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Abstract—In the real world, many optimization problems are
dynamic. This requires an optimization algorithm to not only
find the global optimal solution under a specific environment
but also to track the trajectory of the changing optima over
dynamic environments. To address this requirement, this pa-
per investigates a clustering particle swarm optimizer (PSO)
for dynamic optimization problems. This algorithm employs a
hierarchical clustering method to locate and track multiple peaks.
A fast local search method is also introduced to search optimal
solutions in a promising subregion found by the clustering
method. Experimental study is conducted based on the moving
peaks benchmark to test the performance of the clustering PSO
in comparison with several state-of-the-art algorithms from the
literature. The experimental results show the efficiency of the
clustering PSO for locating and tracking multiple optima in
dynamic environments in comparison with other particle swarm
optimization models based on the multiswarm method.

Index Terms—Clustering, dynamic optimization problem
(DOP), local search, multiswarm, particle swarm optimization.

I. Introduction

GENERALLY speaking, most research on evolutionary al-
gorithms (EAs) focuses on static optimization problems.

However, many real-world problems are dynamic optimiza-
tion problems (DOPs), where changes occur over time. This
requires optimization algorithms to not only find the global
optimal solution under a specific environment but also to
continuously track the changing optima over different dynamic
environments. Hence, optimization methods that are capable of
continuously adapting to a changing environment are needed.

In recent years, investigating EAs for DOPs has attracted a
growing interest because EAs are intrinsically inspired from
natural or biological evolution, which is always subject to
an ever-changing environment, and hence EAs, with proper
enhancements, have a potential to be good optimizers for
DOPs. Over the years, several approaches have been developed
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into traditional EAs to address DOPs [8], [18], [44], including
diversity schemes [13], [15], [43], memory schemes [6], [42],
[48], multipopulation schemes [7], [47], adaptive schemes
[29], [45], [46], multiobjective optimization methods [11], and
problem change detecting approaches [35].

Particle swarm optimizer (PSO) is a versatile population-
based stochastic optimization technique. Similar to other EAs
in many respects, PSO has been shown to perform well for
many static problems [33]. However, it is difficult for the basic
PSO to optimize DOPs. The difficulty lies in two aspects:
1) outdated memory due to the changing environment, and
2) diversity loss due to convergence. Of these two aspects,
the diversity loss is by far more serious [5]. It has been
demonstrated that the time taken for a partially converged
swarm to re-diversify, find the shifted peak, and then re-
converge is quite deleterious to the performance of PSO [3].

In the basic PSO, the diversity loss is mainly due to the
strong attraction of the global best particle, which results
in that all the particles quickly converge on local or global
optimum where the global best particle locates. This feature
is beneficial for many stationary optimization problems. How-
ever, for DOPs, this feature is not good for PSO to track the
changing optima. For DOPs, it is important to guide particles
searching in different promising regions to obtain promising
local optima as many as possible because these promising
local optima may become the global best in the next new
environment. Hence, local best particles are needed to guide
the search in local regions in the search space. However, the
question becomes how to determine which particles should
be suitable as the neighborhood best and how to assign
particles in different neighborhoods to move toward different
subregions.

Several PSO algorithms have been recently proposed to
address DOPs [5], [16], [17], [31], [41], of which using
multiswarms seems a good technique. The multiswarm method
can be used to enhance the diversity of the swarm, with the
aim of maintaining multiple swarms on different peaks. The
traditional method of using the multiswarm method to find
optima for multimodal functions divides the whole search
space into local subspaces, each of which might cover one or
a small number of local optima, and then separately searches
within these subspaces. Here, there are several key, usually
difficult, issues to be addressed, e.g., how to guide particles
to move toward different promising subregions, how to define
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the area of each subregion, how to determine the number of
subswarms needed, and how to generate subswarms. These
key issues will be further discussed later on in Section III.

In order to address the key issues relevant to the multiswarm
method, a clustering PSO (CPSO) has recently been proposed
for DOPs in [26]. CPSO [26] employs a nearest neighbor
learning strategy to train particles and a hierarchical cluster-
ing method to locate and track multiple optima. This paper
further investigates the performance of CPSO in dynamic
environments. There are some simplifications compared with
the original CPSO in this paper. First, the training process is
removed in this paper. Second, in the original CPSO [26],
the hierarchical clustering method involves two phases of
clustering: 1) rough clustering, and 2) refining clustering. In
this paper, the hierarchical clustering method is simplified into
only one phase. The reason of these simplifications will be
explained in detail later in this paper.

In [26], CPSO was compared with the basic PSO and a
simple genetic algorithm on the generalized dynamic bench-
mark generator proposed in [25], [27]. This paper further
extends the experimental study based on the moving peaks
benchmark (MPB) problem [6] and compares the performance
of CPSO with several state-of-the-art PSO algorithms that
were developed for DOPs in the literature, including two
PSO algorithms proposed by Blackwell and Branke [5], the
collaborative model introduced by Lung and Dumitrescu [28],
the speciation PSO proposed by Parrott and Li [31] as well
as an improved version of SPSO with regression (rSPSO) [2].
Based on the experimental results, an algorithm performance
analysis regarding the weakness and strength of investigated
algorithms is carried out. This paper also carries out experi-
ments on the sensitivity analysis with respect to several key
parameters, such as the population size of the initial swarm
and the maximum size of each subswarm, on the performance
of CPSO for DOPs.

The rest of this paper is organized as follows. Section II
introduces the basic PSO algorithm and some multiswarm
PSO algorithms for locating multiple optima in both static
and dynamic environments. Section III presents the general
considerations of key issues relevant to the multiswarm method
for PSO in dynamic environments. The investigated CPSO
is described in detail in Section IV. Section V presents the
experimental study and discussions based on the experimental
results. Finally, conclusions and discussions on relevant future
work are given in Section VI.

II. Related Work

A. Particle Swarm Optimization

Particle swarm optimization was first introduced by
Kennedy and Eberhart [14], [19]. It is motivated from the
social behavior of organisms, such as bird flocking and fish
schooling. In PSO, a swarm of particles “fly” through the
search space. Each particle follows the previous best position
found by its neighbor particles and the previous best position
found by itself. In the past decade, PSO has been actively
studied and applied for many academic and real world

Algorithm 1 Basic PSO

1: Generate the initial swarm by randomly generating the
position and velocity for each particle;

2: Evaluate the fitness of each particle;
3: repeat
4: for Each particle i do
5: Update particle i according to (1) and (2);
6: if f (�xi) < f (�xpbesti ) then
7: �xpbesti := �xi;
8: if f (�xi) < f (�xgbest) then
9: �xgbest := �xi;

10: end if
11: end if
12: end for
13: until The stop criterion is satisfied

problems with promising results due to its property of fast
convergence [34].

Ever since PSO was first introduced, several major versions
of the PSO algorithm have been developed [34]. Each particle
i is represented by a position vector �xi and a velocity vector
�vi, which are updated in the version of PSO with an inertia
weight [37] as follows:

v′d
i = ωvd

i + η1r1(xd
pbesti

− xd
i ) + η2r2(xd

gbest − xd
i ) (1)

x′d
i = xd

i + v′d
i (2)

where x′d
i and xd

i represent the current and previous position
in the dth dimension of particle i respectively, v′

i and vi are
the current and previous velocity of particle i respectively,
�xpbesti and �xgbest are the best position found by particle i so
far and the best position found by the whole swarm so far
respectively, ω ∈ (0, 1) is an inertia weight, which determines
how much the previous velocity is preserved, η1 and η2 are
the acceleration constants, and r1 and r2 are random numbers
generated in the interval [0.0, 1.0] uniformly. The framework
of the basic PSO algorithm is shown in Algorithm 1.

According to the theoretical analysis by Clerc and Kennedy
[12], the trajectory of a particle �xi converges to a weighted
mean of �xpbesti and �xgbest . Whenever the particle converges, it
will “fly” to the individual best position and the global best
position. According to the update equation, the individual best
position of a particle will gradually move closer to the global
best position. Therefore, all the particles will converge onto
the global best particle’s position.

There are two main models of the PSO algorithm, called
gbest (global best) and lbest (local best), respectively. The two
models differ in the way of defining the neighborhood for each
particle. In the gbest model, the neighborhood of a particle
consists of the particles in the whole swarm, which share
information between each other. On the contrary, in the lbest

model, the neighborhood of a particle is defined by several
fixed particles. The two models give different optimization
performances on different problems. Kennedy and Eberhart
[22] and Poli et al. [34] pointed out that the gbest model has a
faster convergence speed with a higher chance of getting stuck



YANG AND LI: A CLUSTERING PARTICLE SWARM OPTIMIZER FOR LOCATING AND TRACKING MULTIPLE OPTIMA IN DYNAMIC ENVIRONMENTS 961

in local optima than the lbest model. On the contrary, the lbest

model is less vulnerable to the attraction of local optima but
with a slower convergence speed than the gbest model.

