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Abstract

As a meta-heuristic search algorithm based
on mechanisms abstracted from population
genetics, the genetic algorithm (GA) implic-
itly maintains the statistics about the search
space through the population. This im-
plicit statistics can be explicitly used to en-
hance GA’s performance. In this paper, a
statistics-based adaptive non-uniform muta-
tion (SANUM) is proposed. SANUM uses
the statistics information of the allele distri-
bution in each locus to adaptively adjust the
mutation operation. Our preliminary experi-
ments show that SANUM outperforms tradi-
tional bit flip mutation across a representa-
tive set of test problems.

1 Introduction

The genetic algorithm (GA), as one kind of generation-
based evolutionary algorithm, maintains a popula-
tion of candidate solutions to a given problem, which
are evaluated according to a problem-specific fitness
function that defines the environment for the evolu-
tion. New population is created by selecting relatively
fit members of the present population and evolving
them through recombination and mutation operations
(Goldberg, 1989). The performance of a GA is depen-
dent on many factors, such as encoding scheme, selec-
tion method, population size, crossover and mutation
operators. This makes it difficult, if not impossible,
to choose operators for optimal performance. In this
paper we focus on the mutation operator.

In Holland’s GA (Holland, 1975), mutation operator is
treated as a “background operator” that changes bits
of individuals only occasionally, with a rather small
mutation probability p,, € [0,1] per bit. Mutation is

used to ensure that all possible allele can enter the
population and provide variation in a GA population.
Common settings of static mutation probability are
recommended as follows: p,, = 0.001 by De Jong (De
Jong, 1975), p,, = 0.01 by Grefenstette (Grefenstette,
1986), and p,, € [0.005,0.001] by Schaffer et al (Schaf-
fer, 1989). Miihlenbein derived that p,, = 1/I, where [
denotes the string length in this paper, should be gen-
erally ‘optimal’ (Miihlenbein, 1992), which was further
verified by Smith and Forgerty (1996). Recently, re-
searchers have applied adaptation techniques to mu-
tation to enhance GA’s performance and have made
the adaptation of mutation one of the most promis-
ing research areas in GAs (Eiben, Hinterding, and
Michalewicz, 1999).

As a search algorithm based on mechanisms abstracted
from population genetics, the GA implicitly maintains
the statistics about the search space via the popu-
lation. It uses the selection, crossover and mutation
operations to explicitly extract the implicit statistics
from the population to reach the next set of points in
the search space. This implicit statistics can be used
explicitly to enhance GA’s performance. In this paper,
a new statistics-based adaptive non-uniform mutation
operator, called SANUM, is proposed. SANUM explic-
itly uses the statistics information of the distribution
of alleles in a gene locus over the population to ad-
just the mutation probability for that locus adaptively
with the progress of the GA.

2 Review of Related Work

2.1 Adaptation in Genetic Algorithms

The performance of the GA significantly depends on
genetic operators and relevant parameters. However,
choosing the right operators and appropriate parame-
ters for the GA is a difficult task. Traditionally, they
are determined by experience or primary experiments



from a particular domain in advance and then are
fixed during the running of the GA. This kind of con-
stant parameter setting approach is time-consuming
and can lead to sub-optimal performance when pa-
rameters are inappropriately set. And what is worse
lies in the nature that the optimal parameter values
may vary with the evolution process of GAs. Hence,
researchers have applied many adaptation techniques
into GAs to enhance their performance (Eiben, Hin-
terding, and Michalewicz, 1999). Based on the mech-
anism of change, adaptation in GAs can be classified
into three categories: deterministic adaptation where
the value of a strategy parameter is altered accord-
ing to some deterministic rule, adaptive adaptation
where there is some form of feedback information from
the search process that is used to direct the change
of a strategy parameter, and self-adaptive adaptation
where the parameter to be adapted is encoded into
the chromosomes and undergoes genetic operations
(hence, also called co-evolution).

2.2 Adaptation in Mutation

Since mutation is one of the primary genetic operations
in GAs, adaptation in mutation has long been studied
and there have been many results (Back, 1997; Eiben,
Hinterding, and Michalewicz, 1999). Generally speak-
ing, adaptation in mutation happens in two levels.

