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Abstract In this paper a genetic algorithm is proposed where the worst individual and
individuals with indices close to its index are replaced in every generation by randomly
generated individuals for dynamic optimization problems. In the proposed genetic algo-
rithm, the replacement of an individual can affect other individuals in a chain reaction.
The new individuals are preserved in a subpopulation which is defined by the number of
individuals created in the current chain reaction. If the values of fitness are similar, as is
the case with small diversity, one single replacement can affect a large number of indi-
viduals in the population. This simple approach can take the system to a self-organizing
behavior, which can be useful to control the diversity level of the population and hence
allows the genetic algorithm to escape from local optima once the problem changes due to
the dynamics.
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1 Introduction

In recent years evolutionary algorithms (EAs) have been successfully applied to a
large number of optimization problems. EAs are a class of meta-heuristic algorithms
which are inspired by the principles of natural evolution. While natural evolution
deals very well with environmental changes, caused, for example, by natural cata-
clysms, geological modifications, and competition for natural resources, they rep-
resent a serious challenge for traditional EAs. As a significant part of optimization
problems in the real world are dynamic optimization problems (DOPs), there is a
growing interest in research of EAs for such problems [4].

In DOPs, the evaluation function, the decision variables, and the constraints of
the optimization problem are not fixed [22]. When changes occur in the problem,
the solution given by the optimization procedure may be no longer effective, and a
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new solution should be found [5]. The optimization problem may change for several
reasons, like faults, machine degradation, environmental or climatic modifications,
or economic factors.

The simplest approach to deal with DOPs is to start a new optimization process
whenever a change in the problem is noticed. The optimization process, however,
generally requires time and substantial computational effort. If the new solution
after the change in the problem is, in some sense, related to the previous solution,
knowledge obtained during the search for the old solution can be used to find a new
solution [15]. In this case, the search for new solutions based on the old solutions
can save substantial processing time. EAs are particularly attractive for such prob-
lems. Individuals representing solutions of the problem prior to the changes can be
transferred into the new optimization process.

However, in EAs, the population of solutions generally converges in the fitness
landscape to points close to the best individual of a population. If the fitness land-
scape abruptly changes, the actual population can be trapped in local optima close
to the old solution. In fact, premature convergence of the solution to a local op-
timum is not a problem exclusive to DOPs. It can also be a serious problem in
stationary optimization problems [19]. In order to avoid premature convergence,
several approaches where diversity is re-introduced or maintained throughout the
run have been proposed in the literature over recent years (see surveys [5,15,22]).
Typical examples of such approaches are the random immigrants approach [13],
sharing or crowding mechanisms [6], variable local search [23], thermodynamic ge-
netic algorithm [20], and the use of hypermutation [7].

The random immigrants approach is very interesting and simple [13]. In a ge-
netic algorithm (GA) with random immigrants, a fraction of the current population
is replaced by randomly generated individuals in each generation of the run. A re-
placement strategy, like replacing random or worst individuals of the population,
defines which individuals are replaced by the immigrants. The random immigrants
approach tries to maintain the diversity level of the population, which can be very
useful to prepare the GA for possible changes in the fitness landscape [8].

However, if the number of genes in an individual is high and the local optimum of
the population has fitness much higher than the mean fitness of all possible solutions
of the search space, the survival probability of new random individuals is generally
very low. This happens because the selection methods employed in GAs preserve,
directly or indirectly, the best individuals of a population, and the probability that
the fitness of new random individuals is higher than (or close to) the fitness of
current individuals is generally low.

In this paper, instead of substituting the worst or randomly selected individuals
with random immigrants in each generation, the worst individual and individuals
with indices close to its index are replaced. The newly introduced immigrants are
placed in a subpopulation and are not allowed to be replaced by individuals of the
main population. In this way, individuals start to interact among themselves and,
if the fitness of the individuals is close, as in the case of low diversity levels, one
single replacement of an individual can affect a great number of individuals of the
population in a chain reaction. The number of individuals in the subpopulation is
not defined by the programmer, but is given by the number of individuals created
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in the current chain reaction. It is important to observe that this simple approach
can take the system to a self-organized behavior useful in DOPs.

The experimental results of our work suggest that the proposed GA represents
a kind of self-organizing behavior known as self-organized criticality (SOC) [1],
described in Sect. 3 of this paper. Prior to that, we present in Sect. 2 the random
immigrants approach. The proposed GA is presented in Sect. 4, and experimental
results with DOPs are reported and analyzed in Sect. 5. Sect. 6 concludes our paper
with discussions on relevant future work.

2 The Random Immigrants Genetic Algorithm

The Random Immigrants GA (RIGA) proposed by Grefenstette [13] is inspired by
the flux of immigrants in a biological population. In GAs, the flux of immigrants
generally increases the genetic diversity level of a population, allowing to escape
from local optima caused by occasional environmental changes. The RIGA can be
summarized by Algorithm 1, where i denotes the index of each individual of the
population. Algorithm 1 differs from the generational Simple GA (SGA) only by
the inclusion of line 4.

Algorithm 1 Random Immigrants Genetic Algorithm

Require: pc: crossover rate; pm: mutation rate; rr: replacement rate
1: initializePopulation(P)
2: evaluatePopulation(P)
3: while (stop criteria are not satisfied) do

4: P ← replaceFractionPopulation(P, rr)
5: for i← 1 to P.size do

6: Pnew.individual(i) ← selection(P,i)
7: end for

8: crossover(Pnew ,pc)
9: mutation(Pnew,pm)

10: evaluatePopulation(Pnew)
11: P← Pnew

12: end while

In the RIGA, some individuals of the current population P are replaced by
randomly generated individuals. A replacement rate rr specifies the number of in-
dividuals replaced in each generation. In the standard RIGA, randomly chosen in-
dividuals are replaced in each generation. In another replacement strategy, instead
of replacing randomly chosen individuals, the individuals of the current population
with the lowest fitness are replaced by random immigrants.

3 Self-Organized Criticality

Bak et al. suggested in Ref. [2] that systems with several interacting constituents
may exhibit a kind of self-organizing behavior, which was named SOC, with inter-
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esting properties. It was suggested that several phenomena exhibit SOC, e.g., sand
piles, earthquakes, forest fires, electric breakdowns, or growing interfaces.

Systems exhibiting SOC have an interesting characteristic: even without any
control action from outside, they self-organize into a critical state [14]. In a system
exhibiting non-critical behavior, the distribution of responses to external perturba-
tion is narrow and can be well described by an averaged value. In a system exhibiting
critical behavior, no single characteristic response exists, i.e., the system exhibits
scale invariance, and a small perturbation in one location of the system may gen-
erate a small effect on its neighbourhood or a chain reaction that affects all the
constituents of the system.

The statistical distributions describing the response of the system exhibiting
SOC are given by power laws in the form

p(s) ∼ s−τ (1)

and
p(d) ∼ d−α, (2)

where s is the number of constituents of the system affected by the perturbation, d
is the duration of the chain reaction (lifetime), and τ and α are real constants. As
an example, consider the sand pile model described in [2], where a single grain is
added at a random position in every interval of time ∆t. In order to characterize the
response of the system, one can measure the number of sand grains (s) involved in
each avalanche induced by the addition of a single grain and the duration (d) of each
avalanche. In the critical state, the statistical distributions describing the response
of the sand pile model to the addition of a single grain are given by Eqs. 1 and 2,
and the addition of a single grain can affect from only a grain in its neighbourhood
to the whole sand pile.

Researchers have suggested that SOC occurs in natural evolution too [1]. Evi-
dence of SOC in evolution would be the fact that it does not happen gradually at a
slow and constant pace [12]. There are many more small extinction events than large
events, such as the Cretaceous extinction of dinosaurs and many other species, and
extinction events occur on a large variety of length scales [21]. These facts suggest
that extinctions propagate through ecosystems, such as avalanches in a sand pile,
and perturbations of the same size can unleash extinction events of a large variety
of sizes. This would occur because species coevolve to a critical state [16].

In Ref. [1], a very simple simulation model, known as the Bak-Sneppen Model,
was proposed to explore the connection between evolution and SOC. In the one-
dimensional version of this model, the individuals (or species in the authors’ ter-
minology) are placed in a circle, and a random value of fitness is assigned to each
individual. In each generation of the simulation, the individual with the lowest fit-
ness in the current population, one individual located to its right position, and one
to its left position will have their fitness values replaced by random values. An anal-
ogy of the connection between neighbours in the model is the interaction between
species in nature. If, as an example, a prey goes extinct, the fitness of its predators
will change. The Bak-Sneppen Model can be summarized by Algorithm 2.

