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ABSTRACT

The thesis develops a number of algorithms for the numerical sol­

ution of ordinary differential equations with applications to partial

differential equations. A general introduction is given; the existence

of a unique solution for first order initial value problems and well

known methods for analysing stability are described.

A family of one-step methods is developed for first order ordinary

differential equations. The methods are extrapolated and analysed for

use in PECE mode and their theoretical properties, computer implementation

and numerical behaviour, are discussed.

La-stable methods are developed for second order parabolic partial

differential equations 1n one space dimension; second and third order

accuracy 1S achieved by a splitting technique 1n two space dimensions.

A number of two-time level difference schemes are developed for first

order hyperbolic partial differential equations and the schemes are ana­

lysed for Aa-stability and La-stability. The schemes are seen to have

the advantage that the oscillations which are present with Crank-Nicolson

type schemes, do not arise.

A family of two-step methods 1S developed for second order periodic

initial value problems. The methods are analysed, their error constants

and periodicity intervals are calculated. A family of numerical methods

is developed for the solution of fourth order parabolic partial differ­

ential equations with constant coefficients and variable coefficients and

their stability analyses are discussed.

The algorithms developed are tested on a variety of problems from

the literature.
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1I0ccupying a un1que place along the border between applied-

.
mathematics and the concrete world of industry, the numerical

solution of differential equations, probably more than any other

branch of numerical analysis, is in a constant state of unrest

and evolution. Being so widely and variously applied in the real

world, its techniques are relentlessly put to the ruthless test of

practical success and usefulness. Nor does it evolve solely through

the cross influences of the practical necessities of engineering;

unusual impetus is also given to this field by the outstanding

advances in computer technology, which 1S gathering now to min-

iaturize hardware to lower the cost of the equipment, the arith-

metic, the logic, the storage, and the output that is made more

comprehensively grasped by directly presenting it to that most re-

markable of the human senses-vision, through computer graphics,

shifting thereby the engineer's or programmer's priorities 1n se-

lecting the most appropriate solution algorithm".

Isaac Fried, 1979.
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CHAPTER 1

INTRODUCTION

Consider the first-order initial value problem

(1. 1) y' = f(x,y), y(a) = T) •

The following theorem outlined in Lambert (1973), with proof

contained in Henrici (1962), states conditions on f(x,y) which

guarantee the existence of a un1que solution of the initial value

problem (I. 1) •

Theorem 1.1

Let f(x,y) be defined and continuous for all points (x,y)

1n the region D defined by - 00 <y<oo, a and b

finite, and let there exist a constant L such that, for every

x,y,y* such that (x,y) and (x,y*) are both in D,

(1 .2) If(x,y) - f(x,y*)1 ~ L I y-y* I .

Then, if T) is any glven number, there exisma un1que solution y(x)

of the initial value problem (1.1), where y(x) is continuous and

differentiable for all (x,y) 1n D.

The requirement (1.2) 1S known as a Lipschitz condition, and the

constant L as a Lipschitz constant. This condition may be thought

of as being intermediate between differentiability and continuity, in

the sense that

f(x,y) continuously differentiable with respect to y for all

(x,y) r n D

~ f(x,y) satisfies a Lipschitz condition with respect to y for all

(x , y) t.n D

~ f(x,y) continuous with respect to y for all (x,y) 1n D.

In particular, if f(x,y) possesses a continuous derivative with respect

to y for all (x,y) 1n D, then, by the mean value theorem,

f(x,y) - f(x,y*) = af(x,y)
By (y-y*),



(2)

where y ~s a point ~n the interior of the interval whose end-

points are y and y*, and (x,y) and (x,y*) are both ~n D.

Clearly, (1.2) is then satisfied if L ~s chosen to be

(l .3) L = sup I af ~yX,y) I .
(x , y)e: D a

In many areas such as control theory, chemical kinetics and

biology, the dynamic behaviour is modelled, not with a single

differential equation, but with a system of m simultaneous first-

order equations in m dependant variables Yl' Y2' ... Ym. If each

of these variables satisfies a g~ven condition at the same value a of x

then the initial value problem for a first-order system may be written as

(l .4) y' =
1 f 1(x'YI'Y2'···'Ym) ,

y' = f 2 (x,y I 'Y2'··· 'Ym) Y2 (a). = n22
,

, I I
I t I
I I
I I

y' = fm(x'YI 'Y2'··· ,Ym)
Y (a) = nm m m

Introducing the vector notation

T
(n I ' n2' ..• , nm) ,

T denoting

as

(l . S)

transpose, the initial-value problem (1.4) may be written

Theorem 1.1 readily generalises to give necessary conditions for the

existence of a unique solution to (I.S); all that is required is that

the region D now be defined by a ~ x ~ b ,

and (1.2) be replaced by the condition

- 00 < y. < 00,

~

i. = 1,2, ... ,m,

(I .6)

where (x,~) and (x,~*) are ~n D, and I I. I I denotes a vector norm.

For the properties of vector and matrix norms see,for example, Mitchell

and Griffiths (1980). In the case when each of the f i(x'YI'Y2'···'Ym) ,

~ = 1,2, ... ,m, possesses a continuous derivative with respect to each of
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the y ., J = 1,2, ... , m, then
J

( 1 .7)

may be chosen analogously to (1.3), where a~/al 1S the Jacobian of

f with respect to l - that is, the m x m matrix whose i,jth

element 1S af. (x'Yl'Y2"'.'y lay., and I1.1 I denotes a matrix
1 m J

norm subordinate to the vector norm employed in (1.6).

The first order system (1.5), namely ~' = ~(x,y), where ~

and fare m-dimensional vectors, is said to be linear if

f(x,y) = A(x)l + ~ (x) ,

where A(x) 1S an m x m matrix and ~(x) an m-dimensional vector;

if, in addition, A(x) = A, a constant matrix, the system is said to be

linear with constant coefficients. To find the general solution of the

system

(I .8) l' = Ay" + ~(x) ,

let y(x) be the general solution of the corresponding homogeneous system·

(I .9)

If ~(x) 1S any particular solution of (1.8), then

1S the general solution of (1.8). A set of solutions lk(x), k = 1,2, ... ,m,

of (1.9) is said to be linearly independent if

m
L aklk(x):: Q ,

k=l

implies ~ = 0, k = 1,2, ... ,m. The general solution of (1.9) may be

written as a linear combination of the members of a set of m linearly

independent solutions

that

Yk(x), k = 1,2, ... ,m. It can easily be seen

(1.10)

where ~k 1S an m-dimensional vector, 1S a solution of (1.9) if
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that is if Ak 1S an eigenvalue of A and £k 1S the corresponding

eigenvector. Considering only the case where A possesses m distinct

complex eigenvalues A
k

, k = 1,2 .... ,m. the corresponding eigenvectors

£k' k = I,2, ... ,m, are then linearly independent (Mitchell and Griffiths

(1980), Chapter 1), and it follows that (1.10) forms a set of linearly

independent solutions of (1.9), whose general solution is of the form

m
L Nk exp(Akx)£k

k=I
,

where the N
k

, k = 1,2, ... ,m are arbitrary constants. The general

solution of (1 .8) is then

(1.11)
m

y(x) = L Nk exp(AkX)£k + !(x) .
k=1

The solution of the initial value problem

(1.12)

may now be found under the assumption that A has m distincit e1gen-

values, and that the particular solution !(x) of (1.8) is known. By

(1.11), the general solution of (1.8) satisfies the initial conditions

given in (1.12) if

(1 . 13)
m

~ - !(a) = L Nk exp(Aka)£k .
k=1

Since the vectors £k' k = 1,2, ... ,m, form a basis of the m-dimensional

(1.14)

vector space (Mitchell and Griffiths (1980), Chapter 1), n - !(a) may be

expressed uniquely in the form

m

n - !(a) = L ~£k'
k=l

On compar1ng (1.13) with (1.14), it is seen that (1.11) becomes a solution

of (1.12) by choosing ~ = N
k

exp(-Aka). The solution of (1.12) is thus

m
y(x) = L N

k
exp{(x-a)Ak}£k + ~(x)

k=1

In Chapter 2 a family of one-step multiderivative methods based on
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Pade approximants to the matrix exponential function ~s developed. The

methods are extrapolated and analysed for use ~n PECE mode. Error

constants, stability intervals and stability reg~ons are calculated and

the combinations compared with well known linear-multistep combinations

and combinations using high accuracy Newton-Cotes quadrature formulas

as correctors. A practical problem in applied chemistry is modelled

mathematically and one of the fourth order methods developed is used to

find the numerical solution. For the stability analyses of the methods,

the definition of A-stability due to Dahlquist (1963) is used. Dahlquist

associated a stability region with a multistep formula and introduced the

concept of A-stability. These definitions are now quoted for completeness.

Definition 1.1

The stability reg~on R associated with a multistep formula is

defined as the set

R = {hA : the formula applied to y' = AY, y(x
O)

= YO' with

constant step s~ze h > 0, produces a sequence {y }
n

satisfying

Definition 1.2

y ~ 0
n

as n ~ oo}.

A formula is A-stable if the stability reg~on associated with that

formula contains the open left half-plane.

Dahlquist proved that an A-stable linear multistep formula must be

implicit, that its maximum order is two, and, of those of second order,

the one with the smallest truncation error coefficients is the trapezoidal

rule.

Pade approximants to the exponential function (Pade (1892)), which are

used extensively in the thesis are now defined.

Let f(~) be analytic in a region of the complex plane containing the

or1g~n ~ = O. A Pade approximation (Graves-Morris (1973))

the function f(~) ~s defined by

R k(~)m,
to
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(l.15)
R k(B) =m,

,

Q (B)
m

are polynomials 1n B of degrees k and m

respectively with leading coefficients unity. For each pair of non-

negative integers m and k, Q (B) are those polynomials
m

for which the Taylor series expansion of

agrees with the Taylor series expansion of

R k(B) about the origin
m,

feB) for as many terms as

possible. Since the ratio (1.15) contains essentially m+k+1 unknown

coefficients, the requirement that

(1.16)

glves r1se to m+k+l linear equations for these coefficients. The

Pade Table 1S an infinite two-dimensional array of Pade approximations

to the glven function feB), where R k(B)
m,

occupies the intersection

of the mth row and kth column.

For the function feB) = exp(B), Varga (1962), the entries in the

Pade Table are given explicitly by

=! (m+k-j)!m! (B)J
(m+k)!j! (m-j)!

j=O

and

= ~ (m+k-j)!k! (-B)J
L (m+k)!j! (k-j)!

j=O

and if

+ R*(B) ,
m,'K

then the remainder R* k(B)m,

R* (B) =
m,k

is given by

(-I )k+IB(m+k+l)

(m+k)! ~ (B) [
1 k mexp(B(I-u))u (l-u) du .

o

The first twenty four entries of the Pade Table for f(~) = exp(B) are

given in Appendix I.

Some properties of Pade approximants are glven by Lambert (1973) as

follows:
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"Let n\.m. k (2) be the ( k) P d" .~\ _ ~ - m. a e approx1mant to exp(-~). then

P k(l)m,
.
1S

(i) A-acceptable if m = k

(ii) A(O)-acceptable if m ~ k

(iii) L-acceptable if m = k+l or m = k+2"

The reg10n of acceptability of R k(~) 1S that area of the complexm,

plane within which the approximation Rm,k(l) satisfies IRm,k(l)1< 1.

In Chapters 3 and 4 several time discretizations are considered for

the linear time-dependent partial differential equation

(1.17) dU
-=Du+f
dt

where D 1S a differential operator involving only space-derivati0ns,

both D and f are independent of time t, and ini tial and boundary

conditions are specified. A space-discretization and a finite-difference

approximation may be used to reduce the problem (1.17) to the solution of

a system of ordinary differential equations,

(1.18) dU

dt
= AU + s , t > 0

(1.19) !:!(O) = g

where A 1S a square matrix, the vector s 1S the vector of frozen

boundary values and the vector U 1S the computed solution of (1.17) for

t > O. The solution of the system of differential equations (1.18) subject

to the specified initial conditions (1.19) is given by

(I.20)

which may be written in step-wise fashion as

(1.21)

where £ 1S the time step.

The relationship between expel) and the matrix exponential function

exp(£A) now follows in an obvious way. Formally the variable l 1S

replaced by the matrix A in (1.15), such that



is the (m,k) Pade approximation of exp(£A). The relationship between

certain well-known numerical methods and the matrix Pade approximations

may be shown, for example, by approximating the matrix exponential

exp(£A) of equation (1.21) by the entry

Table to gi.ve

(1.22) 1 -1 1 -1-1
= (1- 2tA) (I+ztA) (!!(t)-A §.)+A ~

which, 1n implicit form, is

( 1 .23)

Equation (1.23) defines the Crank-Nicolson method applied to equation

(1.18) if A is a tridiagonal matrix with the entry -2 on the diagonal

and on the super-and sub-diagonals. In a similar manner it can be

shown that RO,I (tA) and approximations generate respectively

the well known explicit and fully implicit methods for second order para-

bo1ic partial differential equations, see for example, Lawson and Morris

(1978) and Smith and Twize11 (1982). However, it is shown in Lawson and

Morris (1978), that the (1,1) Pade approximant, (the Crank-Nicolson

method) is an A-stable method and is less than satisfactory when a time

discretization is used with time step which is too large relative to the

spatial discretization.

In Chapter 3 a family of methods 1S developed for second order para-

bo1ic partial differential equations, which do not suffer from this

feature. Second and third order accuracy is achieved in two space di-

mensions by a splitting technique. The methods are tested on two problems

from the literature. The behaviours of the methods are also shown

graphically. Stability of the methods is analysed by two well known

methods; the von Neumann method and the Matrix method, which are now

mentioned briefly. For full details, see for example, Smith (1978) and

Mitchell and Griffiths (1980).

The von Neumann Method, developed by J. von Neumann and first discussed
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1n detail by O'Brien et al (1951), provides a simple necessary con-

dition for numerical stability, and essentially depends on the uniform

boundedness of the Fourier coefficients of the solution of the differ-

ence equation. It 1S assumed that there exist harmonic decompositions

of the grid functions Uk at the initial time level and writes

= LA. exp(iS.xk)
j J J

where i = ~ , the frequencies S.
J

are, 1n general use, arbitrary,

and a uniform grid is used. It is only necessary to consider the single

term exp(iSx) where S 1S any real number and to use the superposition

principle for linear problems. To investigate the growth of the grid

functions as t increases for any value of S, it is necessary to find

a solution of the difference equation which reduce to exp(iSx) when

t = O. Such a solution is

exp(at) exp(iSx)

where a = a(S) 1S, 1n general, complex. The original grid function

exp(iSx) will not grow with time if

(1.23) lexp(a£) I ~

where £ 1S the increment in t. This is the von Neumann necessary

criterion for stability; this technique of analysing stability 1S

called the von Neumann Method. The following points concern1ng the von

Neumann method are worth mentioning:

(i) The method only applies rigorously if the coefficients of

the linear difference equation are constant; though it is

conventional to apply it locally when the coefficients are

not constant.

(ii) For two level difference schemes with one dependent variable

and any number of independent variables the von Neumann

condition is sufficient as well as necessary for stability,

otherwise the condition 1S only necessary.
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,j v)

Boundary conditions are neglected 1n the von Neumann

analysis and hence, 10 theory, it only applies to pure

initial value problems with periodic initial data.

It is noted that stability of a difference scheme is also related

to the propagation of rounding errors which occur as a result of nu-

merical calculations. Let

(I .24) Z(x;t) = U(x,t) - U(x,t)

be the difference between the theoretical and numerical solutions of

the difference equations. Since the error Z(x,t) satisfies the

original difference equation, the von Neumann analysis above may be

applied using Z(x,t) in place of U(x,t). Thus the stability con-

dition (1.23) ensures that the rounding errors introduced will not

grow as the numerical solution is advanced with time.

The Matrix Method, unlike the von Neumann method, 1S applicable to

initial-boundary value problems. A necessary and sufficient condition for

stability, when the eigenvalues A of A in (1.18) are distinct, is
s

( 1.25) max
1s s s; -1

IA I ~ 1s
,

where Mh = 1 and h 1S the space discretization. This stability

condition 1S identical to that obtained by the von Neumann method al-

though their respective motivations are different. In general, the two

methods produce similar stability requirements, except possibly for small

differences, in most problems; see for example, Morton (1980).

In Chapter 4 a grid with step size h is superimposed on the space

variable x in the first order linear hyperbolic partial differential

equation

au
at

au
+ - = 0ax

The space derivative is approximated by central difference, lower order

backward difference, and higher order backward difference replacements,

and the resulting linear systems of first order ordinary differential
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equations are solved employing Pade approximants to the exponential matrix

function.

A number of difference schemes for solving the first order hyperbolic

equation are thus developed and each is extrapolated to give higher order

accuracy. The schemes are tested on a number of problems from the

literature.

In Chapter 5 the second order periodic initial value problem

y" = f(x,y) is considered. Recently there has been considerable interest

~n the approximate solution of second order initial value problem, for the

cases where it is known in advance that the required solution is periodic.

The well-known class of Stormer-Cowell 1 _thods with step number greater

than two, give numerical solutions which do not stay on the circular orbit

but spiral inwards. This phenomenon is known as orbital instability. So

Stormer-Cowell methods are often unsuitable for the integration of such

problems. In Chapter 5 a family of tw~tep numerical methods is de­

veloped. The methods are analysed, and their periodicity intervals and

intervals of absolute stability are calculated. The methods are also used

~n PECE mode and are tested on four problems from the literature.

In Chapter 6 a number of schemes are developed for fourth order para­

bolic partial differential equations in one and two space dimensions. The

methods are analysed for stability and are tested on problems with con­

stant coefficients, and variable coefficients in one and two space di-

mens~ons.

Most of the numerical results contained in this thesis were computed

on a CDC 7600 computer. Unless otherwise stated, single precision

arithmetic was used for the calculations.

Parts of the contents of Chapter 2, 4 have been published re­

spectively in Twizell and Khaliq (1981) and Khaliq and Twizell (1982).
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CF.APTER 2

ONE - STEP METHODS FOR FIRST ORDER
ORDINARY DIFFERENTIAL EQUATIONS

2.1 Introduction

Consider a first order system of ordinary differential equations

of order N given by

(2.0)

for which all solutions are assumed to be bounded. In the particular

case of the linear initial value problem

(2. 1)

where A ~s a square matrix of order N with constant coefficients,

this means that the real part of the eigenvalues of A must be non-

positive. Equations of the form (2.1), with B t 0 a constant vector,

arise in the numerical solution of first order hyperbolic partial

differential equations and second order parabolic partial differential

equations with inhomogenous boundary conditions. In such problems the

eigenvalues of the matrix A are real or complex depending upon the

finite difference approximation to the space derivative. Equations of

the form (2.1) with B:: 0 arise in the numerical solution of homo-

geneous second order parabolic partial differential equations when the

space derivative is replaced by the usual central difference approxi-

mation. In this case the matrix A has negative real eigenvalues and

was considered by Lawson and Morris (1978) and Gourlay and Morris (1980).

The methods to be considered in this chapter will be applied to the

heat equation and first order hyperbolic partial differential equation

in Chapters 3 and 4, respectively. Assuming that A is diagonalizable,

and following Lambert (1973), it ~s therefore appropriate to consider

the test equation (see also, for example, Hall and Watt (1976,p.34»



y' = Ay

(13)

(A < 0)

and to seek the solution in some interval

In the case of a single equation of the form (2.0), A takes the

value of af, estimated at each step.
ay

A family of one-step multiderivative methods based on Pade approxi-
.

mants to the exponential function, will be developed in section 2.2.

One-step multiderivative methods are known to g1ve high accuracy

when used to solve the problems for which higher derivatives are avail-

able, see, for example, Obrechkoff (1942), Ehle (1968), Thompson (1968),

Barton,Willers and Zahar (1971), Gear (1971), Lambert (1973,p.202),

Brown (1974, 1976) and others.

The first twenty four members of the family are g1ven in Appendix II;

the family is seen to contain five well-known methods. In section 2.3

the methods will be analysed, and in section 2.4 a practical problem 1n

applied chemistry will be modelled. The methodswill be extrapolated to

achieve higher accuracy in section 2.5. In section 2.6 the methods will

be employed in appropriate predictor-corrector pairs. Stability reg1ons,

for the case A complex, for certain predictor-corrector pa1rs, will be

given in section 2.7. The predictor-corrector combinations will be tested

on numerical examples in section 2.8 and finally conclusions will be drawn

1n section 2.9.
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2.2 Derivation of the formulas

Suppose the independent variable x ~s incremented us~ng a constant

step s~ze h = (b - a)/N where N ~s a positive integer, then the

solution of equation (2.1) will be computed at the points x. = ih
i.

(i = 1, 2 .•. ,N) •

It is easy to show that the solution y(x) satisfies the one-step

relation

( 2.3) Ah
y(x + h) = e y(x).

Using this relation, any numerical method will determine the solution

whose accuracy will depend on the approximationYn+1 (n = O,I, ... ,N-I)

Ah
to e used in (2.3).

the form

Using the (m,k) Pade approximant to
Ah

e of

where Pk,Qm are polynomials of degree k,m, respectively, defined by

(2.4)

and

P (e) = 1 + PI ke + p e 2 + ..... +
k ,2,k

(2.5)

with

Q (e) = 1 - q e + q2 e 2 - .... + (_I)mq em; Qo(e) - 1,
m I,m ,m "m,m

p > p > p > 0 and ql > q2 > ••• > ~ > 0
l,k 2,k k,k ,m ,m ,m

depending on the chosen Pade approximant, equation (2.3) takes the form

(2.6)
22m ~m(I - q Ah + q A h + ... +(-1) q A n)y 1

I,m 2,m m,m n+

or

(2.7) h 'y n+ 1 - q 1,m y n+ 1 + h 2 " ( l)m h(m)
q2,m Yn+l + .... + - ~,m t+1

= y + PI khYn' + p h 2y" + .... +
n, 2,k n

Equation (2.7) is a one-step multiderivative formula which is explicit if

m = 0 (Taylor's series of order k) and implicit if m; 0 it ~s

assumed that y(x) is sufficiently often differentiable on a,b
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The non-zero coefficients of (2.7) for the family of algorithms

yielded by the first twenty four entries of the Pade Table for the ex-

ponential function, are given in the Appendix II. It is seen that the

methods based on the (0,1), (1,1) and (3,3) Pade approximants are,

respectively, the Euler predictor, the Euler corrector or trapezoidal rule

and Milne's starting procedure (Milne (1949»; the methods based on the

(k,k) Pade approximants (k ~ 1) are one-step Obrechkoff methods and

are glven for k = 2,3,4 1n, for example, Lambert (1973,p.47) and

Lambert and Mitchell «1962): Table I).

2.3 Analyses of the methods

'lith the multiderivative formula (2.7) may be associated the linear

difference operator L defined by

(2.8) LCy(x);hJ

Expanding y(x+h) and its derivatives as Taylor ser1es about x, and

collecting terms, glves

(2.9)
t (t.)

LCy(x);hJ = Coy(x) + C1hy'(x) + ... + Cth Y (x) +.....

if,in (3.2), Co = C1 = •••. = C =0,
s

The operator L and the associated multi-are constants.C
t

derivative method (2.7) are of order s

where the

C 1 f. °s+
the term C In the principal part of the truncation error is

s+1

known as the error constant. The error constants for the twenty four

methods to be considered, are contained in Table 2.1.

The multiderivative formula (2.7) is said to be consistent with the

differential equation if the order s ~ 1 ; the twenty four methods

contained in Appendix II are clearly consistent.

(2.10)

Writing (2.7) 1n the form

k m
= \ hi (i) + \

L Pi,k Yn L
i= 1 j =1

it 1S clear that the multiderivative methods are generated by the

characteristic polynomials
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• 1
per) = r-1 , cr. k(r) = p. k ,y. (r ) = (-OJ+ q. r

1, 1, J,m J,m

( i = 1, .•• ,k ,.' 1 )J = , ... ,m. The polynomial equation per) = 0 has

only one zero, r = 1, and the twenty-four consistent multiderivative

methods are therefore zero-stable and thus convergent.

The interval of absolute stability of equation (2.7), 1S determined

by computing the interval of values of

stability equation

-
h = Ah for which the zero of the

(2.12)
-

iT(r,h) = 0

1S less than unity 1n modulus, where

(2.13) iT(r,h) = per)
k . m .
\ -1 -J

- L h cr. k (r) - L h y. (r)
i=l 1, j=l J ,m

The intervals of absolute stability for the multiderivative methods

based on the first twenty four Pade approximants to the exponential

function, are contained in Table 2.1 (the figures containing a decimal

point have been truncated with two decimal places).

The formulas based on those (m,k) Pade approximants for which

m ~ k are seen to be unconditionally stable. This is verified by the

following theorem whose proof is based on the properties of the co-

efficients p. k,q. (i = 1, ... ,k; j = l, ... ,m):
1, J , m

Theorem

The multiderivative method (2.7) is absolutely stable if and only if

m ~ k for m,k ~ 4 ...
Proof:

Assume m ~ k then the coefficients in the (m,k) Pade approx1-

mant satisfy for all i = l, ... ,m (m,k odd or even).
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Table 2.1: Stao:lity intervals and principal error terms of the
one-step multiderivative formulas.

~~"ethod

(Pade)
Stability
interval

error
constant

- (-2,0) V2(0, I ) h E C2 =
( I t 1) h E (-00 t 0) C3 = _1II2

(1,0) h E (-00,0) C2 = _1/2--_._...

(0,2) h E (-2,0) C3 -= 1/6

(: ,2) h E (-6,0) (..4 - ~lf,2

(2,2) h E (-00,0) Cs 0= 1/720

(2,1) h E (-00,0) C4 = 1h2

(2,0) h E (-00,0) C3 = 1/6

(0,3) h E (-2.51,0) C4 ::I 1/2 4

( 1,3) hE (-5.41,0) Cs = -11480

(2,3) h E (-1 1. 84,0)" C6 • Ih200

(3,3) hE (-00,0) C7 - _1II ooaoo

(3,2) h E (-00,0) C6 II: -117200

(3,1) h E (-00,0) Cs • _1A.ao

(3,0) h E (-00,0) C4 • _1&4

(0,4) hE (-2.78,0) Cs • lII20

(1,4) hE (-5.43,0) C6 • _1/36 00

(2,4) hE (-9.64,0) C7 • 1hs600
- (-19.15,0) C8 • - lii 4 11200(3,4) h E

(4,4) hE (-00,0) C9 • 1/2 54 0 1 6 00

(4,3) hE (-00,0) Ce • 111411200

(4,2) hE (-00,0) C7 • 1hs600

(4,1) h E (-00,0) C6 • 1/36 0 0

(4,0) hE (-00,0) Cs - 1/120
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The requirement Irl<1 leads to

(2.14 )

-1 < -
- q h +

I ,m
< 1 •

The left hand side implies the requirement

2 + (PI,k - ql,m)h + (P2,k + q2,m)h2 +... + (Pk,k + (-1)kqk,mhk)

+ (_I)k+l h-k+ I (,m:-Ill
qk+l,m +... + -I) ~,mh > 0

and, S1.nce q. ~ p. k 2 0 for m ~ k1.,m 1.J

this inequality satisfied -1.S for h < O.

implies the requirement

(m,k odd or even), Pade (1892),

The right hand side of (2.14)

(Pk,k - (_I)kq )hk
k,m

_ (_I)k+l h-k+ 1 m-m
qk+1,m + ... - (-1) ~,mh < 0

-
and this inequality is also satisfied for h < O.

