Experimantal evaluation of algorithmic solutions for generalised
network flow models *

(Preliminary report)
Tomasz Radzik! and Shengxiang Yang!

King’s College London
July 2000

Abstract

The generalised network flow problem is to maximise the net flow into a specified sink node in
a network with gain-loss factors associated with edges. In practice, computation of solutions for
instances of this problem is almost always done using general-purpose linear programming codes, but
this may change because a number of specialized combinatorial generalised-flow algorithms have been
recently proposed. To complement the known theoretical analyses of these algorithms, we develop
their implementations and investigate their practical performance. We include in our study different
versions of Goldberg, Plotkin, and Tardos’s Fat-Path algorithm and Wayne’s Push-Relabel algorithm.
We compare the performance of our implementations of these algorithms with implementations of
the straightforward highest-gain path-augmentation algorithms. We use various classes of networks,
including a type of layered networks which may appear in the multiperiod portfolio revision problem.

Keywords: Network optimisation, Network flow algorithms, Generalised flow, Experimental
evaluation.

1 Introduction

2 Definitions

The input

én instance, or an input, of the generalised flow problem is an antisymmetric generalised flow network
G = (V,E,t,e,u,7y) where:

o (V, E) is a directed graph with a set of nodes V' and an antisymmetric set of edges E; that is, if
(v,w) € E, then (w,v) ¢ E;

e t €V is the sink, the destination of flow;

e ¢:V — R> is an (initial) excess (supply) function; assume that e(t) = 0;
eu:E— R> is a capacity function;

e v:E — R is a gain (loss) function.

The assumption that the set of edges is antisymmetric is made without loss of generality. Symbols R>
and R stand for the nonnegative and the positive real numbers, respectively. The meaning of the gain
function « is that if units of flow enter an edge (v, w) at node v, then (v, w)z units arrive at node w.

*This work is supported by the EPSRC grant GR/L81468.
T Authors’ address: Department of Computer Science, King’s College London, Strand, London WC2R 2LS, UK.
E-mail: {radzik,yangs}@dcs.kcl.ac.uk

A flow and the optimisation objective

A flow in G is a nonnegative function f : £ —» R> which satisfies the flow conservation constraints (2):
the net flow outgoing from each node v cannot be greater than the initial excess at this node; and the
capacity constraints (3): the amount of flow outgoing from a node v along an edge (v,w) cannot be
greater than the capacity of this edge. The objective of the generalised flow problem is to find a flow
which maximises the net flow incoming into the sink ¢. Thus the generalised flow problem is the following
linear program with decision variables {f(v,w) : (v,w) € E}.

(P) maximis: Y (z0fH- Y f(ta); (1)
(2,t)€EE (t,x)eE
subject to: Z flv,z) — Z v(z,v)f(z,v) < e(v), foreachwveV —{t}; (2)
(v,z)EE (z,v)€E
flo,w) < u(v,w), for each (v,w) € E; (3)
flo,w) > 0, for each (v,w) € E.

The first sum in (2) is the flow outgoing from node v and the second one is the flow incoming into v.

The dual problem

Let u(v), for v € V—{t}, and A(v, w), for (v,w) € E, be the dual variables associated with constraints (2)
and (3). Introducing a constant p(t) = 1 (to simplify the formulation) we obtain the following dual
problem.

(D) minimise: Ze(v)p(v) + Z u(v, w)Mv,w);

veV (v,w)eB

subject to: p(v) — y(v, w)u(w) + A(v,w) > 0, for each (v,w) € E;
u) > 0, A(v,w) > 0, for each v € V and each (v,w) € E;
p(t) = 1.

For a fixed feasible vector u, the objective function of (D) is minimised by setting

Ap(v,w) = max{0, y(v,w)u(w) — p(v)}, for each (v,w) € E. (4)

A technical issue

A symmetric generalised flow network H = (V, F,t,e,u,7) has a symmetric set of edges F' (that is, if
(v,w) € F, then also (w,v) € F), and vy(v,w) = 1/y(w,v), for each (v,w) € F. For such a symmetric
network, the generalised flow problem is formulated in the following way.

