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ABSTRACT 

An experimental investigation to analyse the qualitative near wall effect of synthetic jets 

in a laminar boundary layer has been undertaken for the purpose of identifying the types 

of vortical structures likely to have delayed separation on a 2D circular cylinder model 

described in this paper. In the first instance, dye visualisation of the synthetic jet was 

facilitated in conjunction with a stereoscopic imaging system to provide a unique quasi 

three-dimensional identification of the vortical structures. Secondly, the impact of 

synthetic jet structures along the wall was analysed using a thermochromic liquid 

crystal-based convective heat transfer sensing system in which, liquid crystals change 

colour in response to the thermal footprints of a passing flow structure. Of the different 

vortical structures produced as a result of varying actuator operating and freestream 

conditions, the footprints of hairpin vortices and stretched vortex rings revealed a 

marked similarity with the oil flow pattern of a vortex pair interacting with the 

separation line on the cylinder hence suggesting that either of these structures was 

responsible in delaying separation. Conditions were established for the formation of the 

different synthetic jet structures in non-dimensional parameter space. 
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NOMENCLATURE 

cf skin friction coefficient 

d boundary layer thickness to orifice diameter ratio 

D diameter of cavity or orifice, mm 

f diaphragm oscillation frequency, Hz 

h orifice depth, mm 

H cavity height, mm 

L dimensionless stroke length 
Re Reynolds number 

S Stokes number 
St Strouhal number 

T time period of a diaphragm oscillation cycle, s 
u instantaneous velocity, m/s 

U characteristic velocity, m/s 

VR jet-to-freestream velocity ratio 

x streamwise distance from orifice exit, mm 

y normal distance from orifice exit, mm 

 Greeks 

Γ vortex circulation, m
2
/s 

δ boundary layer thickness, mm 

∆ peak-to-peak displacement at the diaphragm centre, mm 

ρ fluid density, kg/m3 

τ surface shear stress, N/m
2
 

ν molecular kinematic viscosity, m2/s 

 Superscripts 

− time average 

~ space average 

Subscripts 

c cavity value 
j jet value 

o orifice value 

w wall value 

∞ freestream value 
 

1. INTRODUCTION 

Synthetic jet actuators (SJA) provide a novel means of applying flow control and their 

potential application for the effective delay of boundary layer separation on aircraft has 

been the focus of intense research in recent years (Smith and Glezer, 1998; Crook and 

Wood, 2001; Gilarranz and Rediniotis, 2001; Glezer and Amitay, 2002). One of the 

reasons for this is due to their unique ability to impart additional momentum on a fluid 

region from which it was originally synthesised without a net mass addition, therefore 
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requiring no bleed air supply and complex piping. In addition, the oscillatory nature of 

synthetic jets has been observed to offer greater entrainment of fluid in the near field 

compared to their continuous counterparts (James et al., 1998; Cater and Soria, 2002). 

It is believed that the interaction of the discrete trains of vortices formed out of a 

SJA (Fig. 1) with a local boundary layer produces streamwise vortical structures, which 

are capable of delaying flow separation by entraining faster moving fluid from the 

freestream to the near wall region. Crook and Wood (2001) investigated the flow 

control effectiveness of an array of SJAs implemented flush to the surface of a circular 

cylinder upstream of its separation line in a turbulent boundary layer. From Fig. 2, 

surface oil patterns showed that with the actuators active, the separation line was pushed 

downstream noticeably. In particular the oil flow revealed the footprints of a well-

defined streamwise vortex pair immediately downstream of each synthetic jet that 

appeared to persist for a long distance downstream and interact with the separated flow. 

Subsequent dye visualisation by Zhong et al. (2005) has shown that the interaction 

between a synthetic jet and a boundary layer is complex, varying from hairpin vortices 

that remain near to the wall to tilted vortex rings that penetrate the boundary layer as the 

jet-to-freestream velocity ratio increases. It has been hypothesised (Zhong et al., 2005) 

that the hairpin vortices may have been responsible for the formation of the streamwise 

vortex pair that interacted with the separation line on the circular cylinder, however 

further evidence is still to be sought. 

In this paper, the results of a qualitative study of the interaction of a synthetic jet 

with the near-wall region of a laminar boundary layer are presented. As a continuation 

of the aforementioned investigation, the purpose of the work described herein is to 

identify the likely type of vortical structures responsible for the delayed separation on 

the circular cylinder and to establish the conditions that ensure the formation of such 
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structures in non-dimensional parameter space. To this end, the nature of vortical 

structures produced under a range of actuator and freestream conditions are to be 

investigated with a view to analysing their respective near wall effects where flow 

control is ultimately desired. The use of a laminar flow provides a logical first step into 

visualising and understanding the basic mechanism of synthetic jet boundary layer 

interaction, which would otherwise be difficult to achieve for a turbulent boundary 

layer. Furthermore, it is believed by the authors that the type of vortical structures 

produced should essentially be the same as that for a synthetic jet issuing into a 

turbulent flow with the main difference being in the dissipation rate of the ejected 

structures near the wall. This study is therefore applicable to turbulent flows, as in the 

case of the cylinder model described herein. 

