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Abstract. We consider a nonlocal eigenvalue problem which arises
in the study of stability of spike solutions for reaction-diffusion sys-
tems with fractional reaction rates such as the Sel’kov model, the
Gray-Scott system, the hypercycle Eigen and Schuster, angiogen-
esis, and the generalized Gierer-Meinhardt system. We give some
sufficient and explicit conditions for stability by studying the cor-
responding nonlocal eigenvalue problem in a new range of param-
eters.

1. Motivation: The Sel’kov Model

We consider a nonlocal eigenvalue problem which arises in the study

of spike solutions for reaction-diffusion systems in many areas of applied

science.

We begin by considering the so-called Sel’kov model [Sel’kov, 1968]

which was derived by Sel’kov to describe the enzyme reaction of glycol-

ysis. Starting from a simple kinetic scheme with substrate inhibition

and product activation, Sel’kov derived this reaction-diffusion system

according to the law of mass action and the law of mass conserva-

tion. The model and some modifications of it have also been used in

the study of morphogenesis and population dynamics (see [Hunding &

Sorensen, 1988] or [Murray, 1989], respectively). In its simplified and

1991 Mathematics Subject Classification. Primary 35B40, 35B45; Secondary
35J40.

Key words and phrases. Nonlocal Eigenvalue Problem, Stability, Spike Solution,
Reaction-Diffusion Systems.

1



2 JUNCHENG WEI AND MATTHIAS WINTER

nondimensionalized form, the system in 1-D becomes⎧⎪⎨
⎪⎩

ut = Duu
′′ + 1 − uvp in (−1, 1),

vt = Dvv
′′ − v + uvp in (−1, 1),

u
′
(±1, t) = v

′
(±, 1, t) = 0,

(1.1)

where Du, Dv > 0 are the diffusion coefficients of u and v, respectively,

and p > 1. We are particularly interested in the case Du >> 1, Dv =

ε2 << 1, when spike layer solutions of (1.1) exist.

We remark that the properties of stationary solutions of (1.1) in gen-

eral domains have been studied in a number of papers. See [Davidson

& Rynne, 2000], [Eilbeck & Furter, 1995], and the references therein.

A possible way to study (1.1) is to consider its shadow system first:

Assume that Du → +∞. Thus u(x, t) → ξ(t). Now integrating the

first Eq. over (−1, 1), we (formally) obtain the so-called shadow system

(similar ideas were also used in other reaction-diffusion systems, see for

example [Ni, 1998], [Nishiura, 1982], [Wei 1999a], [Wei, 1999b]):⎧⎪⎨
⎪⎩

ξt = 1 − 1
2
ξ
∫ 1
−1 vp(x)dx in (−1, 1),

vt = Dvv
′′ − v + ξvp in (−1, 1),

v
′
(±1, t) = 0.

(1.2)

As Dv = ε2 → 0, we (asymptotically) have a symmetric stationary

solution of (1.2) which takes the following form

(vε, ξε) ∼
⎛
⎝ξ

− 1
p−1

ε w
(

x

ε

)
,

(
ε
∫
R wp

2

)p−1
⎞
⎠ , (1.3)

where w is the unique solution of

w
′′ − w + wp = 0, w

′
(0) = 0, w(y) > 0, w(y) → 0 as |y| → +∞.

(1.4)

Note that w is a homoclinic orbit connecting zero with itself. The ex-

istence and uniqueness of the solution w of (1.4) follows from standard

dynamical systems theory: Multiplication of (1.4) by w′ and integration

with respect to y shows that

1

2
(w′)2 − 1

2
w2 +

1

p + 1
wp+1 = C. (1.5)

For |y| → ∞, we have w(y) → 0 and w
′
(y) → 0; this implies C. For

y = 0, we have w
′
(0) = 0 and therefore w(0) =

(
p+1
2

)1/(p−1)
. In fact, it
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is easy to see that w(y) can be written explicitly as

w(y) =
(

p + 1

2

)1/(p−1) (
cosh

(
p − 1

2
y
))−2/(p−1)

. (1.6)

Such a solution has a spike at the center of the domain. We call it a

spike-layer solution.

If we linearize the shadow system (1.2) with respect to the solutions

given by (1.3), then we obtain the following linear system for (φε, ηε) ∈
H1(−1, 1) × L∞(−1, 1)

− 1

2
ηε

∫ 1

−1
vp

ε (x) dx − p

2
ξε

∫ 1

−1
vp−1

ε (x)φε(x) dx = λεηε,
(1.7)

ε2φ
′′
ε − φε + ξεpv

p−1
ε φε + ηεv

p
ε = λεφε. (1.8)

Substituting (1.7) into (1.8), we have the following nonlocal eigenvalue

problem

ε2φ
′′
ε − φε + ξεpv

p−1
ε φε −

p
2
ξε

∫ 1
−1 vp−1

ε (x)φε(x) dx

λε + 1
2

∫ 1
−1 vp

ε (x) dx
vp

ε = λεφε.
(1.9)

Now we scale the space variable as follows

x = εy

and assume that (a suitable extension to R of) φε(εy) → φ(y) in H2(R)

and λε → λ as ε → 0. Then noting that

ξεv
p−1
ε (x) ∼ wp−1

(
x

ε

)
,

∫ 1

−1
vp

ε (x) dx =
2

ξε

∼ ε1−p2p
(∫

R
wp(y) dy

)1−p

in the limit ε → 0 we obtain the following nonlocal eigenvalue problem⎧⎨
⎩ φ

′′ − φ + pwp−1φ − γ(p − 1)

∫
R

wp−1φ∫
R

wp wp = λφ,

φ ∈ H2(R), λ ∈ C, (1.10)

where γ > 1, p > 1 and γ = p
p−1

. The limit ε → 0 in fact requires

some detailed justification which is given in [Ni et. al., 2002] and [Wei,

1999b] for the case of the Gierer-Meinhardt system.