B. Multiple Swarms

Many researchers have considered multipopulations as a
means of enhancing the diversity of EAs to address DOPs.
Kennedy [21] proposed a PSO algorithm that uses a k-means
clustering algorithm to identify the centers of different clusters
of particles in the population, and then uses these cluster
centers to substitute the personal best or neighborhood best
positions. In order to allow cluster centers to be stabilized,
the k-mean algorithm iterates three times. The limitation of
this clustering approach lies in that the number of clusters
must be predefined.

Branke et al. proposed a self-organizing scouts (SOS) [7]
algorithm that has been shown to give promising results on
DOPs with many peaks. In SOS, the population is composed
of a parent population that searches through the entire search
space and child populations that track local optima. The
parent population is regularly analyzed to check the condition
for creating child populations, which are split off from the
parent population. Although the total number of individuals is
constant since no new individuals are introduced, the size of
each child population is adjusted regularly.

Brits et al. [9] proposed an nbest PSO algorithm which
is in particular designed for locating multiple solutions to a
system of equations. The nbest PSO algorithm defines the
“neighborhood” of a particle as the closest particles in the pop-
ulation. The neighborhood best for each particle is defined as
the average of the positions of these closest particles. In [10],
a niching PSO (NichePSO) was proposed by incorporating a
cognitive only PSO model and the guaranteed convergence
PSO algorithm [39]. NichePSO maintains a main swarm that
can create a subswarm once a niche is identified. The main
swarm is trained by the cognition only model [20]. If a
particle’s fitness shows a little change over a small number
generations, then a new subswarm is created with the particle
and its closest neighbors. NichePSO uses some rules to decide
the absorption of particles into a subswarm and the merging
operation between two subswarms, which mainly depends on
the radius of the involved subswarms.

Parrott and Li developed a speciation-based PSO (SPSO)
[30], [23] which dynamically adjusts the number and size of
swarms by constructing an ordered list of particles, ranked
according to their fitness, with spatially close particles joining
a particular species. At each generation, SPSO aims to identify
multiple species seeds within a swarm. Once a species seed has
been identified, all the particles within its radius are assigned
to that same species. Parrott and Li also proposed an improved
version with a mechanism to remove redundant duplicate par-
ticles in species in [31]. In [1], Bird and Li developed an adap-
tive niching PSO (ANPSO) algorithm which adaptively deter-
mines the radius of a species by using the population statistics.
Recently, Bird and Li introduced another improved version of
SPSO using a least squares regression (rSPSO) in [2].

The atomic swarm approach has been adapted to track
multiple optima simultaneously with multiple swarms in dy-

namic environments by Blackwell and Branke [4], [5]. In
their approach, a charged swarm is used for maintaining the
diversity of the swarm, and an exclusion principle ensures
that no more than one swarm surround a single peak. In
[5], anti-convergence is introduced to detect new peaks by
sharing information among all subswarms. This strategy was
experimentally shown to be efficient for the MPB function [6].

To specify the number of clusters within the k-mean PSO
algorithm, Passaro and Starita [32] used the optimization of a
criterion function in a probabilistic mixture-model framework.
In this framework, the particles are assumed to be generated
by a mix of several probabilistic distributions. Each different
cluster corresponds to a different distribution. Then, finding
the optimum number k is equivalent to fitting the model
with the observed data while optimizing some criterion. The
performance of their algorithm was reported better than SPSO
[23] and ANPSO [1] for static problems.

A collaborative evolutionary swarm optimization (CESO)
was proposed in [28]. In CESO, two swarms, which use the
crowding differential evolution (CDE) [38] and PSO model
respectively, cooperate with each other by a collaborative
mechanism. The swarm using CDE is responsible for
preserving diversity while the PSO swarm is used for tracking
the global optimum. The competitive results were reported in
[28].

Inspired by the SOS algorithm [7], a fast multiswarm
optimization (FMSO) algorithm was proposed in [24] to locate
and track multiple optima in dynamic environments. In FMSO,
a parent swarm is used as a basic swarm to detect the most
promising area when the environment changes, and a group of
child swarms are used to search the local optimum in their own
subspaces. Each child swarm has a search radius, and there is
no overlap among all child swarms by excluding them from
each other. If the distance between two child swarms is less
then their radius, then the whole swarm of the worse one is
removed. This guarantees that no more than one child swarm
covers a single peak.

A CPSO has recently been proposed for DOPs in [26]. In
CPSO, each particle learns from its own historical best position
and the historical best position of its nearest neighbor other
than the global best position as in the basic PSO algorithm.
The velocity update equation for training a particle i is as
follows:

v′d
i = ωvd

i + η1r
d
i (xd

pbesti
− xd

i ) + η2 · rd
i · (xd

pbesti n
− xd

i ) (3)

where �xpbesti n
is the personal best position of the particle

that is nearest to particle i. The position of particle i is
updated the same way as shown in (2). This learning strategy
enables particles in CPSO adaptively detect subregions by
themselves and assign them to different neighborhoods. Using
a hierarchical clustering method, the whole swarm in CPSO
can be divided into subswarms that cover different local
regions. In order to accelerate the local search, a learning
strategy for the global best particle was also introduced in
CPSO. CPSO has shown some promising results according to
the preliminary experimental study in [26].
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III. General Considerations for Multiswarms

In order to address the convergence problem of PSO for
DOPs, the multiswarm method can be used to maintain
multiple swarms on different peaks, which are referred to as
the optima in this paper. For example, for the MPB problem
[6], the highest peak in the fitness landscape is the global
optimum and the other peaks with a lower height are local
optima. Hence, for the multiswarm method to work, the whole
search space can be divided into several subregions. Each
subregion might contain one or more than one peak. Each
subswarm covers one subregion and exploits it. As mentioned
above, when applying the multiswarm method to achieve this
purpose, there are several key issues to be considered.

The first issue concerns how to guide particles to move
toward different promising subregions. This issue is important
since if particles cannot move to different subregions, PSO
cannot locate and track multiple optima. This requires that
an algorithm should have a good global search capability
to explore promising subregions. In [10], the cognitive only
PSO model, which was tested by Kennedy [20], was used
to train particles. Since there is no information sharing among
particles in the cognitive only model, each particle just blindly
searches around its personal best position. This may cause
the stagnation problem if there are deceptive subregions in
the search space. Hence, in order to guide particles toward
different promising subregions, particles should cooperate with
the other nearby particles.

The second issue concerns how to define the area for
each subregion in the search space. The area of a subregion
determines how many peaks it may contain. If the area of a
subregion is too small, there is a potential problem that small
isolated subswarms may converge on local optima. In this case,
the diversity will be lost and then the algorithm can hardly
make any progress. However, if a subregion is too large, there
may be more than one peaks within the subregion covered
by a subswarm. The best situation is that each subregion
just contains one peak. However, to achieve this goal is very
hard due to the complexity of the search space, especially for
real world problems. Traditionally, the search area of each
subregion is predefined by users according to preliminary
experiments [30] or a formulated estimation [5], and the search
area for all subregions is the same. Obviously, it is not true that
all the peaks have exactly the same shape or width in the whole
search space. It is very hard to know the shape of a subregion.
Hence, how to define the search area of a subregion is a very
hard problem. Ideally, particles within the neighborhood of a
peak should be able to calculate the subarea by themselves.

How many subswarms are needed is the third issue to
consider. From the experimental results in [5], the optimal
number of subswarms is equal to the total number of peaks
in the whole search space. The more peaks in the search
space, the more subswarms we probably need. If too many
subswarms distribute in the fitness landscape, the limited
computation resources may be wasted. On the contrary, if there
are too small number of subswarms, the PSO algorithm cannot
efficiently track different local optima. Again, the problem
is that the number of peaks in the search space is usually
unknown in advance, especially for real world problems.

Although the number of peaks is given for some benchmark
problems, we should assume that it is unknown to us.