Realisation of the aims of this study is to be made primarliy through the 

application of two qualitative visualisation techniques, which are novel to this area of 

research. In the first instance, dye visualisation of the synthetic jet structures was 

facilitated in conjunction with a stereoscopic imaging system to allow simultanteous 

side and surface views. The technique provides a unique quasi three-dimensional 

identification of the vortical structures produced by the synthetic jet. Secondly, the 

impact of synthetic jet structures along the wall was analysed using a thermochromic 

liquid crystal-based convective heat transfer sensing system. Essentially, the liquid 

crystals change colour in response to the thermal footprints of a flow structure which 

causes a localised variation of convective heat transfer. The system, similar to that 

described by Zhong et al. (2000) therefore allows the resident effect of synthetic jets at 

the wall to be examined where effective flow control is ultimately desired. Collectively, 

the techniques will provide invaluable insights into both surface and off-surface 

behaviour related to synthetic jet boundary layer interaction. 
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2. THE EFFECT OF DIMENSIONLESS PARAMETERS ON THE 

CHARACTERISTICS OF A ROUND SYNTHETIC JET 

2.1 SJA in Quiescent Conditions 

Smith and Glezer (1998) have shown that for a SJA of a given geometry in quiescent 

conditions, two independent dimensionless parameters defined using the jet velocity, 

namely the dimensionless stroke length L and the jet Reynolds number Rej characterise 

the synthetic jet flow. According to the slug model (Glezer, 1988) the stroke length Lo 

represents the length of the fluid column expelled during the blowing stroke, i.e. 

 o o

o o

L U
L

D fD
= =  (1) 

where oU  is the time-averaged blowing velocity over the entire cycle, which was 

originally proposed by Smith and Glezer (1998) to facilitate a comparison between 

synthetic jets and steady jets. For the present study 
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where ũo(t) is the instantaneous space-averaged velocity at the orifice exit. Note that 

from the defintion  proposed by Smith and Glezer (1998), 
oU  is neither the time 

average of ( )ou t% over a whole cycle T, which should be zero, nor its time average over 

half a cycle T/2 (i.e. the blowing half of a cycle), which is 2
oU . Assuming an 

incompressible flow, Eq. (2) derived by Tang and Zhong (2006) equates the 

instantaneous volume flow rate displaced by the diaphragm with that expelled through 

the orifice (where the coefficient has been modified to ⅓ to account for the use of a 

rubber diaphragm in the present investigation). The jet Reynolds number is defined as 

 Re o o
j

U D

ν
=  (3) 
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A previous study of synthetic jets in quiescent conditions undertaken by the authors 

(Jabbal et al., 2006) has shown that the Reynolds number based on the stroke length, 

ReL, (where ReL = Rej·L) is directly related to the synthetic jet vortex circulation, Γ/υ 

and as such, is a more useful indicator of the vortex strength.  

From these two key parameters a third dependent parameter, the Stokes number, 

S, which is also important can be defined accordingly  

 

1/ 2

2

2 Re
LS

L

π 
=  
 

 (4) 

 

2.2 SJA in a Cross Flow Boundary Layer 

If the SJA is embedded in a crossflow boundary layer, the list of physical parameters on 

which the nature of the synthetic jet will depend should be extended to include the local 

boundary layer thickness δ, the freestream velocity U∞ and the local wall shear stress τw. 

Dimensional analysis gives the following 

 1 2 3 4 52
, , , ,o w o

o
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where π1 represents the Strouhal number, St, π2 the freestream Reynolds number, Reδ, π3 

the ratio of boundary layer thickness to orifice diameter, d, π4 the non-dimensional shear 

stress (which is equivalent to the skin friction coefficient, cf  = τw/0.5ρU∞
2
) and π5 the 

jet-to-freestream velocity ratio, VR.  

Combined with the key dimensionless parameters for a SJA in quiescent 

conditions, that is L and ReL, there is a total of 7 dimensionless parameters. Taking the 

inter-dependencies of Eq. (6(a)) and (6(b)) into account effectively reduces the number 

of parameters pertaining to a synthetic jet in a boundary layer to 5, namely L, ReL, VR, d 

and cf   
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2.3 Discussion on the Effect of the Dimensionless Parameters 

Holman et al. (2005) and Milanovic and Zaman (2005) have shown that there is a 

threshold of the stroke length for synthetic jet formation, for which L is approximately 

0.5 for round synthetic jets in the absence of a crossflow. As such, jet formation and the 

ensuing injection of vorticity within the boundary layer to promote fluid mixing 

requires that the stroke length is larger than a critical value. The magnitude of the stroke 

length also determines the impact from the suction stroke, with a greater influence of 

suction being asserted on synthetic jets that are formed at low values of L (i.e. those in 

which the vortical structures have not moved sufficiently far away from the orifice 

during the blowing stroke). For a synthetic jet issuing into a boundary layer, it is 

expected that the effect of suction would be confined to the upstream branch of the 

vortex hence resulting in an asymmetric structure.  Furthermore, extensive 

investigations by Gharib et al. (1998) of the formation of vortex rings generated through 

piston-driven jets has shown that the flow field generated by large stroke lengths consist 

of a leading vortex ring followed by a trailing jet. Alternatively, flow fields generated 

by small stroke lengths show only a single vortex ring. The transition between these two 

states is observed to occur at a stroke length of approximately 4, thus representing the 

threshold of the stroke length above which, shedding of secondary vortices occurs due 

to saturation of vortex circulation within the primary structure. This threshold for round 

synthetic jets formed in quiescent conditions has also been found to occur at L = 4 

