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Abstract: This article presents an overview of the recent literature and summarises

the major theoretical developments pertaining to a class of non-Sturm-Liouville or-

thogonality relations relevant to fluid-structure interaction.

1 Introduction

In two recent articles Amaouche and Meziani investigate the coupled frequencies of a

hydroelastic system comprising two superposed fluids within a 2D container with one

flexible wall [1, 2]. The model problem and solution methods presented in the two

articles are identical with the latter paper [2] offering more discussion but some of the

same numerical results as the former [1]. In both articles the model problem is posed

in terms of the fluid velocity potential. The fluid motions at the free surface and the

fluid-fluid interface are described by the kinematic and dynamic boundary conditions

and the normal component of fluid velocity is zero at the base of the container.

Amaouche and Meziani express the solution as an eigenfunction expansion of the

form

Φ(x, y, t) = e−iωt

∞∑
n=0

AnYn(y) cos(sn(x− 1)) + c.c. (1)

and state that the eigenfunctions Yn(y) satisfy a “new” orthogonality relation. Fur-

ther, they refer to an earlier article [3] in which a similar but simpler orthogonality

relation (OR) is presented.

In fact, the eigensystem satisfied by Yn(y) and sn, n = 0, 1, 2, . . . belongs to a well

known class of non-Sturm-Liouville system for which ORs of the type presented in

[1, 2] are typical. As far as the author is aware, that presented in [3] does appear

to be the first appearance in the literature of this class of OR. In the intervening

years, however, the theory underpinning this class of eigensystem has been extensively

developed and has found application in many diverse model problems from the fields

of structural acoustics and hydrodynamics. This article presents, for the Meccanica

readership, an overview of the recent literature and summarises the major theoretical

developments pertaining to this class of eigensystem.
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2 An overview of recent developments

From the author’s point of view, the initial motivation for the development of ORs

for waveguides with high order boundary conditions (such as those describing the

motion of membranes or thin elastic plates) was the desire to solve problems involving

acoustic scattering in waveguides involving two (or more) sections of duct each with

different height and material property (see figure 1). For ducts with differing material

properties but of the same height the Wiener-Hopf technique can provide a powerful

solution method [4]. Whilst for duct sections of differing height but in which the

underlying eigensystem is Sturm-Liouville in type, standard Fourier series provide

solutions. Lawrie and Abrahams [5] recognised that there was a general class of

boundary value problem involving either Helmholtz’s or Laplace’s equation together

with high order boundary conditions for which the underlying eigensystem was non-

Sturm-Liouville but for which useful ORs existed. They were aware of and cited the

Russian versions of two articles on the subject. It was thought that both dealt with

explicit examples of such ORs but, whilst this is true of [6], it transpires that [7] does

deal with some of the underlying theory. Lawrie and Abrahams were unfortunately

not aware of the work presented in [3].
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Figure 1: A duct configuration demonstrating change of height and material property.

It is worthwhile briefly summarising the main content of [5]. The article is con-

cerned with the boundary value problem for an infinite duct with high order bound-

ary conditions. Under the assumption of harmonic time dependence, such that the

velocity potential may be expressed as

Φ(x, y, t) = <{φ(x, y)e−iωt} (2)

where ω = ck in which c is the fluid sound speed and k is the fluid wavenumber,

the (non-dimensional) general boundary problem is posed in terms of Helmholtz’s

equation as {
∂2

∂x2
+

∂2

∂y2
+ 1

}
φ(x, y) = 0 (3)

in which x and y are the usual Cartesian coordinates but are non-dimensionalised

with respect to k−1. The field equation holds in a strip of finite height 0 ≤ y ≤ a
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and infinite length −∞ < x < ∞ which is bounded by walls described by high-order

boundary conditions. The mathematical statement of the most general, physically

relevant, pair of boundary conditions is

La

(
∂

∂x

)
∂φ

∂y
+Ma

(
∂

∂x

)
φ = 0, y = a, (4)

on the upper waveguide surface together with

L0

(
∂

∂x

)
∂φ

∂y
+M0

(
∂

∂x

)
φ = 0, y = 0, (5)

