
Constructing Dynamic Test Environments for
Genetic Algorithms Based on Problem Difficulty

Shengxiang Yang
Department of Computer Science

University of Leicester
University Road, Leicester LEI 7RH, UK

Email: s.yang@mcs.le.ac.uk

Abstract-In recent years the study of dynamic optimization
problems has attracted an increasing interest from the com-
munity of genetic algorithms and researchers have developed a
variety of approaches into genetic algorithms to solve these prnb-
lems. In order to compare their performance an important issue
is the construction of standardized dynamic test environments.
Based on the concept of problem difficulty this paper proposes a
new dynamic environment generator using a decomposable trap
function. With this generator it is pnsssihle to systematically
construct dynamic environments with changing and hounding
difficulty and hence we can test different genetic algorithms under
dynamic environments with changing hut controllable difficulty
levels.

I. INTRODUCTION

Due to the robustness of finding good solutions to difficult
problems, genetic algorithms (GAS) have been well studied
as a kind of optimization and search techniques that are
based on natural selection and population genetics. They are
widely and usually applied for solving stationary optimization
problems where it is assumed that no changes occur with
respect to the problems being solved during the course of com-
putation. However, many real-world optimization problems
are non-deterministic and subject to changes over time with
respect to the objective function, the decision variables, and/or
the environmental parameters. For example, in production
scheduling problems the scheduling demands and available
resources may change over time. For dynamic optimization
problems, the goal of an optimization algorithm is no longer
to find a (stationary) optimal solution, but to continuously
track the changing or moving optimum in the problem space.
This presents serious challenge to traditional optimization
techniques as well as conventional GAS.

Solving dynamic optimization problems (DOPs) by GAS
was first addressed by Goldberg and Smith [IO] and has
attracted a growing interest from GA's community in recent
years [Z], [181. Researchers have developed many approaches
into GAS to address this problem [4], such as the hyper-
mutation scheme [5], [ZO], the random immigration scheme
[131, memory-based methods [16], [Zl], and multi-population
approaches [3]. In order to compare the performance of EAs
with different approaches for dynamic optimization problems,
on the meanwhile, researchers have developed several dynamic
problem generators [41, [19]. Just as that benchmark test
problems play an important role in the study of GAS in

stationary environments, constructing standardized dynamic
environments plays an important role in comparing GAS for
DOPs because the performance of GAS for DOPs depends not
only on the problem being solved but also significantly on the
dynamics of environmental changes.

In this paper a new dynamic environment generaex is
proposed based on the concept of problem difficulty [l:!]. In
his recent book, Goldberg [12] remotivated and expanded upon
Holand's notation of a schema or building block (BB) [15] to
understand the raw material available for genetic search. He
justified that the problem difficulty can be decomposed along
the lines of BB processing into three core elements: deception
for intra-BB difficulty, scaling for inter-BB difficulty, and
exogenous noise for extra-BB difficulty. Other elements of
problem difficulty, e.g. inter-BB epistasis or crosstalk. can
be transformed into one of the above three core elements.
Based on this understanding, it is possible to design bounding
adversarial problems that represent different dimensions of
problem difficulty [12].

In this paper the idea of bounding problem difficulty is
generalized to construct dynamic test environments for GAS.
A framework of decomposable trap function is proposed as
the base to construct different dynamic test environments.
From this framework it is possible to systematically con~truct
dynamic test environments of bounded difficulty and hence
test the effectiveness of different GAS under these dynamic
environments.

11. REVIEW OF RELEVANT WORK

In order to study the performance of GAS for dynamic
optimization problems, researchers have developed a number
of dynamic problem generators to create dynamic test envi-
ronments. In general, these generators have some common
characteristics and can be roughly divided into four types.

A. Characteristics of Dynamic Environment Generators

In order to compare the performance of different GAS in
dynamic environments, dynamic problem generators should
meet some basic requirements or have some common proper-
ties. Some of these properties are listed as follows: . It should be possible to vary environmental parameters

related to different facets of the problem being solved;

0-7803-85 15-2/04/$20.00 02004 IEEE 1262

mailto:s.yang@mcs.le.ac.uk

. It should be simple to realize different dynamics, such as
frequency of change, severity of change, cyclic or not; . It should be convenient to adjust the complexity and
difficulty of dynamic problems; . It should be computationally efficient to realize required
dynamic environments; . It should be easy to carry out formal analysis.

