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Abstract

In a recent paper Merino and Welsh (1999) studied several counting problems on
the square lattice Ln. There the authors gave the following bounds for the asymp-
totics of f(n), the number of forests of Ln, and α(n), the number of acyclic orienta-
tions of Ln: 3.209912 ≤ limn→∞ f(n)1/n2 ≤ 3.84161 and 22/7 ≤ limn→∞ α(n)1/n2 ≤
3.70925.

In this paper we improve these bounds as follows: 3.64497 ≤ limn→∞ f(n)1/n2 ≤
3.74101 and 3.41358 ≤ limn→∞ α(n)1/n2 ≤ 3.55449. We obtain this by developing a
method for computing the Tutte polynomial of the square lattice and other related
graphs based on transfer matrices.

1 Introduction

Given a graph G = (V, E), a forest of G is a subset A of E that contains no cycle.
A spanning forest of G is a spanning subgraph whose edge set is a forest. An acyclic
orientation of G is an assignment of a direction to every edge in E such that there is no
directed cycle. We denote by α(G) the number of acyclic orientations of G and by f(G)
the number of spanning forests of G.

∗Partially supported by projects SEUI-PB98-0933 and by CUR Gen. Cat. 1999SGR00356.
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In a recent paper Merino and Welsh [7] studied several counting problems on the
square lattice Ln, the graph having as vertices the set {1, . . . , n} × {1, . . . , n} and where
two vertices (i, j) and (i′, j′) are adjacent if |i − i′| + |j − j′| = 1. Let f(n) = f(Ln) and
α(n) = α(Ln) be the number of spanning forests and acyclic orientations, respectively, of
Ln. It was shown in [7] that

3.209912 ≤ lim
n→∞

f(n)1/n2 ≤ 3.84161,

and that
22/7 ≤ lim

n→∞
α(n)1/n2 ≤ 3.70925.

In this paper we improve the above results by showing that

3.64497 ≤ lim
n→∞

f(n)1/n2 ≤ 3.74101, (1.1)

and that
3.41358 ≤ lim

n→∞
α(n)1/n2 ≤ 3.55449. (1.2)

Our interest in computing α(n) and f(n) is mainly because of the importance of the
square lattice in statistical physics, but we also refered the reader to the discussion about
counting problems on the square lattice in the introduction of [7].

It is important to mention that α(G) and f(G) have been proved #P-hard for planar
bipartite graphs [11] and more recently for the class of grid graphs of maximum degree 3
[12], where a graph G is a grid graph if it is a subgraph of the square lattice Ln for some
n. This last result implies that computing α(G) and f(G) is #P-hard for the class of grid
graphs to which the square lattice Ln belongs. So, computing α(n) or f(n) depends on
properties of the family {Ln|n ≥ 2}.

The key tool for proving our results is a method for computing the Tutte polynomial
of square lattices and other related graphs based on transfer matrices. The method is
interesting in itself and has been usefully applied to other families of graphs [8].

We describe the method in Section 3, after a short introduction to the Tutte polyonmial
in Section 2. In Section 4 we explain how to evaluate the Tutte polynomial at particular
points using the transfer-matrix approach. Then in Sections 5 and 6 we prove the main
results of the paper, namely the bounds (1.1) and (1.2). We conclude with one additional
result.

The use of transfer-matrices is common in enumeration problems dealing with square
lattices (see [2, 5]) but our approach is novel for computing Tutte polynomials. Let us
mention that a different transfer-matrix approach is used in [1] for computing chromatic
polynomials of square lattices.

2 The Tutte polynomial

Let G = (V, E) be a graph with vertex set V and edge set E (loops and multiple edges
are allowed). For every subset A ⊆ E, its rank is r(A) = |V | − ω(A), where ω(A) is the
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number of connected components of the spanning subgraph (V, A). The rank polynomial
of G is defined as

R(G; x, y) =
∑
A⊆E

xr(E)−r(A)y|A|−r(A). (2.1)

The Tutte polynomial of G is obtained from the rank polynomial by a simple change of
variables:

T (G; x, y) = R(G; x − 1, y − 1). (2.2)

The Tutte polynomial contains much information on the graph G; we refer to [7] and the
survey paper [3] for background information. In particular:

• T (G; 2, 1) is the number f(G) of spanning forests in G;

• T (G; 2, 0) is the number α(G) of acyclic orientations in G.

In the last section we also need the following, where an orientation is totally cyclic if every
edge is contained in some directed cycle and we consider G to be connected.

• T (G; 1, 2) is the number of spanning connected subgraphs in G;

• T (G; 0, 2) is the number of totally cyclic orientations in G.

In order to simplify the computations in the next sections, we work with the rank
polynomial instead of the Tutte polynomial; this poses no problem since T (G; 2, 1) =
R(G; 1, 0), and so on.

