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The directional contact distance of two ellipsoids: Coarse-grained
potentials for anisotropic interactions
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We obtain the distance of closest approach of the surfaces of two arbitrary ellipsoids valid at any
orientation and separation measured along their intercenter vector. This directional distance is
derived from the elliptic contact function. The geometric meaning behind this approach is clarified.
An elliptic pair potential for modeling arbitrary mixtures of elliptic particles, whether hard or soft,
is proposed based on this distance. Comparisons with Gay-Berne potentials are discussed. Analytic
expressions for the forces and torques acting on the elliptic particles are given. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2102897�
I. INTRODUCTION

Self-assembling systems of current interest in such di-
verse areas as molecular electronic materials to biological
systems often involve molecular units or supramolecular
structures that are highly anisotropic in shape.1 Typical ex-
amples range from lipids in biological membranes,2 to al-
kanethiols in self-assembled monolayers,3 to carbon nano-
tubes and inorganic nanorods.4 In the interplay between
accuracy, simplicity, and computational efficiency, such
fairly rigid units are often approximated as ellipsoids.

The importance of the geometrical anisotropy in pair-
wise interactions has been recognized early on. Berne and
Pechukas introduced the Gaussian overlap potential5 �GOP�
whose generalization led to the widely used Gay-Berne �GB�
potential.6 The main idea behind this approach is the repre-
sentation of a pair of particles by their joint elliptically
stretched Gaussian distribution centered around the molecu-
lar centroids. The GB potential has been extensively used for
the modeling of the phase behavior of liquid crystals.7 There
is renewed interest in the possibility to study the dynamical
behavior, as, for example, in lipids in biological membranes,8

and in side chains in coarse-grained protein force fields.9 Part
of the appeal of the form of the GB potential is that it allows
for analytic derivation of forces and torques10 acting on the
particles which simplifies the modeling. The drawbacks are
its lack of generality: for example, in its original form, it is
only applicable to identical uniaxial elliptic particles, al-
though it has been recently extended for the special case of
particles with biaxial symmetry.11 Another extension of the
GB potential was made for an “ellipsoid in the sea of
spheres” scenario,12 where the main semiaxis of an elliptic
particle is much bigger than the radius of the spherical par-
ticles interacting with it. However, as the geometry of the
particles varies, so do the number and value of the param-
eters introduced in the potentials.

A different approach to this problem relies on the elliptic
contact function �ECF� introduced by Perram and
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Wertheim13 and Perram et al.14 which emphasizes its geo-
metrical aspects. The ECF approach calculates the distance
of closest approach of two ellipsoids with given orientations.
It gives the correct position of contact when the two ellip-
soids are in tangent contact. Therefore it is often referred to
as the “hard ellipsoid” approach. It exploits the algebra be-
hind the representation of ellipsoids as quadratic forms to
write the problem as an optimization task that can be solved
efficiently. The GOP potential is known to be closely related
to the elliptic contact potential �ECP� derived from the
ECF.11,14,15

Although applicable to any mixture, the ECF has not yet
been widely used in applications. The reasons may be due to
the lack of simplicity of the ECF approach and the lack of
clarity of its geometric interpretation. Furthermore, the po-
tential derived from this approach has several drawbacks: it
does not distinguish in energy between different relative ori-
entations, it does not become isotropic at large separations,
and it artificially keeps the elliptic shape of the potential
along the longer semiaxes of the ellipsoids. In this work, we
clarify the geometric meaning of the ECF approach and the
parameters associated with it. We show how the true distance
of closest approach of the surfaces of two ellipsoids can be
approximated well directly from the ECF by the directional
distance of closest approach along their intercenter direction
R. This allows us to develop a new type of elliptic potential
applicable for mixtures of ellipsoids and/or spheres. We
show that this can be done for any size, any orientation, and
for “hard” or “soft” particles. In all cases, the potential be-
haves isotropically at infinite separations and addresses the
drawbacks discussed above. A comparison with the GB po-
tentials is also presented. Finally, we derive analytical ex-
pressions for the appropriate forces and torques that make
molecular-dynamics �MD� simulations possible.

In Sec. II we give the preliminaries, namely, review the
main aspects of the ECF from literature; in Sec. III we show
how to obtain the directional distance of closest approach of
two ellipsoids by the value of the ECF and compare it with

the GB potentials. In Sec. IV we show how it leads to a
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Lennard-Jones �LJ� type of elliptic potential, and in Sec. V
we derive analytic expressions for the forces and torques
acting on the particles due to the suggested potential. Finally,
in Sec. VI we discuss the implications of this approach and
comment on its advantages and drawbacks.

II. PRELIMINARIES: THE ELLIPTIC CONTACT
FUNCTION „ECF…

The shapes of two anisotropic particles A and B centered
at points r and s are represented by the ellipsoids A�x�=1
and B�x�=1, respectively �Fig. 1�. A�x� and B�x� are qua-
dratic forms given by

A�x� = �x − r� · A · �x − r�

and

B�x� = �x − s� · B · �x − s� .

The matrices A and B can be expressed as

A = �
i=1,2,3

ai
−2ui � ui, B = �

i=1,2,3
bi

−2vi � vi, �1�

where ui are the unit orthogonal vectors along the three
semiaxes of ellipsoid A with lengths ai and vi are the unit
orthogonal vectors along the semiaxes of ellipsoid B with
lengths bi. The symbol of outer product “�” in Eq. �1� is
used to define the matrices A and B in dyadic form.