(Ps) maximise: Z v(z,8) f(z,1);

(z,t)EF
subject to: f(w,v) = —y(v,w)f(v,w), for each (w,v) € F; (5)
Z fv,z) < e(v), for each v € V — {t}; (6)
(v,z)EF
flo,w) < ulv,w), for each (v,w) € F.

Ouly positive edge flows are “real” flows. Symmetric edges and condition (5) are used to simplify the
notions of residual paths and residual networks. In the case of an antisymmetric network, we have to
refer to “sending flow along an edge (v,w),” as well as to “reversing some of the flow sent before along
(v,w).” In the case of a symmetric network, we can refer only to “sending flow along an edge,” either
(v, w) or its symmetric (w,v).

For our antisymmetric input network G = (v, E, t,e,u,v), let G denote the symmetric network
(V,E,t,e,u,v), where E is obtained from E by adding to E the symmetric edge (w,v) for each edge
(v,w) € E, and setting u(w,v) = 0 and v(w,v) = 1/7(v,w). For a flow f in G, the corresponding flow in
G is obtained by extending f according to (5). Problem (P) for network G is the same as problem (P,)
for network G, and from now on, for convenience, we refer only to symmetric networks. (We began with
antisymmetric networks to formulate the generalised flow problem in a more natural way and to have an
immediate derivation of the dual problem.)

Residual network

Let f be a flow in network G. The residual capacities of edges in E and the residual excesses of nodes in
V' are defined in the following way.

us(v,w) = wu(v,w)— f(v,w), for each (v,w) € E;
ef(v) = e(v) — Z fv,w), foreachveV.
(v,w)EE

Note that the sum above is the net flow outgoing from node v, since it covers the outgoing edges as well
as the incoming ones (through their symmetric edges). A residual edge is an edge in E with positive
residual capacity and a resédual path is a path which consists only of residual edges. Let V; denote the set
of nodes which can reach the sink t along residual paths, and let Ef = ENV} x V; be the set of the edges
between the nodes in V. The residual network is the generalised flow network Gy = (V¢, E¢,t,ef,ug,7),
with functions ey, ug, and v restricted to sets Vy and E;. If ef(v) > 0 for a node v € V%, then we say
that v is a node with (residual) excess.

If his a flow in Gy, then f + h is a flow in G creating the excess ef(t) + e (t) at the sink. (Assume
that h(v,w) = 0 for each (v,w) € E — Ey.) If h is a maximum flow in G, then f + h is a maximum flow
in G.

Let eopt(t) denote the maximum possible net flow into the sink over all flows in G. We say that a flow
fin G is &-optimal, if ef(t)(1 + &) > eopt(t)-

Flow generating cycles

The gain v(P) of a path P is the product of the gains of the edges on this path. Sending x units of flow
from a node v along a residual path P to the sink increases the residual excess at the sink by y(P)z.

A flow generating cycle is a residual cycle with gain greater than 1. If T' is a flow generating cycle,
then we can increase flows on the edges of T" to created (or increase) the excess at at least one node on
this cycle. This additional created excess can be send subsequently to the sink.

Let f be aflow in G and h be a flow in the residual network Gy such that the residual network G4 of
the combined flow f + h does not have flow generating cycles. Such a flow h cancels (all) flow generating
cycles in the residual network G'¢, and computation of h is called canceling (all) flow generating cycles.

Relabeled network

Let p be positive node labels in G¢. the relabeled (residual) capacities, the relabeled gain factors, and the
relabeled (residual) excesses are defined as

upp(v,w) = up(v,w)p(v),
Yulv,w) = y(v,w)pu(w)/u(),
eru() = ep(v)p(v).