on the lower surface. Here Lp(
∂
∂x

) and Mp(
∂
∂x

), p = a,0, are differential operators of

the form

Lp

(
∂

∂x

)
=

Kp∑

k=0

cp
k

∂2k

∂x2k
, Mp

(
∂

∂x

)
=

Jp∑
j=0

dp
j

∂2j

∂x2j
, (6)

where c0
k, ca

k, d0
j , da

j are constant coefficients. Note that, for physical reasons, only even

derivatives in x are included. Higher derivatives in y are easily removed by recourse

to equation (3), hence the absence of such terms in (4) and (5). The velocity potential

can be expressed as an eigenfunction expansion which, for wave propagation in the

positive x direction, takes the form

φ(x, y) =
∞∑

n=0

AnYn(y)eisnx, x > 0 (7)

where An is the modal amplitude, the wavenumbers sn, n = 0, 1, 2, . . . are either real

or have positive imaginary part and Yn(y) satisfies the eigensystem comprising

Y ′′
n (y) = γ2

nYn(y), γn = (s2
n − 1)1/2 (8)

together with:

Pa(sn)Y ′
n(a) + Qa(sn)Yn(a) = 0, (9)

P0(sn)Y ′
n(0) + Q0(sn)Yn(0) = 0 (10)

where, here and henceforth, the primes denote differentiation with respect to y. The

functions Pp(s) and Qp(s), p = a, 0, are characteristic polynomials and correspond to

the action of the operators Lp(
∂
∂x

) and Mp(
∂
∂x

) on the eigen-expansion (7). That is,

Pp(sn) ≡ Lp(isn) and Qp(sn) ≡Mp(isn). (11)

On solving (8) subject to (10), it is clear that Yn(y) may be expressed as:

Yn(y) = P0(sn) cosh(γny)− 1

γ n

Q0(sn) sinh(γny). (12)

The dispersion relation is then deduced using (12) together with (9). That is,

K(γ) =
[
γ2P0(s)Pa(s)−Q0(s)Qa(s)

] sinh(γa)

γ

+ [Qa(s)P0(s)− Pa(s)Q0(s)] cosh(γa) = 0, (13)
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where s2 = γ2 + 1. The fact that the operators (6) contain only even derivatives in x

ensures that the characteristic polynomials are functions of s2. Thus, the dispersion

relation can be expressed as a function of even powers of γ. The roots of K(γ) = 0

have the following properties: i) for every root, γn, there is another root, −γn; ii)

there is a finite number of real roots; iii) there is an infinite number of imaginary

roots; iv) complex roots, ±γc and ±γ∗c can occur. For real and imaginary roots, the

convention is adopted that the +γn roots are either positive real or have positive

imaginary part. They are ordered sequentially, real roots first and then by increasing

imaginary part. Thus, γ0 is always the largest real root. For any complex root, say

γc, lying in the upper half of the complex γ-plane, then minus the complex conjugate,

−γ∗c , also lies in this half plane. Such pairs are incorporated into the sequence of roots

according to the magnitude of their imaginary part, and in the order γc followed by

−γ∗c . It is assumed that no root is repeated.

Lawrie and Abrahams present the general OR satisfied by Yn(y), n = 0, 1, 2, . . .

but, as may be expected, this is somewhat cumbersome. They then focus on the case

where the lower boundary is rigid and the upper boundary comprises a membrane

(as in the left hand side of figure 1). The eigensystem for this system is retrieved

from (3)-(13) on putting Q0(s) = 0, P0(s) = 1, Pa(s) = −s2 + µ2 and Qa = α where

the quantities µ and α are defined in [5]. It transpires that the OR reduces to

α

∫ a

0

YmYn dy + Y ′
m(a)Y ′

n(a) = Cmδmn (14)

where δmn is the Kronecker delta function and

Cm =
Y ′

m(a)

2γm

d

dγ
K(γ)

∣∣∣
γ=γm

, (15)

which is essentially that presented in [3]. The same OR was exploited in [8, 9] to

address problems involving membrane bounded ducts with abrupt changes in height

and/or material property. A similar OR was noted by Kaplunov et al [10].