We remark that since w is an even function, we may assume that φ

is also an even function. From now on we shall work only with even

functions unless otherwise stated.
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2. Main Result

The following is the main result in this paper:

Theorem 1. For p > 1 and 1 < γ ≤ p
p−1

, problem (1.10) is stable.

Let us discuss what is new in the above theorem.

Problem (1.10) is a special case of the following general nonlocal

eigenvalue problem in RN , N ≥ 1

∆φ − φ + pwp−1φ − γ(p − 1)

∫
RN wr−1φ∫

RN wr
wp = λφ, φ ∈ H2(RN),

(2.11)

where

γ > 1, p > 1, r > 1, λ ∈ C.

The case r = 2 or r = p+1 is studied in [Ni et. al., 2002], [Wei, 1999a],

[Wei, 1999b]. The Hopf bifurcation is studied in [Dancer, 2002]. In

general, it is quite difficult to study the general r case. The reason is

that problem (2.11) is not self-adjoint for r �= p + 1 and therefore it

may have complex eigenvalues.

In [Wei,1999a] and [Wei, 1999b], it is proved that for r = 2 and

1 < p < 1 + 4
N

, problem (2.11) is stable for any γ > 1. Here we

say (2.11) is stable if there exists a positive constant c1 > 0 such that

Re (λ) < −c1 for any eigenvalue λ. It is unstable if there exists an

eigenvalue λ with Re (λ) > 0. This implies that problem (1.10) is

stable when p = 2 and γ > 1.

In [Wei & Zhang, 2001], some stability results of problem (2.11) are

obtained in the case of 2 < r < p+1 and 1 < p < 1+ 2r
N

. We will recall

and make use of the results of [Wei & Zhang, 2001] in Section 4.

Theorem 1 is the first result on (1.10) which covers the full range

1 < p < +∞ and 1 < γ ≤ p
p−1

. This is important to all applications

since the physically relevant parameters are within.

We remark that the lower bound γ = 1 in Theorem 1 is sharp. Like in

[Wei, 2000a] it can be shown here that the solution is linearly unstable

for γ < 1. Note also that for γ = 1 the function w is an eigenfunction

to the eigenvalue zero. On the other hand, the upper bound γ ≤ p
p−1

can be relaxed to γ ≤ γ0(p) for some γ0(p) > p
p−1

. See remark after the

proof of Theorem 1 in Section 4.
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We conjecture that for p > 5 there is a γh(p) such that for γ < γh(p),

problem (1.10) is stable and for γ > γh(p), problem (1.10) becomes

unstable. At such a point γh(p), problem (1.10) has a Hopf bifurcation.

Our numerical computations strongly suggest that this conjecture hold

true.

From Theorem 1, we immediately deduce that the spike solution

given by (1.3) is metastable to the shadow system (1.2) for all p > 1.

For the definition of metastability and the proof of this statement, we

refer to [Wei, 1999b].

We will sketch the proof of Theorem 1 in Sec. 4 and will provide the

proofs of some technical lemmas in three appendices.

We remark that there is another approach in studying (1.10) in one

dimension, that is by using hypergeometric functions to (formally) re-

duce (1.10) to algebraic Eqs. and then solving these with Mathematica

or Maple, [Doelman et. al., 1998], [Doelman et. al., 2000a], [Doelman

et. al., 2000b],

Our results here are derived by rigorous proofs which combine func-

tional analysis and hypergeometric functions.

3. Applications

In this Sec. we describe four other applications to which (1.10) is

the main result to understand the stability of spike solutions.

We consider the following autocatalytic reaction

A + pB → (p + 1)B, p ≥ 1

with reaction rate

α[A][B]p, α > 0,

where [A] denotes the concentration of A and the same of B; A is

the substrate and B is the product as well as its own catalyst. We

assume further a positive influx of the substrate A into the system and

a decay of the product B. Then using the mass action law and the mass

conservation law we obtain the generalized Gray-Scott system which
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in its nondimensionalized form can be stated as follows:⎧⎪⎨
⎪⎩

at = DAa′′ + µa(1 − a) − abp in (−1, 1),
bt = DBb′′ − µbb + abp in (−1, 1),
a

′
(±1, t) = b

′
(±, 1, t) = 0.

(3.12)

We note that for p = 2, this becomes the classical Gray-Scott model

[Gray & Scott, 1983]. Similar to the previous arguments (for details,

see [Wei 1999b]), we arrive at problem (1.10) with γ ≤ p
p−1

.

Our second application is the following hypercycle reaction-diffusion

system with nonlinear rate:{
∂Xi

∂t
= DX

∂2Xi

∂x2 − gXXi + M
∑N

j=1 kijXiX
n
j , i = 1, 2, . . . , N, x ∈ R,

∂M
∂t

= DM
∂2M
∂x2 + kM − gMM − LM

∑N
i,j=1 kijXiX

n
j , x ∈ R,

(3.13)

where Xi denotes the concentration of the polymers, and M is the

concentration of activated monomers. N is the number of different

polymer species. The replication of each polymer Xi is catalysed by

each Xj at a constant rate kij. Linear (non-catalytic) growth terms are

neglected. The activated monomers are produced at a constant rate,

kM ; gX and gM are decay rate constants. L is the number of monomers

in each polymer, and DX and DM are constant diffusion coefficients.

The exponent n is a positive number. We assume that the coefficients

kij are represented by a hypercyclical N × N matrix,

(kij) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 k0

k0 0 · · · 0 0
0 k0 0 · · · 0
0 0 · · · · · · 0
0 0 · · · k0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

N×N

, k0 > 0.