In the top level, the ratio between mutation and
crossover is adapted during the run of a GA. Davis
(1989) proposed that the GA can select from a set
of operators to perform on a chosen parent, each
with a fixed probability. Julstrom (1995) adaptively
adapted the ratio between mutation and crossover
based on their performance. Corne et al (1994) devised
the COst Based operator Rate Adaptation (COBRA)
method where the GA periodically swaps given k fixed
probabilities between k operators by giving the high-
est probability to the operator that has been produc-
ing the most gains in fitness. Tuson and Ross (1998)
extended the COBRA method by co-evolving the mu-
tation and crossover probabilities (one-normalized real
numbers) with each individual.

In the bottom level, the probability of mutation is
adapted during the run of a GA, uniformly or non-
uniformly over each locus. Fogarty (1989) used de-
terministic schemes decreasing p,, over time and over
the loci exponentially. Hesser and Ménner (1991) de-
rived a general expression of deterministically chang-
ing mutation probability by pn(t) = (a/B)Y/? x
exp(—t/2)/(N x 1'/?) where a, f3, v are constants,
N is the population size, and ¢ is the time (genera-
tion counter). Béack (1992) proposed a self-adaptation

scheme by adding a probability vector o= {p1,...,pn}
(n is the number of object variables) for each individ-
ual. The mutation scheme first mutates the mutation
probability p; with p; itself and then uses the resulting
p; to mutate the ith object variable.

3 Statistics-Based Adaptive
Non-Uniform Mutation

3.1 Description of SANUM

For the convenience of description and analysis, we in-
troduce the concepts of intrinsic attribute and extrin-
sic tendency of allele valuing for a gene locus. In the
binary-encoded optimal solution(s) of a given prob-
lem, a gene locus is called I-intrinsic if its allele is
1, O-intrinsic if its allele is 0, or neutral if its allele
can be either 0 or 1. Whether a locus is l-intrinsic,
O-intrinsic, or neutral depends on the problem and en-
coding scheme, e.g., whether introns are inserted (Lev-
enick, 1995). During the running of a GA, a gene locus
is called I-inclined if the frequency of 1’s in its alleles
over the population tends to increase (to the limit of
1.0) with time (generation), 0-inclined if the frequency
of 1’s tends to decrease (to the limit of 0.0), or non-
inclined if there is no tendency of increasing or decreas-
ing. Whether a locus is 1-inclined, 0-inclined, or non-
inclined depends on the problem, encoding scheme, ge-
netic operators and initial conditions.

Usually with the progress of the GA, those gene loci
that are l-intrinsic (or O-intrinsic) will appear to be
1-inclined (or 0O-inclined), i.e., the frequency of 1’s in
the alleles of these loci will eventually converge to 1 (or
0). SANUM makes use of this convergence information
as feedback information to control the mutation by
adjusting the mutation probability for each locus.

We use the frequency of 1’s in the alleles in a lo-
cus over the population (equivalently we can use the
frequency of 0’s as the argument) to calculate cor-
responding mutation probability of that locus. The
frequency of 1’s in a locus’s alleles can be looked as
the degree of convergence to “1” for that locus. Let
fi(i,t) (i = 1...1) denote the frequency of 1’s in the
alleles in locus i over the population at time (gener-
ation) t and p,,(i,t) (i = 1...1) denote the mutation
probability of locus ¢ at time t. Then, as shown in
Figure 1, p,,, (4, t) can be calculated from f;(4,t) as fol-
lows:

ps(ia t) = Pma:c _2*|f1(i:t)_0-5|*(Pmaz_Pmin) (]-)

where |.| is an absolute function, Py, and Py, are
the maximum and minimum allowable mutation prob-



abilities for a locus respectively, e.g., Ppnaz = 1/1 and
Poin = 109,

Pm ax

Mutation Probability

Prmin :
0.0 =— O-Inclined 0.5 1-Inclined — 1.C

Frequency of 1's in the Alleles in a Locus

Figure 1: Calculating function for the mutation prob-
ability for a gene locus.

Now during the evolution of the GA, after a new pop-
ulation has been generated, we first calculate fi(i,1)
(hence p,(i,t)) for each gene locus over the popula-
tion. Then we can perform SANUM operations.

3.2 Discussions on SANUM

According to the classification of adaptation for GAs
reviewed in section 2, SANUM belongs to the class of
adaptive adaptation that occurs at the bottom-level of
mutation. It uses the statistics of allele distribution as
feedback information to adaptively adjust the muta-
tion probability non-uniformly over each locus, hence
the name Statistics-based Adaptive Non-Uniform Mu-
tation (SANUM).