The relabeled network Gy, = (V¢, Ef,8,ufu,€f,,7u) is equivalent to network Gy (they are equivalent
instances of the generalised flow problem). For a flow h in G, define the flow h, in Gy ,:

hy(v,w) = h(v,w)u(v), for each (v,w) € Ey.

{ INPUT: a generalised flow network G }
f < a flow which cancels all flow generating cycles in G;
while there is a node v € V; with positive residual excess do
1: compute a highest gain path P from v to ¢ in Gy;
2: update flow f by sending flow from v to t along P
(transfering as much of the excess from v to ¢ as the edge capacities on P allow);
{ invariant: there are no flow generating cycles in Gy }
end_while
{ ouTPUT: optimal flow fin G }

Figure 1: Onaga’s algorithm (code HIGHESTPATH).

Flows h and h,, are actually the same flow, but h expresses that flow in terms of the network Gy while h,,
expresses it is terms of the equivalent network Gy,,. For a path P from v to w, v, (P) = v(P)u(v)/u(w),
and for a cycle T, ,(T") = ~(T).

There are no flow generating cycles in G if and only if there exist node labels in G, called proper
node labels, such that the relabeled gain of each residual edge in G is at most 1. If Gy does not have
flow generating cycles, then the node labels p1 in G such that p(v) is equal to the highest gain of a path
from v to ¢t in Gy are well defined, are proper, and are called the canonical node labels. The canonical
node labels, and the highest-gain paths to the sink, can be computed in O(mn) time using the Bellman-
Ford-Moore shortest paths algorithm. If we have proper node labels, then this computation can be
done in O(m + nlogn) time using Dijkstra’s shortest paths algorithm with Fibonacci heaps [?]. (Adapt
shortest-path algorithms by replacing summing the edge weights with multiplying the edge gains.)

Optimality conditions
Lemma 1. If f is a flow in G, then the following four conditions are equivalent.
1. Flow f is optimal.

2. (a) There is no path from o node with excess to the sink t in the residual network Gy, and

(b) there is no flow generating cycle in the residual network Gy.

3. (a) There is no path from a node with excess to the sink t in the residual network Gy, and

(b) there exist node labels 11 in Gy such that the relabeled gain of each residual edge is at most 1.

>

There exist node labels p in G such that the feasible primal vector f and the feasible dual vector
(e, Ay) for the primal and the dual problems (P) and (D), satisfy the complementary slackness

property (X, is defined by (4)).

Proof.
(1) = (2?). If not (??) or not (??), then we would be able to send more flow into the sink.
(??) = (?7). Discussed above.

(??7) = (??). Extend the canonical node labels p in G to V' by setting u(v) = 0 for each v € V — V%,
and check that vectors f and (u,A,) satisfy the complementary slackness property for the primal-dual
pair (P) and (D).

(??) = (1). From the complementary slackness optimality conditions. M

{ INPUT: a generalised flow network G }
f « a flow which cancels all flow generating cycles in G|
while there is a node v € V; with positive residual excess do
1: compute the canonical node labels p in G
2: compute a maximum flow b in Gy, from the nodes with excesses to ¢
using only edges with (relabeled) gains equal to 1;
3 ff+h
{ invariant: there are no flow generating cycles in G }
end_while
{ OUTPUT: optimal flow fin G }

Figure 2: Truemper’s algorithm (code MAXFLOW).

{ INPUT: a generalised flow network G and a number £ >0 }

A < initialise; { A <eept(t) <mA }

f < zero flow in G|

while mA > {-ef(t) do

{ Copt(t) —es(t) <mA }

h < a flow which cancels all flow generating cycles in G;

[« f+h

while there is a A-fat path from an excess node v to tin Gy do
update flow f by sending flow from v to ¢ along a highest gain A-fat path;

end_while

{eopt(t) —er(t) <mA/2}

A« A/2;

end_while

{ oUTPUT: {-optimal flow f in G }

Figure 3: The Fat-Path algorithm.