The system (3.13) is very similar to the hypercycle of Eigen and Schus-

ter modeling pre-biotic evolution [Eigen & Schuster, 1977], [Eigen &

Schuster, 1978a], [Eigen & Schuster, 1978b]. The main difference is in

(3.13) the equations for Xi are coupled in a nonlocal way by the equa-

tion for M , whereas Eigen and Schuster makee the simpler assumption

that the sum of Xi is constant. The effect of this coupling is very

similar in both cases: The concentrations Xi are bounded.

When n �= 1, we call (3.13) a hypercycle system with nonlinear rate.

The reason is the following: For each Xi, the kinetic reaction rate is
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given by

Γi = −gX + M
N∑

j=1

kijX
n
j . (3.14)

When n = 1, we have a linear growth rate for Γi and the system is called

classical hypercycle system. If n < 1, the growth rate is sublinear, while

if n > 1, the growth rate is superlinear.

In our paper [Wei & Winter, 2001b], (1.10) with n = p − 1 was

derived from a system of nonlocal eigenvalue problems, which arose

from (3.13) by taking the limit ε → 0.

The third application comes from the study of the onset of capillary

formation initiating angenesis [Levine & Sleeman, 1997] and [Levine et.

al., 2001]. The following mathematical model was proposed in [Levine

& Sleeman, 1997] and [Levine et. al., 2001]:{
Pt = D1(P (log P

W a )x)x in (−1, 1),
Wt = D2Wxx − W + PW

1+γW
in (−1, 1),

(3.15)

where a > 0, γ > 0 are constant coefficients, and D1 and D2 are diffu-

sion coefficients. (D2 is set to be zero in [Levine & Sleeman, 1997] since

D2 is assumed to be small.) Here P (x, t) denotes the particle density

of a particular species and W (x, t) is the concentration of the “active

agent”. The study of the stability of a spatially non-uniform steady-

state of (3.15) can be reduced to (1.10). Here we take p = a > 1. See

the recent work [Sleeman et. al., 2002].

As a fourth application, we remark that problem (1.10) also arises

in the stability analysis for the generalized Gierer-Meinhardt system

modeling morphogenesis in living organisms.⎧⎪⎨
⎪⎩

At = ε2∆A − A + Ap

Hq , A > 0 in Ω,
τHt = D∆H − H + Ar

Hs , H > 0 in Ω,
∂A
∂ν

= ∂H
∂ν

= 0 on ∂Ω,
(3.16)

where the exponents (p, q, r, s) satisfy the following conditions

p > 1, q > 0, r > 0, s ≥ 0,
qr

(p − 1)(s + 1)
> 1.

For details see [Gierer & Meinhardt, 1972], [Iron et. al., 2001], [Ni,

1998], [Ni et. al., 2002], [Wei, 1999a], [Wei, 2000b], [Wei & Winter,
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1999], [Wei & Winter, 2001a], [Wei & Winter, 2002], and the references

therein.

These four applications of the nonlocal eigenvalue problem (1.10)

show that it is relevant for stability in various branches of applied

science. Therefore it is important to understand the stability behaviour

of (1.10).

4. Sketch of the Proof of Theorem 1

In this section we sketch the proof of our main result. To this end,

we need to define some functions.

Let

D(r) :=
(p − 1)

∫
RN

(
(L−1

0 wr−1)wr−1
) ∫

RN w2

(
∫
RN wr)2

(4.1)

where L0 = ∆ − 1 + pwp−1. (Note that L−1
0 exists in

H2
radial(R

N) := {u ∈ H2(RN)|u(x) = u(|x|)})
and

F (r) = 1 − p − 1

2r
N. (4.2)

We will make use of the following theorem due to [Wei & Zhang,

2001]:

Theorem A. [Wei & Zhang, 2001] Suppose that there exists an

interval (r1, r2) ⊂ (1, +∞) such that either 2 ∈ (r1, r2) or p + 1 ∈
(r1, r2), and for any r ∈ (r1, r2), we have

(i) γ2D(r) − F (p + 1) − 2γ(γ − 1)F (r) + (γ − 1)2F (2) < 0,

(ii) F (p + 1) + γF (r) − (γ − 1)F (2) > 0,

(iii) γ2D(r) > (γ − 2)2F (p + 1) − (γF (r)−(γ−2)F (p+1))2

F (p+1)−F (2)
.

Then for any r ∈ (r1, r2) and any nonzero eigenvalue λ of problem

(2.11), we have Re(λ) < −c1 < 0 for some c1 > 0.

For the convenience of the reader, a proof of Theorem A is included

in Appendix A.

Let return to our primal problem (1.10). We would like to apply

Theorem A to problem (1.10). To this end, we need to know the sign

of D(r). In [Wei & Zhang, 2001], it is proved that if 2 < r < p + 1
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and 1 < p < 2r
N

, then D(r) > 0. A key observation of this paper is the

following lemma which gives the explicit formula for D(r) when r = p.

Lemma 2. For p > 1 and N = 1, we have

D(p) =
(p − 1)(p + 1)2

p2
B(

2

p − 1
,
1

2
)(B(

1

p − 1
,
1

2
))−2,

(4.3)

where B(α, β) is the usual Beta function, i.e. B(α, β) =
∫ 1
0 tα−1(1 −

t)β−1dt.

Lemma 2 will be proved in Appendix B.

With the help of Lemma 2, we also prove that

Lemma 3. For all 1 < p < +∞ and all γ > 1, condition (i) of

Theorem A is satisfied for r = p. Namely we have

γ2D(p) − F (p + 1) − 2γ(γ − 1)F (p) + (γ − 1)2F (2) < 0.
(4.4)

A proof of Lemma 3 will be given in Appendix C.

Let us now use Lemma 2 and 3 to finish the proof of Theorem 1.

Proof of Theorem 1.

Using Lemma (2) and (3), we verify the conditions of Theorem A.

By Lemma (3), condition (i) of Theorem A holds true for all p > 1

and γ > 1.

