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Abstract-In recent years the study of dynamic optimization 
problems has attracted an increasing interest from the com- 
munity of genetic algorithms and researchers have developed a 
variety of approaches into genetic algorithms to solve these prnb- 
lems. In order to compare their performance an important issue 
is the construction of standardized dynamic test environments. 
Based on the concept of problem difficulty this paper proposes a 
new dynamic environment generator using a decomposable trap 
function. With this generator it is pnsssihle to systematically 
construct dynamic environments with changing and hounding 
difficulty and hence we can test different genetic algorithms under 
dynamic environments with changing hut controllable difficulty 
levels. 

I. INTRODUCTION 

Due to the robustness of finding good solutions to difficult 
problems, genetic algorithms (GAS) have been well studied 
as a kind of optimization and search techniques that are 
based on natural selection and population genetics. They are 
widely and usually applied for solving stationary optimization 
problems where it is assumed that no changes occur with 
respect to the problems being solved during the course of com- 
putation. However, many real-world optimization problems 
are non-deterministic and subject to changes over time with 
respect to the objective function, the decision variables, and/or 
the environmental parameters. For example, in production 
scheduling problems the scheduling demands and available 
resources may change over time. For dynamic optimization 
problems, the goal of an optimization algorithm is no longer 
to find a (stationary) optimal solution, but to continuously 
track the changing or moving optimum in the problem space. 
This presents serious challenge to traditional optimization 
techniques as well as conventional GAS. 

Solving dynamic optimization problems (DOPs) by GAS 
was first addressed by Goldberg and Smith [IO] and has 
attracted a growing interest from GA's community in recent 
years [Z], [181. Researchers have developed many approaches 
into GAS to address this problem [4], such as the hyper- 
mutation scheme [5], [ZO], the random immigration scheme 
[131, memory-based methods [16], [Zl], and multi-population 
approaches [3]. In order to compare the performance of EAs 
with different approaches for dynamic optimization problems, 
on the meanwhile, researchers have developed several dynamic 
problem generators [41, [19]. Just as that benchmark test 
problems play an important role in the study of GAS in 

stationary environments, constructing standardized dynamic 
environments plays an important role in comparing GAS for 
DOPs because the performance of GAS for DOPs depends not 
only on the problem being solved but also significantly on the 
dynamics of environmental changes. 

In this paper a new dynamic environment generaex is 
proposed based on the concept of problem difficulty [l:!]. In 
his recent book, Goldberg [12] remotivated and expanded upon 
Holand's notation of a schema or building block (BB) [15] to 
understand the raw material available for genetic search. He 
justified that the problem difficulty can be decomposed along 
the lines of BB processing into three core elements: deception 
for intra-BB difficulty, scaling for inter-BB difficulty, and 
exogenous noise for extra-BB difficulty. Other elements of 
problem difficulty, e.g. inter-BB epistasis or crosstalk. can 
be transformed into one of the above three core elements. 
Based on this understanding, it is possible to design bounding 
adversarial problems that represent different dimensions of 
problem difficulty [12]. 

In this paper the idea of bounding problem difficulty is 
generalized to construct dynamic test environments for GAS. 
A framework of decomposable trap function is proposed as 
the base to construct different dynamic test environments. 
From this framework it is possible to systematically con~truct 
dynamic test environments of bounded difficulty and hence 
test the effectiveness of different GAS under these dynamic 
environments. 

11. REVIEW OF RELEVANT WORK 

In order to study the performance of GAS for dynamic 
optimization problems, researchers have developed a number 
of dynamic problem generators to create dynamic test envi- 
ronments. In general, these generators have some common 
characteristics and can be roughly divided into four types. 

A. Characteristics of Dynamic Environment Generators 

In order to compare the performance of different GAS in 
dynamic environments, dynamic problem generators should 
meet some basic requirements or have some common proper- 
ties. Some of these properties are listed as follows: . It should be possible to vary environmental parameters 

related to different facets of the problem being solved; 
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. It should be simple to realize different dynamics, such as 
frequency of change, severity of change, cyclic or not; . It should be convenient to adjust the complexity and 
difficulty of dynamic problems; . It should be computationally efficient to realize required 
dynamic environments; . It should be easy to carry out formal analysis. 