(Jabbal et al., 2006). 
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It can be expected that the jet Reynolds number will have an influence on the 

strength of the vortical structures formed out of the orifice. A previous study by Zhong 

et al. (2005) of the behaviour of synthetic jets in a laminar boundary layer has 

characterised the Reynolds number according to the stroke length, ReL, as defined 

previously. It is believed that the use of ReL is suitable in quantifying the strength of a 

vortex ring and is therefore an important quantity where fluid entrainment and mixing in 

the near wall region via the generation of coherent vorticity is ultimately required. 

Nevertheless, a prerequisite to vortex strength is that of vortex roll up, which is 

determined by the Stokes number. It has been shown by Guo and Zhong (2005) that the 

Stokes number (Eq. (4)) should be greater than 10 to ensure roll up for L less than 4. 

The velocity ratio represents the relative strength between the jet and freestream 

velocity and characterises the trajectory of the jet through the boundary layer. Milanovic 

and Zaman (2005) have previously shown that at a given streamwise location, the jet 

penetration height is solely a function of the momentum flux ratio, which is equivalent 

to the velocity ratio VR, defined in the present study. Thus at low values of VR, the 

synthetic jet will reside within the boundary layer for a longer period of time, thereby 

increasing its potential effectiveness where flow control is ultimately desired. Zhong et 

al. (2005) has shown that shear in the boundary layer will have a greater influence on 

those structures formed at low VR causing vortex stretching, as opposed to those formed 

at high VR. It is worth noting that the level of shear is directly related to the relative size 

of the boundary layer thickness to the orifice diameter, d and therefore for different d, 

the magnitude of VR should be set accordingly to ensure the trajectory of the synthetic 

jet remains in the near wall region.  

Finally, the skin friction coefficient along the wall, cf, is expected to affect the 

streamwise decay of the vortical structures downstream of the orifice, with the rate of 
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vortex dissipation being greater for a higher skin friction (and therefore a higher wall 

friction velocity). This has particular implications for a synthetic jet embedded in a 

turbulent flow and will accordingly require augmentation of L, ReL and VR to ensure 

similar levels of effectiveness as a synthetic jet in a laminar flow. 

Based on the aforementioned discussion, for a SJA of a given geometry 

embedded in a boundary layer 

 SJA effectiveness = fn(L, VR, d, ReL, cf) (7) 

 

Where effectiveness is defined as the strength and persistence of fully formed vortical 

structures in the near wall region of a boundary layer. The functional dependence of the 

effectiveness of a synthetic jet on the dimensionless parameters given in Eq. (7) also 

correlates with a scaling law derived by Raju et al. (2005). Using a non-linear regression 

analysis on data obtained by numerical simulation, a scaling law for the vorticity flux of 

a synthetic jet was extracted for the case of a zero-pressure gradient laminar boundary 

layer, in which the vorticity is influenced by a Strouhal number based on the jet velocity 

(equivalent to L in the present study), a jet to freestream velocity ratio, a boundary layer 

thickness to slot width ratio and a jet Reynolds number. The scaling law shows that for 

a constant boundary layer thickness, the vorticity flux of a synthetic jet embedded in a 

boundary layer varies with the natural logarithm of Rej and as a linear function of L and 

VR –1. 

 

3. EXPERIMENTAL APPROACH  

Investigation of the interaction of a synthetic jet with a laminar boundary layer was 

conducted in a tilting water flume at the University of Manchester Goldstein Research 

Laboratory. The test section is 4m in length and has a cross-sectional area of 
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0.3m×0.3m. The maximum freestream velocity in the test section is approximately 

0.4m/s. The SJA used in this investigation consisted of a cylindrical cavity bounded by 

rigid sidewalls with an orifice plate at one end and a diaphragm clamped to the other 

(Fig.1). The cavity has a diameter, Dc = 45mm and height, H = 25mm. The orifice has a 

diameter, Do = 5mm and a thickness equivalent to the orifice depth, h = 5mm. 

 

3.1 Stereoscopic Dye Visualisation 

For dye flow visualisation, the synthetic jet actuator was mounted on the back of a flat 

plate that formed the ceiling of the test section, as shown in Fig. 3. The plate 

constructed from a 5mm thick sheet of aluminium, 1.3m in length, was mounted 

horizontally and spans across the width of the test section. The plate has a 1:5 

superelliptical leading edge, which according to Narasimha and Prasad (1994), helps to 

minimise flow separation and premature transition at the leading edge of the plate. The 

plate was inclined at a small negative incidence (less than 1°) to the oncoming flow to 

ensure that a fully attached laminar boundary layer forms right at the leading edge.  