The ECF is a measure of proximity of two ellipsoids,
originally presented in Ref. 14 and subsequently reformu-
lated in Ref. 16. The equivalence of the two definitions is
shown in Appendix A. We begin with the latter formulation
because it allows us to obtain a clear geometrical interpreta-
tion. To this end, we define S�x ,�� as an affine combination

FIG. 1. The ellipsoid particles A and B, given by A�x�=1 and B�x�=1, are
centered on r and s, respectively. We consider the local reference frame
attached to the center of ellipsoid A aligned along its semiaxis. We illustrate
here, without loss of generality, the concepts behind the ECF approach in
the two-dimensional �2D� case. The original ellipsoids are scaled up �or
down� by �F�A ,B� until they touch each other tangentially at the contact
point xc. The contact point xc is the intersection of the curve x��� �green
line� with the surface A�x�=B�x� �black line�. The value of the ECF is
illustrated by the scaled ellipsoids A�xc�=F�A ,B� and B�xc�=F�A ,B�.
of quadratic forms A�x� and B�x�,
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S�x,�� = �A�x� + �1 − ��B�x� , �2�

where � is a parameter from the interval �0,1�. The ECF is
defined as a solution to the following optimization problem:

F�A,B� = max
�

min
x

S�x,�� . �3�

The minimum x��� of S�x ,�� for each value of the param-
eter � can be found from

�S�x,�� = 2��A · �x − r� + �1 − ��B · �x − s�� = 0 �4�

as

x��� = ��A + �1 − ��B�−1 · ��A · r + �1 − ��B · s� . �5�

As a result, the optimization problem given by Eq. �3� is
simplified to an unconstrained maximization of the scalar
function S�x��� ,�� by the scalar parameter �,

F�A,B� = max
�

S�x���,�� . �6�

Note that the curve x��� :�� �0,1� with x�0�=s and x�1�
=r connects the centers r and s of the two ellipsoids, as can
be seen in Fig. 1. Along this curve, the gradient vectors
�A�x� and �B�x� are parallel. We will find later the follow-
ing notations useful:

� � A�x���� = 2�A · �x��� − r� = X��� ,

�7�
�1 − �� � B�x���� = 2�1 − ��B · �x��� − s� = − X��� .

Earlier, it was shown13 that the function S�x��� ,�� has a
unique maximum on the interval �� �0,1�. The value �c at
which the function reaches its maximum is called the contact
parameter and the point xc=x��c� is called the contact point.
The derivative of the function S�x��� ,�� with respect to � is

S��x���,�� = �A�x���� − B�x�����
+ 2x����T · ��A · �x��� − r�

+ �1 − ��B · �x��� − s�� . �8�

The term in the second curly braces vanishes along the curve
x��� due to Eq. �4�. Hence, at the extremum,

S��xc,�c� = A�xc� − B�xc� = 0, �9�

from which we can see that the contact point xc is the inter-
section of the curve x��� with the surface A�x�=B�x� �Fig.
1�. Eq. �9� leads to

A�xc� = B�xc� . �10�

Substitution of the last equation back into Eq. �2� gives the
following simple interpretation of the ECF value:

F�A,B� = A�xc� = B�xc� . �11�

The contact point xc lies on the ellipsoid A�x�
=F�A ,B� due to Eq. �11�. Similarly for B�x� the contact
point xc lies on the ellipsoid B�x�=F�A ,B�. The two ellip-
soids are in tangent contact �Fig. 1� due to Eq. �4�. As a
result, the value of the ECF serves as a criterion of approach
of any two elliptic particles. If the value F�A ,B� is below

unity, then the original ellipsoids A�x�=1 and B�x�=1 over-
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lap and vice versa. When F�A ,B� is equal to one, the origi-
nal ellipsoids A and B are in tangent contact.

The contact parameter �c can be found numerically as a
solution of Eq. �10� by approaching the surface A�x�=B�x�
along the curve x���,

�c:A�x��c�� − B�x��c�� = 0. �12�

The convergence of this iterative process is usually fast. Nu-
merical aspects of this iterative process as well as ways to
speed it up will be discussed elsewhere.

The value of the ECF can be further expressed in the
form F�A ,B�=R2f�A ,B�, where R is the intercenter distance
between particles A and B �see Appendix A� and f�A ,B�
depends only on orientation, which leads to the definition of
the Perram-Wertheim �PW� range parameter11 �PW�A ,B� as

�PW�A,B� =
R

�F�A,B�
=

1
�f�A,B�

. �13�

There is a well-known close relationship11,14 between this
parameter and the Berne-Pechukas �BP� range parameter
�BP�A ,B� first introduced in Ref. 5 for the GOP. �BP�A ,B�
can be expressed in terms of S�x��� ,�� �see Appendix B� by
substituting �c=1/2,

�BP�A,B� =
R

�S�x�1/2�,1/2�
. �14�

The BP range parameter is sometimes considered as a mean
value approximation of the PW range parameter,11,17 where
�c is approximated by 1/2 �see Eq. �14��. Additionally, Eq.
�13� is often treated as the distance of closest approach of
two ellipsoids, therefore Eq. �14� is believed to be an ap-
proximation of the distance of closest approach Eq. �15�. We
will return to this point in Sec. III C.

III. APPROXIMATIONS AND GEOMETRICAL
INTERPRETATIONS OF THE DISTANCE OF CLOSEST
APPROACH OF TWO ELLIPSOIDS

We now show how to obtain the distance of closest ap-
proach of the surfaces of two ellipsoids using the ECF value.
The true distance of closest approach, d, is a solution of the
following minimization problem:

d�A,B� = min
x̃a,x̃b

		x̃a − x̃b		 , �15�

subject to two constraints

A�x̃a� = 1, B�x̃b� = 1, �16�

namely, that x̃a and x̃b are points on the surface of ellipsoids
A and B, respectively.

We will now show how to approach this distance using
the ECF value, both from above using the geometrical prop-
erties of the ECF, and from below using a mechanical anal-
ogy.

A. The directional contact distance dR

An intersection of the line segment between the contact
point xc and the center r with the surface of the ellipsoid

A�x�=1 �Fig. 2� can be found using the value F�A ,B� as
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xa = r + �xc − r�F�A,B�−1/2. �17�

The point xa will be called a subcontact point of A. The
subcontact point of B xb can be found in the same way,
namely, as the intersection of the line segment between
points xc and s with the surface of the ellipsoid B�x�=1,

xb = s + �xc − s�F�A,B�−1/2. �18�

The vector �xb−xa� between the subcontact points of A and
B is parallel to the intercenter vector R and is given by

�xb − xa� = �s − r��1 − F�A,B�−1/2� = R̂dR�A,B� , �19�

where

dR�A,B� = R�1 − F�A,B�−1/2� = R − �PW�A,B� . �20�

The geometrical meaning of the PW range parameter now
becomes clear from Eq. �20�: it is the sum of projections of
vectors �xa−r� and �s−xb� on the interparticle vector R or
simply the length of the vector R− �xb−xa� as soon as �xb

−xa� is parallel to R �Fig. 2�. The distance dR �Eq. �20�� has
a meaning of the shortest directional distance between two
ellipsoids measured along the direction of their interparticle
vector R.

