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Abstract. Ant colony optimization (ACO) algorithms have proved that
they can adapt to dynamic optimization problems (DOPs) when they are
enhanced to maintain diversity. DOPs are important due to their simi-
larities to many real-world applications. Several approaches have been
integrated with ACO to improve their performance in DOPs, where
memory-based approaches and immigrants schemes have shown good
results on different variations of the dynamic travelling salesman prob-
lem (DTSP). In this paper, we consider a novel variation of DTSP where
traffic jams occur in a cyclic pattern. This means that old environments
will re-appear in the future. A hybrid method that combines memory and
immigrants schemes is proposed into ACO to address this kind of DTSPs.
The memory-based approach is useful to directly move the population
to promising areas in the new environment by using solutions stored in
the memory. The immigrants scheme is useful to maintain the diver-
sity within the population. The experimental results based on different
test cases of the DTSP show that the memory-based immigrants scheme
enhances the performance of ACO in cyclic dynamic environments.

1 Introduction

In nature, ant colonies have proved that they have a distributed optimization be-
haviour when they search for food from their nest to food sources. Ants commu-
nicate with their pheromone trails and cooperate to optimize the travel between
their nest and food sources. Inspired from this behaviour, ant colony optimization
(ACO) algorithms have been developed to solve different optimization problems
in real-world applications [2, 3]. Traditionally, researchers have focused on sta-
tionary optimization problems, where the environment remains fixed during the
execution of the algorithm.

However, many real-world applications have dynamic environments, where
the optimum needs to be tracked over time [12]. Theoretically, ACO algorithms
can adapt to dynamic changes since they are inspired from nature, which is a
continuous adaptation process [10]. In practice, they can adapt by transferring
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knowledge from past environments [1]. The challenge of such algorithms is how
quickly they can react to dynamic changes in order to maintain the high quality
of output instead of premature convergence. Developing strategies for ACO al-
gorithms to deal with premature convergence and address DOPs has attracted
a lot of attention, which include local and global restart strategies [7], memory-
based approaches [6, 8], pheromone manipulation schemes to maintain diversity
[4], and immigrants schemes to increase diversity [11].

These approaches have been applied to the dynamic travelling salesman prob-
lem (DTSP). Among them, the memory and immigrants schemes have proved
to be beneficial for the DTSP where cities are replaced. The memory-based ap-
proach, known as population-based ACO (P-ACO) [6], maintains a population-
list (memory), which stores the best ant of every iteration, and is used to generate
the pheromone trails. When the change affects the solutions stored in the mem-
ory, they are repaired heuristically [8]. Immigrants schemes enable the algorithm
to maintain the diversity of the population, by introducing new individuals into
the population-list [5, 11].

In this paper, a hybrid memory-based immigrants scheme is proposed where
immigrant ants are generated using a memory that stores the best solutions
found in previous environments, called memory-based immigrants ACO (MI-
ACO). The algorithm is a variation of the P-ACO, where memory-based immi-
grants replace the worst ants in the population-list, and is applied to the DTSP.
The environmental changes are applied in such a way as to represent traffic
jams over 24 hours. For example, during rush hour times, the traffic factor is
high whereas during evening times it is low. The key idea of MIACO is to use
the best ant from the memory as the base to generate immigrants. As a result,
valuable knowledge is transferred to the pheromone trails that influence ants to
move directly to a previous environment which is similar with the new one.

The rest of the paper is organized as follows. Section 2 describes the problem
we try to solve, i.e., the DTSP with a cyclic environment. Section 3 describes
the standard ACO (S-ACO) and P-ACO algorithms for the DTSP. Section 4 de-
scribes our proposed approach where we incorporate memory-based immigrants
to P-ACO. Section 5 describes the experiments carried out by comparing MI-
ACO with S-ACO and P-ACO. Finally, Section 6 concludes this paper with
directions for future work.

2 DTSP with Cyclic Traffic Jams

The TSP is a well-known NP -hard optimization problem. It can be described
as follows: Given a collection of cities, we need to find the shortest path that
starts from one city and visits each of the other cities once and only once before
returning to the starting city.