The multiderivative method given by (2.7) 1.S thus absolutely stable

if m2k and m,k~4.

If m < k the method has only a finite interval of absolllte stability

as illustrated, for example, by the (0,1) method which is the Euler

predictor formula. The hypothesis of the theorem is thus proved.

The methods based on the (k,k) Pade approximants, are optimal l.n

that they have the smallest truncation errors; they are absolutely

stable. \fhen used as correctors in PECE mode, however, they give smaller

intervals of absolute stability, when used with the (0,£) method as

predictor (£ = 1, ... ,k), than the methods with m < k. This will be

dealt with more fully in Section 2.6.

From Theorem 1 it is clear that one-step multiderivative methods

of the form (2.7), based on the (m,k) Pade approximants with m ~ k,

satisfy the definition of ~stability (Cryer (1973)). Ao-stability

corresponds to "unconditional stability" for second order parabolic partial
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differential equations, when the eigenvalues of the discretization

matrix are real and negative. For example, using the (1,1) Pade

approximant in (2.7), yields the trapezoidal rule, which ~s Ao-stable

when applied to the test equation (2.3); it becomes the Crank-

Nicholson method for second order parabolic partial differential

equations, which is known to be unconditionally stable (Lawso~ and

Morris (1978».

The boundaries of s tabili ty r eg i on s for A comp lex, can also be

calculated from equation (2.12) by imposing Ir\ = 1, see for example,

Hall and Watt (1976,p.38). The stability regions of the methods based

on the (m, k ) Pade approximants, for 4. ~ m~ k are seen to contain the

left half complex plane, thus satisfying the requirement of A-stability

(Dahlquist (1963». See also, Axelsson (1969), Ehle (1968). The

amplification symbols for the (m,k) Pade approximants, for m ~ k,

are shown in Figures 2.1-2.14. For the (m,k) Pade approximants with

m > k, the amplification symbol approaches zero either monotonically or

asymptotically by crossing the axis. For A-stable methods based on the

(k, k ) Pade approximants, the amplification symbol ~s

-
l\ k(h) = P(h) = P (h),

Q(h)
-

PC-h)

where P(h) ~s defined ~n (2.4), ii = Ah, and ~s such that

- -
l\,k(h) + + as Re (h) + - OJ .

The numerical methods of the form (2.7), applied to problems with

rapidly decaying solutions, will thus not damp any oscillations. The

trapezoidal rule (the (1,1) Pade approximant), is well known to have

this property (Rosenbrock (1963».

To overcome this difficulty a stronger stability property is defined

which has been variously termed L-stability (Ehle (1969), Lambert (1973,

~.237», stiff A-stability (Axelsson (1969», and strong A-stability
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(Chipman (1971), Axelsson (1972)). Following Ehle (1969), Lambert

(1973, p.236) has made the following definition of L-stability:

Definition: A one-step numerical method is said to be L-stable if

it is A-stable and, In addition, when applied to the scalar test

equation y' = Ay , A a complex constant with Re A < 0 it yields

Yn+] = R(hA)Yn' where IR(hA) I + 0 as Re(hA) + - 00

One-step multiderivative methods of the form (2.7) yielded by

employing the (m,k) Pade approximants, for m > k, are thus

L-stable; this is also clear from the corresponding Figures. It lS

noted that the amplification symbols for L-stable methodE approach

zero rapidly as soon as the degree of m increases compared to that

of k, and hence oscillations will be damped quickly by employing

higher order Pade approximants for which m > k. The behaviour of

higher order (m,O) Pade approximants and corresponding (m,k) Pade

approximants, for m > k, will be discussed in Chapter 3 for parabolic

partial differential equations in which discontinuities exist between

initial and boundary values.
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2.4 Mathematical IDodelling of a Chemistry problem

Consider the sequence of first order reactions, described by the

chain reaction below:

CN CONH
2 COOH

Me Me Me Me

)0- ~
r r

21

Me Me Me

r
3 JS03H H

Me Me Me Me Me

<: <
r S r 4

S03H

Me Me Me

It is the reaction of Mesitonitrite in Sulphuric Acid. A discussion of

the above reaction can be found in Gore et al (1983). The research for--

this problem was carried out at BruneI University by J. Al 'Kabi,

E. F. Saad, D. N. Waters and G. F. Moxon, under Professor P. H. Gore,

Department of Applied Chemistry.

The chemical reactions have been expressed In the form of the

following initial value problem:

dYl
Yl (0) = 1- = -r

l Yldt

dY 2 r
l Yl

- r
2Y2

y
2(0)

= 0=
dt

dY3 r
2Y2

- r
3Y3

y
3(O)

= 0=dt
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dY4
- = r

3Y3
- r

4Y4dt

dy
S = r

4Y4
- r

5
y

Sdt

This is a linear system which can also be written as

(2.15) dy

dt yeo) = [l,O,O,O,O,OJ T

where the matrix A lS of order 6 and lS given by

-r
1

r
1

-r a2

r 2 -rA = 3

r
3

-r
4

a r
4 -r

5

r 5 °
with r 1 = 0.0006605, r 2 = 0.0009185, r

3
= 0.01694, r

4
= 1818.0

r = 0.0004834.
5

The theoretical solution of the problem lS

Y1 (t) = e-r 1t ,

Y2(t) r r-qt -rztJ= 1 e -e
r

2-r 1
-r2 t[< e-rl t e

Y3(t) = r r +
1 2 (r -r )(r -r ) (r1-r2) (r3- r 2)2 1 3 1

e-r 3t ]+ ,(r
1-r3)

(r
2-r3)

~ -rlt
-r2t

Y4(t)
e= r

1r2r3
e

r 1)' (r1-r2)(r3-r2)(r4(r2-r1)(r3-r1)(r4 r
2)
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,+ +
~--"""""----:-~--- -;~-~~----.,----

-rlt
e

r l)(r3-r l)
(r

4-rl)
(rS-r

l)

+
-rzt

e

+
-r3 t

e

+

+

[
+

+

+

+

and ~s such that the components of y(t) add up to unity at each time step.

The eigenvalues of A in (2.15) are widely spread with maximum modu-

Ius eigenvalue 1818.0 and minimum modulus eigenvalue zero, thus making

the system highly stiff. The definition of a stiff system (Lambert (1973,

p.231-232)) in which the stiffness ratio ~s a measure of computational

effort is not valid for this type of problem where the minimum modulus

eigenvalue is zero. However, in this case statements such as "Stiffness
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occurs when stability rather than accuracy dictates the choice of step

length", are preferred (Lambert (1980,p.21).

To compute the solution of the system (2.15), it can easily be shown

that (2.15) satisfies the equation (2.3), which can be written as

(2.16) y(t+£) = exp (£A)y(t) ,

where £ r.s a convenient time step.

The fourth order, A-stable method based on the (2,2) Pade approx~­

mant (Appendix II) may be used to determine the solution from (2.16). The

numerical results were calculated us~ng single precision arithmetic and the

sum of the six components of I.(t), t = 0(500)5000, was found to be unity

to ten decimal places. The numerical results are given in the Table 2.2.



Table 2.2:

Computed solution of the modelled problem at
time t = 0(500)5000.

Time YI Y2 Y3 Y4 Y5 Y6 . Sum

500 7.1875(-1 ) 2.2266(-1) 1.1661 (-2) 1.0867 (-7) 4.3459(-2) 3.4741(-3) I .0000 ,........
N
lJl
'-"

1000 5.1660(-1) 3.0070(-1) 1.6177(-2) 1.5073(-7) 1. 41 05 (-I) 2.5476(-2) I .0000

1500 3. 7130 (-I) 3.0500(-1) 1.6656(-2) 1.5520(-7) 2.3566(-1) 7.1380(-2) I .0000

2000 2.6687(-1) 2.7537(-1) 1.5174(-2) I .4139 (-7) 3.0525(-1) 1.3734(-1) I .0000

2500 1.9182(-1 ) 2.3339(-1) 1.2936(-2) 1.2054(-7) 3.4532(-1) 2.1654(-1) I .0000

3000 1.3787(-1) 1.9016 (-I ) 1.0581 (-2) 9.8598(-8) 3.5924(11) 3.0215(-1) I .0000

3500 9.9092(-2) 1.5083 (-I ) 8 . 4169 (_.3) 7.8428(-8) 3.5308(-1) 3.8858(-1) 1.0000

4000 7.1222(-2) 1.1736(-1) 6.5624(-3) 6. I 148(-8) 3.3313(-1) 4.7172(-1) I . 0000

4500 5.1191(-2) 9.8001 (-2) 5.0406(-3) 4.6968(-8) 3.0482(-1) 5.4894(-1) 1. 0000

5000 3.6793(-2) 6.8259(-2) 3.8276(-3) 3.5666(-8) 2. 7237 (-I ) 6.1875(-1) 1. 0000
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2.5 ~xtrapolation of the methods

Applying equation (2.3) over two single intervals hand re­

2Ah
placing e by, for example, its (l~l) Pade approximant, glves

(2.17)

Alternatively, if equation (2.3) 1S written over a double interval

2h,y(x+2h) is given by

(2.18) y(x+2h) = (I+Ah)(I-Ah)-ly(x)

The Maclaurin expanS10n of y(x+2h) about x produces

(2.19)

+ ~h6 (vi) () ~h7 (vii) () ~h8 (viii) () 4 h 9 (ix)( )
45 y x + 315 Y x + 315 Y x + 2835 Y x

and defining the values of y(x+2h) yielded by (2.17) and (2.18) to be

Y( 2) respectively,
n+2and

However, defining
(E)

Yn+2 by

it is seen that neither is o(h 3) accurate.

(2.20)

The error 1n
(E)

Yn+2
defined by

(E)
y(x+2h) - Yn+2' has principal part

ES = The second order method based on the (I , I) Pade approximant,

has been extrapolated to glve fourth order accuracy (see also Lindberg (1971»

by the Richardson technique.
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Repeating the process for the (3~3) Pade method (Milne's method

(1949» leads to

0)
Yn+ 2 -

=

and

(2)
Yn+ 2 -

[(l+21Ah+ 110A2h2+ _1_A3h3)(I~Ah+_l_A2h2__1_A3h 3)-IJ2 ( )
120 2 10 120 Y x

y (x)+2hy' (x)+2h2y" (x)~h 3y'" (x)2h4y(iv) (x)~hS (v ) ( )
3 3 15 Y x

+ !:-h6 (vi) () 61 7 (vii) 23 8 (viii) 209 (.)
45 Y x + 2400h y (x)+ h - () h 9 t.x ( )3600 Y x + 144000 Y x

+ ~h6y(vi) (x)+ 2-h 7y (v i i ) (x)+ ~8y(viii)( )+
45 75 225 x

Defining

(2.21)

g~ves

(E)
Yn+2'

(E)
Yn+2 =

~n this case, by

(E)
Yn+2 = y(x)+2hy' (x)+2h2Y"(x)~3y'"(x)A4y(iv) (x)+ !:-hSy(v) (x)

3 3 15

+ ~h6 (vi) ( )+ ~h7 (vii) () 2 h 8 (viii) () 599 h 9 (ix) 0(h 1 0 )
45 y x 315 Y x +m y x + 425250 Y + ,

which, on compar~son with equation (2.17), is seen to be eighth order

accurate with 1
E9 = 425250 It is clear that as m and k .

~ncrease,

the algebraic manipulation involved in the extrapolation procedure

beco~s tedious and difficult.

In the cases of the methods based on the (1,1) and (3,3) Pade

approximants, the extrapolation procedure has produced two extra orders of

accuracy. This phenomenon is a useful feature of multiderivative methods

based on (m,m) Pade approximants, which is not evident in methods based

on (m,k) Pade approximants (m, k) for which only a single extra

order of accuracy is produced.

The extrapolating formulas connecting

satisfy one of the relations

(E) (J )
Yn+2' Yn+2 and

(2)
Yn+2



(28)

(2.22)
(E) = (2m+k (I) _ (2))/(2ID+k _ ]) + O(hm+k+ 2)

Yn+2 Yn+2 Yn+2

when m :f k, or

(2.23) (E) = (22m (1) (2))/(22m - 1) + O(h 2m
+3)

Yn+ 2 Yn+2 Yn+2

when m = k. The extrapolation formulas for the twenty four multi-

derivative methods outlined in Section 2.2 together with the error

constantsofthe principal parts of their local truncation errors, de-

fined for each method by

(2.24)
(E)

y(x+2h) - Yn+2 '

are contained In Table 2.3.

It is easy to see that
(E)

Y may also be written In the form
n+2

Pk(Ah)
2

Pk (ZAh) J + 0 (hm+k+2
(2.25)

(E) I Em
+
k

Yn+2 = Q (2Ah) Yn )2m+k_1 ~(Ah) m

or

) ~ Zm Pm (Ah)
2

P (2Ah) j
(E) _ m Y + 0 (h2m+3)

(2.26) Yn+2 = 22m_
1

2 Pm(-Ah) P (-2Ah) n
m

Each of (2.23) and (2.24) lS of the approximate form

m :f k

m = k.

(2.27) (E)
Yn +2 ::: S k(h)ym, n

and clearly the interval of absolute stability for each multiderivative

-
method is the range of values of h = Ah for which

Is k l < 1.m,

The intervals of absolute stability for equations (2.22) and (2.23), the

extrapolated forms of equation (2.7), are thus determined by finding the

-
range of values of h for which

(2.28) (_2m+k+l)[Qm(h)]2~(2h)<2m+k[Pk(h)]2~(2h)- Pk(2h)[Qm(h)]2

«2m+k_I)[Qm(h)J2~(2h)

when m:f k, or
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(29)

2m - 2 - 2 2 2
(-2 +])[P (-h)J P (-2h) <2 m[p (h)J P (-2h)-P (2h)[P (-h)J

rn rn rr 1"'") rn rn

when rn = k.

Thus, for example, the interval of absolute stability for the

extrapolated form of the method based on the (],]) Pade approximant,

is the interval of values of -
h for which

(2.30)

where fractions have been cleared. The left hand side of (2.30) 1S

-
satisfied for all h < 0 while the right hand side is satisfied only for

-
the interval h E (-]2.92,0), which is therefore the interval of

absolute stability.

Clearly, as m and k 1ncrease, the algebraic manipulation involved

1n solving (2.28) or (2.29), becomes complicated. The interval of absolute

stability of the extrapolated form of the multiderivative lliethod based on

the (3,3) Pade approximant, for example, is found by solving the in-

equality

(2.31) -13608000 + 27216000h - 25174800h
2

+ 1406]600h
3

- 5193720h
4

+]315440h5 - 229257h6 + 26649h
7

- ]840h
8

+ 63h
9

<13608000 - 204]200h
2

+ 204]20h
4

- 27783h
6

- 8775h
7

-1134h8 - 65h
9

<13608000 - 27216000h + 25174800h
2

- ]406]600h
3

+ 5193720h
4

-]315440h5 + 229257h
6

- 26649h
7

+ 1840h
8

- 63h
9

where, aga1n, fractions have been cleared. Both sides of (2.29) are

satisfied for all h < 0 and the interval of absolute stability is there-

-
fore h E (-00,0).

The intervals of absolute stability for the extrapolated forms of all

twenty four multiderivative methods derived in section 2.2, are also con-

tained in Table 2.3. It must be noted that, whilst extrapolation has
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improved accuracy, this has often been at the expense of a decreased

interval of absolute stability. This is particularly so with the (0,1)

and (1,1) Pade methods which are, of course, the Euler predictor

formula and the Euler corrector formula (the trapezoidal rule)

respectively. The extrapolated form of the (1,1) method does not

satisfy Theorem 1 which, therefore, does not hold for the extrapolation

formulas. However, it is seen from equation (2.25) that the

extrapolation of L-stable methods based on (m,k) Pade approximants with

m> k , satisfies the condition of L-stability. Thus, the extrapolation

of L-stable methods of the form (2.7) based on (2.25), is L-stable

since the degree of the denominator in

degree of the numerator for m> k .

R k(~)m, is greater than the

The amplification symbols for the extrapolated methods are also

shown in Figures 2.1 - 2.14. It is seen that the amp lification symbols

of the extrapolated methods based on the (m,k) Pade approximants

for m> k, approach zero faster than those of the methods themselves,

thus damping oscillations more quickly.
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Table 2.3: The extrapolating algorithms.

!1ethod Extrapolating Stability error
(Pade ) algorithm interval constant

2 (1) (2)
(0, 1) h E (-1,0) = '+/3Y -y E3

( 1, 1) (4y(1)_y(2»/3 hE (-12.92,O) E5 = 1/10
( 1, 0) 2y(1) _y (2) hE (-00,0) E3 = '+1)

(0,2) (4y(1)_y(2»/3 h E (-2.57,0) E,+ = 1/3
( 1,2) (8y(1)_y(2»/7 h E (-6.47,0) E5 = _8/9,+5
(2,2) (16y(1)_y(2»/15 hE (-00,0) E7 = -III 890

(2, 1) (8y(1)_y(2»/7 hE (-00,0) E5 = _8/g,+ 5

(2,0) (4y(1)_y(2»/3 h E (-00, 0) E,+ = _1/3

(0,3) (8y(1)_y(2»/7 liE (-2.02,0) E5 = 8/105

( 1,3) (16y(1)_y(2»/15 liE (-6.20,0) E6 = _1/5,+ 0

(2,3) (32y(1)_y(2»/31 h E (-11.44,0) E7 = '+/5425

(3,3) (64y(1)_y(2»/63 h E (-00,0) Eg = Ilt.2 52 50

(3,2) (32y(1)_y(2»/31 h E (-00,0) E7 = '+/5'+25

(3,1) ( 16y ( 1) _y (2) ) / 15 liE (-00,0) E6 .. lf51+ 0

(3,0) (8y(1)_y(2»/7 'hE (-00,0) E5 = 8II 05

(0,4) ( 16y( 1)_y (2» / 15 liE (-3.23,0) E6 = 2t1 3 5

(1,4) (32y(1)_y(2»/31 liE (-12.30,0) E7 = 8/27125

(2,4) (64y(1)_y(2»/63 'hE (-·9.62,0) E8 .. _107g/12 7575

(3,4) (128y(1)_y(2»/127 'hE (-7.98,0) Eg = 9331+ 1/8a211025

(4,4) (256y(1)_y(2»/255 'hE (-00,0) Ell = -¥11+1+317250

(4,3) (128y(1)_y(2»/127 'hE (-00,0) Eg = 9331+ 1/88211025

(4,2) (64y(1)_y(2»/63 liE (-00,0) Ea = 1079/127575

(4,1) (32y(1)_y(2»/31 'hE (-00,0) E7 = Bt27125

(4,0) (16y(1)_y(2»/15 liE (-00,0) E6 = -211 3 5



h

Figure 2.1: Amplification symbols R1,O(h) and Sl,o(h).

t

-L__~~--~--.-,_--......----..h

Figure 2.2: Amplification symbols R1,1(h) and Sl,l(h).
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Figure 2.3: Amplification symbols R
2

o(h) and 52 O(h).
, ,

------. h

Figure 2.4: Amplification symbols R
Z

l(h) and 52 l(h)., ,
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Figure 2.5: Amplification symbols R2,2(h) and S2,2(h).

f

•
• -L.-..l-:~r=--::::::===::::;;:=----....--.... h

...

-f

Figure 2.6: Amrlification symbols R3,O(h) and S3,O(h).
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8.

8.

8.__-I-r--"';;;:==--:r-======ti~==~==='"h

,

-8.J'
-8.

Figure 2.1: Amplification symbols R3,1(h) and S3,1 (h).

Figure 2.8: Amplification symbols R3,2(h) and S3,2(h).
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R3 3(h),

Figure 2.9: Amplification symbols R
3,3(h)

and 5
3,3(h).

~\

\\
\R4, 0 (h)

-l--~::::;r=----=::::;r===__--.....--"m h

Figure 2.10: Amplification symbols R4 O(h) and 54 O(h)., ,
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--=?---:=;p---.....oIl_--_~--_h

-t.ti

Figure 2.11: Amplification symbols R4,1(h) and S4,1(h).

1•

...L--l~:::;;=-======r==--.....-_..,,__..,.h

Figure 2.12: Amplification symbols R4,2(h) and S4,2(h).



(Jb)

8.

8.et--+,r--"=::~--1I"'--"''''-=====~1II

Figure 2.13: Amplification symbols R4,3(h) and S4,3(h).

Figure 2.14: Amplification symbols R4,4(h) and S4,4(h).

h

h
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2.6 Use 1n PECE mode

In this s ec t i on the (0.1), (0 2) (0 3) (0 4) Li.c i t f 1' "", exp 1C1 ormu as

will be used as predictor formulas and all appropriate combinations of

these four formulas with the twenty implicit formulas of section 2.2 as

correctors, will be considered. Predictor-corrector methods for which

the order of the predictor exceeds that of the corrector will not be

constructed.

Using the general (O,k*) Pade approximant as predictor, the character-

istic polynomials (from(2.II)), are

(2.32) p*(r) = r-I o~ k*(r) = p. k*
1, 1,

(2.33)

where the convention of associating an asterisk with the predictor has

been adopted. Using the (m,k) Pade approximant (m I- 0) as corrector,

the characteristic polynomials (2.11) become

. 1
per) - r-I 0 (r) = p (i=I, ... ,k), y. (r ) = (-I)J+ q. r (J·=1, ... ,m).- ,. k . k1, 1, J,m J,m

This combination of predictor and corrector will be denoted by (O,k*);(m,k).

The stability polynomial for the (O,k*); (m,k) predictor-corrector

combination 1n PECE mode is therefore

k . m .
-1 \' -J

TIpECE(r,h) = p (r) - L h o. k(r) - L h y. (r)
. 1 1, ·-1 J,m1= J-

k* . ]- L i?o*. (r )
. 1 1, k1=

k .
\' -1= r-l - L h p. k

• 1 1,1=

k* .J
+ L p. k*l?

. 1 1,1=

and the interval of absolute stability 1S the range of values of h for

which the zero r of

(2.34)
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is less than unity 1n modulus.

Solving equation (2.34) for r g1ves

(2.35) r =
-

e
h _ T h-s +1 -s+2

+ O(h )s+ 1

where s is the order of the predictor-corrector combination (0 k*) (k), ; m, •

The term T
s+1 is the error constant of the predictor-corrector combination.

The intervals of absolute stability and the error constants are con-

tained in Tables 2.4, 2.5, 2.6 and 2.7 for the predictor-corrector com-

binations us i.ng , respectively, the (0,1), (0,2), (0,3), (0,4) Pade

methods as predictors. All possible combinations of these explicit pre-

dictors with the other twenty implicit methods used as correctors, for which

the order of the predictor does not exceed that of the corrector, are in-

eluded in the tables.

It is easy to see that for all four predictors, uS1ng the (1,4)

method as corrector, g1ves the greatest interval of absolute stability as

well as the smallest error modulus; in the case of the (0,3); (1,3) com-

bination, one derivative fewer is required in the corrector than in the

(0,3) ; (1,4) combination for the same accuracy and the same interval of

absolute stability.

For all four (O,k) predictors, k = 1,2,3,4, it 1S seen that the

(O,k); (k,O) predictor-corrector combination, gives the worst error 1n

PECE mode and the smallest interval of absolute stability, except that the

(0,2) ; (4,0) combination has a slightly smaller stability interval than

the (0,2); (2,0) combination. This latter combination does, however,

have a better principal error term and requ1res lower order derivatives.

The literature contains little on the size of stability intervals for

one-step multiderivative methods used in PECE mode. They have been verified

to be generally small, and examination of Tables 2.4, 2.5, 2.6 and 2.7,

shows surprisingly that the greatest stability intervals in PECE mode ar1se

with correctors based on (l,k) formulas which themselves have poor

stability intervals (Table 2.1). It can be deduced from Tables 2.4, 2.5,



Table 2.4
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Intervals of absolute stability and principal error terms
of the correctors used with the (0,1) predictor.

Corrector Stability error
interval constant

( 1 , 1) h E (-2,0) T3 = 1/6
(l,O) hE (-1,0) T3 = _1~

( 1,2) h E (-2,0) T3 = 1/6
(2,2) hE (-1.58,0) T3 = lk
(2, 1) hE (-1.37,0) T3 • 113

(2,0) h E (-1 ,0) T3 = 2/3

( 1,3) hE (-2.53,0) T3 = l/e
(2,3) h E (-1.78,0) T3 = 1/5
(3,3) . hE (-1.54,0) T3 = 1/4

(3,2) hE (-1.39,0) T3 = 3110

(3. 1) hE (-1.22,0) T3 = 3/e
(3,0) hE (-1.00,0) T3 = Ih.

(l ,4) hE (-2.61,0) T3 • 1/10

(2,4) hE (-2.02,0) T3 = 1/6

(3,4) hE (-1.67,0) T3 = 3!I4

(4,4) hE (-1.52,0) T3 = 1/4

(4,3) hE (-1.41,0) T3 = 2h

(4,2) hE (-1.29,0) T3 = lf3

(4,1) hE (-1.16,0) T3 - 4/5

(4,0) h E (-1.00,0) T3 = liz
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Table 2.5: Intervals of absolute stability and principal error terms
of the correctors used with the (0,2) predictor.

Corrector Stability error
interval constant

( 1 , 1) - (-2.0) T3 = -1/12h E

( 1 ,2) - (-2.51,0) Ih4h E T4 =
- (-2,0) Ih2(2,2) h E T4 =
- (-1.79,0) l/a(2, 1) h E T4 =

(2,0) h E (-1.61,0) T3 = 1/6

(I,3) h E (-2.51,0) T4 = 1/24

(2,3) hE (-2.13,0) T4 = 1115

(3,3) h E (-1.94,0) T4 = 1/12

(3,2) h E (-1.82,0) T4 =- lAo
(3, 1) h E (-1.67,0) T4 =- l/a

(3,0) hE (-1.50,0) T4 = l/a

(1,4) hE (-2.78,0) T4 = 1130

(2,4) h E (-2.26,0) T4 = lila
(3,4) h E (-2.05,0) T4 = 1114

(4,4) h € (-1.92,0) T4 = 1112

(4,3) h E (-1.84,0) Tit = 2hl

(4,2) h E (-1.74,0) T4 1:1 1/9

(4, 1) h E (-1.61,0) T4 1:1 2115

(4,0) h € (-1.47,0) T4 = 1,t
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Intervals of absolute stability and principal error terms
of the correctors used with the (0,3) predictor.