To see this note that on the surface A�x�=B�x� any af-
fine combination S�x ,�� with any value of the parameter � is
equal to both A�x� and B�x�. At the same time for �=�c we
have shown that S�x ,�c� reaches its minimum at the contact
point xc. As a result, the optimization problem �Eqs. �3� and
�2�� can be reformulated as a problem of finding the mini-
mum of A�x� or B�x� on the surface A�x�=B�x�.

Note that Eqs. �17� and �18� hold not only for the contact
point xc but for any point x̃c �Fig. 2� on the surface A�x�
−B�x�=0 in the following way:

˜ ˜ ˜ −1/2

FIG. 2. The directional distance of closest approach, dR�A ,B�, is the mini-
mum distance between the surfaces of two ellipsoids that is parallel to the
intercenter vector R. It is given by the subcontact points xa and xb, which are
on the surface of ellipsoids A and B, respectively. It is a good approximation
from above to the true contact distance. The value of the PW approach
parameter �PW�A ,B� can be understood by the geometry of the triangle of
points r, s, and xc, as the length of the vector R− �xa−xb� as soon as
�xa−xb� becomes parallel to R.
xa = r + �xc − r�S�xc� , �21�
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x̃b = s + �x̃c − s�S�x̃c�−1/2, �22�

where S�x� here means any affine combination of A�x� and
B�x�. The resulting vector �x̃b− x̃a� is also parallel to the
interparticle vector R �Fig. 2�.

�x̃b − x̃b� = R�1 − S�x̃c�−1/2� . �23�

The minimum of the value S�x̃c� is F�A ,B�. It is easy to
show, that the value �1−S�x̃c�−1/2� reaches its minimum to-
gether with S�x̃c�. As a result, the distance dR�A ,B� has a
meaning of minimum length of the vector �x̃b− x̃a� parallel to
R.

If we consider the value dR�A ,B� as a minimum distance
along any arbitrary direction independently from the inter-
particle vector, then its minimum among all possible direc-
tions naturally is the distance of closest approach of two
ellipsoids d�A ,B�. As a result the following inequality holds
while d�A ,B� is greater than zero:

d�A,B� � dR�A,B� . �24�

B. The distance from below dn

An estimation of the distance of Eq. �15� from below is
given by the distance between two parallel planes �a and �b,
which are tangent to ellipsoids A and B at the subcontact
points xa and xb �Fig. 3�.

dn�A,B� = X̂c · �xb − xa� = X̂c · R�1 − F�A,B�−1/2� , �25�

where X̂c is the unit vector in the direction of the gradient
vector Eq. �7�,

X̂c =
Xc

		Xc		
=

�A�xa�
		�A�xa�		

= −
�B�xb�

		�B�xb�		
.

In fact, the maximum of the distance of Eq. �25� among
all possible positions of points x̃A and x̃B on the surfaces of

FIG. 3. A closer look at the subcontact points xa and xb, which define the
directional distance of closest approach dR. The planes �a and �b are tangent
to the ellipsoids A�x�=1 and B�x�=1, respectively, at these points �shown
with purple lines�. The distance dn approaches the true distance of closest
approach from below, while dR approaches it from above.
ellipsoids A and B, such that the tangent planes �a and �b are
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parallel, is equal to the true contact distance d�A ,B� as long
as the ellipsoids A and B are not overlapping.

To show this, we consider a mechanical analogy. We
consider two parallel planes �a and �b between two fixed
rigid convex bodies A and B which are separated by some
distance. The two planes are pushed apart by a constant force
F. The planes will move away from each other until they
touch the bodies A and B at points x̃a and x̃b, respectively
�Fig. 4�. The reaction forces FA and FB from the bodies A
and B will act on the planes �a and �b along normal vectors
of the surfaces of A and B at the points x̃a and x̃b. The normal
vectors at the surfaces of A and B at x̃a and x̃b are parallel
due to the fact that �a and �b are parallel themselves.

The stationary/equilibrium point will be reached when
the total force FA+FB and the total torque �xB−xA��FB

acting on the system of the planes are both equal to zero. The
stationary point will correspond to the maximum possible
distance between the planes because of the force F that is
acting to separate them. The total force is always equal to
zero FA+FB=0 because FA=F and FB=−F. The total torque
can be equal to zero only if �x̃a− x̃b� is parallel to the normal
vectors of the surfaces of A and B at x̃a and x̃b, which is a
solution of the optimization problem for the distance of clos-
est approach d�A ,B� �Eq. �15�� as well. As a result the maxi-
mum distance between parallel planes �a and �b trapped
between two convex bodies is equal to the distance of closest
approach of the surfaces of these two bodies.

This leads to

0 � dn�A,B� � d�A,B� � dR�A,B� , �26�

while d�A ,B��0. All three values dn�A ,B�, d�A ,B�, and
dR�A ,B� are equal to zero when the ellipsoids are in tangent

FIG. 4. The distance dn�A ,B� is defined as the distance between two parallel
planes �a and �b which are tangent at any point x̃a and x̃b on the surface of
ellipsoids A and B, respectively. It approaches the true distance of closest
approach from below. The maximum distance dn�A ,B� coincides with the
true distance of closest approach. This can be understood from a mechanical
point of view: if the planes are kept apart by a constant force F, then the
equilibrium point reached corresponds to the maximum distance between
planes, which is also the distance of closest approach of the surfaces of
ellipsoids A and B.
contact,
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0 = dn�A,B� = d�A,B� = dR�A,B� . �27�

The inequality �26� does not hold when the two ellipsoids
overlap. The distance d�A ,B�, the solution of the optimiza-
tion task �Eqs. �15� and �16��, remains zero whenever A and
B overlap. However, the values dR�A ,B� and dn�A ,B� are
below zero and characterize the overlap of the ellipsoids. As
a result, the distance dR�A ,B� can be used in both soft and
hard potentials.