The TSP becomes more challenging and realistic if it is subject to a dynamic
environment. There are different variations of the DTSP such as changing the
topology of cities by replacing cities [6, 7, 11], and changing the distances between
cities by adding traffic factors to the links between cities [4]. In this paper, we
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Fig. 1. Illustration of a cyclic dynamic environment with 8 base states. Each node
represents a different environment where white, light grey and dark grey, represents
low, medium and high traffic jams, respectively

generate a different variation of the DTSP with traffic factor, in which the dy-
namic changes occur with a cyclic pattern, as illustrated in Fig. 1. In other words,
previous environments will appear again in the future. Such environments are
more realistic since they represent a 24-hour traffic jam situation. For example
during rush hour periods the traffic is high whereas during evening hours it is
normal. The dynamics of the proposed DTSP are generated as described below.

We assume that the cost of the link between cities i and j is Cij = Dij ×Fij ,
where Dij is the normal travelled distance and Fij is the traffic factor. Every
f iterations a random number R in [FL, FU ] is generated probabilistically to
represent traffic between cities, where FL and FU are the lower and upper bounds
of the traffic factor, respectively. Each link has a probability m to add traffic
such that Fij = 1 +R, where the traffic factor of the remaining links is set to 1
(indicates no traffic). Note that f and m denote the frequency and magnitude
of the changes in the dynamic environment, respectively.

A cyclic environment is constructed by generating different dynamic cases
with traffic factor as the base states, representing DTSP environments with
either low, normal or high traffic. For example a dynamic case with high traffic is
constructed by assigning values closer to FU a higher probability to be generated.
Then, the environment cycles among these base states in a fixed logical ring.

3 ACO for the DTSP

3.1 Standard ACO

The S-ACO algorithm consists of a population of µ ants and it is based on
the best performing ACO, i.e., Max-Min AS (MMAS) [13]. Initially, all ants
are placed on a randomly selected city for a TSP and all pheromone trails are
initialized with an equal amount of pheromone. With a probability 1− q0, where
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0 ≤ q0 ≤ 1 is a parameter of the decision rule, an ant k chooses the next city j
while being on city i, probabilistically, as follows:

pkij =
[τij ]

α
[ηij ]

β

∑
l∈Nk

i
[τil]

α
[ηil]

β
, if j ∈ Nk

i , (1)

where τij is the existing pheromone trail between cities i and j, ηij is the heuristic
information available a priori, which is defined as 1/Dij, whereDij is the distance
travelled (including Fij) between cities i and j, Nk

i denotes the neighbourhood
of cities of ant k when being on city i, and α and β are the two parameters that
determine the relative influence of pheromone trail and heuristic information,
respectively. With the probability q0, the ant k chooses the next city with the
maximum probability, i.e., [τ ]α[η]β , and not probabilistically as in Eq. (1).

Later on, the best ant retraces the solution and deposits pheromone according
to its solution quality on the corresponding trails. However, before adding any
pheromone, a constant amount of pheromone is deducted from all trails due to
the pheromone evaporation, such that τij ← (1− ρ) τij , ∀ (i, j), where 0 < ρ ≤ 1
is the rate of evaporation. Reducing the pheromone values enables the population
to forget bad decisions made in previous iterations [3]. This is important for ACO
in order to adapt effectively to a new environment. After evaporation, the best
ant deposits pheromone to the corresponding trails of its tour as follows:

τij ← τij +∆τbestij , ∀ (i, j) ∈ T best, (2)

where ∆τbestij = 1/Cbest is the amount of pheromone that the best ant deposits

and Cbest is the cost of the tour T best. Note that the pheromone trail values are
kept to the interval [τmin, τmax] and they are re-initialized to τmax every time
the algorithm shows a stagnation behaviour, where all ants follow the same path,
or when no improved tour has been found for several iterations [13].

3.2 Population-Based ACO

The P-ACO algorithm is the memory-based version of an ACO algorithm [8].
It differs from the S-ACO algorithm described above, since it follows a different
framework. The algorithm maintains a memory (population-list) of ants, which
is used to update pheromone trails without any evaporation.

