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ABSTRACT

The thesis develops a number of algorithms for the numerical sol-
ution of ordinary differential equations with applications to partial
differential equations. A general introduction is given; the existence
of a unique solution for first order initial value problems and well
known methods for analysing stability are described.

A family of one-step methods is developed for first order ordinary
differential equations. The methods are extrapolated and analysed for
use in PECE mode and their theoretical properties, computer implementation
and numerical behaviour, are discussed.

LO—stable methods are developed for second order parabolic partial
differential equations in one space dimension; second and third order
accuracy 1is achieved by a splitting technique in two space dimensions.

A number of two-time level difference schemes are developed for first
order hyperbolic partial differential equations and the schemes are ana-
lysed for Ao—stability and Lo-stability. The schemes are seen to have
the advantage that the oscillations which are present with Crank-Nicolson
type schemes, do not arise.

A family of two-step methods is developed for second order periodic
initial value problems. The methods are analysed, their error constants
and periodicity intervals are calculated. A family of numerical methods
is developed for the solution of fourth order parabolic partial differ-
ential equations with constant coefficients and variable coefficients and
their stability analyses are discussed.

The algorithms developed are tested on a variety of problems from

the literature.
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"Occupying a unique place along the border between applied-
mathematics and the concrete world of industry, the numerical
solution of differential equations, probably more than any other
branch of numerical analysis, is in a constant state of unrest
and evolution. Being so widely and variously applied in the real
world, its techniques are relentlessly put to the ruthless test of
practical success and usefulness. Nor does it evolve solely through
the cross influences of the practical necessities of engineering;
unusual impetus is also given to this field by the outstanding
advances in computer technology, which is gathering now to min-
iaturize hardware to lower the cost of the equipment, the arith-
metic, the logic, the storage, and the output that is made more
comprehensively grasped by directly presenting it to that most re-
markable of the human senses-vision, through computer graphics,
shifting thereby the engineer's or programmer's priorities in se-

lecting the most appropriate solution algorithm'.

Isaac Fried, 1979.
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CHAPTER 1

INTRODUCTION

Consider the first-order initial value problem

(1.1) y' = f(x,y), y(a) =n.

The following theorem outlined in Lambert (1973), with proof
contained in Henrici (1962), states conditions on f(x,y) which

guarantee the existence of a unique solution of the initial value

problem (1.1).

Theorem 1.1

Let £f(x,y) be defined and continuous for all points (x,y)
in the region D defined by a<xs<b, —®o<y<w, a and b
finite, and let there exist a constant L such that, for every

X,y,y* such that (x,y) and (x,y*) are both in D,
(1.2) [£(x,y) - £G,y%)| < L | y=y* | .

Then, if n 1is any given number, there existsa unique solution y(x)
of the initial value problem (1.1), where y(x) 1is continuous and
differentiable for all (x,y) 1in D.

The requirement (1.2) is known as a Lipschitz condition, and the
constant L as a Lipschitz constant. This condition may be thought
of as being intermediate between differentiability and continuity, in

the sense that

f(x,y) continuously differentiable with respect to y for all
(x,y) 1in D
—> f(x,y) satisfies a Lipschitz condition with respect to y for all
(x,y) in D
= f(x,y) continuous with respect to y for all (x,y) in D.
In particular, if f(x,y) possesses a continuous derivative with respect
to y for all (x,y) in D, then, by the mean value theorem,

3f (x,y)

f(x,y) - f(X,y*) = dy

(y_y*) ’
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where y 1is a point in the interior of the interval whose end-
points are y and y*, and (x,y) and (x,y*) are both in D.

Clearly, (1.2) is then satisfied if L 1is chosen to be

(].3) L = sup I af(x,y) I
(x,y)eD dy

In many areas such as control theory, chemical kinetics and
biology, the dynamic behaviour is modelled, not with a single
differential equation, but with a system of m simultaneous first-
order equations in m dependant variables yl,' Yoser-¥o If each
of these variables satisfies a given condition at the same value a of x

then the initial value problem for a first-order system may be written as

' = =
(]'4) yl fl(x,y]ayz,--°sym) 3 yl (a) n] b4
v _ =
Y2 fz(x’y]’?Z’...’ym) s yz(az nz ’
: ' !
| | |
! '
1 _ -
ym fm(X’y] ’yzs oo ’ym) 5 ym(a) nm
Introducing the vector notation
T T T
y = (Y],yz,---,ym) , f = (fl,fz,---,fm) = f(x,y) , n = (nl,nz,.-.,nm) ,
T denoting transpose, the initial-value problem (1.4) may be written
as
(1.5) y'= £(x,y) , y@) =n .

Theorem 1.1 readily generalises to give necessary conditions for the
existence of a unique solution to (1.5); all that is required is that
the region D now be defined by a<x <b , =- =« yi <% i=1,2,...,n,

and (1.2) be replaced by the condition

(1.6) £Gx,y) - £x,9%) || s L ||y - ¢* ||,

where (x,y) and (x,y%) are in D, and ||.|| denotes a vector norm.
For the properties of vector and matrix norms see for example, Mitchell
and Griffiths (1980). 1In the case when each of the fi(x,y],yz,...,ym) ,

i=1,2,...,m, possesses a continuous derivative with respect to each of
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the yj, j=1,2,...,m, then

(1.7) sup

L= (x,v)eD ||a§/82||

may be chosen analogously to (1.3), where 03f/3y is the Jacobian of
f with respect to vy - that is, the m x m matrix whose 1,jth
element is Bfi (x,yl,yz,..,,ym/ayj, and ||.|| denotes a matrix
norm subordinate to the vector norm employed in (1.6).

The first order system (1.5), namely X',= E(X{Z)’ where y

and f are m—-dimensional vectors, 1s said to be linear if

f(x,y) = AX)Yy + ¢ (%),

where A(x) 1s an m X m matrix and ¢(x) an m-dimensional vector;
if, in addition, A(x) = A, a constant matrix, the system is said to be
linear with constant coefficients. To find the general solution of the

system
(1.8) y' = Ay + ¢(x) ,
let y(x) be the general solution of the corresponding homogeneous system-
(1.9) y' = Ay .
If Y(x) 1is any particular solution of (1.8), then
y(x) = §(x) + ¥(x)

is the general solution of (1.8). A set of solutions zk(x), k=1,2,...,m,

of (1.9) is said to be linearly independent if

m

} ay (x) =0,
k=1 k=k

implies a = 0, k=1,2,...,m. The general solution of (1.9) may be

written as a linear combination of the members of a set of m linearly

independent solutions -Zka) , k=1,2,...,m. It can easily be seen
that
(1.10) y(x) = exp(A %) ¢ >

where ck is an m-dimensional vector, is a solutiom of (1.9) if
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PE

that is if Ao is an eigenvalue of A and S is the corresponding
eigenvector. Considering only the case where A possesses m distinct
complex eigenvalues Ak. k =1,2,...,m, the corresponding eigenvectors
¢ k=1,2,...,m, are then linearly independent (Mitchell and Griffiths
(1980), Chapter 1), and it follows that (1.10) forms a set of linearly

independent solutions of (1.9), whose general solution is of the form

m
z N exp()\ x)c y
k=1 k k "=k
where the Nk’ k =1,2,...,m are arbitrary constants. The general

solution of (1.8) 1is then

m
(1.11) v (x) =k§1 N exp(A x)c, + ¥(x)

The solution of the initial value problem

(1.12) y' = Ay + ¢(x) , y(a) =n

may now be found under the assumption that A has m distincit eigen-
values, and that the particular solution Y¥(x) of (1.8) is known. By
(1.11), the general solution of (1.8) satisfies the initial conditions

given in (1.12) if

m
(1.13) n - ¥() = ¥ N, exp()\ka)gk .
k=1

Since the vectors Cy k=1,2,...,m, form a basis of the m-dimensional
vector space (Mitchell and Griffiths (1980), Chapter 1), n - ¥(a) may be

expressed uniquely in the form

m
(1.14) n - ¥(a) = Z nC -
k=1
On comparing (1.13) with (1.14), it is seen that (1.11) becomes a solution

of (1.12) by choosing n = Nk exp(—Aka). The solution of (1.12) is thus

B

y(x) = Nk exp{(x-a))\k}gk + ¥(x)

k

I~

]

In Chapter 2 a family of one-step multiderivative methods based on
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Padé approximants to the matrix exponential function is developed. The
methods are extrapolated and analysed for use in PECE mode. Error
constants, stability intervals and stability regions are calculated and
the combinations compared with well known linear-multistep combinations
and combinations using high accuracy Newton-Cotes quadrature formulas
as correctors. A practical problem in applied chemistry is modelled
mathematically and one of the fourth order methods developed is used to
find the numerical solution. For the stability analyses of the methods,
the definition of A-stability due to Dahlquist (1963) is used. Dahlquist

associated a stability region with a multistep formula and introduced the

concept of A-stability. These definitions are now quoted for completeness.

Definition 1.1

The stability region R associated with a multistep formula is

defined as the set

R = {hX : the formula applied to y' = Ay, y(xo) =Y » with
constant step size h > 0, produces a sequence {yn}

satisfying v, 0 as n - =},

Definition 1.2

A formula is A-stable if the stability region associated with that
formula contains the open left half-plane.
Dahlquist proved that an A-stable linear multistep formula must be
implicit, that its maximum order is two, and , of those of second order,
the one with the smallest truncation error coefficients is the trapezoidal
rule.
Padé approximants to the exponential function (Padé (1892)), which are
used extensively in the thesis are now defined.
Let f () be analytic in a region of the complex plane containing the
origin % = 0. A Padé approximation (Graves-Morris (1973)) R (2) to

m,k
the function f(Z) 1is defined by



(1.15) P. (2)

RBk® = @

where Pk(Z) and Qm(Z) are polynomials in #Z of degrees k and m
respectively with leading coefficients unity. For each pair of non-
negative integers m and Kk, Pk(Z) and Qm(Z) are those polynomials
for which the Taylor series expansion of Rm,k(Z) about the origin
agrees with the Taylor series expansion of f(2) for as many terms as
possible. Since the ratio (1.15) contains essentially m+k+1 unknown

coefficients, the requirement that

m+k+1

(1.16) Q (8) £()-P, () = 0(|2[" ) , || >0

gives rise to m+k+l linear equations for these coefficients. The
Padé Table is an infinite two-dimensional array of Padé approximations
to the given function £f(Z), where Rm’k(Z) occupies the intersection
of the mth row and kth column.

For the function f(2) = exp(2), Varga (1962), the entries in the

Padé Table are given explicitly by

m . .
- (mtk-j) !m! J
P (® ‘jZO @ 13 @t B
and
5 - E (m+k=3) k! (=]
Q&) AR CEONEIICE N
and 1if

P, (Z)
exp (Z) = 6;(27— + I%i(kz') ’

then the remainder R; (2) 1s given by

S K
+k+1
(_l)k+lz(m )

(m+k)! Qm(Z) 0

R* (2) = exp (2(1-u))u* (1-u)"du

m, k

The first twenty four entries of the Padé Table for f(2) = exp(Z) are

given in Appendix I.

Some properties of Padé approximants are given by Lambert (1973) as

follows:



(7)

"Let Rm 1((Z) be the (m.k) Padé approximant to exp(-2), then
Pm,k(z) is
(1) A-acceptable if m = k

(ii) A(O)-acceptable if m > k

(111) L-acceptable if m = k+l or m = k+2"

The region of acceptability of Rm k(Z) is that area of the complex
b4
plane within which the approximation R.m k(Z) satisfies IR k(Z)|< 1.
? m,

In Chapters 3 and 4 several time discretizations are considered for

the linear time-—dependent partial differential equation

(1.17) ou
Y Du + £

where D 1s a differential operator 1nvolving only space-derivations,
both D and f are independent of time t, and initial and boundary
conditions are specified. A space-discretization and a finite-difference

approximation may be used to reduce the problem (1.17) to the solution of

a system of ordinary differential equations,

(1.18) E_H_=Ag+§ . t >0
dt
(1.19) U(0) = g

where A 1is a square matrix, the vector s 1is the vector of frozen
boundary values and the vector U 1is the computed solution of (1.17) for

t > 0. The solution of the system of differential equations (1.18) subject
to the specified initial conditions (1.19) is given by

(1.20) Ut) =-A"'s + exp(tA) (g + A 's)

which may be written in step-wise fashion as
- -1
(1.21) U(t+) =-A 's + exp(2A) (U(K) + A 's)

where & 1s the time step.
The relationship between exp(2) and the matrix exponential function

exp(2A) now follows in an obvious way. Formally the variable 2% 1is

replaced by the matrix A in (1.15), such that



(o/

exp(24) £ {Q (W)} | (P, (1A)} = R (2A)

S

is the (m,k) Padé approximation of exp(fA). The relationship between
certain well-known numerical methods and the matrix Padé approximations
may be shown, for example, by approximating the matrix exponential
exp(2A) of equation (1.21) by the entry Rl’](RA) of the Padé

Table to give

1 1

(1.22) U(t+2) =-(I—=%£A)— (I+%£A)(g(t)—A-]§)+A_ s,

which, in implicit form, 1is
2 L
(1.23) (I- EA)g(tﬂa) = (I+§A)I_J(t) + s .

Equation (1.23) defines the Crank-Nicolson method applied to equation
(1.18) if A 1is a tridiagonal matrix with the entry -2 on the diagonal
and 1 on the super—-and sub-diagonals. In a similar manner it can be

shown that (2A) and R O(ILA) approximations generate respectively

RO,l 1,

the well known explicit and fully implicit methods for second order para-
bolic partial differential equations, see for example, Lawson and Morris
(1978) and Smith and Twizell (1982). Eowever, it is shown in Lawson and
Morris (1978), that the (1,1) Padé approximant, (the Crank-Nicolson
method) is an A-stable method and is less than satisfactory when a time
discretization is used with time step which is too.large relative to the
spatial discretization.

In Chapter 3 a family of methods is developed for second order para-
bolic partial differential equatiomns, which do not suffer from this
feature. Second and third order accuracy is achieved in two space di-
mensions by a splitting technique. The methods are tested on two problems
from the literature. The behaviours of the methods are also shown
graphically. Stability of the methods is analysed by two well known
methods; the von Neumann method and the Matrix method, which are now
mentioned briefly. For full details, see for example, Smith (1978) and

Mitchell and Griffiths (1980).

The von Neumann Method, developed by J. von Neumann and first discussed
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in detail by O'Brien et al (1951), provides a simple necessary con-

dition for numerical stability, and essentially depends on the uniform
boundedness of the Fourier coefficients of the solution of the differ-
ence equation. It is assumed that there exist harmonic decompositions

of the grid functions Uk at the initial time level and writes

Uk = § Aj eXp(iBij) R

where 1 = V-1 , the frequencies Bj are, in general use, arbitrary,

and a uniform grid is used. It is only necessary to consider the single
term exp(iBx) where B 1is any real number and to use the superposition
principle for linear problems. To investigate the growth of the grid
functions as t 1increases for any value of B8, it is necessary to find
a solution of the difference equation which reduce to exp(iBfx) when

t = 0. Such a solution 1s
exp(at) exp(iBx)

where o = a(B) 1is, in general, complex. The original grid function

exp(iBx) will not grow with time if
(1.23) lexp(al)| < 1

where £ 1is the increment in t. This is the von Neumann necessary
criterion for stability; this technique of analysing stability is

called the von Neumann Method. The following points concerning the von

Neumann method are worth mentioning:

(1) The method only applies rigorously if the coefficients of
the linear difference equation are constant; though it 1is
conventional to apply it locally when the coefficients are
not constant.

(i1) For two level difference schemes with one dependent variable
and any number of independent variables the von Neumann
condition is sufficient as well as necessary for stability,

otherwise the condition is only necessary.
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(ii1) Boundary conditions are neglected in the von Neumann
analysis and hence, in theory, it only applies to pure
initial value problems with periodic initial data.

It is noted that stability of a difference scheme is also related

to the propagation of rounding errors which occur as a result of nu-

merical calculations. Let
(1.24) Z(x,t) = U(x,t) - U(x,t)

be the difference between the theoretical and numerical solutions of
the difference equations. Since the error Z(x,t) satisfies the
original difference equation, the von Neumann analysis above may be
applied using Z(x,t) in place of U(x,t). Thus the stability con-
dition (1723) ensures that the rounding errors introduced will not
grow as the numerical solution is advanced with time.

The Matrix Method, unlike the von Neumann method, is applicable to

initial-boundary value problems. A necessary and sufficient condition for

stability, when the eigenvalues AS of A in (1.18) are distinct , is

(1.25) max lk

I<sg -1

ol
where Mh =1 and h 1is the space discretization. This stability
condition is identical to that obtained by the von Neumann method al-
though their respective motivations are different. In general, the two
methods produce similar stability requirements, except possibly for small
differences, in most problems; see for example, Morton (1980).

In Chapter 4 a grid with step size h is superimposed on the space

variable x 1in the first order linear hyperbolic partial differential

equation

The space derivative 1is approximated by central difference, lower order
backward difference, and higher order backward difference replacements,

and the resulting linear systems of first order ordinary differential
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equations are solved employing Padé approximants to the exponential matrix
function.

A number of difference schemes for solving the first order hyperbolic
equation are thus developed and each is extrapolated to give higher order
accuracy. The schemes are tested on a number of problems from the
literature.

In Chapter 5 the second order periodic initial value problem
y" = f(x,y) 1s considered. Recently there has been considerable interest
in the approximate solution of second order initial value problem, for the
cases where it is known in advance that the required solution is periodic.
The well-known class of Stdrmer—Cowell 1 .thods with step number greater
than two, give numerical solutions which do not stay on the circular orbit

but spiral inwards. This phenomenon is known as orbital instability. So

Stormer—Cowell methods are often unsuitable for the integration of such
problems. In Chapter 5 a family of twostep numerical methods is de-
veloped. The methods are analysed, and their periodicity intervals and
intervals of absolute stability are calculated. The methods are also used
in PECE mode and are tested on four problems from the literature.

In Chapter 6 a number of schemes are developed for fourth order para-
bolic partial differential equations in one and two space dimensions. The
methods are analysed for stability and are tested on problems with con-
stant coefficients, and variable coefficients in one and two space di-
mensions.

Most of the numerical results contained in this thesis were computed
on a CDC 7600 computer. Unless otherwise stated, single precision
arithmetic was used for the calculationms.

Parts of the contents of Chapter 2, 4 have been published re-

spectively in Twizell and Khaliq (1981) and Khaliq and Twizell (1982).
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CHAPTER 2

ONE - STEP METHODS FOR FIRST ORDER
ORDINARY DIFFERENTIAL EQUATIONS

2.1 Introduction

Consider a first order system of ordinary differential equations

of order N given by

(2.0) y'(x) = £(x,5) 5 YoEeE

for which all solutions are assumed to be bounded. 1In the particular

case of the linear initial value problem

(2.1) f&)=@@)+§,ﬂ%)=%,

where A 1is a square matrix of order N with constant coefficients,
this means that the real part of the eigenvalues of A must be non-
positive. Equations of the form (2.1), with B # 0 a constant vector,
arise in the numerical solution of first order hyperbolic partial
differential equations and second order parabolic partial differential
equations with inhomogenous boundary conditions. 1In such problems the
eigenvalues of the matrix A are real or complex depending upon the
finite difference approximation to the space derivative. Equations of
the form (2.1) with B = Q0 arise in the numerical solution of homo-
geneous second order parabolic partial differential equations when the
space derivative is replaced by the usual central difference approxi-
mation. In this case the matrix A has negative real eigenvalues and
was considered by Lawson and Morris (1978) and Gourlay and Morris (1980).
The methods to be considered in this chapter will be applied to the
heat equation and first order hyperbolic partial differential equation
in Chapters 3 and 4, respectively. Assuming that A 1s diagonalizable,
and following Lambert (1973), it is therefore appropriate to consider

the test equation (see also, for example, Hall and Watt (1976,p.34))
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y = Ay (A < 0) y(xo) =Y,

and to seek the solution in some interval XO = a < x £ b.

In the case of a single equation of the form (2.0), X takes the

value of 39f | estimated at each step.
9y

A family of one-step multiderivative methods based on Padé approxi-
mants to the exponentialafunction, will be developed in section 2.2.

One-step multiderivative methods are known to give high accuracy
when used to solve the problems for which higher derivatives are avail-
able, see, for example, Obrechkoff (1942), Ehle (1968), Thompson (1968),
Barton,Willers and Zahar (1971), Gear (1971), Lambert (1973,p.202),
Brown (1974, 1976) and others.

The first twenty four members of the family are given in Appendix II;
the family is seen to contain five well-known methods. 1In section 2.3
the methods will be analysed, and in section 2.4 a practical problem in
applied chemistry will be modelled. The methodswill be extrapolated to
achieve higher accuracy in section 2.5. In section 2.6 the methods will
be employed in appropriate predictor-corrector pairs. Stability regions,
for the case A complex, for certain predictor-corrector pairs, will be
given in section 2.7. The predictor-corrector combinations will be tested
on numerical examples in section 2.8 and finally conclusions will be drawn

in section 2.9.



(14)

2.2 Derivation of the formulas

Suppose the independent variable x 1is incremented using a constant
step size h = (b - a)/N where N 1is a positive integer, then the
solution of equation (2.1) will be computed at the points X, = ih
(i=1,2...,N).

It is easy to show that the solution y(x) satisfies the one-step

relation
A
( 2.3) y(x + h) = 'P y(x)

Using this relation, any numerical method will determine the solution

(n = 0,1,...,N-1) whose accuracy will depend on the approximation

n+l
Ah . . . . Ah
to e used in (2.3). Using the (m,k) Padé approximant to e of
the form
Ah ) m+k+1
e = Rm K (Ah) = Pk(Ah)/Qm(Ah) + 0(h ) ,

b

where Pk,Qm are polynomials of degree k,m, respectively, defined by

2 k

= Va . =
(2.4) Pk(e) 1 + pl,ke + pz’ke +..... + pk’ke ; Po(8©) 1
and

_ - 2 _ _1ym m, =
(2.5) Qm(e) =1 ql,me + qz,me oot (C1) qm’me ; Qp(8) =1,

1 cee >0

with  py o > Py p > P g > 0anday > dyp” > 9. m

depending on the chosen Padé approximant, equation (2.3) takes the form

- 21,2 —1\n m
(2.6) (1 = q, X+ q, A%h% +...+(-1) qm’mxmh )Y 41

b 9

or
- ' 290w+ (DT hi™
(2.7) Yn+] q],mhyn+] + qz’mh yn+] ( ) qm,m %1"'1
k (k)
_ ' 2" 4 + h
yn + p],khy + pz,kh yn k,k n .

Equation (2.7) is a one-step multiderivative formula which is explicit if
m =0 (Taylor's series of order k) and implicit if m #0; it 1is

assumed that y(x) is sufficiently often differentiable on  a,b
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The non-zero coefficients of (2.7) for the family of algorithms
yielded by the first twenty four entries of the Padé Table for the ex-
ponential function, are given in the Appendix II. It is seen that the
methods based on the (0,1), (1,1) and (3,3) Padé approximants are,
respectively, the Euler predictor, the Euler corrector or trapezoidal rule
and Milne's starting procedure (Milne (1949)); the methods based on the
(k,k) Padé approximants (k 2 1) are one-step Obrechkoff methods and
are given for k = 2,3,4 in, for example, Lambert (1973,p.47) and

Lambert and Mitchell ((1962): Table I).

2.3 Analyses of the methods

With the multiderivative formula (2.7) may be associated the linear

difference operator L defined by

m . . k . .
(2.8) Lly(x);h] = y(x+h) - y(x) + ) (-l)mqi mhly(l)(X+h) =) P khly(l)(X)-
i=1 ’ i=1 ©

Expanding y(x+h) and its derivatives as Taylor series about x, and

collecting terms, gives
(2.9)  LIy(03hl = CoyG) + Cihy' () +...+ 'y (@) +....

where the Ct are constants. The operator L and the associated multi-
derivative method (2.7) are of order s if,in (3.2), CHp =Cy = .... =C_ =0,

C ] # 0 ; the term CS in the principal part of the truncation error js
S

+1
known as the error constant. The error constants for the twenty four
methods to be considered, are contained in Table 2.1.

The multiderivative formula (2.7) is said to be consistent with the
differential equation if the order s 2 1 ; the twenty four methods

contained in Appendix II are clearly consistent.

Writing (2.7) in the form

y PG LR
2.10 -y = . hiy s -1yt i,(3)
@40 Yo T izl i Un -2 DR TP A
j=1
it is clear that the multiderivative methods are generated by the

characteristic polynomials
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(2.11) p(r) = r-1, o. ,(r) = p. , Y. () = (-1)j+1q. r
1,k 1,k j,m J,m

i1i=1,...,k 3 j=1,...,m). The polynomial equation p(r) = 0 has
only one zero, r = 1, and the twenty-four consistent multiderivative
methods ére therefore zero-stable and thus convergent.

The interval of absolute stability of equation (2.7), 1is determined'
by computing the interval of values of h = \h for which the zero of the

stability equation
(2.12) n(r,h) = 0

is less than unity in modulus, where

_ k . m _.
(2.13) 7m(r,h) = p(r) - z hloi k(r) - Z th. (r) ,
i=1 ’ j=1 e
LR TR <o
= (1 + jzl(-l) q T - (1 izlpi’kh )

Qm(h)r - Pk(h)

The intervals of absolute stability for the multiderivative methods
based on the first twenty four Padé approximants to the exponential
function, are contained in Table 2.1 (the figures containing a decimal
point have been truncated with two decimal places).

The formulas based on those (m,k) Padé approximants for which
m 2 k are seen to be unconditionally stable. This 1s verified by the

following theorem whose proof is based on the properties of the co-

ici . . 1 = 1,...,k ; ] = 1,"',m):
efficients pl,k’qj,m (1 , N

Theorem 1

The multiderivative method (2.7) is absolutely stable if and only if
m2 k for myk £ 4.
L4

Proof:

Assume m 2 k ; then the coefficients in the (m,k) Padé approxi-

mant satisfy 4q. 2 D. » 0 for all i=1,...,m (mk odd or even).
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Table 2.1: Stabiiity intervals and principal error terms of the
one-step multiderivative formulas.

Method Stability error

(Padé) interval constant
(0,1) T € (-2,0) C2 =%

(1,1) T € (-=,0) C3 = =Y
(1,0) h € (-»,0) C, = -1
(0,2) T € (-2,0) C3 = Y%

(:,2) h € (-6,0) Cy = =Y,
(2,2) h € (-=,0) Cs = Yo
(2,1) h € (-=,0) Cy = Yn
(2,0) h € (-=,0) C3 = Y%

(0,3) h € (~2.51,0) Cy = Yoy
(1,3) h € (-5.41,0) Cs = -Yagag
(2,3) h € (-11.84,0) Ce = Y200
(3,3) h € (-=,0) C7 = =*hoos00
(3,2) h € (-=,0) Ce = ~'h200
(3,1) T € (-=,0) Cs = -Yheo
(3,0) h € (-»,0) Cy = -5
(0,4) T € (-2.78,0) Cs = Y20
(1,4) h € (~5.43,0) Ce = -Y3600
(2,4) h € (~9.64,0) C7 = Yseo00
(3,4) h € (-19.15,0) Cs = -Yu11200
(4,4) h € (-=,0) Cq = 5401600
(4,3) h € (-=,0) Cg = “Au11200
(4,2) h € (-=,0) C7 = Yseo00
(4,1) h € (-=,0) Ce = Y3600
(4,0) h € (-=,0) Cs = Y20
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The requirement |r|<l 1leads to

(2.14) - - x

The left hand side implies the requirement

2 + (p]’k - q]’m)h + (p2 " + q2 m)ﬁz +...+ (pk

]

k+1 +
+ (1) AUty ol +.. .4 (—l)mqm mﬁm > 0

and, since qi,m 2 pi,k 20 for m2%k (m,k odd or even), Padé (1892),

this inequality is satisfied for h < 0. The right hand side of (2.14)

implies the requirement

- ~k

- K
. _ 2 _ (-
(Py o * qy b+ Py x T 9 P Fet (o - D) U '

b

Ek+1

k+1
-1 Ue+1,m

tooa- (—l)mqm’mﬁm <0
and this ihequality is also satisfied for h < O.