Finally, how to generate subswarms is also an open issue.
Generally, subswarms are simply obtained by separating the
main swarm according to some mechanism. In [21], a k-mean
clustering method was used to generate clusters. The limitation
of the k-mean method is that the number of clusters must be
predefined. In the speciation-based PSO [30], a new species
is produced around a species seed. That is, all the particles
within a radius rs distance to a species seed are classified into
a species corresponding to that species seed. Hence, a new
species is created by a given radius rs around its seed. The
number of subswarms is simply predetermined in mCPSO [5],
although exclusion and anti-convergence strategies were used.
Exclusion prevents subswarms from covering a single peak
by an exclusion radius rexcl, and anti-convergence allows new
peaks to be detected, which was implemented by defining a
convergence radius rconv. However, the serious disadvantages
of SPSO and mCPSO are those radius parameters must be
given. In order to generate subswarms as accurate as possible,
that is, only all particles on a same peak form a subswarm,
the analysis of population distribution should be done before
creating subswarms by some statistic methods.

If particles close to a peak can detect the peak by them-
selves, then they can classify themselves into a same cluster,
and the search area can also be automatically defined when the
new cluster is formed. This thinking motivated the proposal
of CPSO in [26]. In the following section, CPSO in its
simplified version proposed in this paper is described in detail
to show how it overcomes the above problems when using the
multiswarm method.

IV. Clustering Particle Swarm Optimization

A. Framework of the CPSO for DOPs

To address the above considerations for multiswarm meth-
ods, a clustering method is introduced in CPSO. The clustering
method can enable CPSO to assign particles to different
promising subregions, adaptively adjust the number of sub-
swarms needed, and automatically calculate the search region
for each subswarm.

CPSO starts from an initial swarm, named the cradle swarm.
Then, subswarms are created by a hierarchical clustering
method. When subswarms are created, local search is launched
on them in order to exploit potential peaks covered by these
subswarms respectively. Finally, overlapping, convergence,
and overcrowding checks are performed on the subswarms
before the next iteration starts. If an environmental change is
detected, a new cradle swarm will be randomly re-generated
with the reservation of the positions located by all survived
subswarms in the previous environment.

The framework of CPSO for DOPs is given in Algorithm 2.
In the following sections, the major components of CPSO, in-
cluding the clustering method, local search operator, subswarm
checks, and detecting environmental changes, are described in
detail, respectively.
B. Single Linkage Hierarchical Clustering

Some researchers have used the k-mean clustering method
to generate subswarms, the problem of the k-mean method is
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Algorithm 2 CPSO Algorithm

1: Create an empty convergence list clst to record the best
particles of converged subswarms;

2: Create an empty list slst to record subswarms;
3: Set the fitness evaluation counter evals := 0;
4: Generate an initial cradle swarm C randomly;
5: Clustering(C, slst);
6: while stop criteria is not satisfied do
7: for each subswarm slst[i] do
8: LocalSearch(slst[i], evals);
9: end for

10: CheckSubswarms(C, slst, clst);
11: if |C| > 0 then
12: LocalSearch(C, evals);
13: end if
14: if DetectChange(C, slst, clst, evals) then
15: Clustering(C, slst);
16: end if
17: end while

Algorithm 3 Clustering(C, slst)

1: Create a temporary cluster list G of size |C|;
2: for each particle i in C do
3: G[i] :=C[i]; {i.e., each particle forms one cluster in G}
4: end for
5: Calculate the distance between all clusters (i.e., particles)

in G and construct a distance matrix M of size |G|× |G|;
6: while TRUE do
7: if FindNearestPair(G, r, s) = FALSE then
8: Break;
9: end if

10: r := r + s; {i.e., merge clusters r and s into r}
11: Delete the cluster s from G;
12: Re-calculate all distances in M which have been af-

fected by the merge of r and s;
13: if each cluster in G has more than one particle then
14: Break;
15: end if
16: end while
17: slst := G;
18: Empty C;

that we do not know the optimum value of k for the current
population. In addition, the optimum value of k is problem
dependant. Setting k to a too large or a too small value will
cause the problem of an improper number of subswarms,
as discussed above. Traditionally, subswarms are created by
directly using a number of swarms or simply splitting off from
a main swarm. There is little or no analysis of distribution
of individuals in the search space. Different from traditional
clustering methods for multiswarm-based PSO algorithms,
CPSO uses a single linkage hierarchical clustering method
[36], as shown in Algorithm 3, to create subswarms.

In the clustering method, the distance d(i, j) between two
particles i and j in the D-dimensional space is defined as the

Algorithm 4 FindNearestPair(G, r, s)

1: found := FALSE;

2: min dist :=
√∑D

i=1 (Ui − Li)2, where Ui and Li are the
upper and lower bounds of the ith dimension of the search
space;

3: for i := 0 to |G| do
4: for j := i + 1 to |G| do
5: if (|G[i]| + |G[j]| > max subsize) then
6: continue;
7: end if
8: if (min dist > M(G[i], G[j])) then
9: min dist := M(G[i], G[j]);

10: r := G[i];
11: s := G[j];
12: found := TRUE;
13: end if
14: end for
15: end for
16: Return found;

euclidean distance between them as follows:

d(i, j) =

√√√√ D∑
d=1

(xd
i − xd

j )2. (4)

The distance of two clusters r and s in G, which is an element
in M in Algorithm 3 and is denoted M(r, s), is defined as the
distance of the two closest particles i and j that belong to
clusters r and s respectively. M(r, s) can be formulated as

M(r, s) = min
i∈r,j∈s

d(i, j). (5)

Given a cradle swarm C, the clustering method works as
follows. It first creates a list G of clusters with each cluster
only containing one particle in C. Then, in each iteration,
it uses Algorithm 4 to find a pair of clusters r and s such
that they are the closest among those pairs of clusters, of
which the total number of particles in the two clusters is
not greater than max subsize (max subsize is a prefixed
maximum subswarm size), and, if successful, combines r and
s into one cluster. This iteration continues until all clusters in
G contain more than one particle. The value of max subsize

directly determines how many clusters can be obtained by the
hierarchical clustering method. Definitely, it also determines
the number of subswarms.

From the above description, it can be seen that using the
above clustering method, subswarms will be automatically
created depending on the distribution of initial particles in
the fitness landscape. The number of subswarms and the size
of each subswarm are also automatically determined by the
fitness landscape and the unique parameter max subsize.

In this paper, we have removed the training process used
in the original CPSO [26]. In [26], the aim of training the
initial swarm is to guide particles to move toward different
promising subregions. After the training process, the clustering
operation will be conducted to generate subswarms. From the
experimental results, we found that training for the initial
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Algorithm 5 LocalSearch(S, evals)

1: for each particle i ∈ S do
2: Update particle i according to (1) and (2);
3: evals:=++evals%U;
4: if particle i is better than pbesti then
5: Update pbesti;
6: LearnGBest(particle i, gbest, evals);
7: if particle i is better than gbest then
8: Update gbest;
9: end if

10: end if
11: end for

swarm is not necessary. There are no overlapping search
areas among the subswarms that are produced from the initial
swarm using the clustering method. Exploitation will then be
carried out immediately in the own local search areas of the
subswarms and the subswarms will gradually move toward
the local optima that are close to them respectively. Finally,
all subswarms will distribute in different subregions where
local optima are located in the fitness landscape. So, the
same objective as the training process used in the original
CPSO [26] can be achieved without training in this paper.
The test results regarding CPSO with and without training
will be shown later in the experimental study section in this
paper. The advantage of removing the training phase in the
original CPSO lies in that more computational resources can
be distributed to subswarms to perform local search. The
refining clustering operation in the original CPSO is also
removed in this paper because the number of subswarms can
be controlled by the value of max subsize. Setting a proper
value for max subsize can help CPSO allow one subswarm
to cover a single peak. So, the refining clustering phase is also
redundant. For example, if we set max subsize to an extreme
value (e.g., max subsize = 1), then each subswarm contains
only one particle and can just cover a single peak.

It should be noted that it is very difficult for algorithms to
track all peaks in the fitness landscape, especially when we use
a limited population resources to solve a problem with a large
number of peaks in the search space. However, we can just
track the peaks that have relatively higher heights compared
with the other peaks in the fitness landscape since these peaks
have a higher probability of becoming the highest peak in the
next environment. In CPSO, if one subswarm covers more
than one peak in a local subregion, particles would focus
on the search on the relatively higher peaks in that local
subregion.

C. Local Search Strategy

When a subswarm is created using the above clustering
method, it will undergo the local search process in order to
exploit the subregion covered by the subswarm. The frame-
work of the local search process is described in Algorithm 5.
In the local search process, in order for a subswarm to locate
a local peak quickly, the PSO with gbest model is used. That
is, each particle in a subswarm also learns from the global
best position gbest found by the subswarm.