This simple model can lead to interesting behavior. At the outset of the sim-
ulation, mean fitness of the population is low, but, as the number of generation



Genet Program Evolvable Mach 5

Algorithm 2 Bak-Sneppen Model

1: Find the index j of the individual with the lowest fitness
2: Replace the fitness of individuals with indices j, j − 1, and j + 1 by random values

drawn from uniform distribution

increases, mean fitness increases, too. Eventually, mean fitness ceases to increase,
and the critical state is reached. In the Bak-Sneppen Model, a substitution of the
fitness of the worst individual causes the substitution of its two next neighbours.
In the critical state, the values of fitness of the neighbours are very often replaced
by random numbers with smaller values. The new worst individual can be then one
of these two neighbours, which are replaced with its two next neighbours, originat-
ing a chain reaction, called replacement event in this work, that can affect all the
individuals of the population. The replacement events exhibit scale invariance and
their statistical distributions are given by power laws in the form of Eqs. 1 and 2.
Large replacement events generally occur if almost all individuals of the population
have similar high values of fitness.

It is important to observe that SOC avoids the situation where a species gets
trapped in a local optimum in the fitness landscape. Because the idea is powerful and
simple, researchers proposed the use of SOC in optimization processes. Boettcher
and Percus [3] proposed optimization with extremal dynamics, a local-search heuris-
tic to find solutions in problems where constituents of the system are connected, e.g.
spin glass optimization problem. Løvbjerg and Krink [18] extended particle swarm
optimization with SOC in order to better control the optimization process and to
maintain the diversity level.

In GAs, Krink and Thomsen [17] proposed the use of the sand pile model pre-
viously discussed to generate power laws to determine which individuals, placed
on a grid, should be replaced in each generation. If an individual goes extinct, a
mutated version of the best individual of the population is created in its place. It
is important to observe that, however, in the algorithm proposed in Ref. [17] SOC
appears in the sand pile model used to control the size of the extinctions, and is
not the result of a self-organization of constituents of that system (individuals of
the GA).

4 Self-Organizing Random Immigrants Genetic Algorithm

In this paper, we propose the replacement of the individual with the lowest fitness
of the current population and other rr−1 individuals with new randomly generated
individuals. The indices of individuals in the population are used to determine which
individual will be replaced. In each generation of the algorithm, the individual with
the lowest fitness in the current population (index j), ⌈(rr − 1)/2⌉ individuals with
indices from j−⌈(rr − 1)/2⌉ to j−1, and ⌊(rr − 1)/2⌋ individuals with indices from
j + 1 to j + ⌊(rr − 1)/2⌋ are replaced by randomly generated individuals. It can be
observed that, as the proposed GA is not spatially distributed, the indices of the
individuals inside the population are random.
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It must be said that this simple idea alone does not guarantee that the system
exhibits SOC since new random immigrants added to the population generally have
low fitness and are very often substituted by individuals with high fitness present
in the population during the selection phase. As a consequence, the statistical dis-
tribution describing the response of the system to a single replacement will not be
a power law, but a narrow distribution characterized by a small averaged value.

In the newly proposed variant of RIGA, a second strategy is adopted, by which
the new immigrants created during the current chain reaction (called replacement
event in this paper), are preserved in a subpopulation. The current size of this
subpopulation is not defined by the programmer, but is the number of individuals
created in the current replacement event. In other words, the individuals in the
current population not belonging to the subpopulation are not allowed to replace
individuals of the subpopulation. The subpopulation is allowed to evolve, i.e., is
submitted to selection, mutation, and crossover among individuals that belong to
the subpopulation.

The hope is that the system can now exhibit SOC in order to increase the
diversity level of the population in a self-organized way and, therefore, to avoid a
situation where individuals get trapped in local optima of the fitness landscape if
the problem changes.

In the proposed GA, called Self-Organizing Random Immigrants GA (SORIGA),
there are two major modifications from the RIGA. In the first modification, the func-
tion “replaceFractionPopulation(P, rr)” is modified as presented in Algorithm 3. In
this function, the individual with the lowest fitness and other rr − 1 individuals are
replaced by randomly generated individuals. The current size (or duration) of each
replacement event, i.e., the number of times that the individual with the lowest
fitness and other rr − 1 individuals are replaced in the current replacement event,
is recorded and denoted by d. Each individual of the population has an index. Each
element k of the binary vector P.replaced indicates whether the individual with
index k has been replaced for at least once in the current replacement event. For
example, P.replaced[k] = 1 means individual k has been replaced in the current
replacement event at least once and hence it belongs to the current subpopulation.
The number of individuals in the current subpopulation equals the number of el-
ements in P.replaced that are set to 1. When the chain reaction ceases, i.e., the
individual with the lowest fitness does not belong to the subpopulation, the duration
of the replacement event d is reset to 1.

The second modification in SORIGA lies in the selection of each individual into
the new population, as shown in Algorithm 4. For each new individual, if its index
was not involved in the current replacement event, i.e., P.replaced[k] = 0, the new
individual is selected from the main population that consists of individuals with
index k satisfying P.replaced[k] = 0 using a standard selection scheme; otherwise, it
is selected from the subpopulation that consists of individuals with index k satisfying
P.replaced[k] = 1 using a standard selection scheme.

As an example, SORIGA is applied to a simple problem where the fitness func-
tion is defined as

f(x) =
u(x)

l
, (3)
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Algorithm 3 replaceFractionPopulation(P, rr)

1: Find the index j of the individual with the lowest fitness
2: if (P.replaced[j] = 0) then

3: d← 1
4: for k← 1 to P.size do

5: P.replaced(k)← 0
6: end for

7: else

8: d← d + 1
9: end if

10: for k← 1 to P.size do

11: if (j − ⌈(rr − 1)/2⌉ ≤ k ≤ j + ⌊(rr − 1)/2⌋) then

12: Replace P.individual[k] by a randomly generated individual
13: P.replaced[k]← 1
14: end if

15: end for

Algorithm 4 selection(P,i)

1: if (P.replaced[i] = 0) then

2: Select an individual from the main population with individuals with index k satis-
fying P.replaced[k] = 0

3: else

4: Select an individual from the subpopulation with individuals with index k satisfying
P.replaced[k] = 1

5: end if

where u(x) is the unitation function of a binary vector (individual) x of length
l, returning the number of ones in vector x. In this example, randomly generated
individuals of the first generation are selected according to elitism and roulette
wheel sampling. Mutation with pm = 0.01 and two-point crossover with pc = 0.6
are employed. The number of individuals in the population is equal to 12 and l = 30.
Fig. 1 presents the first three steps of a replacement event in a run of SORIGA on
this example with replacement rate rr = 3. The figure shows the fitness of all
individuals in the current population in generations 27, 28, and 29 respectively.
In generation 27, the individual with index 6 (index j in Algorithm 3) has the
lowest fitness in the population. In this way, this individual and the individuals
with indices 5 and 7 are replaced by random individuals. In the next generation,
the individual with index j = 5 has now the lowest fitness, and together with the
individuals with indices 4 and 6 is replaced. In generation 29, the individual with
index j = 4 has the lowest fitness. It can be observed that the chain reaction was
propagated because the remaining individuals have fitness values higher than the
individuals in the subpopulation defined by the individuals with indices k, where
P.replaced[k] = 1 (see Algorithms 3 and 4).
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Fig. 1 Fitness of the individuals of the current population at generations 27, 28, and 29
in a run of the SORIGA on the example problem. The 0’s and 1’s indicates the values of
each element of the vector P.replaced.

5 Experimental Study

In order to evaluate the performance of SORIGA, five sets of experiments were car-
ried out. In the experiments presented in this work, the dynamic problem generator
proposed in [24,26] is employed to construct DOPs based on five stationary test
problems. The dynamic problem generator is presented in Sect. 5.1 while the five
stationary test problems used for this purpose are described in Sect. 5.2.

In all experiments presented here, SORIGA is compared to SGA, and two ver-
sions of the GA with random immigrants. In the first version, denoted RIGA1, rr

individuals randomly chosen are replaced by new random individuals. In the sec-
ond version, denoted RIGA2, the rr worst individuals, i.e., the individuals with the
lowest fitness, are replaced by new random individuals. The experimental design is
described in Sect. 5.3, and the results are presented and analyzed respectively in
Sects. 5.4 and 5.5. The results of including a neighboring scheme to SORIGA are
presented in Sect. 5.6.