The multiderivative method given by (2.7) is thus absolutely stable
if m2k and m,k<4.

If m < k the method has only a finite interval of absolute stability
as illustrated, for example, by the (0,1) method which is the Euler
predictor formula. The hypothesis of the theorem is thus proved.

The methods based on the (k,k) Padé approximants, are optimal in
that they have the smallest truncation errors ; they are absolutely
stable. When used as correctors in PECE mode, however, they give smaller
intervals of absolute stability, when used with the (0,2%2) method as
predictor (£ = 1,...,k), than the methods with m < k. This will be
dealt with more fully in Section 2.6.

From Theorem | it is clear that one-step multiderivative methods
of the form (2.7), based on the (m,k) Padé approximants with m > k,
satisfy the definition of Arstability (Cryer (1973)). Ag-stability

corresponds to '"unconditional stability" for second order parabolic partial
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differential equations, when the eigenvalues of the discretization
matrix are real and negative. For example, using the (1,1) Padé
approximant in (2.7), yields the trapezoidal rule, which is Ayj-stable
when applied to the test equation (2.3); it becomes the Crank-
Nicholson method for second order parabolic partial differential
equations, which is known to be unconditionally stable (Lawsoh and
Morris (1978)).

The boundaries of stability regions for A complex, can also be
calculated from equation (2.12) by imposing |r| = 1, see for example,
Hall and Watt (1976,p.38). The stability regions of the methods based
on the (m,k) Padé approximants, for 43m=k are seen to contain the
left half complex plane, thus satisfying the requirement of A-stability
(Dahlquist (1963)). See also, Axelsson (1969), Ehle (1968). The
amplification symbols for the (m,k) Padé approximants, for m 2 k,
are shown in Figures 2.1-2.14. For the (m,k) Padé approximants with
m > k, the amplification symbol approaches zero either monotonically or
asymptotically by crossing the axis. For A-stable methods based on the

(k,k) Padé approximants, the amplification symbol is

R (B) = P(R) = B(h)
’ Q) p(-h)

where P(h) is defined in (2.4), h = Xh, and is such that

Rk k(ﬁ) -~ + 1 as Re (ﬁ) > - ©

The numerical methods of the form (2.7), abplied to problems with
rapidly decaying solutions, will thus not damp any oscillations. The
trapezoidal rule (the (1,1) Padé approximant), is well known to have
this property (Rosenbrock (1963)).

To overcome this difficulty a stronger stability property is defined

which has been variously termed L-stability (Ehle (1969), Lambert (1973,

g.237)), stiff A-stability (Axelsson (1969)), and strong A-stability
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(Chipman (1971), Axelsson (1972)). Following Ehle (1969), Lambert

(1973, p.236) has made the following definition of L-stability:

Definition: A one-step numerical method is said to be L-stable if

it is A-stable and, in addition, when applied to the scalar test
equation y' = Ay , X a complex constant with Re A < 0 , it yields
Yo+l = R(hk)yn s where‘ IR(hA) | > 0 as Re(hr) > - = .

One-step multiderivative methods of the form (2.7) yielded by
employing the (m,k) Padé approximants, for m > k, are thus
L-stable; this is also clear from the corresponding Figures. It is
noted that the amplification symbols for L-stable methods approach
zZero rapidly\as soon as the degree of m increases compared to that
of k, and hence oscillations will be damped quickly by employing
higher order Padé approximants for which m > k. The behaviour of
higher order (m,0) Padé approximants and corresponding (m,k) Padé
approximants, for m > k, will be discussed in Chapter 3 for parabolic

partial differential equations in which discontinuities exist between

initial and boundary values.
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2.4 Mathematical modelling of a Chemistry problem

Consider the sequence of first order reactions, described by the

chain reaction below:

CN CONH2 COOH
Me, Me Me Me Me Me
E— —_—
T
1 %
Me Me Me
o i)
3 SO3H H
Me Me Me Me Me Me
<— S
r T
5 4
0.H
50,
Me Me Me

It is the reaction of Mesitonitrite in Sulphuric Acid. A discussion of
the above reaction can be found in Gore et al (1983). The research for
this problem was carried out at Brunel University by J. Al 'Kabi,

E. F. Saad, D. N. Waters and G. F. Moxon, under Professor P. H. Gore,
Department of Applied Chemistry.

The chemical reactions have been expressed in the form of the

following initial value problem:

dy1

R : 0) = 1

at Yy 0 y,(0)

dy2

— = -— : O =O
ac Ty, T rY, 50 ¥,(0)

dy3

2 = - . 0) = 0
3 T To¥y T Ty¥y 3 Y500
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dy4
at 373 T T, y,(0) =0
dy5
dc ~ TaYs T Ts¥s 3 ¥5(0) =0
dy6
dt " Ty 3 Y¥,(0) =0
This is a linear system which can also be written as
(2.15) dy T
EE'= Az 3 .X(O) = [l,0,0,0,0,0J
where the matrix A is of order 6 and is given by

- -
1
r, -r, 0
A = o T3
r, T,
0 7
r 0
L >
with r, = 0.0006605, 'r2 = 0.0009185, r3 = 0.01694, r4 = 1818.0
ry = 0.0004834.
The theoretical solution of the problem is
-rqt
y]_(t) = e 1 Iy
-~ -rst
y () = "1 T rz] ,
r,-r. |
1 -—
? f— e_r].t e rzt
y (t) =rrTr - — + — —
3 1 2 (r2 rl)(r3 rl) (rl rz)(r3 _2)
. e—r3t ]
(r 775 (ry7ry)
-rot
—I‘lt e
ya(t) =TT, e

Er2~r1)(r3—rl)(ra-rl)%(rl-rz)(r3‘r2)(ra‘rz)
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-rat
. e 3 + e—r4t
(r;r ) (rymr)(x, mry) (e ) (rymr, ) (ry=r))
y.(t) = r.r.r.r e—rlt
g FEY ) T DG, G
) (Fy7r) (7 ) (rgmry )
N L2t
(r)7ry) (rymr ) (x =r ) (r-r))
. LT3t
(ry7ry) (r,mr3) (r,mr ) (rmry)
+ e_rAt
(ry7r,) @y ) (xgmr ) (rgor,
+ e T5F
(ry7rg) (xymrg) (ryr ) (r,-ry)
_ _ -rit
y6(t) 1 L r,r,re e
(r,r) (yr ), mr ) (rgmry)
r.r.r v e-rzt
+ 1 345
(rl-rz;(r3—r2)(r4—r2)(r5—r2)
-r3t
+ r1r2r4r5 e
(r 1) (1) (T (rg7ry)
—r4t
+ r1r2r3r5 e
(rg-r,) (r,=r,) (ryr ) (r57T,
~r5t
+ r1r2r3r4 e ,

(r 1) (r,7rg) (ry=rg) (r,7T5)

and is such that the components of y(t) add up to unity at each time step.
The eigenvalues of A in (2.15) are widely spread with maximum modu-
lus eigenvalue 1818.0 and minimum modulus eigenvalue zero, thus making
the system highly stiff. The definition of a stiff system (Lambert (1973,
p.231-232)) in which the stiffness ratio is a measure of computational
effort is not valid for this type of problem where the minimum modulus

. . 1" he
eigenvalue is zero. However, 1n thils case statements such as "Stiffness
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occurs when stability rather than accuracy dictates the choice of step

length", are preferred (Lambert (1980,p.21).

To compute the solution of the system (2.15), it can easily be shown

that (2.15) satisfies the equation (2.3), which can be written as

(2.16) y(t+2) = exp (RA)y(t) ,

where ¢ is aconvenlent time step.

The fourth order, A-stable method based on the (2,2) Padé approxi-

mant (Appendix II) may be used to determine the solution from (2.16). The

numerical results were calculated using single precision arithmetic and the

sum of the six components of y(t), t = 0(500)5000, was found to be unity

to ten decimal places. The numerical results are given in the Table 2.2.



Table 2.2:

Computed solution of the modelled problem at

time t = 0(500)5000.

Time Y Y, Yq Yy, Vs Yo | Sum
500 .1875(-1) .2266(-1) .1661(-2) .0867(-7) .3459(-2) 4741 (-3) .0000
1000 .1660(-1) .0070(-1) .6177(-2) .5073(-=7) .4105(-1) .5476(-2) .0000
1500 .7130(-1) .0500(-1) .6656 (-2) .5520(=7) .3566(-1) .1380(-2) .0000
2000 .6687 (1) .7537(-1) .5174(-2) L4139(-7) .0525(-1) .3734(-1) .0000
2500 .9182(-1) .3339(-1) .2936(-2) .2054(-7) .4532(-1) .1654(-1) .0000
3000 .3787(-1) .9016(-1) 1.0581(-2) .8598(-8) .5924(11) .0215(-1) .0000
3500 .9092(-2) .5083(-1) L4169(-3) .8428(-8) .5308(-1) .8858(-1) .0000
4000 .1222(-2) L1736(-1) .5624(-3) .1148(-8) .3313(-1) L7172(-1) .0000
4500 L1191 (-2) .8001 (-2) .0406(-3) .6968(-8) .0482(-1) .4894(-1) 1.0000
5€00 .6793(-2) .8259(-2) .8276(-3) .5666(-8) .7237(-1) .1875(-1) .0000

(52)
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2.5 Extrapolation of the methods

Applying equation (2.3) over two single intervals h and re-

. 2Xh
placing e by, for example, its (1,1) Padé approximant, gives

-1

1 BT i
(2.17)  y(x+2h) (1+2xh)(1.§xh) (lfzkh)(lﬁfkh) v (%)

(1+2Kh+2k2h2+%k3h3+A“h”+§A5h5)y(x)+O(h6)

y(X)+2hy'(X)+2h2y"(x)+%h3Y"'(X)+h“y(iv)(X)+§h5y(V)(x)+O(h6)'

Alternatively, if equation (2.3) is written over a double interval
2h,y(x+2h) 1is given by

(1+Ah) (1-Ah) 'y (x0)

(2.18) y (x+2h)

i

(1+22h+2X2h2+22303+ 220 %n+22505) v (x) +0 (h®)

v (x)+2hy " (x)+2h2y" (x)+2h3y" " (x)+2h%y V) (x)+205y V) (x)+0 (1) .
The Maclaurin expansion of y(x+2h) about x produces

(2.19)  y+2h) = y()+2hy' ()+2h2y" GO +shdy" Go+hty (V) Gy +enSy V) ()

. b ey (VD) 8 7, id) o 2

AR SO VE= 715ty T (0 gty 00

315
+0(hl0)y,

and defining the values of y(x+2h) yielded by (2.17) and (2.18) to be
( ) (2)

Y 4o 2D d Y 40 respectively, it is seen that neither is 0(h3) accurate.

®

(B) _ 4 (1) _1.(2)
Yh+2 3yn+2 3yn+2

However, defining vy

gives
(2.200 v = y(x)+2ny’ (x)+2n2y" )+2ny" (o) +2hty V) oy +0 ().
) n+2 3 3
(E) defined b (x+2h) - y(E) has principal part
The error in Y40 efine vy vy n+2’
Eg = l_. The second order method based on the (1,1) Padé approximant,
10

has been extrapolated to give fourth order accuracy (see also Lindberg (1971))

by the Richardson technique.
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Repeating the process for the (3,3) Padé method (Milne's method

(1949)) 1leads to

(1) _ ]

= 1 +— —2A2h2+ L 4333 2 2
Yoep = [+ Ah+ 5 A *h2+ 120* h3) (1~ xmﬁx h?- ]20>\3h3) 1%y (x)
= YGO*2hy' ()+202y" () +3hdy" Go+2nty (1Y) o y+renSy ) )
h6 (vi) 7. (vil) 23 , g (viii) 209 (1x
VA (x)+ 2400h y )+ 3g5eh Y (x)+ TZZBBﬁhgy ) (x)
and
(2) _ 2 1 2 -
Yoop = I+ h+§>\2h2+ﬁx3h3)(1->\h+g>\2h2—]—]5—)\3h3) Ly x)
= yG)+2hy ' () +2h2y" () +3h3y" G 2ty V) oye nsy ) o
6y (vi) 7y (vii) 8 (v111) 14 g. (ix)
45h G+ 75h )+ E§h y S A A LU CRR
Defining (+;, in this case, by
SE) _ Bh (1) 1 (2)
(2.21) 90,57 §3Vne2 T3 Vne0
gives
E b, 3 4 i
Toby = ¥(x)+2hy" () +2h2y" () +4hdy G +2nty BV oy 4 sy ()
6y (vi) 8 . 7. (vii) By (viii) 599 g. (ix) 10
+ 7508 Y 0+ 707y U ooty G+ Zsgson Y HOMET,

which, on comparison with equation (2.17), is seen to be eighth order

]

YWEVE S It 1s clear that as m and k 1increase,

accurate with Eq =
the algebraic manipulation involved in the extrapolation procedure
becomes tedious and difficult.

In the cases of the methods based on the (1,1) and (3,3) Padé
approximants, the extrapolation procedure has produced two extra orders of
accuracy. This phenomenon is a useful feature of multiderivative methods
based on (m,m) Padé approximants, which is not evident in methods based
on (m,k) Padé approximants (m # k) for which only a single extra
order of accuracy is produced.

(E) () (2)

The extrapolating formulas connecting Yoe® Yoe0 and Y 49

satisfy one of the relations
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@.22) v ) = @D -y @™ -y v o™
when m # k, or
@2 35 = @ v/ @ - D 0™

when m = k. The extrapolation formulas for the twenty four multi-
derivative methods outlined in Section 2.2 together with the error

constantsofthe principal parts of their local truncation errors, de-

fined for each method by

(2.24) v (x+2h) - y(E)

n+2 °

are contained in Table 2.3.

(E)

It 1s easy to see that Yoso may also be written in the form

2
Pk(kh) Pk(ZAh)

(E) I m+k _ f oM™y L p 4k

(2.25) y [0 =———P  — am— A ) 5 m
n+2 Ik qQ (Ah) Q, (2Ah)

or )
(E) 1 om T Pn(240) 2m+3

(2.26) y = — |2 - y + 0(h ) 3 m = k.
n+2 22m_1 Pm(—xh) Pm(—th) n

Each of (2.23) and (2.24) is of the approximate form

(2.27) (E) _ =
yn+2 - Sm,k(h)yn

and clearly the interval of absolute stability for each multiderivative

method is the range of values of h = Ah for which

s .| < 1.

m,k
The intervals of absolute stability for equations (2.22) and (2.23), the
extrapolated forms of equation (2.7), are thus determined by finding the

range of values of h for which

_ — mtk o 20 (oF o= 2
2.28)  (-2™Fre (1% (20 <2 IR, ()17, (2h) - 2 (ZWIQ(B)]
<@ -1ro_m1%e (2h)

when m # k, oOr
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(2.29) (—22m+1)[Pm(—E)]2P (-2h) <22m[P (E)]ZP (-2h)-P (2h)[P (-E)]2
! m m ™ m m

2m =12 -
(2 —1)[Pm(~h)] Pm(-Zh)

when m = k.

Thus, for example, the interval of absolute stability for the
extrapolated form of the method based on the (1,1) Padé approximant,

is the interval of values of h for which

(2.30) ~12 + 24h - 150% + 3h° < 12 - 9R% - 5B < 12 - 24k + 150%- 305

3

where fractions have been cleared. The left hand side of (2.30) 1is
satisfied for all h < 0 while the right hand side is satisfied only for
the interval h e (-12.92,0) , which is therefore the interval of
absolute stability.

Clearly, as m and k increase, the algebraic manipulation involved
in solving (2.28) or (2.29), becomes complicated. The interval of absolute
stability of the extrapolated form of the multiderivative method based on

the (3,3) Padé approximant, for example, is found by solving the in-

equality
— -2 -3 —4
(2.31) ~13608000 + 27216000h - 25174800h° + 14061600h - 5193720h
+1315440h° - 29925700 + 2664987 - 1840R° + 63h°
<13608000 - 2041200h° + 2041208% - 27783R° - 8775h’
~ -9
_11348° - 65h
- -2 -3 -4
<13608000 - 27216000h + 25174800h° - 14061600h” + 5193720h
5 -6 -7 -8 -9

~1315440h° + 229257h° - 26649h' + 1840h" - 63h° ,

where, again, fractions have been cleared. Both sides of (2.29) are
satisfied for all h < 0 and the interval of absclute stability is there-
fore h e (-=,0).

The intervals of absolute stability for the extrapolated forms of all
twenty four multiderivative methods derived in section 2.2, are also con-

tained in Table 2.3. It must be noted that, whilst extrapolation has
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improved accuracy, this has often been at the expense of a decreased
interval of absolute stability. This is particularly so with the (0,1)
and (1,1) Padé methods which are, of course, the Euler predictor
formula and the Euler corrector formula (the trapezoidal rule)
respectively. The extrapolated form of the (1,1) method does not
satisfy Theorem 1 which, therefore, does not hold for the extrapolation
formulas. However, it is seen from equation (2.25) that the
extrapolation of L-stable methods based on (m,k) Padé approximants with
m> k, satisfies the condition of L-stability. Thus, the extrapolation
of L-stable methods of the form (2.7) based on (2.25), is L-stable

since the degree of the denominator in R

m,k(z) is greater than the

degree of the numerator for m>k .

The amplification symbols for the extrapolated methods are also
shown in Figures 2.1-2.14. It is seen that the amplification symbols
of the extrapolated methods based on the (m,k) Padé approximants
for m>k, approach zero faster than those of the methods themselves,

thus damping oscillations more quickly.
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Table 2.3: The extrapolating algorithms,

Method Extrapolating - Stability error

(Padé) algorithm interval constant

(0,1) 2ym-y(2) h € (-1,0) E3 = 4

(1,1) (4y(1)-y(2))/3 h € (-12.92,0) Es = Ygq

(1,0) 2y(1)-y(2) h € (-=,0) E3 = %

(0,2) Gy -3y 3 f € (-2.57,0) Ey, = Y3

(1,2) (8y(1)-y(2))/7 h € (~6.47,0) Es = -%us

(2,2) (16y(1)-y(2))/15 h € (-=,0) E; = -Yia90
2,1) 8y -y )y /7 T € (-=,0) Es = -Y%us

(2,0) (4y(1)-y(2))/3 h € (-=,0) Ey =-Y

(0,3) (SY(I)“YH))N h € (-2.02,0) Es = %os

(1,3) (16y(1)-y(2))/15 h € (-6.20,0) Eg = ~Ysu0

(2,3) (32y(1)-y(2))/31 h € (-11.44,0) E7 = Ysu2s

(3,3) (64y(1)-y(2))/63 h € (-=,0). Ee = Y2s250
(3,2) Gay-y®y31 R € (-=,0 E7 = Ysuzs

(3,1) (l6y(1)'y(2))/15 h € (-=,0) Es = Ysug

(3,0) @y D=y /7 %€ (-=,0) Es = %os

0,4) ey -y 15 € (-3.23,0) Es = %35

(1,4) (32y(1)-y(2))/3l h € (-12.30,0) E7 = %7125
(2,4) (64y(1)-y(2))/63 h € (-9.62,0) Eg = =197%,9575
(3,4) (128y(1)-y(2))/127 h € (-7.98,0) Eq = 333%Ygg211025
(4,4) (256y(1)-y(2))/255 h € (-=,0) E11 = -Yiuu317250
4,3 sy P32 Fe =0 By = 933%Yg511025
(4,2) (64y(1)-y(2))/63 h € (-=,0) Eg = '07¥ 37575
(4,1) (32y(1)-y(2))/3l h € (-=,0) E7 = %7125
(4,0) (l6y(1)-y(2))/15 h € (-=,0) Eg = -Z3s
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Figure 2.1: Amplification symbols R

(3.2)

1,0(h) and Sl,O(h)'

1,1

-1.08

Figure 2.2: Amplification

(h) and S (h).

symbols R1 1 11
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Figure 2.4: Amplification symbols R h h
2,1(h) and 5,10
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Figure 2.5: Amplification symbols R2 Z(E) and S2 Z(H).
b >

Figure 2.6: Amrlification symbols R3,O(h) and S3,O(h)'
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Figure 2.7: Amplification symbols R, 1(E> and S L ().
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Figure 2.8: Amplification symbols

(h).

R. .(h) and S3,2

3,2
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-1.08

Figure 2.9: Amplification symbols R. _(h) and S (h).

3,3 3,3

(h) and S (h).

Figure 2.10: Amplification symbols R4,O 4,0
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Figure 2.11: Amplification symbols R4 1(E) and S4 l(h).
b 3

i
=

-1

Figure 2.12: Amplification symbols R4,2(K) and S&,Z(H)-
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Figure 2.13: Amplification symbols R
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Figure 2.14: Amplification symbols R4,4(H) and 84’4(E>.
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2.6 Use 1n PECE mode

In this section the (0,1), (0,2), (0,3), (0,4) explicit formulas
will be used as predictor formulas and all appropriate combinations of

these four formulas with the twenty implicit formulas of section 2.2 as

correctors, will be considered. Predictor-corrector methods for which

the order of the predictor exceeds that of the corrector will not be

constructed.

Using the general (0,k*) Padé approximant as predictor, the character-

istic polynomials (from(2.11)), are

E3 = - * =
(2.32) p*(r) r-1 Oi,k*(r) pi,k*

where the convention of associating an asterisk with the predictor has

been adopted. Using the (m,k) Padé approximant (m # 0) as corrector,

the characteristic polynomials (2.11) become

= -— = 1= = - j+1 1=
p(r) = r-1 ’ Gi,k(r) pl,k (1 1""9k) ’ Yj,m(r) ( 1) qJ mr (J 1,-..,1'[1).

’

This combination of predictor and corrector will be denoted by (0,k*); (m,k).

The stability polynomial for the (0,k*) ; (m,k) predictor—corrector

combination in PECE mode 1s therefore

k _. m _.
(2.33) WPECE(r,h) = p (r) —.Z hlci’k(r) - Z th. (r)

i=1 j=1 ¢
m . 41 k*_i

+ ) hJ(—l)J q. p*(r) - ) h'o*, k(r)
. J,m LA l,
J=] 1=1
L]

=r-1 - Jhpg

1=1
N ] P S

+ 7 (-D3q, b1+ . B

j=1 J.m i=1 O

and the interval of absolute stability is the range of values of h for

which the zero tr of

(2.34) Tpgcg (T = 0
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is less than unity in modulus.
Solving equation (2.34) for r gives

h —s+1 —5+2
2.35 =e - °
( ) T e Ts+1h + 0(h )

where s 1s the order of the predictor-corrector combination (0,k*) ; (m,k).

The term TS+1 1s the error constant of the predictor-corrector combination.

The intervals of absolute stability and the error constants are con-
tained in Tables 2.4, 2.5, 2.6 and 2.7 for the predictor-corrector com-
binations using, respectively, the (0,1), (0,2), (0,3), (0,4) Padé
methods as predictors. All possible combinations of these explicit pre-
dictors with the other twenty implicit methods used as correctors, for which
the order of the predictor does not exceed that of the corrector, are in-
cluded in the tables.

It is easy to see that for all four predictors, using the (1,4)
method as corrector, gives the greatest interval of absolute stability as
well as the smallest error modulus ; in the case of the (0,3) ; (1,3) com-
bination, one derivative fewer is required in the corrector than in the
(0,3) ;3 (1,4) combination for the same accuracy and the same interval of
absolute stability.

For all four (0,k) predictors, k = 1,2,3,4, 1it 1s seen that the
(0,k) 3 (k,0) predictor-corrector combination, gives the worst error in
PECE mode and the smallest interval of absolute stability, except that the
(0,2) ; (4,0) combination has a slightly smaller stability interval than
the (0,2) ; (2,0) coﬁbination. This latter combination does, however,
have a better principal error term and requires lower order derivatives.

The literature contains little on the size of stability intervals for
one-step multiderivative methods used in PECE mode. They have been verified
to be generally small, and examination of Tables 2.4, 2.5, 2.6 and 2.7,
shows surprisingly that the greatest stability intervals in PECE mode arise
with correctors based on (I,k) formulas which themselves have poor

stability intervals (Table 2.1). It can be deduced from Tables 2.4, 2.5,
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Table 2.4 : Intervals of absolute stability and principal error terms
of the correctors used with the (0,1) predictor.

Corrector Tntoress constant
(1,1) h € (-2,0) Ty = Y
(1,0) h € (-1,0) T3 = -1
(1,2) h € (-2,0) T3 = Y
(2,2) h € (-1.58,0) T3 = 1
(2,1) h € (-1.37,0) T3 = 1
(2,0) h € (-1,0) T3 = %4
(1,3) h € (-2.53,0) T3 = Y
(2,3) h € (-1.78,0) T3 = Y5
(3,3) h € (-1.54,0) Ty = I
(3,2) h € (~1.39,0) T3 = 3
(3,1) T € (-1.22,0) Ty = Y
(3,0) h € (-1.00,0) T3 = Y%
(1,4) T € (-2.61,0) Ty = Y
(2,4) h € (-2.02,0) T3 = Y%
(3,4) € (-1.67,0) T3 = Ny
(4,4) h € (-1.52,0) T3 = W,
(4,3) h € (-1.41,0) Ty = 24
(4,2) %€ (-1.29,0) Ty = ¥
(4,1) T € (-1.16,0) Ty = %
(4,0) h € (-1.00,0) T3 = %




(42)

Table 2.5: Intervals of absolute stability and principal error terms

of the correctors used with the (0,2) predictor.

comvector  Stability T e
(1,1) h € (-2.0) T3 = -},
(1,2) h € (-2.51,0) Ty = You
(2,2) T € (-2,0) Ty = Yo
(2,1) h € (-1.79,0) Ty = Y
(2,0) h € (-1.61,0) Ty = Y%
(1,3) h € (-2.51,0) Ty = Yhy
(2,3) € (-2.13,0) Ty = s
(3,3) h € (-1.94,0) Ty = Yo
(3,2) h € (-1.82,0) Ty = Ao
(3,1) h € (-1.67,0) Ty = Y5
(3,0) h € (-1.50,0) Ty =
(1,4) T € (-2.78,0) Ty = lhg
(2,4) T € (-2.26,0) T, = Yg
(3,4) T € (-2.05,0) Ty = Yy
(4,4) T € (-1.92,0) Ty = Y2
(4,3) T € (~1.84,0) Ty = %A1
(4,2) T € (~1.74,0) Ty = Y%
(4, 1) h € (-1.61,0) Ty = %As
(4,0) h € (-1.47,0) Ty = '%
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Table 2.6 : Intervals of absolute stability and principal error terms
of the correctors used with the (0,3) predictor.

Corrector ig:giii;y iig::ant
(1,2) h € (-2.38,0) T, = -2
(2,2) h € (-2.13,0) Ts = Yys
(2,1) h € (-2,0) T, = Yoy
(1,3) T € (-2.79,0) Ts = h20
(2,3) h € (-2.28,0) Ts = Yo
(3,3) h € (-2.09,0) Te = g
(3,2) h € (-1.97,0) Ts = Yo
(3,1) h € (-1.84,0) Ts = by
(3,0) T € (-1.59,0) Ty, = 4
(1,4) h € (-2.79,0) Ts = Y20
(2,4) h € (-2.40,0) Ts = Yh2
(3,4) h € (-2.19,0) Ts = 171050
(4,4) k € (-2.07,0) Ts = Yhe
(4,3) T € (~1.99,0) Ts = Y2
(4,2) h € (-1.92,0) Ts = lhg
(4,1) h € (-1.76,0) Ts = ‘Ap
(4,0) h € (-1.59,0) Ts = ‘A2
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Table 2.7 : 1Intervals of absolute stability and principal error terms
of the correctors used with the (0,4) predictor.