Corrector Stability error
interval constant

(1 ,2) - (-2.38,0) _11.,2h E T4 =
- (-2.13,0) 1/45(2,2) h E TS =
- 1172(2,1) h E (-2,0) T4 =

( 1,3) h E (-2.79,0) Ts = 1t1 20

(2,3) hE (-2.28,0) TS = 1ko
- (-2.09,0) Ts = 1J.a(3,3) h E

(3,2) h E (-1.97,0) TS = 1ho

(3, 1) h E (-1.84,0) TS = 7&40

(3,0) h E (-1.59,0) T4 = lis

( 1,4) hE (-2.79,0) TS = 11120

(2,4) h E (-2.40,0) Ts = 1h2

(3,4) hE (-2.19,0) TS = 1711 050

(4,4) h E (-2.07,0) TS = 1he

(4,3) hE (-1.99,0) TS = 1h2

(4,2) hE (-1.92,0) Ts = 1136

(4, 1) hE (-1.76,0) TS = 1130

(4,0) h E (-1.59,0) TS = 1112



Table 2. 7
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Intervals of absolute stability and principal error terms
of the correctors used with the (0,4) predictor.

Corrector Stability error
interval constant

- (-2.54,0) TS = 1h20(2,2) h E

(1,3) hE (-2.92,0) TS = _l'\a 0

(2,3) hE (-2.65,0) T6 = lk4a

(3,3) h E (-2.48,0) T6 = lk40

(3,2) h E (-2.37,0) T6 = 711440

(3, 1) hE (-2.21,0) TS = _1A.ao

(1,4) h E (-3.21,0) T6 = Ih20

(2,4) hE (-2.76,0) T6 = 11360

(3,4) h E (-2.57,0) T6 = 112 a 0

(4,4) h E (-2.45,0) T6 = 1,240

(4,3) h E (-2.37,0) T6 = 1,210

(4,2) 1i E (-2.27,0) T6 = 1~0

(4, 1) hE (-2.15,0) T6 = 1/4 4

(4,0) h E (-2,0) Ts = l!I20
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2.6 and 2.7, that as (m,k) correctors (m = 1, ... ,k), with in-

creasing individual stability intervals, are used with a g~ven pre-

dictor, the stability intervals in PECE mode decrease. It can also be

deduced that the absolutely stable implicit methods of section 2.2,

have inferior intervals of stability to those methods with finite sta-

bility intervals when used as correctors with any given (O,k) predictor.

Comparisons with the Milne-Simpson and Adams-Bashforth-Moulton com-

binations, show that the results of this section can g~ve much bigger

stability intervals than multi-step methods with the same order of accuracy.

Comparisons with the results of Lawson and Ehle (1970), show that one-step

multiderivative methods can also give comparable accuracy to that of one-

step methods which use high accuracy Newton-Cotes quadrature formulas as

correctors, but can simultaneously give bigger stability intervals. The

use of a combination such as (0,4); (1,5) for instance, would give the

same overall accuracy as the method of Lawson and Ehle (1970), but would

-
have a stability interval bigger than h E (-3.21,0), the stability

interval for the (0,4); (1,4) combination which has accuracy one power

fewer than the method of Lawson and Ehle (1970), the method of Lawson and

Ehle (1970) has stability interval h E (-2.07,0).

2.7 Stability Regions

Stability reg~ons, for A complex, associated with the (O,k*); (m,k)

combinations in PECE mode will be plotted from equation (2.33), which is

-
TIpECE(r,h) = r - 1 -

k .
\' -~

L h p. k
• 1 r ,
~=

where
-
h = Ah

+

~s complex.

m . I- k* . ]I (-I)J q . -hJ 1 + ) Pi,k*h~ ,
. J,m '=1J =1 -L

The stability region for the (O,k*);(m,k)

combination ~n PECE mode is the reg~on ~n the complex plan determined by

. h stab~l~ty equation (2.34), namely
solv~ng t e -L -L

-
( r h) - 0lTpECE ' -
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-
for r . Writing h = u + iv (i = +1-1) and r = cos A + i sinA (so

that on the boundary of the region IrJ = 1), equation (2.34) takes the

form

( 2.36) f k* k(u,v) - cos A + i{gk* k(u,v) - sin A} = °,m, ,m,

where A,u,v are real; f,g are real valued functions and clearly change

for each predictor-corrector combination. The stability region for the

(O,k*)

(2.37)

(m,k) combination, is found by solving the non-linear system

f k* k(u,v) - cos A = ° ,,m,

gk* k(u,v) - sin A = ° ,,m,

for each of a serles of values of A in the interval °~ A < 360°.

It was found in section 2.5 that, for k* = 1,2,3,4, the (O,k*); (k*,O)

combination glves the smallest interval of absolute stability when \' < °
is real, and that the (O,k*); (m,k) combination gives the biggest stability

interval when m = and k = 4.

here,

The stability regions, for \ complex, of these eight combinations

will now be determined :

l. (a) the (0,1) ; (1,0) combination

- -2
r = 1 + h + h ,

gl,I,O(u,v) = v + 2uv ;

(b ) the (0, 1) ; ( 1, 4) combina t ion

here, r = + h + .!.h2 + _1_ h3 + ~4
2 15 120

TIle stability regions for these two combinations, in the second quarter-

plane, are shown in Figure 2.15. The stability region for the Euler

d · tor combination in PECE mode is also shown in Figure 2.15.pre lctor-correc

The error constants of all these combinations are of the same order as in



(47)

section 2.5.

2. (a) the (0,2) ; (2,0) combination

here, r = I + h + l.h2 - ~h4
2 4

f 2 2 O(u,v) = I + u + l(u2
, , 2

8 2 2 O(u,v) = v + uv - u 3v + uv 3, ,

(b) the (0,2); (1,4) combination:

here, r = + h + l.h2 + .!..h3 + _I-h4
2 6 120

The stability regions for these two combinations are shown in Figure 2.16.

here, r =

(a) the (0,3)3. (3,0) combination:

+ h + ~2 + J..h3 + _l h4 + _1_ h6
2 6 12 36

f 3,3,0(u,v) = 1 + u + ~(u2-v2) + ~(u3-3uv2) + /2 (u 4-6u2v2+v4 )

(b) the (0,3) (1,4) combination:

,here, r = - 1-2 1-3 1-
+ h + 2"h + 6h + 24 h4

f
3

1 4(u,v) = l+u+ l(u2-v 2) + 1.(u 3-3uv2) + _1_ (u 4-6u2v2+v4 )
, , 2 6 24

g (u v) - v + uv + 6
1

(3u 2v - v 3) + 6
1

(u 3v - uv 3) .3,1,4 ' -

The stability reg10ns for these two combinations are shown in Figure 2.17.

The stability region for the fourth order Adams-Bashforth-Moulton com-

bination in PECE mode, which has the same order error constant as the

(0,3); (1,4) combination in section 2.5, is also shown in Figure 2.17.
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4. (a) the (0,4) ~ (4,0) combination:

r = 1 + h + -}h2 + 61h3 + _1_h4 __1_h6 1-
24 72 - 576h 8

f 4,4,0(u,v) = 1 + u + ~(u2-v2) + ~(u3-3uv2) + ~4 (u4-6u2v2+v4)

(b) the (0,4); (1,4) combination:

here,

f 4,1,4(u,v)

The stability regions for these two combinations are shown in

Figure 2.18. The stability region of the fourth order Adams-

Bashforth-Moulton combination, which has the same order error

constant in PECE mode as the (0,4); (4,0) combination, is

also shown in Figure 2.18.

It is noted that the (0,3);(1,4) and (0,4); (1,4) combinations have the

same stability regions as the fourth and fifth order Taylor series methods,

respectively. The axes of all four figures are drawn to the same scale.

The stability regions are, of course, applicable to the system of linear

differential equations of the form

(2.38) y' (x ) = Ay(x) 1.(0) = l{)
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Im(h)

3

2

-------. ......- ....,/ ....
,/ "

/ "
/ "

/ '// - _.~ \.\ .

/ / \ -.
f :/ \ '\

I ./ \
I .: \
I \ \
I \ i
, I :
I I :

: \!
I
I

-3 -2 -1 o Re(h)

Figure 2.15 ________ (0,1);(1,4) combination

..................... (0,1) ;(1 ,0) combination

_______ (0,1);(1,1) combination (Euler-modified Euler)
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Im(h)

3

-3 -2 -1

2

o Re(h)

Figure 2.16 ______ (0,2) ;(1,4) combination

................... (0,2) ; (2,0) combination
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Im(h)

3

-3 -2

!

.:

..­....
./

,/
,/

/
/

/
/

/
/

/

-1

---

° Re(h)

Figure 2.17 _______ (0,3);(1,4) combination

.................. (0,3); (3,0) combination

_______fourth order Adams-Bashforth-Moulton
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Im(h)

....••....

j

2 .
....

.......

3

..'
./"

..•.

l

....../

---.- .....
"' .........
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./

;'
./

~

/
./

/

/
I

-3 -2 -1 o Re(ii)

Figure 2.18 _______ (0,4);(1,4) combination

.................. (0,4); (4,0) combination

_______fourth order Adams-Bashforth-Moulton
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1S square matrix of order N·, the real part of the eigenvalues

A. (J' = 1 2 N), , ...
J of A must be non-positive. For non-linear systems

the eigenvalues A.(j = 1,2, ... N) are those of the Jacobian matrix
J

these eigenvalues are calculated at each point x .
n

2.8 Numerical examples

The (O,k*);(k*,O). and (0,k*);(l,4) combinations (k = 1,2,3,4)

are tested on two problems, the first a system of the form (2.1) with

-
complex eigenvalues, the second a system of the form (2.38) with nega-

tive real eigenvalues but a large stiffness ratio.

Problem 2.1

(Lambert (1973,p.229))

y' =
1

y' =
2

with initial conditions

Y3 = 40Yl - 40Y2 - 40y3,

TyeO) = (1,0,-1) . The matrix of coefficients

has eigenvalues Al = --2, A2 = -40 + 40i, A
3

= -40 - 40i g1v1ng a

moderate stiffness ratio of 20. The maX1mum steplength for each method

- -
is found by drawing the line Im(h) = -Re(h) in Figures 2.15-2.18 and

estimating the point of intersection with the boundary of the stability

region. The maX1mum steplengths for each of the predictor-corrector

combinations follows in an abvious manner and are g1ven 1n Table 2.8,

truncated to three decimal places, together with the maximum steplengths

which may be used with the Euler-modified Euler and Adams-Bashforth-

Moulton combinations.

It was noted by Lambert (1973,p.229), that the theoretical solution

of the problem, g1ven by

1 - 2x 1 - 40x (cos 40x + sin 40x )Yl = - e + - e
2 2
1 - 2x 1 - 40x

(cos 40x + sin 40x)Y2 = - e - e ,
2 2

3 - 40x
(cos 40x sin 40x )y = -e - ,
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Table 2.8: Maximum steplengths which may be used

each predictor-corrector combination for

Problems 2.1 and 2.2 .

Maximum steplength
Combination

Problem 1 Problem 2

(0, 1) · ( 1,0) 0.025 0.00098,

(0, 1) · (1,4) 0.050 0.00257,

(0,1) ; (1,1)
0.037 0.00197(Euler)

(0,2) · (2,0) 0.025 0.00159,

(0,2) · ( 1,4) 0.046 0.00274,

(0,3) · (3,0) 0.031 0.00157,

(0,3) · ( 1,4) 0.047 0.00275,

(0,4) · (4,0) 0.035 0.00197,

(0,4) · ( 1,4) 0.055 0.00317,

A-B-M 0.016 0.00123
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behaves as ] -2x ] -2x T
y = (~ .~ ,0) for x > 0.] (approximately). The

solution vector was therefore computed only for x ~n the interval

o ~ x ~ 0.09 us~ng the step lengths h = 0.01, 0.015, 0.03.

The numerical results obtained were in keeping with the theory, and

are given for x = 0.09 in Table 2.9. The results for the (0,1);(1,0),

(0,2);(1.2) and (0,3);(3,0) combinations, for which h = 0.03 exceeds

the maximum steplength, display evidence of instability. For all other

combinations, using all three values of h, the error was found to

decay with increasing x.

Problem 2.2

This problem arises ~n reactor

Yi = 0.01 - (0.01 + Yl + Y2)(Y~ + 1001Yl+ 1001) ,

2
Y2)(1 + Y2) ,y; = 0.01 - (0.01 + Y

I
+

with initial conditions yeO) = (O,O)T.

kinetics and has been discussed by Liniger and Willoughby (1967), Lambert

(1973) and Cash (1980). The Jacobian matrix allay has eigenvalues

;012 and -0.01 at x = 0; it thus has an initial stiffness ratio

~ 105 and may be classed initially as being very stiff. The maximum

steplengths which may be used with the multiderivative predictor-corrector

combinations are found by dividing the value of Re(h), where the curves

bounding the stability regions in Figures 2.15-2.18 cut the real axis, by

-1012. These maximum values, truncated to five decimal places, are given

~n Table 2.8.

One of the maln difficulties in the application of multiderivative

methods to systems of non-linear equations, is in the calculation of the

higher order derivatives. These were easily obtained for the ~resent

problem and were evaluated at each step of the following computations.

The theoretical solution of the problem ~s not known and, following Cash

(1980), was found approximately using the fourth order Runge-Kutta process.

The numerical experiments of Cash (1980,p.245) were repeated using
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Table 2.9: Errors e 1, e 2, e 3 in Yl' Y
2

, Y
3

at x=0.09 for

Problem 2.1 using the multiderivative predictor­

corrector combinations with h=O.O], 0.0]5, 0.03.

Errors ~n Y1, Y2 , Y3
Combination

h=O.OI h = 0.015 h =0.03

el -0.262 (-1) -0. 164 (- I) -0.313(+1)
(0,1); (1,0) 22 0.246(-1) O. 140 (-I) 0.313(+1)

e3 o.630 (- 2) 0.167(-1) -0.284(+1)
-

el -0.375(-2) -0.855(-2) -0.183(-1)
(0,1) ; (],4) e2 0.375(-2) 0.853(-2) 0.182(-1)

e3 -0. 104 (-2) 0.716(-3) O. 124 (-1)

el -0.275(-2) -0. 130 (-1) -0. 189 (+ 1)
(0,2) ; (2,0) e2 0.274(-2) 0.129(-1) O. 189 (+ 1)

e3 -0.103(-1) -0.412(-1) 0.878(+1)

el 0.656(-3) 0.229(-2) 0.361 (-2)
(0,2) ; (1,4) e2 -0.656(-3) -0.229(-2) -0.361 (-2)

e3 -0. 968( -3) -0.486(-2) 0.111(-1)

el -0.686(-3) -0.147(-2) -0. 125
(0,3) ; (3,0) e2 0.686(-3) 0.147(-2) O. 125

e3 0.199(-2) 0.104(-1) 0.163(+1)

el -0. 145 (-4) 0.237(-4) 0.534 (-2)

(0,3) . (1,4) e2 0.145(-4) -0.237(-4) -0.534 (-2),
e3 0.232(-3) 0.139(-2) 0.391 (-1)

el -0.960(-4) -0.883(-3) -0. 180 (- I)

(0,4); (4,0) e2 0.960(-4) 0.883(-3) O. 180 (-1)

e3 0.623(-4) 0.245(-3) 0.116(-1)

-
el -0.695(-5) -0.753(-4) -0.491(-2)

(0,4); (1,4) e2 0.694(-5) 0.753(-4) 0.491(-2)

e3 -0. 174 (-4) -0.133(-3) -0.146(-2)

T
Theoretical solution ~s y(0.09) ~ (0.339, 0.436, 0.012)



Table 2.10:Errors in Yl' Y
2

for Problem2.2after ten steps of h=O.OOl, 0.0001,0.00001,0.000001

using the (O,k*) ; (1,4) predictor-corrector combinations (k* = 1,2,3,4)

Errors
.

Theoretical 1n Y1 ' Y2
h

solution (y l' y 2)
(0, I) ; (1,4) (0,2); (1,4) (0,3); (1,4) (0,4) ; (1,4) Cash EBD

0.001
-0.1006914044(-1) 0.241(-5) 0.246(-6) O. 10 1(-6) 0.149(-7) 0.815(-6)

0.8978912350(-4) 0.135(-7) 0.728(-9) 0.823(-9) 0.572(-9) 0.628(-8)

0.0001
-0.6306050198(-2) 0.394(-5) 0.135(-6) 0.455(-8) 0.650(-10) 0.835(-6)

0.3670275606(-5) 0.392 (-8) 0.132(-9) 0.353 (-11) 0.662(-13) 0.819(-9)

0.00001
-0.9511426272(-3) 0.929(-8) 0.318(-10) 0.104(-13) 0.141(-13) 0.231(-9)

0.4835591013(-7) 0.920 (-11) 0.326(-13) 0.800(-16) 0.379 (-17) 0.222(-12)

0.000001
-0.9949622896(-4) 0.101(-10) 0.348(-14) 0.120(-18) 0.105(-17) 0.300 (-13)

0.4983176581(-9) O. 100 (-13) 0.345 (-17) 0.638(-24) 0.921(-21) 0.246(-16)

""'lJ1
'-J
<;»
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the eight multiderivative predictor-corrector combinations discussed

in section 2.5. The steple th h 0 hng was glven t e values 0.001, 0.0001,

0.00001, 0.000001 and the solution was computed for ten steps in each

case. Cash (1980) also used the value 0 01 b t thO 1 t. ,u 1S va ue was grea er

chapter.

than the maximum steplength for all eight predictor-corrector methods

and was not used.

The numerical results obtained for Problem 2.2 uS1ng the (0,k*);(1,4)

combinations (k* = 1,2,3,4) are summarized in Table 2.10. Comparison

with the numerical results obtained using the extended backward

differentiation formula of Cash (1980), show that the multiderivative

methods developed in section 2.2 give smaller errors in PECE mode.

For Problem 2.2 also, the numerical results were found to be in keeping

with the theory.

Overall, the results obtained for the two problems, indicate

strongly that multiderivative methods in PECE mode give very good

numerical results for linear systemswhere the coefficient matrix has

complex eigenvalues and for stiff systems of non-linear ordinary

differential equations. They can readily be used to solve problems for

which the higher derivatives can be obtained, or estimated, with

reasonable ease.

2.9 Conclusions

A family of linear, one-step, multiderivative methods, based on

o h been developed 1n thisPade approximants to the exponential funct10n, as

The family is seen to contain a number of well known methods

o h E 1 r corrector (the trapezoidalincluding the Euler pred1ctor, t e u e

rule) and a formula due to Milne (1949). It has been verified that,

h h o h accuracy can be obtained usinguS1ng comparable steplengths, muc 19 er

the family of one-step multiderivative methods than can

d The family of multiderivativelinear one-step metho s.

be achieved uS1ng

methods is

use 1n problems which allow higher derivativestherefore appropriate for
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to be found explicitly and which requlre high accuracy. Intervals of

absolute stability have been calculated and it is seen that those

members of the ,family which are fully implicit, in the sense that the

highest derivative must be evaluated at the advanced point, are

absolutely stable.

The family of multiderivative methods has been extrapolated to

achieve higher accuracy and intervals of absolute stability are cal­

culated for the extrapolation formulas. It is seen that, whilst

extrapolation increases accuracy, stability intervals are sometimes

shortened as a consequence; the most notable example of this is the

trapezoidal rule.

Finally, the family of one-step multiderivative methods has been

used in appropriate predictor-corrector pairs. Error constants, stability

intervals and stability regions have been calculated for PECE mode. As

with linear multistep (single derivative) methods used in PECE mode, the

stability intervals are seen to be somewhat low. It is clear from Tables

2.4, 2.5, 2.6 and 2.7 however, that it is possible to achieve a bigger

stability interval, with comparable accuracy, uSlng one-step multi­

derivative combinations in PECE mode than with some well known multi-step

combinations, notably the Milne-Simpson and Adams~Bashforth-Moulton

methods, or with one-step methods using high accuracy Newton-Cotes

quadrature formulas as correctors.
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CHAPTER 3

SECOND ORDER PARABOLIC EQUATIONS

3.1 Introduction

In recent papers, Lawson and Swayne (1976), Lawson and Morris (1978)

and Gourlay and Morris (1980), attention has been devoted to the develop­

ment of Lo-stable methods for the numerical solution of second order

parabolic partial differential equations for which Ao-stable methods

c ,~h as the Crank-Nicolson method, are uns a t i s f ac r r- .... '7 "1...,.._::,
l _:TIe

discretization is used with time steps which are too large relative to

the space discretization, see for example, Smith et al (1973) and Wood

and Lewis (1975).

Lawson and Morris (1978) developed a second order L
O
-stable method

as ar. cytrapolation of a first order backward difference method in one and

two space dimensions. This idea was developed further for one space

variable by Gourlay and Morris (1980) who achieved third and fourth order

accuracy in time by a novel multistage process. The second order method

of Lawson and Morris (1978), was adapted and used in a practical problem

involving a non-linear parabolic equation by Twizell and Smith (1981, 1982).

The extrapolation procedure of Lawson and Horris (1978) involved

computing the solution of the parabolic equation at time t + 2£, ln terms

of the solution at time t, uSlng a first order method with time step £.

second order accuracy was thus achieved. Gourlay and Morris (1980) extended

the principal by computing the solution at time t + 3£, ln terms of the

solution at time t, using a time step £, and thus achieved third order

accuracy in time. These authors then went further, and achieved fourth

order accuracy by computing the solution at time t + 4£ in terms of the

solution at time t.

The multistage methods which evolved in this way involved a "spread"

ln time. In this chapter a family of methods will be developed which

involves a similar "spread" ln space, in that an increased number of points

at each time level are used ln the resulting finite difference schemes.
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This concept of us~ng a greater number of points at each time level was

used by Twizell (1979) for second order hyperbolic equations and by

Khaliq and Twizell (1982) for first order hyperbolic equations; the

concept is discussed for second order parabolic equations in the text

by Mitchell and Griffiths (1980).

The methods developed are applications of the methods for a system

of first order ordinary "differential equations discussed in Chapter 2.

Following Lawson and Morris (1978) and Gourlay and Morris (1980), the

space derivatives will be approximated by the usual second order central

difference replacement. The principal part of the local truncation error

of each finite difference scheme will, therefore, include the same

component proportional to £h2 , where h is the space step, encountered,

though not stated explicitly, in Lawson and Morris (1978) and Gourlay and

Morris (1980). This component notwithstanding, it was shown in Lawson and

Morris (1978) and Gourlay and Morris (1980), that extrapolation in time

leads to a worthwhile improvement in accuracy; this being demonstrated

clearly by numerical experiments reported in those papers.

The family of multiderivative methods on which the finite difference

schemes are based, uses Pade approximants to the matrix exponential function.

Lawson and Morris (1978) used the (1,0) Pade approximant; in this

chapter, four higher order Pade approximants are used to achieve higher

order accuracy in time. The resulting finite difference schemes are im­

plicit ~n nature and each requires one quindiagonal or sevendiagonal

solver to determine the solution. This compares well with the multistage

methods in Gourlay and Morris (1980) where, for problems with one space

vari~ble, five applications of a tridiagonal solver are needed to achieve

third order accuracy in time and at least seven applications of a tri­

diagonal solver to achieve fourth order accuracy in time.

The methods developed in this Chapter will be tested on the model

problems used in Lawson and Morris (1978) and Gourlay and Morris (1980).
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For one space variable. the second order method will be seen to glve

results comparable overall to the best third order multistage methods

in Gourlay and Morris (1980), and third order methods developed ,to give

results comparable overall to the best fourth order multistage method.

3.2 One-space dimension

Consider the constant coefficient heat equation 1n one space

variable

(3. I) dU
dt = o < x < X , t > 0

with initial conditions

(3.2) u(x,O) = g(x) o .::;; x s X

and boundary conditions

(3.3) u(O,t) = u(X,t) = 0 t > 0

In (3.2), g(x) 1S a glven continuous function of x; it 1S not

specified that g(O) = 0 or g(X) = 0, so that discontinuities between

initial conditions and boundary conditions may occur.

The interval 0.::;; x .::;; X is divided into N+I subintervals each of

width h so that (N+I)h = X, and the time variable t is discretized

in steps of length £. The open reg10n R = [0 < x < XJ x [t > OJ and

its boundary aR have thus been covered by a rectangular mesh, the mesh

points having co-ordinates (mh,n£) with m = O,I, ... ,N+I and

n = 0,1,2, ... The notation
n

u = u(mh,n£)
m

will be used to denote the

solution of (3.1) while un will be used to denote the theoretical
m

solution of an approximating finite difference scheme.

The space derivative in (3.1) is now replaced by

(3.4)
= {u(x-h,t)-2u(x,t)+u(x+h,t)}/h2+O(h2 )

and (3.1) with (3.4) is applied to all N interior mesh points at time

t = n£ (n = 0,1, ... ). This produces a system of ordinary differential

equations of the form



(3.5) dU

dt
= A U

(63)

where U(t) = U(n£)- - T denoting transpose

In (3.5) the matrix A 1S given by

-2

-2 o
-2 ~ , ,

(3.6) A
, , ,= h , , ,, ,, ,, ,, ,, ,

0 , ,
, I -2

and has eigenvalues -2 2
~ = -4h sin [ sn/2(N+I)Js for s = 1,2, ... ,N

A practical difficulty with (3.5) is that the system is stiff

because an acceptably small component of the local truncation error

relating to the space discretization requires a large value of N·,

this, in turn, leads to a large range of eigenvalues of A and hence

to a large stiffness ratio a given by

or

a =

a =

sin
2(Nn/2(N+I»/sin2(n/2(N+I»

4(N+I)2/n2 for large N.

Solving (3.5) with initial vector ~(O) = g from (3.2), gives

~(t) = exp (tA)g

which satisfies the recurrence relation

(3.7) ~(t+£) = exp (£A)~(t) t = o,~£, ...

To obtain a numerical solution from (3.7), Pade approximants will be used.

The (0,1) Pade approximant gives a commonly used four point explicit

scheme whose interval of absolute stability given in Table 2.1, is (-2,0).

It follows that for absolute stability, the choice of the (positive)

step length must satisfy

2
-2 ~ -4£/h < ° ; that 1S the mesh ratio r = must satisfy

° < r ~ ! •

The (1,0) Pade approximant gives the Lo-stable fully implicit scheme

developed and extrapolated by Lawson and Morris (1978); the (1,1) Pad€
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approximant g1VeS the A -stable era k~' 1 h
~ ° n -~1CO son met od which was alsc

analysed in Lawson and Morris (1978).

Employing the (m k) Pade~ a .
~ pprox1mants~ for m < k, to the

exponential function in (3.7), will yield explicit or semi-explicit

methods, whose intervals of stability may be calculated from Table 2.1.

In the following sections four higher order Pade approximants with the

degree of the numerator "less than or equal to the degree of denominator,

will be used in (3.7) and the resulting algorithms analysed.

3.3 A second order method and its extrapolation

Using the (2,0) Pade approximant to exp(£A) 1n (3.7) g1ves

(3.8)

suggesting the fully implicit scheme

(3.9)

Following Gourlay and Morris (1980), a stability analysis verifies that

(3.9) is Lo-stable, and using Taylor's theorem it is found that the

principal part of the local truncation error at the mesh point (mh,n£)

for m = 2, ... ,N-l and n = 0,1,2, ... 1S

(3.10) ,

though this accuracy 1S not attained at points adjacent to the boundaries.

This phenomenon is seen to be present in all the subdiagonal Pade approxi-

mants for time dependent problems except the (1,0) Pade approximant. In

a paper on hyperbolic equations, Oliger (1974,p.20) showed that using

lower approximants near the boundaries, does not affect the stability or

convergence properties of the scheme as a whole, and the numerical evidence

to be reported in section 3.6 suggests that this is true for second order

parabolic equations also.