It is easy to see that condition (ii) of Theorem A is true for r = p

and any γ > 1 since F (r) > 0.

To finish the proof of Theorem 1, it remains to check condition (iii)

of Theorem A. To this end, set

ρ(t) = t2F (p + 1) − (tF (p + 1) − F (p))2

F (p + 1) − F (2)
, t =

γ − 2

γ
∈ (−1, 1).

(4.5)

Note that

ρ
′
(t) =

2F (p + 1)

F (p + 1) − F (2)
(F (p) − tF (2)).

We first consider the case 1 < p < 2. To check condition (iii), we

note that for 1 < γ ≤ p
p−1

and p < 2, we have that F (2) > 0 and
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t = γ−2
γ

≤ 2−p
p

. There are two roots for ρ(t) = 0:

t1 =
2(p + 1)

p(5 − p)
(1 − p − 1√

2(p + 3)
), t2 =

2(p + 1)

p(5 − p)
(1 +

p − 1√
2(p + 3)

).
(4.6)

We have ρ(t) < 0 for all t < t1. But it is easy to check that for

1 < p < 2
2 − p

p
< t1.

So for all 1 < γ ≤ p
p−1

, we have ρ(t) ≤ 0 < D(p). Therefore condition

(iii) of Theorem A is satisfied.

Finally we consider the case p > 2.

For 2 < p ≤ 5 and γ ≤ p
p−1

, t = γ−2
γ

≤ 2−p
p

≤ 0. Since F (2) ≥ 0,

ρ(t) ≤ ρ(0) ≤ 0 for t ≤ 0. Condition (iii) is satisfied.

For p > 5, we have F (2) < 0. Let t1, t2 be the two roots for ρ(t) = 0.

If |t2| ≥ 1 (i.e. p ≤ p1 ∼ 11.38), then we have ρ(t) ≤ 0 for −1 < t ≤ 0.

If |t2| < 1, then the maximum of ρ(t) in [−1, 0] is ρ(−1). Therefore we

only need to show that

D(p) > ρ(−1) = F (p + 1) − (F (p + 1) + F (p))2

F (p + 1) − F (2)
. (4.7)

We write (4.7) as follows

(p + 1)2

2πp2

(B( 1
p−1

+ 1
2
, 1

2
))2

B( 2
p−1

+ 1
2
, 1

2
)

>
p + 3

2(p + 1)
− (2p2 + 5p + 1)2

p2(p + 1)(p − 1)2
, p > p1.

(4.8)

To show (4.8), we apply the following inequality due to Luke (page

18, [Luke, 1975]):

z + 1

2z2 + z + 1
<

2−2zπ

B(z + 1
2
, 1

2
)

<
(1 − z)(2z2 + 5z + 1)

(z + 1)2(2z + 1)
+

8z2(z + 2)2

(z + 1)2(2z + 1)(2z2 + 5z + 5)
,

(4.9)

for 0 ≤ z ≤ 1. From (4.9), it is easy to deduce that

2−2zπ < B(z +
1

2
,
1

2
) < 2−2zπ

2z2 + z + 1

z + 1
, 0 ≤ z ≤ 1.

(4.10)
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Applying (4.10), we obtain that

(p + 1)2

2πp2

(B( 1
p−1

+ 1
2
, 1

2
))2

B( 2
p−1

+ 1
2
, 1

2
)

>
(p + 1)2

2p2

p2 − 1

p2 + 7
.

On the other hand, for p > p1,

p + 3

2(p + 1)
− (2p2 + 5p + 1)2

p2(p + 1)(p − 1)2
<

p + 3

2(p + 1)
− 4

p
.

It remains to show that

(p + 1)2

2p2

p2 − 1

p2 + 7
>

p + 3

2(p + 1)
− 4

p
for p > p1,

which is an easy exercise.

In conclusion, we have shown that for p > 1 and 1 < γ ≤ p
p−1

, all the

conditions in Theorem A are satisfied. Theorem 1 follows Theorem A.

�
Remark: In general, the condition that γ ≤ p

p−1
may be relaxed to

the following: γ ≤ γ0(p) where γ0 satisfies

γ2
0D(p) = (γ0 − 2)2F (p + 1) − (γ0F (p) − (γ0 − 2)F (p + 1))2

F (p + 1) − F (2)
, γ0 > 1.

Since D(p) is explicitly known, γ0(p) can be computed explicitly. We

remark that γ0(p) > 2. Hence for all p > 1 and 1 < γ ≤ max(2, p
p−1

),

problem (1.10) is stable.

5. Appendix A: Proof of Theorem A

In this appendix, we include a proof of Theorem A. The main idea is

that we introduce a quadratic form which is positive definite at r = p+1

and r = 2. Then we use a continuation argument for r.

We first introduce a quadratic form.

To this end, let us suppose that (λ, φ) is a solution of (2.11) with

λ �= 0. Set λ = λR + iλI and φ = φR + iφI . Then we obtain two Eqs.

L0φR − (p − 1)γ

∫
RN wr−1φR∫

RN wr
wp = λRφR − λIφI , (5.1)
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L0φI − (p − 1)γ

∫
RN wr−1φI∫

RN wr
wp = λRφI + λIφR, (5.2)

where L0 = ∆ − 1 + pwp−1.

Multiplying (5.1) by φR and (5.2) by φI and adding them up, we

obtain

− λR

∫
RN

(φ2
R + φ2

I) (5.3)

=
∫

RN
(|∇φR|2 + φ2

R) − p
∫

RN
wp−1φ2

R + γ(p − 1)

∫
RN wr−1φR

∫
RN wpφR∫

RN wr

+
∫

RN
(|∇φI |2 + φ2

I) − p
∫

RN
wp−1φ2

I + γ(p − 1)

∫
RN wr−1φI

∫
RN wpφI∫

RN wr
.