Corrector §tability error
interval constant
(2,2) h € (-2.54,0) Ts = Y20
(1,3) h € (-2.92,0) Ts = ~lhsgo
(2,3) T € (-2.65,0) Tg = lbus
(3,3) h € (-2.48,0) Tg = lbug
(3,2) h € (-2.37,0) Tg = ‘AuuQ
(3,1) h € (-2.21,0) Ts = -Yg0
(1,4) T € (-3.21,0) Te = Y20
(2,4) h € (-2.76,0) Te = K60
(3,4) h € (-2.57,0) Te = Yhso
(4,4) h € (-2.45,0) Tg = lhuo
4,3) T € (-2.37,0) Tg = 10
(4,2) T € (-2.27,0) Te = Ao
(4,1) h € (-2.15,0) Tg =
(4,0) h € (-2,0) Ts = Y20
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2.6 and 2.7, that as (m,k) correctors (m

l,...,k), with in-
creasing individual étability intervals, are used with a given pre-
dictor, the stability intervals in PECE mode decrease. It can also be
deduced that the absolutely stable implicit methods of section 2.2,
have inferior intervals of stability to those methods with finite sta-
bility intervals when used as correctors with any given (0,k) predictor.
Comparisons with the Milne-Simpson and Adams-Bashforth-Moulton com-
binations, show that the results of this section can give much bigger
stability intervals than multi-step methods with the same order of accuracy.
Comparisons with the results of Lawson and Ehle (1970), show that one-step
multiderivative methods can also give comparable accuracy to that of one-
step methods which use high accuracy Newton-Cotes quadrature formulas as
correctors, but can simultaneously give bigger stability intervals. The
use of a combination such as (0,4) ;3 (1,5) for instance, would give the
same overall accuracy as the method of Lawson and Ehle (1970), but would
have a stability interval bigger than h (-3.21,0), the stability
interval for the (0,4) ; (1,4) combination which has accuracy one power
fewer than the method of Lawson and Ehle (1970), the method of Lawson and

Ehle (1970) has stability interval h € (-2.07,0).

2.7 Stability Regions

Stability regions, for A complex, associated with the (0,k¥*) ; (m,k)

combinations in PECE mode will be plotted from equation (2.33), which 1is

= =1
(r,h) = -1 - h Pi k

i

[ s -n

TPLCE |

. K _
(—I)Jq. hJ 1 + z pi k*h ’
i=1 7’

+
I o~—8

. J,m
=1
where h = Ah is complex. The stability region for the (0,k*); (m,k)

combination in PECE mode is the region in the complex plan determined by

solving the stability equation (2.34), namely

h) = 0
TopcE T2 )
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for r. Writing h=u+ iv (1 =+/-1) and r = cosA + i sinA (so

that on the boundary of the region |r] = 1), equation (2.34) takes the
form
( 2.36) fk*,m,k(u’v) - cos A + i{gk*,m,k(u’v) - sinA} =0

where A,u,v are real ; f,g are real valued functions and clearly change
for each predictor-corrector combination. The stability region for the

(0,k*) ; (m,k) combination, is found by solving the non-linear system

(2.37) fk*,m,k(u’v) - cos A

]
o
-

I
o

gk*’m’k(u,v) - sin A

for each of a series of values of A in the interval 0 < A < 360°.

It was found in section 2.5 that, for k* = 1,2,3,4, the (0,k*); (k*,0)
combination gives the smallest interval of absolute stability when A < 0
is real, and that the (0,k*);(m,k) combination gives the biggest stability
interval when m =1 and k = 4.

The stability regions, for A complex, of these eight combinations

will now be determined

1. (a) the (0,1) 3 (1,0) combination :
here, r =1 + h + h? s

fl,l,O(u’V) = l+u+ul-v? ,

= + 2 ;
8,1,00Hv) =V ¥ 2uv

(b) the (0,1) ; (1,4) combination :

here, r =1 + h + 152 + -L-E3 + -l—ﬁ ’

2 15 120
1 1 2 1 b . 2.2,4
£y ,4 () = B (fv)s 75 (@33uvh)+ raut-butvis)
_ ! 20 _ o3 L SR W
gy 1,4V = v ruv g Guiv m ) + 3 ey = uv’)

The stability regions for these two combinations, in the second quarter-
plane, are shown in Figure 2.15. The stability region for the Euler
predictor-corrector combination in PECE mode is also shown in Figure 2.15.

The error constants of all these combinations are of the same order as in
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section 2.5.

2. (a) the (0,2) : (2,0) combination :
here, =1 =h? - _h"
ere r + h + 2h 4h ,
£ (W, v) = 1+ u+ 22 - v2) - L~ gu2,2 4 oo
2,2,0'% 2 A utve Ve o,

gz 2 O(u,v) =v + uv - U,3V + UV3 ;
s <&y

(b) the (0,2) ; (1,4) combination :

- 1- 1= 1 -
er T 2h + 6h + 120h ,

f2,l,4(u’v) = 1+u+%(u2-vz) +‘%(u3—3uv2) + T%B(u”—6u2v2+v“) R
gz’l’a(u,v) = v + uv + %{3u2v -v3) + -&6(u3v - uvd)
The stability regions for these two combinations are shown in Figure 2.16.
3. (a) the (0,3) ; (3,0) combination :
here, r =1+ h + %52 + %53 + -%EE“ + -§€E6 ,
f3’3,0(u,v) =1+ u + %{uz-vz) +-%(u3—3uv2) + -%E(u”-6uzvz+v“)

+.-§€(u6—15u“v2+15u2v“—v6) R
g3’3;0(u,v) = v + uv + %(3uzv—v3) + %(u3v—uv3)
+ -§§(3USV‘IOU3V3+3UV5) ;

(b) the (0,3) ; (1,4) combination :

- 1= 1- 1 -
here, r=1+h+§h2+€h3+ﬁh‘+ ,

1 1 1
f3’]’4(u,v) 1+u+ §(u2—v2) + E.(u3_3uvz) + 'zg(uu-6u2v2+v“) ’

1 1
g3,1,4(u,v) = v + uv + €(3u2v -v3) + 6(u3v - uv3)

The stability regions for these two combinations are shown in Figure 2.17.
The stability region for the fourth order Adams-Bashforth-Moulton com-
bination in PECE mode, which has the same order error constant as the

(0,3) ; (1,4) combination in section 2.5, is also shown in Figure 2.17.



(48)

4. (a) the (0,4) : (4,0) combination :
here, r =1+ h + 152 + 153 + =l—E” - Lhe - _Lgs
2 6 24 72h' 576h ’

- 1,2 1 1
f4,4’0(u,v) 1 + u + E(u -v2) + g(1.13_311\,2) + Z(u“-6uzv2+v‘*)

i
‘*‘(U6‘15u“V2+15u2v“-v6)

1
- 376(08‘28u6V2+70u”v“—28u2v6+v8)

g4’4,0(u,v) =Vt ouv +'%(3uzv—V3) + %(u3v—uv3)
1
-§€(3u5v ~ 10u3v3+3uv®)

-7§(u7v = 7udv3+7u3vS-uv7)

kb) the (0,4) ;3 (1,4) combination :
1 1

= 1-, 1= _ -
here r=1+h+ =h? + =h3 — _h4 4 - T5
’ 2 6t o Y b o

1 1. -
f4,1’4(u,v) =1 +u+ E{Uz‘vz) + g(u5‘3uV2)

1 |
+ -zz(u4—6uzvz+v“) + 736(u5—10u3vz+5uvu) .

1
g4,]’4(u,v) = v + uv + E(Buzv - v3d) + %{u3v - uv?d)

1 ety = 100203405
+ 120(Su v 10u4v°+v>)

The stability regions for these two combinations are shown in
Figure 2.18. The stability region of the fourth order Adams-
Bashforth-Moulton combination, which has the same order error
constant in PECE mode as the (0,4) ; (4,0) combination, is
also shown in Figure 2.18.
It is noted that the (0,3);(1,4) and (0,4);(1,4) combinations have the
same stability regions as the fourth and fifth order Taylor series methods,
respectively. The axes of all four figures are drawn to the same scale.

The stability regions are, of course, applicable to the system of linear

differential equations of the form

(2.38) y'(x) = Ay(x) 5 y(@0) =y,
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Im(h)

Re (h)

(0,1);(1,4) combination

Figure 2.15

(0,1);(1,0) combination

(0,1);(1,1) combination (Euler-modified Euler)
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Im(h)

- 3

Re (-E)

Figure 2.16 (0,2);(1,4) combination

. (0,2);(2,0) combination
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Im(h)

Re (h)

Figure 2.17 (0,3);(1,4) combination

(0,3);(3,0) combination

fourth order Adams-Bashforth—Moulton

> -—-—
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Im(h)

Figure 2.18 __(0,4);(1,4) combination
... (0,4);(4,0) combination

fourth order Adams—Bashforth—-Moulton
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where A 1is square matrix of order N; the real part of the eigenvalues

Aj(j = 1,2,...N) of A must be non~positive. For non-linear systems

the eigenvalues kj(j = 1,2,...N) are those of the Jacobian matrix

9f/3y ; these eigenvalues are calculated at each point x .
n

2.8 Numerical examples

The (0O,k*); (k*,0) . and (0,k*); (1,4) combinations (k = 1,2,3,4)
are tested on two problems, the first a system of the form (2.1) with

complex eigenvalues, the second a system of the form (2.38) with nega-

tive real eigenvalues but a large stiffness ratio.

Problem 2.1

(Lambert (1973,p.229))

y; = 2]y1 + 19y2 - 20y3,

yé = 19yl - 21y2 + 20y3,

yé = 4Oy1 - 40y2 - 4Oy3,
with initial conditions _Z(O) = (1,0,—1)T. The matrix of coefficients
has eigenvalues Al = -2, Az = =40 + 401, A3 = =40 - 401 giving a

moderate stiffness ratio of 20. The maximum steplength for each method
is found by drawing the line Im(h) = -Re(h) in Figures 2.15-2.18 and
estimating the point of intersection with the boundary of the stability
region. The maximum steplengths for each of the predictor-corrector
combinations follows in an abvious manner and are given in Table 2.8,
truncated to three decimal places, together with the maximum steplengths
which may be used with the Euler-modified Euler and Adams-Bashforth-
Moulton combinations.

It was noted by Lambert (1973,p.229), that the theoretical solution

of the problem, given by

y, =%e'2’< + e *% (cos 40x + sin40x) ,
Y, =%e_2x —%e_l‘ox (cos 40x + sin 40x) ,
3 - 40x

y~ = -e (cos 40x - sin 40x) ,
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Table 2.8: Maximum steplengths which may be used

each predictor-corrector combination for

Problems 2.1 and 2.2 .

Maximum steplength
Combination
Problem 1 Problem 2
(0,1) ; (1,0) 0.025 0.00098
(0,1) ; (1,4) 0.050 0.00257
0, 1) 5 (1, 1) 01
(Euler) 0.037 0.00197
(0,2) ; (2,0) 0.025 0.00159
(0,2) ; (1,4) 0.046 0.00274
(0,3) ;3 (3,0) 0.031 0.00157
(0,3) 5 (1,4) 0.047T 0.00275
(0,4) ; (4,0) 0.035 0.00197
(0,4) ; (1,4) 0.055 0.00317
A-B-M 0.016 0.00123
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-2x 1 -2x

] T
behaves as y = (Ee ,Ee ,0) for x > 0.1 (approximately). The

solution vector was therefore computed only for x in the interval
0 < x<0.09 using the step lengths h = 0.01, 0.015, 0.03.

The numerical results obtained were in keeping with the theory, and
are given for x = 0.09 in Table 2.9, The results for the (0,1); (1,0),
(0,2);(1.2) and (0,3);(3,0) combinations, for which h = 0.03 exceeds

the maximum steplength, display evidence of instability. TFor all other

combinations, using all three values of h, the error was found to

decay with increasing x.

Problem 2.2
yi = 0.01 - (0.01 + v, * y2)(y? + 100]yl+ 1001) ,
2
v _ -
with initial conditions y(0) = (O,O)T. This problem arises in reactor

kinetics and has been discussed by Liniger and Willoughby (1967), Lambert
(1973) and Cash (1980). The Jacobian matrix 9f /3y has eigenvalues

1012 and -0.01 at x = 0; it thus has an initial stiffness ratio

= ]O5 and may be classed initially as being very stiff. The maximum
steplengths which may be used with the multiderivative predictor-corrector
combinations are found by dividing the value of Re(ﬁ), where the curves
bounding the stability regions in Figures 2.15-2.18 cut the real axis, by
-1012. These maximum values, truncated to five decimal places, are given
in Table 2.8.

One of the main difficulties in the application of multiderivative
methods to systems of non-linear equations, is in the calculation of the
higher order derivatives. These were easily obtained for the present
problem and were evaluated at each step of the following computations.

The theoretical solution of the problem is not known and, following Cash
(1980), was found approximately using the fourth order Runge-Kutta process.

The numerical experiments of Cash (1980,p.245) were repeated using
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Table 2.9: Errors es €y ey iny,, yo, vy at x=0.09 for

Problem Z.lusing the multiderivative predictor-

corrector combinations with h=0.01, 0.015, 0.03.

Errors 1in Vs Yos V3
Combination
h=0.01 h=0.015 h=0.03
e; | -0.262(-1) -0.164(-1) -0.313(+1)
(0,1) 3 (1,0) | 2> 0.246(-1) 0.140(-1) 0.313(+1)
es 0.630(-2) 0.167(-1) -0.284(+1)
e; | -0.375(-2) -0.855(-2) -0.183(-1)
(0,1) 5 (1,4) | eg 0.375(-2) 0.853(-2) 0.182(-1)
ez | —0.104(-2) 0.716(-3) 0.124(-1)
e; | —-0.275(-2) -0.130(-1) ~-0.189(+1)
(0,2) ; (2,0) | ez 0.274(-2) 0.129(-1) 0.189(+1)
ej3 -0.103(-1) -0.412(-1) 0.878(+1)
el 0.656(-3) 0.229(-2) 0.361(-2)
(0,2) 3 (1,4) | ep | -0.656(-3) -0.229(-2) -0.361(-2)
ez | -0.968(-3) -0.486(-2) 0.111(-1)
e; |-0.686(-3) -0.147(-2) -0.125
(0,3) ; (3,0) | e2 0.686(-3) 0.147(-2) 0.125
e3 0.199(-2) 0.104(-1) 0.163(+1)
e; | -0.145(-4) 0.237(-4) 0.534(-2)
(0,3) 5 (1,4) | en 0.145(-4)  -0.237(-4) -0.534(-2)
ej 0.232(-3) 0.139(-2) 0.391(-1)
e; |-0.960(-4) -0.883(-3) -0.180(-1)
(0,4) 5 (4,0) | ez 0.960(-4) 0.883(-3) 0.180(-1)
ey 0.623(-4) 0.245(-3) 0.116(-1)
e; |-0.695(-5) -0.753(-4) -0.491(-2)
(0,4) 5 (1,4) | e2 0.694(-5) 0.753(-4) 0.491(-2)
ey | -0.174(-4) -0.133(-3) -0.146(-2)

T
Theoretical solution is y(0.09) = (0.339, 0.436, 0.012)




Table 2.10:Errors in Y Yo for Problem2.2after ten steps of h=0.001, 0.0001, 0.00001, 0.000001

using the (0,k*) ; (1,4) predictor—corrector combinations (k*=1,2,3,4)

Theoretical Errors in A y2
h
solution (yl,yz)
(0,1) 5 (1,4) (0,2) ;5 (1,4) (0,3) ; (1,4) (0,4) 5 (1,4) Cash EBD
0.001 ~0.10069 14044 (-1) 0.241(=5) 0.246 (-6) 0.101(-6) 0.149(~7) 0.815(~6)
0.8978912350 (-4) 0.135(-7) 0.728(-9) 0.823(-9) 0.572(-9) 0.628(-8)
0.0001 ~0.6306050198(-2) 0.394(-5) 0.135(-6) 0.455(-8) 0.650(~10)  0.835(=6)
0.3670275606 (=5) 0.392(-8) 0.132(-9) 0.353(~11) 0.662(~13)  0.819(-9)
0.00001 =0.9511426272(-3) 0.929(-8) 0.318(-10) 0.104(~13) 0.141(=13)  0.231(=9)
0.4835591013(-7) 0.920(~11) 0.326(~13) 0.800(-16) 0.379(-17)  0.222(-12)
0.000001 | ~0-9949622896(-4) 0.101(-10) 0.348(-14) 0.120(-18) 0.105(-17)  0.300(-13)
0.4983176581(-9) 0.100(~13) 0.345(-17) 0.638(~24) 0.921(-21)  0.246(-16)

(LS)
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the eight multiderivative predictor-corrector combinations discussed

in section 2.5. The steplength h was given the values 0.001, 0.0001,

0.00001, 0.000001 and the solution was computed for ten steps in each

case. Cash (1980) also used the value 0.01, but this value was greater

than the maximum steplength for all eight predictor—-corrector methods
and was not used.

The numerical results obfained for Problem 2.2 using the (0,k*); (1,4)
combinations (k* = 1,2,3,4) are summarized in Table 2.10. Comparison
with the numerical results obtained using the extended backward
differentiation formula of Cash (1980), show that the multiderivative
methods developed in section 2.2 give smaller errors in PECE mede.

For Problem 2.2 also, the numerical results were found to be in keeping
with the theory.

Overall, the results obtained for the two problems, indicate
strongly that multiderivative methods in PECE mode give very good
numerical results for linear systemswhere the coefficient matrix has
complex eigenvalues and for stiff systems of non-linear ordinary
differential equations. They can readily be used to solve problems for
which the higher derivatives can be obtained, or estimated, with

reasonable ease.

2.9 Conclusions

A family of linear, one-step, multiderivative methods, based on
Padé approximants to the exponential function, has been developed in this

chapter. The family is seen to contain a number of well known methods

including the Euler predictor, the Euler corrector (the trapezoidal

rule) and a formula due to Milne (1949). It has been verified that,

using comparable steplengths, much higher accuracy can be obtained using

the family of one-step multiderivative methods than can be achieved using

linear one-step methods. The family of multiderivative methods 1s

therefore appropriate for use in problems which allow higher derivatives
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to be found explicitly and which require high accuracy. Intervals of
absolute stability have been calculated and it is seen that those
members of the family which are fully implicit, in the sense that the
highest derivative must be evaluated at the advanced point, are
absolutely stable.

The family of multiderivative methods has been extrapolated to
achieve higher accuracy and intervals of absolute stability are cal-
culated for the extrapolation formulas. It is seen that, whilst
extrapolation increases accuracy, stability intervals are sometimes
shortened as a consequence; the most notable example of this is the
trapezoidal rule.

Finally, the family of one-step multiderivative methods has been
used in appropriate predictor-corrector pairs. Error constants, stability
intervals and stability regions have been calculated for PECE mode. As
with linear multistep (single derivative) methods used in PECE mode, the
stability intervals are seen to be somewhat low. It is clear from Tables
2.4, 2.5, 2.6 and 2.7 however, that it is possible to achieve a bigger
stability interval, with comparable accuracy, using one-step multi-
derivative combinations in PECE mode than with some well known multi-step
combinations, notably the Milne-Simpson and Adams=Bashforth-Moulton

methods, or with one-step methods using high accuracy Newton-Cotes

quadrature formulas as correctors.
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CHAPTER 3

SECOND ORDER PARABOLIC EQUATIONS

3.1 Introduction

In recent papers, Lawson and Swayne (1976), Lawson and Morris (1978)
and Gourlay and Morris (1980), attention has been devoted to the develop-~
ment of LO-stable methods for the numerical solution of second order
parabolic partial differential equations for which Ao—stable methods
< ~h as the Crank-Nicolson method, are umnsatisfact~»v hr-= - ‘qe
- discretization is used with time steps which are too large relative to
the space discretization, see for example, Smith et al (1973) and Wood
and Lewis (1975).

Lawson and Morris (1978) developed a second order Lo—stable method
as an evtrapolation of a first order backward difference method in one and
two space dimensions. This idea was developed further for one space
variable by Gourlay and Morris (1980) who achieved third and fourth order
accuracy in time by a novel multistage process. The second order method
of Lawson and Morris (1978), was adapted and used in a practical problem
involving a non-linear parabolic equation by Twizell and Smith (1981, 1982).

The extrapolation procedure of Lawson and Morris (1978) involved
computing the solution of the parabolic equation at time t + 2%, 1in terms
of the solution at time t, wusing a first order method with time step &-
second order accuracy was thus achieved. Gourlay and Morris (1980) extended
the principal by computing the solution at time ¢t + 3%, in terms of the
solution at time t, wusing a time step £, and thys achieved third order
accuracy in time. These authors then went further, and achieved fourth
order accuracy by computing the solution at time ¢t + 4& 1in terms of the
solution at time t.

The multistage methods which evolved in this way involved a "spread"
in time. 1In this chapter a family of methods will be developed which

involves a similar '"spread" in space, in that an increased number of points

at each time level are used in the resulting finite difference schemes.
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This concept of using a greater number of points at each time level was
used by Twizell (1979) for second order hyperbolic equations and by
Khaliq and Twizell (1982) for first order hyperbolic equations; the
concept is discussed for second order parabolic equations in the text
by Mitchell and Griffiths (1980).

The methods developed are applications of the methods for a system
of first order ordinary differential equations discussed in Chapter 2.
Following Lawson and Morris (1978) and Gourlay and Morris (1980), the
space derivatives will be approximated by the usual second order central
difference replacement. The principal part of the local truncation error
of each finite difference scheme will, therefore, include the same
component proportional to 2h? , Where h 1s the space step, encountered,
though not stated explicitly, in Lawson and Morris (1978) and Gourlay and
Morris (1980). This component notwithstanding, it was shown in Lawson and
Morris (1978) and Gourlay and Morris (1980), that extrapolation in time
leads to a worthwhile improvement in accuracy; this being demonstrated
clearly by numerical experiments reported in those papers.

The family of multiderivative methods on which the finite difference
schemes are based, uses Padé approximants to the matrix exponential function.
Lawson and Morris (1978) used the (1,0) Padé approximant; in this
chapter, four higher order Padé approximants are used to achieve higher
order accuracy in time. The resulting finite difference schemes are im-
plicit in nature and each requires one quindiagonal or sevendiagonal
solver to determine the solution. This compares well with the multistage
methods in Gourlay and Morris (1980) where, for problems with one space
variable, five applications of a tridiagonal solver are needed to achieve
third order accuracy in time and at least seven applications of a tri-
diagonal solver to achieve fourth order accuracy in time.

The methods developed in this Chapter will be tested on the model

problems used in Lawson and Morris (1978) and Gourlay and Morris (1980).
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For one space variable. the second order method will be seen to give
results comparable overall to the best third order multistage methods

in Gourlay and Morris (1980), and third order methods developed,to give

results comparable overall to the best fourth order multistage method.

3.2 One-space dimension

Consider the constant coefficient heat equation in one space

variable
2
G.1) ?.E:E._L_I.,O<X<X,t>o
ot 8X2
with initial conditions
(3.2) u(x,0) = g(x) 3 0sxx <X
and boundary conditions
(3.3) u(0,t) = uX,t) =0 ; t >0

In (3.2), g(x) 1is a given continuous function of x; it is not
specified that g(0) = 0 or g(X) = 0, so that discontinuities between
initial conditions and boundary conditions may occur.

The interval O < x £ X 1is divided into N+1 subintervals each of
width h so that (N+1)h = X, and the time variable t 1s discretized
in steps of length &. The open region R = [0 <x < XJx[t >0] and
its boundary ©®R have thus been covered by a rectangular mesh, the mesh
points having co-ordinates (mh,n%) with m = 0,1,...,N+] and
n=20,1,2,... . The notation u; = u(mh,nf) will be used to denote the
solution of (3.1) while U; Qill be used to denote the theoretical
solution of an approximating finite difference scheme.

The space derivative in (3.1) is now replaced by

(3.4
) EEE.: {u(x-h,t)—zu(x,t)+u(x+h,t)}/h2+0(h2)

3x?
and (3.1) with (3.4) is applied to all N interior mesh points at time

t =nf (n=0,1,...). This produces a system of ordinary differential

equations of the form
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(3.5) du
—=AT1
dt -

- . s B n n n,T .
vhere U(t) U(ng) = U = (U], U2""’UN) » T denoting transpose
In (3.5) the matrix A 1is given by

(-2 ]
1 =2 1 0
-2 . \\ N AN
(3.6) A=nh NN N
AN \\ \\
\\ AN 1
LN
L 1 %J

and has eigenvalues AS = —4h—2 sinz[ sm/2(N+1)} for s =1,2,...,N .
A practical difficulty with (3.5) is that the system is stiff
because an acceptably small component of the local truncation error
relating to the space discretization requires a large value of N;
this, in turn, leads to a large range of eigenvalues of A and hence

to a large stiffness ratio a given by

o = sin’ (Nn/2(N+1))/sin’ (n/2(N+1))

or o = 4(N+1)2/Tr2 for large N .

Solving (3.5) with initial vector U(0) g from (3.2), gives
U(t) = exp (tA)g

which satisfies the recurrence relation

(3.7) U(t+2) = exp (RA)U(t) ; t 0,222%,...

To obtain a numerical solution from (3.7), Padé approximants will be used.
The (0,1) Padé approximant gives a commonly used four point explicit
scheme whose interval of absolute stability given in Table 2.1, is (-2,0).

It follows that for absolute stability, the choice of the (positive)

steplength must satisfy

. 2 .
-2 < —ag/hz < 0 ; that is the mesh ratio r = 2/h° must satisfy

Nt

0 <r <«

The (1,0) Padé approximant gives the LO—stable fully implicit scheme

developed and extrapolated by Lawson and Morris (1978); the (1,1) Padé
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approximant gives the AO-Stable Crank-Nicolson method which was alse
analysed in Lawson and Morris (1978).

Employing the (m,k) Padé approximants, for m < k, to the
exponential function in (3.7), will yield explicit or semi-explicit
methods, whose intervals of stability may be calculated from Table 2.1.
In the following sections four higher order Padé approximants with the
degree of the numerator less than or equal to the degree of denominator

b

will be used in (3.7) and the resulting algorithms analysed.

3.3 A second order method and its extrapolation

Using the (2,0) Padé approximant to exp(fA) 1in (3.7) gives

(3.8) U(t+R) = (I—SLA-!%—SLZAZ)_I U(t)

suggesting the fully implicit scheme
1
(3.9) (T-24+522A) U (e4+2) = U(t)

Following Gourlay and Morris (1980), a stability analysis verifies that
(3.9) is Lo—stable, and using Taylor's theorem it is found that the
principal part of the local truncation error at the mesh point (mh,n%)
for m=2,...,N-1 and n=20,1,2,... 1is

3
1,2 8%, 1,3 3%uyn

though this accuracy is not attained at points adjacent to the boundaries.
This phenomenon is seen to be present in all the subdiagonal Padé approxi-
mants for time dependent problems except the (1,0) Padé approximant. In
a paper on hyperbolic equations, Oliger (1974,p.20) showed that using

lower approximants near the boundaries, does not affect the stability or
convergence properties of the scheme as a whole, and the numerical evidence
to be reported in section 3.6 suggests that this 1is true for second order

parabolic equations also.

In (3.10) the component ——%Zlhzahu/ax” is due to the space dis-

cretization and the use of (3.4) in (3.1); this term will appear 1in the

local truncation error of every finite difference scheme arising from the
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use of Padé approximants to exp (2A) in (3.7).