{ INPUT: a generalised flow network G and a number £ > 0 }
f < a flow which cancels all flow generating cycles in G;
p + the canonical labeling in G'y;
let TOTRESEXy,, stand for the current sum of the residual relabeled excesses in Vy — {t};
{ ToTRESEXy , is an upper bound on eqp(t) —es(t) }
while TOTRESEX;, > {-ef(t) do
A < ToTRESEX¢f ,/(2(m + n));
PHASE(A);
{ no flow generating cycles in G, p — the canonical labeling of Gy, TOTRESEXy , < (m +n)A }
end_while
{ ouTPUT: ¢{-optimal flow f in G }.

PHASE(A):
{ no flow generating cycles in G, p — the canonical labeling of Gy }
for each v € Vy — {t} and (v,w) € Ef do &;,(v) ¢ ef,(v); €z u(v,w) < 0; end_for
while there exists v € Vy — {t} such that éy,,(v) > A do
PUSHFLOWINPATH(v);
p < the canonical labeling in Gy;
end_while.

PUSHFLOWINPATH(v):
while v # ¢ and é7,(v) > A do
w < the next node from v on the highest gain path to ¢;
PUSHFLOWINEDGE(v, w);
v~ w;
end_while.

PUSHFLOWINEDGE(v, w):
do the following updates in G, (note that -y, (v,w) = 1):
move A units (of flow) from ég ,(v) to é¢ ,(v,w);
send o = min{éy ,(v,w),uys, (v,u)} units of flow along (v,w), increasing é; ,(w,v) by «;
move min{éy ,(w,v), A} units from é; ,(w,v) to &, (w).

Figure 4: Goldfarb, Jin and Orlin’s excess scaling algorithm.

3 Onaga’s and Truemper’s algorithms

4 Excess scaling algorithms

4.1 The Fat-Path algorithm

4.2 Goldfarb, Jin and Orlin’s excess scaling algorithms

ExSc0: implementation of the algorithm described in Figure 7?

ExScl: Each PUSHFLOWINPATH(v) computation sends kA units of flow from node v to the sink ¢ along
the highest gain residual path, for the largest possible integer k.

ExSc2: Each PusHFLOWINEDGE(v, w) computation sends kA units of flow from node v along edge
(v, w) to node w, for the largest possible integer k.

ExSc3: During the computation PHASE(A), we apply the PUSHFLOWINPATH(v) computation to each
node v with excess €y, (v) > A before computing the canonical labeling, and the new highest-gain paths
tree. See Figure ??. Node next(v) is the next node on the path from v to ¢ in the last computed highest-
gain paths tree. Procedure PUSHFLOWINPATH(v) may now terminate not only when the sink has been
reached or the current node has excess €¢,,(v) less than A, but also when an edge (z, next(x)) which no

PHASE(A):
{ no flow generating cycles in G¢, p — the canonical labeling of Gy }
for each v € Vy — {t} and (v,w) € Ef do éf,(v) < eg,(v); éfp(v,w) < 0 end_for
while there exists v € Vy — {t} such that é;,(v) > A do
L+ {veVy—{t}: é;,(v) > A};
for each v € L do PUSHFLOWINPATH(v) end_for
@ < the canonical labeling in G'¢;
end_while.

PUSHFLOWINPATH(v):
while v #t, éf,(v) > A, and uy(v,next(v)) >0 do
PUsHFLOWINEDGE(v, next(v));
v + next(v);
end_while.

Figure 5: Modification of Goldfarb, Jin and Orlin’s algorithm (code EXSc3).
longer is residual has been reached. Procedure PUSHFLOWINEDGE(v, w) is as in EXSc2.

5 Push-relabel algorithms

5.1 Single-phase push-relabel algorithm
5.2 Multi-phase push-relabel algorithm

6 Generators of generalised flow networks

To create test inputs for our implementations, we use two input generators of generalised flow networks,
They are loosely based on possible applications of generalised flow problem in financial analysis. To
simplify our initial tests, the generated networks do not have flow generating cycles.

