
52 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 1, JANUARY 2010

Genetic Algorithms With Immigrants and Memory
Schemes for Dynamic Shortest Path Routing

Problems in Mobile Ad Hoc Networks
Shengxiang Yang, Member, IEEE, Hui Cheng, and Fang Wang, Member, IEEE

Abstract—In recent years, the static shortest path (SP) problem
has been well addressed using intelligent optimization techniques,
e.g., artificial neural networks, genetic algorithms (GAs), particle
swarm optimization, etc. However, with the advancement in wire-
less communications, more and more mobile wireless networks ap-
pear, e.g., mobile networks [mobile ad hoc networks (MANETs)],
wireless sensor networks, etc. One of the most important charac-
teristics in mobile wireless networks is the topology dynamics, i.e.,
the network topology changes over time due to energy conservation
or node mobility. Therefore, the SP routing problem in MANETs
turns out to be a dynamic optimization problem. In this paper,
we propose to use GAs with immigrants and memory schemes to
solve the dynamic SP routing problem in MANETs. We consider
MANETs as target systems because they represent new-generation
wireless networks. The experimental results show that these im-
migrants and memory-based GAs can quickly adapt to environ-
mental changes (i.e., the network topology changes) and produce
high-quality solutions after each change.

Index Terms—Dynamic optimization problem (DOP), dynamic
shortest path routing problem (DSPRP), genetic algorithm (GA),
immigrants scheme, memory scheme, mobile ad hoc network
(MANET).

I. INTRODUCTION

MOBILE ad hoc network (MANET) [25], [26], [28] is a
self-organizing and self-configuring multihop wireless

network, which is composed of a set of mobile hosts (MHs) that
can move around freely and cooperate in relaying packets on
behalf of one another. MANET supports robust and efficient op-
erations by incorporating the routing functionality into MHs. In
MANETs, the unicast routing establishes a multihop forwarding
path for two nodes beyond the direct wireless communication
range. Routing protocols also maintain connectivity when links
on these paths break due to effects such as node movement, bat-
tery drainage, radio propagation, and wireless interference. In
multihop networks, routing is one of the most important issues
that has a significant impact on the performance of networks. So
far, there are mainly two types of routing protocols in MANETs,
namely, topological routing and geographic routing. In the topo-

Manuscript received February 27, 2009. First published July 7, 2009; current
version published November 2, 2009. This work was supported by the Engineer-
ing and Physical Sciences Research Council of U.K. under Grant EP/E060722/1.
This paper was recommended by Associate Editor J. Lazansky.

S. Yang and H. Cheng are with the Department of Computer Science, Uni-
versity of Leicester, Leicester LE1 7RH, U.K. (e-mail: s.yang@mcs.le.ac.uk;
hc118@mcs.le.ac.uk).

F. Wang is with the Centre for Information and Security Systems Re-
search, British Telecommunications Innovate, Ipswich IP5 3RE, U.K. (e-mail:
fang.wang@bt.com.)

Digital Object Identifier 10.1109/TSMCC.2009.2023676

logical routing, mobile nodes utilize the topological information
to construct routing tables or search routes directly. In the ge-
ographic routing, each node knows its own position and makes
routing decisions based on the position of the destination and
the positions of its local neighbors.

In this paper, we investigate the shortest path (SP) routing
problem, which belongs to the topological routing. The SP rout-
ing problem aims to find the SP from a specific source to a
specific destination in a given network while minimizing the
total cost associated with the path. The SP routing problem is
a classical combinatorial optimization problem arising in many
design and planning contexts [1], [3]. There are several deter-
ministic search algorithms for the SP problem: the Dijkstra’s
algorithm, the breadth-first search algorithm, the Bellman–Ford
algorithm, etc. All these algorithms have a polynomial time
complexity. They are effective in fixed infrastructure wireless
or wired networks. But, they exhibit an unacceptable high com-
putational complexity for real-time communications involving
rapidly changing network topologies [2]. Therefore, for the dy-
namic SP routing problem (DSPRP) in a changing network en-
vironment, we need to employ appropriate new approaches. The
DSPRP has become a topic of interest in recent years, and there
are some works dealing with DSPRPs in the literature [10], [16].

The DSPRP in MANETs is a real-world dynamic optimiza-
tion problem (DOP). In recent years, studying evolutionary algo-
rithms (EAs) for DOPs has attracted a growing interest due to its
importance in EA’s real-world applications [43]. The simplest
way of addressing DOPs is to restart EAs from scratch whenever
an environment change is detected. Though the restart scheme
really works for some cases [42], for many DOPs, it is more
efficient to develop other approaches that make use of knowl-
edge gathered from old environments. Over the years, several
approaches have been developed for EAs to address dynamic en-
vironments [5], [19], [38], such as maintaining diversity during
the run via random immigrants [12], [32], increasing diversity
after a change [8], using memory schemes to reuse stored useful
information [4], [29], [30], [34], [35], applying multipopula-
tion and speciation schemes to search in different regions of the
search space [6], [22], [23], and adapting (the parameters of) op-
erators to quickly respond to a new environment [20], [39], [41].

In this paper, we adapt and investigate several genetic algo-
rithms (GAs) that are developed to deal with general DOPs to
solve the DSPRP in MANETs. First, we design the compo-
nents of the standard GA (SGA) specifically for the DSPRP.
Then, we integrate several immigrants and memory schemes
and their combination into the GA to enhance its searching

1094-6977/$26.00 © 2010 IEEE

YANG et al.: GENETIC ALGORITHMS WITH IMMIGRANTS AND MEMORY SCHEMES FOR DYNAMIC SHORTEST PATH ROUTING PROBLEMS 53

capacity for the SPs in dynamic environments. Once the topol-
ogy is changed, new immigrants or the useful information stored
in the memory can help guide the search of good solutions in the
new environment. For comparison purposes, we also implement
two traditional GA schemes, i.e., SGA and restart GA, as the
peer algorithms. Via simulation experiments, we evaluate these
GAs under different parameter settings to find the best com-
binations. More importantly, we evaluate them under various
settings of dynamic environments to see their performance and
find the best match between algorithms and environmental char-
acteristics. Generally speaking, the investigated well-designed
GAs work well for the DSPRP in MANETs.

The rest of this paper is organized as follows. We discuss
related work in Section II. The MANET network model and
the DSPRP model are described in Section III. Section IV
presents the design of a specialized GA for the static SP routing
problem. The GAs that are the integration of several immi-
grants and/or memory schemes and the specialized GA for the
DSPRP are described in Section V. The extensive experimental
study and relevant analysis are presented in Section VI. Finally,
Section VII concludes this paper with some discussions on the
future work.

