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Abstract—Evolution strategies with q-Gaussian mutation,
which allows the self-adaptation of the mutation distribution
shape, is proposed for dynamic optimization problems in this
paper. In the proposed method, a real parameter q, which
allows to smoothly control the shape of the mutation distribu-
tion, is encoded in the chromosome of the individuals and is
allowed to evolve. In the experimental study, the q-Gaussian
mutation is compared to Gaussian and Cauchy mutation on
four experiments generated from the simulation of evolutionary
robots.
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I. INTRODUCTION
Evolution strategies (ESs) have been succesfully em-

ployed in complex optimization problems in recent years.
ESs were proposed in the 1960’s to optimize candidate
solutions composed of real-valued parameters [2], and are
a good choice when gradient based methods present bad
performance due to rugged fitness landscapes in continuous
optimization problems. Similar to other evolutionary algo-
rithms (EAs), new candidate solutions are generated in ESs
by using a stochastic mutation operator. The parameters of
the mutation operator can be modified by self-adaptation
during the evolutionary process, which provides an intrin-
sic mechanism for adaptation to eventual changes in the
problem and makes the use of ESs interesting for dynamic
optimization problems (DOPs) [1], [7], [12].
DOPs have attracted increasing attention from the EA

community as many optimization problems in real world are
DOPs. In DOPs, the evaluation function, dimension of the
search space, and/or the constraints of the problem may not
be fixed [3]. The simplest approach when a problem changes
is to restart the optimization process. However, the optimiza-
tion procedure may require a substantial computational effort
and/or be slow, e.g., in the optimization of control laws in
evolutionary robots [10]. When the new solution after the
change in the problem is related to the previous solution,
the search procedure based on previous solutions can save
substantial processing time.
In ESs, new candidate solutions are traditionally generated

by mutation generated from Gaussian distribution [2]. How-
ever, in recent years, researchers have argued that the use of
mutation distributions with longer tails and infinite second

moment in ESs can be useful in allowing the population
escape from local optima in multimodal problems. For
example, in [13], the Cauchy distribution was employed
to generate new candidate solutions. The use of mutation
taken from heavy tail distributions implies jumps of scale-
free sizes, eventually allowing to reach distant regions of
the search space faster. This property is interesting for DOPs
too, as it can allow the population to escape faster from local
optima located close to the best solution before the change.
However, when mutation distributions with longer tails are
employed, less local candidate solutions are generated, and
the convergence to the new optima can be slower. Thus, the
use of one or other mutation distribution may result in very
different performance on a DOP. Here, the performance of
mutation generated from two different distributions (Gaus-
sian and Cauchy) are compared in experiments with DOPs.
The main contribution of this paper is the investigation of

the use of the q-Gaussian mutation in ESs to address DOPs.
In the q-Gaussian mutation, which was previously used in
evolutionary programming [11], self-adaptation is employed,
not only to control the mutation strength parameter, but
also to control the mutation distribution. The q-Gaussian
distribution allows to smoothly control the shape of the
distribution by setting a real parameter q and can reproduce
either finite second moment distributions, like the Gaussian
distribution, or infinite second moment distributions, like the
Cauchy distribution. Here, the real parameter q is encoded in
the chromosome of the individuals and is allowed to evolve.
This way, in the q-Gaussian mutation, the decision on which
mutation distribution shape should be used (and when) is
made by self-adaptation.
The rest of this paper is organized as follows. The q-

Gaussian mutation is briefly discussed in Secion II. The
ES with q-Gaussian mutation is presented in Section III.
The experimental study with DOPs generated from the
simulation of evolutionary robots is presented in Section IV.
In the experimental study, ESs with q-Gaussian, Gaussian,
and Cauchy mutation are compared. Finally, the conclusions
of the paper are presented in Section V.