%&383U/3t3

The term

in (3.10) relates to the use of the (2,0) pPadé approxi-

mant in (3.7).

The principal part of the local truncation error may be written

down for every finite difference scheme yielded by (3.7) in the form

i q
(3.11) (--=2n2 28, ¢ 4a 3uyn
12 xc q 5ed m

where the constants Cq are given in Table 2.1.

Applying (3.9) to the mesh point (mh,nf) at time t = nf leads

to a linear system, the unknowns of which are the components of the

N-vector U(t+2). This linear system is of the form

(3.12) E U(t+2) = ¢"

b

where E 1s a constant matrix of order N; it has the form

re4 e2 e3
e2 el e2 e3 O
e3 e2 el\ e2 e3
\\ \\ \\ \\ \\
E = \\\ \\ \\ \\ \\\
\\ \\ \\‘ \\\ \\
e3 e2 e1 e2 e3
0 €3 %2 &1 &
e e e
i 3 2 A_J
where
1 _ 5 o
e, = 1+2r+3r2 R e2 = -r-r? R e3 = Erz R e4 = ]+2r+-§—r .

n

The vector Qn = (¢],¢2,... )T is seen from (3.9) to be U .

¢N
The solution U(t+2) of (3.9) is found from (3.11) by applying a

quindiagonal solver. Gerschgorin's theorem fails to predict the positive

definiteness of E. However. E 1is positive definite with spectral

condition number O(h-a), see, for example, Fried (1979,pp.19-21).

An alternative approach for finding U(t+2) 1is to write
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1 ..
E = I-2A + EQZAZ 1n 1ts complex factor form, namely

] .
E=~2~{(1 + 1)T -24} {(1 = i)I -24)} , 1=+ ¥ -1

This suggests the complex splifting

(- D1 - ) U= u(e)

(3.13) I

-2-{(1 + 1) = 2A} U(t+R) = I_J*

The solution U(t+2) is obtained from (3.13) by the application of two
tridiagonal solvers using complex arithmetic. This is less efficient,
in that it uses more CPU time, than using one quindiagonal solver with
real arithmetic and (3.11) is therefore to be preferred to (3.13).

It has been noted already that (3.9) is L. —stable; it may

0
therefore be extrapolated to improve the accuracy in time.
. (1) _ (1) . .
First of all, U = U (t+22) 1is computed by applying (3.7)

over two single time steps with exp(fA) replaced by its (2,0) Padé

. 2 . .
approximant; secondly, g(Z) = g( )(t+22) 1s computed by applying
(3.7) over a double time step. In general, the extrapolated value

Q(E)E Q(E)(t+22) is determined from the formula

(3.14) Q(E) = q Q(l) - (a=1) g(Z) + O(2m+k+2); m# k ,
where
(3.15) a = 2m+k/(2m+k_]) ,

. A
so that for the (2,0) Padé approximant , o = 3

The principal part of the local truncation error of the extrapolated form
of each finite difference method arising from using the (m,k) Padé
approximant to exp (24) in (3.7), will be of the form

b apu n _ _
(3.16) (—-%Eth du g P 2 Y i m= 2,...,N-1

ox™ p atp m
where p = m+k+2. The constants Ep (Twizell and Khaligq (1981)), ?re
contained in Table 2.3; for the (2,0) Padé approximant, E4= -3

The amplification symbol of the extrapolated form of the methed

arising from using the (m,k) Padé approximant 1n (3.7), 1is
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3.17 = -
( ) Sm,k(z) a {P, ( 2)/Q_(-2)}2 - (a—l){Pk(-ZZ)/Qm(—ZZ)}
where 2 = -2 and A 1is an eigenvalue of A, Clearly, therefore,
_ 4 1 -2 1 -1
(3.18) | SZ,O(Z) = §{l+z+§%2) - 3-(1+22+222)
Simplifying this expression for S2 0(Z) gives
1 1
+ 2_ 1g3_ 1 oy
s, o(B) _ [ TEETIET RET-uE
1+4Z+822+9% 3+ %5%”+-%—ZS+ %%6

which satisfies ‘SZ,O(Z)IS 1 and ;ﬁn SZ,O(Z) = 0, and thus verifies that
the third order method, as an extra;:1ation of the second order method
(3.9), 1is Lo—stable. The amplification symbols for the (2,0) method and
its extrapolated form are plotted in Fig 2.3. It can be seen from

Fig 2.3 that the asymptotic behaviour of the second order Lo—stable

method (3.9) (and its extrapolated form), produces a growth factor which
tends to zero monotonically, implying that no oscillations could appear
and the method will behave smoothly, like the theoretical solution. This
shows that the finite difference method based on the (2,0) Padé

approximant is suitable for use with problems having discontinuities

between initial conditions and boundary conditions.

3.4 Two third-order methods and their extrapolations

The extrapolation of (3.9) produces a scheme which is third order
accurate in time. The same order of accuracy in time can be achieved

when the (2,1) Padé approximant is used in (3.7) giving

(3.19) (1- %&A+%&2A2) U(t+2) = (I+%£A) U(t)

Applying (3.19) to the mesh points (mh,nf), with m = 1,2,...,N,

at time t =nf (n = 0,1,2,...) leads to a linear system of the form
L 4
(3.12). The elements of the matrix E in (3.12) are now given by

4 __ 2 22 1o L NN )
e, = 1+§r+r2, e, = - §{ 3{ s €4 e e, 1+§r+€r

n
and the elements of the vector ¢ by
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n 2 n ] n
= (1- = —
4p = (= 30) U+ 3r U,
n_1 .n _ 2 n ] n
¢m 3T Um_]+ (1 3r) Um + 3t Um*l s mo= 2,...,N-1
n_1 'n _ 2 n
(bN 31' UN—1+ (] 5'1') UN

The solution U(t+2) of (3.19) is determined by applying a quin-

diagonal solver. In view of the discussion of (3.13), it is not worth-
while to consider a complex splitting of (3.19). The principal part of
the local truncation error of (3.19) at the interior mesh points

(mh,n%), (@ =2,...,N-13 n =0,1,2,...) 1is given by (3.11) with

q = 4, and, from Table 2.1, C4 = 1/72. A stability analysis shows that
(3.19) 1is Lo-stable and the amplification symbol is shown in Fig 2.4.

It is seen that the function RZ,I(Z) is negative for 2 > 3 and does
in fact tend to zero more slowly than the extrapolated form of the method
based on the (1,0) Padé approximant (see Lawson and Morris (1978)).

In view of its LO—stability property, the method may be extrapolated
to lmprove accuracy in time. The extrapolation formula (3.14) is used,
and (3.15) yields a = gu The principal part of the local truncation
error of the extrapolated form of the method is given by (3.16) with
p = 5; the value of E5 is found from Table 2.3 to have the value
-8/945.

The amplification symbol of the extrapolated form of (3.19) is

a7 |2 |-
(3.20) So B =l 75| "7 52
’ 4328’ LB

and it follows that the extrapolated form of this third order method is

Lo-stable also. The amplification symbol 82 l(Z) is also shown in

Fig 2.4.
The second third-order method to be discussed is that based on the
(3,0) Padé approximant to exp (2A) in (3.7). This approximant gives

-1
(3.21) U(t+L) = (I—QA%SLZAZ— %&L3A3) U(t)

suggesting the fully implicit algorithm
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(3.22) (1—2A+~;22A2— —]6—23A3) U(t+2) = U(t)

Writing (3.22) in the form

(3.23) F U(t+2) = U(t)

where F 1s a seven-diagonal, sparse matrix of the form

[~ —

(3.24) F = N \\ \\ AN AN \\\ \\

f
O 4 f3 f2 f1 f6
f f
| o f3 e Ts
with
_ 2 3 e —p9p2_ .3 - 2,13
f] 142r+3r4+ —r°, f2 r-2r 5T f3 ropre,
- - 1.3 - 2,73 e mpn2_ 1.3
f4 gL f5 1+2r+§r +§r R f6 = -r-2r T

The solution U(t+f) can be computed using an LU decomposition
algorithm. The principal part of the local truncation error is given

by (3.11) with q = 4; the error constant is C4= _.%Z (from Table 2.1).

It is easy to see that this third order method is L_ -stable and may be

0

extrapolated to give fourth order accuracy using (3.14); from (3.15) it

is seen that a = g—. The principal part of the local truncation error
of the extrapolated form of the method is given by (3.16) with p = 5;

from Table 2.3 it 1s seen that E5 = 8/105 for the method.

The amplification symbol of the extrapolated form of the method is

e 152,123y72 _ L (140z40224223) 7
(3.25) S3.0®) =3 (I+EE%E?) = ( 32

Simplifying (3.25) gives
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4 ] ] 1
_ 2254 2% %327 350
S. (%) = ,
3.0 119, 20 .
1+42+882+1 623+ ~2gte 2025, 11956,757, 3 o8, ] 59
2 3 36° 6° T 18° Ta7l

from which it is found that (2)| <1 and 1lim S, (8) = 0.
#—>0

Thus the property of LO—stability is retained by the extrapolated form

|s
3,0

of the method. The amplification symbols R3,O(Z) and SB,O(Z) are
produced in Fig 2.6.

Like the third order method based on the (2,1) Padé approximant,
the third order method based on the (3,0) Padé approximant loses
accuracy at the mesh points (h,n2) and (Nh,nR); this can be seen by
examining (3.24). The (3,0) method also loses accuracy at the mesh
points (2h,n2) and ((N-1)h,n&) for n = 0,1,... but the numerical
results to be reported in section 3.6 suggest that this additional loss
of accuracy does not affect convergence. The method based on the (3,0)
Padé approximant does not use the mesh points with co-ordinates (0,0)
or (X,0), where discontinuities between initial and boundary conditions
may exist, whereas the method based on the (2,1) Padé approximant
does use these points. It is clear that the components of the principal
parts of the local truncation errors relating to the raw and extrapolated
forms of the (3,0) method, are greater in modulus than those of the
(2,1) method. Therefore, the method based on the (2,1) Padé approxi-
mant can be expected to give more accurate results than that based on the

(3,0) approximant. However, the method based on the (2,1) approximant

becomes overstable for larger values of r.

3.5 A fourth order method

The final algorithm to be discussed for diffusion problems with one
space variable is that obtained by replacing exp (2A) 1in (3.7) by its

(2,2) Padé approximant giving

(3.26) U(t+e) = (I- %zm I—IZ-ZZAZ)—](I%QA‘* %RZAZ) ut) .

Written implicitly (3.26) becomes



1 1 2,2 1 1
(3.27) (I~ 524+ —122A4%) U(t+2) = (TH524+ 75 2242) U(t)

and, applying (3.27) to each of the N mesh points at time level
t=nf (n=20,1,2,...), again leads to U(t+2) being determined
from a linear system of the form (3.12). The elements of the matrix

E in (3.12) are néw given by

1 1 | |
e, = l+r+—r? = - —r— -2 = 2 = > 2
I 2T 8y 20 300 83 Tyzrhs e, = Mr+imr
while the elements of Qn become
n _ 5 n 1 1 n 1 n
= (l-r+ 212 = - = —r?2

by = ( 2t Uyt GG o) Uy 4951l Uy

n_1 -, n 1 1 n 1 oy .0
¢m 12r Um-Z+ r (E- §T) Um—l+ (1—r+§r ) Um

1 1 n 1l » . n

+ — — —_— . = —
r (2 3r) Um+l+ T Um+2 ; m= 2,...,N-1
The solution of (3.27) is computed using a quindiagonal solver. A
complex splitting should not be considered for this method.

The principal part of the local truncation error of (3.27) at the

mesh points (mh,nf?) (m 1,2,...N; n=20,1,2,...) 1is given in (3.11)

with q =5 and C5 = 1/720. This value of C5 is much smaller in

modulus than either of the values of E_ relating to the extrapolated

5

forms of the methods based on the (2,1) and (3,0) Padé approximants.
It may be expected, therefore, that the (2,2) method will give good

results, particularly near the centre of the interval 0 < x < X, for

problems which do not have discontinuities between initial and boundary

conditions. The amplification symbol, given by

PR PR B 1, 1 2
(8) = (1= 52+ 15 20)/ (I4523+ 132 ),

R2,2 12

is always positive for # 2 0 (it has a minimum value of 7/ -4/3  when

2 =2/3 ) and tends asymptotically to +1 as 2#>°. The numerical method
is therefore AO-stable but 1s not Lo—stable and, like the nuﬁZrical method
based on the (1,1) Padé approximant (Lawson and Morris (1978)),
oscillations in thesolution are induced. The symbol RZ,Z(Z) and 82,2(2)
are produced in Fig 2.5 where

_ 16 2 1
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3.6 Numerical results

To illustrate the behaviour of some of the schemes discussed in
earlier sections, the model problem (3.1) is solved with X = 2 and
boundary conditions given by (3.3). The initial conditions are taken
to be g(x) =1 for 0 < x < 2. This problem was discussed by Lawson
and Morris (1978) and Gourlay and Morris (1980), and has theoretical

solution given by

LV rioeanky 2 1
u(x,t) kzl {1-(-1) "} o sin (ikﬂx) exp (- Zkzﬁzt)

The methods based on the (2,0) and (2,1) Padé approximants
will be denoted by P20 and P21, respectively. The method based on
the (2,2) Padé approximant will be denoted by P22. These methods
will be compared with the Crank-Nicolson method, which is based on the
(1,1) Padé approximant and will be denoted by PIl. The extrapolated
form of the methods based on the (2,0) and (3,0) Padé approximants

will be denoted by P20E and P30E.

All the methods are tested using £ 0.025, h = 0.05 (giving
r=10), & =0.1, h=0.05 (giving r = 40), and 2 = 0.1, h = 0.025
(giving r = 160). The maximum errors at time t = 1.2 are given in
Table 3.1.

It is noted from Table 3.1 that, for r = 40, the second order method
P20 gives results as accurate as the third order multistage method of
Gourlay and Morris (1980, p.647). The third order methods P21, P20E
and P30 give numerical results better than the fourth order multistage
method of Gourlay and Morris (1980,p.653) for 6 = 1 and comparable
results for 6 = 0.

It is clear from Table 3.1 that the accuracies of the Lo—stable
methods PZO, P20E, P30, P30E and P2] increase‘Zéflis refined.
The overstability of the method P2l is also apparent. Table 3.1 also
shows that, in the case of the higher order method P30, extrapolation

does not produce much improvement in accuracy, predicted by the theory,
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Figure 3.1: Numerical results at time t=1.2 with h=0.05, 2=0.1, r=40.
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Figure 3.2: Numerical results at time t=1.2 with h=0.05, £=0.1, r =40.
(1) Theoretical solution, (2) P22.
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for large values of h and small values of r. This is due to the

dominance of the 0(2h2) term in the Principal part of the local
truncation error; the accuracy of P30E 1is improved as h is re-
fined. The AO—Stable method P22 gives poor results near the
boundaries due to the discontinuities between boundary and initial
conditions, and behaves in a similar way to the Crank-Nicolson method
P11. The maximum errors. given in Table 3.] occur at the mid-point

x =1 for the LO-stable methods, and near the boundaries for the

AO—stable methods. This is shown in Figures 3.1 and 3.2.

Table 3.1 Numerical results of model problem

Maximum errors

Method Order r =10 r = 40 r = 160
P11 2 0.28(-3) 0.24 0.52
P20 2 0.18(-3) 0.17(-2) 0.16(-2)
P20E 3 0.74(-4) 0.41(-3) 0.36(-3)
P21 3 0.67 (-4) 0.28(-4) -0.22(-4)
P30 3 0.69(-4) 0.17(-3) 0.12(-3)
P30E 4 0.67(-4) 0.87(-4) 0.37(-4)
P22 4 0.66(-4) 0.68(-1) 0.30

3.7 Two-space dimensions

Some of the difficulties encountered in implementing the methods
developed for one-space dimension are magnified in the case of two-space
dimensions. In particular, the square matrix A is now of order N2
and is split into the form A = B+C, where B,C are block-diagonal and
block-tridiagonal respectively, so that when the second power of A 1is
required the matrices B2, BC, CB, C2 must be determined. Another
difficulty is with the poor results given by A -stable methods, such as

0

the Peaceman—-Rachford method, when used to solve problems with discon-
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tinuities between boundary and initial conditions.

The method which will be developed is based on the (2,0) Padé
approximant to the matrix exponential function. This method will be
seen to be second order accurate in time, the same as the Peaceman-Rachford
method, and to be Lo—stable. In its extrapolated form the (2,0) method

will be seen to be third order accurate in time and to retain the property

of Lo—stability.

The constant coefficient heat equation in two space variables has the

form

3.28 3 32 2

(3.28) Pl 88 . 0<x, y<X, t>0
ox? dy?

with homogeneous Dirichlet boundary conditions on the boundary 989 of
the square Q defined by the lines x =0, y=0, x=X, y=2X, and

initial conditions
(3.29) u(x,y,0) = g(x,y)

It is assumed that g(x,y), which is a given continuous function of x,y,
does not necessarily have the value zero for (xX,y) ¢ 90, so that discon-
tinuities between initial conditions and boundary conditions are permitted.

Both intervals 0 < x < X and 0 <y £ X are divided into N+1
subintervals each of width h, so that (N+1)h = X as before, and the
time variable t 1is incremented in steps of £. At each level ¢t = nf
(n=0,1,2,...) the square §, together with its boundary 23Q, have
been superimposed by a square mesh with N2 points within 2 and N+2
equally séaced points along each side of 3Q.

The solution u(x,y,t) of (3.28) is sought at each point (kh,mh,ng)
in Q@ x[t > 0] where k,m=1,2,...N and n = 0,1,2,.. . The theo-
retical solution of an approximating difference scheme at the mesh point

(kh,mh,n%) will be denoted by UE o the vector gn of such solutions

will be ordered in the form
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n n n n n
vt = @t gt o
- ( 1 l 2,] UN,], U1,29 [']2’2’ 3 UN.Z’
(3.30)
n n n T
.5 U
LN U2,N’ ’ UN,N)

The space derivativecin (3.28) will be replaced by

.31 2
(3.31) 9_%. = {u(x-h,y,t) - 2u(x,y,t) + u(x+h,y,t)}/h2+0(h2) ,
0X
2
(3.32) _Q__% = {u(x,y-h,t) - 2u(x,y,t) + u(x,y+h,t)}/h2+0(h2)
oy

and at each time level t = n#, (3.29) is applied to all N2 1interior
mesh points of the square Q with the space derivatives replaced by
(3.31), (3.32). These N? applications result in a system of N2 first
order ordinary differential equations of the form (3.5), in which the
matrix A is now of order N? and may be split into the constituent
matrices B,C such that A = B+C.

The matrix B arises from the use of (3.31) in (3.29); it is block

diagonal with tridiagonal blocks and has the form

(3.33) B=nh 1

where B1 is the tridiagonal matrix of order N given by

—2 1 7]
] \\_2 \\ 1 \\ O
~ \\ N
(3.34) B, = DN NG
1 =2 Y
g 0 1 -2

The matrix C arises from the use of (3.32) in (3.29); it 1is block

tridiagonal with diagonal blocks and has the form

—

21 I /
21 I

I -—
(/—‘
() 1 - 1

(3.35) C=h
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where T 1is the identity matrix of order N. The N2 eigenvalues

of the matrix A are real and negative and are given by

) =2 . im i
3.36 A. . = -4h [ L in2-d | . {,j=
( ) i3 81n2(N+1) + 31n2(N+1) ;1,3 l,...,N .

Solving the system of ordinary differential equations subject to the

initial condition U(0) =g, gives
U(t) = exp {t(B+C)} g
which satisfies the recurrence relation
(3.37) U(t+2) = exp {2(B+C)} U(t); t = 0,2,2%,...

It is this recurrence relation which will be used in the development of

the second order method.

3.8 Second order method and its extrapolation

The recurrence relation (3.37) may be written in the alternative

forms
(3.38) U(t+2) = exp (4B) exp (&C) U(t) + 0(22) ,
(3.39) U(t+2) = exp (2C) exp (2B) U(t) + 0(22) ,

Using the (2,0) Padé approximant, equations (3.38), (3.39) may be

written
- 1 -1
(3.40) g*(t+2) = (1—23+%2232) 1(I—£C+§£2C2) u(t) ,
! Teen) = (I—zc+122c2)_1(I—zB+12232)_1U(t)
(3‘4]) g (t ) - 2 2 v ’

respectively. Expanding the matrix inverses in (3.40), (3.41) confirms

that each is only first order accurate in time when compared with the

Maclaurin expansion of exp (2(B+C)) given by

102 m2402
exp (2(B+C)) = T+2(B+C) + E& (B“+C4+BC+CB)

(3.42) +%g3(B3+c3+Bzc+BCZ+CB2+C2B+BCB+CBC)+...

*

Combining U and y’ by the linear relation

(3.43) U(ea) = 5@ + U

gives
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(3.44) U(t+2) = {I+2(B+C) + 522<BZ+CZ+BC+CB> + 023} u(e)

which is second order accurate in time.

The splittings (3.40), (3.41) and the relation (3.43), are forma-
lized by the following algorithm which requires four applications of a

quindiagonal solver:

(1—zc+%&202) y(l) = u(t) ,

*
(1-28+52282) y”* = v

.
b

(3.45) (1-2B32282) v2) - yqoy

(I—2C+%£202) vt =y

U(e+e) = 5" U

In (3.45) Y(]) and Y(z) are intermediate vectors each of order N2.
Following Gourlay and Morris (1980, p.644), it is found that the second
order algorithm (3.45) is LO—stable.

The second order accuracy of the method may be extrapolated to third

order by, first of all, considering (3.40), (3.41) over two single time

steps to give

(3.46) U™ (e20) = {(T-amege?82) ! (1-a0H52262) T2 (o)
++ 1,202y71 1,2n2y7 152
(3.47) Ut (e+20) = {(T-1CH522c2) T (1-2B+522B2) T 12 (t)

2 2
Expanding the matrix inverses in (3.46), (3.47) verifies that each is only
first order accurate when compared with the Maclaurin expansion of

exp {22(B+C)} given by

exp {22(B+C)} = T+28(B+C)+282 (B2+C2+BC+CB)

3.48
( ) + %&3(B3+c3+B2C+BC2+C2B+CB2+BCB+CBC)+...

Substituting the expansions of (3.46), (3.47) in

Q(O)(t+2£)= %(g** N g++) ’

however, gives
U(O)(t+22)= [ 1+22(B+C)+222(B2+C2+BC+CB)

(3.49) +23 {B3+c3+%(BC2+BZC+CB2+CZB)+BCB+CBC}+0(E“)]U(t)
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: (0) .
showing that U 1s second order accurate in time.

Writing (5.40), (5.41) over a double time step 2% gives

(3.50) vt (ee20) (I—22B+222B2)_1(I—2£C+2£2C2)—lg(t)

?

(3.51) g(z)(t+22)

(I—2£C+2£2C2)—](I—22B+2£2B2)_1g(t)

Expanding the matrix inverses in (3.50), (3.51) gives

(3.52) g(l)(t+22) = {I+22(B+C)+222(B2+C2+2BC)
+ 483 (B2C+BC2)+0 (") YU (L)
(3.53) g(z)(t+zz) = {I+20(B+C)+242(B2+C2+2CB)

+ 423(C2B+CB2)+0(2"*) U (t)

’
respectively, showing that each is first order accurate in time.
The linear combination of (3.49), (3.52), (3.53), defined by

0® (er20) = 4y L gD, 4@

is third order accurate in time when compared with the Maclaurin
expansion (3.48).
The principal part of the local truncation error of (3.43) when

applied to the mesh points (kh,mh,n%), with k,m= 2,...,N-1 and

n=20,1,2,... , is found to be
1 33 1 ok ot
(3.54) (23 == - zwh? (— + =)} 5 kmf 1LN
at3 axt oyt

which, following extrapolation, becomes

L ot ks
(3.55) (- L 2w g2 2uy —-E))E o3 km + 1,N

37 g 12 ax*  ay"

The implementation of the algorithm based on the (2,0) Padé

approximant may be carried out by means of the following strategy:

(1) (2)

(1) intermediate vectors V , V

are introduced and used to
* + )
find the estimates U (t+2). U (t+R), as follows:

(1)_

(3.56) (1-20+382C%) U )= U(D)

(3.57) (I—zB+%2232) g*(t+2> = y(l) ;
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(3.58) (I-2B+%£2B2) Y(z) = U(t)
(3.59) (1-2C+522¢2) 0" (esn) = v(D) |
(ii) intermediate vectors V(3), Y(a) are introduced to extend

. * +
the estimates U (t+4), U (t+2) over a second single time step as

follows:
(3.60) (I—2c+%z%cz) v T
(3.61) (T-2B+31282) U™ (teg) = v3) |
(3.62) (I—2B+%22B2) vl ey
(3.63) (1—2c+%2202) U (ee20) = v
(1ii1) the second order estimate Q(O) is now calculated from
(3.64) Q(O) _ %'(H**+ §++) ;
(1v) intermediate vectors V(S), Y(6) are introduced and used

with a double time step to find the estimates g(l)(t+22) and

Q(z)(t+2£) as follows:

(3.65) (1-220+222¢2) v < yee)
(3.66) (1-228+22282) v (pe2p) = v |
(3.67) (1-228+2¢282) v(® - yeey
(3.68) (I-22C+222C2) g(z)(t+2z) = y(6) ;
(v) the third order accurate estimate Q(E)(t+22), given by

’

(3.69) 0 ey = 20 - LDy )

i1s now calculated.

In order to illustrate the behaviours of the Lo—stable methods in
two space variables, the following model problem, which was introduced
in the paper by Lawson and Morris (1978), is solved using the second

order method (3.45), and third order method as an extrapolation of the

second order method.

The problem is
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ou 32y 32y
3w, v, 5 0<xy <2, t>0
X 8y2

subject to the initial conditions

u(x,y,0)

In
N

. 1
sin (EWY) ;0 < x,y

and boundary conditions

u(x,y,t)

I
o
"

Il
o

«

n
O
b
Il

2, y =2, t >0 .

The initial distribution is shown in Fig 3.3 and the theoretical solution

U P k, 2 . 1
u(x,y,t) = sin iﬂjsz{l—(—l) }-EF sin (Ekﬂx) exp (- %ﬂz(k2+])t)1

1s depicted at time t = 1.0 in Fig 3.4.

The solution is computed at time *+ = 1.0 using £ = 0.025, h = 0.05
(giving r = 10),2 = 0.1, h = 0.05 (giving r = 40) and ¢ = 0.1,
h = 0.025 (giving r = 160). The maximum error found in each case 1is

given in Table 3.2.

Table 3,2
Maximum errors
Method Order r = 10 r = 40 r = 160
(2,0) Method (3.45) 2 0.46(-4) 0.34(-3) 0.33(-3)
Extrapolated (2,0) 3 0.80(-5) 0.35(-4) 0.25(-4)
Peaceman-Rachford 2 0.33(=3) 0.23(-1) 0.45(-1)

The distribution of the computed solution for the second order method
is shown in Fig 3.5 and for the third order method is shown in Fig 3.6. It
is seen that in each case the maximum errors occur at the point x = 1,

y = 1. A comparison with the Lawson and Morris (1978) second order
algorithm indicates that the second order method (3.45) gives higher

accuracy at the expense of an increase in CPU time. However, the superior

results justify this minimal increase in computer time.



Z:8.008@ TO 1.000

Figure 3.3: Initial distribution for two - space variable problem.

Z:0.00008 TO 0.003916

Figure 3.4: Theoretical solution at time t=1.0 .
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Z:8.000008 TO 9.00350

Figure 3.5: Numerical solution at time t=1.0 with h=0.05, 2=0.1
r =40 using P20.

s

Z2:0.00008 TO 0.00918

Figure 3.6: Numerical solution at time t=1.0 with h=0.05, 2=0.1,
r =40 using P20E.
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CHAPTER 4

FIRST ORDER HYPERBOLIC EQUATIONS

4.1 Introduction

In recent years much attention has been devoted in the literature
to the extrapolation in time of low order methods for the numerical
solution of first order hyperbolic partial differential equations as
well as for second order parabolic equations.