II. RELATED WORK

The SP problem has been investigated extensively in the lit-
erature. Since deterministic algorithms with a polynomial time
complexity are not suitable for the real-time computation of SPs,
quite a few research works have been conducted to solve the SP
problem using artificial intelligence techniques, e.g., artificial
neural networks [1], GAs [2], and particle swarm optimization
(PSO) [17].

In [1], a near-optimal routing algorithm employing a modi-
fied Hopfield neural network (HNN) was proposed. It uses every
piece of information that is available at the peripheral neurons, in
addition to the highly correlated information that is available at
the local neuron. Therefore, it can achieve a faster convergence
and a better route optimality than other HNN-based algorithms.
In [2], a genetic algorithmic approach was presented to the SP
routing problem. Computer simulations showed that the GA-
based SP algorithm exhibits a much better quality of solution
(i.e., the route optimality) and a much higher rate of conver-
gence than other algorithms. A population-sizing equation that
facilitates a solution with the desired quality was also devel-
oped. In [17], a PSO-based search algorithm was proposed. A
priority-based indirect path-encoding scheme is used to widen
the scope of the search space, and a heuristic operator is used
to reduce the probability of invalid loop creations during the
path-construction procedure. It was claimed that the PSO-based
SP algorithm is superior to those using GAs, including the one
in [2].

However, all these algorithms address only the static SP prob-
lem. When the network topology changes, they will regard it as
a new network and restart the algorithms over the new topology.
It is well known that the topology changes rapidly in MANETs
due to the characteristics of wireless networks, e.g., battery
exhaustion and node mobility. Therefore, for the dynamic SP

problem in MANETs, these algorithms are not good choices
since, in this regard, immigrants and memory-enhanced GAs
(MEGAs) have their inherent advantages. These GAs use the
immigrants or the useful information stored in the memory to
help the population quickly adapt to the new environment after
a change occurs. Hence, these algorithms can keep running over
the continuously changing topologies, and avoid the expensive
and inefficient restart. To our best knowledge, these dynamic
GAs have not been applied to date to solve DOPs in the real-
world networks.

III. DYNAMIC SP ROUTING PROBLEM

In this section, we first present our network model and then
formulate the DSPRP. We consider a MANET operating within
a fixed geographical region. We model it by an undirected and
connected topology graph G0(V0 , E0), where V0 represents the
set of wireless nodes (i.e., routers) and E0 represents the set of
communication links connecting two neighboring routers falling
into the radio transmission range. A communication link (i, j)
cannot be used for packet transmission unless both node i and
node j have a radio interface each with a common channel. How-
ever, the channel assignment is beyond the scope of this paper.
In addition, message transmission on a wireless communication
link will incur remarkable delay and cost.

Here, we summarize some notations that we use throughout
this paper:

G0(V0 , E0) initial MANET topology graph;
Gi(Vi, Ei) MANET topology graph after the ith change;
s source node;
r destination node;
Pi(s, r) path from s to r on the graph Gi ;
dl transmission delay on the communication

link l;
cl cost on the communication link l;
∆(Pi) total transmission delay on the path Pi ;
C(Pi) the total cost of the path Pi .
The DSPRP can be informally described as follows. Initially,

given a network of wireless routers, a delay upper bound, a
source node, and a destination node, we wish to find a delay-
bounded least cost loop-free path on the topology graph.1 Then,
periodically or stochastically, due to energy conservation or
some other issues, some nodes are scheduled to sleep or some
sleeping nodes are scheduled to wake up. Therefore, the network
topology changes from time to time. The objective of the DSPRP
is to quickly find the new optimal delay-constrained least cost
acyclic path after each topology change.

More formally, consider MANET G(V , E) and a unicast
communication request from the source node s to the desti-
nation node r with the delay upper bound ∆. The dynamic
delay-constrained SP problem is to find a series of paths
{Pi |i ∈ {0, 1, . . .}} over a series of graphs {Gi |i ∈ {0, 1, . . .}},
which satisfy the delay constraint, as shown in (1), and have the

1Since the end-to-end delay [24] is a pretty important quality-of-service (QoS)
metric to guarantee the real-time data delivery, we also require the routing path
to satisfy the delay constraint.

54 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 1, JANUARY 2010

least path cost, as shown in (2):

∆(Pi) =
∑

l∈Pi (s,r)

dl ≤ ∆ (1)

C(Pi) = min
P ∈Gi




∑
l∈P (s,r)

cl


 . (2)

IV. SPECIALIZED GA FOR THE SP PROBLEM

This section describes the design of the GA for the SP prob-
lem. The design of the GA involves several key components: ge-
netic representation, population initialization, fitness function,
selection scheme, crossover, and mutation. A routing path con-
sists of a sequence of adjacent nodes in the network. Hence, it
is a natural choice to adopt the path-oriented encoding method.
For the routing problem, the path-oriented encoding and the
path-based crossover and mutation are also very popular [2],
[11].

A. Genetic Representation

A routing path is encoded by a string of positive integers that
represent the IDs of nodes through which the path passes. Each
locus of the string represents an order of a node (indicated by the
gene of the locus). The gene of the first locus is for the source
node and the gene of the last locus is for the destination node. The
length of a routing path should not exceed the maximum length
|V0 |, where V0 is the set of nodes in the MANET. Chromosomes
are encoded under the delay constraint. In case it is violated, the
encoding process is usually repeated so as to satisfy the delay
constraint.

B. Population Initialization

In the GA, each chromosome corresponds to a potential solu-
tion. The initial population Q is composed of a certain number
of, say q, chromosomes. To promote the genetic diversity, in our
algorithm, the corresponding routing path is randomly gener-
ated for each chromosome in the initial population. We start to
search a random path from s to r by randomly selecting a node
v1 from N(s), the neighborhood of s. Then, we randomly select
a node v2 from N(v1). This process is repeated until r is reached.
Since the path should be loop-free, those nodes that are already
included in the current path are excluded from being selected as
the next node to be added into the path, thereby avoiding reen-
try of the same node into a path. In this way, we get a random
path P(s, r) = {s, v1 , v2 , . . . , r}. Repeating this process for q
times, the initial population Q = {Ch0 , Ch1 , . . . , Chq−1} can
be obtained.

C. Fitness Function

Given a solution, we should accurately evaluate its quality
(i.e., the fitness value), which is determined by the fitness func-
tion. In our algorithm, we aim to find the least cost path between
the source and the destination. Our primary criterion of solution
quality is the path cost. Therefore, among a set of candidate
solutions (i.e., unicast paths), we choose the one with the least

path cost. The fitness value of chromosome Chi (representing
the path P), denoted as f(Chi), is given by

f(Chi) =

[∑
l∈P (s,r)

cl

]−1

. (3)

The proposed fitness function is to be maximized and involves
only the total path cost. As mentioned earlier, the delay con-
straint is checked for each chromosome during the evolutionary
process.