II. THE q-GAUSSIAN MUTATION
When mutation is applied in ESs, the i-th candidate

solution �̃xi is generated from an m-dimensional solution �xi
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according to:
�̃xi = �xi + C �z, (1)

where �z is an m-dimensional vector generated from a
random distribution with zero mean and the matrix C, in the
standard ES, is a diagonal matrix composed of the elements
of vector �σ = [σ(1) σ(2) . . . σ(m)]T, which defines the
mutation strength in each coordinate of the search space.
For the q-Gaussian mutation generated from anisotropic

distribution ( [11] proposes the use of a mutation gener-
ated from isotropic distribution), the vector �z is generated
by sampling m independent q-Gaussian random variables,
i.e., the q-Gaussian distribution is employed instead of the
Gaussian distribution (Gaussian mutation) [2] or the Cauchy
distribution (Cauchy mutation) [13]. In the q-Gaussian distri-
bution, the real parameter q controls the shape of the random
distribution, which allows to smoothly and continuously
change the shape of the distribution. For q < 5/3, the
second order moment is finite and for q = 1, the q-Gaussian
distribution reproduces the usual Gaussian distribution. For
q < 1, the q-Gaussian distribution has a compact form,
and decays asymptotically according to a power law for
1 < q < 3. When q = 2, the q-Gaussian distribution
reproduces the Cauchy distribution [8]. In this paper, the
generalized Box-Müller method proposed in [9] is employed
to generate the q-Gaussian random variables.
In this work, based on the mutation strength self-

adaptation [2] (see next section), the parameter qi of each
individual i is added to its chromosome and is multiplica-
tively updated as follows:

q̃i = qi exp
(
τqN (0, 1)

)
, (2)

where τq denotes the standard deviation of the Gaussian
distribution and N (0, 1) denotes a sample variable taken
from the Gaussian distribution with zero mean and standard
deviation one. This way, different distributions can be repro-
duced during the evolutionary process.

III. ES WITH q-GAUSSIAN MUTATION

In ESs, two main selection procedures are usually em-
ployed. In the (μ, λ)-ES, a population of μ parents creates
λ > μ offspring. The best μ offspring are then selected to
compose the next population. In the (μ + λ)-ES, the new
population is composed of the best μ individuals obtained
from the union of the μ parents and λ offspring. It can be
observed that while the (μ + λ)-ES is elitism-based, i.e., it
always preserves the best individuals from one generation
to the next one, the (μ, λ)-ES is not elitism-based. Thus,
for DOPs, a procedure to detect the changes in the problem
should be used when the (μ + λ)-ES is employed.
In this paper, the (μ, λ)-ES with q-Gaussian mutation,

as described in the previous section, is used. While the
q-parameter is updated according to Eq. (2), the mutation

Algorithm 1 ES(μ,λ) with q-Gaussian mutation (qGES)
1: Initialize the population of individuals (�xk , �σk , qk) for k = 1, . . . , μ
2: Evaluate the individuals (�xk , �σk , qk) for k = 1, . . . , μ
3: while (stop criteria are not satisfied) do
4: Use recombination to generate the individuals (�̃xi, �̃σi, q̃i) for i =

1, . . . , λ from the individuals (�xk , �σk , qk) for k = 1, . . . , μ
5: for i← 1 to λ do
6: if rand(0, 1) ≥ rq then
7: Update the mutation strength vector �̃σi according to Eq. (3).
8: else
9: Update the parameter q̃i according to Eq. (2)
10: end if
11: �̃xi ← �̃xi+Ci �z, where �z is a q-Gaussian vector generated from

distribution with parameter q̃i and Ci = diag(�̃σT

i
)

12: end for
13: Evaluate the offspring (�̃xi, �̃σi, q̃i) for i = 1, . . . , λ
14: Select, to compose the new population with individuals (�xk , �σk ,

qk), the μ individuals with best fitness from the population com-
posed of the offspring (�̃xi, �̃σi, q̃i) for i = 1, . . . , λ

15: end while

strength parameter of each element j = 1, . . . , m of the
vector �σi is updated according to:

σ̃i(j) = σi(j)e
τbN (0,1)i+τcN (0,1), (3)

where τb denotes the standard deviation of the Gaussian
distribution used to generate the random deviate N (0, 1)i,
which is common for all elements of the vector �xi, and
τc is the standard deviation of the Gaussian distribution
used to generate the separated random deviate N (0, 1) for
each element j = 1, . . . , m. The parameters τb and τc, as
suggested by the theoretical and empirical work in [2], are
defined by τb = b√

2m
and τc = c√

2
√

m
, where b and c are

positive real numbers. Here, τq (Eq. 2) is given by:

τq =
a√
2m

, (4)

where a is a positive real number.
The algorithm ES(μ,λ) with q-Gaussian mutation, called

qGES, is presented in Algorithm 1. The main difference
of the ES presented in Algorithm 1 from the standard ES
and the fast ES [13] lies in that, in qGES, the q-Gaussian
mutation is employed (step 11) instead of the Gaussian
mutation (in the standard ES) or Cauchy mutation (in the fast
ES), and a procedure to update the parameter q is adopted
(steps 6, 8, 9 and 10).

IV. EXPERIMENTAL STUDY
In the experiments presented here, DOPs are generated

through the simulation of evolurionary mobile robots navi-
gating in dynamic environments or with faults. In evolution-
ary robotics, artificial evolution is the fundamental force in
the adaptation and design of robots and their control laws.
Particularly here, ESs are employed to adjust the synaptic
weights in an Elman artificial neural network (ANN) used
to control simulated mobile robots. In the experiments, the
robots are simulated in DOPs using a modified version of
the Evorobot simulator developed by Nolfi [6].
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The four experiments presented in this section are gener-
ated from the experiment proposed in [4], where a Khepera
robot with eight infrared distance sensors (six sensors in
one side and two in another side of the robot), two ambient
light sensors, and one floor brightness sensor navigates in
an arena. The robot has a measurable limited energy, which
is recharged every time the robot crosses a battery recharge
area. The battery recharge area is indicated by a different
color of the floor and by a light source mounted in a tower
inside the area.
In the experiments, the fitness function is given by the

accumulated averaged rotation speed of the two wheels of
the robot during its life time, i.e., while the battery has
energy and while the robot does not crash into a wall or
an obstacle, considering a maximum limit of 60 seconds.
A fully charged battery allows the robot to move for 20
seconds. The fitness is not computed while the robot remains
in the battery recharge area. Although the fitness function
does not specify that the robot should return to the battery
recharge area, the individuals that develop the ability to find
it and periodically return to it while exploring the arena
without hitting the obstacles accumulate more fitness. The
ANN used to control the robots has 17 inputs (8 infrared
sensors, 2 light sensors, 1 floor brightness sensor, 1 sensor
for the battery energy, and 5 recurrent units), 5 hidden
neurons, and 2 outputs (2 motors in the wheels of the robot).
In the first three experiments (Exp. A, Exp. B, and

Exp. C), we are interested in investigating the reconfigu-
ration of the robot after faults [10]. In these experiments,
the environment where the robot evolves is switched every
τ = 25 or τ = 50 generations (called the change cycle du-
ration) between two configurations. In both configurations,
the size of the arena is 40cm×45cm. The first configuration
is free of obstacles (default arena). The position of the
light source and recharge area are changed in the second
configuration, and a cylindrical obstacle is added.
In Exp. A (faults in the light sensors), the responses of

the light sensors are reduced by a factor which is changed
every τ generations. In Exp. B (faults in motor 2), the
power of the second motor of the robot is reduced by a
factor changed in each τ generations. The factor applied
in the response of the light sensors (Exp. A) and in the
power of the second motor (Exp. B) in each one of the 10
change cycles (including the first τ generations) is given
by �vf = {1.0, 0.5, 0.2, 0.9, 0.7, 0.4, 0.8, 0.6, 0.1, 0.7}, e.g.,
only 50% of the power computed by the respective ANN’s
output is applied in the second motor in the second change
cycle (between generations τ + 1 and 2τ ) of Exp. B. In
Exp. C (faults in the infrared sensors), we are interested in
investigating the reconfiguration after intermittent faults in
the infrared sensors. During the evolutionary process, the
responses of the infrared sensors of the robots are affected
by two faults, which are switched every τ = 25 or τ = 50
generations. In the first fault, the responses of the six infrared