Multiplying (5.1) by w and (5.2) by w we obtain

(p − 1)
∫

RN
wpφR − γ(p − 1)

∫
RN wr−1φR∫

RN wr

∫
RN

wp+1 = λR

∫
RN

wφR − λI

∫
RN

wφI ,
(5.4)

(p − 1)
∫

RN
wpφI − γ(p − 1)

∫
RN wr−1φI∫

RN wr

∫
RN

wp+1 = λR

∫
RN

wφI + λI

∫
RN

wφR.
(5.5)

For t > −1, let us set

I t(ϕ) = L0(ϕ, ϕ)+
(p − 1)γ∫

RN wr

∫
RN

wr−1ϕ
∫

RN
wpϕ−t

(p − 1)∫
RN w2

∫
RN

wpϕ
∫

RN
wϕ

+t
γ(p − 1)∫

RN wr
∫
RN w2

∫
RN

wp+1
∫

RN
wr−1ϕ

∫
RN

wϕ, (5.6)

where L0 is defined by

L0(u, v) =
∫

RN
(∇u∇v + uv − pwp−1uv). (5.7)

From (5.3), (5.4) and (5.5) we obtain that

I t(φR) + I t(φI) = −λR

⎡
⎣ ∫

RN
(|φR|2 + |φI |2) + t

(
∫
RN wφR)2 + (

∫
RN wφI)

2∫
RN w2

⎤
⎦.

(5.8)

To prove Theorem A, our main idea is to find a continuous function

t = t(r) > −1 such that I t(r) is positive definite. This is achieved by

the following lemma.
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Lemma 4. Suppose that for all r ∈ (r1, r2) assumptions (i), (ii) and

(iii) of Theorem A hold. Moreover either 2 ∈ (r1, r2) or p+1 ∈ (r1, r2).

Then there exists a continuous function t = t(r) > −1, r ∈ (r1, r2) such

that I t(r)(ϕ) > 0 for any ϕ ∈ H1
radial(R

N), ϕ �≡ 0.

Proof: We first note that

I t(ϕ) = ((−Lt)ϕ, ϕ)

where

Ltϕ := L0ϕ − (p − 1)γ

2
∫
RN wr

(
wp

∫
wr−1ϕ + wr−1

∫
RN

wpϕ
)

+t
p − 1

2
∫

w2

(
wp

∫
RN

wϕ + w
∫

RN
wpϕ

)

−t
(p − 1)γ

2
∫
RN wr

∫
RN w2

∫
RN

wp+1
(
wr−1

∫
RN

wϕ + w
∫

RN
wr−1ϕ

)
.

Since Lt is self-adjoint, it is easy to see that I t is positive definite if

and only if Lt has only negative eigenvalues.

We now study the following zero eigenvalue problem for Lt on L2
radial(R

N):

Ltϕ = 0, ϕ ∈ L2
radial(R

N), ϕ �≡ 0. (5.9)

It is easy to see that ϕ ∈ H2
radial(R

N). Since L0 is invertible in

H1
radial(R

N), we invert (5.9) and obtain that

ϕ =

(
γ
∫
RN wr−1ϕ

2
∫
RN wr

− t
∫
RN wϕ

2
∫
RN w2

)
w (5.10)

+

(
(p − 1)γ

∫
RN wpϕ

2
∫
RN wr

+
tγ(p − 1)

∫
RN wp+1

∫
RN wϕ

2
∫
RN wr

∫
RN w2

)
L−1

0 wr−1

+

(
tγ

∫
RN wp+1

∫
RN wr−1ϕ

2
∫
RN wr

∫
RN w2

− t
∫
RN wpϕ

2
∫
RN w2

)
(w +

p − 1

2
x · ∇w).

Set A =
∫
RN wϕ, B =

∫
RN wpϕ, C =

∫
RN wr−1ϕ. Then we have

A =
γ
∫
RN w2

2
∫
RN wr

C − t

2
A +

(γ

2
B +

γt

2

∫
RN wp+1∫

RN w2
A
)
F (r)

+
(γt

∫
RN wp+1

2
∫
RN wr

C − t

2
B

)
F (2), (5.11)

B =
γ

2

∫
RN wp+1∫

RN wr
C − t

2

∫
RN wp+1∫

RN w2
A +

(γ

2
B +

γt

2

∫
RN wp+1∫

RN w2
A
)
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+
(γt

∫
RN wp+1

2
∫
RN wr

C − t

2
B

)
, (5.12)

C =
γ

2
C− t

2

∫
RN wr∫
RN w2

A+
(γ

2
B+

γt

2

∫
RN wp+1∫

RN wr
A
)(p − 1)

∫
RN (L−1

0 wr−1)wr−1∫
RN wr

+
(rt

∫
RN wp+1

2
∫
RN w2

C − t

2

∫
RN wr∫
RN w2

B
)
F (r). (5.13)

Recall that D(r) :=
(p − 1)

∫
RN (L−1

0 wr−1)wr−1
∫
RN w2

(
∫
RN wr)2

.

Since A2 + B2 + C2 �= 0 (otherwise, by (5.10), ϕ ≡ 0), we have by

(5.11), (5.12) and (5.13) that∣∣∣∣∣∣∣∣
γtF (r) − F (p + 1)(t + 2) γF (r) − tF (2) γF (p + 1) + γF (2)t

(γ − 1)t γ − 2 − t γ + γt(
γD(r) − F (p + 1)

)
t γD(r) − F (r)t (γ − 2)F (p + 1) + γF (r)t

∣∣∣∣∣∣∣∣ = 0.