D. Selection Scheme

Selection plays an important role in improving the average
quality of the population by passing the high-quality chromo-
somes to the next generation. The selection of chromosome is
based on the fitness value. We adopt the scheme of pairwise
tournament selection without replacement [13] as it is simple
and effective. The tournament size is 2.

E. Crossover and Mutation

A GA relies on two basic genetic operators—crossover and
mutation. Crossover processes the current solutions so as to
find better ones. Mutation helps a GA keep away from local
optima [2]. The performance of a GA very much depends on
them. The type and implementation of operators depend on
encoding as well as the problem in hand.

In our algorithm, since chromosomes are expressed by the
path structure, we adopt the single-point crossover to exchange
partial chromosomes (subpaths) at positionally independent
crossing sites between two chromosomes [2]. With the crossover
probability, each time we select two chromosomes Chi and Chj

for crossover. Chi and Chj should possess at least one common
node. Among all the common nodes, one node, denoted as v,
is randomly selected. In Chi , there is a path consisting of two

parts: (s
Ch i−→ v) and (v

Ch i−→ r). In Chj , there is a path consisting

of two parts: (s
Chj−→ v) and (v

Chj−→ r). The crossover operation

exchanges the subpaths (v
Ch i−→ r) and (v

Chj−→ r).
The population will undergo the mutation operation after the

crossover operation is performed. With the mutation probability,
each time we select one chromosome Chi on which one gene is
randomly selected as the mutation point (i.e., mutation node),

denoted as v. The mutation will replace the subpath (v
Chi−→ r)

by a new random subpath.
Both crossover and mutation may produce new chromosomes

that represent infeasible solutions. Therefore, we check if the
path represented by a new chromosome is acyclic. If not, a
repair function [21] will be applied to eliminate the loops. The
delay checking is incorporated into the crossover and mutation
operations to guarantee that all new chromosomes produced by
crossover or mutation satisfy the delay constraint.

YANG et al.: GENETIC ALGORITHMS WITH IMMIGRANTS AND MEMORY SCHEMES FOR DYNAMIC SHORTEST PATH ROUTING PROBLEMS 55

V. INVESTIGATED GAS FOR THE DSPRP

A. Traditional GAs

For the DSPRP, we can still address them using the specialized
GA described earlier with two variants, denoted as SGA and
restart GA. In the SGA, when an environmental change leads to
infeasible solutions, SGA handles them by taking the measure
of penalty, i.e., infeasible solutions are set to a very low fitness.
In this way, the population in SGA can keep evolving even in a
continuously changing environment. In the restart GA, once a
change is detected, the population will be reinitialized based on
the new network topology.

B. GAs With Immigrants Schemes

In stationary environments, convergence at a proper pace is
really what we expect for GAs to locate the optimum solutions
for many optimization problems. However, for DOPs, conver-
gence usually becomes a big problem for GAs because changing
environments usually require GAs to keep a certain population
diversity level to maintain their adaptability. To address this
problem, the random immigrants approach is a quite natural
and simple way [12], [27], [40], [44], [45]. The random immi-
grants based GA (RIGA) was proposed by Grefenstette with the
inspiration from the flux of immigrants that wander in and out of
a population between two generations in nature. It maintains the
diversity level of the population through replacing some individ-
uals of the current population with random individuals, called
random immigrants, every generation. As to which individu-
als in the population should be replaced, usually there are two
strategies: replacing random individuals or replacing the worst
ones [32]. In order that random immigrants do not disrupt the
ongoing search progress too much, especially during the period
when the environment does not change, the ratio of the number
of random immigrants to the population size is usually set to a
small value, e.g., 0.2.

However, in a slowly changing environment, the introduced
random immigrants may divert the searching force of the GA
during each environment before a change occurs, and hence,
may degrade the performance. On the other hand, if the envi-
ronment changes only slightly in terms of severity of changes,
random immigrants may not have any actual effect even when
a change occurs because individuals in the previous environ-
ment may still be quite fit in the new environment. Based on the
previous consideration, an immigrants approach, called elitism-
based immigrants, was proposed for GAs to address DOPs [36].
The elitism-based immigrants GA (EIGA) is also investigated
for the DSPRP in this paper.

Within the EIGA, for each generation t, after the normal ge-
netic operations (i.e., selection and recombination), the elite
E(t − 1) from the previous generation is used as the base to
create immigrants. From E(t − 1), a set of rein individuals
are iteratively generated by mutating E(t − 1) with a probabil-
ity pi

m , where n is the population size and rei is the ratio of
the number of elitism-based immigrants to the population size.
The generated individuals then act as immigrants and replace
the worst individuals in the current population. It can be seen

Fig. 1. Pseudocode for the EIGA and the HIGA, where the elitism of size one
is used.

that the elitism-based immigrants scheme combines the idea of
elitism with the traditional random immigrants scheme. It uses
the elite from the previous population to guide the immigrants
toward the current environment, which is expected to improve
the performance of GAs in dynamic environments.

In order to address significant changes that a DSPRP may
suffer, the elitism-based immigrants can be hybridized with the
traditional random immigrants scheme. The pseudocode for the
GA with the hybrid immigrants scheme, denoted as hybrid im-
migrants GA (HIGA), is also investigated in this paper. Within
HIGA, in addition to the rein immigrants created from the elite
of the previous generation, rrin immigrants are also randomly
created, where rri is the ratio of the number of random immi-
grants to the population size. These two sets of immigrants will
then replace the worst individuals in the current population.

Fig. 1 shows the pseudocode for EIGA and HIGA. In our
implementation of EIGA, if the mutation probability pi

m is sat-
isfied, the elite E(t − 1) will be used to generate the new immi-
grants by a mutation operation; otherwise, E(t − 1) itself will
be directly used as a new immigrant.

C. GAs With Memory Schemes

While the immigrants schemes use random immigrants or
elitism-based immigrants to maintain the population diversity
to adapt to the changing environments, the memory scheme aims
to enhance the performance of GAs for DOPs in a different way.
It works by storing useful information from the current environ-
ment, either implicitly through redundant representations [9],
[14], [31] or explicitly by storing good (usually best) solutions
of the current population in an extra memory [4], [15], [18]. The
stored information can be reused later in new environments. For
example, for the explicit memory scheme (which is the concern
of this paper), when the environment changes, old solutions in
the memory that fit the new environment well will be reacti-
vated, and hence, may adapt GAs to the new environment more

56 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 1, JANUARY 2010

Fig. 2. Pseudocode for the MEGA.

directly than random immigrants would do. Especially, when the
environment changes cyclically, memory can work very well.
This is because in cyclic dynamic environments, as time passes,
the environment will return to some old environment precisely,
and the solution in the memory, which has been optimized with
respect to the old environment, will instantaneously move the
GA to the reappeared optimum of that environment.