B. Classification of Dynamic Environment Generators

In general, dynamic problems are created based on one or
more stationary prohlem(s). Through changing (the parameters
of) the stationary problem(s) different dynamic environments
can be constructed, There are several criteria along which
dynamic environments could be categorized. According to
the changing mechanisms dynamic problem generators can be
roughly divided into four types, as described below.

1) Switching Fitness Landscapes
This type of dynamic environment generators is quite sim-

ple. The environment is just switched between two or more
statioaary problems or between two or more states of one
statio~~ary problem. For example, a number of researchers have
tested their algorithms on a time varying knapsack problem
where the total weight capacity of the knapsack changes over
time, usually oscillating between two or more fixed values
[9], [161. [IS]. [21]. Cobb and Grefenstette [6] constructed
a significantly dynamic environments that switches between
two predefined different fitness landscapes. The dynamic bit-
matching problem [7] aims to maximize the number of bits
in a string that matches a given template and the template
varies over time. For this type of generator, the dynamics of
environmental changes is mainly characterized by the speed
of environmental changes. It can be fast or slow relative to
EA time and is usually measured in EA generations.

2) Drifting Fitness Landscapes
The dynamic problem generator starts from a fitness land-

scape f(?), defined in n-dimensional real space (.' E R").
This fitness landscape is drifted along one or more axes over
time while its overall shape (morphology) keeps unchanged.
That is, the dynamic environment can be defined as:

where the dynamics is realized by defining a "motion algo-
rithm" for the step size A&, which can be large or small.

3) Reshaping Fiiness Landscapes
The third type of dynamic problem generators starts from

a predefined fitness landscape, defined in n-dimensional real
space [141, [191, [22]. This stationary landscape is composed
of a number of component landscapes (e.g., cones), each of
which can change independently. Each component has its own
morphology with such parameters as peak height, peak slope
and peak location. And the center of the highest peak is the
optimum of the landscape.

For example, Morrison and De long's generator 1191, called
DF1, defines the basic fitness landscape in n-dimensional real

space as follows:
-

where Z = (zl,. . . , z,,) is a point in the landscape, m
specifies the number of cones in the environment, and each
cone i is independeftly specified by its height He, its slope
Ri, and its center X ; = (X i l , . . . ,Xi") . These independently
specified cones are blended together by the ma2 function.
Based on this stationary landscape dynamic problems can be
created through changing the parameters of each component
independently or jointly. Typically there exist three kinds of
dynamics of environmental changes, described as follows: . Changing peak height (H J . This can result in global

. Changing peak slope (I&). This can result in peak(s)

Changing peak location (X&
For this type of generator, the complexity of dynamic envi-

ronments can be scaled by changing the number of dimensions
andlor the number of peaks. And the environmental dynamics
is related to the speed of changes (rapid or slow relative to
EA time) and the severity of changes for each parameter (the
step size may be large or small).

optima becoming local optima, vice versa.

being hidden or exposed br the changing peak(s).

4) Revolving Fitness Landscapes
In [23], [24], a dynamic problem generator is proposed,

which can generate dynamic environments from any binary-
encoded function. Given a function f(4 defined on 1-hit
strings (5 E {O,l}I), the fitness landscape changes every r
generations. The changing mechanism is implemented using
an exclusive-or (XOR) operator as follows: . First, for each environmental change period k = [t/r1,

we create a binary template F(k) that contains p x 1 (p E
10.0, LO]) ones randomly or in a controlled way. . Then, a binary mask G E {0,1}' for period k can be
incrementally generated as follows:

(3)

where "$" is the bitwise exclusive-or operator (i.e., 1 fB
1 = 0, 1 e0 = 1, O f B O = 0). For the first period k = 1,
M(1) is initialized to be a zero vector.
Finally, an individual 2 at generation t E [(k - 1) ~ , k r]
can be evaluated as follows:

G(k) = G(k - 1) fB f (k)

With this generator, the fitness landscape can be revolved
while certain properties, e.g., the number of optima and their
fitness values and distances', remain unchanged though their
locations are shifted. The environmental dynamics can be
easily tuned by two parameters: the speed of change r and
the severity of change determined by p , the ratio of ones in

'Let d(3,g den& the Hamming distance between solutions 2 T d V.
Given any binary mask A, it is easy to prove that d(b @ A,<@ M) =
d (3 , f l . That is, the XOR operator "W is Hamming distance conservative.