In practice, dn�A ,B� is closer to the true distance d�A ,B�
for small separations, while dR�A ,B� is a very good approxi-
mation at larger separations and behaves isotropically for
infinite separations. Even though the distance d�A ,B� can be
used to build a pair potential between two elliptic particles,18

the usage of a pair potential based on this distance in mo-
lecular simulations is computationally expensive because it
requires a solution of the problem �Eqs. �15� and �16�� at
least once at each integration step for each pair of particles.
Although the calculation of the ECF as a proximity measure
still involves the solution of the optimization task �Eqs. �5�
and �6�� for each pair of particles on each simulation step, the
resulting optimization problem is simpler and computation-
ally more efficient than the problem �Eqs. �15� and �16��.
Additionally, we will show that the usage of the range pa-
rameter of Eq. �13� leads to simple and compact expressions
for forces and torques acting on the particles.

C. On the relation between the BP and PW range
parameters

We can now return to the relation of the BP range pa-
rameter as a mean value approximation to the PW range
parameter.11,18 To examine this further, let us consider the
value of S�x ,�� on the curve x��� for different relative ori-
entations. We first consider two identical uniaxial elliptic
particles. The GOP and GB potentials were originally intro-
duced for this kind of particles.5,6 We will show that the
function S�x��� ,�� becomes symmetric on the interval �
� �0,1� whenever there is a point or a line or a plane of
symmetry between the two ellipsoids. As a result the maxi-
mum F�A ,B� of the function S�x��� ,�� can only occur at
�c=1/2. Hence, when the quadratic forms A�x� and B�x� are
symmetric, the BP range parameter �BP�A ,B� agrees with
the value of the PW range parameter �PW�A ,B�. However,
for asymmetric configurations, this is generally not true.

To proceed we express the shape matrix of a spheroid as

A = l−2u � u + d−2�E − u � u� , �28�

where 2l is the length of the ellipsoid, 2d its breadth, u a unit
vector of the main axis, and E a unit tensor given by E
=� j=1

3 e j � e j. Let us for simplicity move the origin of the
reference frame into a center of symmetry c �this point is not
necessarily unique for different types of symmetry�. Vectors
designating directions and positions in this reference frame
are denoted by greek letters. A vector � is transformed into

its symmetric image �̃ by a matrix � which does not change

its length but changes its directions,
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�̃ = � · � . �29�

For the matrix � to be a symmetric transformation, we re-
quire the following property:

� · � = E , �30�

which implies that the determinant of � can be 1 or −1.
The quadratic forms A�x� and B�x� are symmetric with

respect to the center of symmetry c if the center s of B�x� is
a symmetric image of the center r of A�x�, so that

r = c + �, s = c + �̃, �̃ = � · � , �31�

and, the matrix B is a symmetric image of the matrix A,
satisfying

B = � · A · � . �32�

Eq. �32� includes, in addition, the symmetries of particle A.
The possible cases of symmetry of quadratic forms A�x�

and B�x� are the point symmetry �=−E, the line symmetry
�=2l � l−E, and the plane symmetry �=E−2n � n, where
l is a unit vector along the axis of symmetry and n is a unit
vector normal to the plane of symmetry. In the case of line
symmetry, any point of the actual axis of symmetry can serve
as a center of symmetry c, while in the case of plane sym-
metry, any point of the plane of symmetry can be considered
as a center of symmetry c.

Using Eqs. �29�–�32�, it can be shown that for any point

� and its image �̃, the values of the symmetric quadratic
forms satisfy the following equations:

A��� = B��̃�, A��̃� = B��� . �33�

The function S of Eq. �2� now becomes

S��,�� = �A��� + �1 − ��B���

= �B��̃� + �1 − ��A��̃� = S��̃,�1 − ��� �34�

and its gradient is given by

�S��̃,�1 − ��� = � · �S��,�� . �35�

From Eq. �35� it follows that, if a point � belongs to the
curve x��� �Eq. �5��, its symmetric image belongs to the
curve x��� as well. Further from Eq. �34� it follows that
whenever a symmetry described by Eqs. �29�–�32� is present,
the function S�x��� ,�� becomes symmetric on the interval
�� �0,1�. As a result, the maximum F�A ,B� of the function
S�x��� ,�� can only occur at �c=1/2. This shows that the BP
and PW parameters are equivalent for symmetric quadratic
forms, namely, for symmetric configurations of equivalent
particles.

If we now inspect the zero level of the GB pair potential
depending on the relative orientation of two particles,

UGB�A,B� = 0, �36�

we can see that the level �36� does not depend on the GB
strength parameters �see Appendix B� and it is equivalent to

�BP�A,B� = 1, �37�
which is in turn equivalent to

nse or copyright; see http://jcp.aip.org/about/rights_and_permissions



194111-6 L. Paramonov and S. N. Yaliraki J. Chem. Phys. 123, 194111 �2005�

Down
S�x�1/2�,1/2� = 1. �38�

In the case of point symmetry the matrix B is equal to
the matrix A.

B = � · A · � = �− E� · A · �− E� = A , �39�

which corresponds to “perfectly aligned” configurations in-
cluding “side-to-side” and “end-to-end” configurations,
which are often used for the adjustment of GOP and GB
potentials. �In this work, we use the “i-to-j” notation to refer
to the different configurations. For example, end-to-end is
denoted by “one-to-one,” side-to-side by “two-to-two,”
“side-to-end” by “one-to-two.” As a result, the BP range pa-
rameter predicts the value of the PW range parameter cor-
rectly. However, the one-to-two orientation of the molecules
is not symmetric and here the approximation �c=1/2 fails
�Fig. 5�. In fact, Eq. �37� will be satisfied when the actual
ellipsoids are already separated by some distance above zero
due to the fact that in asymmetric configurations the value
S�x�1/2� ,1 /2� is always an underestimation of the ECF
value F�A ,B� �Fig. 5�. This means that the size of the mol-
ecule given by Eq. �36� for the side-to-end configuration
�and any other configuration such that �c�1/2� will be in-
creased compared to a symmetric configuration �such as
side-to-side and end-to-end� of the same molecule and the
same potential. Such an increase of the volume of the par-
ticles might act as an artificial “ordering force,” which will
force elliptic particles into symmetric �ordered� configura-
tions.