Unless otherwise indicated, all subgraphs of a given lattice are considered to be span-
ning.

3 A transfer-matrix approach

We see from the previous section that the task of computing f(G) and α(G) amounts to
the evaluation of the Tutte polynomial of G at the points (2, 1) and (2, 0). However, as
mentioned before, the evaluation of the Tutte polynomial at these points is #P-hard for
planar bipartite graphs [11] and even for grid graphs of maximum degree 3 [12].

The approach for obtaining the bounds in Sections 5 and 6 is to subdivide a large lattice
into smaller (not necessarily square) sublattices. This motivates the following definition:
Ln,m is the n × m lattice, that is, the graph having vertices {1, . . . , n} × {1, . . . , m} in
which two vertices (i, j) and (i′, j′) are adjacent if |i− i′|+ |j − j′| = 1. According to the
notation of the introduction, we have that Ln = Ln,n.

For the Tutte polynomial we have the contraction-deletion formula (see [3]),

T (G; x, y) = T (G − e; x, y) + T (G/e; x, y), (3.1)

where e is any edge of G which is not a loop or a bridge. If e is a loop we have that

T (G; x, y) = yT (G − e; x, y), (3.2)
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and if e is a bridge, we have that

T (G; x, y) = xT (G/e; x, y). (3.3)

Then, for small values of m, one can obtain a linear recurrence for the family of polyno-
mials {T (Ln,m; x, y)}n≥0 and solve it directly. But already in the case m = 3 this is very
cumbersome.

Our strategy instead consists in viewing the lattice Ln,m as the union of Ln−1,m and a
comb graph Pm, which is just L2,m with the edges in the first column deleted (see Fig. 1).

Figure 1: The lattice L15,11 and the 11-comb graph P11.

Consider now the formula (2.1) when G = Ln,m. Each A ⊆ E(Ln,m) can be written as

A = B ∪ C, with B ⊆ E(Ln−1,m), C ⊆ E(Pm),

and clearly, |A| = |B| + |C|. Let us write

r(B ∪ C) = r(B) + δ(B, C),

where δ(B, C) is the increment in the rank of B produced by the addition of C. Then we
rewrite (2.1) as

R(Ln,m; x, y) = xr(Ln,m)
∑

A=B∪C

x−r(A)y|A|−r(A)

= xr(Ln,m)
∑

B⊆E(Ln−1,m)

C⊆E(Pm)

x−r(B)y|B|−r(B)

(∑
C

x−δ(B,C)y|C|−δ(B,C)

)
.

In order to use this formulation in a recursive scheme we must be able to compute the
increment δ(B, C) without knowledge of the whole edge-set B. Given an edge-set B, we
label the m vertices in the (n−1)-th column according to the component of the spanning
subgraph induced by B to which they belong; the components are labeled canonically
1, 2, . . . as they appear. In this way we get a state σ(B) = (s1, . . . , sm). An example is
given in Fig. 2.

Then the following lemma is clear, since from the knowledge of σ(B) we can update
the number of components in the union B ∪C. In the example in Fig. 2 we have r(B) =
26, r(C) = 5 and δ(B, C) = 4.
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Figure 2: The state σ(B) = (1, 1, 2, 1, 3) and σ(B ∪ C) = (1, 2, 2, 2, 3).

Lemma 3.1. The rank of B∪C, and hence δ(B, C), can be computed from the knowledge
of the state σ(B) and C.

Proof. For the state σ(B) = (s1, . . . , sm) and a subset of edges C of Pm we construct a
graph with vertices {1, 2} × {1, . . . , m} and edges B′ ∪ C, where B′ is the set of edges
joining (1, i) with (1, j) for each pair i, j such that si = sj. Call this graph Gσ(B),C .

Now it is not difficult to check that

−δ(B, C) = ω(Gσ(B),C) − |σ(B)| − m, (3.4)

where |σ(B)| is the number of components of σ(B).

If in the subgraph induced by B, the last m vertices are in k different components,
then σ(B) induces a partition π of [m] = {1, . . . , m} into k blocks. This must be a non-
crossing partition: there do not exist two blocks β and β ′ of π and elements a < b < c < d
such that a, c ∈ β and b, d ∈ β ′. From now on we use state and partition indistinctly. If
we denote by NCm the set of all non-crossing partitions of [m], then it is well-known [10]
that |NCm| = cm, where

cm =
1

m + 1

(
2m

m

)
is a Catalan number. The total number of partitions, a Bell number, is much larger.