That is

I1(t) :=

∣∣∣∣∣∣∣∣

(
γF (r) − F (p + 1)

)
t − 2F (p + 1) γF (r) − tF (2) γF (p + 1) + γ2F (r)

(γ − 1)t γ − 2 − t γ2 − γ(
γD(r) − F (p + 1)

)
t γD(r) − F (r)t γ2D + (γ − 2)F (p + 1)

∣∣∣∣∣∣∣∣ = 0.

It is easy to check that

I1(0) = 2F (p + 1)
(
γ2D(r) − (γ − 2)2F (p + 1)

)
,

I ′
1(0) = 4F (p + 1)

(
γ2D(r) + (γ − 2)F (p + 1) − γ(γ − 1)F (r)

)
,

I ′′
1(0) = 4F (p+1)

(
γ2D(r)−F (p+1)−2γ(γ−1)F (r)+(γ−1)2F (2)

)
.

Thus we obtain that Lt has a zero eigenvalue if and only if

I1(t) =
1

2
I ′′

1(0)t2 + I ′
1(0)t + I1(0) = 0.

Note that I1(−1) = 2(γ−1)2F (p+1)(F (2)−F (p+1)). Assumption

(i) implies that I1(t) is concave while assumption (ii) implies that the

maximum point

tmax := − I
′
1(0)

I
′′
1 (0)

is greater than −1. Finally simple computations show that

I1(tmax) = I1(0) − (I
′
1(0))2

2I
′′
1 (0)
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=
(4(γ − 1)F (p + 1))2

2I
′′
1 (0)

×
⎡
⎣(γ2D(r)−(γ−2)2F (p+1))(F (2)−F (p+1))−(γF (r)−(γ−2)F (p+1))2

⎤
⎦ > 0

by assumption (iii).

Let (r1, r2) be defined in Theorem A. Without loss of generality, we

may assume that 2 ∈ (r1, r2). Let us now choose

t(r) := tmax = − I ′
1(0)

I ′′
1(0)

. (5.14)

Then t(r) > −1 and I1(t(r)) > 0.

We first prove Lemma 4 for r = 2. We need to show that

I t(2)(ϕ) > 0,∀ ϕ ∈ H1
radial(R

N), ϕ �≡ 0. (5.15)

To this end, we use a continuation argument. By Lemma 5.1 of [Wei,

1999b], if F (2) > 0, then Iγ−2 is positive definite which implies that

Lγ−2 has no nonnegative eigenvalues. Moreover, when r = 2,

I1(γ − 2) = 8F (p + 1)(γ − 1)2F (2) > 0 (5.16)

and

t(2) =
γF (2) + (γ − 2)F (p + 1)

F (p + 1) − F (2)
> γ − 2. (5.17)

Since I1(t) is concave, we have that I1(t) > 0 for t ∈ [γ − 2, t(2)].

Let us now vary t. We claim that

I t(ϕ) > 0,∀t ∈ [γ − 2, tmax], and ϕ ∈ H1
radial(R

N), ϕ �≡ 0.
(5.18)

In fact, suppose not. Then at some point t = t0 ∈ (γ − 2, tmax], we

must have that Lt0 has a zero eigenvalue, which implies that I1(t0) = 0.

This is impossible.

So (5.15) is proved. Next we vary r. Assume that r = r0 > 1 is

the first value for which I t(r)(φ) = 0 and that r0 satisfies assumptions

(i)-(iii). Then at r = r0, Lt(r0) must have a zero eigenvalue which

implies that I1(t(r0)) = 0. This is in contradiction to the fact that

I1(t(r0)) > 0. Thus we deduce that I t(r)(ϕ) > 0 for any ϕ ∈ H1
r (RN)

and r satisfying the assumptions (i)-(iii).

Similarly we can prove the case when p + 1 ∈ (r1, r2).
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Lemma 4 is thus proved.

�
Finally, Theorem A follows directly from Lemma 4 and (5.8).

�

6. Appendix B: Computation of D(p) and Proof of Lemma 2

In this appendix, we prove Lemma 2.

We use hypergeometric functions to compute D(p). We just need to

compute
∫
R wp−1L−1

0 wp−1. Let φ0 := L−1
0 wp−1 and α = p−2

p−1
. We first

assume that

α +
1

2
> 0. (6.19)

Set

φ0 = wG.

Then G satisfies

G
′′

+ 2
w

′

w
G

′
+ (p − 1)wp−1G = wp−2.

Next we perform the following change of variables

z =
2

p + 1
wp−1. (6.20)

(The transformation (6.20) has been used in [Doelman et. al., 1999]

[Doelman et. al., 2001a] [Doelman et. al., 2001b] .)

Note that due to the remarks after (1.4), z is a homeomorphism from

[0, +∞] to [0, 1].

By some lengthy computations, we obtain the following Eq. for G(z):

z(1 − z)G
′′

+ (c − (a + b + 1)z)G
′ − abG =

1

(p − 1)2
(
p + 1

2
)αzα−1

(6.21)

where

a =
p + 1

p − 1
, b = −1

2
, c =

p + 1

p − 1
. (6.22)

To solve (6.21), we take a power series

G(z) = zs
+∞∑
k=0

ckz
k
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and substitute it into (6.21). We obtain that

+∞∑
k=0

ckz
s+k−1(s + k)(s + k − 1 + c)

−
+∞∑
k=1

ckz
s+k(s + k + a)(s + k + b) =

1

(p − 1)2
(
p + 1

2
)αzα−1.

So

s − 1 = α − 1, c0s(s − 1 + c) =
1

(p − 1)2
(
p + 1

2
)α,

ck(s+k)(s+k−1+c) = ck−1(s+k−1+a)(s+k−1+b), k = 1, 2, ....

Hence we have

s = α, c0 =
1

p(p − 2)
(
p + 1

2
)α

and

ck =
α + k − 3

2

α + k
ck−1, k = 1, 2, ....