This analysis is of course far from complete. The total
pair potential also depends on the GOP strength parameter,
so that the resulting deviations of the final shape of the par-
ticles are rather complex. In general, we expect the described
deviation to grow with the ellipticity of the interacting sphe-
roids. Note, that for unequal elliptic particles, the approxima-

FIG. 5. S�x��� ,�� is shown as a function of the parameter � for the “two-
to-two” �“side-to-side”�, “one-to-one” �“end-to-end”�, and “one-to-two”
�“side-to-end”� relative orientations of two identical ellipsoids. The ECF
value Fij�A ,B� is the maximum of the function S and gives the contact
parameter �c for each orientation. The approximation of �c by 1/2 holds for
symmetric configurations of identical ellipsoids such as two-to-two and one-
to-one, but fails in the asymmetric one-to-two configuration. This is ex-
pected to hold for asymmetric configurations in general, which includes any
configuration of nonidentical particles.
tion �c=1/2 fails everywhere except for some rare cases.
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IV. AN ELLIPTIC POTENTIAL BASED
ON THE DIRECTIONAL DISTANCE dR

We now use the directional distance dR�A ,B� obtained in
Sec. III A to construct a new elliptic potential. Here, we con-
centrate on the LJ 12–6 form as an example of a radial po-
tential.

The LJ potential for two different spherical particles A
and B has the following form:19

ULJ�A,B� = 4�AB
��AB

	AB
�12

− ��AB

	AB
�6 , �40�

where

�AB = ��A + �B�/2, �AB = ��AA�BB, �41�

and 	AB is the intercenter distance. Eq. �41� represents the
well-known Lorentz-Berelot mixing rules for van der Waals
radii �A and �B of interacting particles and their depths pa-
rameters �AA and �BB commonly used in the LJ potential. The
parameter ��� has the meaning of the depth of the potential
well for the interaction of two identical particles of type �.

The distance dR�A ,B� can be consistently compared with
the intercenter distance R. Using Eq. �20�, the PW range
parameter �PW�A ,B� can be treated as the sum of radii of
two elliptic particles at a given relative orientation. From this
point of view, �PW�A ,B� can be considered as an orientation-
dependent “mixing rule” for two elliptic particles similar to
�AB in Eq. �41�. Using this analogy, the following elliptic
potential can be built in Lennard-Jones form:

U = 4�0
�RF�A,B�−1/2

R
�12

− �RF�A,B�−1/2

R
�6

= 4�0�F�A,B�−6 − F�A,B�−3� , �42�

which is the ECP developed by Perram and co-workers.13,14

We can now see that this potential is a consistent generaliza-
tion of the Lennard-Jones potential in the case of elliptic
particles when one considers the interparticle distance R to-
gether with the mixing rule �PW�A ,B�. The value �0 has the
meaning of the potential minimum.

However, the potential �42� in this form has several dis-
advantages. First of all, it does not become isotropic at large
separations of the particles. Secondly, the depth of the poten-
tial minimum remains the same for all relative orientations of
the particles A and B. And lastly, the shape of the potential
well is not realistic because it is wider along the longer semi-
axes of the ellipsoids than the original potential. These dis-
advantages prevent the potential of Eq. �42� from being ex-
tensively used in applications. Here, we would like to build
an extension to the ECP, which preserves the good features
of the ECF approach but frees it from the disadvantages
mentioned above.

These problems come from the “Lennard-Jones-type” re-
duced distance �R /�PW�A ,B�� used in the ECP �Eq. �42��.
This distance becomes unity when the ellipsoids are in con-
tact and the potential goes to zero. The same reduced dis-
tance keeps an “elliptic shape” at large separations that
causes both the unrealistic anisotropy of the ECP at long
distances and the unrealistic shape of the potential well.

However, the directional distance dR�A ,B� along the inter-
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particle vector itself becomes isotropic at large separations.
Using this distance instead, a “shifted form” of the potential
�42� can be built as

U�A,B� = 4�0
� �0

dR�A,B� + �0
�12

− � �0

dR�A,B� + �0
�6

= 4�0
� �0

R − RF�A,B�−1/2 + �0
�12

− � �0

R − RF�A,B�−1/2 + �0
�6 , �43�

where �0 has the meaning of characteristic length and is
responsible for the width of the potential well. The shape of
the potential well is now more realistic because the distance
dR�A ,B� is a good approximation to the distance d�A ,B�.
The potential �43� has the form of the GB potential without a
strength parameter and the PW range parameter instead of
the GOP one.6

The depth of the wells of the potential �43�, however,
still equals one in any direction. One way to allow for vari-
able depth of the potential minima, similarly to the Derjaguin
approximation in colloidal science, is to use different shape
matrices for the attractive and the repulsive parts of the po-
tential of Eq. �43�

U�A1,A2,B1,B2� = 4�0
� �0

R − RF1�A1,B1�−1/2 + �0
�12

− � �0

R − RF2�A2,B2�−1/2 + �0
�6 ,

�44�

where the “repulsive ECF” F1�A1 ,B1� and the “attractive
ECF” F2�A2 ,B2� are calculated using different shape matri-
ces

A1 = �
i=1,2,3

a1i
−2ui � ui, B1 = �

i=1,2,3
b1i

−2vi � vi, �45�

and

A2 = �
i=1,2,3

a2i
−2ui � ui, B2 = �

i=1,2,3
b2i

−2vi � vi. �46�

A justification for this approach can be given by inspect-
ing the constant levels of the attractive and repulsive parts of
a pair potential of two complex molecules, calculated as the
sum of attractive and repulsive parts of the LJ potentials of
spherical particles. It is easy to see that the constant levels
LJ12 and LJ6 do have close but different shapes.