For fixed m, we define a cm × cm matrix Λm as follows. The rows and columns are
indexed by the non-crossing partitions of [m] ordered lexicographically. The entries of Λm

are initially set to 0. Let σ = (s1, . . . , sm) be any non-crossing partition of [m], and let C
be any subset of the m-comb Pm. Consider σ as the state of a subset B of edges in the
lattice Ln−1,m, add the edge-set C, and compute δ(B, C) and the new state σ′ = σ(B∪C).
Then add the term

x−δ(B,C)y|C|−δ(B,C)

to the (σ, σ′) entry of Λm. In order to illustrate the procedure we show below the compu-
tations when m = 2 and σ = (1, 1). In the table, e and g are the two horizontal edges of
P2, and f is the vertical edge.

the electronic journal of combinatorics 10 (2003), #R4 5



Initial state C |C| δ(B, C) Final state Contribution to Λ2

(1, 1) ∅ 0 0 (1, 2) 1

(1, 1) {e} 1 1 (1, 2) (xy)−1y

(1, 1) {f} 1 1 (1, 1) (xy)−1y

(1, 1) {g} 1 1 (1, 2) (xy)−1y

(1, 1) {e, f} 2 2 (1, 1) (xy)−2y2

(1, 1) {f, g} 2 2 (1, 1) (xy)−2y2

(1, 1) {e, g} 2 2 (1, 1) (xy)−2y2

(1, 1) {e, f, g} 3 2 (1, 1) (xy)−2y3

Similar computations when σ = (1, 2) give the final value

Λ2 =

(
x−1 + 3x−2 + yx−2 1 + 2x−1

x−1 + 2x−2 + x−3 1 + 2x−1 + x−2

)
.

Next, we define a vector Xm of length cm, indexed by the non-crossing partitions σ of
[m] as in the case of Λm. For every edge-set B of L1,m (which is just a path of length
m−1), let σ(B) be its state as before. We say that a partition τ is realizable if there exists
B ⊆ L1,m with σ(B) = τ . In this case B is a realization of τ . Notice that if a realization
exists, then it is unique. Also, only those τ which are non-decreasing are realizable; for
instance, (1, 2, 1) is not.

We are ready for the definition of Xm and for the main result in this section.

(Xm)τ =

{
x−|B| if τ has realization B,
0 otherwise.

Theorem 3.2. For integers n, m ≥ 2, we have

R(Ln,m; x, y) = xnm−1X t
m · (Λm)n−1 ·~1,

where Xm is the vector of length cm defined above, and ~1 is the vector of length cm with
all entries equal to 1.

Proof. By definition, the vector Xm encodes the contribution to the rank polynomial of
the edges of the first column L1,m of Ln,m. Every time we multiply by Λm we are adding
the contribution of the edges of a comb graph Pm. Finally, multiplying by ~1 we sum up
all the contributions from all possible states.
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Continuing with the previous example, it follows that

R(Ln,2; x, y) = x2n−1(x−1, 1) · (Λ2)
n−1 ·~1,

where Λ2 is as before. Substituting x, y for x − 1, y − 1 one gets the Tutte polynomial of
Ln,2. Using this formula, the reader can check, for example, that

T (L3,2; x, y) = 2 x2 + x + 2 xy + y + y2 + 3 x3 + 2 x2y + 2 x4 + x5.

4 Numerical values

In principle, the above method can be used to compute the Tutte polynomial of the lattice
Ln,m, n, m ≥ 2, but computationally it is not feasible, as the required space to store the
transfer-matrix grows exponentially. As an example, for m = 10 the transfer-matrix is a
16792-by-16792 matrix. Even for small values of n and m, the above computation involves
storing large polynomials for each entry of the transfer-matrix, so that although possible,
it is very cumbersome. Another possibility is to evaluate the polynomial at a sufficient
number of points and then interpolate. This option is more practical, but we have not
explored it.

However, for some small values of n and m we can evaluate the Tutte polynomial at
particular points easily. By Theorem 3.2, to evaluate T (Ln,m; x0 + 1, y0 + 1), we just have
to evaluate

xnm−1
0 X̂ t

m · Λ̂m ·~1, (4.1)

where X̂m and Λ̂m are the vector and matrix respectively, defined in the last section, with
the substitutions x = x0 and y = y0.

We have written C programs indices.c and matrix.c which can compute the matrix
Λ̂m at any given point. We also have a program called vector.c that can compute the
vector X̂m at x = x0.

1

Using this procedure with the values (x0, y0) = (1, 0) and (x0, y0) = (1,−1), we com-
pute f(n) and α(n) for 2 ≤ n ≤ 7. The values are shown in Table 1.

The values for f(7) and α(7) can be used to improve the upper bound given in [7] by
using Theorem 6.1 and Theorem 5.4 from the same paper, obtaining the bounds

lim
n→∞

(f(n))1/n2 ≤ 3.78649853538319 . . . . (4.2)

lim
n→∞

(α(n))1/n2 ≤ 3.62330970816373 . . . . (4.3)

5 Upper bounds

The procedure described in Section 4 allows us to actually compute the number of forests
of Ln,m, which from now on we denote by f(n, m), for a fixed m and an arbitrary n.