SANUM is much simpler than those self-adaptation
mechanisms that add one extra value per bit and
co-evolve these values with each individual. With
SANUM, what we add to traditional bit flip muta-
tion are spatially only one real vector of [-dimension
that records the frequency of ones for each locus,
and computationally only one statistics per genera-
tion that calculates the frequency of ones over the
population (hence the mutation probability) for each
locus. This simple extra statistics added is well re-
warded in the sense of computational complexity at
two aspects: the number of mutations for a popula-
tion and the number of bit flippings for each mutation
operation. For a population of size N at generation
t, on the average traditional bit flip mutation mutates
N x (1—(1=py,)!") individuals while SANUM mutates
N x (1=T[Z, (1 = pm (4, t))) individuals. For each mu-
tation operation on an individual, the number of bit
flippings is I x p,, on the average with traditional bit
flip mutation and Y°'=) pp (i,t) with SANUM.

When the population is randomly initialized, the fre-
quency of 1’s in the alleles in each locus is statistically
about 0.5 and hence p;, (i,t) = Ppaz, which, assuming
Pz = Pm, gives on the average N x (1 — (1 —pp,)!)
mutations for a population and ! x p,, flippings for
each mutation operation with SANUM. However, with
the progress of the GA, 1-intrinsic and O-intrinsic loci
tend to converge to 1 and 0 respectively and their
mutation probabilities decrease according to equation
(1). This results in both reduced number of mutations
over a population (i.e., N x (1 — Hzll(l —pm(i,1))) <
N x(1=(1—py)Y)) and reduced number of flippings for
each mutation operation (i.e., E;ill Pm (i, t) <1 X pm)
with SANUM. And as the population converges, with
traditional bit flip mutation, in fact, fewer and fewer
offsprings generated by mutating those converged loci
will survive the next generation. That is, many mu-
tation operations are wasted on those converged loci.
Most of these wasted mutations are saved by SANUM
through adaptively decreasing p,(i,t) to P, for
those converged loci.

4 The Test Problems

4.1 The Max Ones Problem

The Max Ones problem simply counts the ones con-
tained in a binary string as the fitness of that string.
The aim is to obtain a string containing all ones, that
is, to maximize ones in a string. A string length of 100
bits was used for our study.

4.2 The Royal Road Functions

The Royal Road functions (Forrest and Mitchell, 1992)
are devised to investigate GA’s performance with re-
spect to schema processing and recombination in an
idealized form. Royal Road functions R; and Rs con-
tain tailor-made building blocks (schemas) based on
64-bit binary strings. Each schema s; is given a coef-
ficient ¢; which is equal to its order o(s;) (a schema’s
order is the number of fixed positions within that
schema). R; consists of 8 disjunctive order-8 schemas
of which each has 8 adjacent ones. Ry consists of four
levels of schemas: level 0 (bottom level) is the same
as Ry, level 1 has 4 order-16 schemas of which each
combines two adjacent schemas in level 0, level 2 con-
tains 2 order-32 schemas each combining two adjacent
schemas in level 1, and finally level 3 (the optimal
schema) combines the 2 schemas in level 2.

The fitness of a bit string = for Ri(z) and Ra(x) is
computed by summing the coefficients ¢; correspond-
ing to each of the given schema s; of which z is an



instance. The optimal solutions for R; and R, are
given as: R;(111..1) = 64 and R»(111..1) = 192.

4.3 The L-SAT Problem Generator

The random L-SAT problem generator (De Jong, Pot-
ter and Spears, 1997) is a boolean satisfiability prob-
lem generator devised to investigate the effects of epis-
tasis on the performance of GAs. It generates ran-
dom boolean expressions in conjunctive normal form
of clauses subject to three parameters V (number of
boolean variables), C' (number of disjunctive or con-
junctive clauses) and L (the length of the clauses).
Each clause is created by selecting L of V' variables
uniformly randomly and negating each variable with
probability 0.5. For each generated boolean expres-
sion, the aim is to find an assignment of truth values
to the V variables that makes the entire expression
true. Since the boolean expression is randomly gen-
erated, there is no guarantee that such an assignment
exists. The fitness function for the L-SAT problem is
as follows:

C

f(chrom) = %Z f(clause;)

i=1

Where chrom consists of C' clauses and the fitness con-
tribution of clause 4, f(clause;), is 1 if the clause is
satisfied or 0 otherwise.