Essentially the same procedure may be followed for parabolic
equations (Lawson and Morris (1978)), (Gourlay and Morris (1980)) and
hyperbolic equations (Khaliq and Twizell (1982)): that is to say, the
space derivatives in the differential equations are approximated by a
suitable finite difference replacement, and the resulting system of
first order ordinary differential equations solved using a stable
numerical method. From this stage of the computation onwards, the
aécuracy in time can be controlled by a suitable choice of method for
solving an ordinary differential equation; improvement in the accuracy
in space, on the other hand, requires a different replacement of the
space derivative in the partial differential equation.

From the point where the replacement of the space derivative has
been chosen, accuracy in time can be varied by a multistage method
(Gourlay and Morris (1980, 1981)) which involves a spread over three or
more time increments, or by a method involving a similar spread over more
than three mesh points at a give time level (Mitchell and Griffiths (1980)

Twizell and Khaliq (1981), Khaliq and Twizell (1982)). The former type
of methods is, in effect, an application of linear onestep methods for
systems of ordinary differential equations, while the latter is an appli-
cation of multiderivative methods (Twizell‘zﬁd Khaliq (1981)). A family
of methods related to the latter type will be developed in this Chapter.

Both approaches have a weakness which is the other's strength: using

a multistage method, seeking the solution at certain fixed times requires
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the time interval to be divided into two or more subintervals depending
upon the accuracy required, whereas the integration can be carried out
without subdividing the time interval if an A-stable or L-stable multi-
derivative method is used. On the other hand, implicit multistage
methods need only tridiagonal solvers to obtain the solution (five at
each time level for third order accuracy in time and nine for fourth
order accuracy (Gourlay 'and Morris (1980)), whereas the multiderivative
methods in Chapter 3, based on central difference replacements of the
space derivative, (Khaliq and Twizell (1982)), need quindiagonal or
seven diagonal solvers.

The methods to be discussed in sections 4.3, 4.4, 4.5, are based
on backward difference replacements of the spaée derivatives and can

therefore be used explicitly so that here, too, they have an advantage

over multistage formulations. The use of backward difference replace-
ments has the advantage that the oscillations which are always present
with central difference replacements (section 4.2), do not arise. Also
the difficulties which arise in parabolic equations because of stiffness
are not present in solving hyperbolic equations by multiderivative
techniques. The methods will use function values at only two time levels
as in Khaliq and Twizell (1982), unlike the methods developed by Oliger
(1974), and depend on the theorems of Gustaffson (1972) for the establish-
ment of stability. The methods are tested in section 4.6 on a number of
problems from the literature and, finally, conclusions are drawn in

section 4.7.
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4.2 Central difference approximation in space

Consider the first order hyperbolic partial differential equation

(4.1) du . du _
EY 0 ; a>0, x>0, t>0

b

where a 1is a constant, with initial conditions

I

(4.2) u(x,0) g (x) ; x 20

and boundary conditions
(4.3) u(0,t) = v(t) : t >0

equations (4.1), (4.2), (4.3) form the initial-boundary value problem.
Suppose that the solution of (4.1) is sought in some region R =[0 < x < X] x
[t > 0] of the first quarter plane x > 0, t > 0 (out flow problem). The
interval 0 < x £ X 1is divided into N equal parts each of width h, so
that Nh = X, and the time variable t 1is discretized in steps of length
2. The open region R and its boundary 23R, consisting of the axes
t =0, x=0 and the line x = X, have been covered by a rectangular
mesh, the mesh points having co-ordinates (mh,n?) where m = 0,I,...,N
and n = 0,1,2,... . The theoretical solution of a finite difference
scheme approximating the differential equation at this point, will be
denoted by Ug = U(mh,n%).

Replacing the space derivative in (4.1) by the central difference

formula

(4.4) du

S =[u(x+h,t) - u(x-h,t)Y2h + 0(h?) ,

and applying (4.1) with (4.4), (4.2), (4.3) to all N interior mesh
points at time level t =n& (n = 0,1,...), leads to the system of first

order ordinary differential equations

(4.5) v _ _ laBg(t) + lay

dt 2 2 -t

T . .
where U(t) =[U;(t), Us(t),..., UN(t)] , T denoting transpose, is the
vector of approximate solutions of (4.1) at time t > 0. In (4.5) B 1is

a square matrix of order N given by
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— 0 1 ]
-1 0 1 0
-1 0 ]
AN
(4.6) hB = SRR
N \\ N
M NN
\ \
=1 0 1
0
and w,_ = l—[ v ,0,...,0, - U ]T is the ~component vector whose
-t h t, ’ » Vo N+1 C p > C ose

first element is the numerical (frozen) value of the boundary condition
at time t = nf and whose last element is minus the value of the
solution at the point ((N+1)h,t). This means that knowledge of the
solution is required on some "boundary'" beyond the part of the x~axis
under consideration, thus overposing the problem (4.1). However, for
periodic boundary conditions, central difference approximations have
often been used in the literature, see for example, Mitchell (1969),
Kreiss and Oliger (1972), Smith (1978), Mitchell and Griffiths (1980),
together with further references therein.

The solution of (4.5) with (4.2) is
4.7) U(t) = B lyt + exp (-

where g 1is the vector of initial values. In equation (4.7), U(t)

satisfies the recurrence relation

1

(4.8) U(en) = B lw, + exp (- 3 atB){U() - B 'w, )

It is clear from (4.6) that each eigenvalue AS = 21 cos ﬁ%% ,
s=1,2,..., N, i = V=1, 1is complex and hence exp (- %atks) in (4.7)
(the matrix B being diagonalizable, Morton (1980; p.678)) is an
oscillatory function. Thus the solution of (4.5) exhibits oscillations.

Price et al (1966) first observed the possibility of oscillations
occurring when a central difference replacement is used for the space

discretization in the convection part of the diffusion-convection prob-

lem and emphasised the need for methods which do not introduce such

oscillations.
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If, for example, the (1,0) Padé approximant is used to replace

the matrix exponential function, (4.8) becomes

(4.9) (I + 2a2B) U(t + 1) - ety

2 2 = e .

+2
Applying (4.9) to the mesh points (mh,n?) gives the four point,

implicit scheme,

—

n+1i n+] n+l n
U + = - -
m 7 ap ( m+ 1 Um-l) Um :

An analysis of the stability (Mitchell (1969,p.37), Khaliq and
Twizell (1982)) of this second order algorithm, indicates that the
method is stable for all positive 4. Employing the (1,1) Padé
approximant in (4.8) leads to

1

1
(4.10) (T + 7 atB) U(t+) - zagw_, = (I - +agB) u(e) + At

+2 4 4

Application of (4.10) to the mesh points (mh,n%) gives a Crank-Nicholson

type scheme

1 +1 n+l 1 n+l 1 n
4.11 —_ — + + — = —
( ) ap U U 43P U 43P Um-

n 1 n
4 m—1 m m+1 * Um * Zap Um+

1 1

which is known to be unconditionally stable (Mitchell (1969,p.167),
Gustafsson et al (1972,p.664)), where p = &/h.

The solution will remain oscillatory, though the schemes are stable.
However, the oscillations may be reduced by making the coefficient
matrices in (4.9) and (4.10) diagonally dominant, see for example, Hirsch
and Rudy (1974), or by restricting the space-step h with respect to the
convection parameter a. But for large values of a this may prove,
computationally, prohibitively expensive, see,for example, Price et al
(1966). Thus the oscillations will be present no matter whether an

A-stable or L-stable method is used. Numerical results to support these

observations are given in section 4.6.

4.3 Low order (one-sided) approximation in space

Replacing the space derivative in (4.1) by the low order backward
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difference formula

(4.12)

and applying (4.1)

mesh points at time level

Ju

n% - Lu(x,t) = u(x=h,t) J1/h + 0(h)

3

with (4.12), (4.2) and (4.3) to all N interior

t = .), leads to the system of

first order ordinary differential equations

(4.13) dagde) _ _:
ac - Ta0U(®) + ac,
_ T
where U(t) = [Uy(t), Us(t),..., UN(t)] s T denoting transpose, is
the vector of approximate solutions of (4.1) at time t>0. In (4.13)
C 1is the lower bi-diagonal matrix of o-'er N given by

(4.14)

hC

= N\ AN ’
\ \
\ \
\ A
0 \ AN
N AN
-1 1
b -
and c¢_ is the vector with N elements given by
T
(4.15) he =[v _,0,0,...,0]
-t t
where v, is the numerical (frozen) value of the boundary condition at
time t = nf. The solution of the non-stiff system of differential

equations (4.13) is

(4.16)

where

U(t) = C e, + exp (-atC) {g - C '¢ },

t

g

is the vector of initial values, and (4.16) satisfies the

recurrence relation

-1

1

(4.17)

c }

U(t+2) = C t

c, * exp (-atl) {U(tr) - c

Using the

(m.k) Padé approximants to the exponential function

(Appendix I) to replace the matrix exponential function in (4.17), leads
to a family of implicit finite difference schemes which are unconditionally

stable for m 2 k (by Theorem 1) and which may be used explicitly because
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of the nature of the initial and boundary conditions (4.2) and (4.3).

The principal part of the local truncation error of such a method has

the form

1 32y 54
(4.18) (- =ath + C g2 & uyn
2 3x? 9 3t9 ‘m

where the constant C (@ = m+k+1) are given in Table 2.1 (Chapter 2).

Using the (1,0) Padé approximant to the exponential matrix function

in (4.17), gives

1 1

(4.19) U(e+t) = ¢ le + (1a20) ! fu(e) - e} + 0(12)

Writing (4.19) in implicit form and replacing c, with the

T

Vt+2’0""’O] , Where Visg is the numerical value of

the boundary condition at time t+%, gives

N-component

vector =
Et+IL L

(4.20) (I+a2C) U(t+2) - ate . = U(t)

Applying (4.2Q0) to the point (mh,nf) gives the three point, implicit

scheme

n+l n+1 ; n
(4.21) (1+ap) Um apUm_] = Um .

This scheme appears in Mitchell and Griffiths (1980,p.170); it is first

order accurate and can be shown to be unconditionally stable by the method

of von Neumann.

Formula (4.21) gives the explicit algorithm

. n+l _ ap n+l A
(4.22) U TFap U van U

which, together with the initial and boundary conditions, enables U to be
calculated at all grid points in the first quadrant of the (x,t) plane.
Using the (1,1) Padé approximant to the matrix exponential function in

(4.17), gives

(4.23) (I+%62C) U(t+2) = (I- laSLC) Q(t)+%a2(gt

2 +gt)

+2
At the mesh points (mh,n%) where m = 1,2,...,N, n = 1,2,..., (4.23)

suggests the algorithm
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for m =1

n+|

. ] n ] Bel ]
( 4.24) U1 L= 5ap) Uy + iﬁP(UO + UO)] / (1+§ap) ;

for m=2,...,N

n+1 1 n+1

1 _ 1 n 1 n 1
[ =ap Um—l + (1 2ap) Um + —ap Um—lj / (1+§ap)

(4.25) UIn 3 5

The principal part of the local truncation error of (4.23) at the mesh

points (mh,n%) 1is

2 3
(4.26) (- %azh o7u _ _1_23 3 u)n

thus indicating a second order (in time), Ao—stable method. FEmploying
the (2,0) and (2,1) Padé approximants in (4.17), gives second and
third order LO—stable methods respectively. Since the eigenvalues of
the matrix C are 1/h, (4.13) is a non-stiff system of differential
equations and hence the solution (4.16) remains non-oscillatory.

Using the (2,2) Padé approximant to the exponential matrix

function in (4.17), gives

2 2
af a2g? 2 af a i 2
—— QI = I —-.B" -
(T+5C + —5— €% U(t+2) = (I ~ 5= C + =5 CTHU(t)
(4.27) af a2g2 afl a2g?
PG O e G T O e

The implicit algorithm (4.27) may also be used explicitly at the mesh points

(mh,ng):
for m = 1
n+l_{1 (Un+1+Un) + azpz(Un+]_ Un)+(] ap _l_azpz)Un]/(] ap a2p2) .
Uy =1222% o 7 Yo T Yo 2 12 I KA A TR
for m =2 n+l1 [ap,,n, 0+l a2p?. n+l_ n, a?p? oo Un+1)+(l ap azpz)Un]/
Yy =[_2'(U1+U1 R T A TR 2712 702
2.2
+ 2p . a’p .
(1 j{+—T§—) ;
for m= 3,...,N
n+! [ap,n+l . m a’p?  n+l u® ),aZPZ(Un —Un+l)+(1 aplazpz)Un]/
(4.28) U =[—2—(Um_1+Um-1)"'6 U1 -1 772 -2 2 2 12 ''m
ap a2p2
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This scheme is fourth order accurate in time, and the principal part of

. 2
1ts local truncation error is (- —azh 0 + - 29 335 n
3% 2 720 ats m

at (mh,n%)

in R.
The component of the local truncation error due to the chosen

(M,K) Padé approxi t q 49 \D .
pp mant, namely (qu 0 u)m can be improved by at

5t
least one power of & by extrapolating in time; the other component
1 52y C
- Ealh g—;) , wWhich is related to the space discretization, will not

change. The extrapolating procedure, as in Chapter 2, determines
U(t+22) 1in terms of U(t): it first calculates U(1)= U(])(t+22) by
writing equation (4.17), in which the matrix exponential function has been

replaced by an appropriate Padé approximant, over two single time steps,

2 2 ..
and then calculates g( ) = g( )(t+2£) by writing (4.17) over a double

) E
time step. The extrapolated value g(“) = Q(E)(t+22) is then found from

one of the formulas:

y/ 2oy w0 (MEF2

(4.29) g® MR (D @)

for M # K, or

(4.30) Q(E) (22m g(l) _ 9(2))/(22M - 1) + 0(22M+3)

The extrapolating formulas are contained in Table 2.3. The term

(- %alh 82u/8x2)$ will still be present in the principal part of the

local truncation error of the extrapolated form of each finite difference
. S.s s.n

method. There will also be a term of the form (ESQ 3 u/3t )m

(s = M+¥K+2 for M # K, s = 2M+3 for M = K).

The constants E are also contained in Table 2.3. Associated with each
s

extrapolated method is the amplification symbol

(4.31) SM,K(e) = A(PK(e)/QM(e))Z - (A<1) PK(26)/QM(26) ’

where g = afl, A an eigenvalue of C (actually, the eigenvalues of
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the matrix C are all equal to 1/h, but this will not be so in latter

sections where the general form (4.31) will be needed). 1In (4.31)

M+K M+K
A=2 /(27 "=1) and PK(e), QM(e) are the polynomials of degree

K,M respectively, which define the (M,K) Padé approximant
RM,K(G) = Pp(8)/Q,(8).

The extrapolated form of a method is Ao-stable, or stable in the
conventional sense of perturbations in the initial conditions not being
magnified as t » o, if |SM,K(63|S 1 . The extrapolated forms of the
methods discussed in this section are therefore unconditionally stable,

except the extrapolated form of the method based on the (1,1) Padé

approximant which is stable only for 0 < ap < 6 + 4 V3 |, where p = &/h.

4.4 A higher order space replacement

Whereas extrapolation in time does, indeed, bring about some im-
provement in the principal parts of the local truncation errors of all
finite difference schemes resulting from (4.17), the improvement of any
one method may not be sufficient to justify its use for larger values of
h. This i1s because the component of the local truncation error given by
(—-%alh 82u/8x2)$ is still present and tends to overshadow any improve-
ment brought about by extrapolating in time.

This difficulty is partially removed by introducing a second order
backward difference approximant to 9du/3dx at the mesh points (mh,n%)
for m= 2,3,...,N and n = 0,1,..., whilst retaining the first order
approximant (4.12) at the points (h,n%) adjacent to the boundary x = 0.
This mixture of approximants to 9du/3x is justified in the theorems of
Gustafsson (1975), so that, provided a Padé approximant is chosen which
would lead to unconditional stability if the lower order approximant
(4.12) were used to every mesh point, the scheme resulting from the use of
the mixture of approximants to du/dx will also be unconditionally stable

and will have the convergence rate of the more accurate interlor approxi-

mant (see also Oliger (1974)).
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The schemes resulting from the use of different backward difference

replacements of 9u/dx can all be used explicitly though some have the
stability properties of implicit schemes.

Consider, then, the second order replacement

4.32 )
( ) 5§-= {u(x-2h,t) - 4u(x-h,t) + 3u(x,t)}/2h + 0(h2).

This replacement uses three mesh points at any time t = nf, so that
it can only be used at mesh points (mh,nf) for which m = 2,3... and

n=20,1,... . At the mesh points (h,nf), equation (4.12), written

conveniently as

(4.33) %;l = {2u(x,t) = 2u(x-h,t)}/2h + 0(h)

is retained.

Applying (4.1) with (4.33) or (4.32), as appropriate, to the N

mesh points at time level t = nf leads to the first order system

(4.34) du(t) = - %-a DU(t) + l—agt .
dt

2

In (4.34) D 1is the matrix of order N given by

2
0
-4 3
(4.35) hD = 1 -4 3
N AN \
\\ \\ \\
N \ N
0 \\ N \\
| 1 -4 3

and gt is the N-component vector given by

T
(4.36) hd, = [2v., =v,0,.-,0]

One eigenvalue of the matrix D has the value 2/h and the other

N-1 eigenvalues have the value 3/h.

The solution of (4.34) with (4.2) 1is
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_l 1 -
4.37) U(e) = - - p7!
( U(E) =D g+ exp (- 5tD) (g -0 g}
and it 1s easy to show that (4.38) satisfies the recurrence relation

(4.38) U(c+2) =D 'd_ + exp (- 228D {U(e) - D g 3

Only schemes based on Padé approximants for which m > k will be

considered. The amplification symbols of the extrapolated forms of such

1

schemes may be obtained from (4.31) with 6 = Eazx, A now an eigenvalue
of D.
Using the (1,0) Padé approximant in (4.38), gives the LO—stable
scheme
1 1
(4.39) I + zall) U(t+L) - = =
( 72%0) U(t+2) - zatd . = U(t)

which, from Table 2.1, is seen to be first order accurate in time. The
principal part of the local truncation error at the mesh point (h,n®)
is, from (4.18),

2 1 2
(- lalh %u 42 E_E)n

2 BXZ 2 3t2 1

and at the mesh point (mh,nf) 1is

3 2
(- lazhz 0°u _ 1&2 0 uyn

3 %3 2 a2 ™
for m=2,3,...,N and n = 0,1,2,... . In view of its favourable

stability properties, it is worthwhile to extrapolate (4.39) using (4.29).

The extrapolated form can be used explicitly and is L _-stable; its local

0

truncation error 1s

(- Lagn 22, b3 3%
2 3x2 3 3t 3 !

at the mesh point (h,nf) adjacent to the boundary,and

(- Lan2 2%, by 2%
.3 ox3 3 at3 n

at the interior mesh points (mh,n%) where m= 2,...,N and n = 0,1,2,...

Some improvement in accuracy may be achieved by using the (1,1)

Padé approximant to the matrix exponential function in (4.38) to give
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(4.40) (T + 7aiD) U(t+8) - Jard

1 i
= (I - =ad) u(t) + —
4 ) U(t) A

+{ 4

which is second order accurate in time and which is AO—stable. The

principal part of the local truncation error of (4.40) at the mesh
points (h,nl) 1is

2 3
(4.41) (- tagn 28 -1 43 3%uyn
T, T T

and at the mesh points (mh,n%) away from the boundary is

3 3
(4.42) (- %—ath 97u —-1]—2-23 87uyn
9x3 53 ™
for m=2,3,...,N and n = 0,1,2,... . The expression in (4.41),

(4.42), may be improved by extrapolation but, as noted in section (4.3),

the extrapolated form is not AO—stable.

4.5 Higher order time replacements

In view of the fact that all finite difference schemes resulting
from the use of backward difference replacements of the space derivative
in (4.1) can be used explicitly, it is worthwhile using higher entries
from the Padé Table to approximate exp (- %alD) in (4.38), even though
it will be necessary to square the matrix D.

Using, first of all, the (2,0) Padé approximant in (4.38) gives

1 1 2,202 _ 1 1 2,0
(4.43) (I + =alD + 32 2D<) U(t+L) (zalI + g2 2 D)c_it+

! = u(t)

L

The matrix D? 1is given by

— 4 -
=20 9
0
21 =24 9
(4.44)  h2D2 = -8 22 =24 9
1 -8 22 =24 9
N N AN N N
\ N \ N\ ~
N N N AN N
N N N N N
O N N AN N AN
L_ 1 -8 22 =24 9_J

. 2
and has one eigenvalue equal to 4/h? and N-1 eigenvalues equal to 9/h,
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Applying (4.43) to the mesh point (jh,n%) in R leads to a

linear system which may be written in matrix form as

(4.45) EU(t+2) = ¢

The matrix E is of order N and has the lower triangular form

[ p—

1
€2 &
e e e O
3 75 %4
(4.46) E = €7 € ©5 €,

e —
where
e, = 1+ap+-ap? | e, = 2ap-— —g—-azp2 > ey = lap+%%a2p2
(4.47) e, = 1+—ap+§-a2p2 R e5 = 2ap - 3a2p2 > € = %ep+%}azp2
e, = -a?p2 eq = —é—azp2 >
and the vector gn= (¢? R ¢§ y eeesd E)T has elements

n n 1 1 1
¢ =U. + ap(l+—ap)vt+2 , ¢; = U; - ap (§-+ j%ap)v

1 1 2 t+2

n_.n_ 35209 n_.n_ 1,59
by Uy ¥ @V s 4, = U, T @t
(4.48) ¢g‘ = U‘j1 (i = 5,6,...,N)

The finite difference scheme based on the (2,0) Padé approximant

is Lo—stable; the principal part of its local truncation error 1is

3 3
(4.49) (- lalhz 9—-—1—1—+ 1&3 E—E)? s J = 4,5,...,N
3 9x3 6 ot 3 J

which, on extrapolation, becomes

3 L
lzhzau__l_ﬁqaun

-1 \ 4,5,...,N .

(e
I

9X
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Expressions (4.49). (4.50) show that the loss of accuracy at the mesh

points (h,n2), =n = 0,1,... , experienced by the methods based on the

lower order Padé approximants, has spread to the mesh points (2h,n%),
(3h,n?). This is not a grave problem, however, for a space discreti-
zation involving a large value of N. Furthermore, the constant

C3 = %— in (4.49), is greater in modulus than its counterpart in (4.42)

which relates to the Ao—étable method (4.40).

These observations indicate that the AO—stable method (4.40) 1is to
be preferred to the LO—stable method (4.43). This is not so in the case
of second order parabolic equations (Lawson and Morris (1978) and
Chapter 3), for then the equivalent method based on the (1,1) Padé
approximant (the Crank-Nicolson method), also requires a restriction
on £ to ensure the decay of oscillations in U as t = .

Turning, next, to the (2,1) Padé approximant, (4.38) becomes

(4.51) (I+%a2D+-l—a222D2) U(t+L) - (%a21+-l—a222D)§t+

24 24 L

I 1
= (1- zatD) U(t)+pard,

Applying (4.51) to the mesh points (jh,n2) requires the solution
vector U(t+2) to be determined implicitly from a linear system of the
form (4.45). The matrix E 1is still of the form (4.46) but its non-—

zero elements are now given by

_ a2, oA 20 __ 4 _ 322 1 7202
e, = 1+§ap+ga P s e2 3ap 6a P s e3 3ap 8a o) s
3,22 oo b 22 o = Lapdli2,2
= = = 54ap~ P ’
(4.52) & T 1raptgatet S5 38P7a°P° 5 &g T 3
__ 1o _ 1 2.2
e7_ =a°p ’ e8 24313 ’

n .
while the elements of ¢ are given by

n 1
¢ (1- Zap)U™ 2,1 ]
1 32P)U | + ap(Gheap)v, +33PV,

n_2 .m0 1 n _ 1,11 1
(4.53) 6o ~ gﬂPU]+(1' E-ap)U2 ap(§+izap)vt+l APV
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] n 2 n | ]
o0 = - —ap 0" + - = 2,2
6 = - l-ap ot o+ gap o +(1-- 1 )Un _ 1l 29
4 67 "2 7 3%P 3 27P)Y, T 2R P Vg
1 n 2
¢n =~ -=-ap U + =g n ] n
: p U. + (1= —=ap)U. )
3 6 -2 3 J-1 ( 2 P) i . 3 =5,...,N

The vector U(t+%) 1is found from (4.45) using forward substitution.
The finite difference scheme based on the (2,1) Padé approximant, is

Lowstable ; the principal part of its local truncation error is

3 | al
(4.54) (- %ath S, dowduyn N
ox3 72 ath J ’

which, following extrapolation using (4.29), becomes

3 5
(4.55) (- Lagn2 220 - _8 5 3°uyn s j=4b,...,N
3 8X3 945 3t5 ]

Expressions (4.54), (4.55) do indicate an improvement on (4.42), (4.50)
and justify the use of (4.51) even though the three points near the
boundary suffer greater error at each time step than the remaining N-3
points away from the boundary x = O.

The final method to be considered is that obtained by replacing the
exponential matrix function with its (2,2) Padé approximant in (4.38).

The recurrence relation becomes

(I+ —alD+ -=a282D2)U(t+L) - (Sag T+ —1—a222D2)c_1t

4 48 4 48 +2

(4.56)

1 20212
g 2404,

_ - 1 1 2,2p2 1 o1
= (I 4aQD + 483.1 D-)U(t) + (aaRI

b

which gives rise to an AO—stable method. Applying (4.56) to each mesh

point (jh,n&), j =1,2,...,N, at time t =n%, n = 0,1,... , 1leads

to the solution vecter U(t+2) at the advanced time t = (n+1)% being
determined from a system of the form (4.45). The non-zero elements of

are arranged as in (4.46) and have the values

_ 1 1 2.2 — _ 5 2.2 = —a] +—7—-8,2 2
e] = ]+—2-ap+—]28 P s e2 -ap ]23 P ’ e3 4 p ]6 P ’
(4.57)
3 3 1 1 114252
% G APt 37PT v e =-apm watpt ,  eg = zapt AP

E
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1
e = - 12,2 _ 20
; 68 P . e :

, n
The elements of the vector $ are

¢n = (1= lap+-l—a p2)y" +ap(—+-—— ) 1
1 2 12 IV, rap (- T2V,
n 5
= a l—-—— - = 3 2.2
¢2 p< ap)U +(1 4ap+ g3 2p )U —ap( 48ap)v

IS N
ap(4 ASaP)V b4

1 7
o7 = ap(~ — +-—ap)UT+a (1- la Ul+ 3 3 n
1- 2 ,2.2
4 16 17 oP 2 p) 2 ( 4ap+ 16a P )U3

w

1 25 1
s - _ 1 2
8a pvt+£L 8321" Vt ?

