples of neighbour feature models

semantics of mandatory relationships state that mandatory features must always be part of the products187

in which is parent feature appears. Based on this, we conclude that the set of expected products of FM’188

is incorrect if it does not preserve the set of products of FM and extends it by adding the new mandatory189

feature,‘D’, in all the products including its parent feature,‘A’. In the example, therefore, this relation is190

fulfilled. Formally, let f be the mandatory feature added to the model and pf its parent feature, ‘D’ and191

‘A’ in the example respectively. Consider the functions products(FM), returning the set of products of192

an input feature models, and features(P), returning the set of features of a given product. We use the193

symbol ‘#’ to refer to the cardinality (i.e. number of elements) of a set. We define the relation between194

the set of products of FM and the one of FM ′ as follows:195

#products(FM ′) =#products(FM)∧

∀P ′(P ′ ∈ products(FM ′) ⇔ ∃P ∈ products(FM)⋅

(pf ∈ features(P) ∧ P ′ = P ∪ {f})∨

(pf ∉ features(P) ∧ P ′ = P))

(1)

196

Optional. Let f be the optional feature added to the model and pf its parent feature. An example is197

presented in Figure 2(b) with f = D and pf = A. Consider the function filter(FM,S,E) that returns198

the set of products of FM including the features of S and excluding the features of E. The metamorphic199

relation between the set of products of FM and that of FM ′ is defined as follows:200

#products(FM ′) =#products(FM)+#filter(FM,{pf},∅)∧

∀P ′(P ′ ∈ products(FM ′) ⇔ ∃P ∈ products(FM)⋅

P ′ = P ∨ (pf ∈ features(P) ∧ P ′ = P ∪ {f}))

(2)

201

Alternative. Let C be the set of alternative subfeatures added to the model and pf their parent feature.202

In Figure 2(c), C = {D,E} and pf = A. The relation between the set of products of FM and FM ′ is203

defined as follows:204

#products(FM ′) =#products(FM)+ (#C − 1)#filter(FM,{pf},∅)∧

∀P ′(P ′ ∈ products(FM ′) ⇔ ∃P ∈ products(FM)⋅

(pf ∈ features(P) ∧ ∃c ∈ C ⋅ P ′ = P ∪ {c})∨

(pf ∉ features(P) ∧ P ′ = P))

(3)

6

205

Or. Let C be the set of subfeatures added to the model and pf their parent feature. For instance, in206

Figure 2(d), C = {D,E} and pf = A. We denote with ℘(C) the powerset of C i.e. the set of all subsets207

in C. This metamorphic relation is defined as follows:208

#products(FM ′) =#products(FM)+ (2#C
− 2)#filter(FM,{pf},∅)∧

∀P ′(P ′ ∈ products(FM ′) ⇔ ∃P ∈ products(FM)⋅

(pf ∈ features(P) ∧ ∃S ∈ ℘(C) ⋅ (S ≠ ∅ ∧ P ′ = P ∪ S))∨

(pf ∉ features(P) ∧ P ′ = P)))

(4)

209

Requires. Let f and g be the origin and destination features of the new requires constraint added to210

the model. In Figure 2(e), f = C and g = B. The relation between the set of products of FM and FM ′
211

is defined as follows:212

products(FM ′) = products(FM)∖ filter(FM,{f},{g}) (5)

213

Excludes. Let f and g be the origin and destination features of the new excludes constraint added to214

the model. This is illustrated in Figure 2(f) with f = B and g = C. This metamorphic relation is defined215

as follows:216

products(FM ′) = products(FM)∖ filter(FM,{f, g},∅) (6)

3.2. Automated Test Data Generation217

The semantics of a feature model is defined by the set of products that it represents [44]. Most218

analysis operations on feature models can be answered by inspecting this set adequately. Based on this,219

we propose a two–step process to automatically generate test data for the analyses of feature models as220

follows:221

222

Feature model generation. We propose using previous metamorphic relations together with model223

transformations to generate feature models and their respective set of products. Note that this is a224

singular application of metamorphic testing. Instead of using metamorphic relations to check the output225

of different computations, we use them to actually compute the output of follow–up test cases. Figure226

3 illustrates an example of our approach. The process starts with an input feature model whose set227

of products is known. A number of step–wise transformations are then applied to the model. Each228

transformation produces a neighbour model as well as its corresponding set of products according to the229

metamorphic relations. Transformations can be applied either randomly or using heuristics. This process230

is repeated until a feature model (and corresponding set of products) with the desired properties (e.g.231

number of features) is generated.232

233

Test data extraction. Once a feature model with the desired properties is created, it is used as non-234

trivial input for the analysis. Similarly, its set of products is automatically inspected to get the output235

of a number of analysis operations i.e. any operation that extracts information from the set of products236

of the model. As an example, consider the model and set of products generated in Figure 3 and the237

analysis operations described in Section 2.2. We can obtain the expected output of all of them by simply238

answering the following questions:239 � Is the model void? No, the set of products is not empty.240 � Is P={A,C,F} a valid product? Yes. It is included in the set.241 � How many different products represent the model? 6 different products.242 � What is the variability of the model? 6/(29 − 1) = 0.011243 � What is the commonality of feature B? Feature B is included in 5 out of the 6 products of the set.244

Therefore its commonality is 83.3%245

7

B

A

C
B

A

C
P1 = {A,C}
P2 = {A,B,C}

D E

P1 = {A,C}
P2 = {A,B,C,D}
P3 = {A,B,C,E}
P4 = {A,B,C,D,E}

B

A

C

D E

F G

Or

Requires

����������	
	�����
��
	�����
	��� �
=+=+= φ

�������
=

����������� ! "�#�$! "�#�$! "%#
=== &

P1 = {A,C,F}
P2 = {A,C,G}
P3 = {A,B,C,D,F}
P4 = {A,B,C,E,F}
P5 = {A,B,C,D,G}
P6 = {A,B,C,E,G}
P7 = {A,B,C,D,E,G}
P4 = {A,B,C,D,E,F}

B

A

C

D E

F G

P1 = {A,C,F}
P2 = {A,C,G}
P3 = {A,B,C,D,F}
P4 = {A,B,C,E,F}
P5 = {A,B,C,D,G}
P6 = {A,B,C,E,G}
P7 = {A,B,C,D,E,G}
P8 = {A,B,C,D,E,F} '()*(+,-./0102/*+34156102+3+610273