The SJA orifice opening was flush to the lower test surface of the plate and was 

located approximately 0.7m (140 orifice diameters) aft of the leading edge. During 

testing, the plate and SJA cavity were both fully submerged in water. A diaphragm 

made from rubber was clamped to the top of the cavity and was attached at its centre via 

a steel rod to a permanent magnetic shaker housed above water level, which oscillates 

the diaphragm in a sinusoidal manner. A rubber diaphragm was used to ensure an 

accurate sine wave deformation, which would otherwise be difficult to achieve with a 

metallic one for the very low actuation frequencies and amplitudes used in the present 

investigation. A dye, comprising of a mixture of food colouring and methanol was 

introduced into the cavity via gravity.  
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In the experiment, a Hitachi KP-F120 partial scan CCD camera was used to 

capture the dye pattern produced by synthetic jets from two orthogonal views 

simultaneously (from the side and plane of the wall) at a frame rate of 30fps, providing 

a quasi three-dimensional visualisation of the jet. To facilitate the capture of both views 

simultaneously onto each image frame a stereoscopic imaging system, as shown in Fig. 

4, was set up using a combination of two plane mirrors and an orthogonal prism in 

accordance with the method described by Zhang et al. (2003).  

 

3.2 Liquid Crystal Visualisation 

For liquid crystal visualisation, the aluminium plate was replaced with a 10mm thick 

Perspex plate of the same length and width. The plate leading edge profile, incidence of 

the plate to the oncoming flow and SJA orifice location aft of the leading edge were 

consistent with those for the dye flow tests. A 500mm×250mm cavity was cut out of the 

plate mid-section to accommodate a heater composite insert. 

The composite is essentially a flat plate composed of several layers, as shown in 

Fig. 5(a). The heater is a resistive wire-wound element encased in silicone rubber and is 

designed to give a uniform heat capacity to a maximum of 1.7kW. A 3mm thick 

aluminium sheet is attached to the heater to smooth out any lateral temperature non-

uniformity caused by the wire element. A black high impact polystyrene sheet 0.5mm 

thick is bonded to the aluminium and has the opposite effect, in that it minimises lateral 

heat conduction along the surface thereby helping to retain the localised effect of 

temperature non-uniformity associated with the thermal footprints of a synthetic jet. The 

different layers of the composite are bonded together using a double-sided 3M adhesive 

tape to ensure good thermal contact and is inserted into the cavity so that the 

polystyrene sheet is flush to the lower test surface of the Perspex plate. To minimise 
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heat losses through the back of the composite, a 5mm air gap is sealed above the heater 

using a Perspex lid. A 5mm hole constitutes the SJA orifice through the composite, 

which has a total thickness equivalent to the orifice depth, h of 5mm. The SJA cavity is 

mounted on the back of the composite on the surface of the heater.  

A temperature-sensitive liquid crystal layer of approximately 50µm was applied 

on the polystyrene surface using an airbrush. A single coating of a binder (Hallcrest 

AQB-3) was applied on top of the liquid crystal layer and acts as a varnish to protect it 

from water. The liquid crystal used is BM/R22C5W supplied by Hallcrest and has an 

active colour bandwidth of 5°C, showing red at 22°C and blue at 27°C (tolerances of 

quoted temperatures are ±1ºC). In the experiment, the surface is heated to such an extent 

that the crystal shows blue colour under a laminar boundary layer. As the synthetic jet 

passes, its thermal footprint can be seen by a change in colour through the spectrum to 

red. The thermal footprints were captured with a standard colour video camera. 

 

3.3 Test Conditions 

In the present investigation, the non-dimensional flow characteristics of the synthetic jet 

were varied by changing the diaphragm operating conditions (oscillation frequency, f 

and peak-to-peak displacement, ∆) and freestream conditions (namely, the freestream 

velocity, U∞). A LabVIEW virtual instrument was used for signal generation of a 

sinusoidal waveform at a specified diaphragm oscillation frequency, which was sent to 

the permanent magnetic shaker via an ADC device. The diaphragm displacement was 

measured using an eddy current displacement sensor and read into the virtual 

instrument. The time-averaged blowing velocity over the entire cycle was evaluated 

from Eq. (2), which is applicable for incompressible flows. Equation (2) was validated 
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from hotwire measurements by Li and Zhong (2005) with an uncertainty of 9.7% 

between the theoretical and measured value of 
oU .  

The freestream velocity was measured using a Nixon Streamflo 403 vane 

anemometer, which has an accuracy of ±2% of the flow velocity. The undisturbed 

boundary layer velocity profiles were measured using PIV. To facilitate measurements, 

the freestream flow was seeded with hollow glass particles with a mean diameter of 

10µm and a density of 1100kg/m
3
. The settling velocity of the particles is approximately 

5µm/s thus suggesting that the particles will follow the motion of the flow with high 

fidelity. The accuracy of the PIV measurements was assessed from continuity in 

accordance with the method outlined by Chang et al. (2001), which yielded a maximum 

uncertainty of 4.8%. A light sheet approximately 1mm in width was generated by a 5W 

Argon ion laser to illuminate the flow field along a streamwise plane, which bisects the 

SJA orifice along its centreline. A Photron Ultima APX camera with a resolution of 

1024×1024 pixels was used to capture images in a field of view of 25mm×25mm. 

