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Abstract  This paper proposes a genetic algorithm 
(GA) and constraint satisfaction adaptive neural network 
(CSANN) hybrid approach for job-shop scheduling 
problems. In the hybrid approach, GA is used to iterate 
for searching optimal solutions, CSANN is used to obtain 
feasible solutions during the iteration of genetic algorithm. 
Simulations have shown the valid performance of the 
proposed hybrid approach for job-shop scheduling with 
respect to the quality of solutions and the speed of 
calculation. 
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1. INTRODUCTION 

Generally deterministic job-shop scheduling problems 
can be stated as follows [1]: given n jobs that have to be 
processed on m machines in a prescribed order under 
certain restrictive assumptions, the objective of job-shop 
scheduling is to decide how to arrange the processing 
orders and starting times of operations sharing the same 
machine for each machine, in order to optimize certain 
criteria, e.g., minimize the makespan. Job-shop scheduling 
belongs to the large class of NP-hard problem, it is very 
hard to find its optimal solution. Researchers turned to 
search its near-optimal solutions to meet practical need 
with all kind of heuristic algorithms [2]. More recently 
GAs have been used to solve job-shop scheduling 
problems [3, 4]. Ever since Foo and Takefuji [5] first used 
neural network to solve job-shop scheduling problem. 
After that, several neural network architectures have been 
presented for job-shop scheduling [6, 7]. All these neural 
networks are basely non-adaptive networks. 

In this paper we propose a new hybrid approach of GA 
and CSANN to solve job-shop scheduling problem. In the 
hybrid approach, GA is used to iterate for searching 
optimal solutions, CSANN is used to obtain feasible 
solutions during the iteration of genetic algorithm. 
CSANN has the property of easily mapping the constraints 
of scheduling problem into its architecture and removing 
the violations of the mapped constraints during its 
processing. Meanwhile CSANN has the property of 
adaptively adjusting its weights of connections and biases 
of neural units according to the actual situation of 

constraint violations to remove these violations. 
Simulations have shown that the hybrid approach has good 
performance with respect to the quality of solutions and 
the speed of calculation. 

2. JOB-SHOP SCHEDULING PROBLEM 

Generally for job-shop scheduling problem there are 
two types of constraints: sequence constraint and resource 
constraint. The first type states that two operations of a 
job cannot be processed at the same time. The second 
states that no more than one job can be performed on one 
machine at the same time. Job-shop scheduling can be 
viewed as an optimization problem, bounded by both 
sequence and resource constraints. Different 
manufacturing systems require different optimization 
criteria, such as stock size, mean lead time and makespan. 
Minimization of the makespan will be used in this paper. 

Denote { }N n= 1, ,� , { }M m= 1, ,� . Let ni  be the 

operation number of job i. Let Oikq  represent operation k 

of job i on machine q, Sikq  and Tikq  represent the 

starting time and processing time of Oikq , Sie qi
 and 

Tie qi
 represent the starting time and processing time of the 

last operation of job i respectively. The processing time of 
each operation is known and fixed. Denote ri  and d i  as 

the release and due date of job i. Pi  denotes the set of 

operation pairs [ Oikp , Oilq ] where operation Oikp  must 

precede operation Oilq  of job i. Let Rq  be the set of all 

operations on machine q. The mathematical formulation is 
presented as follows: 
  Minimize E S T
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∈
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where equation (1) represents the sequence constraint; 



 

equation (2), in a disjunctive type, represents resource 
constraints; equation (3) represents the release date and 
due date constraints. The cost function is the ending time 
of the latest operation, i.e., maximal complete time of 
job-shop scheduling problem. 

3. MODEL OF CSANN 

3.1 UNITS OF CSANN 

Generally neural unit consists of two parts: a linear 
summator and a nonlinear activation function which are 
serialized. The summator of unit i receives all activations 
A j ( j n= 1, ,� ) from connected units and sums the 

received activations, weighted with connection weight 
Wij , together with a bias Bi . The output of summator is 

the net input N i , this net input is passed through an acti- 

vation function f ( )⋅ , resulting in the activation Ai  of 

unit i. The summator and the activation function are 

defined as : A f N f W A Bi i ij jj

n
i= = ∗ +

=�( ) ( ( ) )
1

, where 

Wij  is the connection weight from unit j to unit i.  

Based on the general neural unit, CSANN contains three 
kinds of units: S-units, SC-units and RC-units. The first 
kind of units represent the starting times of all operations. 
Each S-unit represents one operation of job-shop 
scheduling problem with activation representing the 
starting time of the operation. The second represent 
whether the sequence constraints are violated. The third 
represent whether the resource constraints are violated.  

The net input of a S-unit, e.g. SU i , is calculated by 

N t W A tSU i ij SC j
j

( ) ( ( ))= ∗�  

+ ∗ + −� ( ( )) ( )W A t A tik RC k
k

SU i
1      (4) 

where the net input of unit SU i  is summed from three 

parts. The first part comes from the weighted activations 
of SC-units connected with SU i , which implements 

feedback adjustments because of sequence violations. The 
second part comes from the weighted activations of 
RC-units connected with SU i , implementing feedback 

adjustments because of resource violations. The third part 
comes from the previous activation, with weight being +1, 
of unit SU i  itself.  