1These programs can be obtained in http://calli.matem.unam.mx/~merino/publications.html.
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Forests and acyclic orientations

Side n Number of forests Number of acyclic orientations

2 15 14
3 3102 2398
4 8790016 5015972
5 3.410086174080000e+11 1.280914342660000e+11
6 1.810755082420676e+17 3.993185613821266e+16
7 1.315927389374152e+24 1.519663682749935e+23

Table 1: This table displays the values of f(n) and α(n) for 1 ≤ n ≤ 7.

In this section we denote by Am the matrix Λm evaluated when x = 1, y = 0. To
compute f(n, m) we have to evaluate X t

m|x=1A
n−1
m

~1, where the vector Xm|x=1 has just 0-1
entries.

The first observation is that atA~1 ≤ ‖A‖1, where a is a 0-1 vector, A is a k × k real
matrix and ‖·‖1 is the l1 matrix norm, that is ‖A‖1 =

∑
i

∑
j |Aij|.

Secondly, the following is a well known result in linear algebra (see, for example, [6,
Corollary 5.6.14]).

Theorem 5.1. Let ‖·‖ be a matrix norm on Mk, the k × k real matrices. Then, for
A ∈ Mk,

ρ(A) = lim
k→∞

‖Ak‖1/k,

where ρ(A) = max{|λ| | λ is an eigenvalue of A} is the spectral radius of A.

Combining these two results we obtain the following theorem.

Theorem 5.2. For any fixed natural number m,

lim
n→∞

f(n, m)1/n ≤ ρ(Am).

This upper bound has a direct implication on limn→∞ f(n)1/n2
, as we prove in the

following theorem.

Theorem 5.3. For k ≥ 1,

lim
n→∞

f(n)1/n2 ≤ 21/k(ρ(Ak))
1/k.

Proof. Let k be a fixed integer. From a square lattice of side kp we select p lattices Lkp,k,
whose bottom left-hand corners are the points (1, ki + 1), with 0 ≤ i ≤ p − 1. Call this
set of subgraphs C.

Choose for every subgraph in C a spanning forest and then choose any subset of the
remaining (p−1)kp edges in Lkp. Any spanning forest of Lkp can be obtained in this way,
but this is clearly an over counting, so we conclude that

f(kp) ≤ 2(p−1)kp(f(k, kp))p ≤ 2kp2

(f(k, kp))p.
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Hence
f(kp)1/(kp)2 ≤ 21/kf(k, kp)1/k2p.

By taking the limit as p → ∞ we get the result using Theorem 5.2.

Using matlab, we compute the values of ρ(Am) for 2 ≤ m ≤ 8, once we have generated
the matrix Am with the programs indices.c and matrix.c. As m is increased the upper
bound gets tighter, so using the best value obtained we have the following

Corollary 5.4.
lim

n→∞
f(n)1/n2 ≤ 3.74100178268615.

We now turn to acyclic orientations. If we denote by A′
m the matrix Λm| x=1

y=−1
, we can

follow steps similar to those above and obtain a result similar to Theorem 5.3 but for the
number of acyclic orientations of Ln.

Theorem 5.5. For k ≥ 1,

lim
n→∞

α(n)1/n2 ≤ 21/k(ρ(A′
k))

1/k.

Now, the best value that we manage to compute is for ρ(A′
8), and this gives us the

following

Corollary 5.6.
lim

n→∞
α(n)1/n2 ≤ 3.55448520960037.

Corollaries 5.4 and 5.6 give improvements on the upper bounds of previous results [7]
and on the ones just mentioned in the last section.

Note. By using first-order perturbation estimates the above results obtained by
matlab can be considered correct up to the last decimal.

6 Lower bounds

In the previous section we used the transfer-matrix method to improve the upper bounds
given in [7]. In this section we improve the lower bounds of the same reference.

We define the n, k-fan graph Fk
n , k ≥ 1, as the graph with vertex set {0̂}∪{1, . . . , n}×

{1, . . . , k}. There is an edge between vertices (i, j) and (i′, j′) if |i− i′|+ |j − j′| = 1; also
we have all the edges 0̂ ∼ (i, 1), for 1 ≤ i ≤ n (see Figure 3). The reader may find it
helpful to think that for a fixed k, increasing n will make Fk

n grow to the right.
For the proofs of the following two theorems one more definition is required. We define

the n, k-comb graph P k
n to be the graph with vertex set {1, . . . , n} × {0, . . . , k}. There is

an edge between vertices (i, j), (i′, j′) if |i− i′|+ |j− j′| = 1, whenever j > 0; also we have
all the edges (i, 0) ∼ (i, 1), i ∈ {1, . . . , n}. Note that there is a natural bijection from the
set of edges of P k

n to the set of edges of Fk
n .
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Figure 3: The 15, 5-fan graph F5
15 and 15, 5-comb graph P 5

15.