Therefore we obtain

G(z) =
1

p(p − 2)
(
p + 1

2
)αzα

⎛
⎝1 +

α − 1
2

α + 1
z +

(α − 1
2
)(α + 1

2
)

(α + 1)(α + 2)
z2 + ...

⎞
⎠.

In terms of the so-called hypergeometric function (see [Erdelyi et. al.,

1953]), we can write G(z) as

G(z) =
1

p(p − 2)
(
p + 1

2
)αzαF (1, α − 1

2
; α + 1; z).

(6.23)

So ∫
R

wp−1φ0dy = 2
∫ +∞

0
wp−1φ0dy

=
p + 1

p − 1

∫ 1

0
w(1 − z)−

1
2 G(z)dz (by (6.20), (1.5))

=
(p + 1)2

2p(p − 1)(p − 2)

∫ 1

0
z(1 − z)−

1
2 F (1, α − 1

2
; α + 1; z)dz

=
(p + 1)2

2p(p − 1)(p − 2)

(
B(2,

1

2
) +

α − 1
2

α + 1

∫ 1

0
z2(1 − z)−

1
2 F (1, α +

1

2
; α + 2; z)dz

)

=
(p + 1)2

2p(p − 1)(p − 2)

(
B(2,

1

2
) +

α − 1
2

α + 1

Γ(α + 2)

Γ(α + 1
2
)
I

)
(6.24)
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where

I =
+∞∑
n=0

∫ 1

0
z2(1 − z)−

1
2
Γ(α + 1

2
+ n)

Γ(α + 2 + n)
zndz. (6.25)

We can rewrite I as

I =
1

Γ(3
2
)

+∞∑
n=0

∫ 1

0
z2(1 − z)−

1
2 zn

∫ 1

0
tα+ 1

2
+n−1(1 − t)

1
2 dt

=
1

Γ(3
2
)

∫ 1

0
tα−

1
2 (1 − t)

1
2 dt

∫ 1

0
z2(1 − z)−

1
2 (1 − tz)−1dz

=
Γ(3)Γ(1

2
)

Γ(3
2
)Γ(7

2
)

∫ 1

0
tα−

1
2 (1 − t)

1
2 F (1, 3;

7

2
; t)dt.

Let us now compute F (1, 3; 7
2
; t). First it is easy to see that

F (1, 1;
3

2
; (sin z)2) =

z

sin z cos z
. (6.26)

(See Page 101 of [Erdelyi et. al., 1953].) On the other hand

F (1, 1;
3

2
; t) = 1 +

2

3
t +

8

15
t2 +

8

15
t2(F (1, 3;

7

2
; t) − 1).

(6.27)

Thus

F (1, 3;
7

2
; t) = 1 +

15

8
t−2

(
F (1, 1;

3

2
; t) − 1 − 2

3
t − 8

15
t2
)

.

Substituting that into I, we obtain that

I =
Γ(3)Γ(1

2
)

Γ(3
2
)Γ(7

2
)
(
∫ 1

0
tα−

1
2 (1 − t)

1
2

+
15

8

∫ 1

0
tα−

1
2
−2(1 − t)

1
2 (F (1, 1;

3

2
; t) − 1 − 2

3
t − 8

15
t2))dt

=
Γ(3)Γ(1

2
)

Γ(3
2
)Γ(7

2
)
B(α +

1

2
,
3

2
)

+
Γ(3)Γ(1

2
)

Γ(3
2
)Γ(7

2
)

(
15

4

∫ 1

0
(sin z)2α−5(cos z)

×[z − sin z cos z − 2

3
(sin z)3 cos z − 8

15
(sin z)5 cos z]dz

)

=
Γ(3)Γ(1

2
)

Γ(3
2
)Γ(7

2
)
B(α +

1

2
,
3

2
)

+
Γ(3)Γ(1

2
)

Γ(3
2
)Γ(7

2
)

(
15

4
(− 4

3(α − 2)
B(α +

1

2
,
1

2
) − 4

15
B(α +

1

2
,
3

2
)

)



NONLOCAL EIGENVALUE PROBLEM 19

= − 16

3(α − 2)

Γ(α + 1
2
)

Γ(α + 1)
.

So we have ∫
R

wp−1L−1
0 wp−1

=
(p + 1)2

2p(p − 1)(p − 2)

(
4

3
+

α − 1
2

α + 1

Γ(α + 2)

Γ(α + 1
2
)
(− 16

3(α − 2)

Γ(α + 1
2
)

Γ(α + 1)

)
)

=
2(p + 1)2

p2(p − 1)
. (6.28)

Next we note that∫
R

wr =
2

p − 1
(
p + 1

2
)

r
p−1

Γ( r
p−1

)Γ(1
2
)

Γ( r
p−1

+ 1
2
)
.

Hence ∫
R

wp =
∫

R
w =

2

p − 1
(
p + 1

2
)

1
p−1

Γ( 1
p−1

)Γ(1
2
)

Γ( 1
p−1

+ 1
2
)

(6.29)

and ∫
R

w2 =
2

p − 1
(
p + 1

2
)

2
p−1

Γ( 2
p−1

)Γ(1
2
)

Γ( 2
p−1

+ 1
2
)
. (6.30)

Thus

D(p) = (p − 1)
∫

R
wp−1L−1

0 wp−1

∫
R w2

(
∫
R wp)2

=
(p − 1)(p + 1)2

p2
B(

2

p − 1
,
1

2
)(B(

1

p − 1
,
1

2
))−2,

which proves Lemma 2.

If α < −1
2
, we need to choose a positive integer k such that α + k >

−1
2
. Then we expand as in (6.24) until the k−th term and then compute

the sum. The proof is similar. We omit the details.

7. Appendix C: Proof of Lemma 3

In this appendix, we prove Lemma 3.

By Lemma 9 of [Wei & Zhang, 2001], condition (i) is true for p ≥ 2

and γ > 1. So we only need to consider the case when 1 < p < 2.