Algorithm 6 LearnGBest(particle i, gbest, evals)

1: for each dimension d of gbest do
2: �xt gbest := �xgbest {�xt gbest is a temporary particle};
3: xt gbest[d] := xi[d];
4: if �xt gbest is better than �xgbest then
5: xgbest[d] := xt gbest[d];
6: end if
7: evals:=++evals%U;
8: end for

In order to speed up the convergence process of subswarms,
a linear decreasing scheme is also used in CPSO to adjust the
inertia weight ω in (1) as follows:

ω = ωmax − (ωmax − ωmin) × c itr

r itr
(6)

where ωmax and ωmin are respectively the maximum and mini-
mum value of ω, c itr is the iteration counter for a subswarm,
which starts from 0 when a subswarm is newly created, and
r itr is the remaining iterations before the next change when
a subswarm is created, i.e., r itr = (U − evals)/pop size,
where pop size is the total number of particles in all sub-
swarms and the cradle swarm.

In the basic PSO algorithm, the global best position gbest

is updated when any particle finds a better position than
the current gbest. Once gbest is updated, the information of
all dimensions of gbest is replaced with that of the better
position found. This updating mechanism has a disadvantage:
the promising information of some dimensions in one particle
cannot be kept due to the bad information in other dimensions
that causes the low fitness of the particle. This problem is
called “two step forward, one step back” in [40]. If a particle
gets better, the information of some dimensions probably
becomes more promising. Other particles should learn from
such useful information relevant to some dimensions of that
particle although its fitness may be low.

Based on the above discussion, we introduce a new learning
method into CPSO during the local search process of each
subswarm. This learning method tries to extract useful infor-
mation relevant to those potentially improved dimensions of
an improved particle to update the gbest of the subswarm, as
shown in Algorithm 6. When a particle i in a subswarm finds a
better position, we iteratively check each dimension of gbest:
replace the dimension with the corresponding dimensional
value of particle i if gbest is updated by doing so. In this way,
gbest learns the useful information from those dimensions of
a particle that has been improved. This learning method is
time consuming. Hence, it is not used on all particles of a
subswarm. Instead, we choose the gbest as the learner for each
subswarm. Our experimental study shows that this strategy
makes the convergence speed very fast, which is favorable for
CPSO in dynamic environments.

D. Check the Status of Subswarms

After the local search operation, subswarms are checked
regarding overlapping, convergence, and overcrowding. The
checking of subswarms is as shown in Algorithm 7.
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Algorithm 7 CheckSubswarms(C, slst, clst)

1: for each pair of subswarms (r, s) in slst do
2: if roverlap(r, s) > Roverlap then
3: Merge r and s into r;
4: Remove s from slst;
5: end if
6: end for
7: for each subswarm r ∈ slst do
8: if |r| > max subsize then
9: Remove worst (|r| − max subsize) particles from r;

10: end if
11: end for
12: for each subswarm s ∈ slst do
13: if radius(s) < Rconv then
14: Add gbest into clst;
15: Remove s from slst;
16: end if
17: end for
18: if |C| = 0 && |slst| = 0 then
19: Add max subsize random particles into C;
20: end if

Traditionally, the overlapping check between two sub-
swarms is carried out using their search radius. The search
radius of a subswarm s can be calculated as follows:

radius(s) =
1

|s|
∑
i∈s

d(i, scenter) (7)

where scenter is the center position of the subswarm s and |s| is
the size of s. If any particle in a subswarm is within the search
radius of another subswarm, then the overlapping search
occurs. If the distance of the best particles of two subswarms is
less than their search radius, then they are combined or one of
them is removed. The above checking mechanism assumes that
each subswarm just covers one peak. However, it is not true
for real PSO algorithms. If a subswarm in a subregion covers
more than one peak, other subswarms that are within its search
area should not be removed or combined together with this
subswarm.

In CPSO, we adopt the following overlapping check
scheme. If two subswarms r and s are within each other’s
search area, an overlapping ratio between them, denoted
roverlap(r, s), is calculated as follows. We first calculate the
percentage of particles in r which are within the search area
of s and the percentage of particles in s which are within the
search area of r, and then set roverlap(r, s) to the smaller one of
the two percentages. The two subswarms r and s are combined
only when roverlap(r, s) is greater than a threshold value Roverlap,
which is set to 0.7 in this paper.

In order to avoid too many particles searching on a single
peak and hence save computing resources, an overcrowd-
ing check is performed on each subswarm in CPSO after
the above overlapping check. If the number of particles
in a subswarm is greater than max subsize, then the par-
ticles with the worst personal best positions are removed
one by one until the size of the subswarm is equal to
max subsize.

Algorithm 8 DetectChange(C, slst, clst, evals)

1: Re-evaluate the global best particle over all subswarms;
2: evals :=++evals%U;
3: if The fitness of the re-evaluated position changes then
4: Save the gbest of each subswarm in slst into clst;
5: Remove all subswarms in slst;
6: Generate a new cradle swarm C;
7: Add the particles in clst into C;
8: Empty clst;
9: Return TRUE;

10: else
11: Return FALSE;
12: end if

For DOPs, the best solutions found in the current environ-
ment may be useful for tracking the movements of peaks in
the next environment. Hence, in CPSO, after the crowding
check, the convergence check is carried out to see whether a
subswarm has converged. A subswarm convergence list clst is
used to record the best positions found by those converged
subswarms in the current environment. If the radius of a
subswarm is less than a small threshold value Rconv, which
is set to 0.0001 in this paper, the subswarm is regarded to be
converged on a peak. If a subswarm is converged, its gbest is
added into clst in order to be used in the next environment.
Correspondingly, the converged subswarm is removed form
the subswarm list: slst.

The removal of converged subswarm and combining two
overlapping subswarms may result in the consequence of no
particle surviving. If this happens, the algorithm will run for-
ever. Therefore, if all subswarms are converged, max subsize

random particles will be generated into the current cradle
swarm C to deal with the special situation.

E. Detecting Environmental Changes

Usually, for an algorithm to address DOPs efficiently, it is
important to detect the environmental changes [35]. To detect
the environmental changes, we may use the deterioration of the
population performance or the time-averaged best performance
as indicator [8]. The fitness landscape change will affect all
particles based on our experimental test on the MPB problem.
Based on this fact, we can figure out several simple efficient
methods to detect the environmental changes. Before updating
pbest of each particle, we may re-evaluate its pbest position
(e.g., the method used in [31]). If the fitness changes, it means
that a change of the fitness landscape occurs. Another simple
approach is to set several monitoring particles in the search
space. The monitoring particles will be re-evaluated every
iteration. If the environment changes, it will be detected by
these monitoring particles using the above detecting method.

In CPSO, we use the global best particle over all sub-
swarms as the monitoring particle to detect the environmental
changes. Before updating the global best particle, we re-
evaluate its fitness at each iteration. If its fitness changes,
it indicates that an environmental change occurs. Once an
environmental change is detected, CPSO takes the actions
shown in Algorithm 8; otherwise, if it fails to detect the
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change, the previous population will be used in the new
environment. In order to adapt to the new environment quickly,
we take the following actions. First, the best position gbest of
each subswarm in slst before the change is saved into clst.
Then, all particles are re-initialized to create a new cradle
swarm and the particles stored in clst are added to the new
cradle swarm by replacing the worst particles in it. Finally,
slst and clst are re-set to be empty. Again, the clustering
method will be performed to generate the new subswarm
list.

F. Complexity Analysis

The major components of CPSO are the clustering oper-
ation, local search, and status checking of each subswarm.
The clustering operation is performed only once at the very
beginning when an environmental change is detected. From
Algorithm 3, it can be seen that the time complexity of the
clustering operation is O(M3), where M is the population size
of the cradle swarm. We first compute all distances among
each pair of particles in O(M2). For each iteration of merging
two clusters r and s from the cluster list G, we find the
nearest pair of clusters of G in O(|G|2) (if we use dynamic
programming method, it would be reduced to O(|G| log(|G|))),
then update the distance matrix M in O(|G|). The number of
clusters in G will decease by 1 every iteration until the stop
criteria is met. Finally, we perform the clustering operation in
O(M3).

In the local search operation (Algorithm 5) for each sub-
swarm, except performing the gbest learning on improved
particles, there is no big difference from the basic PSO
algorithm. In addition, the time complexity will reduce as
performing overlapping and overcrowding check because of
decreasing number of total particles.

The time complexity of the subswarm status check depends
on how many subswarms produced by the clustering operation.
However, it also will decrease as performing overlapping and
convergence check for subswarms. In total, according to the
above component complexity analysis, the extra computing
time needed for CPSO is not so high in comparison with the
basic PSO algorithm.