5.1 Dynamic Problem Generator

In order to evaluate the performance of different GAs in DOPs, a dynamic problem
generator that can generate DOPs from any binary encoded stationary problem was
proposed in Refs. [24,26]. Given a stationary problem where the fitness function is
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f(x) and x ∈ {0, 1}l, the dynamics of an environment that is periodically changed
every τ generations is formulated as follows:

f(x, t) = f
(

x ⊕ M(k)
)

(4)

where ⊕ is the bitwise exclusive-or (XOR) operator, t is the generation index,
k = ⌈t/τ⌉ is the period index, and M(k) is a binary mask for period k that is
incrementally generated by:

M(k) = M(k − 1) ⊕ T(k) (5)

where T(k) is a binary template randomly created for period k containing ⌊ρ × l⌋
ones, and {ρ ∈ R | 0.0 ≤ ρ ≤ 1.0} controls the degree of change for the DOP. If
ρ = 0.0, the problem stays stationary, while if ρ = 1.0, the extreme fitness landscape
change in the sense of Hamming distance occurs. For the first period, M(1) is equal
to the zero vector. The dynamic problem generator proposed in Refs. [24,26] can
be used to investigate the performance of different GAs in well studied benchmark
optimization problems, e.g., the royal road function (see next section).

5.2 Stationary Test Problems

Five stationary problems are selected as test suite for the algorithms SGA, RIGA1,
RIGA2, and SORIGA. The DOPs are constructed from these stationary problems
using the dynamic problem generator described in Sect. 5.1.

5.2.1 Royal Road Function: Mitchell, Forrest, and Holland proposed a class of
fitness landscapes, called royal road functions, to investigate the schema processing
[19]. One of these functions, called royal road R1, is defined as:

f(x) =

q
∑

s=1

cs δs(x) (6)

where q is the number of schemata that are juxtaposed and summed together,
cs = c if the schema s is present in the solution x, and cs = 0 otherwise. In this
contribution, the royal road function is defined on a sixty-four bit string, and each
schema is composed of 8 contiguous fixed bits. If all bits of x corresponding to the
fixed bits of the schema s are equal to 1, c = 8 is added to the fitness function.

5.2.2 Deceptive Functions: Trap functions can be used to create deceptive func-
tions for GAs, i.e., function where there exist low-order schemata that, instead of
combining to form high-order schemata, forms schemata resulting in a deceptive
solution that is sub-optimal [10], [11]. A trap function is defined as follows:

f(x) =

{

a
z
(z − u(x)), if u(x) ≤ z

b
l−z

(u(x) − z), otherwise,
(7)
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where u(x) is the unitation function of a binary vector x of length l, a is the local
and possibly deceptive optimum, b is the global optimum, and z is the slope-change
location which separates the attraction basin sizes of the two optima.

A trap function is deceptive on average if the ratio of the fitness of the local
optimum to that of the global optimum is constrained by the following relation [9]:

a

b
≥

2 − 1/(l − z)

2 − 1/z
(8)

The parameters a, b, and z determine the difficulty for GAs to find the global
optimum b as opposed to the local optimum a [25]. Two deceptive functions based on
trap functions are considered in this work. In the first deceptive function (deceptive
function 1), 10-bit trap functions are employed with a set to 0.82 and z set to 8.
In the second deceptive function (deceptive function 2), 50-bit trap functions are
employed with a set to 0.80 and z set to 48. In both functions, b is set to 1.0.

5.2.3 Scaling Problems: Deception is not the only element that can generate dif-
ficulty to a GA. The problem difficulty can also be caused by scaling. The scaling
problem arises in functions that consist of several schemata with different worth to
the solution [11]. A scaling problem can be simulated using additively decomposable
functions as follows:

f(x) =

q
∑

s=1

cs fs(xIs
) (9)

where q is the number of schemata that are juxtaposed and summed together, Is is
the set of the fixed bit positions that form schema s, and cs is the scaling factor for
each sub-function fs. The royal road function presented in this section is a scaling
problem with uniform scaling, i.e., cs = c.

Using Eqs. 7 and 9, it is possible to create different scaling problems based on
trap functions by adjusting the parameters cs. Two scaling problems based on trap
functions and with exponential scaling (cs = 2s−1) are considered in this work. In
the first scaling problem (scaling problem 1), the fitness function is computed by
juxtaposing and summing together four 5-bit trap functions. In the second scaling
problem (scaling problem 2), the fitness function is computed by juxtaposing and
summing together ten 5-bit trap functions. In both problems, b is set to 1.0, a is
set to 0.7, and z is set to 3.

5.3 Experimental Design

In the dynamic problem generator described in Sect. 5.1, the fitness function is
periodically changed every τ generations according to Eqs. 4 and 5. The algorithm
capability of adapting to dynamic environments under different degree of conver-
gence can be investigated by setting τ to different values. Based on our preliminary
experiments on stationary problems, τ is set to three different values. The first two
values, τ = 10 and τ = 200, imply a change in the fitness function in an early and
a medium stage of the optimization process respectively. The last value, τ = 1000
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implies a change in the fitness function at a late or converged stage of the optimiza-
tion process. Each algorithm was executed for 10 periods of environmental changes.
The degree of change in the dynamic problem generator is controlled by setting
parameter ρ. Three different values of ρ were used here in the experiments. These
values represent different change levels: very light shifting (ρ = 0.05), medium vari-
ation (ρ = 0.6), and very high change (ρ = 0.95). In the experiments with deceptive
problem 1, as ⌊ρ× l⌋ = 0 when l = 10 and ρ = 0.05, the values of ρ are set to 0.10,
0.60, and 0.90.

In order to compare different GAs, each algorithm was executed 30 times (with
30 random seeds) for each one of the test problems described in the last section
and with each one of the nine combinations of the environmental dynamics pa-
rameters τ and ρ. For each run of an algorithm for a DOP, the individuals of the
initial population were randomly chosen. In each generation, two individuals of the
population were selected according to elitism and the remaining individuals were
selected according to roulette wheel sampling (Sections 5.4.1 and 5.4.3) or tour-
nament selection (Sect. 5.4.2). Traditional bit mutation with rate pm = 0.01 and
two-point crossover with rate pc = 0.7 were employed. The population size was set
to 120 individuals. Three replacement rates are considered for the algorithms with
random immigrants in order to compare the performance of the algorithms when
the number of replaced individuals changes. The first value of rr, whose results are
discussed in Sections 5.4.1 and 5.4.2, is set to 3, i.e., 3 individuals (2.5% of the
population) are replaced by random immigrants in each generation. The second
and third values of rr with results presented in Sect. 5.4.3 are set to 12 and 24
respectively, i.e., 12 individuals or 24 (10% or 20 % of the population) are replaced
by random immigrants in each generation.

The comparison of results obtained by different algorithms on DOPs is more
complex than the same comparison on stationary problems [22]. For DOPs, it is
necessary to evaluate not the final result, but rather the optimization process itself.
The mean best-of-generation fitness was used to evaluate the GAs.

5.4 Experimental Results

Experiments were carried out on the dynamic version of the test problems described
in Sect. 5.2 in order to help analyze the performance of the algorithms on dynamic
problems. Results are presented in the following sections for different selection meth-
ods and different values of the replacement rates.

5.4.1 Selection with Roulette Wheel Sampling: Selection with roulette wheel sam-
pling is a fitness-proportionate selection, where the expected number of times an
individual is selected to reproduce is equal to its fitness divided by the mean pop-
ulation fitness [19]. The experimental results on DOPs averaged over 30 runs with
roulette wheel sampling and rr = 3 for the GAs with random immigrants are shown
in Tables 1 and 2. Experimental results of mean best-of-generation fitness and some
statistical test results over this measure are presented in Table 1. Experimental re-
sults of mean population fitness are presented in Table 2. In Table 1, the statistical
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Fig. 2 Best-of-generation fitness of algorithms on dynamic royal road function where the
environmental dynamics parameter τ is set to 10 and: (a) ρ is set to 0.05, (b) ρ is set to
0.95.

comparison regarding SORIGA - SGA, SORIGA - RIGA1, and SORIGA - RIGA2
is carried out by t-test with 58 degrees of freedom at a 0.05 level of significance
regarding the mean best-of-generation fitness. The t-test results are shown in the
parentheses as “+”, “−”, or “∼” when SORIGA is significantly better than, signif-
icantly worse than, or statistically equivalent to other GAs respectively. Figs. 2-11
show the results of mean best-of-generation fitness in experiments where τ is set
to 10 or 1000 and ρ is set to 0.05 or 0.95 (0.10 or 0.90 in the experiments with
deceptive function 1) respectively.