1263

?. The bigger the value of p, the severer the environmental
change and the bigger the challenge to GAS. If p = 0.0, the
environment stays stationary while if p = 1.0 the environment
undergoes extreme changes in the sense of Hamming space.

111. A DESIGN APPROACH TO PROBLEM DIFFICULTY
In order to study and compare the performance of GAS, a

number of test functions have been designed. A key concern
here is given to what constructs a difficult problem for GAS.
Among these functions a family of fitness landscapes are
called deceptive functions [l l] , which are developed to chal-
lenge the fundamental working mechanism of GAS -Holland’s
building block hypothesis [151. The building block hypothesis
suggests that GAS work by combining low-order BBs to form
higher-order BBs. However, if in a function the low-order BBs
do not combine to form higher-order BBs, GAS may have
difficulty in solving this function.

Along the line of BB processing Goldberg [12] claimed
that the problem difficulty can be decomposed into three core
elements: deception,’scaling, and exogenous noise. Other ele-
ments of problem difficulty can be transformed into one of the
three core elements. In the following sections we briefly review
relevant topics with respect to Goldberg’s decomposition of
problem difficulty.

A. Unitation and Trap Functions

The unitation function has been repeatedly used for the
purpose of analysis of hard and easy fitness functions for
GAS. Let Z = (51,. . . ,zl) be a binary string of length 1 .
The unitation U(?) of Z is a function defined as:

1

U(?) =u(q ,..., I[) =z1 +.. .+ 2, = czi (5)

A trap function f(Z) is defined based on ~(5) as follows:

i=l

f (z - U(?)), if u(Z) 5 t
f(Z) = F(U(5)) = (6) { - ,-=(u(Z) - z) , otherwise

where a is the local (possibly deceptive) optimum, b is the
global optimum, and z is the slope-change location which
seperates the attraction basin sizes of the two optima. The
schematic of a generalized 1-bit trap function is shown in Fig.
1. For the trap function, the parameter setting of a, b and t
determines whether it is easy or difficult for GAS to find the
global optimum b as opposed to the local optimum a.

B. Intra-BB Problem Difiulty: Deception

Deceptive functions are a family of functions where there
exist low-order BBs that do not combine to form higher-order
BBs: instead they form BBs resulting in a deceptive solu-
tion that is sub-optimal itself or near a sub-optimal solution
(251. The existence of misleading BBs in deceptive functions
presents serious challenge to GAS.

During the early stage deceptive functions were studied and
constructed based on trap functions [l]. Deb and Goldberg [8]
have shown that for a trap function to be deceptive on average

0 2 1
u(Z) - unitation

Fig. 1. The schematic of a generalized 1-bit uap function.

U(?) - unitation

Fig. 2.
of ones in the binary suing.

A 6-bit deceptive Uap function, shown as a function of the riumber

the ratio of the fitness of the local optimum to that of the global
optimum r = a / b should be set as follows:

2 - 1/(1- z)
2 - l/t r2 (7)

For example, Fig. 2 shows a deceptive trap function that is
based on 6-bit strings. This function is constructed from the
basic trap function in Eq. (6) with 1 = 6, z = 5, a = 0.8, and
b = 1. It is easy to see that this function satisfies the condition
for full deception of Eq. (7) since

(8)
2 - 1/(6 - 5) 5 0.8

1.0 - 2-115 9
- _ - r = - = 0.8 >

C. Inter-BB Problem Dificulty: Scaling
Scaling problem arises in many functions that con& of

several BBs because some BBs are worth more to the solu-
tion than others. Disparate scale among different BB!; may
cause serious difficulty for GAS in that it leads to inaccurate
statistical processing of low-salient BBs and temporal delays
of processing of low-salient BBs due to genetic drift [12].

Scaling problem can be formulated using additively decom-
posable functions as follows:

i=l

1264

where m sub-functions (or BBs) are justaposed and summed
together. Each sub-function fi is IIiI-bit long and is indexed
from the bit string Z by the set A, i.e., 2 = {?I>, . . . ,.'I,).
For example, given two sub-functions f l and fi of 3 and 4
bits respectively, we have 51, = ~ 1 x 2 ~ 3 (11 = {1,2,3}),
"1, = x~xgxgz, (Iz = {4,5,6,7)), and 5 = zlzz .. . z,.