B. Classification of Dynamic Environment Generators 

In general, dynamic problems are created based on one or 
more stationary prohlem(s). Through changing (the parameters 
of) the stationary problem(s) different dynamic environments 
can be constructed, There are several criteria along which 
dynamic environments could be categorized. According to 
the changing mechanisms dynamic problem generators can be 
roughly divided into four types, as described below. 

1 )  Switching Fitness Landscapes 
This type of dynamic environment generators is quite sim- 

ple. The environment is just switched between two or more 
statioaary problems or between two or more states of one 
statio~~ary problem. For example, a number of researchers have 
tested their algorithms on a time varying knapsack problem 
where the total weight capacity of the knapsack changes over 
time, usually oscillating between two or more fixed values 
[9], [161. [IS]. [21]. Cobb and Grefenstette [6] constructed 
a significantly dynamic environments that switches between 
two predefined different fitness landscapes. The dynamic bit- 
matching problem [7] aims to maximize the number of bits 
in a string that matches a given template and the template 
varies over time. For this type of generator, the dynamics of 
environmental changes is mainly characterized by the speed 
of environmental changes. It can be fast or slow relative to 
EA time and is usually measured in EA generations. 

2 )  Drifting Fitness Landscapes 
The dynamic problem generator starts from a fitness land- 

scape f(?), defined in n-dimensional real space (.' E R"). 
This fitness landscape is drifted along one or more axes over 
time while its overall shape (morphology) keeps unchanged. 
That is, the dynamic environment can be defined as: 

where the dynamics is realized by defining a "motion algo- 
rithm" for the step size A&, which can be large or small. 

3) Reshaping Fiiness Landscapes 
The third type of dynamic problem generators starts from 

a predefined fitness landscape, defined in n-dimensional real 
space [141, [191, [22]. This stationary landscape is composed 
of a number of component landscapes (e.g., cones), each of 
which can change independently. Each component has its own 
morphology with such parameters as peak height, peak slope 
and peak location. And the center of the highest peak is the 
optimum of the landscape. 

For example, Morrison and De long's generator 1191, called 
DF1, defines the basic fitness landscape in n-dimensional real 

space as follows: 
- 

where Z = (zl,. . . , z,,) is a point in the landscape, m 
specifies the number of cones in the environment, and each 
cone i is independeftly specified by its height He, its slope 
Ri, and its center X ;  = ( X i l ,  . . . ,Xi") .  These independently 
specified cones are blended together by the ma2 function. 
Based on this stationary landscape dynamic problems can be 
created through changing the parameters of each component 
independently or jointly. Typically there exist three kinds of 
dynamics of environmental changes, described as follows: . Changing peak height ( H J .  This can result in global 

. Changing peak slope (I&). This can result in peak(s) 

Changing peak location (X& 
For this type of generator, the complexity of dynamic envi- 

ronments can be scaled by changing the number of dimensions 
andlor the number of peaks. And the environmental dynamics 
is related to the speed of changes (rapid or slow relative to 
EA time) and the severity of changes for each parameter (the 
step size may be large or small). 

optima becoming local optima, vice versa. 

being hidden or exposed br  the changing peak(s). 

4 )  Revolving Fitness Landscapes 
In [23], [24], a dynamic problem generator is proposed, 

which can generate dynamic environments from any binary- 
encoded function. Given a function f(4 defined on 1-hit 
strings (5 E {O,l}I), the fitness landscape changes every r 
generations. The changing mechanism is implemented using 
an exclusive-or (XOR) operator as follows: . First, for each environmental change period k = [t/r1, 

we create a binary template F(k)  that contains p x 1 (p  E 
10.0, LO]) ones randomly or in a controlled way. . Then, a binary mask G E {0,1}' for period k can be 
incrementally generated as follows: 

(3) 

where "$" is the bitwise exclusive-or operator (i.e., 1 fB 
1 =  0, 1 e0 = 1, O f B O  = 0). For the first period k = 1, 
M(1) is initialized to be a zero vector. 
Finally, an individual 2 at generation t E [ ( k  - 1 ) ~ , k r ]  
can be evaluated as follows: 

G(k) = G(k - 1) fB f ( k )  

With this generator, the fitness landscape can be revolved 
while certain properties, e.g., the number of optima and their 
fitness values and distances', remain unchanged though their 
locations are shifted. The environmental dynamics can be 
easily tuned by two parameters: the speed of change r and 
the severity of change determined by p ,  the ratio of ones in 

'Let d(3,g den& the Hamming distance between solutions 2 T d  V. 
Given any binary mask A, it is easy to prove that d(b @ A,<@ M) = 
d ( 3 , f l .  That is, the XOR operator "W is Hamming distance conservative. 
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?. The bigger the value of p, the severer the environmental 
change and the bigger the challenge to GAS. If p = 0.0, the 
environment stays stationary while if p = 1.0 the environment 
undergoes extreme changes in the sense of Hamming space. 