In (3.10) the component 1S due to the space dis-

cretization and the use of (3.4) 1n (3. I); this term will appear in the

local truncation error of every finite difference scheme arising from the
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use of Pade approximants to exp (£A) ln (3.7). !he term

~~3d3u/dt3 in (3.]0) relates to the use of the (2,0) Pade approxi­

mant in (3.7).

The principal part of the local truncation error may be written

down for every finite difference scheme yielded by (3.7) in the form

(3.11)

where the constants C are given in Table 2.1.
q

Applying (3.9) to the mesh point (mh,n£) at time t = n£ leads

to a linear system, the unknowns of which are the components of the

N-vector U(t+£). This linear system is of the form

(3 • 12)

where E

E ~(t+£) = ~n ,

1S a constant matrix of order N·, it has the form

where

e4 e
2 e

3

e
2 e

1 e
2 e

3 a
e

3 e2 e
1 e

2 e
3

'- '-
, , ,,,

" '-
, ,

'- '- , '- ,E = ,
'- " '- '-,

'- '- , ,,
" '- , ,

-, , '-,
e

1
e

2
e

3
e

3
e

2

0 e
3

e
2

e
1

e
2

e
3

e
2

e
4

e = 1+2r+3r2
1

e = -r-r 2 ,
2

e = 1 2 = 1+2r+ 52 r 2 •3 i r , e4

The solution

The vector 2n = T
(¢I'¢2' ... ¢N) 1S

U(t+£) of (3.9)

) b Un .seen from (3.9 to e

is found from (3.11) by applying a

quindiagonal solver. Gerschgorin's theorem fails to predict the positive

definiteness of E. However. E is positive definite with spectral

condition number see, for example, Fried (1979,pp.19-21).

An alternative approach for finding ~(t+£) is to write
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E = I-oA + ~o2A2 "t 1
h 2h. 1n 1 s comp ex factor form. namely

E = ~ {(I + i)I -Q,A} {(I - i)I -Q,A)} , 1 = + ';-1

This suggests the complex splitting

(3. 13)

{( .) *1 - 1 I - Q,A} ~ = ~(t)

~{(1 + i) - Q,A} ~(t+Q,) = U*

The solution ~(t+Q,) 1S obtained from (3.13) by the application of two

tridiagonal solvers using complex arithmetic. This is less efficient,

in that it uses more CPU time, than using one quindiagonal solver with

real arithmetic and (3.11) is therefore to be preferred to (3.13).

It has been noted already that (3.9) is Lo-stable; it may

therefore be extrapolated to improve the accuracy in time.

First of all, ~(1) = g(l) (t+2Q,) 1S computed by applying (3.7)

over two single time steps with exp(Q,A) replaced by its (2,0) Pade

approximant; secondly, g(2) = g(2) (t+2Q,) is computed by applying

(3.7) over a double time step. In general, the extrapolated value

U(E)= g(E) (t+2Q,) 1S determined from the formula

(3, 14)

where

(3. 15) a = 2m+k / (2m+k_l) ,

4
so that for the (2,0) Pade approximant, a = 3

The principal part of the local truncation error of the extrapolated form

of each finite difference method arising from using the (m,k) Pade

m = 2,.",N-l
(3. 16)

, t to exp (OA) ln (3 7) will be of the formapprox1man x. • ,

(__1_Q,h2 a4u + E Q,P aPu)n
12 ax 4 p atP m

where p = m+k+2. The constants

contained in Table 2.3; for the

E (Twizell and Khaliq (1981)), are
p

1
(2,0) Pade approximant, E4= - 3'

. symbol of the extrapolated form of the methodThe amplificatl0n

arising from using the (m,k) Pade approximant in (3.7), 1S
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S k(n) = a {p (-n)/Q (-n)}2
m, k m (a-l){P (-2n)/Q (-2n)}

k m

where n = -tA and .
1S an eigenvalue of A. Clearly~ therefore,

(3 . 18)

Simplifying this expression for S2 O(n) g1ves,

which satisfies \S2,0(n)!.s; 1 and lim S2,0(~) = 0, and thus verifies that
~~

the third order method, as an extrapolation of the second order method

(3.9), is Lo-stable. The amplification symbols for the (2,0) method and

its extrapolated form are plotted in Fig 2.3. It can be seen from

Fig 2.3 that the aSYmptotic behaviour of the second order Lo-stable

method (3.9) (and its extrapolated form), produces a growth factor which

tends to zero monotonically, implying that no oscillations could appear

and the method will behave smoothly, like the theoretical solution. This

shows that the finite difference method based on the (2,0) Pade

approximant is suitable for use with problems having discontinuities

between initial conditions and boundary conditions.

3.4 Two third-order methods and their extrapolations

The extrapolation of (3.9) produces a scheme which 1S third order

accurate in time. The same order of accuracy in time can be achieved

when the (2,1) Pade approximant 1S used in (3.7) giving

(3.19)

Applying (3.19) to the mesh points (mh,n£), with m = 1,2, ... ,N,

at time t = n£ (n = 0,1,2, ... ) leads to a linear system of the form
~

(3.12). The elements of the matrix E 1n (3.12) are now g1ven by

1 t ~ r+r 2, 222 1 2 45 2e
3

= (;r , e
4

= 1+-r+-re
1 = e = - -r- -r 3 62 33'

!fin byand the elements of the vector ~
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¢~
')

Un ] Un= (I - ....r) + -r
3 1 3 2

¢n I Un 2 Un J Un= -r + (1- -r) + -r m = 2, ... ,N-Im 3 m--) 3 m 3 m- l ,

¢n 1 Un + 2 Un= -r (1- Ir)N 3 N-l N

The solution ~(t+~) of (3.19) is determined by applying a qu~n-

diagonal solver. In view of the discussion of (3.13), it is not worth-

while to consider a complex splitting of (3.19). The principal part of

the local truncation error of (3.19) at the interior mesh points

(mh,n~), (m = 2, ... ,N-l; n = 0,1,2, ... ) is given by (3.11) with

q = 4, and, from Table 2.1, C
4

= 1/72. A stability analysis shows that

(3.19) is Lo-stable and the amplification symbol ~s shown in Fig 2.4.

It is seen that the function R2 I (~) ~s negative for ~ > 3 and does,
~n fact tend to zero more slowly than the extrapolated form of the method

based on the (1,0) Pade approximant (see Lawson and Morris (1978)).

In view of its Lo-stability property, the method may be extrapolated

to ~mprove accuracy in time. The extrapolation formula (3.14) is used,

and (3. IS) yields
8

a = 7' The principal part of the local truncation

error of the extrapolated form of the method is given by (3.16) with

p = 5;

-8/945.

the value of E
5

is found from Table 2.3 to have the value

The amplification symbol of the extrapolated form of (3.19) ~s

(3.20)

and it follows that the extrapolated form of this third order method ~s

Lo-stable also.

Fig 2.4.

The amplification symbol s (~) is also shown in
2, I

The second third-order method to be discussed ~s that based on the

(3,0) Pade approximant to exp (~A) in (3.7). This approximant g~ves

0.21)

suggesting the fully implicit algorithm
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(3.22) (I-g,A~g,2A2- }_£3A3) !:!(t+£) = U(t)2 6

Writing (3.22) 1.n the form

(3.23 ) F !.!(t+£) = !l(t )

where F 1.S a seven-diagonal, sparse matrix of the form

f
5

f
6 f

3
f

4

f
6

f
1 f

2
f

3
f

4 0
f

3
f

2 f
1

f
2

f
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f
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f
1

f
2

f
3

f
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(3.24 )
.... ...... "

,
"F = "- -, " " -, , "" "

, "- "
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"" " " " "
-, "

" -, " " -, " "" "- ""- .... "" f ' f " f
<, " "
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6
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4

f
3

f
6

f
5

with

f = - l..r 3
4 6'

The solution ~(t+g,) can be computed using an LV decomposition

algorithm. The principal part of the local truncation error is given

by (3.11) with q = 4; the error constant is
1

C4= - 24 (fr om Tab I e 2. I ) .

It is easy to see that this third order method is La-stable and may be

extrapolated to give fourth order accuracy using (3.14); from (3.15) it

1.S seen that
8

Ct = -
7

The principal part of the local truncation error

of the extrapolated form of the method is given by (3.16) with p = 5;

from Table 2.3 it is seen that E = 8/105 for the method.
5

The amplification sYmbol of the extrapolated form of the method 1.S

(3.25 ) ( ~ ) 8 (1+~~212~61 3)-2S3, a ~ = 7

Simplifying (3.25) g1.ves
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of the method.

from 'which it is found that IS3,0(~) I s 1 and ~ S3,0(~) = 0.

Thus the property of Lo-stability is retained by the extrapolated form

The amplification sYmbols R3,0(~) and S3,0(~) are

produced in Fig 2.6.

Like the third order method based on the (2,1) Pade approximant,

t h e third order method based on the (3 0) Pade~ appro ~ a t I1 xLm noses

accuracy at the mesh points (h,n£) and (Nh,n£); this can be seen by

examining (3.24). The (3,0) method also loses accuracy at the mesh

points (2h,n£) and ((N-l)h,n£) for n = 0,1, ... but the numerical

results to be reported in section 3.6 suggest that this additional loss

of accuracy does not affect convergence. The method based on the (3,0)

Pade approximant does not use the mesh points with co-ordinates (0,0)

or (X,O), where discontinuities between initial and boundary conditions

may exist, whereas the method based on the (2,1) Pade approximant

does use these points. It is clear that the components of the principal

parts of the local truncation errors relating to the raw and extrapolated

forms of the (3,0) method, are greater in modulus than those of the

(2,1) method. Therefore, the method based on the (2,1) Pade approxi-

mant can be expected to give more accurate results than that based on the

(3,0) approximant. However, the method ba~ed on the (2,1) approximant

becomes overstable for larger values of r.

3.5 A fourth order method

The final algorithm to be discussed for diffusion problems with one

space variable is that obtained by replacing exp (£A) in (3.7) by its

(2,2)

(3.26 )

. .
Pade approximant g~v~ng

Written implicitly (3.26) becomes



(3.27)

and, applying (3.27) to each of the N mesh points at time level

t = n£ (n = 0,1,2, ... ), again leads to ~(t+£) being determined

from a linear system of the form (3.12). The elements of the matrix

E in (3.12) are now glven by

e = l+r~... 21 2.L ,

while the elements of IfIn b:r ecome

A-.n = _1_r 2 n ( 1 1 u" + 1 2 u""rn 12 Um- 2+ r 2" - 3'r) m--I (l-r+zr) m

m = 2, ... , N-l

The solution of (3.27) is computed uSlng a quindiagonal solver. A

complex splitting should not be considered for this method.

The principal part of the local truncation error of (3.27) at the

mesh points (mh,n£) (m = 1,2, ... N; n = 0,1,2, ... ) lS given in (3.11)

wi th q = 5 and C = 1/720.
5

This value of lS much smaller in

modulus than either of the values of E
5

relating to the extrapolated

forms of the methods based on the (2,1) and (3,0) Pade approximants.

It may be expected, therefore, that the (2,2) method will give good

results, particularly near the centre of the interval ° ~ x ~ X, for

problems which do not have discontinuities between initial and boundary

conditions. The amplification symbol, given by

is always positive for ~ ~ ° (it has a minimum value of 7 -4/3 when

~ = 213) and tends asymptotically to +1 as ~~. The numerical method...
is therefore Ao-stable but is not Lo-stable and, like the numerical method

based on the (1,1) Pade approximant (Lawson and Morris (1978)),

oscillations in thesolution are induced. The symbol R2,2(~) and S2,2(~)

are produced in Fig 2.5 where
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3.6 Numerical results

To illustrate the behaviour of some of the schemes discussed in

earlier sections, the model problem (3.1) is solved with X = 2 and

boundary conditions given by (3.3). The initial conditions are taken

to be g(x) = 1 for ° ~ x ~ 2. This problem was discussed by Lawson

and Morris (1978) and Gourlay and Morris (1980), and has theoretical

solution given by

00

u(x~t) = L
k=l

{1- (- l ) k } _2 (1 1 2 2
k~ Sln Zk~x) exp(- 4k ~ t)

The methods based on the (2,0) and (2,1) Pade approximants

will be denoted by P20 and P21, respectively. The method based on

the (2,2) Pade approximant will be denoted by P22. These methods

will be compared with the Crank-Nicolson method, which lS based on the

(1,1) Pade approximant and will be denoted by Pl1. The extrapolated

form of the methods based on the (2,0) and (3,0) Pade approximants

will be denoted by P20E and P30E.

All the methods are tested using £ = 0.025, h = 0.05 (giving

r = 10), £ = 0.1, h = 0.05 (giving r = 40), and £ = 0.1, h = 0.025

(giving r = 160). The maximum errors at time t = 1.2
. .

are glven In

Table 3. 1 .

It is noted from Table 3.1 that, for r = 40, the second order method

P20 gives results as accurate as the third order multistage method of

Gourlay and Morris (1980, p.647). The third order methods P21, P20E

and P30 give numerical results better than the fourth order multistage

method of Gourlay and Morris (1980,p.653) for e = ~ and comparable

results for e = 0.

It is clear from Table 3.1 that the accuraCles of the Lo-stable..
methods P20, P20E, P30, P30E and P21 increase as h is refined.

The overstability of the method P21 is also apparent. Table 3.1 also

shows that, in the case of the higher order method P30, extrapolation

does not produce much improvement in accuracy, predicted by the theory,
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Figure 3.1: Numerical results at time t = 1. 2 with h = 0.05, ~ = 0.1, r = 40.
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Figure 3.2: Numerical results at time t=1.2 with h=0.05, ~=O.l, r=40.
(1) Theoretical solution, (2) P22.
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for large values of h and small values of r. This is due to the

dominance of the o(nh2) t . h .
~ erm 1n t e pr1ncipal part of the local

truncation error; the accuracy of P30E is improved as h 1S re-

fined~

PI 1.

x = I

The Ao-stable method P22 g1ves poor results near the

boundaries due to the discontinuities between boundary and initial

conditions, and behaves in a similar way to the Crank-Nicolson method

The maximum errors. given in Table 3.1 h'occur at t e m1d-point

for the Lo-stable methods, and near the boundaries for the

Ao-stable methods. This is shown in Figures 3.1 and 3.2.

Table 3.1 Numerical results of model problem

Maximum errors
Method Order r = 10 r = 40 r = 160

P I I 2 0.28(-3) 0.24 0.52
P20 2 0.18(-3) 0.17(-2) 0.16(-2)
P20E 3 0.74(-4) 0.41(-3) 0.36(-3)
P21 3 0.67(-4) 0.28(-4) -0.22(-4)
P30 3 0.69(-4) 0.17(-3) O. 12(-3)
P30E 4 0.67(-4) 0.87(-4) 0.37 (-4)
P22 4 0.66(-4) 0.68 (-I) 0.30

3.7 Two-space dimensions

Some of the difficulties encountered in implementing the methods

developed for one-space dimension are magnified in the case of two-space

dimensions. In particular, the square matrix A is now of order N2

and is split into the form A = B+C, where B,C are block-diagonal and

block-tridiagonal respectively, so that when the second power of A 1S

required the matrices B2 , BC, CB, C2 must be determined. Another

difficulty is with the poor results given by Ao-stable methods, such as

the Peaceman-Rachford method, when used to solve problems with discon-
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tinuities between boundary and initial conditions.

The method which will be developed is based on the (2,0) Pade

approximant to the matrix exponential function. This method will be

seen to be second order accurate in time, the same as the Peaceman-Rachford

method, and to be Lo-stable. In its extrapolated form the (2,0) method

will be seen to be third order accurate in time and to retain the property

of Lo-stability.

The constant coefficient heat equation ~n two space variables has the

form

(3.28 ) au
at

., o < x, Y < x, t > 0

with homogeneous Dirichlet boundary conditions on the boundary an of

the square n defined by the lines x = 0, y = 0, x = X, Y = X, and

initial conditions

(3.29) u(x,y,O) = g(x,y) .

The theo-

It is assumed that g(x,y), which is a g~ven continuous function of x,y,

does not necessarily have the value zero for (x,y) E an, so that discon-

tinuities between initial conditions and boundary conditions are permitted.

Both intervals 0 ~ x ~ X and 0 ~ y ~ X are divided into N+1

subintervals each of width h, so that (N+1)h = X as before, and the

time variable t ~s incremented ~n steps of i. At each level t = ni

(n = 0,1,2, ... ) the square n, together with its boundary an, have

been superimposed by a square mesh with N2 points within nand N+2

equally spaced points along each side of an.

The solution u(x,y,t) of (3.28) ~s sought at each point (kh,mh,ni)

inn x [t > 0 ] where k , m = 1, 2, . . . Nand n = 0, 1, 2, . .

retical solution of an approximating difference scheme at the mesh point

(kh,mh,n£) will be denoted by
n

Uk ;,m
the vector Un of such solutions

will be ordered in the form



n
(D 1• 1 ~

(3.30)
un Un Un)T

I,N' 2,N"'" N,N •

The space derivativesin (3.28) will be replaced by

(3.31 )

(3.32)

a2u-- =

ax2

a2u
=

ay2

{u(x-h,y,t) - 2u(x,y,t) + u(x+h,y,t)}/h2+O(h2 ) ,

{u(x,y-h,t) - 2u(x,y,t) + u(x,y+h,t)}/h2+O(h2 )

and at each time level t = nt, (3.29) is applied to all N2 interior

mesh points of the square n with the space derivatives replaced by

(3.31), (3.32). These N2 applications result in a system of N2 first

order ordinary differential equations of the form (3.5), in which the

mat~ix A is now of order N2 and may be split into the constituent

matrices B,C such that A = B+C"

The matrix B arises from the use of (3.31) In (3.29); it lS block

diagonal with tridiagonal blocks and has the form

B} 0B
1

(3" 33)
-2 B1B = h ,

0
,,,,

B
1

where B} lS the tridiagonal matrix of order N glven by

(3.34 )

-2

a

-2
" "

o

-2

The matrix C arlses from the use of (3.32) In (3.29); it lS block

'd' I wl"th dl"agonal blocks and has the formtrl lagona

/'-'-'-"

-21 I t "r I-....}

-2 I -21 I

(3.35 ) C = h

() I -21 I
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where I 1S the identity matrix of order N. The N2 eigenvalues

of the matrix A are real and negative and are given by

(3.36) A•• = -4h-2 [sin2 i7T + . 2 J7T ] ..1, J 2 (N+ 1) s 1n2 (N+ 1) ; 1, J = 1, ... , N .

Solving the system of ordinary differential equations subject to the

initial condition ~(o) = g , .g1ves

~(t) = exp"{t(B+C)} g

which satisfies the recurrence relation

(3 .37 ) ~(t+£) = exp {£(B+C)} ~(t); t = 0,£,2£, ...

It is this recurrence relation which will be used in the development of

the second order method.

3.8 Second order method and its extrapolation

The recurrence relation (3.37) may be written 1n the alternative

forms

(3.38) ~(t+£) = exp (£B) exp (£C) U(t) + 0(£2)

(3.39) ~(t+£) = exp (£C) exp (£B) ~(t) + 0(£2)

Using the (2,0) Pade approximant, equations (3.38), (3.39) may be

written

(3.40)

(3.41)

~*(t+£) = (I-£B+}£2B2)-1(I-£C+I£2C2)-1~(t) ,

+ 1 -1 1 2 2 -1
U (t+£) = (I-£C+z£2C 2) (I-£B+z£ B) !:!(t) ,

respectively. Expanding the matrix inverses in (3.40), (3.41) confirms

that each is only first order accurate in time when compared with the

Maclaurin expansion of exp (£(B+C» given by

(3.42)

exp (£(B+C» = I+£(B+C) + ~£2(B2+C2+BC+CB)

~£3(B3+C3+B2C+BC2+CR2+C2B+BCB+CBC)+ ...
6

* d U+ by the linear relationCombining U an

(3.43) U(t+£)
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(3.44)

which is second order accurate ~n time.

The splittings (3.40), (3.41) and the relation (3.43), are forma-

lized by the following algorithm which requires four applications of a

quindiagonal solver:

(I-£B~£2B2) u* =...

(3.45) (I-£B~£2B2) V(2) = U_(t) ,
2 -

(I-£C~£2C2) U+ = V(2)
2 - -

1 * +
~(t+£) = 2(~ + ~ ) .

In (3.45) Vel) and V(2) are intermediate vectors each of order N2.

Following Gourlay and Morris (1980, p.644), it is found that the second

order algorithm (3.45) is Lo-stable.

The second order accuracy of the method may be extrapolated to third

order by, first of all, considering (3.40), (3.41) over two single time

.steps to g~ve

(3 .46)

(3.47 )

**U (t+2£)

++!:! (t+2£)

= {(I-£B~£2B2)-1(I-£C~£2C2)-1}2 U(t)
22-

= {(I_£C~£2C2)-1(I-£B~£2B2)-1}2 U(t)
22-

Expanding the matrix inverses in (3.46), (3.47) verifies that each ~s only

first order accurate when compared with the Maclaurin expansion of

exp {2£(B+C)} g~ven by

exp {2£(B+C)}
(3.48 )

= I+2£(B+C)+2£2(B 2+C 2+BC+CB)

+ ~£3(B3+C3+B2C+BC2+C2B+CB2+BCB+CBC)+ ...
3

Substituting the expansions of (3.46), (3.47) ~n

however, gives

(3.49)

U(0)(t+2£)= [I+2£(n+C)+2~2(B2+C2+BC+CB)

+£3 {B3+C3+?(BC2+B2C+CB2+C2B)+BCB+CBC}+0(£4)J~(t)
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1S second order accurate 1n time.

Writing (5.40), (5.41) over a double time step 2£ glves

(3.50)

(3.51)

~(1)(t+2£) = (I-2£B+2£2B2)-I(I-2£C+2£2C2)-I~(t) ,

~(2)(t+2£) = (I-2£C+2£2C 2)-1 (I-2£B+2£2B2)-I U(t)

Expanding the matrix 1nverses 1n (3.50), (3.51) glves

(3.52)

(3.53 )

~(1)(t+2£) = {I+2£(B+C)+2£2(B2+C2+2BC)

+ 4£3(B2C+BC2)+0(£4)}~(t) ,

~(2)(t+2£) = {I+2£(B+C)+2£2(B2+C2+2CB)

+ 4£3(C2B+CB2)+0(£4)}~(t)

respectively, showing that each is first order accurate in time.

The linear combination of (3.49), (3.52), (3.53), defined by

1S third order accurate in time when compared with the Maclaurin

expansion (3.48).

The principal part of the local truncation error of (3.43) when

applied to the mesh points (kh,mh,n£), with k,m = 2, ... ,N-I and

n = 0,1,2, ... , 1S found to be

(3.54 ) (~£3
o3u _1_£h2 ( 04u + 04u) ) n k,m + 1,N-- -

6 ot 3 12 ox4 oy4 k,m

which, following extrapolation, becomes

(3.55 ) ., k,m + I,N

The implementation of the algorithm based on the (2,0) Pade

approximant may be carried out by means of the following strategy:

(i) intermediate vectors are introduced and used to

* +find the estimates U (t+£). U (t+£), as follows:

(3.56)

(3.57)

(I-£C+}£2C2) ~(I)= ~(t)

1 * (1)
(I-£B~£2B2) ~ (t+£) = ~
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(3.59)
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(I-£B~£2B2) V(2) = U(t)2 - _

(I-£C+~£2C2) ~+(t+i) = v(2)

intermediate vectors(ii)

the estimates

follows:

*~ (t+i), +
~ (t+i)

are introduced to extend

over a second single time step as

(3.60) ,

(3.61)

(3.62)

(3.63)

(iii)

(I-iB~i2B2) ~**(t+2i) = y(3)

(I-£B~£2B2) y(4)= ~+(t+i)

(I-£C+}i2C 2) U++(t+2i) = v(4)

the second order estimate U(O)
~s now calculated from

(3.64)

(iv)

U(0) 1 (U** ++= - + U )- 2 - -

intermediate vectors

.,

V(5)
- , are introduced and used

with a double time step to find the estimates ~(I)(t+2i) and

u(2)(t+2i) as follows:

(3.65) (I-2iC+2i2C 2) y(5) = ~(t)

(3.66 ) (I-2iB+2i2B 2) ~(I)(t+2i) = y(5) .,

(3.67 ) (I-2iB+2i2B2) y(6) = ~(t)

(3.68 ) (I-2iC+2i2C 2) ~(2)(t+2i) = y(6) .,

(v) the third order accurate estimate U(E) (t+22)
g~ven by- ,

(3.69 ) ~(E)(t+2i) = i U(O) _ ..!-(u(I)+ u(2»
3 - 6 - - ,

is now calculated.

In order to illustrate the behaviours of the La-stable methods in

two space variables, the following model problem, which was introduced

in the paper by Lawson and Morris (1978), is solved using the second

order method (3.45), and third order method as an extrapolation of the

second order method.

The problem is



dU
dt = -- +

(81 )

o < x,y < 2 t > 0

subject to the initial conditions

u(x,y,O) = sln

and boundary conditions

., o .:s: x,y ~ 2

u(x,y,t) = 0 x = 0, y = 0, x = 2, y = 2, t > 0 .

u(x,y,t)

The initial distribution is shown 1n Fig 3.3 and the theoretical solution

00

1 \ k 2 1 1
= s i.n I 7fy L[{I-(-I) }-k sin (71<27fx) exp(- -7f2 (k 2+1)t)]

k=l n 4.

1S depicted at time t = 1.0 in Fig 3.4.

The solution is computed at time ~ = 1.0 uS1ng i = 0.025, h = 0.05

(giving r = 10),i = 0.1, h = 0.05 (giving r = 40) and i = 0.1,

h = 0.025 (giving r = 160). The maX1mum error found in each case 1S

given in Table 3.2.

Table 3.2

Maximum errors
Method Order r = 10 r = 40 r = 160

(2,0) Method (3.45) 2 0.46(-4) 0.34(-3) 0.33(-3)

Extrapolated (2,0) 3 0.80(-5) 0.35(-4) 0.25(-4)

Peaceman-Rachford 2 0.33(-3) 0.23 (-1 ) 0.45(-1)

The distribution of the computed solution for the second order method

1S shown in Fig 3.5 and for the third order method 1S shown in Fig 3.6. It

1S seen that in each case the maximum errors occur at the point x = 1,

y = 1. A comparison with the Lawson and Morris (1978) second order

algorithm indicates that the second order method (3.45) gives higher

accuracy at the expense of an increase in CPU time. However, the superior

results justify this minimal increase in computer time.
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Z:0.000 TO 1 .000

Figure 3.3: lni tial dis tribution for two - space variab Le prob lem.

Z:0.00000 TO 0.00916

Figure 3.4: Theoretical solution at time t = 1.0 •



Z:0.00000 TO 0.00950

Figure 3.5: Numerical solution at time t=l.O with h=0.05, £=0.1,
r = 40 using P20.