The GA with the memory scheme studied in this paper, called
MEGA [37], is shown in Fig. 2, where f(·) is the fitness function.
MEGA (and other memory-based GAs used in this paper) uses
a memory of size m = 0.1n. The memory in MEGA is reeval-
uated every generation to detect environmental changes. The
environment is detected as changed if the fitness of at least one
individual in the memory is detected to have changed its fitness.
If an environmental change is detected, the memory is merged
with the current population and the best n − m individuals are
selected as an interim population to undergo genetic operations
for a new population while the memory remains unchanged.

The memory in MEGA is randomly initialized and also up-
dated in a stochastic time pattern as follows. After each memory
updating, a random integer in [5, 10] is generated to decide the
next memory updating time tM . For example, suppose a mem-
ory updating happens at generation t, then the next memory
updating time is tM = t + rand(5, 10). In order to store the
most relevant information to an environment in the memory,
each time an environmental change is detected, the memory is

also updated according to the population just before the envi-
ronmental change. When the memory is due to update, if any
of the randomly initialized points still exists in the memory, the
best individual of the current population (if the memory update
is due to t = tM) or the elite from the previous population (if
the memory update is because an environmental change is de-
tected) will replace one of them randomly; otherwise, the best
individual or the elite will replace the closest memory point if
it is fitter according to the current environment or the previous
environment, respectively.

D. GAs With Memory and Immigrants Schemes

As discussed in the previous section, the random immigrants
approach aims to improve GA’s performance in dynamic en-
vironments through maintaining the population diversity level
with random immigrants, and the memory approach aims to
move the GA directly to an old environment that is similar to
the new one through reusing old good solutions. It is straightfor-
ward that the random immigrants and memory approaches can
be combined into GAs to deal with DOPs [29]. Therefore, the
GA with memory and random immigrants (denoted MRIGA)
was developed in [37]. MRIGA differs from MEGA only in that
in MRIGA, before entering the next generation, rin random im-
migrants are swapped into the population to replace those worst
individuals in the population.

However, a more efficient approach of hybridizing memory
and random immigrants for GAs to deal with dynamic envi-
ronments is the memory-based immigrants scheme, which was
proposed in [34] and results in a memory-based immigrants GA
(MIGA). MIGA uses the same memory updating scheme as
MEGA and MRIGA. However, the memory retrieval does not
depend on the detection of environmental changes and is hy-
bridized with the random immigrants scheme via the mutation
mechanism. For each generation, the memory is reevaluated,
and the best memory point is retrieved as the base to create
immigrants. A set of rrin individuals are iteratively generated
by performing mutation with a probability pi

m on the best mem-
ory point. The generated individuals then act as immigrants and
replace the worst rrin individuals in the population. In sum-
mary, the key idea behind MIGA is that the memory is used to
guide the immigrants to make them more biased to the current
environment (be it a new one or not) than random immigrants.

VI. EXPERIMENTAL STUDY

In the simulation experiments, we implement the two tradi-
tional GAs (i.e., SGA and restart GA) and the six immigrants
and memory-based GAs (i.e., RIGA, EIGA, HIGA, MEGA,
MRIGA, and MIGA) for the DSPRP. In SGA, if the change
makes one individual in the current population become infea-
sible (e.g., one or more links in the corresponding path are
lost), we add a penalty value to that individual. By simulation
experiments, we evaluate their performance in a continuously
changing wireless network.

YANG et al.: GENETIC ALGORITHMS WITH IMMIGRANTS AND MEMORY SCHEMES FOR DYNAMIC SHORTEST PATH ROUTING PROBLEMS 57

A. Dynamic Test Environments

The initial network topology is generated using the follow-
ing method. We first specify a square region with the area of
200 × 200 that has the width [0, 200] on the x-axis and the
height [0, 200] on the y-axis. Then we generate 100 nodes, and
the position (x, y) of each node is randomly specified within
the square area. If the distance between two nodes falls into
the radio transmission range D, a link will be added to connect
them, and both the cost and the delay of this link are randomly
assigned within the corresponding ranges. Finally, we check if
the generated topology is connected. If not, the previous pro-
cess is repeated until a connected topology is generated. In the
experiments, D is given a reasonable value of 50.

All the algorithms start from the initial network topology.
Then, after a certain number (say, R) of generations (i.e., the
change interval), a certain number (say, M) of nodes are sched-
uled to sleep or wake up depending on their current status. It
means that the selected working nodes will be turned off to
sleep and the selected sleeping nodes will be turned on to work.
Therefore, the network topology is changed accordingly since
some links are lost and some other links appear again. By this
means, we create a series of network topologies corresponding
to the continuous network changes. Furthermore, these adjacent
topologies are highly related since each time the changes affect
only part of the nodes. It can be seen that R and M determine
the change frequency and severity, respectively. The larger the
value of R, the slower the changes. The larger the value of M ,
the more severe the changes.

In the following experiments, we set R to 5, 10, and 15, re-
spectively, to see the impact of the change frequency on the
performance of GAs. We also set M to 2, 3, and 4, respectively.
Thus, by the number of nodes changed per time, we have three
different series of topologies. When M is set to 2, 3, and 4,
we generate the topology series #2, #3, and #4, respectively.
Each of these three series has 21 different topologies. In addi-
tion, since memory schemes are claimed to work well in the
cyclicly changing environment, we set M to 2 and generate a
cyclic topology series, named as series #1. In topology series
#1, topology 1 is the same as topology 21, and the subseries
from topology 1 to 21 is repeated five times. Therefore, the
cyclic topology series consists of 101 topologies in total. All the
experiments are based on the four topology series.

As described in Section IV-D, the GA adopts a pairwise tour-
nament selection without replacement. In all the experiments,
the mutation probability is set to 0.1. For RIGA and EIGA,
the ratios of the number of immigrants to the population size,
rri and rei , are set to 0.2. However, in HIGA, to guarantee the
comparison fairness, i.e., the same number of immigrants are
introduced every generation, rri and rei are set to 0.1. In EIGA,
HIGA, and MIGA, the mutation probability pi

m for generating
new immigrants is set to 0.8. Both the source and destination
nodes are randomly selected, and they are not allowed to be
scheduled in any change. The delay upper bound ∆ is set twice
the minimum end-to-end delay.

At each generation, for each algorithm, we select the best
individual from the current population and output the cost of

the SP represented by it. We first set up basic experiments to
evaluate the population size, the impact of the change interval
and the change severity, and the improvements over traditional
GAs using RIGA, EIGA, and HIGA. Then, since the memory-
related schemes (i.e., MEGA, MRIGA, and MIGA) are mainly
designed for dynamic environments where changes occur in
a cyclic way, we set up cyclic environments to evaluate their
performance.