5.4.2 Selection with Tournament: Tournament selection is a selection procedure
computationally cheaper than fitness-proportionate selection. In the simplest ver-
sion of tournament selection, two individuals of the current population are randomly
chosen and the individual with higher fitness is selected to be reproduced if a random
number generated with uniform distribution in [0, 1] is smaller than a parameter kts

[19]. Otherwise, the individual with the lower fitness is selected. The parameter kts

is chosen in [0, 1] and can be used to control the selection pressure. Higher values
of kts imply higher levels of selection pressure. Experimental results on DOPs aver-
aged over 30 runs and with two values of kts are presented in this section in order to
compare the performance of the GAs when the selection pressure changes. Results
of mean best-of-generation fitness when kts = 0.70 or kts = 0.90 and some statis-
tical test results over this measure are presented in Tables 3 and 4. The statistic
comparison regarding SORIGA - SGA, SORIGA - RIGA1, and SORIGA - RIGA2
is carried out by t-test with 58 degrees of freedom at a 0.05 level of significance and
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Fig. 3 Best-of-generation fitness of algorithms on dynamic royal road function where the
environmental dynamics parameter τ is set to 1000 and: (a) ρ is set to 0.05, (b) ρ is set to
0.95.
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Fig. 4 Best-of-generation fitness of algorithms on dynamic deceptive function 1 where the
environmental dynamics parameter τ is set to 10 and: (a) ρ is set to 0.10, (b) ρ is set to
0.90.
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Fig. 5 Best-of-generation fitness of algorithms on dynamic deceptive function 1 where the
environmental dynamics parameter τ is set to 1000 and: (a) ρ is set to 0.10, (b) ρ is set to
0.90.
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Fig. 6 Best-of-generation fitness of algorithms on dynamic deceptive function 2 where the
environmental dynamics parameter τ is set to 10 and: (a) ρ is set to 0.05, (b) ρ is set to
0.95.
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Fig. 7 Best-of-generation fitness of algorithms on dynamic deceptive function 2 where the
environmental dynamics parameter τ is set to 1000 and: (a) ρ is set to 0.05, (b) ρ is set to
0.95.
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Fig. 8 Best-of-generation fitness of algorithms on dynamic Scaling Problem 1 where the
environmental dynamics parameter τ is set to 10 and: (a) ρ is set to 0.05, (b) ρ is set to
0.95.
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Fig. 9 Best-of-generation fitness of algorithms on dynamic Scaling Problem 1 where the
environmental dynamics parameter τ is set to 1000 and: (a) ρ is set to 0.05, (b) ρ is set to
0.95.
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Fig. 10 Best-of-generation fitness of algorithms on dynamic Scaling Problem 2 where the
environmental dynamics parameter τ is set to 10 and: (a) ρ is set to 0.05, (b) ρ is set to
0.95.
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Fig. 11 Best-of-generation fitness of algorithms on dynamic Scaling Problem 2 where the
environmental dynamics parameter τ is set to 1000 and: (a) ρ is set to 0.05, (b) ρ is set to
0.95.

the t-test results are shown in Tables 3 and 4 the same way as in Table 1. In all
experiments, rr is set to 3 for the GAs with random immigrants.

5.4.3 Selection with Roulette Wheel Sampling and with rr = 12 or rr = 24 The
results on DOPs averaged over 30 runs for the experiments where roulette wheel
sampling selection is employed and rr is set to 12 or 24 for the GAs with random
immigrants are presented in Tables 5 and 6 respectively. Similarly, the statistical
comparison is carried out between SORIGA and other GAs and the t-test results
are shown in Tables 5 and 6 in the same way as in Table 1.

5.5 Analysis of the Results

Several results can be observed by analyzing the experimental results. The perfor-
mance of SORIGA is generally significantly better than the performance of SGA
on the DOPs tested in this paper. The performance of SORIGA increases with the
period of change τ and with the degree of change ρ for the DOPs. It can be ob-
served that the performance of SORIGA is generally better for ρ > 0.10 (medium
and high degree of changes). These results can be explained by the fact that SGA
had difficulty in escaping from the local optima induced by medium or high changes
of the global optima on the DOPs tested. However, random immigrants inserted in
every generation provide diversity to the last three GAs and prepare the population
for eventual change, which explains the better results of these GAs with random
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immigrants when compared to SGA. For example, this behavior can be observed in
Figs. 3, 5, 7, 9, and 11, where the best-of-generation fitness of all GAs on the five
DOPs with τ = 1000 are plotted.

Experimental results on the tested DOPs with ρ > 0.10 agree with those pre-
sented in Ref. [8], where the performance of RIGA, Hypermutation GA, and SGA
were compared in DOPs constructed from changing landscapes produced by hills
that are shaped using mathematical functions. Three types of environmental changes
were considered: linear translation of the hills, periodic changes in the location of
the maximum hill, and oscillating changes between two landscapes. In the exper-
iments [8], the performance of RIGA was better than the performance of Hyper-
mutation GA and SGA in those DOPs with severe environmental changes. Such
results were explained by the fact that RIGA prepares the population well for pos-
sible catastrophic changes through an increase in the genetic diversity. However,
the performance of RIGA was worse in DOPs with small environmental changes,
explained by an increase in the probability of losing information that may match
such changes. Here, the worse performance of GAs with random immigrants occurs
again on DOPs with slight environmental changes (ρ ≤ 0.1).

Let us now analyze the results of the three GAs with random immigrants. First,
let us investigate how the proposed SORIGA works. In the beginning of the ex-
periments, the individuals of the initial populations and the immigrants generally
have low fitness. Since several individuals in the population have low fitness, the
probability that one of the replaced individuals becomes the new worst is low. As
a consequence, a single replacement of an individual generally does not generate
large chain reactions of replacements. As the number of generations increases, the
mean fitness increases too, and several individuals of the current population have
fitness values higher than the average fitness of the new random individuals. Then,
the probability that one of the individuals with indices close to the index of the
replaced worst individual becomes the new worst individual increases, and a chain
reaction can be developed with a large variety of sizes.

While the performance of SORIGA was generally worse than the performance
of other RIGAs on the deceptive function 2, it was generally significantly better on
other DOPs for values of ρ > 0.10. The better results of SORIGA over other GAs
with random immigrants in the experiments presented here can be mainly explained
by the higher values of the diversity level of the population in SORIGA. In Fig. 12,
the mean Hamming Distance averaged over 30 runs in the initial 2000 generations
of the dynamic Scaling Problem 2 where the environmental dynamics parameter τ
is set to 1000 and ρ is set to 0.95 is presented. The mean Hamming Distance of the
population at generation t is computed as

h(t) =
1

N2

N
∑

i=1

N
∑

j=1

(

xi(t) ⊕ xj(t)
)

=
2

N2

N−1
∑

i=1

N
∑

j=i+1

(

xi(t) ⊕ xj(t)
)

(10)

where xi(t) is the chromosome of the i-th individual of the population at generation
t and N is the population size. The mean Hamming Distance can be used to estimate
the diversity level of the population. Higher values of the mean Hamming Distance
imply in higher values of the diversity level of the population. One can observe in
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Fig. 12 Mean Hamming Distance averaged over 30 runs in the initial 2000 generations of
the dynamic Scaling Problem 2 with τ = 1000 and ρ = 0.95: (a) Roulette wheel sampling
selection with rr = 3; (b) Tournament selection with kts = 0.70; (c) Tournament selection
with kts = 0.90; (d) Roulette wheel sampling selection with rr = 12.

Fig. 12 that the mean Hamming Distance decreases after the initial generations
and the changes in the problem toward a small mean value. One can still observe
that the mean Hamming Distances are higher for the SORIGA, indicating that the
diversity level is high for this algorithm when compared to the other GAs. This fact
can be observed by analyzing the results presented in Table 2. SORIGA generally
presented the lower values of the mean fitness of the population, even though its
fitness values of the best-of-generation individuals were higher.

Another factor that explains the better results of SORIGA is that the survival
probability of a new random individual, which can be evolved to become a solution
of the problem, is generally lower in the standard GAs with random immigrants.
This happens because the fitness values for the current individuals, whose locations
are generally located in (or close to) local maxima after several generations, are
generally much higher than the mean fitness of the search space (i.e., the mean
fitness of all possible individuals). SORIGA preserves a new potential solution in
a subpopulation and allows it to evolve while the current replacement event is in
progress. As it is necessary to develop the potential solution inside the subpopula-
tion, the performance of SORIGA increases with the period of change τ . One can
observe in Tables 1 - 6 that the best results of SORIGA are those with τ = 1000.

Fig. 13 shows the results of the mean population and best-of-generation fitness,
mean Hamming Distance, and duration of replacement events in the first 2000
generations of the second trial of the experiments of SORIGA with the roulette
wheel sampling selection on dynamic Scaling Problem 2 with τ = 1000 and ρ = 0.95.
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Fig. 13 Initial 2000 generations of SORIGA with roulette wheel sampling selection on
the second trial of the dynamic Scaling Problem 2 with τ = 1000 and ρ = 0.95: (a) Mean
population (solid line) and best-of-generation fitness (dotted line); (b) Mean Hamming
distance; (c) Duration of replacement events (in generations).

One can observe that larger replacement events generally occurred when the mean
population fitness was high and the diversity level of the population was small. Such
interesting behavior was reached by self-organization, and not by a rule imposed by
the programmer. In the experimental results on the last five DOPs, the size of the
subpopulation self-organized according to the population diversity level. This result
can be observed in Tables 3 and 4, where the performance of SORIGA in comparison
to other RIGAs increases when the selection pressure increases by changing kts from
0.70 to 0.90 in the experiments with tournament selection. One can observe that the
mean Hamming distances were lower for the experiment with kts = 0.90 (Fig. 12),
indicating a low diversity in the population.