Z:0.00000 TO 0.00919

Figure 3.6: Numerical solution at time t=l.O with h=0.05, £=0.1,
r = 40 using P20E.
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CHAPTER 4

FIRST ORDER HYPERBOLIC EQUATIONS

4.1 Introduction

In recent years much attention has been devoted in the literature

to the extrapolation ln time of low order methods for the numerical

solution of first order hyperbolic partial differential equations as

well as for second order parabolic equations.

Essentially the same procedure may be followed for parabolic

equations (Lawson and Morris (1978)), (Gourlay and Morris (1980)) and

hyperbolic equations (Khaliq and Twizell (1982)): that is to say, the

space derivatives in the differential equations are approximated by a

suitable finite difference replacement, and the resulting system of

first order ordinary differential equations solved using a stable

numerical method. From this stage of the computation onwards, the

accuracy in time can be controlled by a suitable choice of method for

solving an ordinary differential equation; improvement in the accuracy

in space, on the other hand, requires a different replacement of the

space derivative in the partial differential equation.

From the point where the replacement of the space derivative has

been chosen, accuracy in time can be varied by a multistage method

(Gourlay and Morris (1980, 1981)) which involves a spread over three or

more time increments, or by a method involving a similar spread over more

than three mesh points at a give time level (Mitchell and Griffiths (1980) ,

Twizell and Khaliq (1981), Khaliq and Twizell (1982)). The former type

of methods is, in effect, an application of linear onestep methods for

systems of ordinary differential equations, while the latter 1S an appli­
~

cation of multiderivative methods (Twizell and Khaliq (1981)). A family

of methods related to the latter type will be developed in this Chapter.

Both approaches have a weakness which 1S the other's strength: uS1ng

a multistage method, seeking the solution at certain fixed times requ1res
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the time interval to be divided into two or more subintervals depending

upon the accuracy required, whereas the integration can be carried out

without subdividing the time interval if an A-stable or L-stable multi­

derivative method is used. On the other hand, implicit multistage

methods need only tridiagonal solvers to obtain the solution (five at

each time level for third order accuracy in time and nine for fourth

order accuracy (Gourlay 'and Morris (1980)), whereas the multiderivative

methods in Chapter 3, based on central difference replacements of the

space derivative, (Khaliq and Twizell (1982)), need quindiagonal or

seven diagonal solvers.

The methods to be discussed 1n sections 4.3, 4.4, 4.5, are based

on backward difference replacements of the space derivatives and can

therefore be used explicitly so that here, too, they have an advantage

over multistage formulations. The use of backward difference replace­

ments has the advantage that the oscillations which are always present

with central difference replacements (section 4.2), do not arise. Also

the difficulties which arise in parabolic equations because of stiffness

are not present in solving hyperbolic equations by multiderivative

techniques. The methods will use function values at only two time levels

as in Khaliq and Twizell (1982), unlike the methods developed by Oliger

(1974), and depend on the theorems of Gustaffson (1972) for the establish­

ment of stability. The methods are tested in section 4.6 on a number of

problems from the literature and, finally, conclusions are drawn in

section 4.7.
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4.2 Central difference approximation in space

Consider the first order hyperbolic partial differential equation

(4. I ) au + elu
at a ax = ° a > 0, x > 0, t > ° ,

where a lS a constant, with initial conditions

(4.2) u(x,O) = g(x)
X ~ °

and boundary conditions

(4.3) u(O,t) = vet) ., t > °
equations (4.1), (4.2), (4.3) form the initial-boundary value problem.

Suppose that the solution of (4.1) is sought in some region R =[0 < x < XJ x

[t > OJ of the first quarter plane x > 0, t > ° (out flow problem). The

interval ° ~ x ~ X is divided into N equal parts each of width h, so

that Nh = X, and the time variable t is discretized in steps of length

£. The open reglon R and its boundary aR, consisting of the axes

t = 0, x = ° and the line x = X, have been covered by a rectangular

mesh, the mesh points having co-ordinates (mh,ni) where m = O,I, ... ,N

and n = 0, 1, 2, ... The theoretical solution of a finite difference

scheme approximating the differential equation at this point, will be

denoted by un ::: U(mh,n£).
m

Replacing the space derivative In (4.1) by the central difference

formula

(4.4) ~~ =[u(x+h,t) - u(x-h,t)Y2h + 0(h2 ) ,

and applying (4.1) with (4.4), (4.2), (4.3) to all N interior mesh

. . I I t n ( - ° 1 ) leads to the system of firstpOlnts at tlme eve = nN n - , , ... ,

order ordinary differential equations

(4.5) dU--dt
1

+ -aw
2 -t

T
where ~(t) =[U1(t), U2(t), ... , UN(t)J , T denoting transpose, is the

vector of approximate solutions of (4.1) at time t > 0. In (4.5) B lS

a square matrix of order N glven by
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°
-I ° o

°(4.6) hB =

-1
" , ,, , ,, , ,, , ,, ,, ,

-1 '0 '
o

° -1 0

and
1

~t = h [vt'O, ... ,O, 1.8 the N-component vector whose

first element is the numerical (frozen) value of the boundary condition

at time t = n£ and whose last element is minus the value of the

solution at the point «N+l)h,t). This means that knowledge of the

solu tion 1.S required on some "boundary" beyond the part of the x-<axas

under consideration, thus overposing the problem (4.1). However, for

periodic boundary conditions, central difference approximations have

often been used in the literature, see for example, Mitchell (1969),

Kreiss and Oliger (1972), Smith (1978), Mitchell and Griffiths (1980),

together with further references therein.

The solution of (4.5) with (4.2) 1.S

(4.7)
-1 1 -1

~(t) = B ~t + exp (- 2 atB){ g - B ~t}

where g 1.S the vector of initial values. In equation (4.7), ~(t)

satisfies the recurrence relation

(4.8)
-1 1 -1

~(t+£) = B ~t + exp (- 2" a£B){~(t) - B ~t}

It is clear from (4.6) that each eigenvalue

s= 1,2, ... , N, 1. = Ff, is complex and hence

As = 2i cos

1
exp (- 2"atA

s
)

S1r

N+ 1 '

1.n (4.7)

(the matrix B being diagonalizable, Morton (1980; p.678)) 1.S an

oscillatory function. Thus the solution of (4.5) exhibits oscillations.

Price et al (1966) first observed the possibility of oscillations

occurring when a central difference replacement is used for the space

discretization in the convection part of the diffusion-convection prob-

lem and emphasised the need for methods which do not introduce such

oscillations.
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If, for example, the (1~0) Pade approximant 1S used to replace

the matrix exponential function, (4.8) becomes

(4.9) 1 1
(I + -2atB) ~(t + t) - -atw = U_(t)

2 -t+t

Applying (4.9) to the mesh points (mh,nt) glves the four point,

implicit scheme,

n+ 1 1 n +-1 n+ 1 n
U + - ap (U - U ) = U .

m 2 m+l m-l m

An analysis of the stability (Mitchell (1969,p.37), Khaliq and

Twizell (1982» of this second order algorithm, indicates that the

method is stable for all positive t. Employing the (1,1) Pade

approximant in (4.8) leads to

(4.10) 1 1
(I + -4- atB) ~(t+t) - -atw

4 -t+t

Application of (4.10) to the mesh points (mh,nt) glves a Crank-Nicholson

type scheme

(4.11 ) - !ap U +1 + Un+ 1 + !ap Un+ 1 =
4 m-l m 4 m+l

which is known to be unconditionally stable (Mitchell (1969,p.167),

Gustafsson et al (1972,p.664», where p = t/h.

The solution will remain oscillatory, though the schemes are stable.

However, the oscillations may be reduced by making the coefficient

matrices in (4.9) and (4.10) diagonally dominant, see for example, Hirsch

and Rudy (1974), or by restricting the space-step h with respect to the

convection parameter a. But for large values of a this may prove,

computationally, prohibitively expensive, see,for example, Price et al

(1966). Thus the oscillations will be present no matter whether an

A-stable or L-stable method is used. Numerical results to support these

observations are given in section 4.6.

4.3 Low order (one-sided) approximation 1n space

Replacing the space derivative in (4.1) by the low order backward
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difference formula

(4.12) au
ax = [u(x,t) - u(x-h,t) J/h + O(h) ,

and applying (4. 1) with (4.12), (4.2) and (4.3) to all N interior

mesh points at time level t = n£ (n = 0, ... ) , leads to the system of

first order ordinary differential equations

(4. 13)
~=

dt -aC~(t) + ac
-t

T denoting transpose, is

the vector of approximate solutions of (4.1) at time t>O. In (4.13)

C is the lower bi-diagonal matrix of o'~~er N glven by

-1 o

,

,
-1

1
\.

"",
""

-1
-,

-,

"-,,o

hC =(4.14)

and £t 1S the vector with N elements glven by

(4. 1 5) hc
-t

T= [v ,0,0, ... ,OJ
t

where v 1S the numerical (frozen) value of the boundary condition at
t

time t = n£. The solution of the non-stiff system of differential

equations (4.13) 1S

(4.16)
-1 -1

~(t) = C £t + exp (-atC) {g - C £t}'

where g 1S the vector of initial values, and (4.16) satisfies the

recurrence relation

(4.17)

Using the (m.k) Pad~ approximants to the exponential function

(Appendix I) to replace the matrix exponential function in (4.17), leads

to a family of implicit finite difference schemes which are unconditionally

stable for m ~ k (by Theorem 1) and which may be used explicitly because
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of the nature of the initial and boundary concitions (4.2) d (4 3)an ..

The principal part of the local truncation error of such a method has

the form

(4. un

where the constant C
q

(q = m+k+I) .
are glven 1n Table 2.1 (Chapter 2).

Using the (1,0) Pade approximant to the exponential matrix function

t n (4. 1 7) ,

(4. 19)

N-component

1S the numerical value of

c with the
-t

v t+sz'
where

Writing (4.19) 1n implicit form and replacing

T
£t+sz' = [vt+SZ"O, ... ,OJvector

the boundary condition at time t+sz', glves

(4.20) (I+aSZ,C) ~(t+sz') - asz'c = U_(t)
-t+sz' •

Applying (4.20) to the point (mh,nsz') glves the three point, implicit

scheme

(4.21 ) n+I n+I n(I+ap) U - apU = U
m m-I m.

This scheme appears in Mitchell and Griffiths (I980,p.I70); it 1S first

order accurate and can be shown to be unconditionally stable by the method

of von Neumann.

Formula (4.21) glves the explicit algorithm

(4.22 ) n+I
U

m
= ap

I+ap
Un+I + _1_

m-I I+ap

which, together with the initial and boundary conditions, enables U to be

calculated at all grid points in the first quadrant of the (x,t) plane.

Using the (1,1) Pade approxinlant to the matrix exponential function in

(4.17), gives

(4.23)

At the mesh points (mhvn t ) where m = 1,2, ... ,N, n = 1,2, •.. , (4.23)

suggests the algorithm
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for m =

( 4.24)

for m = 2, ... ,N

(4.25) n+ 1 1 n+lIn 1 1
U = [-ap U + (1- -ap) U + -ap Un ] I (1+-2ap) .

m 2 rrr-12m 2 nr-J

The principal part of the local truncation error of (4.23) at the mesh

points (mh, n z ) 1S

(4.26) (-
I a2u _1_£3 a 3u n-a£h -- - -)2 ax2 12 at 3 m

,

thus indicating a second order (in time), Ao- s t ab1e method. Employing

the (2,0) and (2,1) Pade approximants 1n (4.17), gives second and

third order Lo-stab1e methods respectively. Since the eigenvalues of

the matrix Care Ilh, (4.13) is a non-stiff system of differential

equations and hence the solution (4.16) rema1ns non-oscillatory.

Using the (2,2) Pade approximant to the exponential matrix

function in (4.17), glves

(r~ +
a2 £2

C2) !:!(t+£) = (r - a£ C +
a 2£2

C2)U(t)--2 12 2 12

(4.27) (a£r + a 2£2
C)

a£ a 2£2
C)+

12
c +(-r-

12
c

2 -t+£ 2 -t

The implicit algorithm (4.27) may also be used explicitly at the mesh points

(mh,n£):

for m = 1

for m = 2

for m = 3, ... ,N

(4.28)

ap a2 p2
( 1It)

2 12
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This scheme is fourth order accurate in time~ and the principal part of

J a2 u 1 a5u nits local truncation error r s (- --a£h - + -- £5 --) at (rnh,n£)
2 ax2 720 at S m

The component of the local truncation error due to the chosen

(M,K) Pade approximant, namely (C £q aqu)n can be improved by at
q --m

Cltq

least one power of £ by extrapolating in time; the other component

(- ~a£h a
2u)n,

which is related to the space discretization, will not
2 "12m

oX

change. The extrapolating procedure, as in Chapter 2, determines

~(t+2£) in terms of ~(t): it first calculates ~(l)= Q(1)(t+2£) by

writing equation (4.17), in which the matrix exponential function has been

replaced by an appropriate Pade approximant, over two single time steps,

and then calculates ~(2) = ~(2)(t+2£) by

(E)time step. The extrapolated value U =

one of the formulas:

writing (4.17) over a double

~(E)(t+2£) ~s then found from

(4.29)

for M f K, or

(4.30)

for M = K.

The extrapolating formulas are contained in Table 2.3. The term

(- lath a 2u/ax2)n will still be present in the principal part of the
2 m

local truncation error of the extrapolated form of each finite difference

method. There will also be a term of the form

(s = M+K+2 for M =I K, s = 2M+3 for M = K) •

The constants E are also contained ~n Table 2.3. Associated with each
s

extrapolated method ~s the amplification symbol

(4.31)

h 01 1 an eigenvalue of C (actually, the eigenvalues ofwere e = aJV/\, /\
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the matrix C are all equal to l/h~ but this will not be so 1n latter

sections where the general form (L~.3J) will be needed). In (4.31)

A = 2M+K/(2M+K_l)
and PK(8) , QM(8) are the polynomials of degree

K,M respectively, which define the (M,K) Pade approximant

The extrapolated form of a method 1S Ao-stable, or stable in the

conventional sense of perturbations in the initial conditions not being

magnified as t ~ 00, if ISM, K(8 ) I~ 1

methods discussed 1n this section are therefore unconditionally stable,

except the extrapolated form of the method based on the (1,1) Pade

approximant which is stable only for 0 < ap ~ 6 + 4 13, where p = £/h.

4.4 A higher order space replacement

Whereas extrapolation in time does, indeed, bring about some im-

provement in the principal parts of the local truncation errors of all

finite difference schemes resulting from (4.17), the improvement of any

one method may not be sufficient to justify its use for larger values of

h. This is because the component of the local truncation error g1ven by

(- !a£h a2u/ax2)n 1S still present and tends to overshadow any 1rnprove-
2 m

ment brought about by extrapolating in time,

This difficulty is partially removed by introducing a second order

backward difference approximant to au/ax at the mesh points (mh,n£)

f 2 3 N d n - 0 I wh1'lst reta1'ning the first orderor m = " •.. , an -, " .. ,

approximant (4.12) at the points (h,n£) adjacent to the boundary x = o.

This mixture of approximants to au/ax 1S justified 1n the theorems of

Gustafsson (1975), so that, provided a Pade approximant is chosen which

would lead to unconditional stability if the lower order approximant

(4.12) were used to every mesh point, the scheme resulting from the use of

the mixture of approximants to au/ax will also be uncond:tiona11y stable

and will have the convergence rate of the more accurate interior approxi-

mant (see also Oliger (1974)).
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The schemes resulting from the use of different backward difference

replacements of au/ax can all be used explicitly though some have the

stability properties of implicit schemes.

Consider, then, the second order replacement

(4.32) au
ax = {u(x-2h,t) - 4u(x-h,t) + 3u(x,t)}/2h + 0(h2 ) .

This replacement uses three mesh points at any time t = nt, so that

it can only be used at mesh points (mh,n£) for which m = 2,3 ... and

n = 0,1, ...

conveniently as

At the mesh points (h,n£), equation (4.12), written

(4. 33)

1S retained.

au
ax

= {2u(x,t) - 2u(x-h,t)}/2h + O(h)

Applying (4.1) with (4.33) or (4.32), as appropriate, to the N

mesh points at time level t = n£ leads to the first order system

(4.34) dUet)

dt
=

1 ]
a DU_(t) + - ad2 2 -t

In (4.34) D 1S the matrix of order N g1ven by

2

0
-4 3

(4.35) hD = -4 3
"- "

,
"- " ""- "-

,
"-

, "0 "- <, "-
"-

" 1 -4 3

and d
-t

1S the N-component vector g1ven cy

(4.36)
T

hd = [2v , -v ,0, ... , OJ .
-t t t

. h h I 2/h and the otherOne eigenvalue of the matr1x D as t e va ue

N-] eigenvalues have the value 3/h.

The solution of (4.34) with (4.2) 1S
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and it is

(4.38)
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-1 1 -1
~(t) = D ~t+ exp (- ~D) {g - D ~t} .

easy to show that (4.38) satisfies the recurrence relation

-1 1 1
~(t+£) = D ~t + exp (- 2a £D) {~(t) - D- ~t} .

Only schemes based on Pade approximants for which m ~ k will be

considered. The amplification symbols of the extrapolated forms of such

schemes may be obtained from (4.31) with

of D.

1e = -a£>..
2 ' now an eigenvalue

Using the (1,0) Pade approximant 1n (4.38), g1ves the La-stable

scheme

(4.39)

which, from Table 2.1, is seen to be first order accurate 1n time. The

principal part of the local truncation error at the mesh point (h,n~)

is, from (4.18),

1 ~2u _102 ~2u n(_ -a£h _0_ _ )(, _0_)
2 ax2 2 at 2 1

and at the mesh point (mh,n£) 1S

for m = 2,3, ... ,N and n = 0,1,2, ... In V1ew of its favourable

stability properties, it is worthwhile to extrapolate (4.39) using (4.29).

The extrapolated form can be used explicitly and is La-stable; its local

truncation error 1S

1 a2u
+ ~£3 a 3u n

( - -a£h -- -)
2 ax 2 3 at 3 1

at the mesh point (h, nz ) adjacent to the boundary,and

at the interior mesh points (mh,n£) where m = 2, ... ,N and n = 0,1,2, ...

Some improvement in accuracy may be achieved by using the (1,1)

Pade approximant to the matrix exponential function in (4.38) to give
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1 1
(I + ~4£D) ~(t+£) - -a£d

4 -t+£
1 1= (I - 4a£D) IT(t) + ~a£d

4 -t

which is second order accurate ~n time a d wh~ h· A t bln .LC r s 1"'-O-S a e. The

principal part of the local truncation error of (4.40) at the mesh

points (h,n£) ~s

(4.41)

and at the mesh points (mh,n£) away from the boundary ~s

(4.42) _1a Ilh 2 d 3u 1 a3u n(-:Iv __ £3 _)

3 dX 3 12 dt 3 m

for m = 2,3, ... ,N and n = 0,1,2, ... The express~on ~n (4.41),

(4.42), may be improved by extrapolation but, as noted in section (4.3),

the extrapolated form is not Ao-stable.

4.5 Higher order time replacements

In view of the fact that all finite difference schemes resulting

from the use of backward difference replacements of the space derivative

in (4.1) can be used explicitly, it is worthwhile us~ng higher entries

from the Pade Table to approximate
1

exp (- Ia£D) in (4.38), even though

it will be necessary to square the matrix D.

Using, first of all, the (2,0) Pade approximant ~n (4.38) g~ves

(4.43)

The matrix D2
~s g~ven by

4

-20 9
0

21 -24 9

(4.44) h 2D2 = -8 22 -24 9

-8 22 -24 9
"- "- "- <, <,

"
<, " <, "-

<, <, <, "- <,

"- " <, <, <,

0 -, <, <, <, <,

-8 22 -24 9

4/h 2 d 1\' 1 e i.ge nva lue s equal to 9/h
2•

and has one eigenvalue equal to an 1~- .L
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Applying (4.43) to the mesh point (jh~n£) 1n R leads to a

linear system which may be written in matrix form as

(4.45) E!:!(t+£) = ¢n .

The matrix E 1S of order N and has the lower triangular form

e 1

le
2 e

4
0e

3 e
5 e

4

(4.46) E = e7 e
6 e

5 e
4

e
S

e
7 e

6 e
5 e

4
<, <, -, -, -,-, -, -, -, ,

<, <, -, -, ,
0 -, -, <, -, <,

e
S e

7
e

6 e
5 e

4

where

(4.47)

e
1 = 1+ap?a2p2 2ap- 2a 2p2 1 21 2 2e

2 = e
3

= -ap+---.:.-a p2 2 2 S

1~ap+2.a 2p2 2ap - 3a2p2 1 11 2 2e
4 = e = e

6
= -::-a p+--a p2 S 5 ,

2 4

and the vector has elements

u" + (1 1) tI, n= 1 ap ~ap v t+£ ' ~2 Un ( 1 11 )
= 2 - ap 2 + lfap v t+£ '

, u" 1 2- 2= 4 - Sa p v t+£

(4.4S) ¢ ~ = u~
J J

(j = 5,6, ... ,N)

The finite difference scheme based on the (2,0) Pade approximant

1S Lo-stable; the principal part of its local truncation error is

(4.49) , J = 4,5, ... ,N

which, on extrapolation, becomes

(4.50) J = 4,5, ... ,N.
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Expressions (4.49). (4.50) show that the loss of accuracy at the mesh

points (h,n£)~ n = O,l~ ... , experienced by the methods based on the

lower order Pade approximants, has spread to the mesh points (2h,n£),

(3h,n£). This is not a grave problem, however, for a space discreti-

zation involving a large value of N. Furthermore, the constant

1C
3

= 6 in (4.49), is greater in modulus than its counterpart in (4.42)

which relates to the Ao-stable method (4.40).

These observations indicate that the Ao-stable method (4.40) is to

be preferred to the Lo-stable method (4.43). This is not so in the case

of second order parabolic equations (Lawson and Morris (1978) and

Chapter 3), for then the equivalent method based on the (1,1) Pade

approximant (the Crank-Nicolson method), also requlres a restriction

on £ to ensure the decay of oscillations in U as t ~ 00.

Turning, next, to the (2,1) Pade approximant, (4.38) becomes

(4.51)

Applying (4.51) to the mesh points (jh,n£) requlres the solution

vector U(t+£) to be determined implicitly from a linear system of the

f (4 45) The matr~ x E lS still of the form (4.46) but its non-orm .. ..L

zero elements are now glven by

I-tlap~a2p2
4 522 e

3
= l-ap?a2p2

e
l

= e
2

= - -ap- -a p ,
3 6 3 6 3 8

1+ap~a2p2 iap-a2p2
1 11 2 2

e
5

= e
6

= -ap -+--:-a p
e

4
= , , 3 12

(4.52) 8 3

,-hn
while the elements of ~

~~ = (1- ~p)U~ +

= _1_a2p 2
e 8 24

are glven by

(4.53 )
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<p n ] Un 2 Un J n I= - --ap + -ap +(]- ~p)U + -:-a 2p 2v3 6 ] 3 2 2 3 4· t+£

<p n 1 Un 2 Un 1 n 1= - -ap + -ap + (J -. -ap)U -a2p2v4 6 2 3 3 2 4 24 t+£ ,

<p~ 1 n 2 n I n= _. -ap U. 2 + --ap U. 1 + (I - "2a p ) U
jJ 6 J- 3 J- J = 5, ... , N

The vector ~(t+£) 1S found from (4.45) uS1ng forward substitution.

The finite difference scheme based on the (2,]) Pade approximant, 1S

J = 4, ... ,N

La-stable; the principal part of its local truncation error 1S

(_ la s.h 2 a3u + _]_£ 4 ~ 4u) r:
3 dX 3 72 dt 4 J

(4.54)

which, following extrapolation uS1ng (4.29), becomes

(4.55) J = 4~ ... ,N

Expressions (4.54), (4.55) do indicate an improvement on (4.42), (4.50)

and justify the use of (4.5]) even though the three points near the

boundary suffer greater error at each time step than the remaining N-3

points away from the boundary x = a.

The final method to be considered 1S that obtained by replacing the

exponential matrix function with its (2,2) Pade approximant in (4.38).

The recurrence relation becomes

(4.56)

which g1ves r1se to an Ao-stable method. Applying (4.56) to each mesh

point (jh,n£), j = ],2, ..• ,N at time t = n£, n = a,I, ... leads

to the solution vector ~(t+£) at the advanced time t = (n+])£ being

determined from a system of the form (4.45). The non-zero elements of E

are arranged as 1n (4.46) and have the values

] ]
=-ap- 2- a 2p 2 ~p+ 2- a 2p 2

= 1+-ap+ _a2p2 e 2
e

3
=e 1

, , 4 ]62 ]2 12

(4.57)

~
3 ..l a 2p2 ~a2p2 1 1]a2p2= 1+4 ap+ "s =-ap- e 6 =• ~p+ 2416



(100)

The elements of the vector

]
e = -a 2p 2

8 48·

n
1 are

= (1- 1 I 2 2) nIl 1 1
Iap+ 12 a p U1+ap (-+2 -12 ap)v +ap (- -ap)v

t+ £, 2 12 t

¢n = (I 5 ) n 3 3 2 2 n 1 11
2 aP \ - 12ap U1+ ( 1- "4ap+ -16 a p )U

2
- ap (""'+4 -ap)v

48 t+£'

1 11
- ap (-4 - --ap)v

48 t

The local truncation error of (4.56) for J = 4, ... ,N and n = 0,1, ... 1S

(4.59)
(__laoh2 a3u 1 5 a5u n

]V --+--£, -).
3 ax 3 720 ax S J

the time component 1n which may be improved by extrapolating, uS1ng (4.30),

.
to g1ve

( 4.60) 1 7 a7u n
1890 £, -).

at7 J

In the event of an even higher order approximant to the space derivative

being used in (4.1), instead of (4.32), the elegant methods of Gourlay and

Horris (1980) for improving the accuracy 1n time of numerical methods for

parabolic equations, can be used with the relations (4.17), (4.38).

Using a more accurate space replacement requires the matrix D to

have increased band width. This band width would be increased still further
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on squar1ng D and more than three points near the boundary would suffer

loss of accuracy when solving (4.45) using the (2,0), (2,]), (2,2)

Pad€ approximants, though stability would not be affected. It may,

therefore be advisable to use the techniques of Gourlay and Morris (1980)

with a space replacement (4.32), but the methods developed in this section

and in sections (4.3), (4.4) can be implemented more quickly and are to be

preferred for use with (4.32),

4.6 Numerical experiments

To discuss the behaviour of the methods developed in sections 4.3,

4.4,4.5, the methods based on the (],l), (2,0), (2,1), (2,2) Pad€

approximants without extrapolation, are tested on a number of problems from

the literature. ~fuen these four Pade approximants are tested in conjunction

with the matrix C given by (4.14), they will be named Cll, C20, C21, C22,

respectively, and when used in conjunction with the matrix D they will be

named Dll, D20, D21, D22, respectively.