O n 111
¢ = - =a2p2y +ap (- —+ ap)U +ap (1- — U +(1- Sap+ 2_a2p2yy0
4 6 I AY) p( ap) (1= Zap+ 1zapHu,
1 1 50
582 PPv, +9 TPV
1
o7 = g2p2y" a-——-i-— U -1 n 3.3 2 o\l
; T3P, p( 24ap) ap(l 2<':1p)Uj_?_+(1 ;3P 2P )UJ._]

3 .3 :
+ (1- Zap+-rga2p2)U? ;3= 5,..0,N

The local truncation error of (4.56) for j=4,...,N and n = 0,1,... is

(4.59)

- Lagn2 33%u | _1 05 a5u)g ,
3 3X3 720 3X5 ]

the time component in which may be improved by extrapolating, using (4.30),

to give

3 7
( 4.60) (- Lqgp2 v _ 1,7 37uym
3 8X3 1890 at7 ]

In the event of an even higher order approximant to the space derivative
being used in (4.1), instead of (4.32), the elegant methods of Gourlay and
Morris (1980) for improving the accuracy in time of numerical methods for
parabolic equations, can be used with the relations (4.17), (4.38).
to

Using a more accurate space replacement requires the matrix D

have increased band width. This band width would be increased still further
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on squaring D and more than three points near the boundary would suffer
loss of accuracy when solving (4.45) using the (2,0), (2,1), (2,2)

Padé approximants, though stability would not be affected. It may,
therefore be advisable to use the techniques of Gourlay and Morris (1980)
with a space replacement (4.32), but the methods developed in this section

and in sections (4.3), (4.4) can be implemented more quickly and are to be

preferred for use with (4.32).

4.6 Numerical experiments

To discuss the behaviour of the methods developed in sections 4.3,
4.4, 4.5, the methods based on the (1,1), (2,0), (2,1), (2,2) Padé
approximants without extrapolation,are tested on a number of problems from
the literature. When these four Padé approximants are tested in conjunction
with the matrix C given by (4.14), they will be named Cl1, C20, C21, C22,
respectively, and when used in conjunction with the matrix D they will be
named D11, D20, D21, D22, respectively.

The boundedness of the solution and the build-~up of error may be ex-
amined with reference to two norms, as in Oliger (1974). Let gt -
u(jh,nQ)-U? , with j =0,1,...N and n = 0,1,... , so that 2" is the

vector of such errors and has N+1 elements, and let Yn = (Ug,Un,...,

n,T

Uy

be the vector (of order N+1) of solutions, including the boundary

condition, at time t = nf. The norms are defined by

N
n = o D2 =p g0 |2 M2
g | . m?x | . |, |l & H2 JZ_OI ; 12, lv i|2

N,
hj2=O|UJ.| :

The methods (4.9) and (4.10) based on the central difference approximation
are also tested on the first two problems and their behaviour is shown

graphically in Figures 4.1 - 4.4. The differential equation on which the

methods are tested 1s
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the initial and boundary conditions being different for each problem but

a=1 1in each problem.

Problem 4.1 (Oliger (1974)).

Here the initial conditions are taken to be
g(x) = sin 2kmx ; Xx 20
and the boundary conditions to be
v(t) = - sin 2krt ; t >0
where k 1is positive integer. The theoretical solution of this problem is
u(x,t) = sin 2km(x-t)

and the numerical solution will be calculated for 0 < x < ]. The integer
k gives the number of complete waves in the interval 0 < x < 1. The

scheme (4.9) produced results depicted in Fig. 4.1 at time t = 1.0 with
1 1

h = 80’ g = 552 P = 4.0 and k = 2. The solution computed using the
Crank-Nicolson type scheme (4.10) at time t = 1.0 with h = -ga, 2 = -%6,
p=4.0 and k = 2, 1is shown in Fig. 4.2.
] —
640° 80

The solution was computed with h = —/f—, & = ! s, pP=8 and k = 2,

using the methods discussed in sections 4.3, 4.4, 4.5; the values of

Il v “ , II Z ll , ” Z I] at time t = 0.5,1.0, 2.0 and 4.0 are
2 2 e
given in Table 4.1. Choosing this small value of h has the effect of
]

lessening the emphasis of the components - %alh 32u/ox2 and - §a2h2
33u/9x3 when the backward difference approximations (4.33) and (4.32)
are used to replace the spatial derivative. The increased number of mesh
points at each time level can be appreciably offset by using a large value

of &, and consequently of p. In the paper by Oliger (1974), for

example, p was given the value %— compared with the value 8 1in the

. -
present experiment.

Visual analysis of Table 4.1, and comparison with Table 3.1 in
Oliger (1974), shows that errors for all eight formulations involving the

matrices C and D show very little increase in magnitude after time
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Figure 4.1:
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Numerical results at time t=1.0 for Problem 4.1
using the backward difference scheme (4.9) with
h= 1/80, 2 =0.05, p = 4.

Theoretical solution (T); computed solution (C).

~1.08]

Figure 4.2:

Numerical results at time t=1.0 for Problem 4.1
using the Crank-Nicolson type scheme (4.10)

with h=1/80, & =0.05, p=h4. '
Theoretical solution(T); computed solution(C).
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t = 1.0. That is to say. the errors reach their maximum values very

quickly, there being very little accumulation of errors after time t = 1.0.
This observation contrasts with the results of Table 3.1 in Oliger (1974)
where the errors, generally, show a gradual growth as time increases.

The stagnation of errors experienced using these two-time level methods

make them suitable for use with large values of t. The maximum error of

each method was seen to be in keeping with the truncation errors given in
sections 4.3, 4.4, 4.5. The methods are also seen to behave smoothly

with the theoretical solution. The methods based on the (2,1) and (2,2)
Padé approximants showed the greatest improvement when used with the matrix
D (for any value of t), the corresponding improvements in the performance
of the methods based on the (1,1) and (2,0) Padé approximants being less

pronounced.

Problem 4.2 (Abarbanel et al (1975))

The boundary conditions and the initial conditions for this problem

are the same as for Problem 4.1. The parameter k 1is given the value 4
and the solution computed with h = 1/640, 2 = 1/80, p = 8; the numerical
results at time ¢t = 10.0 are given in Table 4.2. The corresponding

results for k = 4 are given in Table 4 of Abarbanel et al (1975) where
the ratio p was given the value 0.9. In their Table 4 Abarbanel

et al (1975) compare their results with earlier work by a number of
authors Boris and Book (1973), Kreiss and Oliger (1972), Oliger (1974),
and Richtmyer (1963). The results of this chapter show that the methods
developed are very competitive with all methods tested in Abarbanel et al
(1975) for k = 4. The growth of errors as a result of increasing the
wave frequency was not pronounced as any of the methods tested in
Abarbanel et al (1975). Allowing a factor of 3 for the faster CDC 7600

computer over the CDC 6600 computer used by Abarbanel et al (1975), the

CPU times quoted in Table 4.2 are generally superior to the figures quoted

in Abarbanel et al (1975). This observation is strengthened when it is

further noted that the CPU times in Table 4.2 include the time taken to



Figure 4.3: Numerical results at time t=10.0 for Problem 4.2
using the backward difference scheme (4.9) with
h=1/80, 2=0.05, p=4.

Theoretical solution (T); computed solution (C).

(©)

1 = O for
1 : ical results at time t }O.
freare -4 gg?ﬁ;;; 4.2 using the Crank-Nicolson type
scheme (4.10) with h=1/80, & =0.05, pf=4ic)
Theoretical solution(T) ;computed solution .
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compute || Z Ilm by 640 comparison statements in the computer

program, It is confirmed again that the use of a small value of h 1in

the methods which have higher accuracy in time, produces accuracy as
high as do those methods, tested in Oliger (1974), Abarbanel et al (1975)

with a larger value of h which have O0(h%) error in space. Solutions

computed using (4.9) and (4.10) for problem 4.2 are also shown in

Figures 4.3 and 4.4 respectively.

Problem 4.3 (Khaliq and Twizell (1982))

The boundary condition for this problem is

u(0,t)

I
rt
-e
t

>0

and the initial condition is

u(x,0)

]l +x 3 X 20 »

The theoretical solution of the problem is

Il

u(x,t) l +x-t ;3 x2t,

u(x,t) =

|
ct

|
w
]
A
rt

so that there exists a discontinuity in the solution across the line

t = x 1in the (x,t) plane.

Problem 4.4 (Khaliq and Twizell (1982))

Here the initial condition is

v
o

u(x,0) = exp(x) ; X

and the boundary condition is
u(o,t) = exp(t) ; t >0 -
The theoretical solution of the problem 1is

u(x,t) = exp(x-t) , x 2 U,

u(x,t) exp (t-x) ; x <t

so that there exist discontinuities in the first derivatives across the

line t = x 1in the (x,t) plane.
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Problems 4.3 and 4.4 were tested with h = 1/80, & = 1/20, p = &4
and the results are given at time t = 1.0 in Tables 4.3. 4.4 respectively.
It is noted again that the methods based on the (2,1) and (2,2) Padé

approximants, showed greater improvements than the improvements shown by

the methods based on the (1,1) and (2,0) Padé approximants. Using the

higher order space approximation, the highest accuracy was achieved by method
D22 followed, in succession, by D21, DIl, D20; this is in keeping with
the local truncation errors of these methods and with the numerical results
obtained for Problems 4.1 and 4.2. It was also found, as the computation
proceeds, that, away from the boundary, the greatest errors were at those

mesh points close to the line t = x across which there were discontinuities.

Problem 4.5

The boundary condition for this problem is taken to be

u(0,t) = exp(-t) ; t >0

and the initial condition to be

u(x,0) = exp(x) ;3 0<x =<1
The theoretical solution of the problem is
u(x,t) = exp(x-t)
which decays as time increases. The problem was run with h = 1/80, 2 = 1/20

and p = 4; the numerical results at time t = 2,4,8,10 are given in
Table 4.5.

The errors were found to behave in much the same way as in the other
problems; that is, using the higher order space approximant, produced a
more noticeable improvement in the methods based on the (2,1), (2,2)

Padé approximants than in the other two methods. The two formulations based
on the (1,1) Padé approximant, are seen to give good results at time
t = 10.0, when, for 0 < X < 1, the solution lies in the approximate
4.540 x 165 < u < 1.234 x ]64 . This is due to these formu-

interval

lations using fewer mesh points and thus experiencing smaller round off

errors.
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4.7 gpnclusions

Two families of two-time level finite difference schemes, based on
Padé approximants to the matrix exponential function, have been developed
for the numerical solution of first order hyperbolic partial differential
equations with initial and boundary conditions specified.

The oscillatory behgviour of the methods based on the usual central
difference replacement of spatial derivative, was discussed. In order to
obtain smooth solutions, the space derivative was replaced first of all by
the usual first order backward difference approximant at each mesh point
at a given time level, and the resulting system of first order ordinary
differential equations was solved using the (1,1), (2,0), (2,1), (2,2)
Padé approximants. Next, the space derivative at the mesh point adjacent
to the boundary, at a given time level, was replaced by the same low
order approximant, and by the usual second order backward difference
approximant at all other mesh points. The resulting system of ordinary
differential equations was solved using the same four Padé approximants.

A1l four numerical methods of each backward difference family were
implicit in nature; those based on the (1,1) and (2,2) Padé approxi-
mants were seen to be Ao—stable and those based on the (2,0) and (2,1)
Padé approximants were seen to be Lo—stable. The form of the given
boundary conditions, however, meant that the backward difference methods
were all used explicitly, obviating the need to solve a linear algebraic
system. The CPU time for all eight backward difference methods were found
to be fast.

The backward difference methods were tested on five problems from the
literature; the results obtained were better than other results in the
literature, even though the order of the methods, in many cases, was
lower. It was found that the lower order (1,1) and (2,0) Padé
approximants gave good results when the lower order replacement of the

space derivative was used at each mesh point at a glven time level, and
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that the higher order (2,1) and (2.2) Padé approximants gave their

best results when the higher order replacement of the space derivative

was used at interior mesh points. This implies that lower order

replacements in both space and time, or higher order replacements in

both space and time, are most effective; this observation was also

made by Abarbanel et al (1975;p.351). For problems with decaying

solutions, the two backward difference formulations based on the (1,1)

Padé approximant give very good results due to the smaller number of

mesh points used, thus reducing round-off errors.



Table 4.1

Numerical results for Problem 4.1 at time

t = 0.5,1.0,2.0,4.0
CPU CP
vethod - |[vll 2 flell, izl 0 vl Nzl .z (o)
t = 0.5 t“C 1.0
Cll 6.75(-1) 3.55(-2) 6.08(-2) 0.062 6.65(-1) 5.00(-2) .07(-1) 0.115
C20 6.70(-1) 5.76(-2) 1.01(-2) 0.070 6.58(-1) 8.55(-2) 56(-1) 0.123
C21 6.74(-1) 1.79(~1) 6.01(-2) 0.074 6.64(-1) 2.07(~1) .07(-1) 0.137
C22 6.75(-1) 1.71(-1) 5.98(-2) 0.078 6.64(-1) 1.97(-1) 1.04(-1) 0.145
D11 7.07(=1) 7.03(-3) 1.21(-2) 0.084 7.06(-1) 1.00(-2) 2.40(-2) 0.158
D20 7.03(-1) 4.67(-2) 9.11(-2) 0.088 7.00(-1) 7.20(-2) 1.17(-1) 0.169
D21 7.06(-1) 1.31(-2) 2.66(-3) 0.095 7.05(-1) 1.89(-2) 2.70(-2) 0.17¢9
D22 7.06(-1) 1.23(=3) 2.42(-3) 0.119 7.06(-1) 1.75(-3) 2.71(=3) 0.227
t=2.0 t = 4.0
Cll 6.65(-1) 5.00(-2) 1.07(-1) 0.218 6.65(-1) 5.00(-2) 1.07(-1) 0.425
C20 6.59(-1) 8.61(-2) 1.56(-1) 0.249 ] 6.59(-1) 8.61(-2) 1.56(-1) 0.487
C21 6.64(=1) 2.07(-1) 1.07(-1) 0.264 | 6.64(-1) 2.07(-1) 1.07(-1) 0.517
C22 6.64(~1) 1.97(-1) 1.04(=1) 0.279 | 6.64(=1) 1.97(-1) 1.04(-1) 0.547
DIl 7.06(-1) 1.00(-2) 2.93(-2) 0.305]7.06(-1) 1.00(-2) 2.43(-1) 0.600
D20 7.00(-1) 7.30(-2) 1.27(-1) 0.312|7.00(~-1) 7.30(-2) 1.27(-1) 0.689
D21 7.05(-1) 1.90(-2) 2.76(-2) 0.347 { 7.05(-1) 1.90(-2) 2.76(-2) 0.791
D22 | 7.05(-1) 1.75(=3) 2.71(-3) 0.445| 7.06(-1) 1.75(=3) 2.71(=3) 0.877

Table 4.2(a)

Numerical results for Problem 4.2 at time t =10 using

previously published methods.

Method Wi, el (e
Richtmeyer (p=0.9) 8.48(-1) 5.9(-1) 3.4
Abarbanel et al 3 level (p=0.9) 9.95(-1) 1.4(-2) 6.3
Abarbanel et al 2 level (p=0.9) 9.97(-1) 8.6(-3) 7.3
SHASTA (p=0.45) 4.55(-1)  3.2(-1) 15.2
Abarbanel et al 3 level (p=0.65) 1.00 1.0 1.4
Abarbanel et al 2 level (p=0.5) 1.00 6.5(-1) 1.8
Kreiss - Oliger (p=0.25) 1.00 1.2(-1) 3.6
Abarbanel et al 3 level (p=0.1) 1.00 2.8(-2) 8.8
Abarbanel et al 2 level (p=0.05) 1.00 5.0(-2) 17.4
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4.2 (b) Numerical results for Problem 4.2 at time

t =10

Method lvll > izl » Izl CPU
- e (sec)
Cl1 5.61(~-1) 1.86(-1) 4.00(-1) o 1049
Cc20 5.29(-1) 2.87(-1) 5.73(-1) 1.121
C21 5.54(-1) 3.82(-1) 3.85(-1) 1.278
C22 5.59(-1) 3.72(-1) 3.75(-1) 1.352
D11 7.04(-1) 8.05(-2) 1.94(-1) 1.483
D20 6.58(-1) 2.46(-1) 4.81(~-1) 1.590
D21 6.96(-1) 4.17(-1) 6.47(-2) 1.697
D22 7.07(-1) 8.28(-3) 1.48(-2) 2.178
Table 4.3 Numerical results for Problem 4.3 at time t = 1.0

CPU

Nethod P HE e, &Y
Cli 1.78 2.01(~2) 9 64(-2) 0.007
Cc20 1.83 5.76(-2) 1.22(-1) 0.007
C21 1.80 1.59(-1) 1.01(-1) 0.008
C22 1.78 1.67(-2) 9.55(-2) 0 008
D11 1.76 1.75(-2) 4.00(-2) 0.008
D20 1.82 4,82(-2) 7.78(-2) 0.008
D21 1.79 1.63(-2) 3.72(-2) 0.00¢
D22 1.78 4.51(-3) 2.78(-3) 0.010
Table 4.4 Numerical results for Problem 4.4 at time t = 1.0
CPU

Method il 2 2l 2 21| . (sec)
Cli 5.97(-1) 1.40(-1) 5.76(~1) 0.009
C20 5.98(~1) 2.51(-1) 5.79(-1) 0.010
C21 5.99(~1) 2.38(-1) 5.50(-1) 0.011
C22 5.97(-1) 2.34(-1) 5.62(~1) 0.012
D11 5.83(-1) 9.04(-2) 5.40(-1) 0.012
D20 5.90(-1) 9.78(-2) 5.48(-1) 0.012
D21 5.82(-1) 8.53(-2) 5.43(-1) 0.013
D22 5.79(-1) 8.60(-2) 5.18(-1) 0.016
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Table 4.5 : Numerical results for Problem 4.5 .

Nz]|

Method Time 2.0 4.0 8.0 10.0
Cll 5.18(-4) 6.96(=5) 1.27(-6) 1.73(-7)
€20 1.80(-2) 2.44(-3) 4.47(-5) 6.61(=6)
C21 7.68(-2) 2.82(-2) 3.82(-3) 1.41(-3)
€22 4.07(-2) 1.50(=2) 2.03(-3) 7.46(-4)
D11 5.56(~4) 7.71(-5) 6.18(-6) 4.26(-6)
D20 1.90(-2) 2.57(-3) 4.71(=5) 6.37(-6)
D21 7.05(-3) 9.54(-4) 1.75(-5) 2.36(-6)
D22 8.80(-4) 1.51(=4) 1.04(=5) 2.74(-6)

zll,,

Method Time 2.0 4.0 8.0 10.0
Cll 1.09(-3) 1.48(~4) 2.82(-6) 4.01(-7)
€20 2.66(-2) 3.61(-3) 6.61(-5) 8.94(-6)
C21 8.55(-3) 1.16(-3) 2.11(-5) 2.86(-6)
€22 3.59(-3) 4.83(-4) 8.84(-6) 1.20(-6)
DI1 1.20(-3) 1.84(-4) 1.41(-5) 8.94(-6)
D20 2.88(-2) 3.90(-3) 7.13(-5) 9.65(-6)
D21 1.08(-2) 1.45(-3) 2.66(~5) 8.60(-6)
D22 1.68(-3) 3.61(-4) 3.12(-5) 7.96(-6)
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CEAPTER 5

SECOND ORDER PERIODIC
INITIAL VALUE PROBLEMS

5.1 Introduction

Periodic initial value problems of the form y" = f(x,y) arise in the
theory of orbital mechanics, and in recent years there has been considerable
interest in the numerical solution of such problems.

Generally speaking, second order initial value problems can be divided
into two distinct classes: (a) problems for which the solution period is
known in advance; (b) problems for which this period is unknown initially.
Numerov's methods applied to type (a) always stays on the orbit, whereas the
Stormer-Cowell methods with step number greater than two spiral inwards. In
the terminology of Stiefel and Bettis (1969), the former method is orbitally

stable, the latter orbitally unstable. Modified numerical methods have been

proposed by Gautschi (1969), Stiefel and Bettis (1969) and Jain et al (1979),
which can be used to compute the solution for problems of type (a). For the
numerical solution of problems of type (b), it is desirable that the method
should be P-stable. Lambert and Watson (1976) have shown that certain linear
multistep methods of arbitrary stepnumber possess a periodicity property when the
product of steplength and angular frequency lies within the interval of period-
icity and these authors developed symmetry conditions under which a linear multi-
step method possesses a non-vanishing interval of periodicity. However, Lambert
and Watson have shown a P-stable linear multistep method cannot have order of
accuracy greater than 2. Jain 35_31_(1979) have derived higher order methods

and claim that they are P-stable. It is noted that their concept of P-

stability is considerably weaker than that given by Lambert and Watson (1976).
Higher order P-stable methods are also proposed by Cash (1981) and Chawla (1981)

whose methods need three function evaluation at each step. Cash (1981) has

tested his fourth and sixth order P-stable methods on numerical examples and
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achieved higher accuracy than Lambert and Watson (1976), by using the ana-
lytical solution to compute the solution with steplength h at y(h).
However, for practical problems, it is usually necessary to use a starting
procedure.

In section 5.2 of this chapter, a recurrence relation is developed
which yields two-step multiderivative methods, employing Padé approximants
to the exponential functions. The definition of P-stability given by
Lambert and Watson (1976, p.199), is adapted. The methods are analysed in
section 5.3. The interval of periodicity, principal part of local truncation
errors and non-zero coefficients for the algorithms yielded by the first six-
teen entries of the Padé Table (Appendix I) are given in
Appendix III. The two-step multiderivative methods are given in Appendix IV.
Fourth and sixth order methods based on the (2,2) and (3,3) Padé approximants
are tested for comparison purposes on the problems discussed by Cash (1981),
in section 5.4. The methods are analysed in PECE mode and tested on numerical
examples discussed by Jain et al (1979) and Shampine and Gordon (1973) in

section 5.5. Finally, conclusions are drawn in section 5.6.
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5.2 Development of the methods

Consider the second order initial value problem

(5.1) Z"(t) = f(t,z) ; Z(to) =vy0» Y'(ty) =y§

N .
where y € E . A particular case of (1) is the linear problem

(5.2)  y"(t) =Ay() + B y(tg) = vy, y'(tp) =y}

Equation (5.2) arises in the numerical solution of the simple wave

equation 32u/ot? = 32u/3%x? when the space derivative is approximated

by a finite difference replacement such as

(5.3) EEE, = h72{u’x-h,t) - 2u(x,t) + ul{x+th,t)} + 0(h2) ,
9x?

where h 1is the increment in x arising from the space discretization.
This leads to a system of ordinary differential equations of the form
(5.2) in which the diagonalizable matrix A has real, negative eigenvalues,

and B = 0 when the boundary conditions are zero.

It is therefore appropriate to consider the single test equation

(Lambert and Watson (1976), Dahlquist (1978))

(5.4)  y"(t) = - A2y(t) 5 y(tg) =vg, y(te) =7y} »

where A,ye R , whose general solution
(5.5) y(t) = a cos At + b sin At

is periodic with period 27/x for all a,b other than the trivial case

The general solution (5.5) may be written in the alternate form

(5.6) y(t) = a exp(iit) + b exp(-iAt) , 1 =+ Y-1

which becomes
- . . _'1 ' .
(5.7)  y(t) = -3i(iyp + A lygyexp{ir(t-tg)} = zi(iyo=A yo)exp{-iA(t-tg)}

when the initial conditions in (5.4) are introduced.
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It may now be shown that y(t) given in (5.7), satisfies the re-

currence relation

(5.8)  y(t+2) - {exp(ifA) + exp(-ifx)}y(t) + y(t-2) = 0 ,

where £ 1s a convenient increment in t. This recurrence relation may be

used for t = tg + &, tp + 22,... 3 for t = t; the initial conditions

give y(tg) = yg but the value y(tp+L) remains to be determined in terms

of yo and y§ . Equation (5.8) leads to a family of multiderivative
methods for the solution of (5.1), the higher derivatives being easy to
calculate because of the periodic properties of the problem.

Any numerical solution of (5.8) will determine y(t) explicitly or

implicitly depending on the approximations to exp(xifA). Using the

(m,k) Padé approximant to exp(if)) of the form

(5.9)  exp(ifd) = P, (i8A)/Q_(itA) + 0 (=R
where Pk’ Qm are polynomials of degree k,m respectively, defined by
. )
(5.10) Pk(e) =1 + p16+p26 + .... +p8 ;  Pp(8) =1
and
m _
(5.11) Q (8) = 1—q16+q262 R ) qum , Qo(8) =1

with p >p >... p,>0 and q_>q >...>qm>0 depending on the chosen Padé
12 k 102

approximant, equation (5.8) takes the form
Qm(iRA)Qm(—iEA)y(t+2) - {Qm(-ilk)Pk(izx)+Qm(iRA)Pk(—i£A)}y(t)
75.12) + Qm(iﬁx)Qm(—izk)y(t—l) = Q.

On substituting for the polynomials Pk’Qm in (5.12), odd powers of 12X

vanish and the recurrence relation takes the form

2 2 L b 2m 2m
{1-a 2 A +a & A — ... * -D%a 2 A Jy(t+)
1 2 m

S 28
2 2 L4 S 2
—{2-b 2 A +b 2 A - ...+ (D) bSR Ay (t)
1 2
2 2 L4 cm 2Mm

. m o
(5.13) + {1—alz A +a 2 A T el (-1)"a % A Yy(e=2) =0,
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where the s bj clearly depend on the Padé approximant beong used and

s =[ 3 (m+k)].

For a single equation of the form (5.1), equation (5.13) yields the

two-step multiderivative formula

F a2y 4 gl (iV) 2m_ (2m
yn”‘l’l 1 yn+1 aZQ' yn+1 + ... + amg yn+ )
= 2v +bq22v" + y, (1v) 2s_(2s
VAL P10 A + b a2yt )
5.14 - { + a 82y 4, (1V) 2m_, (2m)
( ) Yoo TRy agkly T +ak myn_1 },

n=1,2,..., which is explicit of m = 0 and implicit of m # 0. It is
assumed that y(t) 1is sufficiently often differentiable. 1In (5.14),
yj = y(tj) = y(tp+jL), where j = 0,1,2,...

the non—zero coefficients of (5.14) for the algorithms yielded by the first

5

sixteen entries of the Padé table are given in Appendix III.

Initial value problems for which f = f(t,y,y') may clearly be written in

~ ~ ~

the form of a first order system u' = v, v' = f(t,u,v) where u=y, v=y'.

Multiderivative methods for first order systems were discussed in Chapter 2.

5.3 Analyses
With the multiderivative method (5.14), may be associated with the linear

difference operator L defined by

m
Ly(t); 2] = y(e+2) - 2y(t) + y(t=2) + Y ajzzjy(Zj) (t+2)
j=1

S
(5.15) -1 b a2y (g
w=1 ]

i o~18

2] 1
ajl Jy(zJ)(t_R)
1
Expanding y(t+%) and y(t-%2) and their derivatives as Taylor series about

t, and gathering terms, gives

(5.16) L{y(t); &]= Coy(t)+C12y'(t)+C222y"(t) + ...

where the C. are constants. The operator 1 and the associated multi-
J

derivative method (5.14), are of order p if, in (5.16), Co =Cy =
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The term Cp+2 1s the error constant of the multiderivative method (5.14);

the error constants for the first 16 methods of the family are contained in

Appendix III. The multiderivative method (5.14), is consistent with the

differential equation if p > I; clearly the methods based on the (0,1)

and (1,0) Padé approximants are inconsistent whilst all others are con-

sistent.

Rearranging (14) in the form

v . . )

(5.17) Yn+1 - 2Yn +yn—1 = jzllzj(-ajy(iii + bjyn(zj) - ajynf?J)),
where v = max(m,s) (clearly for m > k, bs+1 = ... =b =0, and for
m < k, T 0), it is seen that the multiderivative methods are
generated by the characteristic polynomials

(5.18) o(r) =12 - 2r + 1 , 0.(r) = - a.r2 +b. - a.

J J J J

for j = 1,..., v. The quadratic polynomial equation o(r) = 0 has a double

zero at r = + 1 and the family of multiderivative methods is zero-stable;
all except the methods based on the (0,1) and (1,0) Padé approximants are
thus convergent.