The parameter c, in Eq. (9) is the scaling facror for each
sub-function f;. Through setting the scaling factors synthetic
test functions with different BB scalings can be constructed.
In general, four types of scaling schemes have been used in
test functions: 1). the uniform scaling where ci = c (c is a
constant), e.g., the OneMax [I] and Royal Road [171 functions;
2). the exponential scaling where c; = d"' (d # 1 is a
constant), e.g., the BinInt problem; 3). the power-law scaling
where e, = id (d # 0 is a constant); and 4). the mixed scaling
where a mixed expression of above schemes is used for ci.

D. Extra-66 Problem Difficulty: Noise
In real world many optimization problems have an outside

environment and may suffer from environmental noise. The
addition of outside noise causes difficulty for GAS because it
may affect the statistical processing of information cumulated
in the population and hence makes it more difficult for GAS
to discriminate one decision altemative from another reliably.

Exogenous noise can be modeled using an additive zero-
meaned Gaussian noise as follows:

-

f (3) = f'(3) + Gauss(0, U;) (10)

where f'(5) is the exact fitness function being considered.
Exogenous noise may be quantified by the fitness variance of
the noise source, U;. The higher the variance the more difficult
the problem will be for GAS.

0 ti

u(Zr,) - unitation

Fig 3.
Decomposable Trap Function (DW.

The schematic of a component trap function f, in the base

Fig. 4.
functions, which are exponentially scaled.

An 18-bit decomposable function consisting of three 6-bit sub-trap

where m basic trap functions are justaposed and summed
together. The schematic of a component trap function f; is
shown in Fig. 3, where a,, b; and z, are the local (deceptive)
ootimum. the global outimum. and the slooe-change loca-

I"' CoNsTRUCT"C BAS'C
BASED ON PROBLEM DIFFICULTY

I I

Based on concepts of problem difficulty, it is possible to
design dynamic problems that represent changing but bounded
difficulty levels. The aim of this endeavor is to allow us to
test different algorithms against a limited number of hounded
difficult dynamic Problems in such a Way that algorithm

tion for f i respectively. Each trap function consists of l i -
bit substring 3,; (l , = \I"\) and the set of substrings 2,-
(i = 1 , . , . , m) forms a disjunctive of hit string 3.
The parameter in E¶. (11) is the scaling factor of each
trau function f,. which defines the weight of different BBs

success against them ensures success against a large class of
dynamic problems no harder than the test cases. In this section
we describe in detail how to construct dynamic environments
that explicitly take problem difficulty into account.

A. Formulation of Base Decomposable Trap Function (DTFJ
Just like many other dynamic problem generators, our

proposed generator also starts from a base stationary function.
This base function consists of additively decomposable trap
functions (DTFs), as defined as follows: - m

I .. I

(here trap functions). For example, Fig. 4 shows an 18-bit
decomposable function consisting of three 6-bit BBs. Each
building block BB; (i = 1 ,2 ,3) is defined based on a 6-
bit trap function according to Eq. (12) with l i = 6, z; = 5,
ai = 0.8, and b, = 1 for all i = 1,2 ,3 . Here the three BBs
are exponentially .scaled with ci = 2"-' (i = 1,2,3).

Based on the above framework different dynamic environ-
ments can he constructed by adjusting corresponding parame-
ters. Below we describe several basic dynamic DTF (DDTF)
environments that can be constructed from the above frame-
work. As usual in all the following dynamic environments we
assume that the environment changes every 7 GA generations.

B. Dynamic DTF with Changing Deception Dificulty
With trap function designed as the subfunction inside the

DTF it is quite simple to construct dynamic environments

1265

y. a;(t) a?

2T 2y li

-..-_.

0 2, 1, 0 2,"
0

u(.'ri) - unitation 2," += q(t) * 2y

~ (3 1 ,) - unitation
Fig. 5 . The illustration of a dynamic trap function f; wiIh changing heights
of optima. The solid c w e is the threshold case where o,(t) = a:. Fig. 6. The illustration of a dynamic trap function f, with changing attraction

basin sizes of optim. The solid curve is the threshold case where r<(t) .= zT.
with changing but hounded deception difficulty. There are
three schemes to change the deception difficulty of each trap
function, individually or wholly. They are described below.