sensors located in one side of the robot are set to zero when
it is affected by the fault. In the second fault, the responses
of the remaining two sensors (located in the other side) are
set to zero. This way, the robot should learn how to navigate
using different sets of sensors in each change cycle.
The last experiment (Exp. D) was carried out to in-

vestigate how a changing environment affects the learning
process. Environmental changes frequently occur in real
world problems, where some aspects of the environment are
frequently modified. Besides, robots are frequently evolved
in simulations to avoid damage, and, when a satisfactory
behaviour is reached, the ANN employed to control the
simulated robot are transferred to the real ones. In Exp. D
(changing environment), the environment where the robot is
evolving is changed after τ = 25 or τ = 50 generations.
The robot evolves for the first τ generations in the default
arena, which is changed in its dimensions and in the number
of cylindrical obstacles present in the environment every τ
generations.
For all experiments, the number of changes during the

evolutionary process was set to ten. In the runs, the in-
dividuals of the initial population were randomly chosen.
The evolving robot always starts in a fixed position on
the arena, but the initial orientation was randomly varied
in a range of 10 degrees. A white noise with a range
equal to 0.05 was added to the measures generated by the
infrared and light sensors. The individuals are represented
by a vector of integer values corresponding to the synaptic
weights of the ANN. Following [4], in each generation, the
20 best individuals (μ) are selected and each one generates
5 children (λ = 100) by mutation (recombination was not
used).
In order to compare the three types of mutation, three

ESs were executed 50 times (with different random seeds)
in each experiment with τ = 25 and τ = 50 generations.
In the first algorithm, qGES, the parameter q of the q-
Gaussian mutation is allowed to evolve during the optimiza-
tion process (Algorithm 1). In the other two algorithms, the
parameter q is fixed, i.e., it starts with a given value and is
not modified during the evolutionary process. In algorithm
GES, q = 1, i.e., the q-Gaussian distribution reproduces
the Gaussian distribution. In algorithm CES, q = 2, i.e.,
the Cauchy distribution is reproduced by the q-Gaussian
distribution. Thus, the three types of mutation, q-Gaussian,
Gaussian, and Cauchy are compared in the experiments.
In all experiments, the initial q-Gaussian parameter q

in qGES was set to 1.0 (a value where the Gaussian
distribution is reproduced), rq = 0.8, and the minimum and
maximum values of the q-Gaussian parameter q were set to
0.8 and 0.8e, respectively, i.e., values respectively smaller
and higher than the values of q where the Gaussian and
Cauchy mutations are reproduced. The parameters a and b,
respectively used to compute τb and τc, were set to 1, while
in Eq. (4), a = 1.5.
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Figure 1. Averaged fitness of the best individual in Experiment A (faults
in the light sensors of the evolutionary robot) for τ = 25 for GES (where
the Gaussian mutation is reproduced), CES (where the Cauchy mutation is
reproduced), and qGES (q-Gaussian mutation).
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Figure 2. Averaged fitness of the best individual in Experiment B (faults
in the motor 2 of the evolutionary robot) for τ = 25.
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Figure 3. Averaged fitness of the best individual in Experiment C (faults
in the infrared sensors of the evolutionary robot) for τ = 25.

Figures 1, 2, 3, and 4 respectively show the mean best
fitness found in each change cycle averaged over 50 runs for
the four experiments with τ = 25 generations, while Figures
5, 6, 7, and 8 respectively show the mean best fitness found
in each change cycle averaged over 50 runs for the four
experiments with τ = 50 generations.
Table I presents the experimental results with respect to

the mean best fitness found in each change cycle (offline
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Figure 4. Averaged fitness of the best individual in Experiment D
(changing environment) for τ = 25.
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Figure 5. Averaged fitness of the best individual in Exp. A for τ = 50.
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Figure 6. Averaged fitness of the best individual in Exp. B for τ = 50.

