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Inference of Nonlinear State-Space Models for
Sandwich-Type Lateral Flow Immunoassay

Using Extended Kalman Filtering
Nianyin Zeng, Zidong Wang, Yurong Li, Min Du*, and Xiaohui Liu

Abstract—In this paper, a mathematical model for sandwich-
type lateral flow immunoassay is developed via short available
time series. A nonlinear dynamic stochastic model is considered
that consists of the biochemical reaction system equations and the
observation equation. After specifying the model structure, we ap-
ply the extended Kalman filter (EKF) algorithm for identifying
both the states and parameters of the nonlinear state-space model.
It is shown that the EKF algorithm can accurately identify the
parameters and also predict the system states in the nonlinear dy-
namic stochastic model through an iterative procedure by using a
small number of observations. The identified mathematical model
provides a powerful tool for testing the system hypotheses and also
for inspecting the effects from various design parameters in both
rapid and inexpensive way. Furthermore, by means of the estab-
lished model, the dynamic changes in the concentration of antigens
and antibodies can be predicted, thereby making it possible for
us to analyze, optimize, and design the properties of lateral flow
immunoassay devices.

Index Terms—Extended Kalman filtering (EKF), gold im-
munochromatographic strip, lateral flow immunoassay, mathe-
matical model, parameter estimation.

I. INTRODUCTION

IN the past few years, the rapid immunochromatographic test
strip, also called lateral flow immunoassay, has been under

especial intensive investigations because of its advantages such
as ease of use, short analysis time, low cost, high sensitivity,
good specificity, and satisfactory stability when applied to a
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wide variety of point-of-care tests [20], [22], [33]. Owing to
these attractive properties, the lateral flow immunoassay has
been widely used in many fields including clinical diagnostics
[29], food safety testing [14], environmental health and safety
[39], agriculture [38], as well as some emerging areas such as
molecular diagnostics and theranostics [11].

The lateral flow immunoassay, which utilizes the specific
interaction between antigens and antibodies, consists of a porous
membrane or strip that is often made out of nitrocellulose. The
primary antibodies are immobilized within a defined detection
zone (test line) on the membrane. The secondary antibodies
are conjugated with reporter particles such as colloidal gold,
carbon black, fluorescent, or paramagnetic monodisperse latex
particle [1]. In this paper, we focus on the sandwich format of
gold immunochromatographic strip where the reporter particle
uses the colloidal gold nanoparticles. Although the lateral flow
immunoassay technology is widely used in a variety of areas,
the format suffers from certain shortcomings such as test-to-test
reproducibility challenges for quantitative analysis and the hook
effect happened when the high concentration of analyte exists
in the sample. Therefore, most immunochromatographic assays
can only give qualitative or semiquantitative results observed
directly by naked eyes at present [2] which, in turn, significantly
limit the applications of these assays.

Recent research has been going mainly toward two direc-
tions: one is the material selection and the improvement of
biochemical property of strips, see, e.g., [19], [23], [35], and
the other is the development of quantitative instruments, see,
e.g., [4]–[7], [13], [24], [25]. In order to produce high-sensitivity
results with low constant of variance strip and enable the quan-
tification, there is an urgent need for improved materials, assay
technology, reader technology, and manufacturing processes.
There is also a growing research interest on a more multidisci-
plinary approach to lateral flow development [33]. In this sense,
it is of great importance to establish a mathematical model
that allows us to predict kinetic characteristics and also test
the effects of various design parameters in both rapid and in-
expensive way. In addition to providing insights into device
operation, such a model could also enable us to optimize de-
vice performance [30]. Unfortunately, up to now, little research
has been done on the general modeling issues for lateral flow
immunoassay systems except the work [30], [31] relying on
the convection diffusion reaction equations and the COMSOL
software for simulation.