It is important to observe that the random immigrants mechanism incurs a cost
on the GA as a part of the individuals that could be used to explore the current
best solution are replaced by randomly generated individuals. This cost was depre-
ciated by the advantage of increasing the diversity level in problems where there are
difficulties in escaping from local optima induced by severe changes using only the
traditional GA mechanisms. The balance between the advantage of increasing the
diversity of the population by introducing randomly generated individuals and the
cost of replacing part of the population that could be used to explore the current
best solution should be found by properly setting the parameter rr in the standard
RIGA. In the experiments performed in this work, the performance of the RIGA1
and RIGA2 was generally better when rr = 24 (Table 6), which corresponded to
20% of the population. When rr is larger than this value, the performance gen-
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erally depreciated. However, for SORIGA, the better results were generally found
for smaller values of rr. Those results are explained by the fact that, in SORIGA,
the size of the subpopulation is generally larger than rr , which implies that less
individuals of the population are employed to explore the current best solution. In
this way, SORIGA is interesting, when compared to other RIGAs, for values of rr

smaller than the value which represents the best value for the standard RIGA.

It can also be observed that the performance of SORIGA decreases when the
difficulty level introduced by deception increases from dynamic deceptive function
1 to dynamic deceptive function 2 (Tables 1 - 6). This happens because on dynamic
deceptive function 2 the probability to generate a fair random immigrant close to
the global optimum and develop it in a subpopulation is very low. It can be seen in
Figs. 5 and 7 that, while the best-of-generation individuals of the GAs with random
immigrants converge to the global optimum after the changes on deceptive function
1, they converge to the local optimum on deceptive function 2.

In the experiments on DOPs presented here, just like that the fossil records
data for the extinction events in nature [21], there are more small replacement
events than large ones, and the replacement events occur on a large variety of
length scales. When the distribution of the number of replacement events against
each size is plotted in a log-log scale, the results exhibit power laws (see Sect. 3)
even without any apparent tuning, suggesting the presence of SOC.

5.6 Including a Neighboring Scheme

In the SORIGA presented in Sect. 4, the relations among the replaced individuals in
each generation are determined by the indices of the individuals, i.e., the relations
are random. In each generation, the individuals with indices from j − ⌈(rr − 1)/2⌉
to j + ⌊(rr − 1)/2⌋, where j is the index of the individual with the lowest fitness in
the current population, are replaced by randomly generated individuals.

In this subsection, another replacement scheme, called neighborhood reserving

selection scheme, is investigated. In this scheme, the individuals in the population
are ordered according to the index of their first parent after the reproduction step.
As an example, suppose a population with only 5 individuals cyclically indexed as
[1−2−3−4−5−1]. After reproduction, suppose that the individuals with the follow-
ing first parents [3, 4, 2, 3, 1] are present in the new population. In the neighborhood
reserving selection scheme, the new population is rearranged to [1, 2, 3, 3, 4]. In this
way, a neighborhood is spatially reserved to the maximal degree.

Table 7 presents the results of the SORIGA with this neighboring scheme when
selection with roulette wheel sampling was employed and 3 individuals were re-
placed in each generation, denoted SORIGA2. Comparing the results presented in
Table 7 to those presented in Table 1 for the SORIGA, it can be observed that the
performance of the two SORIGAs are similar for most problems while both show
good performance in comparison to other GAs.
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6 Conclusions and Future Work

In recent years, several approaches have been developed into EAs to deal with dy-
namic optimization problems. The random immigrants scheme is a simple yet inter-
esting approach, which aims to improve the diversity of the population by replacing
random indiivudals into the population. However, traditional random immigrants
scheme has some shortcomings. The newly inserted random immigrants may not sur-
vive the selection phase due to their low fitness. In this paper, a new self-organizing
random immigrants scheme is proposed for GAs for DOPs, where the individual
with the lowest fitness and those with indices close to its index are replaced by ran-
dom immigrants in every generation. In order to protect these random immigrants
from being removed immediately by the selection phase, a subpopulation is used to
preserve them. The subpopulation evolves in parallel with the main population and
may enlarge or shrink until going extinct, which is called a replacement event.

The individual replacement and subpopulation strategies in the proposed immi-
grants scheme are dependent: they only have positive effect when applied together.
Without the subpopulation strategy, the proposed replacement strategy makes no
sense. On the other hand, the use of subpopulation without the proposed replace-
ment strategy implies the use of subpopulations whose sizes are not self-organized.
For example, if random individuals are replaced in every generation, as in traditional
RIGAs, and a subpopulation is used to keep new individuals, the subpopulation
should have a fixed size.

In SORIGA where the proposed immigrants scheme is applied, individuals start
to interact between themselves and, when the fitness of the individuals are close,
as in the case of low diversity, one single replacement can affect a great number
of individuals in a replacement event. It is important to observe that the proposed
simple approach can take the system to a self-organizing behavior, which can be
useful for DOPs to maintain diversity of solutions and to allow the GA to escape
from local optima if the problem changes. The experimental results presented in this
paper indicate that SORIGA produces a higher diversity level in the population than
SGA and traditional RIGAs.

Implementing self-organizing behavior, such as the self-organized criticality stud-
ied here, and including it in GAs has shown to be beneficial for their performance
under dynamic environments. Future work will compare the self-organizing prop-
erty with other properties, such as speciation schemes, and investigate its effect
on constrained DOPs, e.g., the dynamic Knapsack problem. Further work has to
investigate other kinds of interaction among individuals that might produce self-
organization.
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nauer, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature, number 1498
in LNCS, pages 149–158. Springer, 1998.

21. D. M. Raup. Biological extinction in earth history. Science, 231:1528–1533, 1986.
22. K. Trojanowski and Z. Michalewicz. Evolutionary optimization in non-stationary

environments. Journal of Computer Science and Technology, 1(2):93–124, 2000.



24 Renato Tinós, Shengxiang Yang

23. F. Vavak, T. C. Fogarty, and K. Jukes. A genetic algorithm with variable range of local
search for tracking changing environments. In H.-M. Voigt, editor, Parallel Problem

Solving from Nature, number 1141 in LNCS. Springer Verlag Berlin, 1996.
24. S. Yang. Non-stationary problem optimization using the primal-dual genetic algo-

rithm. In R. Sarker, R. Reynolds, H. Abbass, K.-C. Tan, R. McKay, D. Essam, and
T. Gedeon, editors, Proc. of the 2003 IEEE Congress on Evolutionary Computation,
volume 3, pages 2246–2253, 2003.

25. S. Yang. Constructing dynamic test environments for genetic algorithms based on
problem difficulty. In Proc. of the 2004 IEEE Congress on Evolutionary Computation,
volume 2, pages 1262–1269, 2004.

26. S. Yang and X. Yao. Experimental study on population-based incremental learning
algorithms for dynamic optimization problems. Soft Computing, 9(11):815–834, 2005.



Genet Program Evolvable Mach 25

Table 1 Experimental results of the mean best-of-generation fitness (selection with
roulette wheel sampling) and relevant statistical comparisons (inside the parentheses).

Problem Dynamics Algorithm
τ ρ SGA RIGA1 RIGA2 SORIGA

10 0.05 30.60 (∼) 30.03 (∼) 30.80 (∼) 30.94
10 0.60 6.62 (+) 8.47 (+) 10.94 (∼) 11.47
10 0.95 12.92 (+) 14.44 (∼) 14.66 (∼) 15.08

Royal Road 200 0.05 59.97 (∼) 59.69 (∼) 59.91 (∼) 59.79
Function 200 0.60 29.38 (+) 37.72 (+) 38.94 (+) 41.10

200 0.95 24.08 (+) 36.10 (+) 38.06 (+) 40.33
1000 0.05 63.10 (∼) 63.10 (∼) 63.26 (−) 63.10
1000 0.60 53.24 (+) 57.07 (+) 57.43 (+) 57.78
1000 0.95 49.70 (+) 57.09 (+) 57.16 (+) 57.75

10 0.10 0.8276 (∼) 0.8328 (∼) 0.8292 (∼) 0.8322
10 0.60 0.7601 (+) 0.7895 (∼) 0.7829 (+) 0.7966
10 0.90 0.8418 (+) 0.8711 (∼) 0.8619 (∼) 0.8692

Deceptive 200 0.10 0.8408 (+) 0.8959 (∼) 0.8912 (+) 0.9127
Function 1 200 0.60 0.8193 (+) 0.8681 (+) 0.8708 (+) 0.8841