111. A DESIGN APPROACH TO PROBLEM DIFFICULTY 
In order to study and compare the performance of GAS, a 

number of test functions have been designed. A key concern 
here is given to what constructs a difficult problem for GAS. 
Among these functions a family of fitness landscapes are 
called deceptive functions [ l l ] ,  which are developed to chal- 
lenge the fundamental working mechanism of GAS -Holland’s 
building block hypothesis [ 151. The building block hypothesis 
suggests that GAS work by combining low-order BBs to form 
higher-order BBs. However, if in a function the low-order BBs 
do not combine to form higher-order BBs, GAS may have 
difficulty in solving this function. 

Along the line of BB processing Goldberg [12] claimed 
that the problem difficulty can be decomposed into three core 
elements: deception,’scaling, and exogenous noise. Other ele- 
ments of problem difficulty can be transformed into one of the 
three core elements. In the following sections we briefly review 
relevant topics with respect to Goldberg’s decomposition of 
problem difficulty. 

A. Unitation and Trap Functions 

The unitation function has been repeatedly used for the 
purpose of analysis of hard and easy fitness functions for 
GAS. Let Z = (51,. . . ,zl) be a binary string of length 1 .  
The unitation U(?) of Z is a function defined as: 

1 

U(?) =u(q ,..., I[) =z1 +.. .+ 2, = czi (5) 

A trap function f(Z) is defined based on ~(5) as follows: 

i=l 

f ( z  - U(?)), if u(Z) 5 t 
f(Z) = F(U(5))  = (6)  { -  ,-=(u(Z) - z) ,  otherwise 

where a is the local (possibly deceptive) optimum, b is the 
global optimum, and z is the slope-change location which 
seperates the attraction basin sizes of the two optima. The 
schematic of a generalized 1-bit trap function is shown in Fig. 
1. For the trap function, the parameter setting of a, b and t 
determines whether it is easy or difficult for GAS to find the 
global optimum b as opposed to the local optimum a. 

B. Intra-BB Problem Difiulty: Deception 

Deceptive functions are a family of functions where there 
exist low-order BBs that do not combine to form higher-order 
BBs: instead they form BBs resulting in a deceptive solu- 
tion that is sub-optimal itself or near a sub-optimal solution 
(251. The existence of misleading BBs in deceptive functions 
presents serious challenge to GAS. 

During the early stage deceptive functions were studied and 
constructed based on trap functions [l]. Deb and Goldberg [8] 
have shown that for a trap function to be deceptive on average 

0 2 1 
u(Z) - unitation 

Fig. 1. The schematic of a generalized 1-bit uap function. 

U(?) - unitation 

Fig. 2. 
of ones in the binary suing. 

A 6-bit deceptive Uap function, shown as a function of the riumber 

the ratio of the fitness of the local optimum to that of the global 
optimum r = a / b  should be set as follows: 

2 - 1/(1- z )  
2 - l/t r2 (7) 

For example, Fig. 2 shows a deceptive trap function that is 
based on 6-bit strings. This function is constructed from the 
basic trap function in Eq. (6) with 1 = 6, z = 5,  a = 0.8, and 
b = 1. It is easy to see that this function satisfies the condition 
for full deception of Eq. (7) since 

(8) 
2 - 1/(6 - 5 )  5 0.8 

1.0 - 2-115 9 
- _  - r = - = 0.8 > 

C. Inter-BB Problem Dificulty: Scaling 
Scaling problem arises in many functions that con& of 

several BBs because some BBs are worth more to the solu- 
tion than others. Disparate scale among different BB!; may 
cause serious difficulty for GAS in that it leads to inaccurate 
statistical processing of low-salient BBs and temporal delays 
of processing of low-salient BBs due to genetic drift [12]. 

Scaling problem can be formulated using additively decom- 
posable functions as follows: 

i=l 
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where m sub-functions (or BBs) are justaposed and summed 
together. Each sub-function fi is IIiI-bit long and is indexed 
from the bit string Z by the set A, i.e., 2 = {?I>,  . . . ,.'I,). 
For example, given two sub-functions f l  and fi of 3 and 4 
bits respectively, we have 51, = ~ 1 x 2 ~ 3  (11 = {1,2,3}), 
"1, = x~xgxgz, (Iz = {4,5,6,7)), and 5 = zlzz .. . z,. 