Although this introduces more parameters to the prob-
lem, the total number of fitting parameters is still reduced
compared to the GB potential. For example, the empirical
exponents 
 and � present in the GB potential �see Appendix
B� are excluded. Additionally, the small deviation of the at-
tractive shape matrices A2 and B2 with respect to the repul-
sive ones A1 and B1 allows us in practice to use the solution
of the attractive ECF problem �c2 and xc2 as the initial con-
ditions for the repulsive ECF problem, which reduces the
number of iterations required for the calculation of the latter.

Besides, when calculated separately, the repulsive ECF prob-
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lem requires a much smaller cutoff value. As a result both
ECF problems are solved only when molecules are very
close.

To illustrate the form of the potential we consider two
examples.

A. Example 1

As a simple test case, we consider the pair potential of
two identical spheroids consisting of six LJ spherical par-
ticles in a linear array.6 The resulting fitted potential and the
target LJ potential are shown in Fig. 6. Although only the
values of side-to-side and end-to-end potential minima are
fitted, the side-to-end configuration is also close to the target
potential. The two-to-two or side-to-side potential minimum
of such potential is minRU22=14.883 when the LJ parameters
are �=1 and �=1, and the spheres are separated by a dis-
tance of 2 /3 and has been set to unity. Therefore a strength
parameter �=14.883 should be used in simulations.

For identical uniaxial particles there is the possibility for
further reduction of the number of the fitting parameters. The
choice of “ith attractive semiaxes” equal to “ith repulsive
semiaxes,”

a1i = b1i = a2i = b2i, �47�

leaves the corresponding “i-to-i” potential minimum equal to
one as expected. Then the parameter �0 in Eq. �43� has the
meaning of the i-to-i potential minimum. As a result, the
adjustment of the pair potential �43� for identical spheroids
requires in total five fitting parameters, while in the GB po-
tential 8 parameters are used.

The same reduction can be used for unequal and biaxial
particles as well, but then the fitting of the potential to a
target potential becomes less flexible in the representation of

FIG. 6. The resulting fitted elliptic potential of Eq. �44� �red solid curves,
—� and the target atomistic LJ potential �blue dashed curves, - - -� of two
identical spheroids. The original system consists of six identical spherical LJ
particles separated by a distance of 2/3 and LJ parameters �=1 and �=1.
The two-to-two or side-to-side minimum of such potential is
minRU22=14.883 which has been set to unity. Although only the values of
one-to-one and two-to-two potential minima are fitted, the one-to-two or
side-to-end configuration is also close to the target potential. The width
parameter �o is equal to unity. The semiaxes of the repulsive matrices A1

and B1 are a11=b11=0.475 and a12=b12=2.025, while the semiaxes of the
attractive matrices A2 and B2 are given by a21=b21=0.475 and a22=b22

=1.875.
ratios of different potential minima.
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B. Example 2

We consider a more complicated example, namely, the
pair interaction of two nonidentical biaxial molecules, pero-
pyrene C26H14 and anthracene C14H10 �Fig. 7�. The
peropyrene-to-anthracene pair potential is calculated as a
sum of LJ interactions between all atoms of the molecules
after a geometry optimization of the isolated molecules.20

Considering only cases where the “ith” semiaxis of the par-
ticle A is aligned with the “jth” semiaxis of the particle B,
there are in total nine i-to-j configurations which need to be
represented. The objective function for the least-squares fit-
ting was built as a weighted sum of square differences of the
potential minimum value, the position of the root U�A ,B�
=0 and the width of the potential well at half depth for each
of the i-to-j relative orientations of the molecules. In this
example, the relative weights were chosen to represent
“aligned” configurations, one-to-one, two-to-two, and “three-
to-three,” more accurately then other “misaligned” configu-

FIG. 7. The test molecules of the unequal biaxial case: peropyrene C26H14

and anthracene C14H10.
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rations. However, the particular choice of the weights can be
made to suite an application in mind. The target potential
was averaged over rotations of the molecules about their in-
tercenter vector R for each i-to-j configuration. Figure 8
shows that the potential �44� is able to reproduce, at least
qualitatively, the complex interaction profile of the
peropyrene-anthracene pair potential. This is encouraging
since dR is more accurate at longer separations rather than at
short but the wells around the minima are still reasonably
well represented.

V. DERIVATION OF FORCES AND TORQUES

The dynamical evolution of the system via MD simula-
tions requires the calculation of forces and torques acting on
the particles due to their interactions with all other particles.
The suitability of a reduced representation potential for MD
simulations is mainly defined by the computing time spent
on the calculation of forces and torques due to that potential.
A numerical estimation of the derivatives of the potential is
computationally expensive. Additionally, approximate values
of the derivatives are an extra source for numerical errors.
The possibility of expressing those derivatives analytically is
a big advantage for a reduced representation potential.

In this section we derive analytic expressions for the
forces and torques acting on the elliptic particles due to the
suggested potential �Eq. �44�� that allow for efficient MD
simulations to be performed. The resulting formulas are
simple due to the simple structure of the potential �44� and
the extremum properties of the ECF value �Eq. �6��.

The following notation will be used:

UAB = U�A1,A2,B1,B2� ,

Fi = Fi�Ai,Bi� , �48�

Xc = X��c� .

Given

FIG. 8. “i-to-j” potential minima of the peropyrene-
anthracene LJ atomic pair potential �red dashed lines,
- - -� fitted with the suggested potential of Eq. �44� �blue
solid curves, —�. The fit was done with a weighted sum
of squares difference which in this case gave more
weight to the accuracy of the “aligned” configurations
one-to-one, two-to-two, and three-to-three. This choice
would depend on the particular application. The follow-
ing LJ parameters were used for hydrogen H and car-
bon C: �HH=2.4 Å,�HH=0.02 kcal/mol, and �CC

=3.4 Å,�CC=0.15 kcal/mol, respectively. The resulting
repulsive shape matrix elements for A1 and B1 are a11

=7.024, a12=4.006, a13=1.582, and b11=4.846, b12

=2.841, b13=1.511, while the attractive shape matrix
elements for A2 and B2 are given by a21=6.528, a22

=3.829, a23=1.702, b21=4.267, b22=2.405, b23=1.394,
with width parameter �0=2.921 and depth parameter
�=25.543.
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UAB = 4�0�G1
−12 − G2

−6� , �49�

where

Gi = �R − RFi
−1/2 + �0�/�0, �50�

the force acting on particle A is

FA = −
dUAB

dr
= 24�0
2G1

−13dG1

dr
− G2

−7dG2

dr
 , �51�

where

dGi

dr
=

1

�0

R̂�Fi

−1/2 − 1� +
R

2
Fi

−3/2dFi

dr
 , �52�

and

dFi

dr
= − 2�ciAi�xci − r� = − Xci, �53�

with �ci the contact parameter and xci the contact point of the
ECF task �Eqs. �6� and �5�� with matrices Ai and Bi. The
derivatives of the ECF dFi /dr are given in Appendix C.