Layered networks: multiperiod network portfolio models

Generator LAYERS creates a network with the set of nodes V = {(b,t) :a =1,2,...,K;7=1,2,...,T}U
{t}, A node (b,t) represents asset b at the time period 7. An edge e = ((t',7), (", 7 + 1)) represents
possibility of exchanging an amount z of asset b’ available at the time period 7 into the «y(e) - x amount
of asset b", which will be available at the next time period 7 + 1. For each node (b,7), 7 < T, generator
LAYERS randomly chooses D such edges outgoing from this node to nodes at the next time period. Each
node at the last time period is connected by an edge to the sink ¢.

Generator LAYERSX is similar to generator LAYERS, but the edges can go from one time period to
any other time period. A “forward” egde, from a time period 7' to a time period 7"/ > 7' represents
exchanging assets (with possible delayed availability of the bought assets). A “backward” egde, from a
time period 7' to a time period 7" < 7' represents borrowing.

The gains and the capacities of the edges are randomly selected from intervalS [Ymin, Ymax] and
[min, Umax], respectively. Tt seems that in this model one should expect the edge gains to be close
to 1 (assuming that the data comes in a “normalised” form), so our intention is to set the parameters
Ymin and Ymax close to 1.

Grid of cliques: exchanging and trasfering currencies

The generator GRIDOFCLIQUES creates a network with the set of nodes V = {(¢,q) : ¢=1,2,...,K;q =
1,2,...,Q} U {t}, where a node (c,q) represents currency ¢ at market ¢. For each ¢ = 1,2,...,Q,
the nodes {(c,q) : ¢ =1,2,...,K} form a (directed) clique; and for each ¢ = 1,2,..., K, the nodes

{ INPUT: a generalised flow network G and a number £ > 0 }
f + zero flow in G;
loop
cancel all flow generating cycles in Gy and compute the canonical labeling y;
if TOTRESEX > £es(t) then terminate;
h < PHASE(G,,,1/2);
< f+h
end_loop
{ ouTPUT: {-optimal flow f }.

PHASE(G, £):
{ G is a generalised flow network with edge gains of residual edges at most 1 }
b (1+&Yn,
round edge gains in G to powers of b and let H be the resulting network;
h(v,w) « 0, for each (v,w) in H;
u(v) < 0, for each v in H;
while exists v € H, with positive excess do
if exists an admissible edge (v, w) { a residual edge in Hj, with y,(v,w) >1} then
{ push: } update f by sending min{ep(v), up(v,w)} units of flow along (v, w);
else
{ relabel: } u(v) < p(v)/bY/™;
end_while
{ h is an optimal flow in H }
g < interpretation of flow A in G|
{ g is a &-optimal flow in G }
return g.

Figure 6: Tardos and Wayne’s Push-Relabel algorithm.

{ INPUT: a generalised flow network G }
f + zero flow in G;

k+ 0;

loop

end_loop
{ ouTPUT: {-optimal flow f }.

PHASE(E):

k+—k+1;

cancel all flow generating cycles in Gy and compute the canonical labeling u;
if TOTRESEX > €es(t) then terminate;

h < PHASE(&);

f< f+h

{ Gy does not have flow generating cycles, p is the canonical labeling in Gy }
b+ (1+&Yn,
let 4, (v, w) be v,(v,w) rounded down to integer power of b, for each residual edge (v, w) in Gy;
while exists v € Gy with positive excess do
if exists an admissible edge (v, w) { a residual edge in Gy with 4,(v,w) > 1} then
{ push: } update f by sending min{ey(v),us(v,w)} units of flow along (v, w);
else
{ relabel: } u(v) < p(v)/bY/™;
end_while
{ leopt(t) —egn ()] < [§/(1+&)] - [eopt(t) — ef:(t)],

where f' and f" are the flows at the beginning and at the end of the computation }

{(c,q) :

Figure 7: Adaptation of Tardos Wayne’s Push-Relabel algorithm.

g =1,2,...,Q} form a clique. Thus a currency ¢ at a market ¢ can be exchanged into any

other currency within the same market and can be transfer into the same currency at any other market.
Similarly as above, generator GRIDOFCLIQUES has also parameters Ymin, Vmax, Ymin and Umax defining
ranges of the edge gains and capacities, and Ymin and Ymax should preferably be set close to 1.