Theorem 6.1. For an arbitrary but fixed integer k,

(
lim

n→∞
(f(Fk

n))1/n
)1/k

≤ lim
n→∞

f(n)1/n2

.

Proof. From a square lattice of side kp + 1 we select p different kp + 1, k-comb graphs,
Gi, 0 ≤ i ≤ p− 1, whose bottom left-hand corners are the points (1, ki + 1). Call this set
of subgraphs C. Observe that there are kp edges left at the bottom of Lkp+1 that do not
belong to any of the Gi’s.

Choose one spanning forest B′
i in Fk

kp+1 for every subgraph Gi in C, and take the
edges in Gi that correspond (under the natural bijection) to this forest, say Bi, with
0 ≤ i ≤ p − 1.

The set of edges B =
⋃p−1

i=0 Bi corresponds to the edge set of a spanning forest of Lkp+1.
The reason is the following. Suppose there is a cycle C in B, then it would intersect some
of the subgraphs Bi. The cycle C cannot be inside an element Bi, as this would contradict
our choice of B′

i. Let j0 be the maximum j such that Bj intersects C. Thus, Bj0 contains
a path from (l, j0k + 1) to (h, j0k + 1) for some 1 ≤ l, h ≤ kp + 1. This path in Bj0

maps onto a cycle in Fk
kp+1 that passes through 0̂ and this contradicts our choice of B′

j0
.

Therefore there is no such cycle C.
Any such choice of the B′

i, 0 ≤ i ≤ p− 1 will give a different spanning forest of Lpk+1,
so (

f(Fk
kp+1)

)p ≤ f(kp + 1).

Then ((
f(Fk

kp+1)
) 1

pk+1

) p
kp+1 ≤ (f(kp + 1))

1
(pk+1)2 ,

and by taking the limit as p → ∞ we get the result.

In the same way, an acyclic orientation on a fan graph induces an acyclic orientation
on the corresponding comb graph. A simple adaptation of the last proof also gives a proof
of the following
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Theorem 6.2. For an arbitrary but fixed integer k,(
lim

n→∞
(α(Fk

n))1/n
)1/k

≤ lim
n→∞

α(n)1/n2

.

As an application consider the sequence {α(F2
n)}∞n=1. By using the contraction-deletion

formulas (3.1), (3.2) and (3.3), we get the following recurrence relation

α(F2
n) = 13α(F2

n−1) − 27α(F2
n−2),

with the initial conditions α(F2
1 ) = 4 and α(F2

2 ) = 42. By solving this recurrence we get

α(F2
n) = c1

(
13 +

√
61

2

)n

+ c2

(
13 −√

61

2

)n

,

where c1 ≈ 0.3890957718 and c2 ≈ 0.01872540139. Then, by Theorem 6.2 we obtain

lim
n→∞

α(n)1/n2 ≥
√

13 +
√

61

2
= 3.225697574.

In principle, we could find recurrence relations for the sequences f(Fk
n) and α(Fk

n) for
a fixed k > 1, using contraction and deletion. Then, by solving the recurrence, we obtain
an explicit expression for these sequences. This is, however, very cumbersome. Already
for k = 3 we have to express f(F3

n) as a solution of several linear recurrence relations with
many variables.

Again, we choose to use the transfer-matrix method already developed and compute
the limit limn→∞(f(Fk

n))1/n for some small values of k. We remark here that the exis-
tance of limn→∞(f(Fk

n))1/n and limn→∞(α(Fk
n))1/n will be a consequence of Theorems 6.12

and 6.13.
Let H = {e1, . . . , en−1} be the set of edges e1 = (1, 1) ∼ (2, 1), . . ., en−1 = (n −

1, 1) ∼ (n, 1). Clearly, the graphic matroid M(Fk−1
n ) is isomorphic to the graphic matroid

M(Ln,k/H), where Ln,k/H is the graph Ln,k with the edges in H contracted. Even more,
after a relabeling of the vertices, we can consider their ground sets to be the same. For
example, the identified vertices in M(Ln,k/H) can be considered to be 0̂, the same vertex
as in Fk−1

n , so, we consider here E(Fk−1
n ) = E(Ln,k/H). If r denotes the rank function

of M(Ln,k) and r′ denotes the rank function of M(Fk−1
n ) for a set B ⊆ E(Fk−1

n ), these
functions are related by

r′(B) = r(B ∪ {e1, . . . , en−1}) − r({e1, . . . , en−1})
= r(B ∪ {e1, . . . , en−1}) − (n − 1), (6.1)

where the first equality is a well known property of the rank function (see [9, Proposition
3.1.6]). In particular

r′(E(Fk−1
n )) = r(E(Ln,k)) − (n − 1). (6.2)
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The definition of the Rank polynomial gives for M(Fk−1
n ) that

R(Fk−1
n ; x, y) =

∑
B⊆E(Fk−1

n )

xr′(E(Fk−1
n ))−r′(B)y|B|−r′(B). (6.3)

If for each B ⊆ E(Fk−1
n ) we take A = B∪{e1, . . . , en−1}, then, by equations (6.1) and

(6.2), for a particular B, the exponent of x in (6.3) equals

r(E(Ln,m)) − (n − 1) − r(A) + (n − 1) = r(E(Ln,m)) − r(A)

and the exponent of y equals

|A| − (n − 1) − r(A) + (n − 1) = |A| − r(A).