G. CPSO and PSO with the lbest Model

In the PSO with the lbest model (PSOlbest), if we define
the neighborhood of a particle as its nearest max subsize

particles, and assign the best one of its neighborhood as its
social component in (1), it seems that we will get a similar
search behavior as CPSO. This is because the clustering
method in CPSO will assign the particles that are close
to each other into a subswarm, which is the same as the
neighborhood defined in PSOlbest . However, CPSO has several
major advantages in comparison with PSOlbest .

First, CPSO can track multiple optima in dynamic envi-
ronments. In CPSO, if more than one subswarms cover a
same peak, they will finally be combined with each other
into one subswarm by the overlapping check function. Hence,
the positions found by the converged subswarms in clst are
distributed on different peaks. Once an environmental change

occurs, the elements in clst will be added into the new cradle
swarm. When a peak moves not too far away from the previous
location, the previous peak position locates on the slope of
the new current peak. As we know, if this case happens, the
previous peak location does help the search of the current peak
in the new environment. However, PSOlbest cannot recognize
such kind of peak locations even they are found by PSOlbest .
It is impossible to directly check which particles in the whole
swarm are from different peaks since different peaks have quite
different heights. Therefore, PSOlbest cannot track multiple
optima in dynamic environments.

Second, CPSO can control overcrowding in a single peak.
There are two aspects regarding the overcrowding over a single
peak in CPSO. One is that more than one subswarms cover
a single peak, and the other is that too many particles exist
within one subswarm on a peak. The first problem can be
solved by the overlapping check as analyzed above. Hence,
those subswarms that are inferior to the best subswarm on a
peak will be automatically removed. The second problem is
solved by the overcrowding check in Algorithm 7. However,
PSOlbest cannot solve the overcrowding problem since it cannot
check which particles locate on which peaks.

Third, CPSO has a higher probability of covering more local
optima than PSOlbest can do. In CPSO, since there is no com-
munication among subswarms, each subswarm just searches
its local area, and finally will converges on a local optima
if it survives till the next change takes place. Hence, every
peak will be found if it is covered by a subswarm. However,
in PSOlbest , the gbest with a relatively better fitness of one
particle’s neighborhood may belong to the neighborhood of
different particles. That is, particles from different peaks may
share the same gbest. So, particles from the peaks with lower
heights will be attracted by the gbest from the peak with a
higher height. Finally, they will converge on that peak with a
higher height and lose the track of the peaks with relatively
lower heights.

Finally, CPSO can partially adaptively adjust the number
of particles and subswarms needed to achieve the best perfor-
mance based on its work mechanism. However, the number of
particles in PSOlbest is fixed during the whole run.

The experimental results of comparing CPSO and PSOlbest

will be presented later in the experimental section.

V. Experimental Study

In this section, three groups of experiments were carried
out based on the MPB problem [6]. The objective of the first
group of experiments is to investigate the work mechanism of
CPSO, analyze the sensitivity of key parameters, and study
the effect of the training process used in the original CPSO
[26]. In the second group of experiments, the performance of
CPSO is compared with a number of PSO algorithms taken
from the literature. The involved algorithms include mCPSO
[5], mQSO [5], SPSO [31], rSPSO [2], and CESO [28]. All the
results of the peer algorithms shown in this paper are provided
in the papers where they were proposed. Finally, we give the
comparison results between CPSO and PSO with the lbest

model in the third group of experiments.
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For the convenience of description, the configuration of
CPSO is represented by C(M, N) in this paper, where M is the
initial swarm size of the cradle swarm and N is the value of
max subsize. In CPSO, the acceleration constants η1 and η2

were both set to 1.7. The inertia weight ω is linearly decreased
from ωmax = 0.6 to ωmin = 0.3 using (5) for subswarms to
perform local search. The value of Roverlap was set to 0.7 for
the MPB problem.

A. Experimental Setup

1) Moving Peaks Benchmark (MPB) Problem: The MPB
problem proposed by Branke [6] has been widely used as
dynamic benchmark problems in the literature. Within the
MPB problem, the optima can be varied by three features,
i.e., the location, height, and width of peaks. For the D-
dimensional landscape, the problem is defined as follows:

F (�x, t) = max
i=1,...,p

Hi(t)

1 + Wi(t)
∑D

j=1 (xj(t) − Xij(t))2
(8)

where Hi(t) and Wi(t) are the height and width of peak i at
time t, respectively, and Xij(t) is the jth element of the location
of peak i at time t. The p independently specified peaks are
blended together by the “max” function. The position of each
peak is shifted in a random direction by a vector �vi of a
distance s (s is also called the shift length, which determines
the severity of the problem dynamics), and the move of a
single peak can be described as follows:

�vi(t) =
s

|�r + �vi(t − 1)| ((1 − λ)�r + λ�vi(t − 1)) (9)

where the shift vector �vi(t) is a linear combination of a random
vector �r and the previous shift vector �vi(t−1) and is normalized
to the shift length s. The correlated parameter λ is set to 0,
which implies that the peak movements are uncorrelated.

More formally, a change of a single peak can be described
as follows:

Hi(t) = Hi(t − 1) + height severity ∗ σ (10)

Wi(t) = Wi(t − 1) + width severity ∗ σ (11)

�Xi(t) = �Xi(t)(t − 1) + �vi(t) (12)

where σ is a normal distributed random number with mean
zero and variation of 1.

2) Experimental Settings: The default settings and defini-
tion of the benchmark used in the experiments of this paper can
be found in Table I, which are the same as in all the involved
algorithms. In Table I, the term “change frequency (U)”
means that environment changes every U fitness evaluations,
S denotes the range of allele values, and I denotes the initial
height for all peaks. The dynamism of changes is described as
follows. The height of peaks is shifted randomly in the range
H = [30, 70] and the width of peaks is shifted randomly in
the range W = [1, 12].

TABLE I

Default Settings for the MPB Problem

Parameter Value
Number of peaks, p 10
Change frequency, U 5000
Height severity 7.0
Width severity 1.0
Peak shape Cone
Basic function No
Shift length, s 1.0
Number of dimensions, D 5
Correlation coefficient, λ 0
S [0, 100]
H [30.0, 70.0]
W [1, 12]
I 50.0

The performance measure used is the offline error, which is
defined as follows:

µ =
1

K

K∑
k=1

(hk − fk) (13)

where fk is the best solution obtained by an algorithm just
before the kth environmental change, hk is the optimum value
of the kth environment, µ is the average of all differences
between hk and fk over the environmental changes, and K

is the total number of environments. For each run, there were
K = 100 environments, which result in K×U = 5×105 fitness
evaluations. All the results reported are based on the average
over 50 independent runs with different random seeds.

B. Experimental Investigation of CPSO

1) Testing the Work Mechanism of CPSO: In order to
understand the work mechanism of CPSO, in this section
experiments are carried out to investigate the dynamic be-
havior of internal features of CPSO, including the number
of subswarms, the number of total particles, and the number
of converged subswarms, during the solving process. In the
experiments, the configuration of C(100, 4) was applied for
CPSO. Fig. 1 shows the average dynamic behavior of these
features and the offline error against the solving process for
five environmental changes based on the default settings of
the MPB problem over 50 runs.

Fig. 1(a) and (b) clearly presents the changes of the total
number of particles and the total number of subswarms during
the evolution process. When CPSO is configured to C(100, 4),
the largest population size of each subswarm is 4. So, we can
estimate that the total number of initial subswarms produced
by the clustering method should be a little larger than 25,
which can be observed from Fig. 1(a) where an environmental
change has just occurred. Since there are ten peaks in the
whole fitness landscape, we need to remove some redundant
subswarms to achieve the best performance. This is automat-
ically conducted by the overlapping check mechanism. It can
be seen from Fig. 1(a) that the number of subswarms decreases
with the evolutionary process in each environmental change.
When approaching the next environment, some subswarms
converge on some different peaks and they are recorded in
clst, which can be seen in Fig. 1(c). Due to the overlapping
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Fig. 1. Dynamic behavior of CPSO regarding (a) number of subswarms, (b) number of total particles, (c) number of converged subswarms, and (d) offline
error for five environmental changes.

Fig. 2. pbest locations at different evals within a single environmental change of a typical run of CPSO on a 2-D fitness landscape.

check mechanism and the convergence check mechanism, the
number of the total particles decreases during each environ-
mental change. This process can be seen from Fig. 1(b). From
Fig. 1(d), we can see that the offline error reaches almost zero
for the initial environment, that is because the ten peaks have
the same initial height in the fitness landscape, which enable
the algorithm to easily find one or some of the peaks.