=+=+= φ

Alternative

B

A

C

D E

F G 89:;<=>?@ABAC@DEBAC<D<EBACFD
==+= φ

P1 = {A,C,F}
P2 = {A,B,C,D,F}
P3 = {A,B,C,E,F}
P4 = {A,B,C,D,E,F}
P5 = {A,B,C,D,F,H}
P6 = {A,B,C,D,E,F,H}

H

B

A

C

D E

F G G�����������H�
==

P1 = {A,C,F}
P2 = {A,B,C,D,F}
P3 = {A,B,C,E,F,L}
P4 = {A,B,C,D,F,H}
P5 = {A,B,C,D,E,F,L}
P6 = {A,B,C,D,E,F,H,L}

H

OptionalMandatory

L

Figure 3: An example of random feature model generation using metamorphic relations� Does the model contain any dead feature? Yes. Feature G is dead since it is not included in any of246

the products represented by the model.247

We may remark that we could have also used a ‘pure’ metamorphic approach, start with a known248

feature model, transform this to obtain a neighbour model, and use metamorphic relations to check the249

outputs of the tool under test. However, this strategy would require to define metamorphic relations250

for each operation. In contrast, we propose to use the metamorphic relations to compute the output of251

follow-up test cases instead of simply comparing the results of different tests. Starting from a trivial test252

case, we can generate increasingly larger and more complex test cases making sure that the metamorphic253

relations are fulfilled at each step. This allows us to define the metamorphic relations for a single254

operation, Products, from which we derive the expected output of many of the other analyses on feature255

models. A key benefit of our approach is that it can be easily automated enabling the generation and256

execution of test cases without the need for a human oracle.257

Finally, we would like to emphasize that the operations presented are only some examples of the258

analyses that can be tested using our approach. We estimate that this technique could be used to test,259

at least, 16 out of the 30 analysis operations identified in [5]. The operations out of the scope of our260

approach are mainly those looking for specific patterns in the feature tree.261

3.3. A Prototype Tool262

As a part of our proposal, we implemented a prototype tool relying on our metamorphic relations.263

The tool receives a feature model and its associated set of products as input and returns a modified264

version of the model and its expected set of products as output. If no inputs are specified, a new model265

is generated from scratch.266

Our prototype applies random transformations to the input model increasing its size progressively.267

The set of products is efficiently computed after each transformation according to the metamorphic268

relations presented in Section 3.1. Transformations are performed according to a number of parameters269

including number of features, percentage of constraints, maximum number of subfeatures on a relationship270

and percentage of each type of relationship to be generated.271

The number of products of a feature model increases exponentially with the number of features.272

This was a challenge during the development of our tool causing frequent time deadlocks and memory273

overflows. To overcome these problems, we optimized our implementation using efficient data structures274

(e.g. boolean arrays) and limited the number of products of the models generated. Using this setup,275

feature models with up to 11 million products were generated in a standard laptop machine within a few276

seconds.277

The tool was developed on top of FaMa Benchmarking System v0.7 (FaMa BS) [22]. This system278

provides a number of capabilities for benchmarking in the context of feature models including random279

8

generators as well as readers and writers for different formats. Figure 4 depicts a random feature model280

generated with our prototype tool and exported from FaMa BS to the graph visualization tool GraphViz281

[28]. The model has 20 features and 20% of constraints. Its set of products contains 22,832 different282

feature combinations.283

OR-2 OR-3

OR-7

root

F1 F2

F3 F4 F5 F6 F7 F8

F9 F13

E

F18

D

F10F11F12F14

F15

F16 F17 F19E

E

Figure 4: Sample input feature model generated with our tool

4. Evaluation284

4.1. Evaluation using Mutation Testing285

In order to measure the effectiveness of our proposal, we evaluated the ability of our test data generator286

to detect faults in the software under test (i.e. so–called fault-based adequacy criterion). To that purpose,287

we applied mutation testing on an open source framework for the analysis of feature models.288

Mutation testing [21] is a common fault–based testing technique that measures the effectiveness of289

test cases. Briefly, the method works as follows. First, simple faults are introduced in a program creating290

a collection of faulty versions, called mutants. The mutants are created from the original program291

by applying syntactic changes to its source code. Each syntactic change is determined by a so–called292

mutation operator. Test cases are then used to check whether the mutants and the original program293

produce different responses. If a test case distinguishes the original program from a mutant we say the294

mutant has been killed and the test case has proved to be effective at finding faults in the program.295

Otherwise, the mutant remains alive. Mutants that keep the program’s semantics unchanged and thus296

cannot be detected are referred to as equivalent. The percentage of killed mutants with respect to the297

total number of them (discarding equivalent mutants) provides an adequacy measurement of the test298

suite called the mutation score.299

4.1.1. Experimental Setup300

We selected FaMa Framework as a good candidate to be mutated. FaMa is an open source framework301

integrating different reasoners for the automated analysis of feature models and is currently being inte-302

grated into the commercial tools MOSKitt [37] and pure::variants1. As creators of FaMa, it was feasible303

for us to use it for the mutations. In particular, we selected three of the analysis components integrated304

into the framework (so-called reasoners), namely: Sat4jReasoner v0.9.2 (using satisfiability problems by305

means of Sat4j solver [43]), JavaBDDReasoner v0.9.2 (using binary decision diagrams by means of Jav-306

aBDD solver [31]) and JaCoPReasoner v0.8.3 (using constraint programming by means of JaCoP solver307

[30]). Each one of these reasoners uses a different paradigm to perform the analyses and was coded by308

different developers, providing the required heterogeneity for the evaluation of our approach. For each309

reasoner, the seven analysis operations presented in Section 2.2 were tested. The operation DeadFeatures,310

however, was tested in JaCoPReasoner exclusively since it was the only reasoner implementing it.311

1In the context of the DiVA European project (http://www.ict-diva.eu/)

9

To automate the mutation process, we used MuClipse Eclipse plug-in v1.3 [50]. MuClipse is a Java312

visual tool for mutation testing based on MuJava [33]. It supports a wide variety of operators and can313

be used for both generating mutants and executing them in separated steps. Despite this, we still found314

several limitation in the tool. On the one hand, the current version of MuClipse does not support Java315

1.5 code features. This forced us to make slight changes in the code, basically removing annotations and316

generic types when needed. On the other hand, we found the execution component provided by this and317

other related tools to not be sufficiently flexible, providing as a result mainly mutation score and lists of318

alive and killed mutants. To address our needs, we developed a custom execution module providing some319

extra functionality including: i) custom results such as time required to kill each mutant and number of320

mutants generated by each operator, ii) results in Comma Separated Values (CSV) format for its later321

processing in spreadsheets, and iii) filtering capability to specify which mutants should be considered or322

ignored during the execution.323

Test cases were generated randomly using our prototype tool as described in Section 3.2. In the cases324

of operations receiving additional inputs apart from the feature model (e.g. valid product), the additional325

inputs were selected using a basic partition equivalence strategy. For each operation, test cases with the326

desired properties were generated and run until a fault was found or a timeout was exceeded. Feature327

models were generated with an initial size of 10 features and 10% (with respect to the number of features)328

of constraints for efficiency. This size was then incremented progressively according to a configurable329

increasing factor. This factor was typically set to 10% and 1% (every 20 test cases generated) for features330

and constraints respectively. The maximum size of the set of products was equally limited for efficiency.331

This was configured according to the complexity of each operation and the performance of each reasoner332

with typical values of 2000, 5000 and 11000000. For the evaluation of our approach, we followed three333

steps, namely:334

1. Reasoners testing. Prior to their analysis, we checked whether the original reasoner passed all the335

tests. A timeout of 60 seconds was used. As a result, we detected and fixed a defect affecting336

the computation of the set of products in JaCoPReasoner. We found this fault to be especially337

motivating since it was also present in the current release of FaMa (see Section 4.2 for details).338

2. Mutants generation. We applied all the traditional mutation operators available in MuClipse, a total339

of 15. Specific mutation operators for object–oriented code were discarded to keep the number of340

mutants manageable. For details about these operators we refer the reader to [33].341