In order to gain an insight into the performance of the lat-
eral flow immunoassay system, one needs to actually focus on
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the modeling issue of biochemical reaction networks between
the antigens and the antibodies. In principle, the lateral flow
immunoassay model can be described by a nonlinear state-
space system that is characterized by the state equations and
observation equations. The system state equations describe the
dynamics of the concentration distribution subject to stochas-
tic disturbances, and the system measurements are determined
in terms of an observation equation containing measurement
noises. After specifying the model structure, we need to find
a way to solve the joint parameter and state estimation prob-
lem for nonlinear systems with stochastic noises. Nevertheless,
in practice, the lateral flow immunoassay system itself exhibits
several distinguishing features that add to the difficulties in its
modeling: 1) the biochemical reaction between antigens and
antibodies typically finishes in almost ten minutes, and there-
fore, we are only able to acquire a small number of experiment
data (i.e., short time-series); 2) the measurement is usually con-
cerned with a combination of certain variables and many other
system variables are not measurable; and 3) the dynamic model
for the lateral flow immunoassay system is essentially nonlin-
ear, and the system parameters and the system states have to
be estimated simultaneously. In general, there have been three
popular algorithms for the estimation problem of nonlinear sys-
tems, namely, extended Kalman filtering (EKF) [3], [34], [36],
unscented Kalman filtering (UKF) [32] and sequential Monte
Carlo method [12], [26].

The traditional Kalman filter has been successfully used in
linear models [8]–[10] because of its versatility and effective-
ness. The EKF approach linearizes the nonlinear model by Tay-
lor expansion and then uses the traditional Kalman filter for
the linearized model. The EKF algorithm utilized in estimation
problems is quite convenient as we only need to calculate the
mean and covariance values of the system states. Moreover, the
EKF is known as an effective online (recursive) estimator for
process variables, which can be suitable for identifying large
number of parameters using a short time series [3]. On the other
hand, the other approaches for the parameter estimation prob-
lem in nonlinear models, such as the UKF and sequential Monte
Carlo method, would require a sufficiently large number of data
for the statistical inference. With hope to address the listed chal-
lenges for modeling nonlinear lateral flow immunoassay system,
the EKF approach stands out as an appropriate candidate since
it is capable of handling the joint parameter and state estimation
problem via short time series data.

In this paper, we aim to infer the nonlinear state-space model
for the sandwich-type lateral flow immunoassay using EKF ap-
proach through available short time-series. The model is charac-
terized by the system state equation and the system measurement
equation. The identified mathematical model enables us to test
the system hypotheses conveniently and also inspect the effects
brought from various design parameters. By utilizing the estab-
lished model, we are capable of predicting the dynamic changes
of the concentration of antigens and antibodies, and this paves
the way for analyzing, optimizing, and designing the behaviors
of lateral flow immunoassay devices. The main contribution of
this paper is mainly twofold. 1) The EKF algorithm is applied
to jointly estimate the system parameters, actual concentration

Fig. 1. Lateral flow immunoassay architecture.

distribution of states, the system noise and measurement noise in
the nonlinear model of lateral flow immunoassay. Note that the
EKF algorithm is an online estimation algorithm that can solve
the estimation problem through iterative procedure by using a
small number of observations. 2) Real-time experimental data
are obtained to evaluate the model identified by the EKF, and
it is shown that the model fits the data very well. In particular,
the hook effect phenomenon typically exhibited in lateral flow
immunoassay can be clearly demonstrated by the established
model.

The rest of this paper is organized as follows. In Section II, the
lateral flow immunoassay system is introduced and the nonlinear
state-space model is proposed for the lateral flow immunoassay
system. In Section III, the EKF approach to parameter identifi-
cation is described. The results of parameter identification and
state estimation by the EKF method are discussed in Section IV
and the model performance is also demonstrated. Finally, con-
cluding remarks are given in Section V.

II. MODEL FOR LATERAL FLOW IMMUNOASSAY

A. Lateral Flow Immunoassay

A typical configuration of lateral flow immunoassay, as shown
in Fig. 1 [16], consists of a variety of materials such as sample
pad, nitrocellulose membrane, conjugate pad, and wicking pad.
With the presence of an antigen in the sample, a sandwich-type
assay is formed between the secondary antibody-immobilized
gold nanoparticle immunocomplex and the primary antibody
immobilized on the membrane. After the antigen–antibody reac-
tion, the red color caused by the accumulation of gold nanopar-
ticle at that location would appear on the membrane [1], [33].
The color intensity of the red test line (signal intensity), which
relates directly to the concentration of the target protein in the
standard or spiked samples, is assessed visually or by a reader
system for quantitative analysis [35].