For each experiment of an algorithm on a dynamic problem,
ten independent runs are executed with the same set of random
seeds. For each run, 21 environmental changes in acyclic dy-
namic environments and 101 environmental changes in cyclic
dynamic environments are allowed. In acyclic dynamic envi-
ronments, they are equivalent to 105, 210, and 315 generations
for R = 5, 10, and 15, respectively. In cyclic dynamic environ-
ments, they are equivalent to 505, 1010, and 1515 generations
for R = 5, 10, and 15, respectively. For each run, the best-
of-generation fitness is recorded every generation. The overall
offline performance of a GA on a DOP is defined as

FBOG =
1
G

G∑
i=1

(
1
N

N∑
j=1

FBOG i j

)
(4)

where G is the total number of generations for a run, N = 10 is
the total number of runs, and FBOG i j

is the best-of-generation
fitness of generation i of run j. FBOG is the offline performance,
i.e., the best-of-generation fitness averaged over the ten runs and
then over the data-gathering period.

B. Basic Experimental Results and Analysis

First, we investigate the population size that ensures a spec-
ified quality of solution. We pick up EIGA as an example and
run it over topology series #2 and #4, respectively. Here, R is
set to 10. We vary the population size from 20 to 60 to see if an
adequate population size can be determined for this problem.
Since there are 21 topologies in each series, EIGA evolves 21R
generations in total. We sample the first 100 generations to plot
the figures. Fig. 3(a) and (b) shows the results over topology
series #2 and #4, respectively.

From Fig. 3(a) and (b), it can be seen that the algorithm
shows the best performance at the population size of 50. When
the population size is increased to 60, the algorithm performance
degrades. We check other algorithms and find similar results.
Therefore, we conclude that 50 is the best choice for the pop-
ulation size in our problem. From Fig. 3(a) and (b), it can also
be seen that sometimes when a change occurs, the algorithms
are not affected. The reason is that the topology changes may
not always affect the current population, especially the optimal
individual in the population. For example, if the nodes that are
scheduled to sleep or wake up in one change are not on the
path represented by the optimal individual in the population,
the optimal individual has a very high probability to stay in the
unaffected population. This explains why the algorithms do not
always react to the change drastically.

Second, we investigate the impact of the change interval on
the algorithm performance. When the change interval is 5, the

58 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 1, JANUARY 2010

Fig. 3. Comparison results of the quality of solution for EIGA with different population sizes over (a) topology series #2 and (b) topology series #4.

Fig. 4. Comparison results of the quality of solution for HIGA with different change intervals over (a) topology series #3 and (b) topology series #4.

population evolves only five generations between two sequen-
tial changes. Intuitively, a larger interval will give the popula-
tion more time to evolve and search better solutions than what a
smaller interval does. We take HIGA as an example to compare
the quality of solutions obtained at different intervals. However,
one problem is that the total generations are different for differ-
ent intervals, i.e., 105, 210, and 315 versus the interval 5, 10,
and 15. Since the number of change points (i.e., the generation
at which a new topology is applied) is the same for all the inter-
vals, we take the data at each change point, and its left two and
right two generations. Thus, the three datasets can be aligned
over the three intervals. Fig. 4(a) and (b) shows the results over
topology series #3 and #4, respectively. Since the generation
number does not correspond to the actual number when the in-
terval is 10 or 15, we rename it as pseudogeneration. From the
two subfigures, it can be seen that the solution quality becomes
better when the change interval becomes larger. Therefore, in
a relatively slowly changing environment, the studied GAs can
achieve a good performance.

Third, we investigate the impact of the change severity on the
performance of algorithms. In our problem, the change sever-
ity is reflected by the number of nodes involved per change.
Therefore, we choose topology series #2 and #4 as the two en-
vironments with different change severity. This time we pick
up RIGA, EIGA, and HIGA together as the examples. To see
the reaction of the algorithms to the changes clearly, we set the
interval to 15. Fig. 5(a) and (b) shows the results over topology
series #2 and #4, respectively.

From Fig. 5(a), it can be seen that there are two drastic change
points: one is at generation 210 and the other is at generation
240. We count the number of generations that the population
spends to find the best solution before the next change. For
generation 210, it is 10, 9, and 11 for RIGA, EIGA, and HIGA,
respectively. For generation 240, it is 13, 10, and 11 for them,
respectively. The total average value is 10.67. From Fig. 5(b),
we can see that there are three remarkable change points at
generations 240, 255, and 270, respectively. We also count the
aforementioned number. For generation 240, it is 11, 10, and

YANG et al.: GENETIC ALGORITHMS WITH IMMIGRANTS AND MEMORY SCHEMES FOR DYNAMIC SHORTEST PATH ROUTING PROBLEMS 59

Fig. 5. Comparison results of the response speed to changes for RIGA, EIGA, and HIGA over (a) topology series #2 and (b) topology series #4.

Fig. 6. Comparison results of the quality of solution for RIGA, EIGA, HIGA, SGA, and Restart GA over (a) topology series #2 and (b) topology series #3.

14 for RIGA, EIGA, and HIGA, respectively. For generation
255, it is 12, 13, and 14, respectively. For generation 270, it is
15, 12, and 13, respectively. The total average value is 12.67.
On average, two more generations are spent for achieving good
solutions in the topology series where more severe changes
occur. Therefore, we can conclude that these dynamic GAs
respond to the environmental changes at a reasonable speed,
and the more severe the changes, the longer the response time.

Fourth, we compare the dynamic GAs with the traditional
GAs over the dynamic SP problem. Since the dynamic GAs are
designed for the dynamic environments, they should show bet-
ter performance than the traditional GAs over our problem. We
compare RIGA, EIGA, and HIGA with SGA and restart GA.
We choose topology series #2 and #3 as the two dynamic envi-
ronments. The interval is set to 10 here and also in the following
experiments. Fig. 6(a) and (b) shows the comparison results over
topology series #2 and #3, respectively. From Fig. 6(a) and (b),
it can be seen that the restart GA exhibits the worst performance
even when the changes have trivial impacts on the current pop-

ulation. The reason is that the restart GA does not exploit any
useful information in the old environment and that the frequent
restart sacrifices its evolving capability. Although SGA is much
better than the restart GA, the best solutions that it can find in the
new environment are not competitive to those found by any of
the three GAs with immigrants schemes. The immigrants bring
more diversity to the populations in RIGA, EIGA, and HIGA,
and therefore, enhance their search capability.