3. Mutants execution. For each mutant, we ran our test data generator and tried to find a test case342

that kills it. An initial timeout of 60 seconds was set for each execution. This timeout was then343

repeatedly incremented by 60 seconds (until a maximum of 600) with remaining alive mutants344

recorded. Equivalent mutants were manually identified and discarded after each execution.345

Both the generation and execution of mutants was performed in a laptop machine equipped with346

an Intel Pentium Dual CPU T2370@1.73GHz and 2048 MB of RAM memory running Windows Vista347

Business Edition and Java 1.6.0 05.348

4.1.2. Analysis of Results349

Table 1 shows information about the size of the reasoners and the number of generated mutants.350

Lines of code (LoC) do not include blank lines and comments. Out of the 760 generated mutants, 103 of351

them (i.e. 13.5%) were identified as semantically equivalent. In addition to these, we manually discarded352

87 mutants (i.e. 11.4%) affecting secondary functionality of the subject programs (e.g. computation of353

statistics) not addressed by our current test data generator.354

Tables 2, 3 and 4 show the results of the mutation process on Sat4jReasoner, JavaBDDReasoner and355

JaCoPReasoner respectively. For each operation, the number of classes involved, number of executed356

mutants, test data generation results and mutation score are presented. Test data results include average357

and maximum time required to kill each mutant, average and maximum number of test cases generated358

to kill a mutant and maximum timeout that showed to be effective in killing any mutant, i.e. further359

increments in the timeout (until the maximum of 600s) did not kill any new mutant.360

Note that the functionality of each operation was scattered in several classes. Some of these were used361

in more than one operation. Mutants on these reusable classes were evaluated separately with the test362

10

data of each operation using them for more accurate mutation scores. This explains why the number of363

executed mutants on each reasoner (detailed in Tables 2, 3 and 4) is higher than the number of mutants364

generated for that reasoner (showed in Table 1).365

Results revealed an overall mutation score of over 98.5% in the three reasoners. Operations Products,366

#Products, Variability and Commonality showed a mutation score of 100% in all the reasoners with an367

average number of test cases required to kill each mutant under 2. Similarly, the operation DeadFeatures368

revealed a mutation score of 100% in JaCoPReasoner with an average number of test cases of 2.3. This369

suggests that faults in these operations are easily killable. On the other hand, faults in the operations370

VoidFM and ValidProduct appeared to be more difficult to detect. We found that mutants on these371

operations required input models to have a very specific pattern in order to be revealed. As a consequence372

of this, the average time and number of test cases required for these operations were noticeable higher373

than for the other analysis operations tested.374

The maximum average time to kill a mutant was 7.4 seconds. In the worst case, our test data generator375

spent 566.5 seconds before finding a test case that killed the mutant. In this time, 414 different test cases376

were generated and run. This shows the efficiency of the generation process. The maximum timeouts377

required to kill a mutant were 600 seconds for the operation VoidFM, 120 for the operation ValidProduct378

and 60 seconds for the rest of analysis operations. This gives an idea of the minimum timeout that should379

be used when applying our approach in other scenarios.380

Figure 5 depicts a spread graph with the size (number of features and constraints) of the feature381

models that killed mutants in the operation VoidFM. As illustrated, small feature models were in most382

cases sufficient to find faults. This was also the trend in the rest of the operations. This means that383

feature models with an initial size of 10 features and 10% of cross-tree constraints were complex enough to384

exercise most of the features of the analysis reasoners under test. This suggests that the procedure used385

for the generation of models, starting from smaller and moving progressively to bigger ones, is adequate386

and efficient.387

Figure 5: Size of the feature models killing mutants in the operation VoidFM

Finally, we may mention that experimentation with Sat4jReasoner revealed a serious defect affecting388

its scalability. The reasoner created a temporary file for each execution but it did not delete it afterward.389

We found that the more temporary files were created, the slower became the creation of new ones with390

delays of up to 30 seconds in the executions of operations. Once detected, the defect was fixed and the391

Reasoner LoC Mutants Equivalent Discarded

Sat4jReasoner 743 262 27 47
JavaBDDReasoner 625 302 28 37
JaCoPReasoner 791 196 48 3

Total 2159 760 103 87

Table 1: Mutants generation results

11

Operations Executed Mutants Test Data Generation
Score

Name Classes Total Alive Av Time (s) Max time (s) Av TCs Max TCs Timeout (s)

VoidFM 2 55 0 37.6 566.5 95.1 414 600 100
ValidProduct 5 109 3 4.3 88.6 12 305 120 97.2
Products 2 86 0 0.6 3.4 1.5 12 60 100
#Products 2 57 0 0.7 2.4 1.8 8 60 100
Variability 3 82 0 0.6 1.7 1.3 5 60 100
Commonality 5 109 0 0.6 3.8 1.5 13 60 100

Total 19 498 3 7.4 566.5 18.9 414 99.4

Table 2: Test data generation results in Sat4jReasoner

Operations Executed Mutants Test Data Generation
Score

Name Classes Total Alive Av Time (s) Max time (s) Av TCs Max TCs Timeout (s)

VoidFM 2 75 3 6.6 111.7 29.3 350 120 96
ValidProduct 5 129 5 1 34.6 3.8 207 60 96.1
Products 2 130 0 0.7 34.6 1.4 12 60 100
#Products 2 77 0 0.5 1.4 1.6 6 60 100
Variability 3 104 0 0.5 2.4 1.6 12 60 100
Commonality 5 131 0 0.5 3 1.5 16 60 100

Total 19 646 8 1.6 111.7 6.5 350 98.7

Table 3: Test data generation results in JavaBDDReasoner

Operations Executed Mutants Test Data Generation
Score

Name Classes Total Alive Av Time (s) Max time (s) Av TCs Max TCs Timeout (s)

VoidFM 2 8 0 1.5 8.3 11.3 83 60 100
ValidProduct 5 61 0 0.7 1.2 1.3 5 60 100
Products 2 37 0 0.5 0.7 1 1 60 100
#Products 2 13 0 0.5 0.7 1 1 60 100
Variability 3 36 0 0.5 0.7 1 1 60 100
Commonality 5 66 0 0.5 0.7 1.1 3 60 100
DeadFeatures 5 80 0 0.8 2.1 2.3 14 60 100

Total 24 301 0 0.7 8.3 2.7 83 100

Table 4: Test data generation results in JaCoPReasoner

12

experiments repeated. This suggests that our approach could also be applicable to scalability testing.392

For more details about the evaluation of our approach using mutation testing we refer the reader to393

[48, 49].394

4.2. Evaluation using Real Tools and Faults395

4.2.1. A Motivating Fault396

Consider the work of Batory in SPLC’05 [2], one of the seminal papers in the community of automated397

analysis of feature models. The paper included a bug (later fixed2) in the mapping of a feature model to398

a propositional formula. We implemented this wrong mapping into a mock reasoner for FaMa using the399

CSP-based solver Choco [18] and checked the effectiveness of our approach in detecting the fault.400