In general, the biochemical reactions of the lateral flow im-
munoassay signal pathway can be summarized as follows [30].

1) Assume that the sample contains various target analytes
Ai . When the sample migrates through the conjugate pad,
the analytes interact with the particulate color particle
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conjugate P to form particle–analyte complexes PAi

Ai + P
k1⇀↽
k2

PAi . (1)

2) The free analytes in the sample and the particle–analyte
complexes both migrate into the membrane by the cap-
illary action. Free analytes of type i(Ai) and particle–
analyte complexes PAi interact with the immobilized lig-
ands of type i(Ri) to form the complexes

Ai + Ri

k3⇀↽
k4

RAi (2)

PAi + Ri

k5⇀↽
k6

RPAi . (3)

3) Additionally, unbound particulate conjugate P may bind
to the complex RAi to form the complex RPAi

P + RAi

k7⇀↽
k8

RPAi . (4)

In the previous discussion, we assume that the first-order
reversible interactions occur without consideration of the control
line. In this paper, for simplicity, we only consider a single target
analyte in the sample, and therefore, we drop the subscript i from
the next section.

B. Lateral Flow Immunoassay Model

Let x1 , x2 , x3 , x4 , x5 , and x6 be the concentration of
A,P, PA, R, RA, and RPA, respectively. For demonstration pur-
pose, it is assumed that there is no time delay between the
biochemical reactions (1)–(4). The rates of the reactions are
defined as follows:

v1 = k1x1x2 − k2x3 (5)

v2 = k3x1x4 − k4x5 (6)

v3 = k5x3x4 − k6x6 (7)

v4 = k7x2x5 − k8x6 (8)

where k1 , k3 , k5 , k7 and k2 , k4 , k6 , k8 are the association and
dissociation rate constants, respectively. The stoichiometric for
the biochemical reaction of the lateral flow immunoassay is
given by

S =

⎡
⎢⎢⎢⎢⎢⎣

−1 −1 0 0
−1 0 0 −1
1 0 −1 0
0 −1 −1 0
0 1 0 −1
0 0 1 1

⎤
⎥⎥⎥⎥⎥⎦

.

Let x = [x1 , x2 , . . . , x6 ]T and V = [v1 , v2 , . . . , v4 ]T . The
differential equation for the biochemical reactions of the lat-
eral flow immunoassay is given as follows [17], [34]:

dx(t)
dt

= SV (x). (9)

It should be pointed out that the variables x1 , x2 , x3 , x4 , x5 ,
and x6 are not measurable/observable. The only observed signal

that can be detected with a reader system is the test line’s inten-
sity, which is typically either the color intensity or the phosphor
emission intensity or fluorescent [30]. The signal would be pro-
portional to the concentration of particle–analyte complexes PA
and the complex RPA. In this case, the observation equation is
obtained as follows:

y = k9(x3 + x6). (10)

The most general form of the nonlinear model for the dynam-
ics of biochemical networks is defined by dynamic mass balance
equations or kinetic models [34], where the system consists of
a pair of equations as follows:

dx(t) = f(x(t), t)dt + G(t)dβ(t) (11)

dy(t) = g(x(t), t)dt + L(t)dη(t) (12)

where x(t) is the vector of state variables that are concentrations
of antibodies, antigens, or complex material; y(t) is the measure-
ment process; f(x(t), t) = SV (x(t)) with S being a stoichio-
metric matrix that describes the biochemical transformation in
a biochemical network and V (x(t)) being the vector of reaction
rates (usually the vector of nonlinear function of the state) [34];
G(t) and L(t) are arbitrary time-varying matrices independent
of x(t) and y(t); g(x(t), t) is the measurement model function;
and β(t) and η(t) are independent Brownian motions with di-
agonal diffusion matrices Q(t) and R(t), respectively. For the
convenience of engineering applications, such a model can also
be modified in terms of the white noises w(t) = dβ(t)/dt and
v(t) = dη(t)/dt as follows [18]:

dx

dt
= SV (x(t)) + G(t)w(t) (13)

z(t) = g(x(t)) + L(t)v(t) (14)

where the Gaussian white noises w(t) and v(t) are uncorrelated
and independent for all t.