Corresponding vectors were resolved using a two-frame cross-correlation algorithm in 

which, a 32×32 pixel interrogation area with an overlap ratio of 50% was chosen giving 

a spatial resolution of 0.39mm. Long time-averaged velocity profiles were obtained 

over a recording time of 24 seconds. Comparison of the undisturbed boundary layer 

velocity profile with the Blasius solution at U∞ = 0.05m/s and U∞ = 0.1m/s along a 

streamwise centreline location of 5 orifice diameters upstream of the orifice is shown in 

Fig. 6. The good agreement confirms the zero-pressure gradient nature of the laminar 

boundary layer. 

A summary of all the test cases is shown in Table 1. The dimensionless stroke 

length, L varies between 0.8 and 5.1, Reynolds number, ReL between 16 and 658, 

velocity ratio, VR between 0.04 and 0.7 and Strouhal number, St between 0.05 and 0.2. 
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For the two values of  U∞ tested, 0.05m/s and 0.1m/s, the respective changes in d (3.6 

and 2.3) and cf (4.13×10-3 and 2.65×10-3) obtained from the velocity profiles in Fig. 6 

were relatively small such that their effects were considered secondary to changes in the 

other aforementioned parameters. Thus, the focus of the parameter space (Eq. (7)) with 

respect to the results in the next section is on L, VR and ReL. 

 

 

4. RESULTS AND DISCUSSION 

4.1 Near Wall Effect of Vortical Structures  

In the present study three main types of vortical structures have been identified from the 

interaction of a synthetic jet with a zero pressure gradient laminar boundary layer, 

namely hairpin vortex, stretched vortex ring and distorted vortex ring. These are similar 

to those observed by Zhong et al. (2005). In order to differentiate these structures by 

their impact on the flow in the near wall region where flow control is ultimately desired, 

liquid crystal images are correlated with the patterns observed by dye visualisation.  

Stereoscopic dye visualisation and corresponding surface liquid crystal data of a 

synthetic jet produced at VR = 0.14, ReL =46 and L=1.4 are shown in Fig. 7(a). It can be 

seen from the dye visualisation that under such low VR, elongated hairpin vortices are 

formed out of the orifice. The structures remain embedded within the near-wall region 

of the boundary layer on account of their low VR. As such, the level of shear in the 

boundary layer plays an important role in that the counter-rotating legs of the hairpins 

experience significant stretching as they propagate downstream. This is represented by 

the trace of the structure as seen with the dye, which appears as a thin line thus 

suggesting that the vortex tube is highly stretched. It may also be observed from both 

side and surface views that the counter-rotating legs of the hairpins can be traced back 

to the orifice from which they were formed, suggesting that the suction stroke is 
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dominant for this type of structure (equating to a small stroke length). In addition to the 

hairpin structures, the surface view shows the development of two dye concentrations, 

which appear laterally to either side of the dark concentration created by the counter-

rotating legs of the hairpin vortices.  

Similar observations were made by Acarlar and Smith (1987) in their study of 

hairpin vortices in a laminar boundary layer, where the dye concentrations were shown 

to be a secondary or longitudinal vortex pair not too dissimilar to the horseshoe-type 

vortex observed to form at end wall junctures. The formation of the longitudinal vortex 

pair is characterisitc of hairpin vortices formed at low injection rates, or as in this case, 

low VR and are created by the inrush of fluid outboard of the counter-rotating hairpin 

legs.  

Due to the weak nature of the structures caused by a low ReL, their ability to 

affect the near wall region appears limited, as confirmed by the corresponding liquid 

crystal image (however, one also needs to consider the development of the thermal 

boundary layer along the wall, which results in an increasing surface temperature 

downstream thereby making it more difficult to differentiate the thermal footprints with 

downstream distance).  

Within 6Do of the orifice there appears three dark (red) streaks representing a 

drop in the local surface temperature due to a relatively high level of convective heat 

transfer associated with the passing structures. By Reynolds analogy, a local increase in 

heat transfer correlates to a local increase in fluid momentum. The two outer streaks are 

associated with the counter-rotating legs of the hairpins, which have ‘common flow’ 

upwards such that higher momentum fluid is brought towards the wall outboard of the 

legs. Conversely, the centre streak is associated with the longitudinal vortices, which 

have ‘common flow’ downwards (as shown by Acarlar and Smith, 1987) and from Fig. 
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7(a) are seen to form inboard of the hairpin vortex within 4Do of the orifice (note the 

two dye lines pertaining to the longitudinal vortices in between the hairpin legs in the 

near field region). Hence higher momentum fluid is brought towards the wall inboard of 

the longitudinal vortices resulting in a higher heat transfer region. 