Fifth, we compare the immigrants-based GAs with the
memory-related GAs (i.e., MEGA, MRIGA, and MIGA) in
the acyclic environments. According to the earlier experiments,
HIGA is a good representative of the three immigrants-based
GAs. Therefore, we evaluate the quality of solutions for HIGA,
MEGA, MRIGA, and MIGA over topology series #2 and #3,
respectively. The memory size is set to 20, and the reason will be
described in the subsequent section. Fig. 7(a) and (b) shows the
results. In Fig. 7(a), it can be seen that HIGA and MIGA show
a competitive performance. MEGA performs the worst among
all the memory-based GAs. The reason is that in our problem,

60 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 1, JANUARY 2010

Fig. 7. Comparison results of the quality of solution for HIGA, MEGA, MRIGA, and MIGA over (a) topology series #2 and (b) topology series #3.

TABLE I
t-TEST RESULTS OF COMPARING GAS IN ACYCLIC DYNAMIC ENVIRONMENTS

when a change occurs, the best individual in the memory may
become infeasible. Therefore, the memory scheme may lose
its power. However, in MRIGA and MIGA, the random immi-
grants are added or the individuals in the memory are just used
to generate immigrants by mutation. Therefore, the infeasible
solutions from the memory have a very high probability to be
replaced by feasible solutions. In Fig. 7(b), it can be seen that
although HIGA is not always the best, the memory degrades
the algorithm performance when changes occur. Therefore, we
conclude that the memory-related schemes have no advantages
in acyclic dynamic environments.

The corresponding statistical results of comparing these GAs
in acyclic dynamic environments by a one-tailed t-test with 18
DOF at a 0.05 level of significance are given in Table I. In
the table, the t-test result regarding Algorithm 1 and Algorithm
2 is shown as “+,” “−,” “s+,” and “s−” when Algorithm 1
is insignificantly better than, insignificantly worse than, sig-
nificantly better than, or significantly worse than Algorithm 2,
respectively.

C. Experimental Results and Analysis in Cyclic Dynamic
Environments

In this section, we focus on the cyclic dynamic environments,
and topology series #1 builds such an environment for our ex-
periments. First, we investigate the memory size that ensures a
specified quality of solution for the memory-related schemes.

We pick up MEGA and MRIGA as examples and run them on
the cyclic topology series. Since there are 20 different topolo-
gies in this cyclic series, we set the minimum memory size to
20. Then we increase it to 30 and 40, respectively. We repeat
20 different toplogies five times, and the memory schemes will
show more power when the same environments are visited more
times. Therefore, we sample the data from the latter part of the
evolutionary process in MEGA, MRIGA, and MIGA. Fig. 8(a)
and (b) shows the results. From both subfigures, it can be seen
that 20 is good enough in both MEGA and MRIGA. The in-
crease of the memory size wastes more resources instead of
benefiting the quality of solutions.

Second, we compare the memory-related schemes with the
traditional GAs in the cyclic dynamic environment. Since the
immigrants-based GAs beat both SGA and restart GA in the
acyclic dynamic environment, we also want to know if the tra-
ditional GAs are suitable for cyclic dynamic environments. We
evaluate MEGA, MRIGA, MIGA, SGA, and restart GA over
topology series #1. Fig. 9(a) and (b) shows the results. From
Fig. 9(a) and (b), it can be seen that the results are similar to
the ones in Fig. 6. The restart GA always exhibits the worst per-
formance. The frequent restart severely sacrifices its capability
of searching the good solutions. Although SGA is much better
than the restart GA, the best solutions that it can find in the new
environment are not competitive to those found by any of the
three memory-related GAs. Therefore, the traditional GAs do
not work well in a cyclic dynamic environment either.

Third, we compare the three memory-related GAs with the
immigrants-based GAs in the cyclic environments. We also pick
up HIGA as the representative of the immigrants schemes.
Fig. 10(a) and (b) shows the results. We can see that in both
subfigures, the three memory-related schemes perform better
than HIGA. It is contrary to the results shown in Fig. 7. From
Fig. 10(a), it can be seen that when a change occurs, MEGA
just takes one generation to find the good solution, while RIGA
takes eight generations but still finds a worse solution. From
Fig. 10(b), it can also be seen that MEGA, MRIGA, and MIGA
also take one generation to find the good solution for the new

YANG et al.: GENETIC ALGORITHMS WITH IMMIGRANTS AND MEMORY SCHEMES FOR DYNAMIC SHORTEST PATH ROUTING PROBLEMS 61

Fig. 8. Comparison results of the quality of solution under different memory sizes for (a) MEGA and (b) MRIGA.

Fig. 9. Comparison results of the quality of solution for MEGA, MRIGA, MIGA, SGA, and restart GA in the cyclic topology series from (a) generation 800–899
and (b) generation 900–999.

Fig. 10. Comparison results of the quality of solution for HIGA, MEGA, MRIGA, and MIGA in the cyclic topology series from (a) generation 400– 499 and
(b) generation 800–899.

62 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 1, JANUARY 2010

TABLE II
t-TEST RESULTS OF COMPARING GAS IN CYCLIC DYNAMIC ENVIRONMENTS

environment. The reason is that the good solution stored in the
memory can be retrieved immediately when the population en-
ters an environment that has been visited before. Therefore, the
memory-related schemes are really suitable for cyclic dynamic
environments.

The corresponding statistical results of comparing these GAs
in cyclic dynamic environment by a one-tailed t-test with 18
DOF at a 0.05 level of significance are given in Table II.

VII. CONCLUSION AND FUTURE WORK

MANET is a self-organizing and self-configuring multihop
wireless network, which has a wide usage nowadays. The SP
routing problem aims to establish a multihop forwarding path
from a source node to a destination node and is one important
issue that significantly affects the performance of MANETs. So
far, most SP routing algorithms in the literature consider only the
fixed network topology. It is much more challenging to deal with
the SP routing problem in a continuously changing network like
MANETs than to solve the static one in a fixed infrastructure. In
recent years, there has been a growing interest in studying GAs
for DOPs. Among approaches developed for GAs to deal with
DOPs, immigrants schemes aim at maintaining the diversity
of the population throughout the run via introducing random
individuals into the current population, while memory schemes
aim at storing useful information for possible reuse in a cyclic
dynamic environment.

This paper investigates the application of GAs for solving the
DSPRP in MANETs. A DSPRP model is built up in this paper.
A specialized GA is designed for the SP problem in MANETs.
Several immigrants and/or memory schemes that have been de-
veloped for GAs for general DOPs are adapted and integrated
into the specialized GA (which gives several GA variants) to
solve the DSPRP in MANETs. Then, extensive simulation ex-
periments are conducted based on a large-scale MANET con-
structed in this paper to evaluate various aspects of these GA
variants for the DSPRP. The experimental results indicate that
both immigrants and memory schemes enhance the performance
of GAs for the DSPRP in MANETs.