The initial phase and the first iterations of the P-ACO algorithm work in the
same way as with the S-ACO algorithm. The pheromone trails are initialized with
an equal amount of pheromone and the population-list of size K is empty. P-
ACO uses a more aggressive pheromone mechanism to forget bad solutions from
previous environments than the pheromone evaporation used in the S-ACO.

On every iteration the population-list is updated using a strategy based on
the Age of the ants. For the first K iterations, the iteration-best ant deposits a
constant amount of pheromone using Eq. (2), where ∆τbestij = (τmax − τinit)/K.
Here, τmax and τinit denote the maximum and initial pheromone amount, re-
spectively. This positive update procedure is performed whenever the ant enters
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the population-list. On iteration K+1, the ant that has entered the population-
list first, i.e., the oldest ant, needs to be removed in order to make room for the
new one, and thus, a negative update to its pheromone trails is done.

The population-list is a long-term memory, denoted klong, since it contains
ants from previous environments that survive in more than one iteration. There-
fore, when a dynamic change occurs, the solutions stored in klong are re-evaluated
or repaired since their phenotype or genotype will be affected, and the pheromone
trails are updated accordingly.

4 Memory-Based Immigrants ACO for the DTSP

Memory-based immigrants have been found beneficial for Genetic Algorithms
(GAs) in DOPs, especially with a cyclic environment [14, 15]. Useful solutions
are stored into a memory and used in the future since old environments will re-
appear. When addressing DTSPs, S-ACO algorithms cannot adapt well to the
environmental changes once the ants reach stagnation behaviour. The algorithm
loses its adaption capability since it does not maintain diversity within the pop-
ulation. On the other hand, P-ACO is developed especially for DTSPs, but the
stagnation behaviour remains unsolved since identical ants may be stored in the
memory and generate high intensity of pheromone to a single trail.

However, considering that P-ACO is a memory-based approach, it may be
beneficial in cyclic environments since it may guide the population into an old
environment that is similar to the new one using good solutions from klong. Also,
it may be beneficial in slowly and slightly changing environments in order to have
time to store good solutions in klong that can be used later on. Similarly, the
S-ACO algorithm may be beneficial in slowly changing environments because
the population in S-ACO needs sufficient time to adapt to the new environment.
The time needed depends on the magnitude of change. For a small magnitude,
the population will adapt quickly since the previous environment will be similar
with the new one.

Other immigrants schemes have been successfully applied to P-ACO algo-
rithms to solve the DTSP [11]. Immigrant ants are generated to the population-
list to maintain a certain level of diversity in the population and enhance its
dynamic performance. However, a short-term memory, denoted kshort, is used
instead of klong, where the ants of the current iteration replace the ants of the
previous iteration. Moreover, a number of immigrants are generated and replace
the worst ants in kshort on every iteration. The advantages of using kshort are
closely related to the survival of ants in a dynamic environment, where no ant can
survive in more than one iteration. The proposed MIACO is another variation
of the framework described above.

The only difference is that the MIACO consists of both kshort and klong,
where the first type of memory is updated and used as described above, and the
second type of memory is updated by replacing the closest ant in the memory
with the best-so-far ant whenever there is a dynamic change. The metric to
define how close is ant i to ant j is defined as Mij = 1 −

CEij

n
, where CEij is
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defined as the number of common edges between the ants and n is the number
of cities. A value Mij closer to 0 means that the ants are similar. Note that the
update strategy of klong in MIACO is different from P-ACO regarding which ant
to replace and when to replace it. However, when a dynamic change occurs the
ants in klong are re-evaluated in order to be valid with the new environment as
in the P-ACO algorithm.

Every iteration the best ant from klong is selected in order to generate the
memory-based immigrants, using inversions based on the inver-over operator [9],
and replace the worst ants in kshort. MIACO inherits the advantages of both the
memory scheme to guide the population directly to an old environment already
visited and the immigrants scheme to maintain diversity. It is very important
to store different solutions in the klong which represent different environments
that might be useful in the future. The key idea behind MIACO is to provide
guided diversity into the pheromone trails in order to avoid the disruption of the
optimization process.

5 Simulation Experiments

5.1 Experimental Setup

In the experiments, we compare the proposed MIACO with P-ACO and a S-
ACO, which are described in Section 3. All the algorithms have been applied to
the eil76, kroA200, and att532 problem instances, obtained from TSPLIB3.