It can be shown that

FB = − FA

and so the force conservation equation is fulfilled. Similarly,
the torque acting on particle A is

TA = −
24R�0

�0
�2G1

−13F1
−3/2�xc1 − r�

� Xc1 − G2
−7F2

−3/2�xc2 − r� � Xc2� . �54�

The torque conservation equation21 is also fulfilled

TA + TB + R � FB = 0.

VI. DISCUSSION

Anisotropic particles are of interest for interrogating fun-
damental questions such as packing22 as well as for applica-
tions in biological and nanoscale systems. Unlike spherically
symmetric particles where the distance of closest approach is
immediately given by their intercenter distance, this is no
longer true in anisotropic systems. Obtaining the distance of
closest approach as a function of orientation for any size and
shape is a difficult task. Additionally, the potentials must
capture the geometric and energetic anisotropies of the sys-
tem consistently.

In this work, we have considered in detail the geometry
of the ECF as an approach measure of ellipsoid pair par-
ticles. We have shown that the directional distance of closest
approach dR�A ,B� measured along the intercenter vector, can
be derived directly from the ECF. Like the true distance of
closest approach of two ellipsoids d�A ,B�, dR�A ,B� is zero
when the ellipsoids are in contact. Unlike d�A ,B� which can-
not be used in its regular form ��15� and �16�� to characterize
any overlap of the ellipsoids, dR�A ,B� is also a measure of
their overlap. As a result, soft elliptic potentials can also be
built. The geometrical meaning of the Perram-Wertheim ap-

proach parameter �PW�A ,B� is clarified as the shortest direc-
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tional distance of closest approach along the interparticle
vector R. Note that the volume of elliptic particles is pre-
served within the ECF approach.

Since this approach is valid for any two ellipsoids, an
elliptic potential is suggested which can be used for the mod-
eling of any mixture of elliptic and spherical particles. Ex-
amples of the suggested fitted potential to pair potentials of
different biaxial molecules has shown that it is able to repro-
duce, at least qualitatively, complex interaction profiles. Ad-
ditionally, it correctly reduces to isotropic interactions in
both shape and magnitude at long distances. For questions
such as how self-assembly emerges, it may be more impor-
tant to sacrifice quantitative accuracy at short range in order
to obtain a consistent long-range interaction that does not
overestimate the range of the potential and hence impose
assembly artificially.

The structure of the potential leads to fewer fitting pa-
rameters than the GB potential. Analytic expressions for
forces and torques acting on the particles due to the sug-
gested potential are derived, which make it amenable to MD
simulations. However, an iterative solution of the Eq. �12� is
required for each pair of molecules on each integration step
during the MD simulation. Although this can be done effi-
ciently, the GB potential is computationally more effective
from this point of view. On the other hand, we have shown in
Sec. III C, that the GB potential leads to deviations of the
shape and of the volume of interacting molecules whenever
the semiaxes of the ellipsoids are different or misaligned.
The described deviations of the volume of the elliptic par-
ticles lead to an additional artificial “ordering” force which
might be desirable in modeling of bulk equilibrium phases,
such as liquid crystals, but may not be as reasonable when
considering dynamical properties in mixtures of dissimilar
nanoscale particles whose properties are strongly dependent
on their size and shape. From this point of view, there is a
“tradeoff” between computational efficiency and accuracy in
the treatment of the shape and volume of the molecules. The
PW approach parameter and the suggested elliptic pair po-
tential are one of possible ways to resolve this.

Another weakness of the potential of Eq. �44�, in com-
mon with the ECP potential, has already been discussed.18

For instance, in the case of the interaction of two uniaxial
elliptic particles there are infinite number of possible side-to-
side configurations corresponding to rotations of particles
about their interparticle vector R. The extremities are the
“parallel” configuration, when the main axis of the particles
are aligned and the “crossover”, when the main axes of the
ellipsoids are orthogonal. For molecules consisting of a lin-
ear array of spherical LJ particles these two configurations
obviously have different values of the potential minima, but
they are the same in the ECP and the suggested potential as
well. To take into account these effects one should include
into the potential a dependence on the local curvature tensors
of surfaces A�x�=const and B�x�=const at the contact point
xc or at subcontact points xa and xb.

A problem in connection with this path is that the cur-
vature of the surface of an ellipsoid in most cases is not the
best representation of the shape of a real molecule. The fit-

ting of an i-to-j configuration of a molecule with an elliptic
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potential can only reproduce the characteristic length in its
main directions but not the total shape. A more sophisticated
model of molecular shape is needed to take these effects into
account. The ECF approach in its general form of Eq. �3� can
be extended to the case of a general convex body.23 Then it
probably should be called a “convex contact function ap-
proach.” The approach keeps the formulas for forces and
torques in almost the same form. The computational effi-
ciency of the convex contact function extension of the ECF
depends upon the description of the surfaces of convex bod-
ies. Work in this direction is in progress.
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APPENDIX A: THE RELATION BETWEEN THE TWO
DEFINITIONS OF THE ECF

The definition ��3� and �6�� of the ECF which is used in
this article first appeared in the unpublished work16 of Per-
ram. In this Appendix we show that it is equivalent to the
original definition given in Ref. 14.