So, we obtain

R(Fk−1
n ; x, y) =

∑
A=B∪{e1,...,en−1}

B⊆E(Fk−1
n )

xr(E(Ln,k))−r(A)y|A|−r(A). (6.4)

The same procedure as in Section 3 can be used to compute the expresion (6.4) with
the only restriction that the edge set C ⊆ E(Pk) has to contain the edge joining vertices
(1, 1) and (2, 1). We denote by Λ′

k the corresponding matrix for this case. Then the
analogue to Theorem 3.2 is the following.

Theorem 6.3. For k, n ≥ 2 two integers we have

R(Fk−1
n ; x, y) = xkn−1X t

k(Λ
′
k)

n−1~1, (6.5)

where Xk and ~1 are as in Theorem 3.2.

We illustrate the procedure by constructing the row corresponding to state (1, 1) in
Λ′

2. In the table, e is the horizontal edge incident to vertices (1, 1) and (1, 2), g is the
other horizontal edge of P2, and f is the vertical edge. (Beware of confusion between a
vertex and a state).

Initial state C |C| δ(B, C) Final state Contribution to Λ2

(1, 1) {e} 1 1 (1, 2) (xy)−1y

(1, 1) {e, f} 2 2 (1, 1) (xy)−2y2

(1, 1) {e, g} 2 2 (1, 1) (xy)−2y2

(1, 1) {e, f, g} 3 2 (1, 1) (xy)−2y3

Similar computations when σ = (1, 2) give the final value

Λ2 =

(
2x−2 + yx−2 x−1

x−2 + x−3 x−1 + x−2

)
.
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The example shows that any entry of Λ′
k is formed by a subset of the terms in the

corresponding entry of Λk.
As we are interested in limn→∞(f(Fk−1

n ))1/n and limn→∞(α(Fk−1
n ))1/n, we consider

here just the evaluations x0 = 1 and y0 = 0 or y0 = −1. We denote for the rest of this
section the square real matrix Λ′

k|x=1
y=0

by Dk; the matrix Λ′
k| x=1

y=−1
by D′

k; and the column

vector Xk|x=1 by ak.
In contrast with the analysis in the previous section, where a simple observation on

the l1 norm was sufficient to get the upper bounds, to obtain lower bounds we need to
have exact results on the limit limn→∞(f(Fk

n))1/n. To achive this we apply the powerful
Perron-Frobenius Theorem to these matrices, but we need some other results first.

Definition 6.4. The directed graph of an m × m real matrix A, denoted by Γ(A), is the
directed graph on m nodes c1, . . . , cm such that there is a directed arc in Γ(A) from ci to
cj if and only if (A)ij 6= 0.

Then there is the following well known theorem (see [6, Theorem 6.2.24]).

Theorem 6.5. Let A be an m×m nonnegative real matrix. Then A is irreducible if and
only if Γ(A) is strongly connected.

Before continuing, we introduce some notation. For σ(B) = σ1 and σ2, two states, we

say σ1
C−→ σ2, if there exists C ⊆ E(Pk) such that σ(B ∪ C) = σ2.

With this notation and formula (3.4) the construction of the matrix Λk in Section 3
can be described as follows: in entry (σ1, σ2) we add the term

xω(Gσ1,C)−|σ1|−ky|C|+ω(Gσ1,C)−|σ1|−k

for each C ⊆ E(Pk) such that σ1
C−→ σ2, where Gσ1,C is defined in the proof of Lemma 3.1.

Here we are interested in the subsets C ⊆ E(Pk) that contain the edge e0 joining
vertices (1, 1) and (2, 1). We define Uσ1σ2 to be the set given by

Uσ1σ2 = {C ⊆ E(Pk)|e0 ∈ C, σ1
C−→ σ2}.

Now, the entry (σ1, σ2) in Λ′
k is a non-zero polynomial if and only if Uσ1σ2 is non-empty.

To prove that Dk is a nonnegative matrix we need the following technical lemma.

Lemma 6.6. Let k ≥ 2 and σ1, σ2 ∈ NCk. If Uσ1,σ2 is non-empty, the value of the entry
(σ1, σ2) in the matrix Dk is positive.