Figure 6 illustrates an example of the wrong output caused by the fault. This manifests itself in alter-401

native relationships whose parent feature is not mandatory making reasoners consider as valid product402

those including multiple alternative subfeatures (P3). As a result, the set of products returned by the403

tool is erroneously larger than the actual one. For instance, the number of products returned by our404

faulty tool when using the model in Figure 1 as input is 896 (instead of the actual 504). Note that this is405

a motivating fault since it can easily remain undetected even when using an input with the problematic406

pattern. Hence, in the previous example (either with ‘security’ feature as mandatory or optional), the407

mock tool correctly identifies the model as non void (i.e. it represents at least one product), and so the408

fault remains latent.409

Security

MediumHigh

P1={Security,High}
P2={Security,Medium}
P3={High,Medium}

Figure 6: Wrong set of products obtained with the faulty reasoner

Table 5 depicts the results of the evaluation. The testing procedure was similar to the one used with410

mutation testing. A maximum timeout of 600 seconds was used. The results are based on 10 executions.411

The fault was detected in all the executions performed in 6 out of 7 operations. Most of the average412

and maximum times were higher than the ones obtained when using mutants but still low being 191.9413

seconds (3.2 minutes) in the worst case. The fault remained latent in 40% of the executions performed414

in the ValidProduct operation. When examining the data, we concluded that this was due to the basic415

strategies used for the selection of inputs products for this operation. We presume that using more416

complex heuristic for this purpose would improve the results.417

Operation Av Time (s) Max Time (s) Av TCs Max TCs Score

VoidFM 101.2 191.9 294.6 366 100
ValidProduct 41.6 91.8 146.8 312 40
Products 1.8 4.6 4.5 14 100
#Products 2.9 7.9 9.0 28 100
Variability 2.2 3.2 6.1 10 100
Commonality 2.1 4.8 5.6 15 100
DeadFeatures 12.8 29.2 42.3 101 100

Total 23.5 191.9 72.7 366 91.4

Table 5: Evaluation results using a motivating fault reported in the literature

2ftp://ftp.cs.utexas.edu/pub/predator/splc05.pdf

13

4.2.2. FaMa Framework418

We also evaluated our tool by trying to detect faults in a recent release of the FaMa Framework,419

FaMa v1.0 alpha. A timeout of 600 seconds was used for all the operations since we did not know a priori420

the existence of faults. For each operation, we ran our test data generator 10 times. Tests revealed two421

defects in all the executions (see Table 6). The first one, also detected during our experimental work with422

mutation, was caused by an unexpected behaviour of JaCoP solver when dealing with certain heuristics423

and void models in the operation Products. In these cases, the solver did not instantiate an array of424

variables raising a null pointer exception. This fault was detected in 142.9 seconds on average. The425

second fault, detected in less than one second in all executions, affected the operations ValidProduct and426

Commonality in Sat4jReasoner. The source of the problem was a bug in the creation of propositional427

clauses in the so-called staged configurations, a new feature of the tool. Both bugs were fixed in the new428

version of the tool.429

Operation Av Time (s) Max Time (s) Av TCs Max TCs Score

JaCoP-Products 142.9 198.6 437.3 605 100
Sat4j-ValidProduct 0.6 0.7 1 1 100
Sat4j-Commonality 0.6 0.6 1 1 100

Total 48 198.6 146.4 605 100

Table 6: Evaluation results with FaMa

4.2.3. SPLOT430

Software Product Lines On-line Tools (SPLOT) [35, 51] is a Web portal providing a complete set of431

tools for on-line editing, analysis and storage of feature models. It supports a number of analyses on432

cardinality-based feature models using propositional logic by means of the Sat4j and JavaBDD solvers.433

The authors of SPLOT kindly sent us a standalone version3 of their system to evaluate our automated test434

data generator. In particular, we tested the operations VoidFM, #Products and DeadFeatures in SPLOT.435

As with FaMa, we used a timeout of 600 seconds and tested each operation 10 times to get averages.436

Tests revealed two defects in all the executions (see Table 7). The first one, detected in less than one437

second on average, affected all operations on the SAT-based reasoner. With certain void models, the438

reasoner raised an exception (org.sat4j.specs.ContradictionException) and no result was returned. The439

second bug, detected in about 0.5 seconds in all cases, was related with cardinalities in the BDD-based440

tool. We found that the reasoner was not able to process cardinalities other than [1,1] and [1,*]. As441

a consequence of this, input models including or-relationships specified as [1,n] (n being the number of442

subfeatures) caused a failure in all the operations tested. Faults detected in the standalone version of the443

tool were also observed in the online version of SPLOT. We may remark that the authors confirmed the444

results and told us that they were aware of these limitations.445

Operation Av Time (s) Max Time (s) Av TCs Max TCs Score

Sat4j-VoidFM 0.7 1.3 26.7 66 100
Sat4j-#Products 1 2 26.1 66 100
Sat4j-DeadFeatures 0.9 2.2 38.3 134 100
JavaBDD-VoidFM 0.4 0.5 1.5 2 100
JavaBDD-#Products 0.4 0.5 1.9 5 100

Total 0.7 2.2 18.9 134 100

Table 7: Evaluation results with SPLOT

3SPLOT does not use a version naming system. We tested the tool as it was in February 2010.

14

4.3. Comparison with a Manual Test Suite446

In this section, we compare the effectiveness of our automated test data generator and FaMa Test447

Suite, a set of manually designed test cases to test the implementation of analysis operations on feature448

models. FaMa Test Suite (FaMa TeS) [45, 46] was presented by the authors as a first contribution on449

the testing of feature model analysis tools. It consists of 180 test cases covering the 7 analysis operations450

presented in Section 2.2. For its design, we used several black-box testing techniques [41] (e.g. equivalence451

partitioning) to assist us in the creation of a representative set of input–output combinations. To the452

best of our knowledge, this is the only available test suite for the analyses of feature models.453

Table 8 shows two of the test cases included in FaMa TeS. For each test case, an ID, description,454

inputs, expected outputs and intercase dependencies (if any) are presented. Intercase dependencies refer455

to identifiers of test cases that must be executed prior to a given test case [29]. Each test case was456

designed to reveal a single type of fault. As illustrated, we used trivially small input models so that we457

could calculate the expected output by hand. This limitation was one of the main motivations that led458

us to develop the automated metamorphic approach presented in this article.459

ID Description Input Expected Output Deps

P-9
Check whether the interaction between
mandatory and alternative relationships is
correctly processed.

A

B

E F

C D

G

{A,B,D,F},
{A,B,D,E},
{A,B,C,F,G},
{A,B,C,E,G}

P-1
P-4

VP-37

Check whether valid products (with a max-
imum set of features) are correctly identi-
fied in feature models containing or- and
alternative relationships.