2) Changing the Attracfion Basin Sizes of Optima
Another way of changing DTF's deceptive difficulty is to

change the attraction basin sizes of local and global optima
while keeping their peak heights constant. In this case, the
dynamic environment generated can be formulated by substi-
tuting Ea. (14) with the following wuation.

I) Changing the Heights of Optima
The first simple scheme of changing the deception difficulty

of DTF is to change the peak heights of optima with other
parameters set to constant values. The dynamic environment

where parameters a, and bi may vary over time while other
parameters, e.g., c; and 2;. keep constant.

For the sake of simplicity, we can even fix bi to a constant,
i.e., b,(t) = b;, while change the value of u;(t) . In this case,
according to Deb and Goldberg's deceptive condition of Eq.
(7), for the trap function f i to be deceptive on average we
have the following threshold value for ai , denoted by a?.

2 - l / (l , - 2,)

2 -] / t i
ay = b i x

For example, given zi = 4 and l i = 6 we have a: = 0.857bi.
In order to construct a dynamic environment of varying
deception difficulty we can recurrently change the value of
a, (t) in a chosen range of [u y , a y] . As shown in Fig. 5 , the
parameter settings for a;(t) should satisfy the condition:

0 5 a y < ay < bi 5 a y (16)

Then a typical environmental dynamics can be as follows.
Starting from a,", every T generations the value of a i (t) is
increased by a step size A until it reaches ay where it will
bounce back to decrease. When the value of a i (t) reaches aF
it will bounce back to increase again. This way the dynamic
environment changes from non-deceptive to deceptive (when
ai(t) reaches a y) to non-deceptive (when a;(t) reaches b, and
hence becomes the new global optimum) and then reverse.

where ai, bi and ci are constant while zi changes over time
in a range of [z?, tf"]. Similarly, from Eq. (7) we can derive
the threshold value for ti. denoted by zT, in order for tha trap
function f, to be deceptive on average.

where T" = ai/bi and the ceiling function ryl returns the
minimum integer that is not less than y for t?. For example,
given T~ = 0.8 and l , = 10 we have 2' = 8. As shown i n Fig.
6, the parameter settings for t i (t) should satisfy the condition:

(19) 0 5 2," < t y < 2y 5 li
Similarly, by changing ti@) from 2," to 2' to ty and then

bouncing back, the dynamic environment can be constructed,
which changes from non-deceptive (relatively easy) to decep-
tive (relatively hard) and then reverse.

3) Changing Both the Heights and Basin Sizes of Oprima
The third scheme of changing DTF's deception difficulty is

to change the heights and attraction basin sizes of optima at the
same time. And the dynamic environment can be formulated
by substituting Eq. (14) with the following equation.

where all the parameters a;, bi and z, may change ove:r time.
Now whether the trap function f i is deceptive depends on the
exact values of a,(t) , b i (t) and z i (t) . In Fig. 7 the threshold

1266

0.6

0.4
i

0.2

0 ’ ” ’ ” ” ’ , ”
0 I 2 3 4 5 6 7 8 9 10

2 2

Fig. 7. Thhe threshold relation curve between rl and i,, shown with a IO-bit
trap function. The hiangles mark lhe exact positions in the relation CUNC.

-

~

-

relation curve between ri = ai/bi and zi with respect to
deceptionivity is drawn with a IO-bit trap function. When the
value pair (z i , ~ ~) at time t falls to the right of the curve, f i
will be deceptive on average. Through setting the pair (z i , ri)
over time appropriately we can hound the deception difficulty
of the constructed dynamic environments.

C. Dynamic DTF with Changing Sculings of Subfunctions

Due to the intrinsic decomposability of the DTF it is quite
simple to construct dynamic environments with time-varying
scaling difficulty, which can be represented as follows:

m m

f(3,t) = Cfi(?L,t) = C C i (t) X F i (U (Z I ,) , t) (21)
i=l i=l

where the scaling factor ci for fi changes over time while
other parameters keep constant.