Proof. As mentioned, the entry (Λ′
k)σ1,σ2 is the sum of the terms

xω(Gσ1,C)−|σ1|−ky|C|+ω(Gσ1,C)−|σ1|−k

over all C in Uσ1,σ2 . Every term, when evaluated at x = 1, y = 0 is either 1 or 0. It is
enough to prove that there exists C in Uσ1,σ2 such that the corresponding term is 1. For
that, it suffices to prove that there exists C in Uσ1,σ2 such that

|C| + ω(Gσ1,C) − |σ1| − k = 0. (6.6)
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Suppose that there is no edge of C belonging to a cycle of Gσ1,C . Thus, the removal
of any edge in C increases the number of connected components by exactly 1. By this
argument it follows that ω(Gσ1,C \C) = ω(Gσ1,C) + |C|. But by definition, Gσ1,C \C has
|σ1| + k connected components. Thus, if C has no edge belonging to a cycle of Gσ1,C , C
satisfies (6.6).

We now show that we can find such a C in Uσ1,σ2. By hypothesis, Uσ1,σ2 is non-empty,
so there exists C0 ∈ Uσ1,σ2. If C0 has no edge belonging to a cycle of Gσ1,C0 , we have the
result. Suppose that C0 has the edge f0 in a cycle of Gσ1,C0 . Note that such an edge can
be taken to be different from e0. Now consider C1 = C0 \ f0. It is clear that the deletion
of f0 does not change the components of Gσ1,C0 , so C1 ∈ Uσ1,σ2 . We can now repeat the
argument with C1 instead of C0. As this process is finite, we end up with a set C with
no edges in a cycle of Gσ1,C and the proof is complete.

Lemma 6.7. Let k ≥ 2. The real matrix Dk is nonnegative. Furthermore, the main
diagonal entries of Dk are positive.

Proof. The first statement follows from Lemma 6.6.
To see that the main diagonal entries of Dk are positive, we just have to check, by

Lemma 6.6, that Uσ,σ is non-empty. But this is clear as the set BI , given by

BI = {(1, j) ∼ (2, j)|1 ≤ j ≤ k},

is always in Uσ,σ, for any σ ∈ NCk.

The same result is true if instead of the matrix Dk we use D′
k but the proof involves

so much notation that we decided to omit it. Instead we analyse the matrix D′
k for the

particular values of 2 ≤ k ≤ 8 that we need for one of the main results of this paper.

Proposition 6.8. Let 2 ≤ k ≤ 8. If σ, γ ∈ NCk, then (D′
k)σγ is positive if and only if

(Dk)σγ is positive, and (D′
k)σγ is zero if and only if (Dk)σγ is zero.

Proof. This was done by computing the matrices D′
k and Dk for 2 ≤ k ≤ 8 and comparing

them entry by entry.

To get the full strength of the Perron-Frobenius Theorem we require the matrices Dk

and D′
k to be primitive matrices.

Definition 6.9. An n × n nonnegative real matrix A is said to be primitive if it is
irreducible and has only one eigenvalue of maximum modulus.

In view of Theorem 6.5 we need the following

Lemma 6.10. The digraph Γ(Dk) is strongly connected, for k ≥ 2.

Proof. We just give an sketch of the proof. To prove that Γ(Dk) is strongly connected,
we have to give for every pair (σ, γ) of states a sequence σ = σ0, . . . , σp = γ, such that
Uσi,σi+1

is non-empty for 0 ≤ i ≤ p − 1.
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Observe that we always have Uσ,1 6= ∅, where 1 is the standard form in Sk with all the
entries equal to 1. Thus, it is enough to prove that for every γ in Sk, there is a sequence
1 = σ0, . . . , σp = γ, such that Uσi,σi+1

is non-empty for 0 ≤ i ≤ p − 1. But this is clearly
always possible for p ≤ k/2, and more than proving it, we have provided the reader with
an example in Figure 4. The general construction can be easily deduced from this.
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Figure 4: An example of the required construction in Lemma 6.10 with k = 8 and
γ = (1, 2, 3, 3, 3, 2, 4, 1).

Theorem 6.11. For k ≥ 2, Dk is a nonnegative primitive matrix. Also, for 2 ≤ k ≤ 8,
D′

k is a nonnegative primitive matrix.

Proof. From the previous lemma and Theorem 6.5, we know that Dk is irreducible. Also
Lemma 6.7 says that Dk is nonnegative and that its main diagonal entries are positive.
Thus, it follows from Lemma 8.5.5 and Theorem 8.5.2 in [6], that Dk is primitive.

Let 2 ≤ k ≤ 8. By Proposition 6.8 and the definition of Γ(D′
k), we get Γ(D′

k) = Γ(Dk).
Thus Γ(D′

k) is strongly connected and again we obtain that D′
k is a nonnegative irreducible

matrix with its main diagonal entries positive. Thus D′
k is primitive.

Theorem 6.12. Let k ≥ 2, then

lim
n→∞

(f(Fk−1
n ))1/n = ρ(Dk).