In order to visualize the search trajectories of all particles
in different evolutionary stages, we give the pbest locations
of particles at different evals within a single environmental
change of a typical run of CPSO on a 2-D fitness landscape
in Fig. 2. In Fig. 2, the cross and black square points are the

pbest positions and the locations of ten peaks, respectively.
From left to right and from top to bottom, the six images
in Fig. 2 show the movements of pbest positions as the
evolution progresses. Overlapping and overcrowding happen
when more than one subswarms move toward a same peak.
At this moment, overlapping and overcrowding check will
take effect to remove the redundant particles. The mechanism
can be seen by the changing distribution with the deceasing
number of particles and subswarms. When evals reaches 1275
in Fig. 2, the number of total particles reduces to 45 and
the number of subswarms decreases from 28 to 12. Finally,
just before the environmental change occurs, the positions in
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TABLE II

Offline Error of Different Parameter Configurations

M = 10 M = 30 M = 50 M = 70 M = 100 M = 120 M = 150 M = 200
N = 2 3.79 1.77 1.39 1.48 2.31 3.12 3.95 5.05
N = 3 4.47 1.98 1.41 1.06 1.3 1.85 3.1 4.28
N = 4 4.82 2.47 1.77 1.47 1.11 1.2 1.67 3.36
N = 5 6.05 2.76 1.9 1.61 1.27 1.33 1.47 2.67
N = 6 6.61 3.64 2.21 1.85 1.26 1.21 1.58 2.59
N = 7 5.91 3.41 2.57 2.05 1.74 1.44 1.49 1.94
N = 10 8.27 4.63 3.44 2.7 2.04 1.83 1.88 2.03
N = 12 7.82 4.82 3.45 2.88 2.22 2.15 1.9 2.13
N = 15 8.65 5.73 3.87 3.29 2.94 2.44 2.32 2.28

TABLE III

Number of Subswarms Created by the Clustering Method

M = 10 M = 30 M = 50 M = 70 M = 100 M = 120 M = 150 M = 200
N = 2 5 15 25 35 50 60 75 100
N = 3 4 10.4 17.4 24.4 34.7 41.5 51.8 69
N = 4 3.07 8.27 13.5 18.7 26.6 31.8 39.7 52.7
N = 5 2.39 6.73 11 15.3 21.7 25.9 32.3 42.8
N = 6 2.29 5.75 9.52 13 18.3 21.9 27.2 36.1
N = 7 2.14 5.29 8.39 11.3 16 19 23.6 31.2
N = 10 1.48 3.72 5.95 8.15 11.4 13.6 16.8 22.2
N = 12 1.44 3.5 5.33 6.92 9.76 11.4 14.2 18.6
N = 15 1.46 2.61 4.49 5.76 7.91 9.29 11.5 15.1

clst and the best particles in subswarms will be recorded for
tracking the movement of peaks in the next environment.

From the first image of the initial stage to the last image
of the final stage in Fig. 2, it can also be seen that particles
gradually move toward subregions where the ten peaks are lo-
cated. Finally, they converge on these peaks. This observation
validates our previous analysis that the training process in the
original CPSO is not necessary.

2) Effect of Varying the Configurations: The aim of this set
of experiments is to examine the effect of the different config-
urations on the performance of CPSO. The default parameter
settings of the MPB problem were used in these experiments.
CPSO was run 50 times with each of the combined values of
max subsize (N) in {2, 3, 4, 5, 7, 10, 15} and the initial size
of the cradle swarm (M) in {10, 30, 50, 70, 100, 120, 150,
200}. The offline error is shown in Table II, where the best
result over all values of max subsize for each fixed number
of initial population size of the cradle swarm is shown in bold
font. Table III shows the number of subswarms created from
the cradle swarm using the clustering method. Table IV gives
the results of the number of survived subswarms before the
environment changes. The survived subswarms include those
converged subswarms and nonconverged subswarms at the last
generation before a change occurs. The number of peaks found
by CPSO is presented in Table V. If a peak is within the radius
of a survived subswarm, it is considered to be found by CPSO.
Strictly speaking, we cannot assume that a peak has been
found just because it is within a subswarm’s radius. We use
this simple approximate measure to consider whether a peak is
found or not since it works for the purpose of our experiments
here, i.e., to compare the relative performance of different
configurations of the initial swarm size M and max subsize

(N) in terms of locating peaks. This performance measue is
derived from the measure used in [31].

TABLE IV

Number of Survived Subswarms

M = 10 M = 30 M = 50 M = 70 M = 100 M = 120 M = 150 M = 200
N = 2 3.68 7.48 10.7 14.4 21.8 28.3 39.8 63
N = 3 3.45 5.44 6.97 8.45 10.8 13.2 21.9 41.5
N = 4 2.56 4.68 5.71 6.63 7.72 8.5 10 19.5
N = 5 2.08 4 5.12 5.86 7 7.41 8.47 12.4
N = 6 1.98 3.59 4.82 5.48 6.62 7.01 7.49 9.98
N = 7 1.88 3.39 4.53 5.08 5.89 6.61 7.06 8.4
N = 10 1.33 2.68 3.55 4.21 4.99 5.53 6 6.57
N = 12 1.31 2.55 3.31 3.78 4.64 5.01 5.57 6.25
N = 15 1.34 2.07 2.97 3.38 4.07 4.54 4.85 5.76

TABLE V

Number of Peaks Found by CPSO

M = 10 M = 30 M = 50 M = 70 M = 100 M = 120 M = 150 M = 200
N = 2 3.67 5.92 6.82 7.27 7.52 7.7 7.9 8
N = 3 3.13 5.18 6.39 7.15 7.71 7.88 8.33 8.72
N = 4 2.79 4.53 5.69 6.36 6.99 7.33 7.76 8.27
N = 5 2.42 4.11 5.03 5.85 6.5 6.98 7.36 8.02
N = 6 2.33 3.9 4.89 5.46 6.17 6.77 7.05 7.73
N = 7 2.24 3.58 4.55 5.03 5.74 6.06 6.49 7.22
N = 10 1.65 3.01 3.88 4.39 4.87 5.29 5.71 6.26
N = 12 1.66 2.93 3.66 4.03 4.79 4.98 5.56 6.14
N = 15 1.76 2.48 3.33 3.65 4.23 4.59 5.03 5.48

From Table II, it can be seen that the different configurations
of CPSO significantly affect the performance of CPSO. When
the maximum subswarm size, i.e., N, is fixed a specific value,
setting the initial size of the cradle swarm, i.e., M, to a too
large or too small value will affect the performance of CPSO,
vice versa. The optimal configuration of CPSO for the default
settings of the MPB problem with ten peaks is C(70, 3), which
enables CPSO to achieve the smallest offline error of 1.06.

As discussed above, the value of max subsize directly
determines the number of subswarms that are generated by the
clustering method. For example, if we take the extreme value
of max subsize which is equal to the size of the cradle swarm,
only one subswarm may be obtained. It can be seen from
Table III, where the larger the value of max subsize under a
fixed size of the initial swarm, the smaller the number of sub-
swarms that are created. Too large or too small max subsize

will cause too few or too many subswarms created, which may
be far away from the real number of peaks in the search space.
This is why the performance of CPSO greatly depends on the
value of max subsize. On the other hand, from Table III it
can be observed that when the value of max subsize is fixed,
the larger the initial population size of the cradle swarm, the
larger the number of subswarms that are created.

By observing Tables II and IV, it can be seen that when
the number of survived subswarms remains at the level of
7–10, which is slightly smaller than the total number of peaks,
i.e., 10, CPSO achieves relatively smaller offline errors that
are below 1.5. Although the number of peaks found by CPSO
is less than the total number of peaks in the search space,
it is reasonable. There might be two possible reasons: first,
some peaks of low heights might be covered by the peaks
with higher heights and are invisible in the fitness landscape.
Second, actually, it is very hard for algorithm to track all peaks
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Fig. 3. Offline error of CPSO with different configurations on the MPB
problems with different number of peaks.

even they are all visible, especially when there are many peaks
in the fitness landscape since the swarm size is limited to track
all these peaks.

Comparing the results in Tables II and V, it can be seen that
the larger the initial size for the cradle swarm, the more peaks
are found by CPSO, which is more close to the total number
of peaks in the fitness landscape. Intuitively, the performance
of CPSO should get better with a larger initial size for the
cradle swarm since the clustering technique in CPSO can find
obtain more clusters (and peaks) in the fitness landscape. But,
this result is not seen in Table II as expected. This occurs
because the change frequency was set to 5000, which may
not be big enough to achieve the best performance of CPSO.
If the change frequency is increased, we will get better results
as expected. The experimental results will be shown later in
the following experiments.