In practice, when modeling biochemical networks from ob-
served data (time series), discrete-time models play a more cru-
cial role than their continuous-time counterparts in today’s digi-
tal world. In order to obtain the nonlinear model for lateral flow
immunoassay biochemical networks from discretely obtained
measurements, it is usually essential to formulate the discrete-
time analog as follows [34]:

x(k + 1) = x(k) + SV (x(k)) + w(k) (15)

z(k) = g(x(k)) + v(k). (16)

To facilitate the parameter estimation, in this paper, let us use
θ = [k1 , k2 , . . . , k9 ]T to denote the parameters to be estimated,
which are the association and dissociation rate constants in the
vector V (x(k)). Therefore, we can rewrite the model (15), (16)
in the following more compact form:

x(k + 1) = f(x(k), θ) + w(k) (17)

z(k) = g(x(k), θ) + v(k) (18)

where x(k) is the vector of state variables at the time point k, and
f(., .) is a nonlinear function with θ being a parameter vector to
be identified. w(k) and v(k) denote the zero-mean uncorrelated
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Gaussian noises with covariance matrices Qk and Rk , respec-
tively. z(k) is the measurement data from experiments at the
time point k.

It is clear from (17), (18) that what we need to do is to
identify the parameter vector θ for the purpose of establishing
the lateral flow immunoassay model. The main aim of this paper
is to estimate the parameters of the model (17), (18) via the
EKF method from the possibly small number of the measured
data.

III. JOINT PARAMETER AND STATE ESTIMATION BY THE EKF

In this section, for the convenience of the readers, we intro-
duce the EKF approach to parameter identification, see, e.g., [3],
[27], [36] for more details. The Kalman filter is the optimum
state estimator for a linear system with the assumptions as de-
scribed. If the system is nonlinear, then we may use a lineariza-
tion process at every time step to approximate the nonlinear
system with a linear time-varying (LTV) system. This LTV sys-
tem is then used in the Kalman filter, resulting in an EKF on the
true nonlinear system. Note that although EKF is not necessarily
optimal, it often works very well. Discussions on the conver-
gence of EKF can be found in [15], [21] and the references
therein.

Consider the following nonlinear system:

x(k + 1) = f(x(k)) + w(k) (19)

y(k) = g(x(k)) + v(k) (20)

where k is a non-negative integer, x(k) ∈ R
n is the system

state vector, y(k) ∈ R
r is the observation vector, w(k) and

v(k) are the system noise and the measurement noise, respec-
tively. w(k) and v(k) are zero-mean white Gaussian stochastic
processes with covariance matrices Qk and Rk , respectively.
Here, f : Rn → R

n is a nonlinear state transition function and
g: Rn → R

r is a nonlinear measurement function.
The EKF is implemented by the following consecutive steps.
1) Consider the last filtered state estimate x̂(k|k).
2) Linearize the system dynamics (19) around x̂(k|k).
3) Apply the prediction step of the Kalman filter to the lin-

earized system dynamics just obtained, yielding x̂(k +
1|k) and P (k + 1|k).

4) Linearize the observation (20) around x̂(k|k).
5) Apply the filtering or update cycle of the Kalman filter

to the linearized observation dynamics, yielding x̂(k +
1|k + 1) and P (k + 1|k + 1).

Let

Â(k) =
∂f(x(k))

∂x(k)

∣∣∣∣
x(k)= x̂(k |k)

(21)

Ĉ(k) =
∂g(x(k))
∂x(k)

∣∣∣∣
x(k)= x̂(k |k−1).

(22)

Assume that x(0) ∼ N (x0 , Px0 ), w(k) ∼ N (0, Qk ), v(k) ∼
N (0, Rk ) with Rk > 0, and that {w(k)} and {v(k)} are white
noise processes uncorrelated with x(0) and with each other.
Then, the EKF algorithm can be stated as follows.

Initialization
For k = 0, set

x̂(0|0) = E[x(0)] = x0

P (0|0) = E[(x(0) − x0)(x(0) − x0)T ] = Px0 .