performance) averaged over 50 runs. The mean best fitness
reached in each change cycle for run j is given by:

f̄j =
1

τ

nc∑

i=1

f∗
ij (5)

where τ is the change cycle duration, nc = 10 is the number
of changes in run j, and f∗

ij is the best fitness found in
change cycle i in run j.
In Table II, the statistic comparison of the algorihtms

regarding the mean best fitness found in each change cycle
(Eq. (5)) is carried out by the Wilcoxon Signed Rank Test

226



0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

generation

fit
ne
ss

Gaussian
Cauchy
qGaussian

Figure 7. Averaged fitness of the best individual in Exp. C for τ = 50.
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Figure 8. Averaged fitness of the best individual in Exp. D for τ = 50.

Table I
RESULTS OF THE MEAN BEST-OF-GENERATION FITNESS FOUND IN EACH
CHANGE CYCLE FOR THE EXPERIMENTS WITH EVOLUTIONARY ROBOTS.

τ Exp. GES CES qGES
25 A median 7.39E-001 6.46E-001 7.57E-001

mean 6.65E-001 5.62E-001 6.96E-001
std 1.84E-001 2.15E-001 1.72E-001

B median 6.95E-001 6.49E-001 7.25E-001
mean 6.22E-001 5.50E-001 6.70E-001
std 1.93E-001 2.20E-001 1.57E-001

C median 5.83E-001 4.25E-001 6.33E-001
mean 5.06E-001 4.61E-001 5.47E-001
std 2.17E-001 1.69E-001 2.07E-001

D median 6.46E-001 6.72E-001 6.80E-001
mean 6.34E-001 6.63E-001 6.69E-001
std 1.14E-001 8.15E-002 6.50E-002

50 A median 7.43E-001 7.20E-001 7.70E-001
mean 6.66E-001 6.06E-001 7.22E-001
std 1.93E-001 2.18E-001 1.49E-001

B median 6.59E-001 6.06E-001 6.97E-001
mean 5.55E-001 5.42E-001 6.32E-001
std 2.08E-001 2.14E-001 1.63E-001

C median 5.47E-001 3.87E-001 5.85E-001
mean 4.82E-001 4.48E-001 5.23E-001
std 2.03E-001 1.89E-001 1.70E-001

D median 6.43E-001 6.78E-001 6.77E-001
mean 6.08E-001 6.40E-001 6.50E-001
std 1.47E-001 1.20E-001 9.50E-002

[5]. Table II shows the p-value of the Wilcoxon Signed Rank
Test for each experiment, which indicates the significance
for testing the null hypothesis that the difference between

Table II
STATISTICAL COMPARISON OF ALGORITHMS GES, CES, AND QGES

REGARDING THE MEAN BEST-OF-GENERATION FITNESS FOUND IN EACH
CHANGE CYCLE.

τ Exp. qGES - GES qGES - CES
25 A 1.95E-002 (s+) 2.56E-003 (s+)

B 1.20E-001 (+) 1.05E-003 (s+)
C 1.94E-001 (+) 2.10E-002 (s+)
D 4.57E-002 (s+) 7.32E-001 (+)

50 A 1.01E-002 (s+) 2.99E-003 (s+)
B 2.95E-002 (s+) 1.92E-002 (s+)
C 1.44E-001 (+) 4.12E-002 (s+)
D 5.91E-002 (+) 9.88E-001 (-)

the matched samples of the results regarding Alg. X and
Alg. Y comes from a distribution with median equal to zero.
For each experiment, the result regarding the comparison
Alg. X - Alg. Y is shown, in parentheses, as “=” when
the values of the median of Alg. X and Alg. Y are equal.
When the values of the median are different but the p-value
is higher than 0.05, i.e., the test indicates that the hypothesis
that the median of the difference between the results are zero
cannot be rejected at the 5% level, the result is respectively
shown as “+” when the median of Alg. Y is smaller than
the median of Alg. X and “−” when the median of Alg. Y is
higher than the median of Alg. X. Otherwise, when the result
is statistically significant, the result is respectively shown as
“s+” or “s−” when the median of Alg. Y is smaller or
higher than the median of Alg. X.
In the experiments, ESs find, in the first change cycle