The boundedness of the solution and the build-up of error may be ex-

amined with reference to two norms, as 1n Oliger (1974). Let ~r: =
J

u(j h, nt) -Ur: with J = O,I, ••. N and n = 0, 1, ... so that ~n 1S the
J

vector of such errors and has N+l elements, and let
n n

= (U0' U1 ' ••• ,

II ~nI ,.
J

max

Un)T be the vector (of order N+l) of solutions, including the boundary
N

condition, at time t = nt. The norms are defined by

N
II 2 = hI I

2 j=O
N

h I lur:12
j=O J

The methods (4.9) and (4.10) based on the central difference approximation

are also tested on the first two problems and their behaviour 1S shown

4 4 The differential equation on which thegraphically in Figures 4.1 - ..

methods are tested is

dU dU+ a- = 0
dt dX
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the initial and boundary conditions being different for each problem but

a = 1 in each problem.

Problem 4.1 (Oliger (1974)).

Here the initial conditions are taken to be

g(x) = sin 2kTTX

and the boundary conditions to be

vet) = - sin 2kTTt

x ~ a

t > a

where k lS positive integer. The theoretical solution of this problem lS

u(x,t) = Sln 2kTT(X-t)

and the numerical solution will be calculated for 0 < x ~ 1. The integer

k gives the number of complete waves in the interval 0 / / 1"'" x"'" • The

scheme (4.9) produced results depicted in Fig. 4.1 at time t = 1.0 with

1h = _.
80 '

1
£ = 20' P = 4.0 and k = 2. The solution computed uSlng the

Crank-Nicolson type scheme (4.10) at time

p = 4.0 and k = 2, lS shown In Fig. 4.2.

t = 1.0 with 1
h = 80'

1
£ = 20'

The solution was computed with 1
h = 640'

1£ =
80 '

p = 8 and k = 2,

using the methods discussed in sections 4.3, 4.4, 4.5; the values of
I

II V II , II ~ II , II ~ II 00
at time t = 0.5,1.0, 2.0 and 4.0 are- 2 - 2 -

.
Table 4. 1. Choosing this small value of h has the effect ofglven In

lessening the emphasis of the components - .!.a£h a2u/ax2 and - l.a£h2
2 3

a3u/ax 3 when the backward difference approximations (4.33) and (4.32)

are used to replace the spatial derivative. The increased number of mesh

points at each time level can be appreciably offset by using a large value

of £, and consequently of p. In the paper by Oliger (1974), for

example, p was glven the value
1
4

compared with the value 9 In the

present experiment.

Visual analysis of Table 4.1, and comparlson with Table 3.1 in

Oliger (1974), shows that errors for all eight formulations involving the

matrices C and D show very little increase in magr-itude after time
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Figure 4.1: Numerical results at time t = 1.0 for Problem 4.1
using the backward difference scheme (4.9) with
h = 1 /80, £ = 0 . OS, p = 4.
Theoretical solution (T); computed solution (C).

Figure 4.2: Numerical results at time t = 1.0 for Problem 4.1
using the Crank-Nicolson type scheme (4.10)
wi th h = 1/80, £ = 0 .05, p = 4.
Theoretical solution(T); computed solution(C).
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t = 1.0. That 1S to say. the errors reach their maX1mum values very

quickly, there being very little accumulation of errors after time t = 1.0.

This observation contrasts with the results of Table 3.1 in Oliger (1974)

where the errors, generally, show a gradual growth as time 1ncreases.

The stagnation of errors experienced uS1ng these two-time level methods

make them suitable for use with large values of t. The maximum error of

each method was seen to be in keeping with the truncation errors glven 1n

sections 4.3, 4.4, 4.5. The methods are also seen to behave smoothly

with the theoretical solution. The methods based on the (2,1) and (2,2)

Pade approximants showed the greatest improvement when used with the matrix

D (for any value of t), the corresponding improvements in the performance

of the methods based on the (1,1) and (2~0) Pade approximants being less

pronounced.

Problem 4.2 (Abarbanel et al (1975»)

The boundary conditions and the initial conditions for this problem

are the same as for Problem 4.1. The parameter k 1S given the value 4

and the solution computed with h = 1/640, £ = 1/80, P = 8; the numerical

results at time t = 10.0 are given in Table 4.2. The corresponding

results for k = 4 are given in Table 4 of Abarbanel et al (1975) where

the ratio p was glven the value 0.9. In their Table 4 Abarbanel

et al (1975) compare their results with earlier work by a number of--
authors Boris and Book (1973), Kreiss and Oliger (1972), Oliger (1974),

and Richtmyer (1963). The results of this chapter show that the methods

developed are very competitive with all methods tested in Abarbanel et ~l

(I 975) for k = 4. The growth of errors as a result of increasing the

wave frequency was not pronounced as any of the methods tested in

Abarbanel et al (1975). Allowing a factor of 3 for the faster CDC 7600
--

computer over the CDC 6600 computer used by Abarbanel et al (1975), the

CPU times quoted in Table 4.2 are generally superior to the figures quoted

(1975) Th1' s observation is strengthened when it 1Sin Abarbanel et al .

further noted that the CPU times in Table 4.2 include the time taken to
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Figure 4.3: Numerical results at time t=lO.O for Problem 4.2
using the backward difference scheme (4.9) with
h = 1/80, £ = 0.05, p = 4.
Theoretical solution (T); computed solution (C).
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. 4 4' Numerical resul ts at time t = 10.0 for
Fl.gure .. Problem 4.2 using the Crank-Nicolson type

h (4 10) wi th h = 1/80, £ = 0" 05, p = 4"sc erne . . (C)
. 1 olutl.·on(T) "computed solutl.on .Theoretlca s ,
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II ~ II 00 by 640 comp ar i s on statements In the computer

program. It is confirmed again that the use of a small value of h ~n

the methods which have higher accuracy in time, produces accuracy as

high as do those methods, tested in Oliger (1974), Abarbanel et al (1975)

with a larger value of h which have 0(h4 ) error ~n space. Solutions

computed using (4.9) and (4.10) for problem 4.2 are also shown ~n

Figures 4.3 and 4.4 respectively.

Problem 4.3 (Khaliq and Twizell (1982))

The boundary condition for this problem ~s

u(O,t) = t

and the initial condition is

u(x,O) = 1 + x

t > °

x ~ ° ,
The theoretical solution of the problem ~s

u(x,t) = + x-t

u(x,t) = t - x

x ~ t ,

x < t

so that there exists a discontinuity in the solution across the line

t = x ~n the (x,t) plane.

Problem 4.4 (Khaliq and Twizell (1982))

Here the initial condition ~s

u (x,O) = exp (x)

and the boundary condition is

u(O,t) = exp(t)

. 1 solut1'on of the problem ~sThe theoret~ca

u(x,t) = exp(x-t)

u(x,t) = exp (t-x)

x ~ 0

t > 0 .

x ~ t ,

x < t

., ~n the first derivatives across the
so that there exist discontinu~t~es

line t = x in the (x,t) plane.
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Problems 4.3 and 4.4 were tested with h = 1/80. t = 1/20, p = 4

and the results are given at time t = 1.0 in Tables 4.3. 4.4 respectively.

It is noted aga1n that the methods based on the (2,1) and (2,2) Pade

approximants, showed greater improvements than the improvements shown by

the methods based on the (1,1) and (2,0) Pade approximants. Using the

higher order space approximation, the highest accuracy was achieved by method

D22 followed, in succession, by D2I, DI I, D20; this is in keeping with

the local truncation errors of these methods and with the numerical results

obtained for Problems 4. I and 4.2. It was also found, as the computation

proceeds, that, away from the boundary, the greatest errors were at those

mesh points close to the line t = x across which there were discontinuities.

Problem 4.5

The boundary condition for this problem is taken to be

u(O,t) = exp(-t) t > °
and the initial condition to be

u(x,O) = exp(x) ° ~ x ~

The theoretical solution of the problem 1S

u(x,t) = exp(x-t)

The problem was run with h = 1/80, t = 1/20which decays as time increases.

and p ~ 4; the numerical results at time

Table 4.5.

t = 2,4,8,10 are glven 1n

The errors were found to behave in much the same way as 1n the other

problems; that 1S, uS1ng the higher order space approximant, produced a

more noticeable improvement in the methods based on the (2,1), (2,2)

Pade approximants than in the other two methods. The two formulations based

on the ( I , I )
. are seen to give good results at timePade approx1mant,

I the solution lies in the approximate
t = 10.0, when, for ° ~ x ~ ,

-5 4 1-04 This is due to these formu-
interval 4.540 x 10 < u < 1.23 x .

. d thus experiencing smaller round off
lations using fewer mesh p01nts an

errors.
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4.7 Conclusions

Two families of two-time level finite difference schemes, based on

Pad~ approximants to the matrix exponential function} have been developed

for the numerical solution of first order hyperbolic partial differential

equations with initial and boundary conditions specified.

The oscillatory behaviour of the methods based on the usual central

difference replacement of spatial derivative, was discussed. In order to

obtain smooth solutions, the space derivative was replaced first of all by

the usual first order backward difference approximant at each mesh point

at a given time level, and the resulting system of first order ordinary

differential equations was solved using the (1,1), (2,0), (2,1), (2,2)

Pad~ approximants. Next, the space derivative at the mesh point adjacent

to the boundary, at a given time level, was replaced by the same low

order approximant, and by the usual second order backward difference

approximant at all other mesh points. The resulting system of ordinary

differential equations was solved using the same four Pad~ approximants.

All four numerical methods of each backward difference family were

implicit in nature; those based on the (1,1) and (2,2) Pade approxi­

mants were seen to be Ao-stable and those based on the {2,0) and (2,1)

Pade approximants were seen to be Lo-stable. The form of the g1ven

boundary conditions, however, meant that the backward difference methods

were all used explicitly, obviating the need to solve a linear algebraic

system. The CPU time for all eight backward difference methods were found

to be fast.

The backward difference methods were tested on five problems from the

literature; the results obtained were better than other results in the

literature, even though the order of the methods, in many cases, was

lower. It was found that the lower order (1,1) and (2,0) Pad~

approximants gave good results when the lower order replacement of the

space derivative was used at each mesh point at a given time level, and
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that the higher order (2.1) and (2.2) Pade approximants gave their

best results when the higher order replacement of the space derivative

was used at interior mesh points. This implies that lower order

replacements in both space and time, or higher order replacements ln

both space and time. are most effective; this observation was also

made by Abarbanel et a1 (1975;p.351). For problems with decaying

solutions. the two backward difference formulations based on the (1,1)

Pade approximant give very good results due to the smaller number of

mesh points used, thus reducing round-off errors.



Table 4. 1 Numerical results for Problem 4.1 at time
t = 0.5,1.0,2.0,4.0

Method 11~11 2 II~II 2 II ~ ILX)
CPU

II ~ II 2 /I ~ II 2 II ~ 11eX)
CPU

(sec) (sec)

t = 0.5 ~

t = 1.0

C11 6.75(-1) 3.55(-2) 6.08(-2) 0.062 6.65(-1) 5.00(-2) 1.07(-1) O. 115
C20 6.70(-1) 5.76(-2) 1.01 (-2) 0.070 6.58(-1) 8.55(-2) 1 56(-1) 0.123
C21 6.74(-1) 1.79(-1) 6.01(-2) 0.074 6.64(-]) 2.07(-1) ] .07 (-1 ) O. 137
C22 6.75(-]) 1.71(-1) 5.98(-2) 0.078 6.64(-]) 1.97(-]) ] .04 (-1 ) O. ]45
D11 7.07(':']) 7.03(-3) 1.2](-2) 0.084 7.06(-1) 1.00 (-2) 2.40(-2) O. 15R
D20 7.03(-1) 4.67(-2) 9.11 (-2) 0.088 7.00(-]) 7.20(-2) 1.17(-1) O. 169
D21 7.06(-1) 1.31(-2) 2.66(-3) 0.095 7.05(-]) 1.89(-2) 2.70(-2) O. 179
D22 7.06(-1) 1.23(-3) 2.42(-3) O. 119 7.06(-]) 1.75(-3) 2.71(-3) 0.227

t = 2.0 t = 4.0

C11 6.65(-1) 5.00(-2) 1.07(-1) 0.218 6.65(-]) 5.00(-2) 1.07(-1) 0.425
C20 6.59(-1) 8.61(-2) 1.56(-1) 0.249 6.59(-1) 8.61(-2) 1.56(-1) 0.487
C21 6.64(-1) 2.07 (-1 ) 1.07(-1) 0.264 6.64(-1) 2.07 (-1 ) 1.07(-1) 0.517
C22 6.64(-1) 1.97(-1) 1.04(-1) 0.279 6.64(-1) 1.97 (-1) 1.04 (-1 ) 0.547
D11 7.06(-1) 1.00(-2) 2.93(-2) 0.305 7.06(-1) 1.00 (- 2) 2.43(-1) 0.600
D20 7.00(-1) 7.30(-2) 1.27(-1) 0.312 7.00(-1) 7.30(-2) 1.27(-1) 0.689
D21 7.05(-1) 1.90(-2) 2.76(-2) 0.347 7.05(-1) 1.90(-2) 2.76(-2) 0.791
D22 7.05(-1) 1.75(-3) 2.71(-3) 0.445 7.06(-1) 1.75(-3) 2.71(-3) 0.877

Table 4.2(a) Numerical results for Problem 4.2 at time t = 10 using
previously published methods.

II vl1 2 11~112
CPU

Method (sec)

Richtmeyer (p=0.9) 8.48(-1) 5.9(-1) 3.4

Abarbanel et al 3 level (p=0.9) 9.95(-1) 1.4(-2) 6.3--
Abarbanel et al 2 level (p=0.9) 9.97(-1) 8.6(-3) 7.3--
SHASTA (p=0.45) 4.55(-1) 3.2(-1) 15.2

Abarbanel et al 3 level (p=0.65) 1. 00 1.0 1.4--
Abarbanel et a1 2 level (p=O. 5) 1.00 6.5(-1) 1.8--
Kreiss - Oliger (p=0.25) 1.00 1.2(-1) 3.6

Abarbanel et al 3 level (p=O.l) 1.00 2.8(-2) 8.8--
Abarbanel et al 2 level (p=0.05) 1.00 5.0(-2) 17.4
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Table 4.2 (b) Numerical results for Problem 4.2 at time t = 10

Method II ~ II 2 11 ~ II 2 II~IL
CPU

(sec)

C11 5.61(-1) 1.86(-1) 4.00(-1) 1.049..
C20 5.29(-1) 2.87(-1) 5.73(-1) 1. 121

C21 5.54(-1) 3.82(-1) 3.85(-1) 1.278

C22 5.59(-1) 3.72(-1) 3.75(-1) 1.352

D11 7.04(-1) 8.05(-2) 1.94(-1) 1.483

D20 6.58(-1) 2.46(-1) 4.81(-1) 1.590

D21 6.96(-1) 4.17(-1) 6.47(-2) 1.697

D22 7.07(-]) 8.28(-3) 1.48(-2) 2. 178

Table 4.3 Numerical results for Problem 4.3 at time t = 1. a

Method /I ~ II 2 11 ~ II 2 II~IL
CPU

(sec)

C11 1.78 2.01(-2) 9 64(-2) 0.007

C20 1. 83 5.76(-2) 1.22(-1) 0.007

C21 1. 80 1.59(-1) 1.01(-1) 0.008

C22 1. 78 1.67(-2) 9.55(-2) a 008

D11 1. 76 1.75(-2) 4.00(-2) 0.008

D20 1. 82 4.82(-2) 7.78(-2) 0.008

D21 1. 79 1.63(-2) 3.72(-2) 0.009

D22 1. 78 4.51 (-3) 2.78(-3) 0.010

Table 4.4 Numerical results for Problem 4.4 at time t = 1. a

11~11 2 II~ II 2 II ~ 1100
CPU

Method (sec)

C11 5.97(-1) 1.40(-1 ) 5.76(-1) 0.009

C20 5.98(-1) 2.51(-1) 5.79(-1) 0.010

C21 5.99(-]) 2.38(-1) 5.50(-1) 0.011

C22 5.97(-1) 2.34(-1) 5.62(-1) 0.012

D11 5.83(-1) 9.04(-2) 5.40(-1) 0.012

D20 5.90(-1) 9.78(-2) 5.48(-1) 0.012

D21 5.82(-1) 8.53(-2) 5.43(-1) 0.013

D22 5.79(--]) 8.60(-2) 5.18(-1) 0.016
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Table 4.5 . Numerical results for Problem 4.5.

liz II L

Method Time 2.0 4.0 8.0 10.0

CI 1 5. 18(-4) 6.96(-5) 1.27(-6) 1.73(-7)
C20 1.80(-2) 2.44(-3) 4.47(-5) 6.61 (-6)
C21 7.68(-2) 2.82(-2) 3.82(-3) 1.4] (-3)
C22 4.07(-2) 1.50(-2) 2.03(-3) 7.46(-4)
D11 5.56(-4) 7.7](-5) 6.18(-6) 4.26(-6)

D20 1.90(-2) 2.57(-3) 4.71(-5) 6.37(-6)

D21 7.05(-3) 9.54(-4) 1. 75(-5) 2.36(-6)

D22 8.80(-4) 1.51 (-4) 1.04 (-5) 2.74(-6)

Method Time 2.0 4.0 8.0 10.0

C11 1.09(-3) 1.48 (-4) 2.82(-6) 4.01 (-7)

C20 2.66(-2) 3.61(-3) 6.61(-5) 8.94(-6)

C2] 8.55(-3) 1.16(-3) 2.11(-5) 2.86(-6)

C22 3.59(-3) 4.83(-4) 8.84(-6) 1.20(-6)

D1] 1.20(-3) 1.84(-4) 1.41(-5) 8.94(-6)

D2.0 2.88(-2) 3.90(-3) 7.13(-5) 9.65(-6)

D21 1.08(-2) 1.45(-3) 2.66(-5) 8.60(-6)

D22 1.68(-3) 3.61(-4) 3.12(-5) 7.96(-6)
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CHAPTER 5

SECOND ORDER PERIODIC
INITIAL VALUE PROBLEMS

5.1 Introduction

Periodic initial value 'problems of the form yll = f(x,y) ar1se 1n the

theory of orbital mechanics, and in recent years there has been considerable

interest in the numerical solution of such problems.

Generally speaking, second order initial value problems can be divided

into two distinct classes: (a) problems for which the solution period is

known in advance; (b) problems for which this period is unknown initially.

Numerov's methods applied to type (a) always stays on the orbit, whereas the

..
Stormer-Cowell methods with step number greater than two spiral inwards. In

the terminology of Stiefel and Bettis (1969), the former method 1S orbitally

stable, the latter orbitally unstable. Modified numerical methods have been

proposed by Gautschi (1969), Stiefel and Bettis (1969) and Jain et al (1979),

which can be used to compute the solution for problems of type (a). For the

numerical solution of problems of type (b), it is desirable that the method

should be P-stable. Lambert and Watson (1976) have shown that certain linear

multistep methods of arbitrary stepnumber possess a periodicity property when the

product of steplength and angular frequency lies within the interval of period-

icity and these authors developed symmetry conditions under which a linear multi-

step method possesses a non-vanishing interval of periodicity. However, Lambert

and Watson have shown a P-stable linear multistep method cannot have order of

accuracy greater than 2. Jain et al (1979) have derived higher order methods

and claim that they are P-stable. It is noted that their concept of P-

stability 1S considerably weaker than that given by Lambert and Watson (1976).

Higher order P-stable methods are also proposed by Cash (1981) and Chawla (1981)

whose methods need three function evaluation at each step. Cash (1981) has

tested his fourth and sixth order P-stable methods on numerical examples and
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achieved higher accuracy than Lambert and Watson (1976), by uSlng the ana­

lytical solution to compute the solution with steplength h at y(h).

However, for practical problems, it is usually necessary to use a starting

procedure.

In section 5.2 of this chapter, a recurrence relation is developed

which yields two-step multiderivative methods, employing Pade approximants

to the exponential functions. The definition of P-stability given by

Lambert and Watson (1976, p.199), is adapted. The methods are analysed ln

section 5.3. The interval of periodicity, principal part of local truncation

errors and non-zero coefficients for the algorithms yielded by the first six­

teen entries of the Pade Table (Appendix I) are given in

Appendix III. The two-step multiderivative methods are given ln Appendix IV.

Fourth and sixth order methods based on the (2,2) and (3,3) Pade approximants

are tested for comparison purposes on the problems discussed by Cash (1981),

in section 5.4. The methods are analysed in PECE mode and tested on numerical

examples discussed by Jain et al (1979) and Shampine and Gordon (1973) in

section 5.5. Finally, conclusions are drawn in section 5.6.
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5.2 Dev~lopment of the methods

Consider the second order initial value problem

(5. 1) y"(t) = f(t,y) ; y(to) = YO ,

where y E EN. A particular case of (1) ~s the linear problem

(5.2) y"(t) = A yet) + B ;

Equation (5.2) arises ~n the numerical solution of the simple wave

equation 32u/3t 2 = 32u/3x2 when the space derivative is approximated

by a finite difference replacement such as

(5.3) =

where h is the increment ~n x ar~slng from the space discretization.

This leads to a system of ordinary differential equations of the form

(5.2) in which the diagonalizable matrix A has real, negative eigenvalues,

and B = 0 when the boundary conditions are zero.

It is therefore appropriate to consider the single test equation

(Lambert and Watson (1976), Dahlquist (1978))

(5.4) y"(t) = - A. 2y(t)

where A.,y E 1R , whose general solution

(5.5) yet) = a cos A.t + b s~n A.t

1S periodic with period 2n/A. for all a,b other than the trivial case

a = b = O.

The general solution (5.5) may be written ~n the alternate form

(5.6) yet) = a exp(iA.t) + b exp(-iA.t) , i = + /-1

which becomes

(5.7)

_1
y(t) = -~i(iyO + A.- 1yo)exp{iA.(t-to)} - ~i(iYO-A YO)exp{-iA(t-tO)}

When the initial conditions in (5.4) are introduced.
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It may now be shown that yet) glven ln (5.7)~ satisfies the re-

currence relation

(5.8) y(t+t) - {exp(itA) + exp(-itA)}y(t) + y(t-£) = 0 ,

where t is a convenient increment in t. This recurrence relation may be

used for t = to + t, to+2t, ... for t = to the initial conditions

gIve y(to) = YO but the value y(to+t) remains to be determined in terms

of YO and Yo. Equation (5.8) leads to a family of multiderivative

methods for the solution of (5.1), the higher derivatives being easy to

calculate because of the periodic properties of the problem.

Any numerical solution of (5.8) will determine yet) explicitly or

implicitly depending on the approximations to exp(±itA). Using the

(m,k) Pade approximant to exp(itA) of the form

(5.9) exp(itA) = Pk(i£A)/Q (i£A) + O(£m+k+l) ,
m

where P Q are polynomials of degree k,m respectively, defined by
k ' m

(5.10)
k

+ •.•. + Pk8

and

QO(8) = 1(5.11 ) 2 .... (_I)m 8m
o (8) = 1-q 8+q 8 .. . .. + q ,
1n 12 m

'th >0 d q >q > ••• >q >0 depending on the chosen Pade
WI p >p >... Pk an -m

1 2 1 2

approximant, equation (5.8) takes the form

Q (itA)Q (-itA)y(t+t) - {Q (-itA)P (itA)+Q (i£A)Pk(-itA)}y(t)
m III m k m

~5.12)
+ Q (itA)Q (-itA)y(t-t) = O.

m m

, f h 1 ol'als Pk,Qm In (5.12), odd powers ofOn substitutlng or t e po yn m

vanish and the recurrence relation takes the form

2 2 4 4 2
m

2
m

{Ir-a 9. A +a t A - ... + (-l)mamt A }y(t+£)
1 2

2 2 4 4
- {2-b t A +b t A - ... +

1 2
2 2 4 4

(5.13) + {l-a t A +a t A - ... +
1 2

2 s 2 s
(_l)sb t A }y(t)

s
2m 2m

(_l)ma t A }y(t-t) = 0 ,
m
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where the a j, b j clearly depend on the Pade approximant beong used and

s = [ ! (m+k) ] .

For a single equation of the form (5.1), equation (5.13) yields the

two-step multiderivative formula

+ •••••• + a £2m (zm)
m Yn+

(5. 14)

= 2y +b £2y" + b £4v(iv)n 1 n 2..1 n +

n = 1,2, ... , which ~s explicit of m = 0 and implicit of m ~ o. It ~s

assumed that yet) ~s sufficiently often differentiable. In (5.14),

y. = y(t.) = y(tO+j£), where j = 0,1,2, ...
J J

the non-zero coefficients of (5.14) for the algorithms yielded by the first

sixteen entries of the Pade table are g~ven in Appendix III.

Initial value problems for which f = f(t,y,y') may clearly be written ~n

the form of a first order system u' = v, v' = f(t,u,v) where u = y, v = y'.

Multiderivative methods for first order systems were discussed ~n Chapter 2.

5.3 Analyses

With the multiderivative method (5.14), may be associated with the linear

difference operator L defined by

m

L [y ( t ); £ ] = Y( t +£) - 2y (t ) + y ( t - £) +j ~ 1 a j £2j Y(2j) ( t +£)

(5. 15)
s

- L
w=l

and y(t_O) and their derivatives as Taylor ser~es aboutExpanding y(t+£) N

t, and gathering terms, g~ves

where the C.
J

are constants. L and the associated multi­The operator

derivative method (5.14), are of order p if, in (5.16), Co = C1 = ...
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::: C +' = ° and C =f 0.P J. p+2

The term C 1S thP+2 e error constant of the multiderivative method (5.14);

the error constants for the first 16 methods of the family are contained 1n

Appendix III. The multiderivative method (5.14), is consistent with the

differential equation if p _> I,' 1c early the methods based on the (0,1)

and (1,0) Pade approximant~ are inconsistent whilst all others are con-

sistent.

Rearranging (14) 1n the form

(5. 17) y - 2y +y
n+1 n n-1 = a.y (2 j ) )

J n-1 '

where v = max(m,s) (clearly for m > k, b
S+1 = .•. = b

v
= 0, and for

m < k, a =
m-r I

= a = 0)
v ' it is seen that the multiderivative methods are

generated by the characteristic polynomials

(5.18) per) = r 2 - 2r + I , a.(r) = - a.r2 + b. - a.
J J J J

for J = I, ... , v. The quadratic polynomial equation a(r) = ° has a double

zero at r = + and the family of multiderivative methods is zero-stable;

all except the methods based on the (0,1) and (1,0) Pade approximants are

thus convergent.

It is easy to see from (5.14) and (5.17) that, for m less than, equal to,

or greater than k, every member of the family of multiderivative methods, 1S

symmetric with even stepnumber (two-steps) and even order p. The findings of

Lambert and Watson (1976) on the periodicity of linear multistep method then

carryover to multiderivative methods, as does the theory of weak stability

(Lambert (1973, p.202)).

Writing H = £A, equation (5.13) becomes

(5. 19)

The solution of (5.19) involves the nth powers of the zeros rl and r2

of the periodicity polynomial
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( m 2m 2... + -I) a H Lr
ill

(5.20)

+ {I - a1H2 + a2H4 - ... + (-l)ma H2m}
m

= Qm(-iH)Qm(iH)r2 - {Qm(-iH)Pk(iH) + Qm(iH)Pk(-iH)}r

+.Q (-iH)Q (iH) .
m m

The interval of periodicity of the multiderivative method (5.14), lS

determined by computing the values of H2 for which the zeros of the

periodicity equation (Lambert and Watson (1976,p.193»

(5.21 )

satisfy

(5.22) = e i 8 (H)r1
-i8(H)

r2 = e ,

where 8 (H) E JR the multiderivative method is then orbitally stable.