Proof. We know by previous discussion that f(Fk−1
m+1) = at

kD
m
k
~1. Now, we apply the

Perron-Frobenius Theorem, using the version in [6, Theorem 8.5.1], to obtain the following
result.

lim
n→∞

f(Fk−1
n+1)

ρ(Dk)n
= lim

n→∞
at

kD
n
k
~1

ρ(Dk)n

= at
k

(
lim

n→∞
Dn

k

ρ(Dk)n

)
~1

= at
kL~1.

Where L = zyt, Dkz = ρ(Dk)z, Dt
ky = ρ(Dk)y, z > 0, y > 0 and zty = 1.
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Notice that ak > 0 and L > 0 thus the real number θ = akL~1 is strictly positive and
we obtain

lim
n→∞

f(Fk−1
n+1)

ρ(Dk)n
= θ > 0.

Then
lim

n→∞
f(Fk−1

n+1)
1/(n+1) = lim

n→∞
θ1/(n+1)ρ(Dk)

n/(n+1) = ρ(Dk).

A similar proof gives the following

Theorem 6.13. Let 2 ≤ k ≤ 8, then

lim
n→∞

(α(Fk−1
n ))1/n = ρ(D′

k).

Finally, using Theorem 6.1 and Theorem 6.2 together with the last two theorems we
obtain the following

Corollary 6.14. For any fixed k ≥ 2, we have that

ρ(Dk)
1/(k−1) ≤ lim

n→∞
f(n)1/n2

,

and for 2 ≤ k ≤ 8
ρ(D′

k)
1/(k−1) ≤ lim

n→∞
α(n)1/n2

.

The programs indices.c and matrix2.c can generate the matrices Dk and D′
k for

small values of k. We use matlab to obtain the corresponding eigenvalues. Here the
note of the last section applies and we consider these eigenvalues accurate up to the last
decimal. For the following theorems we use the best values that we can compute, ρ(D8)
and ρ(D′

8). As a note, the eigenvalue for D′
3 is 10.405124837953 and then the lower

bound using this value is 3.2256975738518 ≈
√

(13 +
√

61)/2, which corresponds to a

previous observation. We conclude this section with the following strengthening of the
lower bounds given in [7].

Theorem 6.15.

3.64497565338648 . . . ≤ lim
n→∞

f(n)1/n2

3.41358097503492 . . . ≤ lim
n→∞

α(n)1/n2

.

Just recently, S. C. Chang and R. Shrock found that 3.49 ≤ limn→∞ α(n)1/n2
[4].
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7 Concluding remarks

We have produced one additional result which we will just mention briefly.
Let β(n) and g(n) be, respectively, the number of totally cyclic orientations and the

number of spanning connected subgraphs of Ln. We now that the limits

lim
n→∞

β(n)1/n2

, lim
n→∞

g(n)1/n2

exist. Let us show that,
lim

n→∞
β(n)1/n2

= lim
n→∞

α(n)1/n2

and that
lim

n→∞
g(n)1/n2

= lim
n→∞

f(n)1/n2

.

Recall from Section 2 that β(n) = T (Ln; 0, 2) and that g(n) = T (Ln; 1, 2). We also need
the following facts. If G is a plane graph and G∗ its dual graph, then T (G∗; x, y) =
T (G; y, x) (see [3, Proposition 6.2.4]. Also, if H is a subgraph of G and G has no loops,
then the number of acyclic orientations of G is at least that of H ; this is because every
acyclic orientation of H can be extended to one of G. The same remark applies to the
number of totally cyclic orientations if G has no bridges.

Observe now that L∗
n contains Ln−1 as a subgraph; in fact, Ln−1 is obtained from

L∗
n by deleting the vertex corresponding to the external face. Because of the previous

observations we then have

β(n) = T (L∗
n; 2, 0) ≥ T (Ln−1; 2, 0) = α(n − 1).

And dually
α(n) = T (L∗

n; 0, 2) ≥ T (Ln−1; 0, 2) = β(n − 1).

This implies that
lim

n→∞
β(n)1/n2

= lim
n→∞

α(n)1/n2

.

The proof of the second equality is very similar; it relies again on the formula T (G∗; x, y) =
T (G; y, x), and the fact that the number of forests and the number of connected subgraphs
are both increasing functions on subgraphs. Using a similar argument as before we get

g(n) = T (L∗
n; 2, 1) ≥ T (Ln−1; 2, 1) = f(n − 1);

f(n) = T (L∗
n; 1, 2) ≥ T (Ln−1; 1, 2) = g(n − 1).

The equality limn→∞ g(n)1/n2
= limn→∞ f(n)1/n2

then follows.

We want to thank D. J. A. Welsh for the discussion which led to this paper. Also, we
want to thank an anonymous referee for some very helpful comments.
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