The parameter c, in Eq. (9) is the scaling facror for each 
sub-function f;. Through setting the scaling factors synthetic 
test functions with different BB scalings can be constructed. 
In general, four types of scaling schemes have been used in 
test functions: 1). the uniform scaling where ci = c (c is a 
constant), e.g., the OneMax [I] and Royal Road [171 functions; 
2). the exponential scaling where c; = d"' (d # 1 is a 
constant), e.g., the BinInt problem; 3). the power-law scaling 
where e, = id (d # 0 is a constant); and 4). the mixed scaling 
where a mixed expression of above schemes is used for ci. 

D. Extra-66 Problem Difficulty: Noise 
In real world many optimization problems have an outside 

environment and may suffer from environmental noise. The 
addition of outside noise causes difficulty for GAS because it 
may affect the statistical processing of information cumulated 
in the population and hence makes it more difficult for GAS 
to discriminate one decision altemative from another reliably. 

Exogenous noise can be modeled using an additive zero- 
meaned Gaussian noise as follows: 

- 

f (3)  = f'(3) + Gauss(0, U;) (10) 

where f'(5) is the exact fitness function being considered. 
Exogenous noise may be quantified by the fitness variance of 
the noise source, U;. The higher the variance the more difficult 
the problem will be for GAS. 

0 ti 

u(Zr,) - unitation 

Fig 3. 
Decomposable Trap Function (DW. 

The schematic of a component trap function f, in the base 

Fig. 4. 
functions, which are exponentially scaled. 

An 18-bit decomposable function consisting of three 6-bit sub-trap 

where m basic trap functions are justaposed and summed 
together. The schematic of a component trap function f; is 
shown in Fig. 3, where a,, b; and z, are the local (deceptive) 
ootimum. the global outimum. and the slooe-change loca- 

I"' CoNsTRUCT"C BAS'C 
BASED ON PROBLEM DIFFICULTY 

I I 

Based on concepts of problem difficulty, it is possible to 
design dynamic problems that represent changing but bounded 
difficulty levels. The aim of this endeavor is to allow us to 
test different algorithms against a limited number of hounded 
difficult dynamic Problems in such a Way that algorithm 

tion for f i  respectively. Each trap function consists of l i -  
bit substring 3,; ( l ,  = \I"\) and the set of substrings 2,- 
(i = 1 , .  , . , m) forms a disjunctive of hit string 3. 
The parameter in E¶. (11) is the scaling factor of each 
trau function f,. which defines the weight of different BBs 

success against them ensures success against a large class of 
dynamic problems no harder than the test cases. In this section 
we describe in detail how to construct dynamic environments 
that explicitly take problem difficulty into account. 

A. Formulation of Base Decomposable Trap Function (DTFJ 
Just like many other dynamic problem generators, our 

proposed generator also starts from a base stationary function. 
This base function consists of additively decomposable trap 
functions (DTFs), as defined as follows: - m 

I .. I 

(here trap functions). For example, Fig. 4 shows an 18-bit 
decomposable function consisting of three 6-bit BBs. Each 
building block BB; (i = 1 ,2 ,3 )  is defined based on a 6- 
bit trap function according to Eq. (12) with l i  = 6, z; = 5, 
ai = 0.8, and b, = 1 for all i = 1,2 ,3 .  Here the three BBs 
are exponentially .scaled with ci = 2"-' (i = 1,2,3).  

Based on the above framework different dynamic environ- 
ments can he constructed by adjusting corresponding parame- 
ters. Below we describe several basic dynamic DTF (DDTF) 
environments that can be constructed from the above frame- 
work. As usual in all the following dynamic environments we 
assume that the environment changes every 7 GA generations. 

B. Dynamic DTF with Changing Deception Dificulty 
With trap function designed as the subfunction inside the 

DTF it is quite simple to construct dynamic environments 
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y. a;( t )  a? 

2T 2y li  

-..-_. 