A

D E

H I

B C

F G

P={A,B,D,E,F,G,H}

Valid

VP-5
VP-6
VP-7
VP-8
VP-9
VP-10

Table 8: Two of the test cases included in FaMa Test Suite

In order to enable the objective comparison of our generator and the manual suite, we evaluated FaMa460

TeS with the same mutants and real faults presented in previous sections. A full summary of the results461

together with a detailed description of the suite are available in [45] (technical report of 55 pages).462

Table 9 depicts the results obtained when using FaMa TeS to kill the mutants in the FaMa reasoners.463

For each reasoner and operation, the total number of executed mutants, alive mutants and mutation464

score are presented. On the one hand, all mutants in JaCoPReasoner were killed by the manual suite465

equalling the results obtained with our metamorphic approach. On the other hand, mutation scores in466

Sat4jReasoner (94.4%) and JavaBDDReasoner (95.8%) were significantly lower than those obtained with467

our test data generator (99.4% and 98.7% respectively). This inferiority of the manual suite was also468

observed in the results of the evaluation with the bugs found in FaMa, SPLOT and the faulty reasoner469

(i.e. that including the motivating fault found in [2]). These results are depicted in Table 10. In the470

faulty reasoner, our automated test data generator detected the fault in all the operations meanwhile our471

manual suite failed to detect the defect in the operations ValidProduct and DeadFeatures. Similarly, the472

manual suite was unable to reveal the failure in the operation Products of JaCoPReasoner in FaMa 1.0.473

From the results obtained and our experience working with FaMa TeS, we conclude that our automated474

metamorphic approach outperformed the manual suite in multiple ways. First, our automated generator475

was more effective than the manual suite, i.e. it detected more faults. Second, our metamorphic approach476

is highly generic so it can easily be adapted to test most analysis operation while the development of477

manual test cases is tedious and time-consuming. Also, manual test cases are trivially small while our478

current approach allows the efficient generation of large feature models representing million of products.479

Finally, and more important, our generator automatically checks the output of tests, removing the oracle480

problem found when using manual means. All these pieces of evidence support the effectiveness of our481

15

Operation
Sat4jReasoner JavaBDDReasoner JaCoPReasoner

Mutants Alive Score Mutants Alive Score Mutants Alive Score

VoidFM 55 20 63.6 75 12 84.0 8 0 100
ValidProduct 109 4 96.3 129 7 94.6 61 0 100
Products 86 1 98.8 130 2 98.5 37 0 100
#Products 57 1 98.2 77 2 97.4 13 0 100
Variability 82 1 98.8 104 2 98.1 36 0 100
Commonality 109 1 99.1 131 2 98.5 66 0 100
DeadFeatures - - - - - - 80 0 100

Total 498 28 94.4 646 27 95.8 301 0 100

Table 9: Mutants execution results of the manual test suite

Fault Automated Generator Manual Test Suite

Faulty reasoner
VoidFM + +
ValidProduct + -
Products + +
#Products + +
Variability + +
Commonality + +
DeadFeatures + -
Faults in FaMa and SPLOT
FaMa-JaCoPProducts + -
FaMa-Sat4j + +
SPLOT-Sat4j + +
SPLOT-JavaBDD + +

Table 10: Real faults detected by our test data generator and the manual suite

approach when compared to related testing mechanisms for feature model analysis tools in general, and482

manual mechanisms in particular.483

5. Refinement484

In the approach presented previously, test cases are randomly generated from scratch for simplicity.485

However, it is known that metamorphic testing produces better results when combined with other test486

case selection strategies that generate the initial set of test cases [12, 13]. In this section, we propose487

refining our approach by using an initial set of input models that seed the generation of follow-up test488

cases. This initial set of models could guide the generator to search in specific error-prone areas improving489

the detection results. To show the feasibility of the proposal, we used the input models in FaMa TeS as490

seed for the automated generation of test data. Later, we repeated the evaluation with mutants and real491

faults and checked how the input test cases had contributed to improve the efficiency and effectiveness492

of our automated generator.493

As a preliminary step, we refined our manual suite by adding new test cases that kill the remaining494

alive mutants found during the evaluation with mutation (see Section 4.3). Notice that this is a natural495

step when using mutation to improve the quality of the test suite [50]. In order to avoid the suite being496

overfitted for the mutants under evaluation, we used the information provided by only one of the reasoners497

that was later excluded for the evaluation. In particular, we selected Sat4jReasoner since it was the one498

in which more mutants remained alive and therefore the one providing more feedback to improve our499

suite (see Table 9). As a result, 13 new test cases were added to the manual suite (from 180 to 193), i.e.500

those that killed the remaining alive mutants in Sat4jReasoner.501

Figure 7 illustrates the steps we followed to use the input models of the refined manual suite to guide502

the generation of follow–up test cases. For each operation, the input models used in their associated test503

cases in FaMa TeS and their corresponding set of products (calculated manually) are saved (step 1). Then,504

for each test case to be generated, a feature model is selected (step 2) and extended (step 3) by applying505

16

 Save input models and
their set of products

Select input model

 Extend the model and its
associated set of products

Failed?

Run test

No

Yes

Selection strategy
(e.g. sequentially, randomly)

Configuration parameters
(e.g. desired number of features)

Manual test cases
(e.g. FaMaTeS)

Timeout?

No

Yes

(1)

(2)

(3)

(4)

Figure 7: Algorithm for the generation of test cases using a starting manual test suite

a set of step-wise random transformations to it. Each transformation produces a neighbour model as506

well as its corresponding set of products according to the metamorphic relations presented in Section 3.1.507

Once a feature model with the desired properties has been generated, the test case is run (step 4) and the508

execution stopped if a failure is revealed. Otherwise, a new input model from FaMa TeS is selected and509

the previous process repeated. In our current approach, initial input models are selected sequentially,510

however, other strategies (e.g. random selection) would also be feasible. A maximum timeout of 600511

seconds was used for all the executions. The configuration parameters for the generation (e.g. desired512

number of features, increasing size factor, etc.) were set to the same values described in Section 4.1.1.513

Table 11 depicts the mutants execution results of our refined generator. For each reasoner, the average514

detection time, maximum detection time, average number of test cases generated and mutation scores515

are presented. The last row shows the average values in the form x / y where x is the value obtained516

when using our initial approach (i.e. test cases are created randomly from scratch) and y is the value517

obtained when using the refined version of our generator (i.e. input models from FaMa TeS are used to518

guide the generation of test cases). As illustrated, the experiments revealed a significant improvement in519

the detection times and number of test cases generated before killing a mutant. In JavaBDDReasoner,520

for instance, the average detection time was reduced by 43.7% (from 1.6 to 0.9 seconds) and the number521

of test cases was reduced by 63% (from 6.5 to 2.4 test cases). This improvement was especially significant522

in the maximum detection times reduced by 63.9% (from 111.7 to 40.3 seconds) in JavaBDDReasoner523

and 79.5% (from 8.3 to 1.7 seconds) in JaCoPReasoner. We may mention that we found some cases,524

those with lowest times, in which our refined generator was slightly slower than our original approach. As525

expected, this was caused by the overhead introduced in the new program when loading the initial test set526

from XML files. Finally, we also found a slight improvement in the mutation score of JavaBDDReasoner,527

from 98.7% to 98.9%.528

The evaluation results with real faults, shown in Table 12, were similar to those obtained with mutants.529

The average detection times, for instance, were reduced by 41.7% (from 23.5 to 13.7 seconds) in the faulty530

reasoner and by 43.9% (from 36.2 to 20.3 seconds) in the real faults founds in FaMa and SPLOT. Results531

in the operation VoidFM of our faulty reasoner were especially positive with a reduction in the average532

detection time of 93.6%, from 101.2 seconds (see Table 5) to 6.4. The mutation score in the operation533

ValidProduct showed no improvement. Again, we think this is due to the basic strategies used for the534

selection of input products for this operation. More complex heuristic for this purpose could certainly535