In our experiments we used the same parameters as in
(DeJong, Potter and Spears, 1997). We fixed V' to 100
and L to 3. The number of clauses C' was varied from
200 (low epistasis) to 1200 (medium epistasis) to 2400
(high epistasis).

5 Experiment Study

5.1 Design of Experiment

In order to test SANUM, in this experiment study
we compared it with traditional bit flip mutation and
combined them with commonly used 2-point and 0.5
uniform crossover operators. For each experiment of
combining mutation (traditional bit flip mutation or
SANUM), crossover (2-point or 0.5 uniform crossover)
and each test problem, 100 independent runs were ex-
ecuted. In order to have a strict comparison the same
100 different random seeds were used to generate ini-
tial populations for the 100 runs of each experiment. In
all the experiments, the fitness proportionate selection
with the stochastic universal sampling (Baker, 1987)
and elitist model (De Jong, 1975) was used in the GA,
the crossover probability was fixed to typical value 0.6,
and the population size was set to 100 for each run.

For traditional bit flip mutation the probability of mu-
tation py, was set to 1/1 while for SANUM p,,, varied
adaptively between Py, = 1/1 and P, = 107° for
each locus according to equation (1). For each run, we
recorded the best-so-far fitness every 100 evaluations.
Here, only those chromosomes changed by crossover
and mutation operations were evaluated and counted
into the number of evaluations. Each experiment re-
sult was averaged over 100 independent runs.

5.2 Experiment Results

The experiment results on different test problems are
shown in from Figure 2 to Figure 7 respectively. From
these figures, it can be seen that SANUM outper-
forms traditional bit flip mutation operator on all the
test problems quite clearly except on royal road func-
tions R; and Rs. On royal road functions R; and R,
(see Figure 3 and Figure 4), during the early stage
of searching, GA with traditional bit flip mutation
is better than GA with SANUM. However, after cer-
tain evaluations, when the GA has built up some use-
ful schemas SANUM outperforms traditional bit flip
mutation because SANUM efficiently avoids mutating
those converged loci.
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Figure 2: Average best-so-far curves against evalua-
tions on Max Ones problem.

From above experiment results, it can also be seen that
mutation operator does matter with respect to GA’s
performance. For the set of tested problems, SANUM
is obviously better than traditional bit flip mutation,
while uniform crossover and 2-point crossover show
much less difference with respect to GA’s performance
except for when combined with SANUM on royal road
functions. This observation shows that developping
good mutation operator profoundly helps improving
GA’s performance.
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Figure 3: Average best-so-far curves against evalua-
tions on royal road function R;.
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Figure 4: Average best-so-far curves against evalua-
tions on royal road function R,.

6 Conclusions

In this paper, a new statistics-based adaptive non-
uniform mutation operator, SANUM, is proposed.
The motivation of SANUM is to make use of the statis-
tics information implicitly contained in the population
explicitly to guide the mutation operation. SANUM
achieves this by using the statistics information of the
allele distribution in the current population to adjust
the mutation probability for each gene locus adaptively
during the progress of the GA. Through decreasing the
mutation probabilities on converged loci SANUM can
save mutations wasted on them.

The preliminary experiment results of this study show
that SANUM performs better than traditional bit flip
mutation operator on a set of typical GA test prob-
lems. The experiment results indicate that SANUM
may be a good candidate mutation operator for GAs.
Since SANUM works at the bottom-level of mutation,
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Figure 5: Average best-so-far curves against evalua-
tions on L-SAT problems with low epistasis.
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Figure 6: Average best-so-far curves against evalua-
tions on L-SAT problems with medium epistasis.

it can be easily combined into other adaptation tech-
niques for mutation and can act as the basis for ana-
lyzing and designing new related algorithms.

In this study, for the sake of simplification the trian-
gular function is used to calculate the mutation proba-
bility for each locus. Other functions such as exponen-
tial functions instead may further improve GA’s per-
formance, which is one future work about SANUM.
Comparing obtained SANUM with other adaptation
techniques for mutation is another future work about
SANUM.
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