For each member of the family of multiderivative methods, the periodicity

equation may be written down in terms of the associated Pade approximant.

Those multiderivative methods which have interval of periodicity H2 E (0,00)

are said to be P-stable (Lambert and Watson (1976,p.199». The intervals of

periodicity for the consistent multiderivative methods based on the first

sixteen entries of the Pade table are contained in Appendix III (those

(5.23)

interval bounds occurring as integers or improper fractions, are exact, those

occurring with one decimal place, have been rounded up or down depending on

whether the number is a lower or upper bound of the interval). The con-

sistent multiderivative formulas based on those (m,k) Pade approximants

for which m > k are seen to be P-stable.

In computing the solution at time t = £ the formula

= Yo + £Ya' + 1... £ 2y '0' + 1- £2y '1 - 1 £4y ~ i v) + _1_ £4yfi v) + 0 (£ 5) ,
Yl 3 6 18 72

or the formula
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Yl = YO + £yO + 1.. £2yO + 1 £2Y'1 1 £4 (iv) __7_ £4y(iv)- - - YO3 6 45 360 1

(5.24 ) + 1 £6 (vi) 11 £6 (vi) + 0(£7)-- YO - Yl108 2160 ,

(Twizell (1981)) may be used in solving problems which are known to have

outward-spiralling theoretical solutl·ons. 0 h' ,t erwIse, Taylor s series may be

used to gIve y, to the necessary accuracy.

To investigate absolute stability, the family of multiderivative methods

are applied to the single test equation (5.4). -Writing h = _£2 A2

(Lambert (1973,p.258)), the stability polynomial for each of the methods

from equation (5.13) takes the form

-
1T(r,h) = + ... + a ~)(r2+1)

m

(5.25 )

~d the interval of absolute stability (Dahlquist (1978,pp.133-134)), are

found by solving the equation

(5.26)

In each case.

-
n(r,h) = °

Methods based on the (m,k) Pade approximants for m ~ k are found

to be A-stable, whilst methods based on the (m,k) Pade approximants for

m < k have finite interval of absolute stability hE[ -a,OJ. The value

of a is in fact the same as for the interval of periodicity H2 E (O,a).

The analogy between P-stability and A-stability for two-step symmetric

multistep methods, is thus obvious for the family of multiderivative methods

developed in section (5.2), see also Dahlquist (1963, 1978), Lambert and

Watson (1976), Chawla (1981) and Hairer (1979).

5.4 Numerical examples

The family of multiderivative methods developed In section 5.2, were

tested on two problems well known in the literature. Numerical results for

methods based on the (2,2) and (3,3) Pade approximants, are presented
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1n this section.

Problem 5. 1

This is the almost periodic problem introduced by Stiefel and Bettis

(1969) and considered by Lambert and Watson (1976) and Cash (198]). It is

given by

Z" = - z + O. 00] it
e z(O):::] , z'(O) = 0.9995 1, z C.

The theoretical solution satisfies

u(t) = cos t + a .0005 t sin t , u E JR

v( t ) = sin t - 0.0005 t cos t , V E JR

z(t) = u I t ) + LvCt)

and represents the motion of the point z(t) on a perturbation of a

circular orbit. The distance of this point from the centre of the orbit

at time t is given by

I I

y(t) = [u2(t) + V2 ( t ) J 2 = [] + (0.0005t)2J2

so that the point spirals slowly outwards as time Increases.

Following Lambert and W~tson (]976), the differential equation is written

In the form of the real linear system

u" = -u + O. 00 1 cos t ; u (0) = 1 , u' (0) = 0
(5.27 )

v" = -v + O. 00] sin t ; v(O) = 0, v ' (0) = 0.9995

f rom which the higher derivatives, for use with the multiderivative methods

developed in section 5.2 are easily determined.

The numerical solutions U(t) , V(t) of the real system (5.27), were com-

puted at t=40n for £ = n/4, n/5, n/6, n/9, n/]2, using the multi-

derivative methods based on the (2,2), (3,3) Pade approximants. The corre-

sponding computed values Z(t), f(t) of z(t), y(t) were then computed

using

Z(t) = U(t) + iV(t) ,
1

I' (t ) = [ U2 (t ) + V2 (t ) ] 2 •

The error moduli in the computed values Z(t), f(t) g1ven by
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I
= [{u(t) - U(t)}2 + {vet) - V(t)}2J2

1 I

l{u2(t) + V2 (t ) }2 - {U2(t) + V2(t)}21

Z (t ) I

ret) I =

E(z) - Iz(t)

E(Y) - h(t)

were also calculated. The values of ret), E(z), E(y) are glven In

Table 5. 1.

It can be seen that for both methods tested, the path of the point z(t)

is an outward spiral for all steplengths, which is in keeping with the

theoretical solution. The numerical solution obtained using the fourth

order method based on the (2,2) Pade approximant, was found to be closer

to the theoretical value y(40rr) than the method due to Cash (1981), which

lS of comparable order, except for £ = rr/4 when the error modulus was

0.002339 compared to 0.002146 obtained by Cash.

The computed solution obtained using the sixth order multiderivative

method based on the (3,3) Pade approximant, was found to be closer to the

theoretical solution ~40rr) than the sixth order methods of Lambert and

Watson (1976) or Cash (1981) for all values of t. Moreover, convergence

to six decimal places was attained for higher values of t using the

(3,3) multiderivative method.

The approximate formulas (5.23), (5.24) were used with the (2,2),

(3,3) Pade methods, respectively, whereas Cash (1981) used the theoretical

solution.

Problem 5.2

This example was used by Lambert and Watson (1976) and Cash (1981)

and is given by

Y'l = -W2Yl + </>"(t) + w2</>(t) ; Yl (0) =a + cj>(0), yi (0) = </>' (0)

" 2 h." (t ) + w2
A-. (t )Y = -w Y2 + '¥ '¥

2
Y2(O) =</>(0) , y~(O) = aw + cj>' (0) .

The theoretical solution of the problem lS glven by



(123)

Table 5.1

Computed results at t = 40n for Problem 5.1

y(40n) = 1.001972 , u(40n) = 1 , v(40n) = -0.062832

,
\ (2,2) method (3,3) method

:

II 9-
,

\
r E (y) E(z) r E(y) E(z )

!
J I,
i n/4

I

1.004311 0.234(-2) 0.418(-2) 0.908(-5) 0.813(-7)I 1.001981
I

n/5 1.002845 0.874(-3) 0.710(-3) 1.001974 0.236(-5) 0.567(-8)

J

n/6 1.002383 0.411(-3) 0.167(-3) 1.001972 0.792(-6) 0.642(-9)

n/9 1.002052 0.805(-4) 0.659(-5) 1.001972 0.699(-7) 0.501(-11)

n/12 1.001997 0.255(-4) 0.664(-6) 1. 001972 :0.125(-7) 0.159(-12)
i

I I I I
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Table 5.2

Error modulus ~n the computed solution at t = 20~ for Problem 5.2

rx ~/32 ~/8 ~/2 rr

\(2:2) mu1tiderivative method

0.402(-15) 0.103(-12) 0.194(-10) 0.200(-9)
I

\
10 0.994(-16) 0.885(-13) 0.139(-11) 0.115(-11)

15 0.119(-15) 0.101(-14) 0.183(-12) 0.144(-10)

20 0.879(-16) 0.502(-14) 0.858(-12) 0.359(-11)

25 0.428(-16) 0.254(-14) 0.522(-12) 0.519(-11)

30 0.310(-15) 0.752 (-15) 0.246(-12) 0.390(-11)

35 0.502(-15) o. 715 (-15) 0.261(-12) 0.265(-11)

40 0.176(-15) 0.782(-15) 0.251(-13) 0.179(-11)

(3,3) mu1tiderivative method

5 0.185(-15) 0.953(-15) 0.340 (-11) 0.182(-12)

10 0.166(-15) 0.116(-14) 0.231(-14) 0.264(-14)

15 0.118(-15) 0.795(-16) 0.946(-17) 0.576(-15)

20 0.423(-16) 0.885(-16) 0.380(-16) 0.189(-15)

25 0.319(-15) 0.480 (-17) 0.102(-16) 0.119(-16)

30 0.290(-15) 0.600(-18) 0.522(-17) 0.256(-16)

35 0.138(-15) 0.491(-18) 0.261 (-17) 0.137(-16)

40 0.271(-16) 0.261(-18) 0.183(-17) 0.309 (-17)
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Y1(t ) = a cos wt + ¢ (t )

Y1(t ) = a sin wt + ¢ (t )

and, following Lambert and Watson (1976) and Cash (1981), ~()
't' t 1S taken to

be
-O.OSt

e The parameter a was given the value zero , corresponding to

the case when high frequency oscillations are not present in the theoretical

solution. The results at t = 20TI for w = 5(5)40 and £ = TI/32, /TI 8,TI/2,TI

are g1ven in Table 5.2.

Comparing Table 5.2 with Table 2 in Cash (1981), it 1S seen that,

except in the isolated case w = 5,£ =TI/8, the fourth order multiderivative

method tested in the present paper gives better results than the fourth

order method of Cash; the sixth order method tested in the present paper

always gives superior results to the sixth order method in Cash (1981)

when applied to Problem 5.2

As with Problem5.1,formulas (5.23), (5.24) were used to compute y(£).

5.5 Use in PECE mode

In common with texts and other papers, the convention of associating an

asterisk with a predictor formula will be adopted. Using the general (O,k*)
method as predictor and the general (m,k) method as corrector, the combination
in PECE mode will be denoted by (O,k*);(m,k).

It is not necessary to choose a predictor formula for which k* = max(m,k)

and the existing theory relating to the order of the local truncation error

of linear multistep methods used 1n PECE mode carr1es over to multiderivative

methods used in PECE mode. In particular, if the order of the predictor 1S

at least the order of the corrector, then the error constant of the pre-

dictor-corrector combination is that of the corrector alone. In addition,

if the predictor and the corrector have the same order p ,then Milne's

device

(5.28 ) C [ ( c ) (P) / * - C ]
p+2 Yn+l- Yn+1J [Cp+2 p+2

may be used to estimate the error constant of the predictor-corrector com-

bination in PECE mode (provided *C 2 i: C -).p+ p-iZ
In (5.26), the superscripts
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refer to the predictor and corrector, respectively.

The periodicity polynomial ~ (H2)PECE r, of the (O,k*); (m,k) com-

bination in PECE mode may be shown to take the form

(5.29)

where s* = [!k*] .

m
+ I (-I)ja.H2j

j= 1 J

s*
I (-I)wb*H2W]r + 1

w=l w

The interval of periodicity of the (0 k*) (k) ., , . ; m, pr ed i.c t orr-cor r e c tor

combinat~on is determined by computing the v tlues of H for which the zeros

of the periodicity equation

satisfy (5.22).

It was found that the (0,2); (1,2) combination, with error constant
1

C4 = 36 and periodicity interval H2 E (0,9), has the smallest modulus

error constant and the greatest interval of periodicity of the second order

combinations.

Of the fourth order combinations, it was found that the (0,4); (2,2)
1

combination, for which C6 = 360 and H2 E (0,15.89), is to be preferred to

any fourth order combination when solving non-linear problems, because it

requires no more than the second derivative of f(t,¥). For linear problems
-7

the (0,4); (1,3) combination which has C6 = 2880 and H2
E (0,4.88), may be

used with small values of £ if higher accuracy is needed.

For non-linear problems of the form (5.1), the maximum steplength which

may be used at any time t of the calculation, has the value H*/A(t)

where H2 E (0,H*2) 1S the periodicity interval of the predictor-corrector

combination being used, and A2(t) 1S the largest modulus real part of the

eigenvalues of the Jacobian af/ay at time- - t

Th (0 4) (2 2) method was tested on the following problem which wase , ; ,
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discussed in Shampine and Gordon (1973) and Jain et al (1979).

Problem 5.3

x" x
x(O)= ;3 = 1, x' (0) = ° ,

y" =
y

yeO) 0, y' (0) 1r 3 = = ,
I

where r = (x2 + y2)2. These equations are Newton's equations of motion for

the two body problem and the initial conditions are such that the motion 1S

circular. Clearly x"(O) = -1, y"(O) = 0 and, by successively differen-

tiating the expressions for x" and y", it is easy to verify that x(t)

and its derivatives take the values 1,0,-1,0 cyclically at t = 0, and

that yet) and its derivatives take the values 0,1,0,-1 cyclically at

t = 0. Taylors series, with sufficiently small stepsizes, provides starting

values for the following strategy where, for

n = 1,2, ... , w
n

1S calculated uS1ng, as predictor, the multiderivative methodP:

E:

w(P)

n+l

based on the (0,4) Pade approximant;

1 6
(a) w' is evaluated using w' = n L

-n+l -n+l N

m=l

where V 1S the usual backward difference operator,

(b) w"
- n+1

1S evaluated using
(P)

w11+1
in the system of

differential equations,

(c) w(iv) is evaluated from the analytical express10ns for
-11+ 1

(iv) (iv) which are easily determined (these contain
xn+ 1 ' Yn+1

c: (C)
w
-n+l

is calculated uS1ng, as corrector, the multiderivative

method based dn the (2,2) Pade approximant;

are re-evaluated as in (a), (b), (c) aboveE: , (iv)
w" w.w.n+1, - n+1' -n+1

the Cor r e c t ed valueuS1ng
(C)

w
~+1

where appropriate.
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Problem 5.4

Changing the initial conditions In Problem 5.3 to

x(O) = 0.4 , x'(O) = 0 ,

y (0) = 0 , y' (0) = 2

causes the orbit to become the eclipse (Shampine and Gordon (1973,p.245))

r 2 ; (x+0.6)2 + y2/0.64 = 1

and the period of revolution to be 2n. The problem was tested with

~ = rr/45, n/90, n/180, n/360, n/720 and the value of r at time

t = 15n,16n determined using the (0,2);(2,2) combination in PECE mode.

The values of x,y,r (thecretical values -1.6,0,1 and 0.4,0,1,

respectively) are given at time t = 15n,16n in Table 5.4. It is agaln

clear that the multiderivative predictor-corrector combination used, gives

accurate results. Unlike the method used and reported in Sharrpine and Gordon

(1973,p.246), no step size or order changing was required to achieve the

accuracy obtained using the multiderivative methods.
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Table 5.3

Error moduli at t = 12TI for Problem 5.3

0.120( 5)650( 5)/

(0,4) method (0,4) . (2,2),
combination

s. Error moduli Error moduli

TI/18 0.394(-7) 0.665(-8)

TI/15 0.209(-6) 0.298(-7) I
I I

TI 10 o. - - I

Table 5.r

Computed values of x, y, r at t =15TI ,16if for Prob 1em 5.4

x y r

't = 15TII

if/45 -1.6003845 0.0244339 1.0017020

if/90 -1.5997948 0.0010838 0.9995914

if/180 -1.5999258 -0.0001281 0.9998517

if/360 -1.5999801 -0.0000584 0.9999603

if/720 -1.5999950 -0.0000163 0.9999899

t = 16TI

if/45 0.3999265 0.0057571 0.9999049

TI/90 0.3995450 0.0252020 1.0000826

if/180 0.3999516 0.0081528 1.0000070

if / 360 0.3999966 0.0021600 1.0000005

if/720 0.3999998 0.0005477 1.0000000
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5.6 Conclusions

A family of two-step multiderivative methods, based on Pade approxi­

mants to the exponential function, has been developed for periodic initial

value problems of second order ordinary d'ifferential equations. The method

based on the (0,2) Pade approximant is seen to be the usual explicit

method. The method based on the (1,1) Pade approximant, is found to be

the formula, found to be unconditionally stable by Richtmyer and Morton

(1967,p.263) in connection with the solution of second order hyperbolic

equations, and discussed for second order ordinary differential equations

by Dahlquist (1978). However, the topic of Dahlquists paper was un­

conditional stability, not P-stability.

The methods based on the (m,k) Pade approximants, for m ~ k, are

found to be P-stable, while the methods for m < k are seen to have finite

interval of periodicity. Following Dahlquist (1963, 1978), Lambert and

Watson (1976) and Hairer (1979), it is concluded that for two-step multi­

derivative methods, the analogy between P-stability and A-stability is

obvious. Numerical experiments have confirmed that the two-step multi­

derivative methods developed in this chapter glve higher accuracy than the

fourth and sixth order two-step Runge-Kutta type methods developed by

Cash (1981). For non-linear problems, where higher derivatives cannot be

calculated with ease, predictor-corrector combinations can be used. The

application of the methods for fourth order parabolic partial differential

equations in one and two space dimensions, will be discussed in Chapter 6.
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CIIAPTER 6

FOURTH ORDER PARABOLIC EQUATIONS

6.1 Introduction

The fourth order parabolic partial differential equation ~n one

space variable given by

(6. 1) a2u a4u
-+jJ-=O
at2 ax 4

., jJ > 0,0 < x < X,t > 0

arlses ln the study of the transverse vl·bratl·ons of a
uniform flexible

beam (see, for example, Gorman (1975». The term jJ is the ratio of

the flexural rigidity of the beam to its mass per unit length.

The initial conditions associated with (6.1) are of the form

(6.2) u (x , 0) = gO(x) . 0 .s; x .s; X,

(6.3) au (x , 0) = g 1(x ) 0 :;;; x .s; X
at

and the boundary conditions are glven by

(6.4) u(O,t) = f
O u(X,t) = f

1 t > 0

(6.5) a 2u (0, t ) = Po a2u(X,t) = PI t > 0,
ax 2 ax 2

In (6.2), (6.3) the functions gO(x), gl(x) are continuous and r n (6.4),

(6.5) the terms f O' f 1, PO' PI are real constants.

To compute the solution of (6.1) with (6.2), (6.3), (6.4), (6.5),

explicit and implicit finite difference schemes have been proposed by

Albrecht (1957), Collatz (1951), Conte (1957), Conte and Royster (1956),

and Crandall (1954). Evans (1965) derived finite difference methods by

first writing (6.1) as two simultaneous second order parabolic partial

differential equations (see also Dufort and Frankel (1953), and Richtmyer

(1957». Explicit and implicit finite difference methods based on the

semi-explicit method of Lees (1961) and the high order method of Douglas

(1956) for second order parabolic equations, have been formulated for the

numerical solution of (6.1) with (6.2), (6.3) by Fairweather and Gourlay
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(1967).

The explicit method of Collatz (1951) frequently needs a large

number of time steps to compute the solution in view of the stability

restriction on the method. The difference scheme given by Albrecht

(1957) overcomes the stability problem but uses the value of the

solution at four time levels to compute the solution at a fifth time

level. The work of Fa~rweather and Gourlay (1967) gives superlor

numerical results to the methods of Evans (1965) and Richtmyer (1957), but

more CPU time is required.

In this chapter a family of novel finite difference schemes is de-

veloped for the numerical solution of (6.1) with (6.2), (6.3), (6.4), (6.5);

a related procedure was adopted by Lawson and Morris (1978) for second

order parabolic equations, by Khaliq and Twizell (1982) for first order

hyperbolic equations and by Twizell (1979) for second order hyperbolic

equations. The methods developed and analysed are tested on problems

discussed in the literature by Andrade and McKee (1977), and Fair-

weather and Gourlay (1967).

6.2 A recurrence relation

The interval 0 ~ x ~ X will be divided into N+l subintervals

each of width h so that (N+1)h = X and the time variable t 1S

.' f 1 th n The open region R = [ 0 < x < X] xdiscret1zed ln steps 0 eng N.

[t > OJ and its boundary aR consisting of the lines x = 0, x = X,

t = 0 are thus covered by a rectangular mesh, the mesh points having

co-ordinates (mh,nt) where m = 0,1, ... ,N+1 and n = 0,1,2, ...

The theoretical solution of a difference scheme approximating (6.1)

will again be denoted by at the mesh point (mh,nt).

. . th1'S gr1'd allows the space derivative 1n (6.1) to
Superlmpos1n~

be approximated by the finite difference replacement

(6.6) a4u = h-4{u(x_2h,t)-4u(x-h,t)+6u(x,t)-4u(x+h,t)+u(x+2h,t)}+O(h4
)

ax 4
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for x = mh (m=1,2 •... ,N). For m = 1 and m = N, equation (6.6)

introduces the po1.·nts (-h t) and (X+h t) ., ~ at t1me t. which are

outside the reg1.on R. However, the values of u at mesh points

outside the reg1.on R may be written in terms of function values 1n

R and on aR by using (6.4), (6.5).

In (6.5) a2u/ax2 1.S approximated by the usual second order

replacement; this gives

(6.7) -2
= h {u(-h,t)-2u(0,t)+u(h,t)}+0(h2)

(6.8)

at the boundary points (O,t), and

a2u -2
--- - h {u(X-h,t)-2u(X,t)+u(X+h,t)}+0(h2)
ax 2

at the boundary (X,t). Using (6.4), (6.5), equations (6.7), (6.8)give

(6.9)

(6.10)

respectively, and it 1.S these expressions which will be used when (6.6)

1S used with x = h and x = Nh.

Consider now the time level t = n£ and apply (6.1) with (6.6) to

the N mesh points at this time level. This leads to the system of

second order ordinary differential equations given by

(6.11) ,

where
T. . h"Q(t) =[ U

1
(t ) , U

2(t),
... ,U

N(t)]
,T deno t i.ng transpose, 1.S t e

vector of computed solutions at the N mesh points at time t, A 1.S

the square matrix of order N g1.ven by

(6 . 12) A = h-
4

5 -4

-4 6 -4 0
-4 6 -4... .... ... ........ .... .... .... " ........ .... .... ...

.... "
.... "....

" "
....

"" .... .... "" ....... " ......
-4 " 6 -4" 1

-4 6 -4

0 -4 5
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with eigenvalues

(6.13)

and w

(6.14)

-4
As = 16 h sin

4
[ sn/{2(N+l)}]; s = 1,2, ... ,N

1S the vector of boundary values of order N g1ven by

w = h-
4[

h2PO-2fO.fO.O •.•• ,O.f].h2p -2f
1
] T

Solving (6.11) subject to the initial conditions (6.2), (6.3) g1ves

(6.15) U(t) A- I I (Lv t B) -1-1- = - ~+ zexp 1ytB {&O+(iytB) &1+A w}

in which i = Nl, y = /1..1 and B . 2vu 1S a matr1x such that B = A.

It is easy to show that (6.15) satisfies the recurrence relation

(6.16) ~(t+t) - {exp (iytB)+exp(-iytB)}~(t)+~(t-t)

-1 -1= {exp (iytB)+exp(-iytB)}A ~-2A ~

with t = t,2t, ... and it is this relation which will be used 1n the

development of the family of algorithms for solving (6.1) with (6.2),

(6.3), (6.4), (6.5). It will not be necessary to compute y, B or
-1

A explicitly.

6.3 Solution at the first time step

It is clear that, using (6.15) with t = t, requ1res knowledge of

~(t) which, unlike ~(O), is not contained explicitly in the initial

conditions. Writing t = t in (6.15) and replacing the matrix expo-

nentia1 functions with xheir (0,3) Pade approximants leads to

(6.17)

replacing the matrix exponential functions with their (0,5) Pade

approximants leads to

(6.18) ~(t) = (1- .!..1..1 £, 2A+ _1_ 1..1 2 £, 4A2) s + £, (I - ~ £, 2A~1..12 t 4A2) g
2 24 ° 6 120 1

_ .!..lIt2 (1- _1 1..I£,2A)w+0(£,6)
2 t-" 12 -

and uS1ng the (0,7) Pade approximants leads to
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(6.19)

In problems having time dependent boundary conditions f O,f 1,PO,P1
,

(6.4), (6.5) func;tions of~n are t and the vector w ~n (6.17), (6.18),-
(6.19) .

evaluated
,

~s us~ng t :::: £ ~n the equation

(6.20)

The complete algorithm for computing the numerical solution of (6.1)

with (6.2), (6.3), (6.4), (6.5) may thus be listed as follows:

(i) the starting vector U_(O):::: go 's obta~ned fr t' (6 2)~ ~ om equa ~on . ;

(ii) the starting vector g(£) is obtained using (6.17), (6.18) or

(6.19) depending on the required accuracy;

(iii) ~(t+£), with t:::: £,2£, ... , ~s obtained from the recurrence

relation (6.16) in which the matrix exponential functions are

replaced by suitable approximants. It is these matrix functions

which will be replaced by Pade approximants in the next section.

6.4 Development and analyses of the methods

Using the (1,1) Pade approximants to the matrix exponential

functions in (6.16) leads to a difference scheme written in matrix form as

(6.21)

for problems with time dependent boundary conditions this becomes

(6.22)

part of the loca l truncation error of the method basedThe principal

on the (1,1) Pade approximant is given by

(6.23)
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of (6.23) 1S related to the space dis-The component
dX6

cretization and the use of (6 6)· (6 1)• 1n • ; this component will be

present in all methods derived by using Pade approximants to the matrix

exponential function in (6.16). The other component of (6.23) is re-

lated only to the Pade approximant chosen for use in (6.16). The

principal part of the local truncation error of any method arising from

the use of the (m,k) Pade approximant in (6.16) will thus have the form

(6.24)

where the C (q = m+k+1 for m + k odd, and q = m+k+2 for m + k
q

even) are error constants and are given in Appendix III. All Pade

approximants except the (0,1), (1,0) approximants lead to consistent

methods.

Stability, in the conventional sense of a perturbation of the initial

data not growing in magnitude as time increases, is analysed by recourse

to the stability equation of the method.

Noting that the (m,k) Pade approximant to the matrix exponential

function exp (iytB) has the form

(6.25) exp (iy tB) = [ ~ (iYtB)] -1 . P (iytB)+0(tm+k+ 1)
k

where Pk'~ are polynomials of degrees k and m, respectively, with

PO(iytB) = I and QO(iytB) = I (I is the identity matrix of order N),

the stability equation has the form

(6.26)

In (6.26), f A d ~ 1S the amplification factor
1S an eigenvalue 0 an ~

of the method. The von Neumann necessary condition for stability

(6.27)

hence requires,
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In the case of the method based on the ( 1,1) Pade approximant,

the stability equation is

(6.28)

and it 1S found that IeI~ 1 for any r = t/h2 ~ O· 0S1nce ~ > , A > O.

The scheme is therefore unconditionally stable.

Using the (0,2) Pade approximant in (6.16) the resulting finite­

difference method for problems with time dependent boundary conditions may

be written in vector form as

(6.29)

This is the explicit scheme of Collatz (1951) for which This

method has an error constant which is the same order as that of (6.22)

and, since it is explicit, it would appear to be a more desirable method

to use. It is, however, stable only for
1

r ~ ~ and may thus be used

only with small time steps.

Turning now to the (1,2) Pade approximant, its use 1n (6.16)

yields the method

(6.30)

so that the methodC = -1/36,
4

enJoys better accuracy than (6.22) or (6.29). Its stability equation

The method is second order accurate with

yields the restriction ~t2A ~ 36/5 which, since A < 16h-4 , leads to

the stability condition r ~ 3/5 /(10~). Thus it may be used with

slightly bigger time steps than (6.29). However, the fact that it is

implicit, does not make this method more attractive than (6.22) which,

though implicit, is unconditionally stable.