200 0.90 0.9092 (+) 0.9314 (∼) 0.9267 (+) 0.9339
1000 0.10 0.8422 (+) 0.9685 (+) 0.9669 (+) 0.9838
1000 0.60 0.8250 (+) 0.9448 (+) 0.9463 (+) 0.9550
1000 0.90 0.9121 (+) 0.9697 (∼) 0.9703 (∼) 0.9743

10 0.05 0.6947 (−) 0.6938 (∼) 0.7000 (−) 0.6894
10 0.60 0.5565 (+) 0.5676 (∼) 0.5654 (+) 0.5682
10 0.95 0.5401 (+) 0.5511 (∼) 0.5463 (+) 0.5521

Deceptive 200 0.05 0.7931 (−) 0.7928 (−) 0.7931 (−) 0.7914
Function 2 200 0.60 0.7496 (+) 0.7582 (−) 0.7597 (−) 0.7572

200 0.95 0.7306 (+) 0.7580 (∼) 0.7597 (−) 0.7572
1000 0.05 0.7985 (−) 0.7985 (−) 0.7987 (−) 0.7983
1000 0.60 0.7900 (+) 0.7917 (−) 0.7919 (−) 0.7915
1000 0.95 0.7867 (+) 0.7916 (∼) 0.7920 (−) 0.7917

10 0.05 0.9673 (∼) 0.9722 (−) 0.9635 (∼) 0.9578
10 0.60 0.7705 (+) 0.8084 (+) 0.8121 (+) 0.8204
10 0.95 0.8268 (+) 0.8475 (∼) 0.8423 (+) 0.8511

Scaling 200 0.05 0.9958 (∼) 0.9985 (∼) 0.9973 (∼) 0.9983
Function 1 200 0.60 0.8760 (+) 0.9496 (+) 0.9509 (+) 0.9670

200 0.95 0.8546 (+) 0.9251 (+) 0.9226 (+) 0.9496
1000 0.05 0.9994 (∼) 0.9997 (∼) 0.9995 (∼) 0.9997
1000 0.60 0.8917 (+) 0.9870 (+) 0.9857 (+) 0.9932
1000 0.95 0.8706 (+) 0.9797 (+) 0.9766 (+) 0.9880

10 0.05 0.9327 (−) 0.9222 (∼) 0.9298 (−) 0.9151
10 0.60 0.7380 (+) 0.7633 (+) 0.7622 (+) 0.7723
10 0.95 0.8217 (+) 0.8328 (∼) 0.8364 (∼) 0.8413

Scaling 200 0.05 0.9898 (∼) 0.9917 (∼) 0.9912 (∼) 0.9926
Function 2 200 0.60 0.8665 (+) 0.9365 (+) 0.9350 (+) 0.9480

200 0.95 0.8517 (+) 0.9113 (+) 0.9068 (+) 0.9288
1000 0.05 0.9963 (∼) 0.9980 (∼) 0.9978 (∼) 0.9979
1000 0.60 0.8860 (+) 0.9747 (+) 0.9743 (+) 0.9828
1000 0.95 0.8633 (+) 0.9616 (+) 0.9588 (+) 0.9770
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Table 2 Experimental results of the mean population fitness (selection with roulette wheel
sampling).

Problem Dynamics Algorithm
τ ρ SGA RIGA1 RIGA2 SORIGA

10 0.05 18.41 18.06 18.82 17.87
10 0.60 4.48 5.55 7.17 7.00
10 0.95 8.10 9.06 9.12 8.92

Royal Road 200 0.05 38.91 38.82 39.40 35.88
Function 200 0.60 20.09 25.68 26.72 25.86

200 0.95 16.74 24.72 26.15 25.46
1000 0.05 40.95 40.99 41.60 37.72
1000 0.60 34.97 37.45 38.14 34.92
1000 0.95 32.68 37.46 37.99 34.92

10 0.10 0.6606 0.6454 0.6577 0.6305
10 0.60 0.4845 0.4935 0.4924 0.4947
10 0.90 0.5709 0.5652 0.5754 0.5639

Deceptive 200 0.10 0.7630 0.7296 0.7475 0.7228
Function 1 200 0.60 0.7342 0.7170 0.7293 0.6952

200 0.90 0.8168 0.7763 0.7880 0.7391
1000 0.10 0.7683 0.7600 0.7673 0.7903
1000 0.60 0.7523 0.7075 0.7158 0.6939
1000 0.90 0.8261 0.7587 0.7693 0.7308

10 0.05 0.5663 0.5572 0.5710 0.5386
10 0.60 0.4202 0.4223 0.4272 0.4235
10 0.95 0.3985 0.4016 0.4032 0.4037

Deceptive 200 0.05 0.6718 0.6554 0.6730 0.6303
Function 2 200 0.60 0.6262 0.6182 0.6351 0.5985

200 0.95 0.6055 0.6165 0.6332 0.5974
1000 0.05 0.6778 0.6607 0.6790 0.6366
1000 0.60 0.6689 0.6534 0.6714 0.6300
1000 0.95 0.6647 0.6532 0.6709 0.6301

10 0.05 0.7329 0.7277 0.7361 0.7008
10 0.60 0.4777 0.4829 0.4884 0.4831
10 0.95 0.5880 0.5761 0.5862 0.5596

Scaling 200 0.05 0.8569 0.8467 0.8599 0.8167
Function 1 200 0.60 0.7436 0.7852 0.8006 0.7734

200 0.95 0.7357 0.7670 0.7766 0.7596
1000 0.05 0.8650 0.8523 0.8671 0.8225
1000 0.60 0.7701 0.8376 0.8508 0.8136
1000 0.95 0.7545 0.8313 0.8428 0.8091

10 0.05 0.7210 0.7024 0.7185 0.6774
10 0.60 0.4738 0.4766 0.4826 0.4763
10 0.95 0.6086 0.5979 0.6017 0.5844

Scaling 200 0.05 0.8380 0.8294 0.8413 0.8032
Function 2 200 0.60 0.7275 0.7724 0.7816 0.7584

200 0.95 0.7243 0.7575 0.7646 0.7467
1000 0.05 0.8459 0.8373 0.8500 0.8099
1000 0.60 0.7534 0.8173 0.8292 0.7973
1000 0.95 0.7373 0.8084 0.8183 0.7938
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Table 3 Experimental results of the mean best-of-generation fitness (tournament selection
with kts = 0.70) and relevant statistical comparisons (inside the parentheses).

Problem Dynamics Algorithm
τ ρ SGA RIGA1 RIGA2 SORIGA

10 0.05 24.14 (−) 23.13 (∼) 25.37 (−) 22.58
10 0.60 10.57 (∼) 10.98 (∼) 11.22 (∼) 10.91
10 0.95 12.77 (∼) 12.47 (∼) 12.70 (∼) 12.53

Royal Road 200 0.05 58.24 (−) 55.93 (−) 57.85 (−) 52.83
Function 200 0.60 33.73 (+) 36.53 (∼) 37.34 (∼) 36.93

200 0.95 28.50 (+) 34.49 (+) 35.38 (∼) 35.33
1000 0.05 62.61 (−) 62.08 (−) 62.54 (−) 60.70
1000 0.60 54.57 (∼) 55.03 (−) 56.01 (−) 54.36
1000 0.95 51.92 (+) 54.31 (−) 55.46 (−) 53.71

10 0.10 0.8222 (∼) 0.8269 (∼) 0.8280 (∼) 0.8252
10 0.60 0.7586 (+) 0.7851 (+) 0.7819 (+) 0.7959
10 0.90 0.8501 (+) 0.8676 (+) 0.8712 (+) 0.8881

Deceptive 200 0.10 0.8258 (+) 0.8761 (+) 0.8761 (+) 0.8931
Function 1 200 0.60 0.8186 (+) 0.8813 (+) 0.8701 (+) 0.8972

200 0.90 0.9112 (+) 0.9484 (∼) 0.9529 (∼) 0.9546
1000 0.10 0.8278 (+) 0.9545 (+) 0.9493 (+) 0.9703
1000 0.60 0.8261 (+) 0.9510 (+) 0.9477 (+) 0.9649
1000 0.90 0.9236 (+) 0.9802 (∼) 0.9748 (+) 0.9833

10 0.05 0.7331 (−) 0.7244 (∼) 0.7299 (−) 0.7221
10 0.60 0.5558 (+) 0.5667 (+) 0.5671 (+) 0.5703
10 0.95 0.5288 (+) 0.5466 (+) 0.5434 (+) 0.5517

Deceptive 200 0.05 0.7971 (−) 0.7967 (−) 0.7971 (−) 0.7962
Function 2 200 0.60 0.7588 (+) 0.7690 (+) 0.7711 (−) 0.7703