Through using different dynamics of changing c,’s for
fi (i = 1,. . . , m) different dynamic environments can he
constructed. For example, similar to the “moving mouse under
carpet’’ scheme in Trojanowski and Michalewicz’s generator
[22] we can use a “moving wave“ scheme where the m trap
functions form a logic cycle: f l --t f2 + . . . - f, + fl and
the dynamics of changing ci is defined as follows:

C i (t) = mas{l, 2 k - d (” P (t)) 1 (23)

where P(t) E {I,. . . , m} is the index of the randomly or
orderly chosen subfunction that lies in the wave peak at time
t , d(i ,P(t)) is the distance between fi and f p (t) in the logic
cycle, and k is a fixed neighbourhood size. Only those trap
functions in the neighbourhood of f p (t) are amplified with
the wave peak subfunction f p (t) amplified up to Zk fold. Fig.
8 shows a simplified moving wave scheme, called “moving
token” scheme, where a token is assigned to each trap function
orderly and only the token holder is amplified (doubled).

D. Dynamic DTF with Changing Noise Environments
In order to investigate the effect of outside environmental

noise on GA’s performance we can add time-varying exogen-

Fig. 8. An 18-bit decomposable function consisting of three 6-bit sub-
trap functions, which are dynamically scaled according to a “moving token”
scheme. The token is on the (a) first, (b) second, and (c) third base trap
function in three consecutive environmental changes respectively.

ous noise with zero-meaned Gaussian noise into the DTF. The
constructed dynamic environment can be described as follows:

f (a, t) = f’(3, t) + Gauss(0, &t)) (24)
where f’(.’, t) is the original DTF and the variance of exoge-
nous noise, ug(t) changes over time. By bounding the value
of &t) the problem difficulty due to outside noise can he
bounded. For example, we can adjust the value of u$(t) in a
range of [uLin, U&,,]. Starting from the minimum u : , ~ we
can increase the value of U; by a step size until it reaches the
maximum ukaz and then decrease the value of u$, and so on.

v. CONSTRUCTING ADVANCED DYNAMIC ENVIRONMENTS
Based on the basic framework described above, there ex-

ist many modifications and extensions of constructing more
complex dynamic environments. In the following sections we
describe several advanced dynamic environments extended
from the hasic framework respectively.

A. Constructing Hierarchical Dynamic Environments
A natural extention from above basic dynamic environments

is to construct hierarchical dynamic DTF (HDDTF). For
example, a two-level HDDTF can be formulated as follows.

f (Z , t) =CZ1 fi(S<, t) +E,”=, f;(fI,. , . A t)
(25)

where c i (t) can be a variable or a constant and Fi(u(Zli),t)
can be defined as Eq. (14), Eq. (17), Eq. (ZO), or Eq. (22). That

= E21ci (t)xF, (.(a, 1 t)) + &f; (h ,. , . ,fm 1 t)

1267

~ (3 1 ,) - unitation

Fig. IO. The schematic of a uap function f; with a plateau io D n i 2

Fig. 9. The schematic of a two-level hierarchical dynamic decomposable
bap function. The unique top level (Level 1) function is a linear function in
line with the number of trap functions that have k e n solved in the base level.

is, the dynamics for changing the base level trap functions
can be any of those described in Section IV. On top of the
m base level trap functions n functions fi = 1.. . , n) are
defined and summed into the whole fitness function. These n
top level functions can represent different interactive relations
between the base level trap functions. For example, Fig. 9
shows a simple two-level hierarchical DTF where in the top
level (Level 1) only one function f’ is defined as follows:

f’(fi,. . . , fm,t) = d X u (f f (t)) = d x x b f , (t)
m

(26)

where d is a slope factor, b;(t) = b,,(t). . .6f,,,(t) and the
variable b f , (t) represents whether the trap function f, on the
base level is solved at time t . That is, it is defined as follows.

t=1

Through defining different functions on the top level and
applying different dynamics of changing these functions we
can construct different hierarchical dynamic DTF environ-
ments and investigate the performance of GAS with respect
to different interactions between BBs, such as episiasis and
hitchhiking. And ,the formulation in Eq. (25) can be easily
generalized to define multi-level HDDTFs.
B. Constructing Dynamic DTFs with Varying Plaieau

An important topic on problem difficulty for GAs.is related
to neutral values or plateau in the fitness landscape. The DTF
framework can be extended to include a plateau for each trap
function fi by replacing Eq. (12) with the following equation.

i - u (t ,)) , if ~ (~ 1 ~) ’ s 2;

if 2,‘ < ~ (5 1 ~) < z: (28)

&(~(31<) - z i) , otherwise

where ai, bi and di (2 0) are the local, global optimum and
plateau height of f; respectively. And zt and z: are, in the
term of unitation, the start and end points of the plateau, which
separates the attraction basins of the two optima. The size of
the plateau is denoted by si = 2: - 2:. The schematic of the
extended DTF, called DTF2, is shown in Fig. 10.