The interparticle vector R= �s−r� along the curve x���
can be expressed as

R = �x��� − r� − �x��� − s�

=�−1A−1 · X��� + �1 − ��−1B−1 · X��� . �A1�

The vector X��� itself can be found from Eq. �A1� as a
solution to the following linear equation:

X��� · ��−1A−1 + �1 − ��−1B−1� = R . �A2�

Using Eq. �7� for the scaled gradient vector X���, the value
of the quadratic form S�x��� ,�� now becomes

S�x���,�� = �A�x���� + �1 − ��B�x����

= �x��� − r�T · X��� − �x��� − s�T · X���

= XT��� · ��−1A−1 + �1 − ��−1B−1� · X��� .

�A3�

The quadratic form in the expression above has the same
matrix as the linear equation �A2�. Substituting Eq. �A2� into
Eq. �A3�, we obtain

S�x���,�� = XT��� · ��−1A−1 + �1 − ��−1B−1� · X���

=��1 − ��R̂T · ��1 − ��A−1 + �B−1�−1 · R̂R2.

�A4�

This is the original definition of the quadratic form A4 given
in Refs. 13 and 14.

APPENDIX B: THE GAY-BERNE POTENTIAL

The GB potential for identical uniaxial particles6,11,17 has

the following form:

loaded 01 Aug 2011 to 134.83.1.242. Redistribution subject to AIP lice
UGB = 4�0�1

�A,B��2

��E1,E2,R̂���12 − �6� , �B1�

� =
�0

�R − �BP�A,B,R̂� + �0�
, �B2�

where the Berne-Pechukas range parameter �BP�A ,B , R̂� is
given by

�BP�A,B,R̂� = 
1

2
�R̂T · �A−1 + B−1�−1 · R̂�−1/2

. �B3�

The strength parameter �2�E1 ,E2 , R̂� has the form of the
square of the range parameter �B3� calculated with different
shape matrices.

�2�E1,E2,R̂� =
1

2
�R̂T · �E1 + E2�−1 · R̂� . �B4�

The matrices E1 and E2 are defined as

E1 = �
i=1,2,3

�1i
−1/�ui � ui, E2 = �

i=1,2,3
�2i

−1/�vi � vi, �B5�

where ui , i=1,2 ,3 are unit vectors along the semiaxes of
ellipsoid A and vectors vi , i=1,2 ,3 are unit vectors along the
semiaxes of ellipsoid B. The parameters �1i and �2i are re-
sponsible for the potential minima of side-to-side, side-to-
end, and end-to-end configurations.

Using the expression �A4� for the quadratic form
S�x��� ,��, the BP range parameter can be found by substi-
tuting �=1/2.

�BP�A,B� =
R

�S�x�1/2�,1/2�
. �B6�

APPENDIX C: DERIVATIVES OF THE ECF

The derivative of the ECF, F�A ,B� in Eq. �53�, with
respect to position r for ellipsoid A is given by

dF�A,B�
dr

=
�S�xc,�c�

�r
+ S���xc,�c�

d�c

dr

+ �xS�xc,�c�
dx��c�

dr
, �C1�

where we have used the notation introduced in Eq. �48�. The
derivative of Eq. �C1� is evaluated at the contact parameter
�=�c. This greatly simplifies the expression when we notice
that the term �xS�x��� ,�� vanishes for any point on the
curve x��� due to Eq. �8� and the term S���x��� ,�� vanishes
at the extremum point due to Eq. �9�. As a result, we are left
with

dFi

dr
=

�S�x���,��
�r

= − 2�ciAi · �xci − r� = − Xci. �C2�

Similarly, for particle B

dFi

ds
= − 2�1 − �ci�Bi · �xci − s� = Xci �C3�

The torque TAj about an axis e j and rotation angle  j due

to the potential �44� is
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TAj = −
dUAB

d j
= − �

i=1

2
dUAB

dFi

dFi

d j
, �C4�

where

dUAB

dF1
= − 4�0
12G1

−13F1
−3/2 R

2�0
 , �C5�

dUAB

dF2
= 4�0
6G2

−7F2
−3/2 R

2�0
 , �C6�

where Gi is given in Eq. �50�. The derivative dFi /d j, simi-
larly to Eqs. �C1� and �C2�, is

dFi

d j
= �ci�xci − r�T ·

dAi

d j
· �xci − r� . �C7�

To calculate dA /d j, we write A=P ·A0 ·PT, where P
=P�� is the rotation matrix about the axis e by the angle 
given, in dyadic form, by

P�� = e � e + �1 − cos���E + sin�� e � E . �C8�

and A0 is a diagonal matrix of the quadratic form A�x� in the
“body reference frame” attached to the semiaxes of the ellip-
soid A. Using the well-known expression P� =e�P for the
derivative of the rotation matrix P, the derivative dA /d j

can now be expressed as

dA

d j
=

dP

d j
· A0 · PT + P · A0 · � dP

d j
�T

= e j � P · A0 · PT + P · A0 · �e j � P�T

= e j � P · A0 · PT − P · A0 · PT � e j

= e j � A − A � e j = 2e j � A . �C9�

The last equality follows from the symmetry of the matrix
A0. Using the tensor equality a · �b�C�= �a�b� ·C, where a
and b are vectors and C is a second rank tensor, Eq. �C7�
becomes

dFi

d j
= 2�ci�xci − r�T · �e j � Ai� · �xci − r�

= 2�ci��xci − r�T � e j� · Ai · �xci − r�

= ��xci − r� � e j� · Xci = �Xci � �xci − r�� · e j , �C10�
where the last operation is just a cyclic permutation of vec-
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tors in the calculation of the volume of a parallelogram built
by the three vectors �xci−r�, e j, and Xci.

Substituting Eq. �C10� into Eq. �C4�, the total vector TA

acting on the particle A is

TA=� j=1
3 TAje j,

− �
i=1

2
dUAB

dFi

�

j=1

3

�Xci � �xci − r�� · e je j
= − �

i=1

2
dUAB

dFi
��Xci � �xci − r�� · E�

= �
i=1

2
dUAB

dFi
��xci − r� � Xci� , �C11�

where E is the unit tensor E=� j=1
3 e j � e j.
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