17

Operation
JavaBDDReasoner JaCoPReasoner

Av Time (s) Max Time (s) Av TCs Score Av Time (s) Max Time (s) Av TCs Score

VoidFM 1.5 25.7 5.8 97.3 0.8 1.7 2.3 100
ValidProduct 0.9 7.2 2.3 96.1 0.8 1.2 1.3 100
Products 1.0 40.3 1.5 100 0.8 1.1 1.0 100
#Products 0.7 1.5 1.5 100 0.9 1.1 1.1 100
Variability 0.7 3.5 1.6 100 0.8 0.9 1.0 100
Commonality 0.6 2.9 1.4 100 0.8 1.2 1.1 100
DeadFeatures - - - - 0.8 1.1 1.1 100

Total 1.6 / 0.9 111.7 / 40.3 6.5 / 2.4 98.7 / 98.9 0.7 / 0.8 8.3 / 1.7 2.7 / 1.3 100 / 100

Table 11: Mutants execution results of our refined automated test data generator

yield better results. Finally, we may mention that the results obtained in the operation DeadFeatures of536

the faulty reasoner were much worse that those found in our original approach with an average detection537

time increasing from 12.8 seconds (see Table 5) to 41.3. Interestingly, it seems that starting the generation538

with models that already had some dead features affected negatively the detection of the fault.539

Fault Av Time (s) Av TCs Score

Faulty reasoner
VoidFM 6.4 22 100
ValidProduct 39.1 145.8 40
Products 2.0 4.7 100
#Products 2.3 5.2 100
Variability 2.0 4.4 100
Commonality 2.9 7.1 100
DeadFeatures 41.3 151.9 100
Total 23.5 / 13.7 72.7 / 48.7 91.4 / 91.4
Faults in FaMa and SPLOT
FaMa-JaCoPProducts 79.2 244.0 100
FaMa-Sat4j 1.0 1.2 100
SPLOT-Sat4j 0.5 8.7 100
SPLOT-JavaBDD 0.4 1.9 100
Total 36.2 / 20.3 117.6 / 63.9 100 / 100

Table 12: Evaluation results of our refined generator using real faults

These results support the feasibility of combining our test data generator with other testing strategies540

that generate the initial set of models for a more effective search of faults. However, while the improvement541

in detection times were noticeable, we may remark that we did not obtain significant improvements in542

terms of efficacy. Therefore, we encourage researchers and practitioners following our approach to assess543

carefully the trade–off between the effort required to develop an initial set of test cases and the expected544

gains in efficiency.545

6. Threats to Validity546

We briefly discuss the threats to validity of our work.547 � Subject reasoners. Our mutation results apply only to three of the reasoners integrated into548

FaMa framework and therefore could not extrapolate to other programs. Nevertheless, we may549

remark that each one of these reasoners use a different technique to automate the analysis and were550

coded by different developers providing the required level of heterogeneity for our evaluation.551 � Equivalent mutants. The detection of equivalent mutants, an undecidable problem in general,552

was performed by hand resulting in a tedious and error-prone task. Thus, we must concede a553

small margin of error in the data regarding equivalence. We remark, however, that results were554

taken from three different reasoners providing a fair confidence in the validity of the average data.555

Furthermore, equivalence results were also confirmed by the results obtained by our manual suite.556

18

� Real faults. The number of real faults in our study was not large enough to allow us to draw557

general conclusions. However, we may emphasize that these were collected from both the literature558

and real tools providing a sufficient degree of representativeness. These faults were harder to detect559

than mutants in general and provided a good idea of the behaviour of our approach in real scenarios.560

7. Related Work561

The related works in the field of metamorphic testing can be divided into three areas, namely:562

563

Applications. Chen et al. [13] studied the application of metamorphic testing to address the oracle564

problem in numerical programs. A case study with partial equation was presented. Zhou et al. [62]565

presented several uses of metamorphic testing in the domains of graph theory, computer graphics, com-566

pilers and interactive software. Some metamorphic relations were proposed but no experimental results567

were reported. Later, in [14], the authors proposed a guideline for the selection of good metamorphic568

relations and presented two cases studies with the shortest path program and the critical path program.569

Experimental results of the evaluation of the metamorphic relations using manual mutation testing was re-570

ported. In [9], Chan et al. presented a metamorphic approach for integration testing in context–sensitive571

middleware–based applications. The authors identified functional relations that associate different exe-572

cution sequences of a test case. Then, they used metamorphic testing to check the results of the test573

cases and find contradiction on those relations. Chan et al. [8] proposed an approach for online service574

testing and presented an experiment with a service-oriented calculator of arithmetic expressions to show575

the feasibility of their work. Chen et al. [11] proposed using metamorphic testing to test bioinformatic576

programs and presented experimental results with two of those programs.577

578

Tools, frameworks and methods. Gotlieb and Botella [27] proposed an automated testing framework579

able to check metamorphic relations using constraint programming. Given a program and a metamorphic580

relation, their tool tries to find test data that violates the relation. Evaluation results with mutation581

testing were presented. Chan et al. [10] proposed a testing methodology for service-oriented applications582

based on metamorphic testing. The authors introduced the concept of metamorphic service. A meta-583

morphic service is a service that calls the relevant services of the application and check the metamorphic584

relations. Beydeda [6] proposed a method to enable self-testability of components using metamorphic585

testing. Murphy et al. [40] presented an extension to the Java Modeling Language (JML) and a tool586

able to process it. This extension allow users to specify metamorphic relations as annotation in the Java587

code. These annotation are later processed by their tool that generates test code that can be executed588

using JML runtime assertion checking, for ensuring that the specifications hold during program execution.589

Later, in [39], the authors presented a framework called Amsterdam to support metamorphic testing at590

the system level. They also presented an approach called Heuristic Metamorphic Testing to reduce false591

positives and address some cases of non-determinism. The authors extended their work in [38] presenting592

a new technique called Metamorphic Runtime Checking, a testing approach that automatically conducts593

metamorphic testing of individual functions during the program’s execution. The authors also presented594

a framework called columbus and presented experimental results.595

596

Integration of metamorphic testing with other testing techniques. Chen et al. [16] proposed597

a semi–proving method based on metamorphic testing and global symbolic evaluation. The proposed598

method verifies expected necessary properties for program correctness and identify failure-causing inputs599

if such properties are not satisfied. Later, in [17], the authors presented an integrated method that600

combined metamorphic testing and fault–based testing by means of mutation testing. Chen et al. [15]601

proposed using metamorphic testing in combination with special values testing. Special test values are602

test values in which their expected results are well known and can be used to verify the program. Some603

examples with numerical programs were presented. Xie et al. [60] extend the spectrum–based fault604

localization method with metamorphic testing making it applicable to applications without a test oracle.605

606

19

When compared to previous studies, our work contributes to the three main areas mentioned above as607

follows. First, we have presented the application of metamorphic testing to a novel domain, the analysis608

of feature models. In contrast to most related works, our metamorphic relations are derived from the609

operators of the models (i.e. types of relationships and constraints) rather than from the properties of610

the application domain in which they are used. Also, we have applied metamorphic testing in a slightly611

different way to the showed in related studies. In particular, we have used the metamorphic relations612

to compute the output of follow-up test cases instead of simply comparing the results of different tests.613