To achieve a good balance between exploration and exploitation, most of the
parameters have been optimized and obtained from our preliminary experiments
where others have been inspired from literature [6, 11]. For all algorithms, µ = 25
ants are used, α = 1 and β = 5. For S-ACO, q0 = 0.0, and ρ = 0.2. For P-ACO,
q0 = 0.9, τmax = 1.0, and the size of klong is 3. For MIACO, q0 = 0.0, and the size
of klong and kshort is 4 and 10, respectively. Moreover, 4 immigrant ants are used
to replace the worst ants in kshort. For each algorithm on a DTSP instance, N =
30 independent runs were executed on the same cyclic environmental changes.
The algorithms were executed for G = 1000 iterations and the overall offline
performance is calculated as follows:

P offline =
1

G

G∑

i=1

(
1

N

N∑

j=1

P ∗

ij) (3)

where P ∗

ij defines the tour cost of the best ant since the last dynamic change of
iteration i of run j [10]. Our implementation closely follows the guidelines of the
ACOTSP4 framework.

The value of f was set to 20 and 100, which indicate fast and slowly changing
environments, respectively. The value of m was set to 0.10, 0.25, 0.50, and 0.75,
which indicate the degree of environmental changes from small, to medium, to

3 Available on http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
4 Available on http://www.aco-metaheuristic.org/aco-code/
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Table 1. Comparison of algorithms regarding the results of the offline performance

Alg. & Inst. eil76

f = 20 f = 100

m ⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

S-ACO 399.7 449.6 529.2 788.9 381.2 420.3 490.0 738.4
P-ACO 392.7 445.0 529.4 778.7 384.7 427.9 499.8 742.6
MIACO 393.8 440.0 521.6 771.4 385.8 424.5 495.3 737.0

Alg. & Inst. kroA200

f = 20 f = 100

m ⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

S-ACO 26279.2 28756.2 35838.2 51150.5 23673.1 26010.7 32468.6 46579.3
P-ACO 24113.8 28096.6 35274.6 50378.2 23457.4 26359.0 32436.6 46612.2
MIACO 23813.7 27427.8 34183.7 48436.8 23290.0 25892.7 31691.3 45152.8

Alg. & Inst. att532

f = 20 f = 100

m ⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

S-ACO 48987.0 53527.5 65462.0 88449.1 45489.7 49523.1 59879.9 81343.8
P-ACO 47677.2 53835.9 66229.8 90773.7 45371.8 50125.3 60810.9 82603.9
MIACO 46558.6 51885.1 63347.5 85608.3 44223.2 48324.8 58256.8 78643.0

Table 2. Statistical tests of comparing algorithms regarding the offline performance,
where “−” or “+” means that the first algorithm is significantly better or the second
algorithm is significantly better, respectively, and “∼” indicates no significance

Alg. & Inst. eil76 kroA200 att532

f = 20,m ⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

S-ACO ⇔ P-ACO + + ∼ + + + + + + − − −

MIACO ⇔ P-ACO + − − − − − − − − − − −

MIACO ⇔ S-ACO − − − − − − − − − − − −

f = 100, m ⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

S-ACO ⇔ P-ACO − − − − + − ∼ ∼ ∼ − − −

MIACO ⇔ P-ACO + − − − − − − − − − − −

MIACO ⇔ S-ACO + + + ∼ − − − − − − − −

large, respectively. Each environment has 4 cyclic base states and FL = 0 and
FU = 5. As a result, eight dynamic environments, i.e., 2 values of f × 4 values of
m, were generated from each stationary TSP instance, as described in Section
2, to systematically analyze the adaptation and searching capability of each
algorithm on the DTSP.

5.2 Experimental Results and Analysis

The experimental results regarding the offline performance of the algorithms are
presented in Table 1 and the corresponding statistical results of two-tailed t -test
with 58 degrees of freedom at a 0.05 level of significance are presented in Table
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Fig. 2. Offline performance of algorithms for different dynamic test problems

2. Moreover, to better understand the dynamic behaviour of the algorithms, the
results of the largest problem instance, i.e., att532, are plotted in Fig. 2 with
f = 20, m = 0.10 and m = 0.75, and f = 100, m = 0.10 and m = 0.75,
respectively. From the experimental results, several observations can be made
by comparing the behaviour of the algorithms.