7 Experiments

In our experiments, we consider the various values of nodes as shown in the following Table 1.

8

Conclusion

Excess scaling: full SP computation from scratch seems to be the bottleneck, we have to come up
with a suitable practically fast update of the SP tree.

Push-Relabel:

1. periodical computation of “good” labels may significantly improve the running times;

2. avoiding of “canceling flow generating cycles” could be done by saturating edges with relabeled
gains > 1 + € (but “deficit” nodes would be created, so the overall benefit of this approach is
not clear).

Truemper’s algorithm with cost scaling seems to be an interesting option, which is worth experi-
mental evaluation.

A simple method which combines together the excess scaling with the gain scaling is needed.

1000 r T T i T 3

100 F

HighestPath —«—
MaxFlow -+---
ExSc0 -8--
ExScl -
ExSc2 -4-
ExSc3 - -

CPU time in seconds (logscale)

0.01 I I I I
100 200 400 800 1600 3200

number of nodes (logscale)

| nodes/edges || HIGHESTPATH | MaXFLow | EXSc0 | ExScl | ExSc2 | ExSc3

100/400 0.14 0.43 7.69 0.48 0.33 0.07
200/800 0.68 2.16 49.22 2.70 1.61 0.27
400/1600 2.71 - | 195.10 10.54 7.80 0.88
800/3200 13.95 48.02 | 815.46 46.68 34.23 3.34
1600/6400 61.65 220.30 - | 195.66 | 135.76 9.67
3200/12800 277.32 - - | 862.73 | 437.79 33.94

Figure 8: Running times on inputs created by the generator LAYERS.

e The new approximation “packing” algorithms for generalised maximum flow problem ([?] and [?],
based on [?]) may also be worth experimental evaluation.

10

1000 |

100

=
o
—t

CPU time in seconds (logscale)

HighestPath
ExSc0

. A ExScl -8--
1 [;f, : ExSc2 -x- E
3 ExSc3 —&---
01 A/‘/./ | | | |
100 200 400 800 1600 3200
number of nodes (logscale)
| nodes/edges || HiIGHESTPATH | ExScO | ExScl | ExSc2 | ExSc3 |
100/500 0.26 17.83 0.97 0.69 0.13
200/1000 0.97 76.29 3.80 2.52 0.34
400/2000 5.70 312.33 16.72 10.36 1.38
800/4000 28.69 | 1326.39 71.29 41.02 7.08
1600/8000 231.88 - 339.45 181.22 28.46
3200/16000 2074.96 - | 2169.16 | 1009.39 98.24

Figure 9: Running times on inputs created by the generator LAYERSX.

References

[1] R. K. Ahuja, M. Kodialam, A.K. Mishra, and J. B. Orlin. Computational investigation of maximum
flow algorithms. Europ. J. of Operational Research, 97:509-542, 1997.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: Theory, algorithms, and applications.
Prentice Hall, 1993.

[3] E. Cohen and N. Megiddo. New algorithms for generalized network flows. Math. Programming,
64(3):325-336, 1994.

[4] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization
algorithms. J. Assoc. Comput. Mach., 34:596—615, 1987.

[5] N. Garg and J. Kénemann. Faster and Simpler Algorithms for Multicommodity Flow and other
Fractional Packing Problems. In Proc. 89th IEEE Annual Symposium on Foundations of Computer
Science, 1998.