Subsequent to the publication of [5], a number of authors utilised this approach to

address a wide range of problems involving elastic plates or ice sheets floating on water

of finite depth [11]-[18]. Further ORs of this class have been presented for waveguides

in which one boundary comprises an elastic plate and the other a membrane or free

surface [19, 20]. In each of [11]-[20] the appropriate OR can be obtained directly from

the general case presented in [5] by suitable choice of P0(s), Pa(s), Q0(s) and Qa(s).

In the field of noise-control ORs of this class have been deduced for a range of

prototype or canonical silencers [21]-[23]. In this case, due to the insertion of internal

structures or linings into the waveguide (see figure 2), there is a subtle difference in

the form of the ORs. The inclusion of a porous lining (modelled as an equivalent

fluid layer in which the density and propagation constant are complex) or an internal

structure such a membrane into the duct necessitates a piece-wise definition of Yn(y):

Yn(y) =

{
Y1n(y), 0 ≤ y < d

Y2n(y), d < y ≤ a
(16)
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Figure 2: (a) A classic dissipative silencer and (b) the drum-like silencer: both demon-

strating “fluid layering”.

where Y ′
1n(d) = Y ′

2n(d). The modified ORs are thus almost identical to that used in

[1, 2]. For example [21, 22], the eigenfunctions for the dissipative silencer shown in

figure 2 (a) satisfy the OR:

α

∫ d

0

Y1mY1n dy + αβ

∫ a

d

Y2mY2n dy + βY ′
2m(a)Y ′

2n(a) = βCmδmn (17)

where β is the ratio of the density of the porous media to that of the acoustic fluid, α

is the fluid loading parameter and Cm is given by (15). The OR for the “drum-like”

silencer [22, 23] of figure 2 (b) is similar in structure:

α

∫ d

0

Y1m(y)Y1n(y) dy + α

∫ a

d

Y2m(y)Y2n(y) dy + Y ′
n(d)Y ′

m(d) = Cnδmn (18)

in this case, of course, every occurrence of Y ′
m(a) is replaced by Y ′

m(d) since the

membrane lies along y = d. Hydrodynamic applications that involve layered fluids

[24, 25] and submersed plates [26] have also been addressed. Interestingly, the article

by Mohapatra et al [25] considers a boundary value problem which is very similar to

that of [1, 2] and uses the same OR. Further extensions include the development of

the theory for wave propagation in 3D waveguides with flexible boundaries [27]-[28]

and porous linings [29].

3 Properties of a typical eigensystem

The general class of eigensystem has well recognised properties, some of which are

discussed in [7]. More recently Lawrie [19] has proven that the eigenfunctions are

linearly dependent and has addressed the issue of point-wise convergence . The

general properties as given in [19] are discussed here for a duct in which the lower

boundary is rigid and the upper boundary comprises an elastic plate (as in the right

hand side of figure 1). The dispersion relation and OR can be retrieved from (3)-(13)

on taking Q0(s) = 0, P0(s) = 1, Pa(s) = s4 − µ4 and Qa = −α, where µ is the in
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vacuo plate wavenumber and α a fluid loading parameter; both quantities are defined

in [28]. It is found that the eigenvalues γn, n = 0, 1, 2, . . . are the roots of K(γ) = 0

where

K(γ) = {(γ2 + 1)2 − µ4}Y ′(a)− αY (a) (19)

and that the eigenfunctions Ym(y), m = 0, 1, 2, . . . satisfy the OR

α

∫ a

0

Ym(y)Yj(y) dy + (γ2
m + γ2

j + 2)Y ′
j (a)Y ′

m(a) = Cjδjm (20)

where Cj is given by (15). Note that, unlike (14), this cannot be expressed as a

“true” inner product.

The eigenfunctions Yj(y), j = 0, 1, 2, . . . are linearly dependent:

∞∑
n=0

Y ′
n(a)Yn(y)

Cn

=
∞∑

n=0

γ2
nY

′
n(a)Yn(y)

Cn

= 0 (21)

where 0 ≤ y ≤ a. Note that the number of linearly dependent sums is always equal to

the number of corner or edge conditions that are required [19]. That is, the number

of such sums is M/2 where M is the order of the highest derivative in the boundary

condition (or in the case of two such boundaries, the sum of the orders). For a duct

bounded above by an elastic plate and below by a rigid duct M = 4 and thus, as

indicated above, there are exactly two sums that express the linear dependence of

the eigenfunctions. These expressions are especially important in the context of wave

propagation in 3D ducts with flexible walls where they are used to ensure that the

corner conditions are satisfied [28].