There are two schemes to construct dynamic environments
with respect to plateau landscape. The first dynamics is to
move the location of the plateau while keep its height and
size constant. That is, z t (t) and t:(t) slide horizontally with
d i (t) = d; and si(t) = z ? (t) - z t (t) = si. This dynamics aims
to investigate GA’s performance with respect to the exisfence
of a plateau under different deception conditions. The second
dynamics is to keep the slope of the two optima (hence the
deceptive condition) of fi constant while changing the size and
height of the plateau (i.e., moving the plateau vertically). This
dynamics aims to investigate GA’s performance with respect
to plateau sizing under the same deception condition.

C. Constructing Revolving Dynamic DTF Environments

The DTF framework can be combined with other generators
to construct even more complicated dynamic test environments
for GAS. For example, it can be combined with the :XOR
operator based dynamic problem generator in (231, L2.11 to
construct revolving dynamic DIT environments as follows.

f (3 , t) = f (Z @ i Q (t) , t)
= CE1 fd.’I, @ G , (t) , t) (29)

ci x Fi(U(Z1, @ iQL (t)) , t) =

where a binary mask G(t) is randomly or in a controlled
way created every time the environment changes and is then
XOR-ed together with each individual 5 before evaluating its
unitation. The dynamics of changing the base trap function fi
can be any of the schemes described previously.

D. Constructing Other Advanced Dynamic Environments

Many other advanced dynamic environments can also be
constructed from the base DTF framework. For exampb, we

1268

can dynamically change the number of trap functions in DTFs.
This dynamics can be represented as follows:

where the parameter m(t) changes over time. By dynamically
inserting and deleting trap functions in DTFs we can study
such phenomenon as intron on the performance of GAS.

To step further, based on the DTF framwork we can also
investigate the effect of building block expanding, shrinking,
breaking down and merging on GA's performance, as sum-
merized in the following formulation.

where all of the parameters m(t), a,(t) , b,(t), q (t) and l i(t)
may change over time concordantly and simultaneously.

VI. :CONCLUSIONS AND FUTURE WORK

In ;recent years solving dynamic optimization problems
(DOPs) has attracted a growing interest from GA's community
and many approaches have been developed into GAS to address
DOPs. In order to compare the performance of different
approaches for DOPs, it is important to develop standardized
dynamic test'environments.

Based on the concept of problem difficulty this paper
presents a new dynamic environment generator using a frame-
worki.of DTEkBased on this framework, this paper describes
how to constmct several dynamic environments. Comparing
with other generators, the proposed dynamic environment
generator not only meets the general requirements but has
an important property: through adapting the relevant param-
eters with this generator it is posssible to systematically and
explicitly construct dynamic environments with varying and
controllable.problem difficulties in terms of the main causes
of problem .aifficulty for GAS: deception, scaling and noise.
Hence we can test the effectiveness of different G A S under
dynamic environments of bounded difficulty levels.

This paper introduces an interesting dynamic environment
generator which is presently being used to carry out experi-
mental comparison of the performance of different GAS for
DOPs. Based on the new generator it is also possible and
important to carry out theoretical analysis of GAS for dynamic
optimization problems.

ACKNOWLEDGMENT

This research was supported by UK EPSRC under Grant
GRlS797 1 8/01,

REFERENCES
[I] D. H . Ackley (1987). A Connectionist Machine for Genetic Hillclimbing.

Boston, MA: Klnwer Academic Publishers.
[2] T, BBck (1998). On the behavior of evolutionary algorithms in dynamic

fimess landscape. In Pmc. ofthe 1998 IEEE Int. ConJ on Evolutionary
Computation, 446451. IEEE Press.

[3] 1. Branke, T. Kaubler. C. Schmidt and H. Schmeck (2000). A multi-
population approach to dynamic optimization problem. In Adaptive
Computing in Design and Manufacturing.

[4] J . Branke (2002). Evolutionmy Optimization in O y m i c Environments.
Kluwer Academic Publishen.

[SI H. G. Cobb (1990). An investigation into the use of hypemutation
as an adaptive operator in genetic algorithms having continuous, time-
dependent nonstationary environments. Technical Report A I C - W - M I ,
Naval Research Laboratory, Washington, USA.