[6] A. V. Goldberg, S. A. Plotkin, and E. Tardos. Combinatorial Algorithms for the Generalized Cir-
culation Problem. Math. Oper. Res., 16(2):351-381, 1991.

[7] D. Goldfarb and Z. Jin. A faster combinatorial algorithm for the generalized circulation problem.
Math. Oper. Res., 21:529-539, 1996.

11

100 ¢ T T

ol T i

HighestPath <—
MaxFlow —+---

CPU time in seconds (logscale)

ExScl -g--
T ExSc2 -
0.1 &= ExSc3 -- |
1 1
100 200 400 800

number of nodes (logscale)

| nodes/edges || HIGHESTPATH | MAaXFLow | ExSc0 | ExScl | ExSc2 | ExSc3 |

100/1000 0.10 0.23 38.16 0.30 0.38 0.09
200/3000 0.45 1.05 | 341.18 1.93 1.92 0.36
400/8000 1.67 4.16 - 6.91 8.44 1.64
800/23000 9.05 21.84 - 32.00 40.93 7.98

Figure 10: Running times on inputs created by the generator GRIDOFCLIQUES.

[8] D. Goldfarb, Z. Jin, and J. Orlin. Polynomial-time highest-gain augmenting path algorithms for the
generalized circulation problem. Math. Oper. Res., 22:793-802, 1997.

[9] J.D. Oldham. Combinatorial approximation algorithms for generalized flow problems. In Proc. 10th
Annual ACM-SIAM Symposium on Discrete Algorithms, 1999.

[10] K. Onaga. Dynamic Programming of Optimum Flows in Lossy Communication Nets. IEEE Trans.
Clircuit Theory, 13:308-327, 1966.

[11] K. Onaga. Optimal Flows in General Communication Networks. J. Franklin Inst., 283, 1967.

[12] T. Radzik. Faster algorithms for the generalized network flow problem. Math. Oper. Res., 23(1):69-
100, 1998.

[13] E. Tardos and K.D. Wayne. Simple generalized maximum flow algorithms. In Proc. 6th International
Conference on Integer Programming and Combinatorial Optimization, pages 310-324, 1998.

[14] K. Truemper. On Max Flows with Gains and Pure Min-Cost Flows. SIAM J. Appl. Math., 32:450—
456, 1977.

[15] K.D. Wayne. Generalized mazimum flow algorithms. PhD thesis, Cornell University, January 1999.

[16] K.D. Wayne. A polynomial combinatorial algorithm for generalized minimum cost flow. In Proc.
31st Annual ACM Symposium on Theory of Computing, 1999.

[17] K.D. Wayne and L. Fleischer. Faster approximation algorithms for generalized flow. In Proc. 10th
Annual ACM-SIAM Symposium on Discrete Algorithms, 1999.

12

(a)| nodes/edges || ExSc3 | PusHRELABEL | CPLEX-p | CPLEX-d

100/500 0.11 0.06 0.03 0.04
200/1000 0.37 0.19 0.08 0.14
400/2000 1.13 0.78 0.22 0.39
800/4000 5.78 2.68 0.72 1.54

1600,/8000 27.64 16.80 2.35 5.00
3200/16000 | 122.82 102.37 31.32 16.00

b
()| nodes/edges || ExSc3 | PusHRELABEL | CPLEX-p | CPLEX-d

100/1000 0.08 0.09 0.03 0.06
200/3000 0.21 0.27 0.11 0.27
400/8000 1.45 2.06 0.26 1.37
800/23000 7.16 11.95 1.89 9.73

Figure 11: Running times on inputs created by the generators (a) LAYERSX, and (b) GRIDOFCLIQUES.

| nodes/edges | ExSc3 | PUSHRELABEL | CPLEX-p | CPLEX |

6000,/20000 105 32 35 29
9000/30000 193 51 o7 68
12000/40000 287 91 111 120
15000/50000 389 145 145 167
18000/60000 523 311 210 279

Figure 12: Average running times on inputs created by generator LAYERSX.

13