Let s = 1
γ
∈ (0, 1] and

β(s) = s2F (p + 1) + 2(1 − s)F (p) − (1 − s)2F (2)
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= s2
(
F (p + 1) − F (2)

)
+ 2s(F (2) − F (p)) + 2F (2) − F (2).

Since

β′(0) = 2
(
F (2) − F (p)

)
≥ 0, β′(1) = 2(F (p + 1) − F (p)) ≥ 0,

β(s) has a minimum at 0, i.e.

β(s) ≥ β(0) = 2F (p) − F (2). (7.31)

To prove (4.4), it is enough to show that

D(p) < 2F (p) − F (2). (7.32)

We follow the idea in [Wei & Zhang, 2001]. Set

L(u, v) =
∫

R
(u

′
v

′
+ uv − pwp−1uv). (7.33)

We first claim that for p > 1, we have

inf

{
L(ϕ, ϕ)

∣∣∣∣∣ϕ ∈ H1
even(R),

∫
R

ϕ2 = 1 and
∫

R
wp−1ϕ = 0

}
> 0.

(7.34)

Here H1
even(R) consists of functions in H1(R) which are even.

In fact this is true for p ≥ 2 by Lemma 8 of [Wei & Zhang, 2001].

Suppose that there exists p ∈ (1, 2) such that

inf

{
L(ϕ, ϕ)

∣∣∣∣∣ϕ ∈ H1
even(R) ,

∫
R

ϕ2 = 1 and
∫

R
wp−1ϕ = 0

}
= 0.

(7.35)

Then the function ϕ for which this infimum is attained satisfies

ϕ
′′ − ϕ + pwp−1ϕ = c1w

p−1 + c2ϕ,
∫

R
wp−1ϕ = 0,

∫
R

ϕ2 = 1,

for some constants c1, c2.

Multiplying the last Eq. by ϕ and integrating, by (7.35) we have

c2 = 0. So ϕ = c1L
−1
0 wp−1. We note that c1 �= 0, otherwise ϕ = cw

′
(y)

which is impossible. Thus
∫
R wp−1L−1

0 wp−1 = 0, which contradicts the

fact that D(p) > 0.

Next we consider the following variational problem:

inf

{
L(ϕ, ϕ)

∣∣∣∣∣ϕ ∈ H1
even(R),

∫
R

wp−1ϕ = 1

}
. (7.36)
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We claim that the infimum is attained by some function ϕ0. In fact, if

we put ϕ =
1∫

R wp
w + ψ, then

∫
R wp−1ψ = 0. Therefore by (7.34) there

exists a c0 > 0 such that

∫
R
[|ψ′|2 + ψ2 − pwp−1ψ2] ≥ c0

∫
R

ψ2.

Then by the direct method in the calculus of variations, we can easily

show that there exists a ϕ0 for which the infimum in (7.36) is attained

and which satisfies

ϕ
′′
0 − ϕ0 + pwp−1ϕ0 = λwp−1

where λ = −L(ϕ0, ϕ0). By uniqueness, ϕ0 = λ(L−1
0 wp−1) and thus

D(p) =
(p − 1)

∫
R(L−1

0 wp−1wp−1)
∫
R w2

(
∫
R wp)2

=
(p − 1)

∫
R w2

(
∫
R wp)2

1

λ
. (7.37)

We now choose some special test functions to compute a lower bound

for λ. In fact, we take

ϕ = c
(
λ1w + λ2(w +

p − 1

2
yw

′
(y))

)
,

where

c(λ1 + λ2F (p))
∫

R
wp = 1, (7.38)

and λ1 and λ2 are to be chosen later. It follows that

∫
R

wp−1ϕ = c
(
λ1 + λ2F (p)

) ∫
R

wp = 1.

Let us compute
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L(ϕ, ϕ) = c2

[
λ2

1L(w,w) + λ2
2L(w +

p − 1

2
yw

′
(y), w +

p − 1

2
yw

′
(y))

+ 2λ1λ2L(w,w +
p − 1

2
yw

′
(y))

]

= c2
[
λ2

1(1 − p)
∫

R
wp+1 + λ2

2(1 − p)F (2)
∫

R
w2

+ 2λ1λ2(1 − p)
∫

R
wp(w +

p − 1

2
yw

′
(y))

]

= c2
[
λ2

1(1 − p)
1

F (p + 1)
+ λ2

2(1 − p)F (2) + 2λ1λ2(1 − p)
] ∫

R
w2

=
λ2

1
1

F (p+1)
+ λ2

2F (2) + 2λ1λ2

(λ1 + λ2F (p))2

(1 − p)
∫
R w2

(
∫
R wp)2

=
λ2

1 + λ2
2F (2)F (p + 1) + 2λ1λ2F (p + 1)

(λ1 + λ2F (p))2

(1 − p)
∫
R w2

(
∫
R wp)2F (p + 1)

.

Set λ1

λ2
= η and

h(η) :=
(η + F (p))2

η2 + 2ηF (p + 1) + F (2)F (p + 1)
· F (p + 1).

(7.39)

Then we obtain that

L(ϕ, ϕ) =
1

h(η)

(1 − p)
∫
R w2

(
∫
R wp)2

. (7.40)

We now choose an η such that

h(η) = 2F (p) − F (2).

A simple computation shows that we may choose

η = η0 :=

√
F (p + 1)(2F (p) − F (2)) − F (p + 1)

2F (p + 1) − 2F (p) + F (2)
(F (2) − F (p)).

(Note that 2F (p) − F (2) > 0 for 1 < p < 2.) Then

h(η0) = 2F (p) − F (2).

By (7.37) and the definition of λ, we have

D(p) =
(p − 1)

∫
R w2

(
∫
R wp)2λ

< h(η0), (7.41)

which proves Lemma 3.

�
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