Fig. 3 presents the performance of CPSO with different con-
figurations on the MPB problems with the number of peaks set
in {10, 30, 50, 100}. From Fig. 3, similar observations can be
obtained on the four problems with different number of peaks.
Just as shown in Table II, to achieve the best performance,
CPSO needs an optimal configuration. For example, on the
ten peaks problem, when the initial population size M is set
to a specific number (e.g., M = 150), the offline error first
decreases as the value of max subsize (N) increases from 2
to a turning point 7. Then, after the turning point, the offline
error increases. In addition, it can be observed from Fig. 3 that
the turning point is different for different configurations. For
example, for the ten peaks problem, the turning point is N = 7
for M = 150, N = 4 for M = 100, etc. It is understandable. In
order to achieve the best performance, CPSO needs to adjust
the value of max subsize to adapt to the environments when
a specific initial population size M is given. From Fig. 3,
interestingly, the optimal configuration of CPSO is C(70, 3)
on the MPB problems with different number of peaks.

3) Effect of the Training Process: In this set of experi-
ments, we test the effect of the training process used in the
original CPSO on the performance of CPSO on the MPB
problems. Here, the same training method in [26] was applied
in CPSO, where the neighborhood of a particle is defined

TABLE VI

Results of CPSO With Different Number of Iterations

for Training

Training Iterations 0 1 3 5 7 9
Offline error 1.06 1.56 1.65 1.77 1.697 1.81
Subswarms produced 24.4 26.01 26.33 26.55 26.64 26.62
Survived subswarms 8.45 12.60 14.56 15.38 16.49 17.24
Real peaks found 7.5 7.3 7.18 6.96 6.98 6.79

TABLE VII

Offline Error of Algorithms on the MPB Problems

With Different Shift Severities

s C(70, 3) mCPSO mQSO CESO rSPSO SPSO
0.0 0.80 1.18 1.18 0.85 0.74 0.95

±0.21 ±0.07 ±0.07 ±0.02 ±0.08 ±0.08
1.0 1.056 2.05 1.75 1.38 1.50 2.51

±0.24 ±0.07 ±0.06 ±0.02 ±0.08 ±0.09
2.0 1.17 2.80 2.40 1.78 1.87 3.78

±0.22 ±0.07 ±0.06 ±0.02 ±0.05 ±0.09
3.0 1.36 3.57 3.00 2.03 2.4 4.96

±0.28 ±0.08 ±0.06 ±0.03 ±0.08 ±0.12
4.0 1.38 4.18 3.59 2.23 2.90 2.56

±0.29 ±0.09 ±0.10 ±0.05 ±0.08 ±0.13
5.0 1.58 4.89 4.24 2.52 3.25 6.76

±0.32 ±0.11 ±0.10 ±0.06 ±0.09 ±0.15
6.0 1.53 5.53 4.79 2.74 3.86 7.68

±0.29 ±0.13 ±0.10 ±0.10 ±0.11 ±0.16

as the nearest particle to that particle. This unique particle
in the neighborhood of a particle is used for the particle’s
velocity update in (1). As analyzed above, the training process
in [26] does not help the search for CPSO. In order to give
an explanation from the experimental view, experiments were
conducted based on the configuration of C(70, 3) for CPSO
with different number of iterations for the training process.
The comparison results are shown in Table VI.

From Table VI, it can be seen that the results of CPSO with
training are much worse than the results obtained by CPSO
without training, where the smallest offline error achieved
is 1.06. The training process may cause too many pairs of
close particles moving together since the neighborhood of a
particle is composed of only the nearest particle. It can be
seen from Table VI that too many subswarms are generated
by the clustering method due to the training consequence.
By observing the number of real peaks found by CPSO, we
can find another disadvantage of the training process: the
larger number of iterations for training the smaller number
of peaks which can be tracked by CPSO. Just as pointed out
above, the training process is not necessary since subswarms
produced from the cradle swarm without training can also
achieve the same objective of training the cradle swarm in
[26]. In addition, we can take the advantage of assigning
the computing resources for training the cradle swarm to
subswarms to perform local search. Therefore, the training
process in [26] has been removed in the updated version of
CPSO in this paper.

C. Comparison of CPSO With Peer Algorithms

In this group of experiments, we compare the performance
of CPSO with mCPSO, mQSO, SPSO, rSPSO, and CESO on
the MPB problems with different settings.
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TABLE VIII

Offline Error of Algorithms on the MPB Problems With Different Number of Peaks

Peaks CPSO mCPSO mQSO mCPSO∗ mQSO∗ CESO rSPSO SPSO
1 0.14 4.93 5.07 4.93 5.07 1.04 1.42 2.64

±0.11 ±0.17 ±0.17 ±0.17 ±0.17 ±0.00 ±0.06 ±0.10
2 0.20 3.36 3.47 3.36 3.47 – 1.10 2.31

±0.19 ±0.26 ±0.23 ±0.26 ±0.23 – ±0.03 ±0.11
5 0.72 2.07 1.81 2.07 1.81 – 1.04 2.15

±0.30 ±0.08 ±0.07 ±0.11 ±0.07 – ±0.03 ±0.07
7 0.93 2.11 1.77 2.11 1.77 – 1.21 1.98

±0.30 ±0.11 ±0.07 ±0.11 ±0.07 – ±0.05 ±0.04
10 1.056 2.08 1.80 2.05 1.75 1.38 1.50 2.51

±0.24 ±0.07 ±0.06 ±0.07 ±0.06 ±0.02 ±0.08 ±0.09
20 1.59 2.64 2.42 2.95 2.74 1.72 2.20 3.21

±0.22 ±0.07 ±0.07 ±0.08 ±0.07 ±0.02 ±0.07 ±0.07
30 1.58 2.63 2.48 3.38 3.27 1.24 2.62 3.64

±0.17 ±0.08 ±0.07 ±0.11 ±0.11 ±0.01 ±0.07 ±0.07
40 1.51 2.67 2.55 3.69 3.60 1.30 2.76 3.85

±0.12 ±0.07 ±0.07 ±0.11 ±0.08 ±0.02 ±0.08 ±0.08
50 1.54 2.65 2.50 3.68 3.65 1.45 2.72 3.86

±0.12 ±0.06 ±0.06 ±0.11 ±0.11 ±0.01 ±0.08 ±0.08
100 1.41 2.49 2.36 4.07 3.93 1.28 2.93 4.01

±0.08 ±0.04 ±0.04 ±0.09 ±0.08 ±0.02 ±0.06 ±0.07
200 1.24 2.44 2.26 3.97 3.86 – 2.79 3.82

±0.06 ±0.04 ±0.03 ±0.08 ±0.07 – ±0.05 ±0.05

1) Effect of Varying the Shift Severity: This set of ex-
periments compare the performance of CPSO with peer al-
gorithms on the MPB problems with different settings of the
shift length s. The experimental results regarding the offline
error and standard deviation are shown in Table VII. The
experimental results of the peer algorithms are taken from
the corresponding papers with the configuration that enables
them to achieve their best performance. We choose the optimal
configuration of C(70, 3) for CPSO. Other parameter settings
are the same as above.

From Table VII, it can be seen that the results achieved
by CPSO with different configurations are much better than
the results of the other five algorithms on the MPB problems
with different shift severities. As we know, the peaks are more
and more difficult to track with the increasing of the shift
length. Naturally, the performance of all algorithms degrades
when the shift length increases. However, the offline error of
CPSO is only slightly affected in comparison with the other
five algorithms. This result shows that CPSO is very robust
to locate and track multiple optima even in severely changing
environments.

2) Effect of Varying the Number of Peaks: This set of
experiments investigate how CPSO scales with the number of
peaks in the MPB problem. The number of peaks was set to
different values in the range form 1 to 200. The configuration
of C(70, 3) was chosen for CPSO on the MPB problems
with different number of peaks in the experiments. Table VIII
presents the experimental results in terms of the offline error
and standard deviation of eight algorithms, where the results of
the other seven algorithms are provided by the corresponding
papers with their optima configuration that enables them to
achieve their best performance. In Table VIII, mCPSO∗ and
mQSO∗ denote mCPSO without anti-convergence and mQSO
without anti-convergence, respectively.

From Table VIII, it can be seen that the performance of
CPSO is not influenced too much when the number of peaks is

increased. Generally speaking, increasing the number of peaks
makes it harder for algorithms to track the optima. However,
interestingly, the offline error decreases when the number of
peaks is larger than 20 for CPSO. Similar trend can also be
observed from the results of the other seven algorithms. It
seems contrary to our prediction. The reason behind this is
that when the number of peaks increases, there will be more
local optima that have a similar height as the global optima
and hence, there will be a higher probability for algorithms to
find relatively better local optima.