It is easy to see from (5.14) and (5.17) that, for m 1less than, equal to,
or greater than k, every member of the family of multiderivative methods, 1is
symmetric with even stepnumber (two-steps) and even order p. The findings of
Lambert and Watson (1976) on the periodicity of linear multistep method then
carry over to multiderivative methods, as does the theory of weak stability

(Lambert (1973, p.202)).

Writing H = A, equation (5.13) becomes

m - 2 Y_ _13,S 28
{1 - aHZ+ayH"- + (-D%a By - {2 - DyETboHTS L 1)"b 02}y

m 2 _
T b - 12m - .
(5.19) + {1 - ajH%+a,H coo* (FD)Ta By =0

The solution of (5.19) involves the nth powers of the zeros rj and 13

of the periodicity polynomial
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Q(r,H2) = {1 - ajH? + a,H* - ... + (-1)®,; g2™),2
m

= {2 - byH2 + b HY - ...+ (-1)%p B2S)y

S
* {1 - a2 + a,Ht - ..+ (-D)%a B°T) ,

m
= Qm(—iH)Qm(iH)r2 - {Qm(-iH)Pk(iH) + Qm(iH)Pk(—iH)}r

(5.20) +.Q (-iB)Q_(iH)

The interval of periodicity of the multiderivative method (5.14), is
determined by computing the values of H2 for which the zeros of the

periodicity equation (Lambert and Watson (1976,p.193))

(5.21) Q(r,H2) = 0
satisfy
(5.22) e AL r, = o 10

where 6(H)e R ; the multiderivative method is then orbitally stable.

For each member of the family of multiderivative methods, the periodicity
equation may be written down in terms of the associated Padé approximant.
Those multiderivative methods which have interval of periodicity H2 € (0,«)
are said to be P-stable (Lambert and Watson (1976,p.199)). The intervals of
periodicity for the consistent multiderivative methods based on the first
sixteen entries of the Padé table are contained in Appendix III (those
interval bounds occurring as integers or improper fractions, are exact, those
occurring with one decimal place, have been rounded up or down depending on
whether the number is a lower or upper bound of the interval). The con-
sistent multiderivative formulas based on those (m,k) Padé approximants

for which m > k are seen to be P-stable.
In computing the solution at time t = £ the formula

(iv) , 1 o, (3V) o g(g5)
5, = + ooyl + L2yt 4 1 g2yu — 1 by + 1 27y ’
(5.23) Y1 = Yo Yo 3 yo * < Y1 715 0 2

or the formula
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Y1 = Yo+ fyy + 1Py o+ Log2yy -1 pu (V) 7y (i)
3 0 Y1
6 45 360
(5.24) o 1 g6, (VD) gy e (vi) ;
108 0 2160 e v oD,

(Twizell (1981)) may be used in solving problems which are known to have
outward-spiralling theoretical solutions. Otherwise, Taylor's series may be
used to give y, to the neéessary accuracy.

To investigate absolute stability, the family of multiderivative methods
are applied to the single test equation (5.4). Writing h = -92 )2
(Lambert (1973,p.258)), the stability polynomial for each of the methods

from equation (5.13) takes the form

n(r,ﬁ) (1 + alﬁ + agﬁz + ... 4 amﬁm)(r2+l)

-— ._2 -
(5.25) (2 + byh + byh” + ... + bshs)r

and the interval of absolute stability (Dahlquist (1978,pp.133-134)), are

found by solving the equation

(5.26) m(r,h) = 0

in each case.

Methods based on the (m,k) Padé approximants for m » k are found
to be A-stable, whilst methods based on the (m,k) Padé approximants for
m < k have finite interval of absolute stability hel -0,0]. The value
of @ is in fact the same as for the interval of periodicity H2 ¢ (0,a).
The analogy between P-stability and A-stability for two—step symmetric
multistep methods, is thus obvious for the family of multiderivative methods

developed in section (5.2), see also Dahlquist (1963, 1978), Lambert and

Watson (1976), Chawla (1981) and Hairer (1979).

5.4 Numerical examples

The family of multiderivative methods developed in section 5.2, were

tested on two problems well known in the literature. Numerical results for

methods based on the (2,2) and (3,3) Padé approximants, are presented
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in this section.

Problem 5.1

This is the almost periodic problem introduced by Stiefel and Bettis

(1969) and considered by Lambert and Watson (1976) and Cash (1981). It is

given by

no_ it
z'" = z + 0. 001 e z(0) =1, z'(0) = 0.9995 i, z C.

The theoretical solution satisfies

u(t) = cost +0.0005t sin t, ue R ,
v(t) = sint - 0.0005t cos t, ve R
z(t) = u(t) + iv(t)

and represents the motion of the point z(t) on a perturbation of a
circular orbit. The distance of this point from the centre of the orbit

at time t 1is given by
1 1
y(t) = [u?(t) + v2(£)1% =[1 + (0.0005t)2 ]2

so that the point spirals slowly outwards as time increases.
Following Lambert and Watson (1976), the differential equation is written

in the form of the real linear system

u" = -u + 0. 001 cost ; u(O) 1, u'() =0 ,

(5.27)
v' = - + 0. 001 sint ;3 v(0) = 0, v'(0) = 0.9995 ,

f rom which the higher derivatives, for use with the multiderivative methods
developed in section 5.2 are easily determined.

The numerical solutions U(t) , V(t) of the real system (5.27), were com—
puted at t=40m1 for & = w/4, w/5, T7/6, ﬂ/9, m/12, wusing the multi-
derivative methods based on the (2,2), (3,3) Padé approximants. The corre-
sponding computed values Z(t), TI(t) of z(t), v(t) were then computed

using
1
Z(t) = U(t) + iv(t) , r(t) =[U2(t) + Vv2(t)]12.

The error moduli in the computed values Z(t), Ir(t) given by
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E(z) = |z(t) - 2(t)]

[ L

th
n

[{ult) = U(E)}2 + {v(t) - V(t)}2]

L

E(v) = |y(t) - T()]

1 1
[{u?(0) + v2(£)}* = {U2(c) + v2(t)}?|
were also calculated. The values of T(t), E(z), E(y) are given in

Table 5.1.

It can be seen that for both methods tested, the path of the point z(t)
is an outward spiral for all steplengths, which is in keeping with the

theoretical solution. The numerical solution obtained using the fourth

order method based on the (2,2) Padé approximant, was found to be closer

to the theoretical value Y (407) than the method due to Cash (1981), which
is of comparable order, except for & = w/4 when the error modulus was
0.002339 compared to 0.002146 obtained by Cash.

The computed solution obtained using the sixth order multiderivative
method based on the (3,3) Padé approximant, was found to be closer to the
theoretical solution +Y4Om) than the sixth order methods of Lambert and
Watson (1976) or Cash (1981) for all values of &. Moreover, convergence
to six decimal places was attained for higher values of & wusing the
(3,3) multiderivative method.

The approximate formulas (5.23), (5.24) were used with the (2,2),
(3,3) Padé methods, respectively, whereas Cash (1981) used the theoretical

solution.

Problem 5.2

This example was used by Lambert and Watson (1976) and Cash (1981)

and is given by

—w2yy +  ¢"(t) + wie(t) 5 y1(0) =a + $(0), y;(0) = ¢'(0)

<
Il

—wZy, + o 6"(E) + w2e(t) 3 y2(0) =¢(0) , yp(0) =aw + ¢' (0)

«
N
i

The theoretical solution of the problem is given by
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Table 5.

t = 407

1

for Problem 5.1

vy (40m) = 1.001972 R u(40m) =1 , v(40T) = -0.062832

(2,2) method (3,3) method

LR

]

| T E(Y) E(z) r E(Y) E(z)

| w/4 ] 1.004311 |0.234(-2) |0.418(-2) {1.001981 |0.908(~5) |0.813(-7)
7/5 1.002845 |0.874(-3) .710(-3) 1.001974 {0.236(-5) .567(-8)
/6 1.002383 }0.411(-3) .167(-3) |1.001972 [0.792(-6) .642(-9)
/9 1.002052 |0.805(-4) .659(-5) |1.001972 |0.699(-7) .501(-11)
m/12 1.001997 10.255(=4) ' 0.664(-6) 11.001972 10.125(-7) .159(-12)

i i |
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Table 5.2

Error modulus in the computed solution at t = 207 for Problem 5.2

i;\i\ m/32 /8 m/2 T

(2,2) multiderivative ﬁethod
5 0.402(-15) 0.103(-12) .194(-10) 0.200(-9)
10 0.994(-16) 0.885(-13) .139(-11) 0.115(-11)
15 0.119(-15) 0.101(-14) .183(-12) 0.144(-10)
20 0.879(-16) 0.502(-14) .858(-12) 0.359(-11)
25 0.428(-16) 0.254(-14) .522(-12) 0.519(-11)
30 0.310(-15) 0.752(-15) .246(-12) 0.390(-11)
35 0.502(-15) 0.715(-15) .261(-12) 0.265(-11)
40 0.176(-15) 0.782(-15) .251(-13) 0.179(-11)

(3,3) multiderivative method
5 0.185(-15) 0.953(-15) .340(-11) 0.182(-12)
10 0.166(-15) 0.116(-14) .231(-14) 0.264(-14)
15 0.118(-15) 0.795(-16) .946(-17) 0.576(-15)
20 0.423(-16) 0.885(-16) .380(-16) 0.189(-15)
25 0.319(-15) 0.480(-17) .102(-16) 0.119(-16)
30 0.290(-15) 0.600(-18) .522(-17) 0.256(-16)
35 0.138(-15) 0.491(-18) .261(-17) 0.137(-16)
40 0.271(-16) 0.261(-18) .183(-17) 0.309(-17)
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yi1(t) = a coswt + ¢(t)

y1(t) = a sinwt + ¢(t)

and, following Lambert and Watson (1576) and Cash (1981), ¢ (t)

-0.05¢
be e - The parameter a was given the value zero, corresponding to

is taken to

the case when high frequency oscillations are not present in the theoretical
solution. The results at t = 201 for w = 5(5)40 and & = n/32, w/8,m/2,w
are given in Table 5.2.

Comparing Table 5.2 with Table 2 in Cash (1981), it is seen that,
except in the isolated case w = 5,2 =7/8, the fourth order multiderivative
method tested in the present paper gives better results than the fourth
order method of Cash; the sixth order method tested in the present paper
always gives superior results to the sixth order method in Cash (1981)
when applied to Problem 5.2 .

As with Problem5.1,formulas (5.23), (5.24) were used to compute y(&).

5.5 Use in PECE mode

In common with texts and other papers, the convention of associating an
asterisk with a predictor formula will be adopted. Using the general (0,k*)

method as predictor and the general (m,k) method as corrector, the combination
in PECE mode will be denoted by (0,k*); (m,k).

It is not necessary to choose a predictor formula for which k* = max(m,k)
and the existing theory relating to the order of the local truncation error
of linear multistep methods used in PECE mode carries over to multiderivative
methods used in PECE mode. In particular, if the order of the predictor is
at least the order of the corrector, then the error constant of the pre-
dictor-corrector combination is that of the corrector alone. In addition,

if the predictor and the corrector have the same order p , then Milne's

device

) L P) L
(5.28) cp+2[yflf;'1— Yo VI, = Coup ]

may be used to estimate the error constant of the predictor-corrector com-

* .
: . 3 . Y t S
bination in PECE mode (provided Cp+2 # Cp¢?' In (5.26), the superscrip



(126)

(P) and (C) refer to the predictor and corrector, respectively.

The periodici i 2
e periodicity polynomial QPECE(r’H ) of the (0,k*); (m,k) com-

bination in PECE mode may be shown to take the form

m . . 5
2y = +2 _[n9 _ j ]
Upgep (F-HD) = 1% -2 = 2 ] (-1)7a,823 + ¥ (-1)Ip, g2

j=1 : j=1
m . ) s*
(5.29) T+ ) =D%am?d Y D) YbrEvIr +
j=1 ] w=1 v

where s* = [ik*] |,

The interval of periodicity of the (0,k*); (m,k) predictor-corrector
combination is determined by computing the vilues of H for which the zeros

of the periodicity equation

2y =
QPECE(r’H ) 0

satisfy (5.22).

It was found that the (0,2);(1,2) combination, with error constant

1
Cy = - 3 and periodicity interval H2 € (0,9), has the smallest modulus

error constant and the greatest interval of periodicity of the second order
combinations.

Of the fourth order combinations, it was found that the (0,4); (2,2)

1
combination, for which Cg = ‘359 and H2 € (0,15,89), is to be preferred to

any fourth order combination when solving non-linear problems, because it

requires no more than the second derivative of f(t,y). For linear problems
=7

the (0,4);(1,3) combination which has Cg = 7ggg and H? € (0,4.88), may be

used with small values of & if higher accuracy is needed.

For non-linear problems of the form (5.1), the maximum steplength which

may be used at any time t of the calculation, has the value H*/A(t) ,

where H2 € (0,H*2) is the periodicity interval of the predictor—-corrector

combination being used, and A%(t) 1is the largest modulus real part of the

eigenvalues of the Jacobian 09f/dy at time t

The (0,4);(2,2) method was tested on the following problem which was
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discussed in Shampine and Gordon (1973) and Jain et al (1979)

Problem 5.3
_ _ X
x" = 33 x(0) =1, x'"(0) =0
LIS 4
y .35 y(©0) =0, y" (0) =1,
2 4 4242
where r = (x“ + y©)°. These equations are Newton's equations of motion for

the two body problem and the initial conditions are such that the motion is

circular. Clearly x'"(0) = -1, y"(0) = 0 and, by successively differen-

tiating the expressions for x" and y", it is easy to verify that x(t)
and its derivatives take the values 1,0,-1,0 cyclically at t = 0, and
that y(t) and its derivatives take the values 0,1,0,-1 cyclically at

t = 0. Taylors series, with sufficiently small stepsizes, provides starting

values for the following strategy where, for

T
n=1,2,..., Eh = [xn,yn] = [x(nl),y(nl)]T:

P: _W_(P)

n+1l

is calculated using, as predictor, the multiderivative method

based on the (0,4) Padé approximant;

6

. . . 1 (P)

E: a) w' luated ! = = 6
(a) o is evaluated using o 7 Z Vw_+]/m + 0(g) ,

m=1
where V 1is the usual backward difference operator,

(b) w" is evaluated using w®

v “n+¥ in the system of
n

differential equationms,

(c) w(iY) is evaluated from the analytical expressions for
-0

x(iv) (iv) which are easily determined (these contain
n+l ’ “n+l

C: w(c? is calculated using, as corrector, the multiderivative
—n+

method based on the (2,2) Padé approximant;

" w(iv) are re-evaluated as in (a), (b), (c) above

using the corrected value zéfi where appropriate.
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The problem was tested using &= 7/18, /15, 7/10 and the numerical

solution at time t = 127 determined using the (0,4);(2,2) combination

in PECE mode. Using the theoretical solution x(t) = cost, y(t) = sint
the error moduli for the three values of & are easily found and are
given in Table 5.3. Results are also tabulated using the (0,4) method

alone. Comparison with Table 1 in Jain et al (1979) shows that multi-

derivative methods give accurate numerical results for non-linear as well

as linear problems.

Problem 5.4

Changing the initial conditions in Problem 5.3 to

x(0) 0.4 , x'(0) o,

y() =0 , y'(0) =2,

causes the orbit to become the eclipse (Shampine and Gordon {1973,p.245))

r?= (x+0.6)2 + y2/0.64 = 1
and the period of revolution to be 2m. The problem was tested with
% = 7n/45, w/90, ©/180, w/360, ©/720 and the value of r at time
t = 157,161 determined using the (0,2);(2,2) combination in PECE mode.
The values of x,y,r (thecretical values -1,6,C0,1 and 0.4,0,1,
respecfively) are given at time ¢t = 157,167 in Table 5.4. It is again
clear that the multiderivative predictor-corrector combination used, gives
accurate results. Unlike the method used and reported in Shampine and Gordon
(1973,p.246), no step size or order changing was required to achieve the

accuracy obtained using the multiderivative methods.
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Table 5.3

Error moduli at t

= 127

for Problem 5.3

(0,4) method (0’4? ; §2,2)
combination
'3 Error moduli Error moduli
/18 0.394(-7) 0.665(-8)
/15 0.209(-6) 0.298(~7)
m/10 0.650(-5) 0.120(-5)
Table 5..

Computed values of x,y,r at t =157,167 for Problem 5.4

X y r |
- |
;t = 157 !
/45 ~1.6003845 0.0244339 1.0017020 %
/90 -1.5997948 0.0010838 0.9995914 '
/180 ~1.5999258 -0.0001281 0.9998517

/360 ~1.5999801 -0.0000584 0.9999603

/720 ~1.5999950 ~0.0000163 0.9999899

t = 16w

m/45 0.3999265 0.0057571 0.9999049

/90 0.3995450 0.0252020 1.0000826

m/180 0.3999516 0.0081528 1.0000070

/360 0.3999966 0.0021600 1.0000005

n/720 0.3999998 0.0005477 1.0000000
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5.6 Conclusions

A family of two-step multiderivative methods, based on Padé approxi-

mants to the exponential function, has been developed for periodic initial
value problems of second order ordinary differential equations. The method
based on the (0,2) Padé approximant is seen to be the usual explicit
method. The method based on the (1,1) Padé approximant, is found to be
the formula, found to be unconditionally stable by Richtmyer and Morton
(1967,p.263) in connection with the solution of second order hyperbolic
equations, and discussed for second order ordinary differential equations
by Dahlquist (1978). However, the topic of Dahlquists paper was un-
conditional stability, not P-stability.

The methods based on the (m,k) Padé approximants, for m > k, are
found to be P-stable, while the methods for m < k are seen to have finite
interval of periodicity. Following Dahlquist (1963, 1978), Lambert and
Watson (1976) and Hairer (1979), it is concluded that for two-step multi-
derivative methods, the analogy between P-stability and A-stability is
obvious. Numerical experiments have confirmed that the two-step multi-
derivative methods developed in this chapter give higher accuracy than the
fourfh and sixth order two-step Runge-Kutta type methods developed by
Cash (1981). For non-linear problems, where higher derivatives cannot be
calculated with ease, predictor-corrector combinations can be used. The
application of the methods for fourth order parabolic partial differential

equations in one and two space dimensions, will be discussed in Chapter 6.
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CHAPTER 6

FOURTE ORDER PARABOLIC EQUATIONS

6.1 Introduction

The fourth order parabolic partial differential equation in one

space variable given by

6.1 3%u 3"
( ) ..__E+U___Ll=0 3 u>0,0<x<X,t>O
9t2 ox™

arises in the study of the transverse vibrations of a uniform flexible
beam (see, for example, Gorman (1975)). The term U 1s the ratio of
the flexural rigidity of the bean to its mass per unit length.

The initial conditions associated with (6.1) are of the form

(6.2) u(x,0) = go(x) ;3 O0Osx<x |
(6.3) EEKX,O) = gl(x) : 0 <x<XxX ,
ot

and the boundary conditions are given by

(6.4) u(0,t) = fO s u(X,t) = f] ; t >0
(6.5) Bzu(O,t) =Py > Bzu(X,t) =Py t>0 |,
3x2 ax 2

In (6.2), (6.3) the functions go(x), gl(x) are continuous and in (6.4),
(6.5) the terms fO’ fl’ Py» P, are real constants.

To compute the solution of (6.1) with (6.2), (6.3), (6.4), (6.5),
explicit and implicit finite difference schemes have been proposed by
Albrecht (1957), Collatz (1951), Conte (1957), Conte and Royster (1956),
and Crandall (1954). Evans (1965) derived finite difference methods by
first writing (6.1) as two simultaneous second order parabolic partial
differential equations (see also Dufort and Frankel (1953), and Richtmyer
(1957)). Explicit and implicit finite difference methods based on the
semi-explicit method of Lees (1961) and the high order method of Douglas

(1956) for second order parabolic equations, have been formulated for the

numerical solution of (6.1) with (6.2), (6.3) by Fairweather and Gourlay
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(1967).

The explicit method of Collatz (1951) frequently needs a large

number of time steps to compute the solution in view of the stability

restriction on the method. The difference scheme given by Albrecht

(1957) overcomes the stability problem but uses the value of the

solution at four time levels to compute the solution at a fifth time
level. The work of Fairweather and Gourlay (1967) gives superior
numerical results to the methods of Fvans (1965) and Richtmyer (1957), but
more CPU time is required.

In this chapter a family of novel finite difference schemes is de-
veloped for the numerical solution of (6.1) with (6.2), (6.3), (6.4), (6.5);
a related procedure was adopted by Lawson and Morris (1978) for second

order parabolic equations, by Khaliq and Twizell (1982) for first order
hyperbolic equations and by Twizell (1979) for second order hyperbolic
equations. The methods developed and analysed are tested on problems
discussed in the literature by Andrade and McKee (1977), and Fair-

weather and Gourlay (1967).

6.2 A recurrence relation

The interval O < x < X will be divided into N+1 subintervals
ecach of width h so that (N+1)h = X and the time variable t 1is
discretized in steps of length 2. The open region R =0 <x <X]Ix
[t > 0] and its boundary dR consisting of the lines x = 0, x = X,

t = 0 are thus covered by a rectangular mesh, the mesh points having
co-ordinates (mh,n%) where m = 0,1,...,N+l and n = 0,1,2,...

The theoretical solution of a difference scheme approximating (6.1)
will again be denoted by U; at the mesh point (mh,nf).

Superimposing this grid allows the space derivative in (6.1) to
be approximated by the finite difference replacement

(6.6) Atu _ h'a{u(x—zh,t)—AU(x-h,t)+6U(X’t)’au(X+h’t)+u(X+2h’t)}+O(h“)

ax™
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for x =mh (w=1,2,...,N). For m=1 and m = N, equation (6.6)
introduces the points (-h,t) and (X+h,t) at time t. which are
outside the region R. However, the values of u at mesh points
outside the region R may be written in terms of function values in
R and on 3R by using (6.4), (6.5).

In (6.5) 032u/3x? is approximated by the usual second order
replacement; this gives
(6.7) %}2:‘21 = 072 {u(=h,t)=2u(0, £)+u(h,t) }+0 (h2)
at the boundary points (0,t), and
(6.8) -2-2-‘21 = h7% {u(X-h, £)-2u(X, t)+u(X+h, t) }+0 (h2)

b

at the boundary (X,t). Using (6.4), (6.5), equations (6.7), (6.8)give
(6.9) u(-h,t) = -u(h,t)+2£ +h?p +0(h*)
(6.10) u(X+h,t) = —u(X-h,t)+2f1+h2pl+O(hL*)

respectively, and it is these expressions which will be used when (6.6)

is used with x

the

h and

X Nh.

Consider now the time level t = nf and apply (6.1) with (6.6) to

N mesh points at this time level. This leads to the system of

second order ordinary differential equations given by

(6.

2
au —u AU(t)-uw

dte?

11)

b

T . .
where U(t) =[ Ul(t)’ U2(t),...,UN(t)] , T denoting transpose, is the

vec

the

(6.

A 1is

N mesh points at time t,

tor of computed solutions at the

square matrix of order N given by

5 -4 1
-4 6 -4 1 0
1 -4 6 -4 1
_4 \\ \\\ \\\ \\\ \\\

]2) A = h \\ \\\ \\\ \\\ \\\
.\1 -4 N 6 _4 1
1 -4 6 -4
0 1 -4 5]
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with eigenvalues

-4
(6.13) A, = 16 b 7 sin®[ sn/{2(N+1)}7]; s = 1,2,...,N
and w 1is the vector of boundary values of order N given by
-4
W L P 2f0,f0,0,...,0,f],h P, 2f1] .

Solving (6.11) subject to the initial conditions (6.2), (6.3) gives

G I - -
(6.15) Ut) = -A ‘w+ gexp(ivtB) {g +(iytp) 1g1+A )
I . - -
+ —Z—exp(—lYtB) {go‘(thB) 1g]+A ]\17} ,

in which 1 = V-1, vy = /4 and B is a matrix such that B2 = 4.

It is easy to show that (6.15) satisfies the recurrence relation
(6.16) U(t+2) - {exp (iy4B)+exp(-iyLB)}U(t)+U(t-1)

= {exp (iyRB)+exp(—ile)}A_ly—ZA—lw

with t = 2,28,... and it is this relation which will be used in the
development of the family of algorithms for solving (6.1) with (6.2),
(6.3), (6.4), (6.5). It will not be necessary to compute y, B or

-1 ..
A explicitly.

6.3 Solution at the first time step

It is clear that, using (6.15) with t = 2, requires knowledge of
U(2) which, unlike U(O), 1is not contained explicitly in the initial
conditions. Writing t = £ 1in (6.15) and replacing the matrix expo-

nential functions with their (0,3) Padé approximants leads to

1 1 1
(6.17) u(R) = (I- —2—112,2A)50+2(I— ngLZA)g]- fuz%_wou“) ;

replacing the matrix exponential functions with their (0,5) Padé
approximants leads to

1 ] l 1
6.1 U(R) = (I- 2 29452 - 2 29L4 a2
( 8) U(2) ( 2“2 A+ 57 M LA )gO+Q(I Eﬂﬂ A+T§6u LA )gl

I T I By 26
FH2% (I 55 HA“A)w+O0( )

and using the (0,7) Padé approximants leads to
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1 1 , 1
6.19 U = (I~ =uR2A+ ——1294a2- 1 3,6,3
( ) U(e) = (I- Fu2°A+ o5 MU TATT =5nu3eba )g,

| 1 ]
+2(I- —UR2A+— g4 A2 39643
( FHLTA 120“2 A 555 M e0A )gl

1 5 ] ]
- -l - 2 20U,x2 8
24 (17 Tz e Argrmu®a ta2) w0 (48)

In problems having time dependent boundary conditions fO’fl’pO’p]

in (6.4), (6.5) are functions of t and the vector w 1in (6.17), (6.18),

(6.19) is evaluated using t = £ 1in the equation

~4
(6.20) w =h [:tho(t)-ZfO(t),fO(t),O,...,O,fl(t),th](t)—zf](tﬂ T

The complete algorithm for computing the numerical solution of (6.1)

with (6.2), (6.3), (6.4), (6.5) may thus be listed as follows:

(1) the starting vector U(0Q) = &g is obtained from equation (6.2);

(ii) the starting vector U(2) 1is obtained using (6.17), (6.18) or
(6.19) depending on the required accuracy;

(1ii) U(t+e), with t = 2,2%,..., 1is obtained from the recurrence
relation (6.16) in which the matrix exponential functions are
replaced by suitable approximants. It is these matrix functions

which will be replaced by Padé approximants in the next section.

6.4 Development and analyses of the methods

Using the (1,1) Padé approximants to the matrix exponential
functions in (6.16) leads to a difference scheme written in matrix form as

(6.21) (1+ %MQZA)g(t+2)=(ZI— %ﬂle)g(t)—(I+ %ﬂzzA)g(t—z)—uzzg+0(z“);

for problems with time dependent boundary conditions this becomes

!
(6.22) (T+ Fut2A)U(E+L)+ 7ub%w

4 t+4

! L g2 ~gy- 192 4
= (2I- %ﬂle)H(t)" §vlzyt—(1+ UM U(E=2) = a2, +0(27).

The principal part of the local truncation error of the method based

on the (1,1) Padé approximant is given by

6 4
(6-23) _é_uhzlz J u, - l.QIL’ _a..._u. .

9x® 6 att
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1 20,2 3611 .
The component ~€uh % ;——- of (6.23) is related to the space dis-
X

cretization and the use of (6.6) in (6.1); this component will be

present 1n all methods derived by using Padé approximants to the matrix

exponential function in (6.16). The other component of (6.23) is re-

lated only to the Padé approximant chosen for use in (6.16). The
principal part of the local truncation error of any method arising from

the use of the (m,k) Padé approximant in (6.16) will thus have the form

.2 6 q
(6.24) lﬂhzlz o°u + quq 3 *u
6

’

6
ot d

0xX
where the Cq (@ = m+tk+1 for m + k odd, and q = m+tk+2 for m + k
even) are error constants and are given in Appendix III. All Padé
approximants except the (0,1), (1,0) approximants lead to consistent
methods.