A notable improvement in the accuracy in time 1S obtained by uS1ng

the (2,2) Pade approximant to the matrix exponential functions in (6.16).
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This approximant gives the method

(6.31)

for which

(1+ 1
12

lJ Q,
2A+ 14

1
4lJ 2Q, 4A2)!:! (t +Q, ) + ( _1_ uQ, 21+ _1_11 2 Q, 4A)w

12 144 -t+£

== (21- 26 ll Q, 2 A+ 7121-l2£4A2)U(t)_(~]JQ,2I+ _1 lJ2Q,4A)w- 6 72 -t

- (1+ TI ]JQ, 2A+ 1~4112Q,4A2)!:!(t-Q,)-( TzlJ£2I+ 114 lJ 2Q,4A)wt_£

1
C6== 360 (from Appendix III). The stability equation 1S

(1+112llQ,2A+1Z4lJ2 Q,4A2)~2_(2- ~lJQ,2A+ _1 112Q,4A2)c+(1+ _1_lJQ,2 A+ _1 lJ2£4,\2) ==
. .' 6 72 <:. 12 144

from which it 1S found that the method is unconditionally stable.

Squaring the matrix A involves an increase in the number of mesh

points at each time level used in the computation. This notion of uS1ng a

greater number of points at each time level was used by Khaliq and Twizell

(1982) for first order hyperbolic partial differential equations and by

Twizell (1979) for second order hyperbolic partial differential equations~

Mitchell and Griffiths (1980) discussed the concept briefly for second

order parabolic partial differential equations.

The same order of accuracy in time may be achieved by deleting the

terms in A2 from (6.31); this gives

(6.31a)

for which c == 1/240.
6

Equation (6.31a) is, in fact, an application of

Numerov's linear multi~step method for the numerical solution of a system

of second order ordinary differential equations and the finite difference

scheme resulting from it for the solution of (6.1) is stable only for

lJ r 2 ~ 3/8. Equation (6.31a) may be useful when very small time steps may

be taken.

The (2,1) Pade approximant leads to the implicit method

(6.32)
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= (21- 79~£2A)U(t)- ~~£w
- 9-t

- (1+ -§vQ, 2A+ 3
16

u 2Q, 4A2)U (t-£) - (~£2I+ _1_~2 £4A)w
- 9 36 -t-£ .

This method has =_1
C4 36 and is found to be unconditionally stable.

Its theoretical accuracy near the boundary is not second order in time;

however, this does not diminish the overall accuracy of difference scheme ,

see, for example, Mitchell and Griffiths (1980,p.112-116, 121-125). It

may be advisable to delete the terms in A2 from (6.32), provided

sufficiently small steps may be taken. The method then becomes identical

to (6.30), which has error constants of the same magnitude as (6.32) and

which is obviously more economical than (6.32) in relation to storage

requirements.

Using the (2,0) Pade approximant to the matrix exponential

functions In (6.16) gives the implicit scheme

(6.33)

which has error constant C
4

= 7/12. The method is unconditionally stable

but its less favourable error constant and the fact that it requires

suggest that the method based on the (1,1) Pade approximant, is to be

preferred. It will be seen in section 6.5, however, to give generally

better numerical results than (6.22) for the problems tested, when a

higher order difference scheme is used for the first time step.

6.5 Numerical results and discussion

To examine the behaviour of the methods developed in section 6.4,

the methods are tested on two problems from the literature. The methods

b d h (1 I) ( 1 2) (2 0) (2 I) ( 2 2) Pade approximants, wi 11 bease on t e , , , , , , , , ,

named Tl I, T12, T20, T21, T22, respectively.

Problem 6.1 (Fairweather and Gourlay (1967))

= ° ° < x < 1 , t > 0
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with initial conditions

~(x,O) = 0
at

and boundary conditions

., o ~ x ~ I

u(O,t) = u(l,t) = 0 t ~ 0

a2u (0 , t ) =

ax 2

a2u ( l , t ) = 0

ax2
t ~ 0 .

This problem was also considered by Evans (1965). The theoretical

solution is given by

00

where

a
s

In order to compare the numerical results with Fairweather and

Gourlay (1967), the same mesh ratios have been chosen. In Table 6.1,

the errors are shown for time t = 0.02, with h = 0.05, t = 0.00125.

The errors for t = 1.0 with h = 0.05, t = 0.005 and with h = 0.1,

£ = 0.02 are quoted ~n Table 6.2 and Table 6.3 respectively.

Visual analyses of Tables 6.1, 6.2 and 6.3, and comparison with

Tables I and III in Fairweather and Gourlay (1967, p.9), show that the

numerical results for the second order methods are superior to those of

Evan's method, Richtmyer's method and the semi-explicit method (Fair-

weather and Gourlay (1967, p.9). The fourth order method (in time) based

on the (2,2) Pade approximant is seen to give better results than those

of the higher order correct method of Douglas (Fairweather and Gourlay

(1967, p.9), Tables I, III) for larger mesh ratios, especially when the

time step is not too small relative to the space discretization. This is

due to the fact that the component of the principal part of the local trun-

cation error due to the chosen Pade approximant in (6.24), namely
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c t
q

aquiat
q,

is much smaller than the component due to the spaceq

discretization. Thus little improvement in numerical results can be

expected for the fourth order method (in time) compared to second

order methods (in time), for small values of the time step relative

to the space discretization. This phenomenon was also observed 1n

Chapter 3 for second order parabolic equations, when the (3,0) Pade

approximant was employeq to the exponential matrix function in (3.7).

The present approach differs in detail to that of Fairweather and

Gourlay (1967), in the manner in which the numerical solution of (6.1)

is sought. However, following Fairweather and Gourlay (1967), the

methods due to Gourlay and Morris (1980) and the methods developed 1n

Chapter 3 may also be adopted to find the numerical solution of (6.1)

by writing that equation as a system of two second order parabolic

equations.

Table 6.1

Methods

TIl

T20

T21

T22

Maximum errors at t = 0.02
h = 0.05, £ = 0.00125 (r = !)

x

O. 1 0.2 0.3 0.4 0.5

1.99(-6) 3.63(-6) 5.98(-6) -7.73(-7) -3.34(-6)
1.80(-6) 3.94(-6) 3.76(-6) -2.97(-8) -1.63(-6)
1.74 (-6) 3.45(-6) 5.26(-6) -4.30(-7) -9.95(-7)

1.67 (-6) 2.70(-6) 4.90(-6) -4.20(-8) -2.86(-7)
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Methods

( 142)

Maximum errors at t = 1.0
h = 0.1. ~ = 0.02 (r = 2)

x

O. I 0.2 0.3 0.4 0.5

TIl -2.93(-4) -5.67(-4) -9.29(-4) -1.10(-3) -1.07(-3)

T20 -8.43(-5) -2.22(-5) 2.40(-4) 3.81 (-4) 4.04(-4)
T21 -4.66(-4) -4.81 (-4) -6.68(-4) -7.23(-4) -9.91 (-5)

T22 -2.06(-4) "-4.45(-4) -3.52(-4) -2.31(-4) -7.35(-5)

Problem 6.2 (Andrade and McKee (1977))

a(x,t)
1 x4

= - +--x 120'

., a(x,t) > 0 ~ < x < l,t > 0

with initial conditions

u(x,O) = 0

au(x,O) = 1 + x 5

at 120

and boundary conditions

1 {1+(~)5/120} sin t t > 0u (2' t ) =

u(l,t) = (1+1/120) sin t t > 0

a2u 1 1-(1-)3 sin t t > 0("2' t ) =
ax 2 6 2

1 •= - s Lfl t
6

., t > 0 .

The theoretical solution is

x 5
u(x,t) = (lm)sin t .
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Maximum absolute relative errors at t = 0.0]

Methods
Value of No. of time

r steps

Til T12 T20 T2] T22
0.05 80 3.45(-7) 3.47(-7) 3.45(-7) 3.31 (-7) 9.91(-8)
O. 1 40 3.41 (-7) 3.52(-7) 3.43(-7) 3.25(-7) 8.07(-8)
0.25 16 3.22 (-7) 3.90(-7) 3.28(-7) 3.19(-7) 6.91(-8)

In order to provide a comparison with Andrade and McKee (1977), the

mesh ratios r = 0.05, 0.1, 0.25 are chosen. In Table 6.4, the maximum

absolute relative errors are shown for time t = 0.01, where a (x , t )

is evaluated at x = ih,i = 1,2, ... ,N. Following Mitchell and Griffiths

(1980,p.26) it is verified that the methods TIl T12 T20 T21 T22, , , , ,

maintain the same order of accuracy for ~ = ~(x,t). For stability

analysis the stability criterion of the energy method due to Lees (1960),

may be applied; however, for this problem stability of the methods will

be verified by numerical experiments. It is seen from Table 6.4 that the

methods TIl, T12, T20, T21, T22, g1ve superior results to that of Andrade

and McKee (1977, p.13, Table 1). Method T12 1S seen to have a better

stability interval than the method developed by Andrade and McKee (1977)

and the unconditional stability of the methods TIl, T20, T21, T22, is an

extra advantage. The relation (6.17) is used to calculate the numerical

solution at the first time step for all the methods.

It is noticed that numerical calculations made by Andrade and McKee

(1977, p.I3) for the usual explicit method for this problem, are incorrect.

The method gives better results than the method developed by Andrade and

McKee (1977, p.I3, Table 1). The maximum absolute relative errors for the

same values of the mesh ratios using the usual explicit method (the (0,2)

Pade approximant) are seen to be slightly better than those of the method

TIl, which is in accordance with the local truncation errors of the methods

as shown in Appendix III.



(144)

6.6 Two-space variables

The homogeneous partial differential equation

(6.34) a2u
V4u ° IJ2 a2 a2-- + = = -- +

at 2
ax 2 ay2

with ° < x,y < 1, t > 0, subject to initial conditions of the form

(6.35) u(x,y,O) = f
1

(x,y)

au(x,y,O) = f
2(x,y)at

(x,y) E n

and boundary conditions of the form

u(O,y,t) = u(I,y,t) = °
u (x , 0, t) = u(x,O,t) = °

(6.36)
a2u (x,O ,t) a2u(x,1,t) (x,y) E a n, t > °= = 0 ,

ax 2 ax 2

a2u (0, y, t ) = a2u (1 ,y, t ) = °ay 2 ay 2

ar1ses 1n the transverse vibration of a simply supported uniform plate.

Superimpose a square grid over the unit square with mesh S1ze h = I/N+1

for some positive integer N. Let n be those grid points (x,y) =

(ih,jh) for 1 ~ i,j ~ N (that is, the interior of the square) and let

an be those points for which 1,J = ° or N+1 (the boundary of the

square). Replacing the spatial derivatives in (6.34) with their central

difference replacements, IJ4u becomes

IJ4u = _1_ [ u (x-2h,y, t)+u(x,y-2h, t)+u (x,y+2h, t)+u (x+2h,y, r )
h 4

+ 2{u(x-h,y-h,t)+u(x-h,y+h,t)+u(x+h,y-h,t)

+ u(x+h,y+h,t)}

- 8{u(x-h.y,t)+u(x,y-h,t)+u(x,y+h,t)

+ u(x+h,y,t)}+20u(x,y,t)J+O(h2 ) ,

and applying (6.34) with the boundary conditions (6.36) to each mesh point,
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leads to a system of second order ordinary differential equations of

the form

(6.37 )
= su

where S 1S an N2 x N2 matrix and U 1S a vector of order N2 of

computed values such that

T denoting transpose. The matrix S 1S g1ven by

B C D

0C B C D

D C B C D
"

,
" , ,

-4 "
, , ,, , , ....S = h " " -, ,

",
.... "

.... ,
" D C B C D

0 D C B C

D C B

where B,C, and Dare N x N matrices, such that

19 -8

-8 20 -8 o

B =

1 -8 20 -8
" " "

, ....
.... " , .... ....

" " " "
,

-, " "" " ,
" " ....

"-, , ........
-8 20 -8

-8 20 -8
a -8 19

-8 2 o
....,,,,

o

D =

2

o

2 -8

,
", <,

<,

-8

2

, 2

a

2 -8
" ...." ........ "-" ........ .... ....C =

The eigenvalues of S are g1ven by
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A = 16 {S l'n2 ( 1TI 2 j TI
i,j h" 2(N+I))+ sin (2(N+lt}2 i,j = 1,2, ... ,~.

Solving (6.37) its solution 1S seen to sat1'sf th
y e recurrence

relation

(6.38) ~(t+£) - {exp(i£E)+exp(-i£E)}~(t)+~(t_£) = 0

where i = I=T
and the matrix E 1S such that E2 = S. The methods

developed for one space dimension will be generalised for two space

dimensions in this section. The principal part of the local truncation error

includes , i,J' = 1,2, ... ,N and n = 0 1 2, , , ...
which will always be present. However, the accuracy in time will depend

upon the chosen Pade approximant. It is also assumed that u 1S

sufficiently often differentiable with respect to both x and t.

Employing the (1,1) Pade approximant to the matrix exponential

function in (6.38) yields

(6.39)

A stability analyses shows that (6.39) is unconditionally stable; the

scheme is seen to have the same order of accuracy as in the one space

dimension case.

Applying the (1,2) Pade approximant 1n (6.38) glves

(6.40)

The method (6.40) is second order accurate with stability restriction

r ~
315
20 . To implement these methods on a computer, the direct method

of matrix decomposition formulated by Buzbee and Door (1974), may be used

to find the solution at Q(t+£). Application of block Gaussian elimin-

ation to the matrices of the form S was described in Bauer and Reiss

(1972) and Angle and Bellman (1972). Employing these Pade approximants

in (6.37), which require squaring the matrix S, the difficulties en-

countered in implementing the methods 1n one space-dimension are magni-

fied in the case of two-space variables. The methods based on the (2,0),
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Pade approX1mants are seen to have no linear fact0rs ,
thus a complex splitting for each of the methods 1S

suggested. However,

it will cost more to use complex ar1·thmet1·c than real arithmetic.

Employing the (2 0) P d ~ .. a e apprOX1mant in (6.38), yields the

algorithm

(6.41)

(1+ l-i.Q,2S)U (t-.Q,)
2 -

where i = /=T .

Application of the (2,1) Pade approximant 1n (6.38), suggests

the algorithm,

(6.42)
{(I+Z/2 i)1+ l-.Q,2 S}U* = U(t)

2 - -

{(I-Z/2 i)1+ ~.Q,2S}~(t+.Q,) = (181+7.Q,2S)~*

- {(1-2/2 i)I+ l-.Q,2S}U(t-.Q,)
2 -

and the (2,2) Pade approximant in (6.38), yields

(6.43)

{(I-i!3)I+ 61.Q,2S}~* = {Z(I21+5)1- l-.Q,2S}U(t)
3 -

{(I+i!3)1+ 61.Q,2S}~(t+.Q,) = {(-121+5)1- l-.Q,2S}U*
6 -

- «1+il3)1+ ~.Q,2S}~(t-.Q,)

*where U 1S an intermediate vector. The algorithms are seen to have

the same order of accuracy as in the one space dimension case and (6.41),

(6.42), (6.43) are verified to be unconditionally stable. The algorithms

(6.41), (6.42) and (6.43) were also tested on Problem 6.1 in conjunction

with the matrix A and the same numerical results were found, as tabu-

lated in Tables 6.1, 6.2 and 6.3. To examine the behaviour of the methods

in two space dimensions, the methods are tested on a problem suggested by

Andrade and McKee (1977). The methods based on the (1,1), (1,2), (2,0),

(2,1), (2,2) Pade approximants used in conjunction with the matrix S

will be named SII, S12. S20, S21. S22.
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Problem 6.3 (Andrade and McKee (J977)

o < x.y < 1 , t > 0

where

a(x,y,t) =

b(x,y,t) ==

with initial conditions

X 2 2
(1+ - - Y

2 8

u(x,y,O) = 0 o s x,y .:s; 1 ,

dU(X,y,O) = n Sln n x Sln n y 0 .:s; x,y .:s; 1
dt

and the homogeneous boundary conditions (6.36); the theoretical solution

is given by

u(x,y,t) = .Sln n t Sln n x Sln n y .

To compare the results with Andrade and McKee (1977, Table 2), the maXl-

mum absolute relative errors for the methods 811, 812, 820, 821, 822

at time t = 0.05 are tabulated in Table 6.5. It is seen from Table 6.5

that the second order methods 811, 812, 820, 821, do not glve better

results when compared with Andrade and McKee (1977, Table 2). However,

the method 822 gives better results than those of Andrade and McKee

(1977, Table 2).

Table 6.5 Maximum absolute relative errors at t = 0.05

Methods
Value of No. of time

r steps

81 1 812 820 821 822

0.05 100 6.87(-5) 6.99(-5) 6.85(-5) 7 .81 (-6) 8.71(-7)

O. 1 50 6.81 (-5) 7.51(-5) 6.83(-5) 6.49(-6) 7.29(-7)

0.25 20 6.70(-5) 7.64(-5) 6.75(-5) 5.50(-6) 7.10(-7)



Appendix I: The first twenty four entries of the Pade table for f(z)
z= e

z
e k = 0 k = k = 2 k = 3 k = 4

In = 0 1 l+z l+z~z2 1 2 1 1+zJ..z2.J.z 3?- z"1+z+-z +-:-z 3
2 6 2 6 24

~

~
4 .......
'0

2 1 3 1 21 3 4 3 2 1 3 ) 4
'-./

1 l+z/ 2 1+-z+-z2 l+t;z7 '24 z )+-z+-z +-z +--z
In = I -- 3 6 5 10 15 120

I-z
1-z/2 1 I 1

1-z' 1-z I-z
3 4 5

H-j- z 1 2 3 3 1 3 2 I ) 1

In = 2
1 l+z+- Z 1+-z+-- z 2+:--,,- z I+-z+-z2+_- z 3+- z "

1-z~2
12 5 20 60 3 5 30 360

21 2 z 1 2 21 2 2
2 1-z+-z 1 2....12 Z I-z+--z )-~

3 6 5 20 3 30
~ -

1 2 1 z I 2 1 3 41 22 3 1 4

In = 3
I I~z 1+sz '20 z2 11 2110

z +rnz )+-tz+-:p ~z 840z

l-z?z2--'!"z3 3 1 1 3 3 3 2 1 3 z 1 2 1 3 1 3z+l.-z22..- z 3+_~ z 42 6 l-z+-:-z2-z
ISZ '20 z 60 z 12~z I20z

4 4 24 7 7 lOS 840
-

1 1 1 2 3 I 2 1 3 z3 2) 3 14
It-sz 17'30 z 1+r+t4 z mz )t, z+-z+ z

1 2 28 84 )680
In = 4

I-z+-k 2_1z 3.J- z 4 43 2 13 14 21 2 13 1 4 41 22 3 1 4 z3 21314
ISZ~Z Is z 1360z 13"zt-sz 30 z 1360 z 17+r IOSz 1840 z I 2 '28 z 84 z + 1680- z

2 6 24

---- ---- ._----
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APPt:llJi:-"II:(JL1,-·--~tq) lllullidvrlVdlivl: Illl:lltl.;ds Ld~eJ
• OIl tht; first lWenty-

Lo u t cu t. r i e s oI tile PadC: 'LJl>l,' lo r tIl'-''- exponential tunctioll.

(U,I) y .;;; y + by' t U(h..:').tl+l II n (Euler's predictor).

( 1 , I )

( I , 0)

( I ,2)

(2,2)

(2, I )

(2,0)

(0,3)

( I ,3)

(2,3)

(3,3)

I
Yll+1

;;;

Yn + -;-h(y'+y' ) -t U(h 3 ) . (Euler's2 n n+1 corrector , the
trapezoidal rule).

Yn+1 = Yn + hy' + 0(11 2 ) .n+1

Yn+ 1
;;; Yn

+ hy' + It 2 " + 0(h 3 ) .n "2 1 Yn

Yn+1
;;;

Yn + 2 h ' I h ' + ~h2 " + 0(h 4 ) .3" Yn + - Y
3 n+l 6 Yn

1
_I_h 2 ( " _" )Yn+ 1

;;;

Yn + "2h(y' +y' ) + + O(h S).
n n+1 12 Yn Yn+ 1

Yn+ 1 = Yn
+ I h ' + lh ' ~12y" + 0(h 4 ) .3" Yn 3 Yn+ 1 6 n+l

Yn+ 1 = Yn
+ h ' I h 2 " + 0(h 3).

Yn+ 1 "2 Yn+ 1

;;; Y + h Y, + I h 2 II + ~h 3Y( iii) + 0 (h 4) •
n n"2 Yn 6 n

= Y + ~h(3y' +y' ) + ~2y" + ~h3 (iii) O(hS)
n 4 n n+1 4 n 24 Yn + •

= Y
n

+ ~h(3Y'+2y' ) + ~2(3y"-Y" ) + ~3 (iii)+ O(hS).
5 n n+1 20 n n+1 60 Yn

= + ~h(y' +y' ) + ~2 (y"-y" )
Yn 2 n n+l 10 n n+l

(3,2)

+ 1 h 3( (iii)+ (iii» + 0(h7).
120 Yn Yn+ 1

Y = Y + -:-h
S
I

(2y'+3y' 1) + ~2(Y"-3y" )
n+1 n n n+ 20 n n+l

(Milne's starting
procedure).

+ ~3y(iii)+ 0( 6 )
60 n + 1 l.

(3, 1)

(3,0)

(0,4)

( 1 ,4)

= Y + 41h(y'+3Y' 1) - ~2y" + ~3y(iii)+ O(h S).
n n n+ 4 n+l 24 n+l
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1= Y + -:7-I.
J

I ( 2Y, +y , ) +
n n n+ 1 ~ I .: (Y" -.2-y " ) +..1...1 3 (i i i )

5 n 6 n+ 1 30 1 Yn

+ 1 h 4 (i v ) 0 (117) •
J60 Yn +

Yn + 1 ;; Yn + .!..h ( 4 Y, +3Y, ) +~ 2 ( 2Y"-YII )

7 n n+ 1 14 n n+ 1

..

Yn + 1 = Y + .!..h(y' +y' ) + k 2 ( "_" )
n 2 n n+1 28 Yn Yn+ 1

Y = Y + 7
1
h (y , +4Y, I) +..1...h2 (y" - 2y" ) +~ 3 ( (i i.i) +4 (i i i ) )

n+l n n n+ 14 n n+l 210 Yn Yn• 1

Y = Y + 31h(Y'+2y' I) + ~2(Y"-6y" ) + _1_h 3y ( i i i )
n+1 n n n+ 30 n n+l 30 n+l

;; + ~ (y' +4y' ) - 3 h2" +~ 3 (iii)
Yn 5 n n+l 10 Yn+ 1 15 Yn+l



(152)

Appendix III

The non-zero constants a. (j = 1, ... ,m), b (w =1, ... , s) for the first
J w

sixteen entries of the Pade Table for the exponential function,

together with the error constants and the intervals of periodicity.

(0,1) :

(1,1)

(1,0)

All a. = ° . all b = °
J ' w

Cz = 1 (method inconsistent).

1
bl

1
al = - _. -24 '

C4
1 HZ E (0,00)= - _.
6 '

al = -1 ; all b = °w

Cz = -1 (method inconsistent).

(0,2) All a.
= ° . b l = 1,

J

C4
1 . HZ (0,4)= 12 , E

1
bl

7
(1,2) al = - -' = -

9 ' 9
1 HZ 36

C4 = - _. E (°'5)36 '

1 1 5 b z
1

(2,2) =- . bl - -6 - 72 .al = -12 , az 144
, ,

C6
1 . HZ E (0,00)=-360

,

1 1 b l
7. = -(2,1) al = -9' az =- ,
936

1 . HZ E (0,00)C4 = - .
36

,

1 . b l = 1(2,0) az -4 ,

C4
7 HZ E (0,00)=-

12

(O~ 3) All a. = ° ; bl = 1
J

C =~ . HZ E (0,4)
4 12'
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(1,3)
1

b l
7

b 2
1

al = .
16

,
8 ,

4t>

C6
7

H2 (0,6.5) and (29.5,48)= --- . E
2880 ,

(2,3) 3 1
b l

22
b 2

17
al =-,- a2 - 400 - = 60050 , , 25 ,

1 H2 E (0,8.2) and
300

C6 = . (14.6 '-7-)3600 ,

(3,3) 1 , 1 1
al = -- a2 = 600 a3 = -20 14400

b l
9

b 2
11

b 3
1= - = 330 =10

, , 7200

Ce
1

H2 (0,00)= E
50400

3 1 1 .(3,2) al = a2 - 400 a3 - 3600 ,
50

,

22
b 2

17
bl = - = 60025

1
H2 E (0,00)C6

. .- 3600 ,

1 1 7 b 2
1

(3,1) al = -- a3 = - -- b l 8 , - 4816 576
- 17 H2 E (O,w)C6 = .
2880

(3,0)

,,0,45

1 1 b i = 1a3 = - 36
.

al =-12 , ,

1 H2 e: (0,00)C4 = -- •12

b 2
1

All = 0 . b l = 1 =-a. , , 12
J

1 H2 E (0,12)C 6 = 360
.,
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Appendix IV
Two-step methods for second order equations.

(1,1): h2
Yn+1 -2y +y = -4 (f }+2f +f )n n-} n+ n n-}

(0,2):

(1,2):

(2 2):

(2,1):

( 2,0):

(0,3):

(1,3):

(2,3):

(3,3):

(3,2):

(3,1):

(3,0):

(0,4) :

Yn+1
-2y +y = h2(f +10f +f ) h

4
(f" -2f"+f" )n n-1 12 n+1 n rr-I -i44 n+1 n n-1

Yn+} -2y +y = h2(f +7f +f ) - h4
(f " +f" )n n-r l 9 n+1 n n--I

36 n+1 n-1

Yn+1
-2y +y = h2f - h2 (f" +f" )n n-1 n

4 n+ I n-1

Yn+1
-2y +y = h2f

n n-1 n

Yn+1
-2y +y = h 2 (f 1+14f +f I) + h4 f"n n-1 - n+ n n- n16 48

y -2y +y = h 2 (3f 1+44f +3f I) - h4 (3f -34f +3f )
n+ I n n-1 50 n+ Il n- 1200 n+ I n rr-J

y -2y +y = h2 (f 1+18f +f I) - h" (f" -22f"+f" )+h 6 (flV +
n+1 n n-1 20 n+ n n- 600 n+1 n n-1 14400 n+1

. .
2f 1V+f1V )

n n--I

2 +y = h 2 (3f 1+44f +3f I) -h4 (3f" -34f"+3f" ) +h6
Yn+1 - Yn n-1 50 n+ n n- 1200 n+l n n-1 3600

. .
(f1V +f 1V )

n+ 1 n-l
. .

-2y +y = h2(f +14f +f I) + h4 f"+h 6 (f1V +f
1V

)
Yn+1 n n-1 16 n+1 n n- 48 n 576 n+1 n-1

2 ) + h6(fiv + f1 V )
Y -2y +y 1= h (f 1+12f +f -1n+1 n n- 12 n+ n n 36 n+1 n-1

2 +y = h 2f + h
4

f II
Yn+1 - Yn n-1 n 12 n
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