Figure 7(b) shows the formation and advection of hairpin vortices at VR =0.19, 

ReL =89 and L=1.9. Due to an increase in ReL, the strength of the hairpins appear greater 

than those in Fig. 7(a), as evidently shown by the vortex tube pertaining to the head and 

legs of the structure. It is also observed that the longitudinal vortices have completely 

diminished. Both types of hairpin vortices with and without the longitudinal vortices are 

collectively grouped as ‘hairpin vortices’ since the presence of a hairpin vortex is the 

dominant feature in both cases.  

Figure 8(a) shows the corresponding development of the hairpin vortex as it is 

formed out of the orifice. The vortical structure produced by the synthetic jet is seen to 

experience an asymmetric roll up, similar to the findings of Zhong et al. (2005). Since 

the dimensionless stroke, L, for this case is quite small, the structure does not move 

sufficiently far from the orifice before the suction stroke begins. Consequently, the 

onset of suction inhibits roll up on the upstream side whilst the downstream branch is 

retained and strengthened by the vorticity in the boundary layer thereby resulting in an 

asymmetric structure. It is therefore evident that suction significantly influences the 

formation of these structures. The stereoscopic dye image reveals that the counter-

rotating legs of successive hairpins are connected with each other and are traceable back 

to the orifice, the effect of which can also be attributed to suction.  

As the structures move downstream, as well as experiencing a high degree of 

stretching, the heads undergo a lifting movement from the wall due to self induction. It 

is found that the hairpin structures produce two streamwise streaks of high heat transfer 
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that persist downstream. As in Fig. 7(a), the nature of these footprints can be attributed 

to the counter-rotating legs. As the legs of the hairpins rotate, low momentum fluid 

adjacent to the wall accumulates between them generating a region of low heat transfer 

(corresponding to the light (blue) region between the streamwise streaks). Outboard of 

the legs, higher momentum fluid is brought towards the wall, thereby generating two 

streamwise regions of high heat transfer that correspond to the dark (red) streaks 

produced by the liquid crystal. 

Figure 7(c) shows the formation and advection of a stretched vortex ring at VR 

=0.27, ReL =182 and L=2.7. Similarly, a close-up development of the structure out of 

the orifice is shown in Fig. 8(b). A rollup on the upstream side of the vortex is observed, 

which is significantly weakened by the vorticity in the boundary layer. Conversely, the 

strength of the downstream branch becomes intensified due to stretching. Anti-

clockwise tilting is also evident by the motion of the vortex head as the structure 

convects downstream. Based on the spinning solid cylinder concept suggested by Chang 

and Vakili (1995), Zhong et al. (2005) attributes this behaviour to the moment of the 

Magnus forces acting on the vortex rollers. The structure as shown by the dye pattern 

differs from the hairpin vortices in two ways. Firstly, the vortex rollers in the head of 

the structure are more prevalent (as shown in Figs. 7(c) and 8(b)), which may be 

attributed to an increase in ReL. Secondly, the counter-rotating legs of the structure 

detach away from the wall and also from the orifice, suggesting that for this stroke 

length of L = 2.7, the effect of suction is minimal. Further observations show that the 

structures have a steeper trajectory than the hairpin vortices on account of their higher 

VR, which causes the structures to eventually penetrate out of the boundary layer.  

Nevertheless, the near wall effect of these structures is qualitatively very similar 

to that which is observed for the hairpins, since the counter-rotating legs still sweep 
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over the wall due to a degree of tilting. Two streamwise streaks of high heat transfer 

produced by the counter rotating legs are evident. Close observation reveals the width 

of these streamwise streaks is slightly greater than those produced by the hairpins. This 

could be attributed to the higher strength of the stretched vortex rings. Moreover, since 

the stretched vortex rings are stronger and further away from the wall, the counter-

rotating legs bring in higher momentum fluid from the surroundings than those of the 

hairpin vortices, thereby resulting in an increased rate of heat transfer along the wall. As 

in the work of Zhong et al. (2005), this type of structure is regarded as an intermediate 

case between those structures than remain embedded in the boundary layer, as 

previously described and those that rapidly penetrate it, as described below.   

Figure 7(d) shows the advection of a distorted vortex ring out of the boundary 

layer (where VR =0.51, ReL =658 and L=5.1). The formation of the structure out of the 

orifice (Fig. 8(c)) shows that it initially experiences a symmetrical roll up, since the 

strength of the jet is increased relative to the freestream, with the ensuing vortical 

structure penetrating the boundary layer. Consequently, boundary layer shear has little 

influence on this structure unlike the previous cases, which experience a large degree of 

stretching due to their long resident time in the boundary layer.The structure, as shown 

in Fig. 8(c) becomes increasingly incoherent with time and the formation of secondary 

vortices can eventually be seen shedding from the primary vortex ring. The formation of 

these secondary vortices indicates that a limit in the circulation that can be contained 

within the primary vortex has been reached. For this case, the dimensionless stroke 

length is above the threshold of L = 4 for the shedding of secondary vortices found for 

synthetic jets in quiescent conditions (Jabbal et al., 2006).  