200 0.95 0.7433 (+) 0.7658 (+) 0.7686 (∼) 0.7671
1000 0.05 0.7994 (−) 0.7993 (−) 0.7994 (−) 0.7992
1000 0.60 0.7919 (+) 0.7938 (+) 0.7942 (−) 0.7941
1000 0.95 0.7894 (+) 0.7931(∼) 0.7948 (∼) 0.7942

10 0.05 0.9495 (∼) 0.9593 (∼) 0.9579 (∼) 0.9558
10 0.60 0.7794 (+) 0.8156 (∼) 0.8055 (+) 0.8158
10 0.95 0.8333 (+) 0.8525 (∼) 0.8488 (∼) 0.8503

Scaling 200 0.05 0.9809 (+) 0.9964 (∼) 0.9963 (∼) 0.9977
Function 1 200 0.60 0.8604 (+) 0.9513 (+) 0.9424 (+) 0.9629

200 0.95 0.8530 (+) 0.9222 (+) 0.9160 (+) 0.9453
1000 0.05 0.9874 (+) 0.9993 (∼) 0.9992 (∼) 0.9995
1000 0.60 0.8782 (+) 0.9855 (+) 0.9820 (+) 0.9923
1000 0.95 0.8554 (+) 0.9759 (+) 0.9689 (+) 0.9873

10 0.05 0.9229 (∼) 0.9256 (∼) 0.9283 (∼) 0.9291
10 0.60 0.7317 (+) 0.7642 (+) 0.7515 (+) 0.7720
10 0.95 0.8299 (∼) 0.8381 (∼) 0.8333 (∼) 0.8353

Scaling 200 0.05 0.9783 (+) 0.9904 (∼) 0.9940 (∼) 0.9930
Function 2 200 0.60 0.8593 (+) 0.9334 (+) 0.9275 (+) 0.9436

200 0.95 0.8498 (+) 0.9065 (+) 0.9047 (+) 0.9249
1000 0.05 0.9860 (+) 0.9982 (∼) 0.9987 (∼) 0.9987
1000 0.60 0.8697 (+) 0.9715 (+) 0.9677 (+) 0.9819
1000 0.95 0.8527 (+) 0.9601 (+) 0.9500 (+) 0.9712
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Table 4 Experimental results of the mean best-of-generation fitness (tournament selection
with kts = 0.9) and relevant statistical comparisons (inside the parentheses).

Problem Dynamics Algorithm
τ ρ SGA RIGA1 RIGA2 SORIGA

10 0.05 30.97 (∼) 28.93 (+) 31.39 (∼) 30.91
10 0.60 10.91 (+) 11.96 (∼) 11.90 (∼) 12.05
10 0.95 15.49 (∼) 15.26 (∼) 15.19 (∼) 15.44

Royal Road 200 0.05 60.90 (∼) 60.96 (∼) 61.54 (−) 60.60
Function 200 0.60 35.89 (+) 40.69 (+) 41.04 (+) 42.72

200 0.95 29.22 (+) 37.27 (+) 37.37 (+) 39.73
1000 0.05 63.35 (∼) 63.39 (∼) 63.54 (−) 63.34
1000 0.60 56.81 (+) 58.41 (∼) 58.73 (∼) 58.62
1000 0.95 54.10 (+) 57.47 (+) 57.69 (∼) 57.84

10 0.10 0.8224 (∼) 0.8257 (∼) 0.8263 (∼) 0.8247
10 0.60 0.7219 (+) 0.7621 (∼) 0.7508 (+) 0.7681
10 0.90 0.8513 (+) 0.8665 (+) 0.8685 (+) 0.8857

Deceptive 200 0.10 0.8252 (+) 0.8875 (∼) 0.8935 (∼) 0.9011
Function 1 200 0.60 0.8144 (+) 0.8703 (+) 0.8685 (+) 0.8808

200 0.90 0.9083 (+) 0.9406 (∼) 0.9269 (+) 0.9471
1000 0.10 0.8314 (+) 0.9745 (∼) 0.9660 (+) 0.9746
1000 0.60 0.8234 (+) 0.9496 (+) 0.9436 (+) 0.9587
1000 0.90 0.9128 (+) 0.9731 (+) 0.9656 (+) 0.9795

10 0.05 0.7609 (−) 0.7577 (∼) 0.7598 (−) 0.7564
10 0.60 0.5521 (+) 0.5720 (+) 0.5729 (+) 0.5758
10 0.95 0.5058 (+) 0.5456 (+) 0.5462 (+) 0.5544

Deceptive 200 0.05 0.7982 (−) 0.7982 (∼) 0.7983 (−) 0.7981
Function 2 200 0.60 0.7682 (+) 0.7786 (+) 0.7791 (+) 0.7798

200 0.95 0.7482 (+) 0.7779 (∼) 0.7798 (∼) 0.7807
1000 0.05 0.7996 (−) 0.7996 (∼) 0.7997 (−) 0.7996
1000 0.60 0.7936 (+) 0.7957 (+) 0.7959 (+) 0.7960
1000 0.95 0.7943 (∼) 0.7974 (∼) 0.7983 (∼) 0.7970

10 0.05 0.9665 (∼) 0.9683 (∼) 0.9685 (∼) 0.9735
10 0.60 0.7594 (+) 0.7996 (+) 0.7942 (+) 0.8117
10 0.95 0.8318 (+) 0.8508 (+) 0.8521 (+) 0.8613

Scaling 200 0.05 0.9826 (+) 0.9900 (+) 0.9876 (+) 0.9969
Function 1 200 0.60 0.8538 (+) 0.9386 (+) 0.9334 (+) 0.9542

200 0.95 0.8497 (+) 0.9042 (+) 0.9011 (+) 0.9323
1000 0.05 0.9832 (+) 0.9982 (+) 0.9970 (+) 0.9994
1000 0.60 0.8666 (+) 0.9680 (+) 0.9641 (+) 0.9838
1000 0.95 0.8507 (+) 0.9487 (+) 0.9477 (+) 0.9702

10 0.05 0.9402 (∼) 0.9480 (∼) 0.9432 (∼) 0.9515
10 0.60 0.7240 (+) 0.7541 (+) 0.7520 (+) 0.7699
10 0.95 0.8273 (+) 0.8351 (∼) 0.8340 (+) 0.8399

Scaling 200 0.05 0.9725 (+) 0.9818 (∼) 0.9789 (+) 0.9873
Function 2 200 0.60 0.8523 (+) 0.9230 (+) 0.9276 (+) 0.9383

200 0.95 0.8485 (+) 0.8889 (+) 0.8833 (+) 0.9143
1000 0.05 0.9750 (+) 0.9925 (+) 0.9896 (+) 0.9962
1000 0.60 0.8652 (+) 0.9507 (+) 0.9476 (+) 0.9695
1000 0.95 0.8508 (+) 0.9314 (+) 0.9248 (+) 0.9514
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Table 5 Experimental results of the mean best-of-generation fitness (selection with
roulette wheel sampling and rr = 12) and relevant statistical comparisons (inside the
parentheses). The results of SGA are equal to those presented in Table 1.

Problem Dynamics Algorithm
τ ρ SGA RIGA1 RIGA2 SORIGA

10 0.05 30.60 (+) 32.73 (∼) 32.51 (∼) 32.95
10 0.60 6.62 (+) 13.77 (+) 14.63 (+) 15.99
10 0.95 12.92 (+) 16.39 (+) 16.83 (+) 18.29

Royal Road 200 0.05 59.97 (∼) 59.90 (∼) 60.83 (−) 59.64
Function 200 0.60 29.38 (+) 41.38 (+) 42.37 (+) 47.46

200 0.95 24.08 (+) 40.32 (+) 41.81 (+) 47.22
1000 0.05 63.10 (∼) 63.09 (∼) 63.35 (−) 63.07
1000 0.60 53.24 (+) 57.48 (+) 58.65 (+) 59.95
1000 0.95 49.70 (+) 57.81 (+) 58.81 (+) 59.98

10 0.10 0.8276 (∼) 0.8425 (∼) 0.8421 (∼) 0.8394
10 0.60 0.7601 (+) 0.8020 (+) 0.8034 (+) 0.8321
10 0.90 0.8418 (+) 0.8880 (∼) 0.8922 (∼) 0.8945

Deceptive 200 0.10 0.8408 (+) 0.9817 (∼) 0.9423 (+) 0.9863
Function 1 200 0.60 0.8193 (+) 0.9372 (+) 0.9334 (+) 0.9541

200 0.90 0.9092 (+) 0.9562 (+) 0.9690 (−) 0.9624
1000 0.10 0.8422 (+) 0.9986 (∼) 0.9886 (+) 0.9992
1000 0.60 0.8250 (+) 0.9862 (+) 0.9854 (+) 0.9902
1000 0.90 0.9121 (+) 0.9874 (+) 0.9933 (−) 0.9901