Starting from a trivial test case, we generate increasingly larger and more complex test data by making614

sure that the metamorphic relations are fulfilled at each step. This strategy allowed use to define the615

metamorphic relations for a single operation, Products, from which we derived the expected output of616

many of the other analyses on feature models. Second, we have presented a prototype tool for the617

automated generation of test data based on our metamorphic relations. In contrast to related works,618

we have evaluated our test data generator using hundred of automatically inserted mutants rather than619

manual mutation. We have also evaluated our approach with real faults found in the literature and620

current releases of several tools. We are not aware of any other study reporting the detection of real621

bugs using metamorphic testing. Finally, we have proposed a new integrated proposal combining our622

metamorphic approach and a black–box test suite showing experimental evidences of the gains obtained623

in terms of efficiency and efficacy.624

8. Conclusions and Future Work625

In this article, we presented a set of metamorphic relations on feature models and an automated626

test data generator based on them. Given a feature model and its set of products, our tool generates627

neighbouring models and their corresponding set of products. Generated products are then inspected to628

obtain the expected output of a number of analysis operations over the models. Non-trivial feature models629

representing millions of products can be efficiently generated applying this process iteratively. In order to630

evaluate our approach, we checked the effectiveness of our tool in detecting faults using mutation testing631

as well as real faults and tools. Two defects were detected in a recent release of FaMa, an open source632

framework currently being integrated into several commercial tools. Another two faults were detected633

in SPLOT, an online feature model analyzer actively used by the community. We also showed how our634

generator outperforms a related manual suite for the analysis of feature models. Finally, we explained635

how our approach can be refined by using a set of initial test cases that guide the generation of test data636

improving the detection of faults. Our results show that the application of metamorphic testing in the637

domain of automated analysis of feature models is efficient and effective in detecting most faults in a few638

seconds without the need for a human oracle. To the best of our knowledge, this is the first automated639

approach for functional testing on the analyses of feature models.640

From a metamorphic testing point of view, our work shows that the definition of fairly simple meta-641

morphic relations may lead to important fault detection rates at an affordable effort. We also show a642

novel application of metamorphic testing in which metamorphic relations are used to compute the output643

of follow-up test cases instead of comparing the output of different tests. This could certainly encourage644

researchers to explore new applications of metamorphic testing in similar domains in which the oracle645

problem appear. In this context, we plan to work in the definition of some generic guidelines to define646

metamorphic relations in similar data structures like those of variability models and configurators.647

Material648

Our prototype tool, the mutants and test classes used in our evaluation are available at http://www.649

lsi.us.es/~segura/files/material/ist-10/.650

Acknowledgments651

We would like to thank Dr. Marcilio Mendonca for kindly sending us a standalone version of SPLOT652

to be used in our evaluation and allowing us to publish the results in benefit of the research community.653

20

We would also like to thank the anonymous reviewers of the article whose comments and suggestions654

helped us to improve the article substantially.655

This work has been partially supported by the European Commission (FEDER) and Spanish Gov-656

ernment under CICYT project SETI (TIN2009-07366) and the Andalusian Government project ISABEL657

(TIC-2533).658

References659

[1] Ahead tool suite. http://userweb.cs.utexas.edu/users/schwartz/ATS.html. accessed June660

2010.661

[2] D. Batory. Feature models, grammars, and propositional formulas. In Software Product Lines662

Conference, volume 3714 of Lecture Notes in Computer Sciences, pages 7–20. Springer–Verlag, 2005.663

[3] D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated analysis of feature models: Challenges664

ahead. Communications of the ACM, December:45–47, 2006.665

[4] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on feature models. In Advanced666

Information Systems Engineering: 17th International Conference, CAiSE 2005, volume 3520 of667

Lecture Notes in Computer Sciences, pages 491–503. Springer–Verlag, 2005.668

[5] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models 20 years later:669

A literature review. Information Systems, 35(6):615 – 636, 2010.670

[6] S. Beydeda. Self-metamorphic-testing components. In Computer Software and Applications Confer-671

ence, Annual International, pages 265–272, September 2006.672

[7] BigLever. Biglever software gears. http://www.biglever.com/. accessed June 2010.673

[8] W. Chan, S. Cheung, and K. Leung. A metamorphic testing approach for online testing of service-674

oriented software applications. International Journal of Web Services Research, 4(2):61–81, 2007.675

[9] W.K. Chan, T.Y. Chen, and H. Lu. A metamorphic approach to integration testing of context-676

sensitive middleware-based applications. In QSIC ’05: Proceedings of the Fifth International Con-677

ference on Quality Software, pages 241–249, Washington, DC, USA, 2005. IEEE Computer Society.678

[10] W.K. Chan, S.C. Cheung, and K. Leung. Towards a metamorphic testing methodology for service-679

oriented software applications. In QSIC ’05: Proceedings of the Fifth International Conference on680

Quality Software, pages 470–476, Washington, DC, USA, 2005. IEEE Computer Society.681

[11] T. Chen, J. Ho, H. Liu, and X. Xie. An innovative approach for testing bioinformatics programs682

using metamorphic testing. BMC Bioinformatics, 10(1), 2009.683

[12] T.Y. Chen, S.C. Cheung, and S.M. Yiu. Metamorphic testing: a new approach for generating next684

test cases. Technical Report HKUST-CS98-01, University of Science and Technology, Hong Kong,685

1998.686

[13] T.Y. Chen, J. Feng, and T.H. Tse. Metamorphic testing of programs on partial differential equa-687

tions: a case study. In Proceedings of the 26th International Computer Software and Applications688

Conference, pages 327–333, 2002.689

[14] T.Y. Chen, D.H. Huang, T.H. Tse, and Z.Q. Zhou. Case studies on the selection of useful relations in690

metamorphic testing. In Proceedings of the 4th Ibero-American Symposium on Software Engineering691

and Knowledge Engineering (JIISIC 2004), pages 569–583, 2004.692

[15] T.Y. Chen, F. Kuo, Y. Liu, and A. Tang. Metamorphic testing and testing with special values.693

In Proceedings of the 5th International Conference on Software Engineering, Artificial Intelligence,694

Networking and Paralell/Distributed Computing, 2004.695

21

[16] T.Y. Chen, T.H. Tse, and Z. Zhou. Semi-proving: an integrated method based on global symbolic696

evaluation and metamorphic testing. In Proceedings of the 2002 ACM SIGSOFT international697

symposium on Software testing and analysis, pages 191–195. ACM, 2002.698

[17] T.Y. Chen, T.H. Tse, and Z. Zhou. Fault-based testing without the need of oracles. Information699

and Software Technology, 45(1):1–9, 2003.700

[18] Choco. http://www.emn.fr/z-info/choco-solver/. accessed June 2010.701

[19] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. SEI Series in Software702

Engineering. Addison–Wesley, August 2001.703

[20] K. Czarnecki and P. Kim. Cardinality-based feature modeling and constraints: A progress report.704

In Proceedings of the International Workshop on Software Factories At OOPSLA 2005, 2005.705

[21] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data selection: Help for the practicing706

programmer. IEEE Computer, 11(4):34–41, 1978.707

[22] Fama framework. http://www.isa.us.es/fama/. accessed May 2010.708

[23] S. Fan and N. Zhang. Feature model based on description logics. In Knowledge-Based Intelligent709

Information and Engineering Systems, 2006.710

[24] D. Fernandez-Amoros, R. Heradio, and J. Cerrada. Inferring information from feature diagrams to711

product line economic models. In Proceedings of the Sofware Product Line Conference, 2009.712