Comparing the results of CPSO with the other seven
algorithms, the offline error achieved by CPSO is much less
than that achieved by all the other algorithms when the number
of peaks is less than 20. Although the results of CPSO are
slightly worse than the results of CESO when the number of
peaks exceeds 30, they are much better than the results of the
other six algorithms. In addition, if we increase the value of
the change frequency, CPSO can achieve much better results,
which can be seen in the following section.

From Table VIII, it can also be seen that CESO outperforms
all algorithms including CPSO when the number of peaks is
larger than 30. As we know, a large number of peaks needs
more subswarms to locate and track. It means that an algorithm
with a good diversity maintaining mechanism may perform
well to find more relatively better local optima. CESO just
benefits from such sort of algorithms: the CDE algorithm [38]
which is used as a component algorithm in CESO to maintain
the population diversity. However, to locate and track more
local optima for CPSO, we need a larger initial swarm and
big enough change frequency to globally locate optima in the
whole fitness landscape. It can be seen from Table IX (to
be described below) that CPSO achieves much better results
when the initial swarm size is increased to 120 for many peaks
problems (i.e., problems with more than 10 peaks).

3) Effect of Varying the Environmental Change Frequency:
This set of experiments investigates the effect of different
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TABLE IX

Offline Error of CPSO on the MPB Problems With Different

Number of Peaks and the Change Frequency of 10 000

Peaks M = 10 M = 30 M = 50 M = 70 M = 100 M = 120 M = 150 M = 200
1 0.008 0.010 0.017 0.022 0.069 0.11 0.494 0.494
2 0.354 0.175 0.0931 0.0929 0.107 0.152 0.447 0.447
5 0.942 0.969 0.375 0.22 0.375 0.321 0.522 0.522
7 1.51 1.02 0.708 0.563 0.401 0.468 0.732 0.732
10 2.39 1.16 0.907 0.625 0.638 0.594 0.873 0.873
20 2.19 1.53 1.22 1.06 0.922 0.809 1.04 1.04
30 2.24 1.57 1.36 1.02 1 0.96 1.12 1.12
40 2.21 1.54 1.31 1.05 0.915 0.964 1.16 1.16
50 2.11 1.47 1.31 1.05 0.982 0.961 1.18 1.18
100 1.79 1.3 1.13 0.945 0.925 0.932 1.14 1.14
200 1.53 1.09 0.941 0.802 0.773 0.843 1.03 1.03

TABLE X

Offline Error of CPSO and PSOlbest

N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 10 N = 12 N = 15
CPSO 2.31 1.3 1.11 1.27 1.26 1.74 2.04 2.22 2.94
PSOlbest 9.85 9.40 8.51 8.74 8.25 8.27 8.14 9.22 8.70

environmental changing speeds on the performance of CPSO.
The max subsize was set to 3 in this set of experiments.
Table IX presents the results of CPSO with different initial
size of the cradle swarm on the MPB problems with different
number of peaks when the value of the change frequency is
increased from the default setting of 5000 to 10 000.

From Table IX, it can be seen that as the performance
of CPSO gets much better as the size of the cradle swarm
increases from M = 30 until M = 120 when we increase the
value of the change frequency, where the smallest offline error
of CPSO on the MPB problems with different number of
peaks is less than 1.0 in Table IX. For example, the offline
error of CPSO with M = 100 on the MPB problem with ten
peaks is now 0.638, which is much lower than the value of
1.3 for CPSO with the same configuration but on the MPB
problem with the change frequency set to 5000, as seen from
Table II. This result is reasonable since increasing the value of
the change frequency gives CPSO more time to search before
the next environmental change occurs.

D. Comparison of CPSO and PSOlbest

In this set of experiments, we test the aforementioned
advantages of CPSO over PSO with the lbest model, i.e.,
PSOlbest . Both CPSO and PSOlbest were run under a fair
algorithm setting. The same gbest learning strategy used in
CPSO was used in PSOlbest . For a particle in PSOlbest , we
define the max subsize nearest particles as its neighborhood.
The best particle of its neighborhood is assigned to gbest,
which is used in (1). The same linearly decreasing ω strategy
was used for PSOlbest . For both algorithms, the initial swarm
size was set to 100 and the default problem settings were used.
Table X presents the experimental results of the two algorithms
with different settings of max subsize.

From Table X, it can be seen that all the results of
CPSO are much better than the results of PSOlbest . The
comparison results obviously show the advantages of CPSO
over PSOlbest . Together with the above experimental results,

CPSO shows its outstanding capability of tracking multiple
optima, overcrowding control, and adaptively adjusting the
number of particles needed when solving problems in dynamic
environments.

VI. Conclusion and Future Work

Particle swarm optimization algorithms have been applied to
address DOPs in recent years with some promising results. For
DOPs, it is usually important that an optimization algorithm
should be able to locate and track multiple changing optima
over time. To address this problem, researchers have applied
the multiswarm method to enhance the performance of PSO
algorithms for DOPs. However, for the multiswarm method
to work efficiently, there are several important yet difficult
issues to address, including how to guide particles to different
promising subregions, how to determine the proper number of
subswarms, how to calculate the search area of each subswarm,
and how to create subswarms.

This paper investigated a CPSO algorithm for locating and
tracking multiple optima in dynamic environments. In order to
track and locate multiple optima, a single linkage hierarchical
clustering method was applied in CPSO to create clusters
of particles to form subswarms. With this clustering method,
the proper number of subswarms is automatically determined
and the search area of each subswarm is also automatically
calculated. When a subswarm is created, it will undergo
the local search process to exploit the promising subregion
for optimal solutions. In order to speed up the searching
of a subswarm, a new learning mechanism was introduced
for its global best particle to learn from those particles that
are improved during the local search process. In order to
address environmental changes directly, a restart scheme with
reservation of best positions found in the previous environment
was applied in CPSO.

In order to justify the proposed CPSO, experiments were
carried out to compare the performance of CPSO with several
advanced PSO algorithms that are the state-of-the-art algo-
rithms for DOPs in real space (i.e., the SPSO and rSPSO
algorithms [5], [2], the mCPSO and mQSO algorithms with
and without anti-convergence [31], CESO [28]) on the widely
used MPB generator [6].

From the experimental results, the following conclusions
can be drawn on the dynamic test environments. CPSO
greatly improves the performance of PSO in terms of tracking
and locating multiple optima in a dynamic fitness landscape
with multiple changing peaks by introducing the clustering
method. The performance of CPSO scales well regarding
the change severity in the fitness landscape in compari-
son with other peer PSO algorithms. CPSO performs much
better than mCPSO, mQSO, SPSO, rSPSO, and CESO in
locating and tracking multiple changing peaks in dynamic
environments, especially in severely changing environments.
The performance of CPSO also scales well regarding the
number of peaks in dynamic environments. When the number
of peaks in the fitness landscape is relatively small (e.g.,
less than 20), CPSO outperforms all the other peer algo-
rithms.
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Generally speaking, CPSO can effectively locate and track
multiple optima in dynamic environments. The experimental
results indicate that the proposed CPSO can be a good
optimizer in dynamic environments, especially for a dynamic
fitness landscape with multiple changing peaks.

There are several relevant works to pursue in the future.
First, although the clustering method applied in CPSO is
effective to generate subswarms, it is still difficult to create
accurate subswarms, especially for the situation when a single
peak is covered by only one particle. More work should be
done to solve this problem.

Second, CPSO cannot explore an untouched area in the
search space when no particles cover that area since all
subwarms only concern exploitation in their own local search
area in CPSO. Introducing new local search algorithms may
solve this problem to improve the exploring capability of
CPSO.

Third, in the CPSO studied in this paper, when a sub-
swarm becomes converged or overcrowded, we just remove the
subswarm or the overcrowded particles from the subswarm.
Hence, the whole population size may become smaller and
smaller during the solving process. However, according to our
preliminary experiments, simply adding corresponding number
of random particles into the cradle swarm does not work well
since they may be attracted to those existing subswarms. It
is worth investigating how to effectively add particles into
the cradle swarm to maintain the whole population size at
an optimal value.

How to deal with the environmental changes is another
important issue. We need to introduce more effective methods
rather than a simple restart with elitism scheme to address the
dynamism in DOPs.

Finally, it would be also interesting to combine other
techniques into CPSO to further improve its performance
in dynamic environments. For example, the max subsize

parameter has a great impact on the performance of CPSO.
More research could be conducted to look at adaptation or
self-adaptation of max subsize and the population size to
adjust them according to the environmental dynamics and
the properties of the base function. To the opposite direction,
extending the ideas applied in CPSO, e.g., the clustering idea
and the learning technique for updating the global best particle
of a subswarm, to other algorithms may also be valuable to
improve their performance in dynamic environments.
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