First, P-ACO outperforms S-ACO in almost all fast changing environments
whereas it is beaten in almost all slowly changing environments; see the results
of S-ACO⇔ P-ACO in Table 2. This validates our expectation that the S-ACO
algorithm needs sufficient time to recover and converge to a new optimum when a
dynamic change occurs, which can be observed from Fig. 2. This is because it uses
only pheromone evaporation to eliminate pheromone trails that are not useful to
the new environment. On the other hand, P-ACO has better performance in fast
changing environments because previous pheromone trails are removed directly.
Moreover, P-ACO is comparable with S-ACO in cases where m = 0.10 because
the solutions stored in the memory from the previous environment are still fit
to the new environment, since the environments are similar.

Second, the proposed MIACO outperforms P-ACO in almost all dynamic
test environments as expected; see the results of MIACO ⇔ P-ACO in Table
2. However, on some dynamic problem instances when m = 0.10, i.e., eil76,
MIACO is beaten by P-ACO. This is because MIACO generates high levels of
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diversity which may not be beneficial when the environment changes slightly.
However, on the largest problem instances, i.e., kroA200 and att532, MIACO
is significantly better in all test cases, where diversity is needed.

Third, the proposed MIACO outperforms S-ACO in all fast changing dy-
namic test cases; see the results of MIACO ⇔ S-ACO in Table 2. However,
in some slowly changing environments, i.e., eil76, which is the smallest prob-
lem instance, S-ACO outperforms MIACO. This is natural since it is easier for
the population in S-ACO to eliminate unused pheromone trails from previous
environments and become more adaptive. As the magnitude and problem size
increases MIACO is significantly better than S-ACO as expected.

Finally, memory-based schemes are useful in cyclic dynamic environments
since they are able to move the population directly to a previously visited en-
vironment. MIACO stores the best solutions for all cyclic states in its klong,
whereas P-ACO stores solutions only from the previous state since its klong is
updated on every iteration. Therefore, P-ACO is beneficial in cases where the
changing environments are similar and the use of the solutions stored in the
memory only from the previous environment are useful which can be observed
from Table 2. On the other hand, MIACO can guide the population directly
to any old environment visited that will re-appear in the future which can be
observed from Fig. 2.

6 Conclusions

Memory-based immigrants have been successfully applied to GAs to address dif-
ferent DOPs [14, 15]. In this paper, we incorporate memory-based immigrants
into ACO, denoted MIACO, for the DTSP under cyclic environmental changes.
The immigrant ants are generated using the best ant of the memory and re-
place the worse ones in the population. It combines the merits of memory and
immigrants schemes, where the first one is able to move the population into a
previously visited environment directly, and the second one is able to maintain
the diversity of solutions in order to adapt well in DOPs.

Comparing MIACO with a traditional S-ACO and P-ACO, a variation de-
signed for DOPs, on different test cases of DTSPs, the following concluding
remarks can be drawn. First, memory-based immigrants are advantageous for
ACO algorithms in cyclic dynamic environments, since MIACO is significantly
better than S-ACO and P-ACO in almost all dynamic test cases. Second, increas-
ing the diversity of ACO is not always beneficial in DTSPs. Second, P-ACO is
comparable with S-ACO in most slightly changing environments. Finally, P-
ACO is significantly better than S-ACO in fast changing environments, while it
is significantly worse in slowly changing environments.

In fact, MIACO may be also beneficial in random dynamic environments as
the elitsm-based immigrants ACO (EIACO) [11], since both algorithms transfer
knowledge from previous environments, and EIACO may be also beneficial in
some cyclic dynamic environments. Generally, transferring the knowledge found
in previous environments to the pheromone trails, helps ACO algorithms to
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adapt well in DOPs. Therefore, for future work, it would be interesting to ap-
ply MIACO on DTSPs with random dynamic environments or with different
dynamic changes, e.g., replacing cities, and compare it with other peer ACOs.
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