A Green’s function can be constructed for the eigenfunctions:

α

∞∑
n=0

Yn(v)Yn(y)

Cn

= δ(y − v) + δ(y + v) + δ(y + v − 2a), −a ≤ v, y ≤ a

where δ(y) is the usual Dirac delta function. This result is crucial to proving that

the eigenfunction expansion representation of a suitably smooth function, say f(y),

converges point-wise to that function [19].

The eigenfunctions also satisfy the identities:

∞∑
n=0

[Y ′
n(a)]2

Cn

= 0,
∞∑

n=0

γ2
n [Y ′

n(a)]2

Cn

= 1. (22)

Note that, in (21)-(22), the summation is across all n - including any complex values

of γn.

Finally, the study of wave propagation in waveguides of the class considered herein

often involves the derivation of a power balance. Clearly, for the ducts shown in

figures 1 and 2, there are two mechanisms by which energy propagates: through the

fluid and along the flexible boundary. Given that the fluid velocity potential is of

the form (7), a neat and convenient expression for the (non-dimensional) energy flux
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across an arbitrary vertical surface in a duct bounded above by an elastic plate and

below by a rigid surface is

E =
1

α

N−1∑
n=0

|An|2snCn (23)

where N is the number of “cut-on” modes. This expression, which was utilised by

Warren et al [9] for a membrane bounded duct, incorporates both the fluid and the

structure-borne components of energy flux and can be derived using the approach

described by Crighton and Oswell [30] together with the appropriate OR.

4 Discussion

In this article a brief overview of the general theory underpinning a well known class

of OR has been presented. Such ORs find application in a wide range of applica-

tions involving wave propagation in 2D (and lately 3D [27]-[29]) ducts or channels

in the fields of both hydrodynamics and acoustics. The author has included a selec-

tion of references that demonstrate the versatility of the theory: wave propagation

in structure/ice-covered water [11]-[18]; the study of acoustic silencers [21]-[23] and

problems involving layers of distinct acoustic/fluid media [21]-[26]. The list of refer-

ences is extensive but far from exhaustive.

Three points spring to mind. Firstly, Amaouche’s and Meziani’s papers [1, 2] do

not seem to give due reference to the extensive and widely-published developments

that have taken place in the last 12 years. Secondly, whilst noting that the first

appearance of an OR of this class does appear to be due to Amaouche et al [3], in

the light of the extensive development of the theory since then it seems inappropriate

to refer to the OR of [1, 2] as being “new”. Amaouche and Meziani [1, 2] investi-

gate a hydroelastic system comprising two superposed fluids. Thus, as in (16), the

eigenfunctions have a piecewise definition

Yn(y) =

{
Y1n(y), −h1 ≤ y < 0

Y2n(y), 0 < y ≤ h2
(24)

and the appropriate OR is stated as

ω2

∫ 0

−h1

Y1mY1n dy + ω2ρ

∫ h2

0

Y2mY2n dy + σ1Y
′
1m(0)Y ′

1n(0) (25)

+ ρσ2Y
′
2m(h2)Y

′
2n(h2) = anδmn,

where the reader is referred to [1, 2] for definitions of the parameters ω, ρ, σj, j = 1, 2

and an , n = 0, 1, 2, . . .. On comparison of (17) and (25), it is clear that the latter is

simply another example belonging to the class of OR discussed herein. The presence

of an additional constant term on the left hand side of (25) arises due to the fact

that both the fluid surface and fluid/fluid interface are described by a high order

boundary condition. Again this is not new. Finally, in view of the close similarities

between the two recent articles [1, 2] it would have been helpful to cross-reference

them.

7



References

[1] Amaouche M, Meziani B (2008) Oscillations of two superposed fluids in an open and
flexible container, CR Mecanique, 336:329-335.

[2] Amaouche M Meziani, B (2011) Coupled frequencies of a rectangular hydroelastic sys-
tem with two fluids, Meccanica, DOI 10.1007/s11012-010-9419-4.

[3] Amaouche M, Peube JL, Loraud JC (1981) Contribution à l’étude des ondes gravito-
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