Generally speaking, the immigrants schemes show their
power in acyclic dynamic environments, and the memory-
related schemes beat other schemes in cyclic dynamic envi-
ronments.

We believe that this is the first study that investigates the ef-
fectiveness and efficiency of GAs with immigrants and memory
schemes in solving the DSPRP in the real-world networks, i.e.,
MANETs. There are several relevant future works. One inter-

esting work is to further investigate other approaches developed
for GAs for general DOPs to solve the DSPRP in MANETs and
other relevant networks [33]. Another future work is to inves-
tigate the application of GAs studied in this paper for solving
other dynamic routing problems in MANETs. For example, ap-
plying GA approaches for the multicasting routing problem [7]
in dynamic network environments is to be investigated in the
future.

ACKNOWLEDGMENT

The authors are grateful to the anonymous associate editor
and reviewers for their thoughtful suggestions and constructive
comments.

REFERENCES

[1] C. W. Ahn, R. S. Ramakrishna, C. G. Kang, and I. C. Choi, “Shortest
path routing algorithm using Hopfield neural network,” Electron. Lett.,
vol. 37, no. 19, pp. 1176–1178, Sep. 2001.

[2] C. W. Ahn and R. S. Ramakrishna, “A genetic algorithm for shortest
path routing problem and the sizing of populations,” IEEE Trans. Evol.
Comput., vol. 6, no. 6, pp. 566–579, Dec. 2002.

[3] M. K. Ali and F. Kamoun, “Neural networks for shortest path computation
and routing in computer networks,” IEEE Trans. Neural Netw., vol. 4,
no. 6, pp. 941–954, Nov. 1993.

[4] J. Branke, “Memory enhanced evolutionary algorithms for changing opti-
mization problems,” in Proc. 1999 Congr. Evol. Comput., pp. 1875–1882.

[5] J. Branke, Evolutionary Optimization in Dynamic Environments. Nor-
well, MA: Kluwer, 2002.

[6] J. Branke, T. Kaußler, C. Schmidt, and H. Schmeck, “A multi-population
approach to dynamic optimization problems,” in Proc. 4th Int. Conf. Adap-
tive Comput. Des. Manuf., 2000, pp. 299–308.

[7] H. Cheng, X. Wang, S. Yang, and M. Huang, “A multipopulation parallel
genetic simulated annealing based QoS routing and wavelength assign-
ment integration algorithm for multicast in optical networks,” Appl. Soft
Comput., vol. 9, no. 2, pp. 677–684, Mar. 2009.

[8] H. G. Cobb and J. J. Grefenstette, “Genetic algorithms for tracking
changing environments,” in Proc. 5th Int. Conf. Genet. Algorithms, 1993,
pp. 523–530.

[9] D. Dasgupta and D. McGregor, “Nonstationary function optimization
using the structured genetic algorithm,” in Proc. 2nd Int. Conf. Parallel
Problem Solving Nature, 1992, pp. 145–154.

[10] A. Das and C. Martel, “Stochastic shortest path with unlimited hops,” Inf.
Process. Lett., vol. 109, no. 5, pp. 290–295, 2009.

[11] D. Din, “Anycast routing and wavelength assignment problem on WDM
network,” IEICE Trans. Commun., vol. E88-B, no. 10, pp. 3941–3951,
Oct. 2005.

[12] J. J. Grefenstette, “Genetic algorithms for changing environments,” in
Proc. 2nd Int. Conf. Parallel Problem Solving Nature, 1992, pp. 137–144.

[13] S. Lee, S. Soak, K. Kim, H. Park, and M. Jeon, “Statistical properties
analysis of real world tournament selection in genetic algorithms,” Appl.
Intell., vol. 28, no. 2, pp. 195–2205, Apr. 2008.

[14] E. Lewis and G. Ritchie, “A comparison of dominance mechanisms and
simple mutation on non-stationary problems,” in Proc. 5th Int. Conf.
Parallel Problem Solving Nature, 1998, pp. 139–148.

[15] S. Louis and Z. Xu, “Genetic algorithms for open shop scheduling and
re-scheduling,” in Proc. 11th ISCA Int. Conf. Comput. Appl., 1996, pp. 99–
102.

[16] S. Misra and B. J. Oommen, “GPSPA: A new adaptive algorithm for
maintaining shortest path routing trees in stochastic networks,” Int. J.
Commun. Syst., vol. 17, no. 10, pp. 963–984, 2004.

[17] A. W. Mohemmed, N. C. Sahoo, and T. K. Geok, “Solving shortest path
problem using particle swarm optimization,” Appl. Soft Comput., vol. 8,
no. 4, pp. 1643–1653, Sep. 2008.

[18] H. Mori and Y. Nishikawa, “Adaptation to changing environments by
means of the memory based thermodynamical genetic algorithm,” in Proc.
7th Int. Conf. Genet. Algorithms, 1997, pp. 299–306.

[19] R. W. Morrison, Designing Evolutionary Algorithms for Dynamic Envi-
ronments. Berlin, Germany: Springer-Verlag, 2004.

YANG et al.: GENETIC ALGORITHMS WITH IMMIGRANTS AND MEMORY SCHEMES FOR DYNAMIC SHORTEST PATH ROUTING PROBLEMS 63

[20] R. W. Morrison and K. A. De Jong, “Triggered hypermutation revisited,”
Proc. 2000 Congr. Evol. Comput., vol. 2, pp. 1025–1032.

[21] S. Oh, C. Ahn, and R. Ramakrishna, “A genetic-inspired multicast routing
optimization algorithm with bandwidth and end-to-end delay constraints,”
in Proc. 13th Int. Conf. Neural Inf. Process. (Lecture Notes in Computer
Science), 2006, vol. 4234, pp. 807–816.

[22] F. Oppacher and M. Wineberg, “The shifting balance genetic algorithm:
Improving the GA in a dynamic environment,” Proc. 1999 Genet. Evol.
Comput. Conf., vol. 1, pp. 504–510.

[23] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima by
a particle swarm model using speciation,” IEEE Trans. Evol. Comput.,
vol. 10, no. 4, pp. 440–458, Aug. 2006.

[24] M. Parsa, Q. Zhu, and J. Garcia-Luna Aceves, “An iterative algorithm for
delay-constrained minimum-cost multicasting,” IEEE/ACM Trans. Netw.,
vol. 6, no. 4, pp. 461–474, Aug. 1998.

[25] C. E. Perkins Ed., Ad Hoc Networking. London, U.K.: Addison-Wesley,
2001.

[26] C. S. R. Murthy and B. S. Manoj, Ad Hoc Wireless Networks: Architectures
and Protocols. Englewood Cliffs, NJ: Prentice-Hall, 2004.