The corresponding thermal footprint produced by the distorted vortex ring is 

distinctly different to those observed for the hairpin vortices and stretched vortex rings. 
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In this case, there is a single dark (red) streak of high heat transfer downstream of the 

orifice. In the case of Fig. 7(d), it is believed that the region of high heat transfer is 

produced by the unsteady wake of the jet, which protrudes the boundary layer. For a 

further increase in VR it is expected that the near wall effect of the synthetic jet will 

diminish. 

 

4.2 Correlation of Vortical Structures to the Delayed Separation on a Cylinder 

Figure 9 shows a magnified view of the surface oil flow pattern generated by the 

interaction of a synthetic jet with the separation line on a circular cylinder, as previously 

seen in Fig. 2. The streaklines reveal a clear footprint associated with the development 

of a streamwise vortex pair downstream of the SJA orifice, which interacts with the 

separation. A flow topology of the streaklines, as presented by Crook (2002) is included 

for clarity. Based on the similarity in their thermal footprints to the flow pattern 

revealed by the oil flow on the 2D cylinder model, it is believed that either the hairpin 

vortices or the highly stretched vortex rings are responsible for producing the well 

defined streamwise vortex pairs that delayed flow separation on the 2D circular 

cylinder.  

In addition to the streamwise tracks produced by the vortex pair, the flow 

topology downstream of the actuator orifice reveals the presence of a wedge region 

embedded between the streamwise vortices. Crook (2002) offered no explanation to the 

cause of this wedge region. However, a possible hypothesis for the wedge may be 

provided from Fig. 7(a) in which, a third streak embedded between the two streaks of 

high heat transfer is observed. As previously described the middle streak, which is 

attributed to the ‘common flow’ down induced by the longitudinal vortices that initially 

form inboard of the hairpin legs before moving laterally outboard of them, appears to 
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give rise to a wedge-like pattern embedded between the vortices. This hypothesis seems 

to lend further support to the belief that the interaction of a synthetic jet with a laminar 

and turbulent boundary layer is essentially the same. As such, based on their near wall 

persistency and similar qualitative effects along the wall, both hairpin vortices (with and 

without a longitudinal vortex pair) and stretched vortex rings appear potentially useful. 

 

4.3 Parameter Mapping of Vortical Structures 

Having identified the possible types of vortical structures that were responsible in 

delaying flow separation on the cylinder, it is useful to establish the conditions that 

ensure the formation of such structures. To undertake this task, it was necessary to 

correlate all test cases to a single parameter map based on the key dimensionless 

parameters of synthetic jets in a boundary layer defined according to Eq. (7). As such, 

the test cases shown in Table 1 were plotted as a function of L ,VR and ReL to give the 

surface contour plot in Fig. 10 in which, the gradient of the L-VR plane is equivalent to 

the Strouhal number, St (Eq. (6a)).  

From Fig. 10, it can be seen that there is a minimum threshold in the stroke 

length of L ≈ 1 and VR ≈ 0.1, which is required for vortex formation in a boundary 

layer. For the vortical structures believed to be responsible for the separation delay on 

the cylinder, it is possible to establish useful ranges in L, VR and ReL required for their 

formation. Fig. 10 confirms the importance of suction and a relatively small jet-to-

freestream velocity ratio for the formation of hairpin vortices where the range in L is 

limited to 1<L<3.5 for velocity ratios of 0.1<VR<0.32 and Reynolds numbers of 

29<ReL<308. For stretched vortex rings, where the influence of suction diminishes, the 

range in L, VR and ReL required for their formation is approximately 2.7<L<5.1, 

0.2<VR<0.38 and 182<ReL<658 respectively. The intermediate range of L and VR 
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ensure roll up of the upstream vortex branch coupled with substantial resident time in 

the boundary layer. Finally for the distorted vortex rings, which are not considered to be 

responsible for the delayed separation on the cylinder due to their short resident time in 

the boundary layer and dissimilar footprints, L>1.9, VR>0.38 and ReL>179. The high 

threshold of VR confirms that these structures penetrate the boundary layer over a short 

distance downstream. 

From the contour plot it may be seen that limiting VR for a particular type of 

structure results in an extension to the range of L over which the structure is formed. 

This is true for both hairpin vortices and stretched vortex rings and suggests that the 

conditions for enhancing the flow control effectiveness of synthetic jets by the 

generation of vortical structures of relatively high strength that persist in the near wall 

region depends on limiting VR (ideally <0.38 for the current set of cases) whilst 

increasing L and hence ReL. This assessment also correlates with the previously defined 

scaling law derived by Raju et al. (2005), which shows that the vorticity flux of a 

synthetic jet embedded in a zero-pressure gradient laminar boundary layer varies as a 

linear function of L and VR 
–1

. In the present study for a fixed SJA geometry and given 

set of freestream conditions, L is a function of the peak-to-peak diaphragm 

displacement, ∆ (Eq. (1)), ReL a function of the diaphragm oscillation frequency, f and 

∆2 and VR a function of f and ∆ (Eq. (5)). Thus, the outlined mechanism for SJA 

effectiveness may be achieved by increasing ∆ whilst reducing f, thereby decreasing 

both St and S. However, there is a compromise to be attained between reducing the 

actuation frequency for maximising vortex strength near the wall and ensuring a Stokes 

number greater than 10 for vortex roll up (Guo and Zhong, 2005). 