Stability, in the conventional sense of a perturbation of the initial
data not growing in magnitude as time increases, is analysed by recourse
to the stability equation of the method.

Noting that the (m,k) Padé approximant to the matrix exponential

function exp (1y2B) has the form

1

(6.25) exp (iy#B) =[Q (iviBY . mtk+]

Pk(inB)+0(2 )

where Pk’Qm are polynomials of degrees k and m, respectively, with
PO(ile) = I and QO(iyzB) = I (I 1is the identity matrix of order N),
the stability equation has the form
1 1 1 1 1 1
. 2 - 2 2_ . 2 — 2 =3 )2 Ty 2
(6.26) Qm(lylk )Qm( 1yRA%)E {Pk(lvkk )Qm( iyar®)+p, (-ivk )Q iy ) }g
1 1
iyLA2 -iyeA?) = 0.
+Q (1vLA )Q (=1v2A%)
In (6.26), A 1is an eigenvalue of A and £ 1is the amplification factor

of the method. The von Neumann necessary condition for stability

|E]< 1 hence requires,

1 1 1 1 ) .
(6.27) |Pk(iYﬁkf)Qm(—iylxé)+Pk(—inA2)Qm(iy2A2)|52|Qm(1ylA%)Qm(1ylx£)|.
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In the case of the method based on the (1, 1)

Padé approximant,

the stability equation is

1
(6.28) (1+ Zﬂlzk)gz—(Z— %uz2x)g+(1+-£uzzx) =0

and it is found that |£l$ I for any r = 2/h%? 2 0 since u >0, A >0.

The scheme is therefore unconditionally stable.
Using the (0,2) Padé approximant in (6.16) the resulting finite-

difference method for problems with time dependent boundary conditions may

be written in vector form as
(6.29) U(t+2) = (ZI—quzA)g(t)—uﬁzytH_J(t—l).

This is the explicit scheme of Collatz (1951) for which CA =-%§. This

method has an error constant which is the same order as that of (6.22)

and, since it is explicit, it would appear to be a more desirable method
. 1

to use. It is, however, stable only for r < I and may thus be used

only with small time steps.

Turning now to the (1,2) Padé approximant, its use in (6.16)

yields the method

1 .2 1 02
(6.30) (I+ 5112 A)U(t+)+ 9112 LA

_ (o1- L. o2 020 o1 Lye2 gyl g2
= (21 §u2 A)U(t) 9u2 v (I+ 9u2 A)U(t-2) 9u2 Ve g

The method is second order accurate with C4 = ~-1/36, so that the method
enjoys better accuracy than (6.22) or (6.29). Its stability equation

]
(1+ Fue20)E2= (2 Tus?0g+ (1% gui?d) = 0

yields the restriction u22x < 36/5 which, since A < l6h—4, leads to
the stability condition r = 3/5 /(10¥u). Thus it may be used with
slightly bigger time steps than (6.29). However, the fact that it 1is
implicit, does not make this method more attractive than (6.22) which,
though implicit, is unconditionally stable.

A notable improvement in the accuracy in time is obtained by using

the (2,2) Padé approximant to the matrix exponential functions in (6.16).
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This approximant gives the method

1 1
(6.31) (I+ —uL?A+ 204A2) U (£+0) +( —= pa2T+ ——2gb
12 144 (750 TR

5 ]
(21- g“ﬁzAﬁ-7§u22“A2)Q(t)-(%u221+.l_

2.4
Ty MR

1

- (I+
144 ¥

] ]
T3 MRS 2R U (e-0) - (5 u221+

144 2840w

-2
. _ 1 .
for which C6— €0 (from Appendix III). The stability equation is

1 oy, 1
(LM 144“ W2)g2-(2- 210204 Lo 120%A2) 4 (14 2u22x+ 1 u2p432) =

6" 72 144
from which it is found that the method is unconditionally stable.

Squaring the matrix A 1involves an increase in the number of mesh
points at each time level used in the computation. This notion of using a
greater number of points at each time level was used by Khaliq and Twizell
(1982) for first order hyperbolic partial differential equations and by
Twizell (1979) for second order hyperbolic partial differential equations;
Mitchell and Griffiths (1980) discussed the concept briefly for second
order parabolic partial differential equationms.

The same order of accuracy in time may be achieved by deleting the

terms in A2 from (6.31); this gives

102 RIS
(6.31a) (I+ 2“2 A)U(t+2)+ uz LA
_ 2,92 _ 5020 - 2 — 2
= (21 6u2 A)U(t) u% W, (T+ 12“2 AU (t-2) pL4w LA
for which C. = 1/240. Equation (6.31a) is, in fact, an application of

6

Numerov's linear multi-step method for the numerical solution of a system
of second order ordinary differential equations and the finite difference
scheme resulting from it for the solution of (6.1) is stable only for

ur? < 3/8. Equation (6.31a) may be useful when very small time steps may

be taken.

The (2,1) Padé approximant leads to the implicit method

| 1
(6.32) (I+ lguzzm —3%1122“A2)g(t+2)+(§u£21+ 36uzsz‘*A)v_atHl
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z

- _ 1.2 _
= (21 UL A)U(¢) 3

w
lj"t

1 5 1 ]
9 36 __( ) (-1-19 I+ ——-36].1 L A)V—Jt—Q, )

. 1 .
This method has C4 =:§€ and 1s found to be unconditionally stable.

Its theoretical accuracy near the boundary is not second order in time;
however, this does not diminish the overall accuracy of difference scheme,
see, for example, Mitchell and Griffiths (1980,p.112~116, 121-125). Tt
may be advisable to delete the terms in A2 from (6.32), provided
sufficiently small steps may be taken. The method then becomes identical
to (6.30), which has error constants of the same magnitude as (6.32) and
which is obviously more economical than (6.32) in relation to storage
requirements.

Using the (2,0) Padé approximant to the matrix exponential

functions in (6.16) gives the implicit scheme

| 1 2,u4,2 T o0y
(6.33) (I+ THERAR) U (teR)+ A

= (ZI—MQZA)g(t)—ulzyt—(I+ lmzzuA)g(t-R)- %ﬂzlqut

4 -2

which has error constant C4 = 7/12. The method is unconditionally stable
but its less favourable error constant and the fact that it requires A2,
suggest that the method based on the (1,1) Padé approximant, is to be
preferred. It will be seen in section 6.5, however, to give generally

better numerical results than (6.22) for the problems tested, when a

higher order difference scheme is used for the first time step.

6.5 Numerical results and discussion

To examine the behaviour of the methods developed in section 6.4,
the methods are tested on two problems from the literature. The methods
based on the (1,1), (1,2), (2,0), (2,1), (2,2) Padé approximants, will be

named TI1, T12, T20, T21, T22, respectively.
Problem 6.1 (Fairweather and Gourlay (1967))

2 4
8u+8u=0; O<X<1,t>0

3t 2 ax*
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with initial conditions
X2
u(x,0) = TE-(ZXZ‘Xa—])

3u(x,0) = 0
ot sy 0 < x <1

and boundary conditions

This problem was also considered by Evans (1965). The theoretical

solution is given by
o0
u(x,t) = z a sin smx cos s2m2t R
=]

where

a, = —ﬁ-{cos (sm) - 1}
so7d

In order to compare the numerical results with Fairweather and
Gourlay (1967), the same mesh ratios have been chosen. In Table 6.1,

the errors are shown for time ¢t = 0.02, with h = 0.05, £ = 0.00125.

0.005 and with h = 0.1,

The errors for t = 1.0 with h = 0.05, &
2 = 0.02 are quoted in Table 6.2 and Table 6.3 respectively.

Visual analyses of Tables 6.1, 6.2 and 6.3, and comparison with
Tables I and III in Fairweather and Gourlay (1967, p.9), show that the
numerical results for the second order methods are superior to those of
Evan's method, Richtmyer's method and the semi-explicit method (Fair-
weather and Gourlay (1967, p.9). The fourth order method (in time) based
on the (2,2) Padé approximant is seen to give better results than those
of the higher order correct method of Douglas (Fairweather and Gourlay
(1967, p.9), Tables I, III) for larger mesh ratios, especially when the
time step is not too small relative to the space discretization. This 1is

due to the fact that the component of the principal part of the local trun-

cation error due to the chosen Padé approximant in (6.24), namely



expected for the fourth order method (in time) compared to second

order methods (in time), for small values of the time step relative

to the space discretization, This phenomenon was also observed in

Chapter 3 for second order parabolic equations, when the (3,0) Padé
approximant was employed to the exponential matrix function 1in (3.7).
The present approach differs in detail to that of Fairweather and
Gourlay (1967), in the manner in which the numerical solution of (6.1)
is sought. However, following Fairweather and Gourlay (1967), the
methods due to Gourlay and Morris (1980) and the methods developed in

Chapter 3 may also be adopted to find the numerical solution of (6.1)

by writing that equation as a system of two second order parabolic

equations.
Table 6.1 Maximum errors at t = 0.02
h = 0.05, £ = 0.00125 (r = })
X
Methods
0.1 0.2 0.3 0.4 0.5
T11 1.99(-6) 3.63(-6) 5.98(-6) -7.73(-7) -3.34(-6)
T20 1.80(-6) 3.94(-6) 3.76(-6) -2.97(-8) -1.63(-6)
T21 1.74(-6) 3.45(-6) 5.26(-6) -4.30(-7) -9.95(-7)
T22 1.67(-6) 2.70(-6) 4.90(-6) =-4.20(-8) -2.86(-7)
Table 6.2 Maximum errors at t = 1.0
h = 0.05, 2 = 0.005 (r = 2)
X
Methods
0.1 0.2 0.3 0.4 0.5
T11 -1.75(=4) =2.63(=4) =2.36(-4) -1.60(-4) -1.16(-4)
T20 -1.74(~4) =2.40(-4) -1.79(-4) -4.47 (-5) 2.31(-5)
T21 =5.49(=5) -1.10(=4) -1.66(=4) ~-1.23(-4) -8.41(-5)

T22 -5.91(-5) -1.29(-5) -1.78(-5) -2.61(-5) -3.15(-5)
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Table 6.3 Maximum errors at t = 1.0
h=0.1, 2 =0.02 (r = 2)

X
Methods
0.1 0.2 0.3 0.4 0.5
Tt1 -2.93(-4) -5.67 (-4) -9.29(-4) -1.10(=-3) -1.07(-3)
T20 -8.43(-5) -2.22(-5) 2.40(=4) 3.81(-4) 4.04 (=4)
T21 -4.66(-4) -4.81 (-4) -6.68(-4) =7.23(-4) -9.91(-5)
T22 -2.06(-4) "-4.45(-4) -3.52(=4) -2.31(=4) =7.35(-5)
Problem 6.2 (Andrade and McKee (1977))
32 o
22 a(x,t) 22 -9 5 a(x,t) >0 , L <x<1,t>0
3t2 ox™
1 x't
a(x,t) ;{‘+T§— ’

with initial conditions

u(x,0) =0 ;3 3 <x<1
ggﬂx,O) =1 + x° . L
5t 0 > z=<x=1

and boundary conditions

U(%at) = {1+(%05/120} sint £t >0
u(i,t) = (1+1/120) sint ;3 t >0
2
3w Ly o Ldys gine 5 >0
o 2 6 2
9x
2
E—E(l,t)=]€sint ; t >0,
dx2

The theoretical solution 1is

5

X .
u(x,t) = (lm)sm t
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Table 6.4 Maximum absolute relative errors at t = 0.0]
Methods
Value of No. of time
r steps
Ti1 T12 T20 T21 T22
0.05 80 3.45(-7) 3.47(-7) 3.45(-7) 3.31(-7) 9.91(-8)
0.1 40 3.41(-7) 3.52(-7) 3.43(-7) 3.25(-7) 8.07(-8)
0.25 16 3.22(-7) 3.90(-7) 3.28(-7) 3.19(-7) 6.91(-8)

In order to provide a comparison with Andrade and McKee (1977), the
mesh ratios r = 0.05, 0.1, 0.25 are chosen. 1In Table 6.4, the maximum
absolute relative errors are shown for time t = 0.01, where a(x,t)
is evaluated at x = ih,i = 1,2,...,N. Following Mitchell and Griffiths
(1980,p.26) it is verified that the methods TI1, T12, T20, T21, T22,
maintain the same order of accuracy for up = u(x,t). For stability
analysis the stability criterion of the energy method due to Lees (1960),
may be applied; however, for this problem stability of the methods will
be verified by numerical experiments. It is seen from Table 6.4 that the
methods T11, T12, T20, T21, T22, give superior results to that of Andrade
and McKee (1977, p.13, Table 1). Method T12 is seen to have a better
stability interval than the method developed by Andrade and McKee (1977)
and the unconditional stability of the methods TI11, T20, T2l, T22, is an
extra advantage. The relation (6.17) is used to calculate the numerical
solution at the first time step for all the methods.

It is noticed that numerical calculations made by Andrade and McKee
(1977, p.13) for the usual explicit method for this problem, are incorrect.
The method gives better results than the method developed by Andrade and
McKee (1977, p.13, Table 1). The maximum absolute relative errors for the
same values of the mesh ratios using the usual explicit method (the (0,2)
Padé approximant) are seen to be slightly better than those of the method

T11, which is in accordance with the local truncation errors of the methods

as shown in Appendix III.
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6.6 Two-space variables

The homogeneous partial differential equation

6.34 32 2
( ) 22+ tu =0 , v2=§_+£_

a2

with 0 < x,y <1, t > 0, subject to initial conditions of the form

(6.35) u(x,y,0) = fl(x,y)
(x,y)e Q

QH(X,Y,O) = fz(x,y)
ot

and boundary conditions of the form

u(0,y,t) = u(l,y,t) =0
u(x,O,t) = u(x,0,t) =0
6.36
( ) 3%2u(x,0,t) = 3%u(x,l,t) = 0 (x,7)ed @, t >0,
3x2 3x%2
azu(09Y:t) = azu(]sYat) =0
8y2 8y2

arises in the transverse vibration of a simply supported uniform plate.
Superimpose a square grid over the unit square with mesh size h = 1/N+1
for some positive integer N. Let § be those grid points (x,y) =
(ih,jh) for 1 < 1,3 £ N (that is, the interior of the square) and let
30 be those points for which i,j = 0 or N+1 (the boundary of the
square). Replacing the spatial derivatives in (6.34) with their central

difference replacements, y'u becomes

v*u =-l—[ u(x-2h,y,t)+u(x,y-2h,t)+u(x,y+2h,t)+u(x+2h,y,t)
h’-&
+ 2{u(x-h,y-h, t)+u(x-h,y+h,t)+u(x+h,y-h,t)
+ U(X+h9y+h’t)}
- 8{u(x—h.y,t)+u (Xs}"h,t)"’u (Xay+h,t)

+ u(x+h,y,t)}+20u(x,y,t)]+0(h?) ,

and applying (6.34) with the boundary conditions (6.36) to each mesh point,
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leads to a system of second order ordinary differential equations of

the form

(6.37) d2u

. 2 . .
where S is an N2 x N2 matrix and U 1s a vector of order N2 of

computed values such that

U= (U, ,U. ,....U : T
= 1,1°72,1° N,l’Ul,z’Uz,z’“"UN,z’Ul,N’Uz,N"'"UN,N)’

T denoting transpose. The matrix S 1is given by

where B,C, and D are N x N matrices, such that

19 -8 1
-8 20 -8 1 0
1 -8 20 -8 1
\\\ \\\ \\\ \\\ \\\ ’
B = \\ \\ N \\ \\

0 e 1o
-8 2 | R |
2 -8 2 0 I 0
\\ \\ \\ \\
C= \\ \\\ \\ s D: \\\
\\ ~ ~
2 -8 2 1
_ 1
0 2 -8 0 |

The eigenvalues of S are given by
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A, oLo= lé'{sinz ( i )+ sin2( 2 i,
1,3 L 2(N+]) n (+]))} 51,3 =1,2,...,xN.

Solving (6.37) its solution is seen to satisfy the recurrence

relation

(6.38) U(t+e) - {exp(izE)+exp(—i2E)}g(t)+g(t—2) =0

where i = v/-] and the matrix E 1is such that E2 = S, The methods
developed for one space dimension will be generalised for two space
dimensions in this section. The principal part of the local truncation error

. 1 n ..
includes (g&thVGU)i ;> 1,5 =1,2,...,N and n =0,1,2,...

’

b

which will always be present. However, the accuracy in time will depend

upon the chosen Padé approximant. Tt is also assumed that u 1is

sufficiently often differentiable with respect to both x and t.
Employing the (1,1) Padé approximant to the matrix exponential

function in (6.38) yields
I
(6.39) (1+ ZSLZS)I_J(tHL) = (21- %223)1_1(1;)—(1+ %QZS)g(t—z)

A stability analyses shows that (6.39) is unconditionally stable; the
scheme is seen to have the same order of accuracy as in the one space
dimension case.

Applying the (1,2) Padé approximant in (6.38) gives

2
(6.40) (I+ 5-9— S)U(t+2) = (2I- %225)g(t)—(1+193 S)U (1)

The method (6.40) is second order accurate with stability restriction

3/5
Y § =—— .
20

of matrix decomposition formulated by Buzbee and Door (1974), may be used

To implement these methods on a computer, the direct method

to find the solution at U(t+%). Application of block Gaussian elimin-
ation to the matrices of the form S was described in Bauer and Reiss
(1372) and Angle and Bellman (1972). Employing these Padé approximants
in (6.37), which require squaring the matrix S, the difficulties en-
countered in implementing the methods in one space-dimension are magni-

fied in the case of two-space variables. The methods based on the (2,0),
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thus a complex splitting for each of the methods is suggested
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D A 1
Padé approximants dre seen to have no linear factors
2

However,

1t will cost more to use complex arithmetic than real arithmetic

Employing the (2.0)

algorithm

(6.41)

Padé approximant in (6.38), yields the

(1- %i225)9*= (21-223)U(t)

b

1. o %
(T+ 51229)U(t+n) = U~ (1+ S1028)u(e-0)

where 1 = V-1 .

Application of the (2,1)

Padé approximant in (6.38), suggests

the algorithm,

(6.42)

{(1+2/2 i)1+ %&Zs}g* = U(t)

{(1-2v2 i)1+ %&Zs}g(t+2) = (18I+7228)g*

- {(1-2/2 i)1+ %&ZS}Q(t—Z)

and the (2,2) Padé approximant in (6.38), yields

(6.43)

((1-1/3)T+ 2228307 = (2(/2T+5)1- $2251U(t)

{(1+i/§)1+-%228}§(t+2) = {(-/21+5)1I- %&Zs}g*

- (+i/3) T+ T25hu(e-n)

*
where U 1s an intermediate vector. The algorithms are seen to have

the same order of accuracy as in the one space dimension case and (6.41),

(6.42), (6.43) are verified to be unconditionally stable. The algorithms

(6.41), (6.42) and (6.43) were also tested on Problem 6.1 in conjunction

with the matrix A and the same numerical results were found, as tabu-

lated in Tables 6.1, 6.2 and 6.3. To examine the behaviour of the methods

in two space dimensions, the methods are tested on a problem suggested by

Andrade and McKee (1977). The methods based on the (1,1), (1,2), (2,0),

(2,1), (2,2)

will be named

Padé approximants used in conjunction with the matrix §

Si1, S12, S20, s21, S22.
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Problem 6.3 (Andrade and McKee (1977)

32u Al
— + a(x,y.t) =2

3t 2 ox™

84
+ b(x.y,t) =2 = ¢ 5 0 < x,y <1

where

a(x,y,t)

|
j_
"l
J

b s Yt = — —--y_~—
(x,y,t) (1+ 5 5 )

with initial conditions

u(x,y,0) =0 ; 0 < X,y £ 1

9

du(x,y,0) = 7 sin 7 x sin = y 5 0<x,y €1
at

and the homogeneous boundary conditions (6.36); the theoretical solution

is given by
u(x,y,t) = sin 7™ t sin 7 x sin = y .

To compare the results with Andrade and McKee (1977, Table 2), the maxi-
mum absolute relative errors for the methods SI1, S12, S20, S21, S22

at time t = 0.05 are tabulated in Table 6.5. It is seen from Table 6.5
that the second order methods S11, S12, S20, S21, do not give better
results when compared with Andrade and McKee (1977, Table 2). However,
the method S22 gives better results than those of Andrade and McKee

(1977, Table 2).

Table 6.5 Maximum absolute relative errors at t = 0.05
Methods
Value of No. of time
r steps
S11 S12 S20 S21 S22
0.05 100 6.87(-5) 6.99(-5) 6.85(-5) 7.81(-6) 8.71(-7)
0.1 50 6.81(-5) 7.51(-5) 6.83(-5) 6.49(-6) 7.29(-7)

0.25 20 6.70(-5) 7.64(-5) 6.75(-5) 5.50(-6) 7.10(-7)

t >0
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AppendisIT:OUne-step multiderivative metheds based on the firs

: 7 L twenty-
toul eutries ol the Padé Table tor the exponential tunction.
(U, 1) : Yool Y, F hy; + 0(h*), (Luler's predictor).
v 1
(r,1) Yoel = v + 3h(y$+y;+l) + 0(h3), (Euler's corrector ; the
trapezoidal rule).
(1,0) : Yosl = Yy ¥ hy['l+l + 0(h?),
2y - - vy L2 3
(0,2) : Vel = ¥, *hy! + A AR UCESN
. = _£ ' 1 v 1 2. .n L
(1,2) : yn‘*'1 = yn + 3hyn + _3-hyn+l + gh yn + O(h ).
1
(2,2) =y o=y o+ —h(y oe) Rt Oy, )+ 0d).
(2,1) y =y + lhy' + Ehy' - lhzy" + 0(h").
’ ) n+l n 3 7n 3 7 n+l 6 n+l
(2,0) : = thy' - Sh2ym g 0(h3)
’ ) Y+l Y Y+l 20 Y+ ’
(O 3) . = + hy' + _l_h2yn + _l_h3y(lll)+ O(hL’).
i ) Yo+l Yn Yn 2 n 6 n
1.3 . = + ‘}"h(3 L ) + lh2yn h3 (111)+ O(hs)
(1,3) : Yn+1 Ya 4 Yn Y n+1 4 “n 24
1 2 n__n 3 (111)+ OhS)
(2,3) : Yoel = Vg +""h(3y +l) + fﬁh (3yn-y ) + —‘h ( .
: L2, e
(3,3) : Yoep = Yy * -h(y +y +l) MR T RS A AU
A3 (iii)+ (iii) + 0(h7). (Milne's starting
+ h > (y Y 41 )
120 n n procedure).
1 . 1o n_aun h3 (111)+ 0([16)_
(3,2) : Yoel = Y, + gh(Zyr'\+3yn+l) + —-—-1201 (yn 3yn+l) 60" “n
I . : L oow 3 (111)+ 0(h>).
Gul) + vy =y, RO T Y, gy
, _ -‘—hz " + -l-hay(lll)+ O(hl').
(3,0) yn+| = yn + hyn+] 2 yn+l 6 n+l
INIRT 1 3 (1ii) lh‘* (iV)+ O(hs).
' 4+ —
(0,4) : Yarl = Y0 7 hyn * Eh Yn * Eh "n 24 ’n
3 2gn + dady (111) L (‘V)+ 0(hS).
(1,8) © ¥y . =¥, +—h<4y Yae) Y00 a Y TS " T20" Vn
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Appendix III

The non—-zero constants aj(j =1,...,m), bw(w==1,...,s) for the first

sixteen entries of the Padé Table for the exponential function,
together with the error constants and the intervals of periodicity.
(0,1) : All aj =0 ; all bw =0

Cr, = 1 (method inconsistent).

1 1
(1,1) : a A b =5
1
Cy =% H? € (0,%)
(1,0) : a3 =-1; allb =0
Cp, = -1 (method inconsistent).

(0,2) : All a. =0 ; by =1

J
CL,_=11-‘2 5 Hz €<Os4)
1 7
(1,2) : ay =-g3 b1 =73
36
C1+ = —3—16; Hz € (O,—_)
1 _ 1 =2 -1
(2,2) + a1 = -3 » 32 = 74; > by =552 °=5n
C6 =—3—é—6, H2 €(O °°)
1 I SR &
(2,1) : a1=—§,32‘§'6"b1 9
C'+ =:-;I-—6 H2 € (O,Oo)
1 _
(2,0) : ap =7 3 b1 = 1
Cq='112' H2€ (O’oo)

(0,3) : All a, =0 ;b; =1
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! 7 1
a1 =" > b1 =g, b2 =z
C6 = -2-8%6 5 H2 € (0,6,5) and (29.5,48)
a. e g, =L oy 222 L _ 17
1 50 ° %2 7400 * °! T 25 P2 T 600
-1 - 300
C6 3600 ° H € (0,8.2) and (14.6,—7—)
a = ——1_' 4 = —-l— a = —-._l—_. .
1 20 42 T %00 ° @3 14400 °
9 11 1
b1 =15 »P2=335 » b3 =3550
1
Cs =~ sg500 - H° € (0.
_ .3 -1 I S
ay = 50 ’ as 400 ’ ajs 3600 °?
b o 22 _ 17
L= 25> 72 600
Ce = = ggep ¢ B0
1 1 7
a]_=“Tg s 33—-‘5—7"6'9 b1_§ bZ-
C6 = _;_—88% ’ H2 € (O’w)
1 1 -
ajy *-{3 3.3—'-3-'6—,131"1
Cy =~ _]__15 ’ H2 € (0,00) )
1
Allaj=0, b; =1, by =775
Cg = 1 g2 € (0,12)

.
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Appendix IV
Two-step methods for second order equationms.

: _ _ h?
(1,1): Yo+l 2yn+yn-1 A (fn +2fn+fn-1)
. - = h2
(0,2): Yoe1 "2V YV, = h £
2): 2 + h?
(1,2): yn+l yn yn-l_.g (fn+1+7fn+fn-l)
2 2): =2 + = h2 ; - " e en
( ) yn+1 yn yn-l 12(f +1+10fn*fn—l) ]44 (fn +1 an+fn—1)
1): - = h2 - ht
(2,1) Yn+1 2yn +yn—l %T(fn+]+7fn+f ) h (f" +£" )
+1] n-1
. - = W2 - 2 " "
(2,0) yn+1 2yn +yn—] b fn %' (fn+l+fn-l)
. - - h2
(0,3): Yn+1 2yn +yn-l b fn
(1,3): Yy ., "2y +y__.=h2 (f [ FI4E +£ ) + BY £!
n+l n n-—1 3 n+l n 73 D
. - = h2 . - hb -
(2,3): yn+] 2yn +yn_] '%6 (3fn+l+q4fn+3f ) 1200(3f ] 34fn+3fn_])
(3,3):  y_,, "2y_+y__,= B2 (£ +18f +f ) - hY (£"  -22f"+£]  )+h®
n+l n n-1 20 n+1 n €00 n+l n n-l 74400
2f1V+fiv )
n n-1
(3,2): y -2y +y__.= h% (3f _ +44f +3f ) -h% (3£, | ~34£0+3£" ) +h®
n+1 n °“n-l =0 n+1] n 1200 n n-l 3600
iv iv
(fn+1 n—l)
iv
: - + = h2(f ,  +14f +_ )+ b4 £renb (£ )
(3,1) Yo+1 "2, Yoo Té'( o+ ] 2 75 @ 576( n+1 -1
2 +12F 4 ) h6(fiv iv )
(3’0) : yn+1 "2}7 +yn_1— %(fn+l n 1 -3-6' n+l n-1
_ 2 4 1]
(0,4): Vo4l -2y ¥ 1= h“f + h f
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