(before the first change) of most runs, weights of the ANNs
(individuals) that allow the simulated robots navigate in the
environment, and periodically return to the battery recharge
area when the battery charge is low. It can be observed
in the figures, that GES (where the Gaussian mutation is
reproduced) presents better resuts than CES (where the
Cauchy mutation is reproduced) in the first change cycle. In
the simulated evolutionary robot, large modifications in the
vector of synaptic weights cause a large change in the current
navigation strategy found by the evolutionary process. This
way, mutation distributions with smaller tails produce better
results in the first change cycle as more solutions are
generated close to the current best solution. In qGES, smaller
values of q are selected by self-adaptation during the first
change cycle. Hence, the performance of qGES is close to
the performance of GES in the first change cycle.
When changes ocurr in the environment, new navigation

strategies should be found. In Exp. A, the changes in
the problem are, in general, small, as the changes in the
light of the environment cause small modifications in the
weights of the ANNs. As a result, it can be observed that
GES presents better mean results than CES in most change
cycles. However, it is possible to observe that CES presents
better results that GES in some change cycles where the
changes in the light were more drastic (see vector �vf ). It
can be observed that qGES presents the best result in this

227



experiment, with the performance significantly better than
that of other algorithms. In qGES, the value of q is modified
according to the problem: small values are generally selected
when the changes in the problem are small, while larger
values of q are selected when the changes are drastic.
Similar results can be found in other experiments. In

experiments B and C, the changes in the problems are sev-
erer, which explains the smaller values of mean final fitness
found in each change cycle. Particularly in Exp. C, the
reconfiguration of the navigation strategy after the change
in the problem is very difficult. The robot learns to navigate
in the direction that it has more sensors (called here front
of the robot). When the problem changes, all the sensors in
the front of the robot are affected by the fault. This way, the
robot should learn how to navigate in the new environment
after losing all infrared sensors in its front. It can be observed
that it is difficult for the ESs to find new navigation strategies
for change cycles 2, 4, 6, 8, and 10, as the robot tries to keep
the navigation strategy learned in the first change cycle. In
the figures, it is possible to observe that CES presented better
results than GES in change cycles 2, 4, 6, 8, and 10 for
τ = 50. For τ = 50, it is harder to find a new strategy for
the even change cycles as the fitness value found in change
cycle 1 is high and the diversity of the population is reduced
due to the longer change cycle duration. This way, longer
jumps ocasionally occured in order to allow scaping from
the best solution before the change (local optimum), which
explains the better results of CES. It can be observed that
qGES presented the best results in experiments B and C
because the shape of the distribution is self-adapted during
the evolutionary process. Over the runs, the values of q
are higher as mutation distributions with longer tails are
eventually selected by the population in order to allow the
individuals to escape from the local optima (solutions before
the change) generated by changing the problem.
In Exp. D, small and larger changes are presented in

the problem. As a consequence, GES presents better results
than CES in some change cycles, while CES presents better
results in others. In Exp. D, qGES presents good results too,
despite of the worse result (compared to CES) for τ = 50.

V. CONCLUSIONS
The use of self-adaptation of the mutation distribution in

ESs is proposed for DOPs in this paper. The smooth change
in the shape of the mutation distribution is obtained by
using the q-Gaussian mutation. In the proposed method, the
decision on which distribution is more indicated for a given
problem and at a given moment of the evolutionary process
is minimized by letting the proposed ES to decide which
mutation distribution should be used. The experimental
results indicate that this property can be useful for the ES for
DOPs as, after the environmental changes, the parameter q
can be increased resulting in a higher number of long jumps
(like the Cauchy mutation), which can help the population

to escape from local optima generated by the changes in the
problem. In later stages, after the environmental changes,
the parameter q reaches small values, which improves the
local search (like the Gaussian mutation). In the future, other
control methods for the q parameter should be investigated.
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