The parameter space for the synthetic jet array implemented on the cylinder 

model suggests that the delayed separation shown in Fig. 9 was achieved via the 
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aforementioned route for flow control, in which the Strouhal number was estimated to 

be 0.036 (where the local external velocity of the cylinder was assumed to be twice that 

of the freestream), a VR of 0.25 and L approximately 7. Although this dataset is beyond 

the range of the contour plot shown in Fig. 10, it is anticipated that it would yield the 

formation of a highly stretched, streamwise-aligned hairpin vortex or stretched vortex 

ring. For a fully turbulent boundary layer however, the types of synthetic jet structures 

formed are expected to remain as those identified but the magnitude of VR, L and ReL at 

which these structures are produced is likely to shift. 

  

 

5. CONCLUSIONS 

An experimental investigation to obtain the qualitative near wall effect of synthetic jets 

in a laminar boundary layer has been undertaken for the purpose of identifying the types 

of vortical structures likely to have delayed separation on a 2D circular cylinder model 

described herein. Dye visualisation of synthetic jets in conjunction with liquid crystal 

visualisation along the wall was conducted for a range of actuator operating and 

freestream conditions. From this investigation, it has been found that 

• Three types of vortical structures have been identified from the interaction of a 

synthetic jet with a zero pressure gradient laminar boundary layer – hairpin vortices 

(with and without secondary longitudinal vortices), stretched vortex rings and 

distorted vortex rings. These structures differ from each other primarily in terms of 

vorticity strength and in the time they are resident in the near wall region. 

• The thermal footprints of the hairpin vortices and stretched vortex rings revealed a 

marked similarity with  the oil flow pattern generated on a 2D circular cylinder 
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model in terms of the wedge region and streamwise tracks, hence suggesting that 

either of these structures was responsible for the delayed separation on the cylinder. 

• Conditions were established for the formation of these structures in non-dimensional 

parameter space – hairpin vortices: 1<L<3.5, 0.1<VR<0.32 and 29<ReL<308; 

stretched vortex rings: 2.7<L<5.1, 0.2<VR<0.38 and 182<ReL<658. 

 
Work is currently being undertaken to obtain quantitative measurements for an 

in-depth analysis of the near wall effects of synthetic jets in a boundary layer. High 

frame rate PIV will be utilised in streamwise planes to provide real-time velocity profile 

and wall shear stress measurements. It is anticipated that the findings from these 

investigations will allow for a potential identification of the vortical structures effective 

for flow separation control.  
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Table 1. Experimental parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 U∞ = 0.05m/s U∞ = 0.1m/s 

L ReL VR St ReL VR St ReL VR St ReL VR St 

0.8 16 0.08 

0.1 

33 0.16 

0.2 

16 0.04 

0.05 

33 0.08 

0.1 

1.1 29 0.11 58 0.22 29 0.05 58 0.11 

1.4 46 0.14 91 0.27 46 0.07 91 0.14 

1.9 89 0.19 179 0.38 89 0.09 179 0.19 

2.2 117 0.22 233 0.43 117 0.11 233 0.22 

2.7 182 0.27 365 0.54 182 0.14 365 0.27 

3.5 308 0.35 616 0.70 308 0.18 616 0.35 

4.1 410 0.41   410 0.20   

5.1 658 0.51   658 0.26   
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Figure 1. Schematic of a SJA 
  
Figure 2. Demonstration of flow separation control 

(Crook and Wood, 2001) 

  

  
  

  

      

Figure 5. (a) Modular construction of flat plate embedded with heat transfer sensing system 

and (b) plate in its complete form 

(a) (b) SJA 

Heater 

Aluminium sheet 

Polystyrene sheet + TLCs 

Figure 3. Schematic sketch of test section Figure 4. Stereoscopic viewing system for dye 

visualization (Zhang et al., 2003) 

U∞ 
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Figure 6. Undisturbed boundary layer velocity profiles along a streamwise centreline location at 

x/Do= -5 for (a) U∞ = 0.05m/s and (b) U∞ = 0.1m/s 

(a) (b) 
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Figure 7. Stereoscopic dye and surface liquid crystal images of a synthetic jet at (a) VR =0.14, 

ReL =46 & L=1.4, (b) VR =0.19, ReL =89 & L=1.9, (c) VR =0.27, ReL =182 & L=2.7 and (d) VR 

=0.51, ReL =658 & L=5.1 - St = 0.1 and d ≈ 4 for all cases
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Figure 9. Oil streaklines and corresponding flow topology of a streamwise vortex pair produced 

by a synthetic jet interacting with flow separation (Crook 2002) 

  

Figure 8.  Close - up view of synthetic jet formation and roll up for (a) hairpin vortices,  
(b) stretched vortex rings and (c) distorted vortex rings   

Flow   
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(a) 

Figure 10. (a) VR-L and (b) ReL-VR parameter space of the different vortical structures seen as 

a result of the interaction between a synthetic jet and a boundary layer 

(b) 
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