[25] Feature model plugin. http://gp.uwaterloo.ca/fmp/. accessed June 2010.713

[26] R. Gheyi, T. Massoni, and P. Borba. A theory for feature models in alloy. In Proceedings of the714

ACM SIGSOFY First Alloy Workshop, pages 71–80, Portland, United States, nov 2006.715

[27] A. Gotlieb and B. Botella. Automated metamorphic testing. In COMPSAC ’03: Proceedings of the716

27th Annual International Conference on Computer Software and Applications, page 34, Washington,717

DC, USA, 2003. IEEE Computer Society.718

[28] Graphviz. http://www.graphviz.org/. accessed June 2010.719

[29] Draft IEEE Standard for software and system test documentation (Revision of IEEE 829-1998).720

Technical report, 2007.721

[30] Jacop. http://jacop.osolpro.com/. accessed May 2010.722

[31] Javabdd. http://javabdd.sourceforge.net/. accessed May 2010.723

[32] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–Oriented Domain Analysis (FODA)724

Feasibility Study. Technical Report CMU/SEI-90-TR-21, SEI, 1990.725

[33] Y. Ma, J. Offutt, and Y. Kwon. Mujava: a mutation system for java. In ICSE ’06: Proceedings726

of the 28th international conference on Software engineering, pages 827–830, New York, NY, USA,727

2006. ACM.728

[34] M. Mannion and J. Camara. Theorem proving for product line model verification. In Software729

Product-Family Engineering (PFE), volume 3014 of Lecture Notes in Computer Science, pages 211–730

224. Springer Berlin / Heidelberg, 2003.731

[35] M. Mendonca, M. Branco, and D. Cowan. S.P.L.O.T.: Software Product Lines Online Tools. In732

Companion to the 24th ACM SIGPLAN International Conference on Object-Oriented Programming,733

Systems, Languages, and Applications, OOPSLA 2009, pages 761–762, Orlando, Florida, USA, Oc-734

tober 2009. ACM.735

22

[36] M. Mendonça, A. Wasowski, and K. Czarnecki. SAT–based analysis of feature models is easy. In736

Proceedings of the Sofware Product Line Conference, 2009.737

[37] Moskitt feature modeler. http://www.pros.upv.es/mfm. accessed June 2010.738

[38] C. Murphy and G. Kaiser. Metamorphic runtime checking of non-testable programs. Technical739

Report cucs-012-09, Dept. of Computer Science, Columbia University, 2009.740

[39] C. Murphy, K. Shen, and G. Kaiser. Automatic system testing of programs without test oracles. In741

ISSTA ’09: Proceedings of the eighteenth international symposium on Software testing and analysis,742

pages 189–200, New York, NY, USA, 2009. ACM.743

[40] C. Murphy, K. Shen, and G. Kaiser. Using JML runtime assertion checking to automate metamorphic744

testing in applications without test oracles. In Conference on Software Testing, Verification, and745

Validation, volume 0, pages 436–445, Los Alamitos, CA, USA, 2009. IEEE Computer Society.746

[41] G. J. Myers and C. Sandler. The Art of Software Testing. John Wiley & Sons, 2004.747

[42] Pure-systems. pure::variants. http://www.pure-systems.com/. accessed May 2010.748

[43] Sat4j. http://www.sat4j.org/. accessed May 2010.749

[44] P. Schobbens, J.C. Trigaux P. Heymans, and Y. Bontemps. Generic semantics of feature diagrams.750

Computer Networks, 51(2):456–479, Feb 2007.751

[45] S. Segura, D. Benavides, and A. Ruiz-Cortés. FaMa Test Suite v1.2. Technical Report ISA-10-TR-01,752

ISA Research Group, 2010. Available at http://www.isa.us.es/.753

[46] S. Segura, D. Benavides, and A. Ruiz-Cortés. Functional testing of feature model analysis tools: A754

test suite. IET Software, 2010. In press.755

[47] S. Segura, R.M. Hierons, D. Benavides, and A. Ruiz-Cortés. Automated test data generation on756

the analyses of feature models: A metamorphic testing approach. In International Conference on757

Software Testing, Verification and Validation, pages 35–44, Paris, France, 2010. IEEE press.758

[48] S. Segura, R.M. Hierons, D. Benavides, and A. Ruiz-Cortés. Mutation testing on an object-oriented759

framework: An experience report. Information and Software Technology Special Issue on Mutation760

Testing, 2010. In press.761

[49] S. Segura, R.M. Hierons, D. Benavides, and A. Ruiz-Cortés. Mutation testing on an object-oriented762

framework: An experience report. Technical Report ISA-10-TR-02, ISA Research Group, June 2010.763

Available at http://www.isa.us.es/.764

[50] B.H. Smith and L. Williams. On guiding the augmentation of an automated test suite via mutation765

analysis. Empirical Software Engineering, 14(3):341–369, 2009.766

[51] S.P.L.O.T.: Software Product Lines Online Tools. http://www.splot-research.org/. accessed767

May 2010.768

[52] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro. Automated error analysis for769

the agilization of feature modeling. Journal of Systems and Software, 81(6):883–896, 2008.770

[53] Pablo Trinidad and Antonio Ruiz Cortés. Abductive reasoning and automated analysis of feature771

models: How are they connected? In Third International Workshop on Variability Modelling of772

Software-Intensive Systems. Proceedings, pages 145–153, 2009.773

[54] P. van den Broek and I. Galvao. Analysis of feature models using generalised feature trees. In774

Third International Workshop on Variability Modelling of Software-intensive Systems, number 29 in775

ICB-Research Report, pages 29–35, Essen, Germany, January 2009. Universität Duisburg-Essen.776

23

[55] Tijs van der Storm. Generic feature-based software composition. In Software Composition, volume777

4829 of LNCS, pages 66–80. Springer, 2007.778

[56] A. van Deursen and P. Klint. Domain–specific language design requires feature descriptions. Journal779

of Computing and Information Technology, 10(1):1–17, 2002.780

[57] H. Wang, Y.F. Li, J. un, H. Zhang, and J. Pan. Verifying Feature Models using OWL. Journal of781

Web Semantics, 5:117–129, June 2007.782

[58] E.J. Weyuker. On testing non-testable programs. The Computer Journal, 25(4):465–470, 1982.783

[59] J. White, D. Schmidt, D. Benavides P. Trinidad, and A. Ruiz-Cortes. Automated diagnosis of784

product-line configuration errors in feature models. In Proceedings of the Sofware Product Line785

Conference, 2008.786

[60] X. Xie, W.E. Wong, T.Y. Chen, and B. Xu. Spectrum-Based Fault Localization Without Test Ora-787

cles. Technical report, Technical Report, UTDCS-7-10, Department of Computer Science, University788

of Texas at Dallas, 2010.789

[61] W. Zhang, H. Mei, and H. Zhao. Feature-driven requirement dependency analysis and high-level790

software design. Requirements Engineering, 11(3):205–220, June 2006.791

[62] Z.Q. Zhou, DH. Huang, TH. Tse, Z. Yang, H. Huang, and TY. Chen. Metamorphic testing and792

its applications. In Proceedings of the 8th International Symposium on Future Software Technology,793

pages 346–351, 2004.794

24