For k = 1, 2, 3, . . . compute
Time update (‘Predict’)
State estimate time update: x̂(k|k − 1) = f(x̂(k − 1|k − 1))
Error covariance time update: P (k|k − 1) = Â(k −

1)P (k − 1|k − 1)Â(k − 1)T + Qk−1
Measurement update (‘Correct’)
Compute the Kalman gain matrix: Kk = P (k|k −

1)ĈT (k)[Ĉ(k)P (k|k − 1)C(k)T + Rk ]−1

Update the estimate with measurement y(k): x̂(k|k) =
x̂(k|k − 1) + Kk [y(k) − g(x̂(k|k − 1))]

Error covariance measurement update: P (k|k) = (I −
KkĈ(k))P (k|k − 1).

In addition, in order to improve the precision of state esti-
mation and also to reduce the possible biases, there is a need
to properly quantify the parameters Q and R in the EKF algo-
rithm. To tackle this issue, we use the innovation-based adaptive
estimation approach [40], where the covariance matrices Q(k)
and R(k) are estimated and then updated iteratively according
to the following equations:

R(k) = Cvk + Ĉ(k)P (k|k)Ĉ(k)T (23)

Q(k) = KkCvkKT
k (24)

where Cvk is the innovation covariance matrix computed
through averaging the innovation sequence s(k) inside a moving
estimation window of size N

Cvk =
1
N

k∑
i=k−N +1

s(k)s(k)T (25)

s(k) = y(k) − g(x̂(k|k − 1)). (26)

Based on the aforementioned equations, the appropriate values
of Q and R can be determined at each iteration.

Remark 1: EKF is a very practical method in identification
of nonlinear systems. Augmenting the unknown parameters to
the state vector makes it possible to use EKF for parameter
identification too.

IV. RESULTS USING THE EKF APPROACH AND DISCUSSION

In this paper, we take human chorionic gonadotropin as
a target analyte. The charge-coupled device-based image ac-
quisition system [25] is exploited to generate the short time
series shown in Fig. 2. The upper part of Fig. 2 shows the
gold immunochromatographic strip’s nitrocellulose membrane
pixel intensity inverse the sample flow direction. The images
are acquired when the sample passes through the nitrocellu-
lose membrane that consists of 45 equally spaced time points
(from 0 to 11 minutes), 45 images as a time series. We choose
z = [maxpixel(255 − Ipixel) − Pbase ]/10 as the observed value
shown in the lower part of Fig. 2, where Ipixel is the pixel
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Fig. 2. (a) Strip’s nitrocellulose membrane pixel intensity inverse the sample
flow direction. (b) Observed value of lateral flow immunoassay biochemical
reaction signal.

Fig. 3. Estimated time series of parameters k1 , k2 , k3 , k4 , k5 , k6 , k7 , k8 , k9 .

intensity and Pbase equals to maxpixel(255 − Ipixel) of the first
out of the 45 images.

Take

x0 = [5, 6.5, 0, 13, 0, 0]T

and

k0 = [0.03, 0.0001, 0.01, 0.0001, 0.04, 0.0001, 0.04,

0.0001, 2.2]T

as the initial values of the state variables and parameters, re-
spectively. Then, we can estimate parameters and state variables
based on the EKF algorithm. Both the identified parameters and
state variables are shown in Figs. 3 and 4, which are expressed
in the form of time series. The time series for error covariances
is also obtained, simultaneously, which is depicted in Figs. 5
and 6 . In Fig. 7 shows the time series for the noise variance Qk

and Rk .

Fig. 4. Estimated time series of states A, P, PA, R, RA, RPA.

Fig. 5. Variances of estimated time series of parameters k1 , k2 , k3 , k4 ,
k5 , k6 , k7 , k8 , k9 .

Fig. 6. Variances estimated time series of states A, P, PA, R, RA, RPA.
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Fig. 7. Noise variances estimated time series of Qk and Rk .

Fig. 8. Observed value predicted by EKF method and observed value from
the experiment.

It can be seen from Fig. 4 that the target analytes A, color par-
ticle conjugate P , and immobilized ligands R are decreasing as
the time goes. The particle–analyte complexes PA and the com-
plex RA increase in the first instance because of the biochemical
reactions (1) and (2), but later decrease because of the biochem-
ical reactions (3) and (4). Therefore, the complex RPA increases
with the time going on and eventually reaches the equilibrium
state. It can now be concluded that the model identified by the
EKF algorithm does make the practical sense. Also, from Figs.
5 and 6, we can see that the estimation covariances are small,
which means that our model fits the data very well.