0 2, 1, 0 2," 
0 

u(.'ri) - unitation 2," += q( t )  * 2y 

~ ( 3 1 , )  - unitation 
Fig. 5 .  The illustration of a dynamic trap function f; wiIh changing heights 
of optima. The solid c w e  is the threshold case where o,( t )  = a:. Fig. 6. The illustration of a dynamic trap function f, with changing attraction 

basin sizes of optim. The solid curve is the threshold case where r<(t)  .= zT. 
with changing but hounded deception difficulty. There are 
three schemes to change the deception difficulty of each trap 
function, individually or wholly. They are described below. 

2 )  Changing the Attracfion Basin Sizes of Optima 
Another way of changing DTF's deceptive difficulty is to 

change the attraction basin sizes of local and global optima 
while keeping their peak heights constant. In this case, the 
dynamic environment generated can be formulated by substi- 
tuting Ea. (14) with the following wuation. 

I )  Changing the Heights of Optima 
The first simple scheme of changing the deception difficulty 

of DTF is to change the peak heights of optima with other 
parameters set to constant values. The dynamic environment 

where parameters a, and bi may vary over time while other 
parameters, e.g., c; and 2;. keep constant. 

For the sake of simplicity, we can even fix bi to a constant, 
i.e., b,(t) = b;, while change the value of u;( t ) .  In this case, 
according to Deb and Goldberg's deceptive condition of Eq. 
(7), for the trap function f i  to be deceptive on average we 
have the following threshold value for ai ,  denoted by a?. 

2 - l / ( l ,  - 2,)  

2 - ] / t i  
ay = b i x  

For example, given zi = 4 and l i  = 6 we have a: = 0.857bi. 
In order to construct a dynamic environment of varying 
deception difficulty we can recurrently change the value of 
a, ( t )  in a chosen range of [ u y , a y ] .  As shown in Fig. 5 ,  the 
parameter settings for a;( t )  should satisfy the condition: 

0 5 a y  < ay < bi 5 a y  (16) 

Then a typical environmental dynamics can be as follows. 
Starting from a,", every T generations the value of a i ( t )  is 
increased by a step size A until it reaches ay where it will 
bounce back to decrease. When the value of a i ( t )  reaches aF 
it will bounce back to increase again. This way the dynamic 
environment changes from non-deceptive to deceptive (when 
ai(t) reaches a y )  to non-deceptive (when a;( t )  reaches b, and 
hence becomes the new global optimum) and then reverse. 

where ai, bi and ci are constant while zi changes over time 
in a range of [z?, tf"]. Similarly, from Eq. (7) we can derive 
the threshold value for ti. denoted by zT, in order for tha trap 
function f, to be deceptive on average. 

where T" = ai/bi and the ceiling function ryl returns the 
minimum integer that is not less than y for t?. For example, 
given T~ = 0.8 and l ,  = 10 we have 2' = 8. As shown i n  Fig. 
6, the parameter settings for t i ( t )  should satisfy the condition: 

(19) 0 5 2," < t y  < 2y 5 li  
Similarly, by changing ti@) from 2," to 2' to ty and then 

bouncing back, the dynamic environment can be constructed, 
which changes from non-deceptive (relatively easy) to decep- 
tive (relatively hard) and then reverse. 

3) Changing Both the Heights and Basin Sizes of Oprima 
The third scheme of changing DTF's deception difficulty is 

to change the heights and attraction basin sizes of optima at the 
same time. And the dynamic environment can be formulated 
by substituting Eq. (14) with the following equation. 

where all the parameters a;, bi and z, may change ove:r time. 
Now whether the trap function f i  is deceptive depends on the 
exact values of a,( t ) ,  b i ( t )  and z i ( t ) .  In Fig. 7 the threshold 
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Fig. 7.  Thhe threshold relation curve between rl and i,, shown with a IO-bit 
trap function. The hiangles mark lhe exact positions in the relation CUNC.  
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relation curve between ri = ai/bi and zi with respect to 
deceptionivity is drawn with a IO-bit trap function. When the 
value pair ( z i , ~ ~ )  at time t falls to the right of the curve, f i  
will be deceptive on average. Through setting the pair ( z i ,  ri) 
over time appropriately we can hound the deception difficulty 
of the constructed dynamic environments. 

C. Dynamic DTF with Changing Sculings of Subfunctions 

Due to the intrinsic decomposability of the DTF it is quite 
simple to construct dynamic environments with time-varying 
scaling difficulty, which can be represented as follows: 

m m 

f(3,t) = Cfi(?L,t) = C C i ( t ) X F i ( U ( Z I , ) , t )  (21) 
i=l i=l 

where the scaling factor ci for fi changes over time while 
other parameters keep constant. 