10 0.05 0.6947 (−) 0.6883 (−) 0.7048 (−) 0.6618
10 0.60 0.5565 (+) 0.5760 (∼) 0.5761 (∼) 0.5736
10 0.95 0.5401 (+) 0.5647 (∼) 0.5610 (+) 0.5670

Deceptive 200 0.05 0.7931 (−) 0.7913 (−) 0.7943 (−) 0.7868
Function 2 200 0.60 0.7496 (−) 0.7582 (−) 0.7675 (−) 0.7454

200 0.95 0.7306 (+) 0.7583 (−) 0.7679 (−) 0.7453
1000 0.05 0.7985 (−) 0.7981 (−) 0.7988 (−) 0.7975
1000 0.60 0.7900 (−) 0.7917 (−) 0.7934 (−) 0.7890
1000 0.95 0.7867 (+) 0.7916 (−) 0.7936 (−) 0.7890

10 0.05 0.9673 (∼) 0.9652 (∼) 0.9691 (−) 0.9616
10 0.60 0.7705 (+) 0.8395 (+) 0.8450 (+) 0.8510
10 0.95 0.8268 (+) 0.8664 (+) 0.8680 (∼) 0.8731

Scaling 200 0.05 0.9958 (∼) 0.9986 (∼) 0.9988 (−) 0.9983
Function 1 200 0.60 0.8760 (+) 0.9784 (+) 0.9772 (+) 0.9855

200 0.95 0.8546 (+) 0.9676 (+) 0.9592 (+) 0.9834
1000 0.05 0.9994 (∼) 0.9997 (∼) 0.9998 (−) 0.9997
1000 0.60 0.8917 (+) 0.9958 (+) 0.9952 (+) 0.9971
1000 0.95 0.8706 (+) 0.9933 (+) 0.9913 (+) 0.9964

10 0.05 0.9327(−) 0.9359(−) 0.9292 (∼) 0.9241
10 0.60 0.7380 (+) 0.7992 (∼) 0.7897 (+) 0.8019
10 0.95 0.8217 (+) 0.8421 (∼) 0.8435 (∼) 0.8402

Scaling 200 0.05 0.9898 (∼) 0.9929 (∼) 0.9918 (∼) 0.9922
Function 2 200 0.60 0.8665 (+) 0.9583 (+) 0.9582 (+) 0.9670

200 0.95 0.8517 (+) 0.9449 (+) 0.9371 (+) 0.9587
1000 0.05 0.9963 (∼) 0.9982(−) 0.9982 (∼) 0.9978
1000 0.60 0.8860 (+) 0.9872 (+) 0.9860 (+) 0.9907
1000 0.95 0.8633 (+) 0.9825 (+) 0.9794 (+) 0.9887
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Table 6 Experimental results of the mean best-of-generation fitness (selection with
roulette wheel sampling and rr = 24) and relevant statistical comparisons (inside the
parentheses). The results of SGA are equal to those presented in Table 1.

Problem Dynamics Algorithm
τ ρ SGA RIGA1 RIGA2 SORIGA

10 0.05 30.60 (∼) 33.29 (∼) 33.98 (−) 32.09
10 0.60 6.62 (+) 16.73 (+) 17.55 (+) 15.99
10 0.95 12.92 (+) 18.49 (∼) 18.76 (∼) 18.20

Royal Road 200 0.05 59.97 (−) 59.82 (−) 61.48 (−) 55.11
Function 200 0.60 29.38 (+) 42.84 (+) 45.57 (+) 47.43

200 0.95 24.08 (+) 42.53 (+) 45.24 (+) 47.97
1000 0.05 63.10 (−) 63.08 (−) 63.51 (−) 57.16
1000 0.60 53.24 (+) 58.20 (−) 59.59 (−) 55.52
1000 0.95 49.70 (+) 58.16 (−) 59.81 (−) 55.63

10 0.10 0.8276 (+) 0.8645 (∼) 0.8468 (+) 0.8675
10 0.60 0.7601 (+) 0.8408 (∼) 0.8251 (+) 0.8459
10 0.90 0.8418 (+) 0.8999 (∼) 0.9138 (−) 0.8950

Deceptive 200 0.10 0.8408 (+) 0.9958 () 0.9682 (+) 0.9801
Function 1 200 0.60 0.8193 (+) 0.9619 (+) 0.9659 (+) 0.9768

200 0.90 0.9092 (+) 0.9702 (+) 0.9824 (∼) 0.9833
1000 0.10 0.8422 (+) 0.9986 (∼) 0.9886 (+) 0.9992
1000 0.60 0.8250 (+) 0.9862 (+) 0.9854 (+) 0.9902
1000 0.90 0.9121 (+) 0.9874 (+) 0.9933 (−) 0.9901

10 0.05 0.6947 (−) 0.6736 (−) 0.7094 (−) 0.6330
10 0.60 0.5565 (+) 0.5803 (−) 0.5868 (−) 0.5755
10 0.95 0.5401 (+) 0.5744 (−) 0.5747 (−) 0.5710

Deceptive 200 0.05 0.7931 (−) 0.7890 (−) 0.7946 (−) 0.7765
Function 2 200 0.60 0.7496 (−) 0.7535 (−) 0.7710 (−) 0.7151

200 0.95 0.7306 (+) 0.7583 (−) 0.7716 (−) 0.7173
1000 0.05 0.7985 (−) 0.7979 (−) 0.7989 (−) 0.7922
1000 0.60 0.7900 (−) 0.7904 (−) 0.7942 (−) 0.7782
1000 0.95 0.7867 (−) 0.7906 (−) 0.7944 (−) 0.7786

10 0.05 0.9673 (−) 0.9637 (−) 0.9694 (−) 0.9366
10 0.60 0.7705 (+) 0.8586 (∼) 0.8568 (∼) 0.8587
10 0.95 0.8268 (+) 0.8739 (∼) 0.8765 (−) 0.8693

Scaling 200 0.05 0.9958 (∼) 0.9986 (−) 0.9986 (−) 0.9959
Function 1 200 0.60 0.8760 (+) 0.9862 (∼) 0.9847 (∼) 0.9852

200 0.95 0.8546 (+) 0.9809 (+) 0.9722 (+) 0.9859
1000 0.05 0.9994 (−) 0.9997 (−) 0.9997 (−) 0.9987
1000 0.60 0.8917 (+) 0.9971 (−) 0.9970 (−) 0.9966
1000 0.95 0.8706 (+) 0.9959 (+) 0.9941 (+) 0.9966

10 0.05 0.9327(−) 0.9315(−) 0.9386 (−) 0.9033
10 0.60 0.7380 (+) 0.8123 (∼) 0.8114 (∼) 0.8116
10 0.95 0.8217 (∼) 0.8507 (−) 0.8501 (−) 0.8271

Scaling 200 0.05 0.9898 (−) 0.9936 (−) 0.9956 (−) 0.9855
Function 2 200 0.60 0.8665 (+) 0.9681 (−) 0.9694 (−) 0.9648

200 0.95 0.8517 (+) 0.9571 (+) 0.9493 (+) 0.9645
1000 0.05 0.9963 (−) 0.9982(−) 0.9999 (−) 0.9936
1000 0.60 0.8860 (+) 0.9912 (−) 0.9910 (−) 0.9877
1000 0.95 0.8633 (+) 0.9883 (−) 0.9855 (+) 0.9871
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Table 7 Experimental results of the mean best-of-generation fitness when the neighbor-
hood reserving selection scheme is employed (SORIGA2) and the statistical comparison
regarding SORIGA2 - SORIGA (inside the parentheses). The results of SORIGA are pre-
sented in Table 1.

Dynamics Royal Road Deceptive Deceptive Scaling Scaling
τ ρ Function Function 1 Function 2 Function 1 Function 2

10 0.05 31.36(∼) 0.8291(∼) 0.6925(∼) 0.9627(∼) 0.9202(∼)
10 0.60 11.63(∼) 0.7947(∼) 0.5701(∼) 0.8213(∼) 0.7765(∼)
10 0.95 15.08(∼) 0.8766(∼) 0.5508(∼) 0.8509(∼) 0.8384(∼)
200 0.05 58.48(−) 0.8906(−) 0.7910(∼) 0.9981(∼) 0.9925(∼)
200 0.60 40.82(∼) 0.8781(∼) 0.7569(∼) 0.9670(∼) 0.9489(∼)
200 0.95 40.12(∼) 0.9391(∼) 0.7569(∼) 0.9499(∼) 0.9322(+)
1000 0.05 62.91(−) 0.9588(−) 0.7983(∼) 0.9996(∼) 0.9981(∼)
1000 0.60 56.88(−) 0.9594(∼) 0.7914(∼) 0.9930(∼) 0.9842(∼)
1000 0.95 56.78(−) 0.9758(∼) 0.7911(−) 0.9881(∼) 0.9761(∼)