In order to further evaluate the model identified by the EKF
method, we have done some experiments by changing the con-
centration of the target analyte. Fig. 8 shows the observed value
predicted by the EKF method and observed value from the real
experiments. Furthermore, to evaluate the model quality in a
quantitative way, let us introduce the following criterion for the

Fig. 9. Concentration of RPA as a function of the target analyte concentration.

TABLE I
QUANTITATIVE MODEL EVALUATION FOR TIME SERIES WITH DIFFERENT

CONCENTRATIONS

modeling errors (error ratio in percentage) between the actual
and the model predicted data [28], [37]:

Error ratio = 100 × 1
l

l∑
c=1

[√∑s
k=1(yck − ŷck )2
∑s

k=1(yck )2

]
% (27)

where l is the number of observations (dimension) involved in
the modeling (l = 1 in this paper); s is the number of obser-
vations (length); and yck is the actual value for cth observation
at the kth time point. The results are given in Table I. Given
the fact that there are only 45 time points (images), the model
quality is satisfactory.

Next, let us examine if the established model could reveal
biological significance. The hook effect is a well-known phe-
nomenon in lateral flow immunoassay when the target analyte
is detected to exceed the amount of colored labeling conjugate
or the ligands immobile on the capture zone. The cause for such
a phenomenon is that the analyte binds both to the colored la-
beling conjugate and to the ligands, and also blocks many of the
particle–analyte complexes from binding with the ligands [30].
In theory, the identified model by the EKF method should con-
firm the occurrence of such a phenomenon. Fig. 9 shows the
concentration of the complex RPA as a function of the target
analyte concentration. When the target analyte concentration is
less than the colored labeling conjugate or the ligands, the im-
munoassay can provide accurate results and the dose–response
curve shows a positive slope. The slope will become negative
when the concentration of analyte exceeds the ligands [33]. To
this end, the expected hook effect has been successfully dis-
played by the identified model.

Remark 2: When it comes to the quantitative interpretation for
the lateral flow immunoassay, best time-points (images) should
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be obtained by the reader system. For different manufacturers,
different materials such as nitrocellulose membrane are used
and therefore the criterion for choosing the best time-points is
the biochemical reaction. Concerning the aforementioned strips’
performance, we have chosen to capture the images 6 minutes
later after the sample is added in the strip in order to obtain
reasonable results. From Fig. 9, we can observed that, despite
different eigenvalues, the curve is in qualitative agreement with
the experiment results reported in [25] experiment results when
the target analyte concentration is less than the colored labeling
conjugate or the ligands, and this again shows the validity of the
proposed modeling approach.

V. CONCLUSION AND FUTURE WORK

In this paper, we have dealt with three important issues for
sandwich-type lateral flow immunoassay. The first one is the
identification of nonlinear dynamic stochastic model consist-
ing of system and measurement equations. The second issue is
the EKF algorithm applied to jointly estimate the system states
and parameters for the lateral flow immunoassay via short time-
series data. The third issue is to verify the identified model by
using experimental data. It has been shown that the established
model fits the data very well and therefore offers a powerful
means for testing the system hypotheses and for predicting the
dynamic changes of the concentration of antigens and antibod-
ies.

In near future, we will continue to investigate the modeling
issue of the lateral flow immunoassay where the control line is
included and the time delays between the biochemical reactions
are taken into account. Furthermore, the variations in membrane
properties, batch to batch variability of the gold-antibody con-
jugates and other factors lead to the variability observed from
strip to strip at the same concentration, so these factors could
be considered as input variables in the state-space model in the
next step. Although the EKF algorithm is an efficient estima-
tor because of its recursive nature, this algorithm might result
in infeasible estimates because it does not take into account
the physical constraints on the estimated states. Therefore, the
EKF algorithm with estimation constraints should be consid-
ered, and the moving-horizon estimation approach appears to
be good candidate for incorporating the estimation constraints.
We are also getting in touch with biologists and manufacturers
to gain further insight into our main results.
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