Through using different dynamics of changing c,’s for 
fi (i = 1,. . . , m) different dynamic environments can he 
constructed. For example, similar to the “moving mouse under 
carpet’’ scheme in Trojanowski and Michalewicz’s generator 
[22] we can use a “moving wave“ scheme where the m trap 
functions form a logic cycle: f l  --t f2 + . . . - f, + fl and 
the dynamics of changing ci is defined as follows: 

C i ( t )  = mas{l, 2 k - d ( ” P ( t ) )  1 (23) 

where P(t )  E {I,. . . , m} is the index of the randomly or 
orderly chosen subfunction that lies in the wave peak at time 
t ,  d( i ,P(t) )  is the distance between fi and f p ( t )  in the logic 
cycle, and k is a fixed neighbourhood size. Only those trap 
functions in the neighbourhood of f p ( t )  are amplified with 
the wave peak subfunction f p ( t )  amplified up to Zk fold. Fig. 
8 shows a simplified moving wave scheme, called “moving 
token” scheme, where a token is assigned to each trap function 
orderly and only the token holder is amplified (doubled). 

D. Dynamic DTF with Changing Noise Environments 
In order to investigate the effect of outside environmental 

noise on GA’s performance we can add time-varying exogen- 

Fig. 8. An 18-bit decomposable function consisting of three 6-bit sub- 
trap functions, which are dynamically scaled according to a “moving token” 
scheme. The token is on the (a) first, (b) second, and (c) third base trap 
function in three consecutive environmental changes respectively. 

ous noise with zero-meaned Gaussian noise into the DTF. The 
constructed dynamic environment can be described as follows: 

f (a, t )  = f’(3, t )  + Gauss(0, &t)) (24) 
where f’(.’, t )  is the original DTF and the variance of exoge- 
nous noise, ug(t) changes over time. By bounding the value 
of &t) the problem difficulty due to outside noise can he 
bounded. For example, we can adjust the value of u$(t) in a 
range of [uLin, U&,,]. Starting from the minimum u : , ~  we 
can increase the value of U; by a step size until it reaches the 
maximum ukaz and then decrease the value of u$, and so on. 

v. CONSTRUCTING ADVANCED DYNAMIC ENVIRONMENTS 
Based on the basic framework described above, there ex- 

ist many modifications and extensions of constructing more 
complex dynamic environments. In the following sections we 
describe several advanced dynamic environments extended 
from the hasic framework respectively. 

A. Constructing Hierarchical Dynamic Environments 
A natural extention from above basic dynamic environments 

is to construct hierarchical dynamic DTF (HDDTF). For 
example, a two-level HDDTF can be formulated as follows. 

f ( Z , t )  =CZ1 fi(S<, t )  +E,”=, f;(fI,. , . A t )  
(25) 

where c i ( t )  can be a variable or a constant and Fi(u(Zli),t) 
can be defined as Eq.  (14), Eq. (17), Eq. (ZO), or Eq. (22). That 

= E21ci (t)xF, (.(a, 1 t ) )  + &f; (h ,. , . ,fm 1 t )  

1267 



~ ( 3 1 , )  - unitation 

Fig. IO. The schematic of a uap function f; with a plateau io D n i 2  

Fig. 9. The schematic of a two-level hierarchical dynamic decomposable 
bap function. The unique top level (Level 1) function is a linear function in 
line with the number of trap functions that have k e n  solved in the base level. 

is, the dynamics for changing the base level trap functions 
can be any of those described in Section IV. On top of the 
m base level trap functions n functions fi = 1.. . , n) are 
defined and summed into the whole fitness function. These n 
top level functions can represent different interactive relations 
between the base level trap functions. For example, Fig. 9 
shows a simple two-level hierarchical DTF where in the top 
level (Level 1) only one function f’ is defined as follows: 

f’(fi,. . . , fm,t)  = d X u ( f f ( t ) )  = d x x b f , ( t )  
m 

(26) 

where d is a slope factor, b;(t) = b,,(t). . .6f,,,(t) and the 
variable b f , ( t )  represents whether the trap function f, on the 
base level is solved at time t .  That is, it is defined as follows. 