161 H. G. Cobb and I. Grefensteue (1993). Genetic algorithms for tracking
changing environments. In Pmc. of the 5th Int. Conf on Generic
Algorithms, 523-530.

[7] P. Collard, C. Escazut. and A. Gaspar (1997). An evolutionary approach
far time dependent optimization. Int. Journnl on Anijciol Intelligence
Tools. 6(4): 665-695. 1997.

181 K. Deb and D. E. Goldberg (1993). Analyzing deception in trap
functions. In Foundation ojGsneric Algorithms 2. 93-IUS.

191 D. Dasgupla and D. McGregor (1992). Nonstationary function opti-
mization using the smchlred genetic algorithm. In R. Manner and B.
Manderick (eds.), Pmc. of the 2ndlnt. Conj on Pamllel Pmblem Solving
fmm Nature, 145.154.

[IO] D. E. Goldberg and R. E. Smith (1987). Nonstationary function opti-
mization using genetic algorithms with dominance and diploidy. Pmc.
of the 2nd In[. Conf on Genetic Algorithms, 59-68.

[I l l D. E. Goldberg (1987). Simple genetic algorithm and the minimal,
deceptive problem. In L. Davis (ed.), Genetic Algorithm ond Simulated
Annealing, 74-88. Magan K a u f m n Publisher.

(121 D. E. Goldberg (2002). The Design o/lnnovntion: Lessonrfmm ondfor
Competent Genetic Alprithms. Kluwer Academic Publishers.

[I31 I. J. Grefenstene (1992). Genetic algorithms for changing environments.
In R . Manner and B. Maadcrick (eds.). Pmc. ofthe 2nd Int. Conj on
Pornllel Problem Sdvingfrom Name, 137-144.

[I41 J. I. Grefenstette (1999). Evolvability in dynamic fitness landscapes:
a genetic algorilhm approach. In Pmc. of the 1999 Congress on
Evolurionary Computation, Vol. 3. 2031-2038.

[I51 1. H. Holland (1975). Adoprotion in Noturol nndArl@cial Systems. Ann
A~bor, University of Michigan Press.

[I61 J. Lewis, E. Hart and G. Rilchie (1998). A comparison of dominance
mechanism and simple mutation on non-stationary problems. Pmc. of
the Srh Inr. C m f on Parallel Problem Solving fmm Norum, 139-148.

1171 M. Mitchell, S. Forrest and J. H. Holland (1992). The royal road for
genetic algorithms: fimas landscapes and GA p f o m c e . Proc. oJthe
1st Eumpcan Conf on Artifcinl Lije. 245-254.

[IS] N. Mori, H. Kita and Y. Nishikawa (1997). Adaptation to changing
environments by means of the memary based thermodynamical genetic
algorithm. Pmc. of the 7th InL Conf on Genetic Algorilhms, 299-306.

1191 R. W. Morrison and K. A. De long (1999). A test problem generator
for non-stationary environments. Pmc. of the 1999 Congress on Eyolu-
tionory Computation, Vol. 3, 2047-2053.

1201 R. W. Morrison and K. A. De long (2000). Triggered hypemutation
revisited. Pmc. of the 2wO Congress on Evolutionary Compufotion,
1025-1032,

I211 K. P. Ng and K. C. Wong (1995). A new diploids scheme and dominance
change mechanism for non-stationary function aptimisation. In L. 1.
Eshelman (ed.), Pme. oJthr 6th Int. Conf an Genetic Algorithms.

1221 K. Troianowski and 2. Michalewicz (2000). Evolutionarv aotimization . .

I231

1241

. . . .
in non-stationary environments. Joumal OJ Computer Science ond Tech-
nology, l(2): 93-124.
S. Yang (2003). Non-stationary problem optimization using the primal-
dual genetic algorithm. Pmc. of the 2003 Congrcss on Evolutionary
Computation, Vol. 4, 22462253.
S. Yang and X. Yao (2004). Experimental study on population-based
incremental learning algorithm-for dynamic OptimiAUon problem.
Submitted to Soy Computing.

1251 L. D. Whitley (1990. Fundamental principles of deception in genetic
search. In G. J. E. Rawlins (ed.), Foundntions of Genetic Algorithms I ,
221-241. Morgan Kaufmann Publishers.

1269