[27] R. Tinos and S. Yang, “A self-organizing random immigrants genetic
algorithm for dynamic optimization problems,” Genet. Program. Evol.
Mach., vol. 8, no. 3, pp. 255–286, Sep. 2007.

[28] C.-K. Toh, Ad Hoc Mobile Wireless Networks: Protocols and Systems.
Englewood Cliffs, NJ: Prentice-Hall, 2002.

[29] K. Trojanowski and Z. Michalewicz, “Searching for optima in non-
stationary environments,” in Proc. 1999 Congr. Evol. Comput., vol. 3,
pp. 1843–1850.

[30] K. Trojanowski and Z. Michalewicz, “Evolutionary optimization in non-
stationary environments,” J. Comput. Sci. Technol., vol. 1, no. 2, pp. 93–
124, 2000.

[31] A. Uyar and A. Harmanci, “A new population based adaptive dominance
change mechanism for diploid genetic algorithms in dynamic environ-
ments,” Soft Comput., vol. 9, no. 11, pp. 803–815, Nov. 2005.

[32] F. Vavak and T. C. Fogarty, “A comparative study of steady state and
generational genetic algorithms for use in nonstationary environments,”
in Proc. AISB Workshop Evol. Comput., 1996, pp. 297–304.

[33] Y. Xu, S. Salcedo Sanz, and X. Yao, “Metaheuristic approaches to traffic
grooming in WDM optical networks,” Int. J. Comput. Intell. Appl., vol. 5,
no. 2, pp. 231–249, Jun. 2005.

[34] S. Yang, “Memory-based immigrants for genetic algorithms in dy-
namic environments,” in Proc. 2005 Genet. Evol. Comput. Conf., vol. 2,
pp. 1115–1122.

[35] S. Yang, “Population-based incremental learning with memory scheme
for changing environments,” in Proc. 2005 Genet. Evol. Comput. Conf.,
vol. 1, pp. 711–718.

[36] S. Yang, “Genetic algorithms with elitism-based immigrants for chang-
ing optimization problems,” in Proc. EvoWorkshops 2007: Appl. Evol.
Comput. (Lecture Notes in Computer Science), vol. 4448, pp. 627–636.

[37] S. Yang, “Genetic algorithms with memory- and elitism-based immigrants
in dynamic environments,” Evol. Comput., vol. 16, no. 3, pp. 385–416,
Sep. 2008.

[38] S. Yang, Y.-S. Ong, and Y. Jin, Eds., Evolutionary Computation in Dy-
namic and Uncertain Environments. Berlin, Germany: Springer-Verlag,
2007.

[39] S. Yang and H. Richter, “Hyper-learning for population-based incremental
learning in dynamic environments,” in Proc. 2009 Congr. Evol. Comput.,
pp. 682–689.

[40] S. Yang and R. Tinos, “A hybrid immigrants scheme for genetic algorithms
in dynamic environments,” Int. J. Autom. Comput., vol. 4, no. 3, pp. 243–
254, Jul. 2007.

[41] S. Yang and R. Tinos, “Hyper-selection in dynamic environments,” in
Proc. 2008 Congr. Evol. Comput., pp. 3185–3192.

[42] S. Yang and X. Yao, “Experimental study on population-based incremental
learning algorithms for dynamic optimization problems,” Soft Comput.,
vol. 9, no. 11, pp. 815–834, Nov. 2005.

[43] S. Yang and X. Yao, “Population-based incremental learning with asso-
ciative memory for dynamic environments,” IEEE Trans. Evol. Comput.,
vol. 12, no. 5, pp. 542–561, Oct. 2008.

[44] X. Yu, K. Tang, T. Chen, and X. Yao, “Empirical analysis of evolutionary
algorithms with immigrants schemes for dynamic optimization,” Memetic
Comput., vol. 1, no. 1, pp. 3–24, Mar. 2009.

[45] X. Yu, K. Tang, and X. Yao, “An immigrants scheme based on environ-
mental information for genetic algorithms in changing environments,” in
Proc. 2008 Congr. Evol. Comput., pp. 1141–1147.

Shengxiang Yang (M’00) received the B.Sc. and
M.Sc. degrees in automatic control and the Ph.D. de-
gree in systems engineering from Northeastern Uni-
versity, Shenyang, China, in 1993, 1996, and 1999,
respectively.

From October 1999 to October 2000, he was a
Postdoctoral Research Associate with the Algorithm
Design Group, Department of Computer Science,
King’s College London, London, U.K. He is cur-
rently a Lecturer with the Department of Computer
Science, University of Leicester, Leicester, U.K. He

is the author or coauthor of more than 90 publications. He is the area editor,
an associate editor, or a member of the editorial boards of four international
journals. He has coedited several books and conference proceedings, and co-
guest-edited special issuaes of several journals. His current research interests
include evolutionary algorithms, swarm intelligence, meta-heuristics and hyper-
heuristics, artificial neural networks, computational intelligence in dynamic and
uncertain environments, scheduling, network flow problems and algorithms, and
real-world applications.

Dr. Yang is a Member of the Association of Computing Machinery Special
Interest Group on Genetic and Evolutionary Computation. He is also a Mem-
ber of the Task Force on Evolutionary Computation in Dynamic and Uncertain
Environments, Evolutionary Computation Technical Committee, IEEE Compu-
tational Intelligence Society. He has given invited keynote speeches at several
international conferences, and has co-organized several workshops and special
sessions in conferences.

Hui Cheng received the B.Sc. and M.Sc. degrees
in computer science from Northeastern University,
Shenyang, China in 2001 and 2004, respectively, and
the Ph.D. degree in computer science from Hong
Kong Polytechnic University, Kowloon, Hong Kong,
in 2007.

He is currently a Postdoctoral Research Associate
with the Department of Computer Science, University
of Leicester, Leicester, U.K. His current research in-
terests include evolutionary computation for dynamic
optimization problems, mobile ad hoc networks, mul-

ticast routing, and quality-of-service mobile group communication. He is the
author or coauthor of more than 30 technical papers.

Fang Wang (M’01) received the B.Sc. and M.Sc. de-
grees in computer science from China, and the Ph.D.
degree in artificial intelligence from the University of
Edinburgh, Edinburgh, U.K.

She was an Assistant Professor in China. In 2000,
she joined British Telecommunications Innovate, Ip-
swich, U.K., where she is currently a Senior Research
Scientist with the Centre for Information and Secu-
rity Systems Research. Her current research interests
include software agents, cognitive neuroscience, and
distributed computing. She is the author or coauthor

of several book chapters, and journal and conference papers. She holds a number
of patents.

Dr. Wang has received several technical awards.