t=1 

Through defining different functions on the top level and 
applying different dynamics of changing these functions we 
can construct different hierarchical dynamic DTF environ- 
ments and investigate the performance of GAS with respect 
to different interactions between BBs, such as episiasis and 
hitchhiking. And ,the formulation in Eq. (25) can be easily 
generalized to define multi-level HDDTFs. 
B. Constructing Dynamic DTFs with Varying Plaieau 

An important topic on problem difficulty for GAs.is related 
to neutral values or plateau in the fitness landscape. The DTF 
framework can be extended to include a plateau for each trap 
function fi by replacing Eq. (12) with the following equation. 

i - u ( t , ) ) ,  if ~ ( ~ 1 ~ ) ’ s  2; 

if 2,‘ < ~ ( 5 1 ~ )  < z: (28) 

&(~(31<) - z i ) ,  otherwise 

where ai, bi and di (2  0) are the local, global optimum and 
plateau height of f; respectively. And zt and z: are, in the 
term of unitation, the start and end points of the plateau, which 
separates the attraction basins of the two optima. The size of 
the plateau is denoted by si = 2: - 2:. The schematic of the 
extended DTF, called DTF2, is shown in Fig. 10. 

There are two schemes to construct dynamic environments 
with respect to plateau landscape. The first dynamics is to 
move the location of the plateau while keep its height and 
size constant. That is, z t ( t )  and t:(t) slide horizontally with 
d i ( t )  = d; and si(t) = z ? ( t ) - z t ( t )  = si. This dynamics aims 
to investigate GA’s performance with respect to the exisfence 
of a plateau under different deception conditions. The second 
dynamics is to keep the slope of the two optima (hence the 
deceptive condition) of fi constant while changing the size and 
height of the plateau (i.e., moving the plateau vertically). This 
dynamics aims to investigate GA’s performance with respect 
to plateau sizing under the same deception condition. 

C. Constructing Revolving Dynamic DTF Environments 

The DTF framework can be combined with other generators 
to construct even more complicated dynamic test environments 
for GAS. For example, it can be combined with the :XOR 
operator based dynamic problem generator in (231, L2.11 to 
construct revolving dynamic DIT environments as follows. 

f (3 , t )  = f ( Z @ i Q ( t ) , t )  
= CE1 fd.’I, @ G , ( t ) , t )  (29) 

ci x Fi(U(Z1, @ iQL ( t ) ) ,  t )  = 

where a binary mask G(t) is randomly or in a controlled 
way created every time the environment changes and is then 
XOR-ed together with each individual 5 before evaluating its 
unitation. The dynamics of changing the base trap function fi 
can be any of the schemes described previously. 

D. Constructing Other Advanced Dynamic Environments 

Many other advanced dynamic environments can also be 
constructed from the base DTF framework. For exampb, we 
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can dynamically change the number of trap functions in DTFs. 
This dynamics can be represented as follows: 

where the parameter m(t) changes over time. By dynamically 
inserting and deleting trap functions in DTFs we can study 
such phenomenon as intron on the performance of GAS. 

To step further, based on the DTF framwork we can also 
investigate the effect of building block expanding, shrinking, 
breaking down and merging on GA's performance, as sum- 
merized in the following formulation. 

where all of the parameters m(t), a,(t) ,  b,(t), q ( t )  and l i( t)  
may change over time concordantly and simultaneously. 

VI. :CONCLUSIONS AND FUTURE WORK 

In ;recent years solving dynamic optimization problems 
(DOPs) has attracted a growing interest from GA's community 
and many approaches have been developed into GAS to address 
DOPs. In order to compare the performance of different 
approaches for DOPs, it is important to develop standardized 
dynamic test'environments. 

Based on the concept of problem difficulty this paper 
presents a new dynamic environment generator using a frame- 
worki.of DTEkBased on this framework, this paper describes 
how to constmct several dynamic environments. Comparing 
with other generators, the proposed dynamic environment 
generator not only meets the general requirements but has 
an important property: through adapting the relevant param- 
eters with this generator it is posssible to systematically and 
explicitly construct dynamic environments with varying and 
controllable.problem difficulties in terms of the main causes 
of problem .aifficulty for GAS: deception, scaling and noise. 
Hence we can test the effectiveness of different G A S  under 
dynamic environments of bounded difficulty levels. 

This paper introduces an interesting dynamic environment 
generator which is presently being used to carry out experi- 
mental comparison of the performance of different GAS for 
DOPs. Based on the new generator it is also possible and 
important to carry out theoretical analysis of GAS for dynamic 
optimization problems. 
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