The activation function of S-units is a deterministic 
linear-segmented function as follows: 
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where ri  and d i  are the release date and due date of job 

i to which the operation corresponding to SU i  belongs. 

TSUi
 is the processing time of the operation 

corresponding to unit SU i . This activation function 

implements the release date and due date constraints 
described by equation (3).  

The SC-units receive the incoming weighted activations 
from the connected S-units, representing operations of the 
same job. The RC-units receive the incoming weighted 
activations from the connected S-units, representing 
operations to be processed on the same machine. The net 
input of a SC-unit or RC-unit has the same definition form 
as follows: 

N t W A t BC ij SU
j

Ci j i
( ) ( ( ))= ∗ +�             (6) 

where Ci  equals SCi  or RCi , BC i
is the bias of unit 

SCi  or unit RCi . The bias BC i
 is added to the 

incoming weighted activations of connected units and 
equals the processing time of relative operation. 

The activation function of a SC-unit or RC-unit is a 
linear-segmented function as follows. 
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The activation of a SC-unit or RC-unit being greater 
than zero means the corresponding sequence constraint or 
resource constraint is violated and there are feedback 
adjustments from this SC-unit or RC-unit to connected 
S-units through adaptive weighted connections. 

3.2 ADAPTIVE CONNECTIONS 

All units of CSANN are connected according to the two 
kinds of sequence and resource constraints of specific 
job-shop scheduling problem, resulting in two blocks: 
SC-block (sequence constraints block) and RC-block 
(resource constraints block). Each unit of SC-block 
contains two S-units, responding to two operations of a job, 
and one SC-unit, representing whether the sequence 
constraint between these two operations is violated (see 
Fig.1). Each unit of RC-block contains two S-units, 
responding to two operations sharing the same machine, 
and one RC-unit, representing whether the resource 
constraint between these two operations is violated (see 
Fig.2). 
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Fig.1  SC-BLOCK UNIT 
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Fig.2  RC-BLOCK UNIT 

Fig.1 presents an example of SC-block unit, denoted by 
SCBi kl . S-units SU i k p  and SU i lq  represent two 

operations Oi k p  and Oi lq  of job i. Their activations 

ASU i k p
 and ASU i l q

 represent the starting times Si k p  

and Si lq  of Oi k p  and Oi lq . The SC-unit SCi kl  

represents whether the sequence constraint of equation (1) 
between Oi k p  and Oi lq is violated, with BSCi k l

 being 

its bias. The weights and bias are valued as follows: 
W W W W W W B TSC ikpikl1 2 3 41 1= − = = − = = −, , , ,   (8) 

where W is positive feedback adjustment parameter (the 
same where W appears latterly ). If violation exists at time 
t, the activation of SCi kl  is calculated by  

A t A t T A tSC SU ikp SUikl ikp ilq
( ) ( ) ( )= + −  

= + −S t T S tikp ikp ilq( ) ( )                (9) 

and the feedback adjustments from SCi kl  to SU i k p  and 

SU i lq  are shown as follows: 

 S t S t W A tikp ikp SCikl
( ) ( ) ( )+ = − ∗1           (10) 

 S t S t W A tilq ilq SCikl
( ) ( ) ( )+ = + ∗1           (11) 

Above equations show that the feedback adjustments 
from SCi kl  puts back the starting time Sikp of Oikp  in 

time axis, while putting forward Silq . Thus the sequence 

violation between Oikp  and Oilq can be removed. 

Fig.2 presents an example of RC-block unit, denoted by 
RCBqi kjl , representing the resource constraint between 

Oi kq  and O jlq  on machine q. At time t during the 

processing of network, the weights and bias are adaptively 
valued as following two cases show. 

Case 1: If S t S tikq jlq( ) ( )≤ , equation (12) holds. 

W W W W W W B TRC ikqqikjl5 6 7 81 1= − = = − = = −, , , ,   (12) 

In this case RCBqi kjl  represents a sequence constraint 

described by the first disjunctive equation of equation (2). 
If violation exists, the activation of RCqi kjl  and feedback 

adjustments are calculated by  
 A t A t T A tRC SU ikq SUqikjl ikq jlq

( ) ( ) ( )= + −  

= + −S t T S tikq ikq jlq( ) ( )              (13) 

 S t S t W A tikq ikq RCqikjl
( ) ( ) ( )+ = − ∗1        (14) 

 S t S t W A tjlq jlq RCqikjl
( ) ( ) ( )+ = + ∗1        (15) 

Case 2: If S t S tikq jlq( ) ( )≥ , equation (16) holds. 

W W W W W W B TRC jlqqikjl5 6 7 81 1= = − = = − = −, , , ,   (16) 

In this case RCBqi kjl  represents a sequence constraint 

described by the second disjunctive equation of equation 
(2). If there exists violation, the activation of RCqi kjl  and 

the feedback adjustments are calculated by  
A t S t T S tRC jlq jlq ikqqikjl

( ) ( ) ( )= + −          (17) 

 S t S t W A tikq ikq RCqikjl
( ) ( ) ( )+ = + ∗1          (18) 

 S t S t W A tjlq jlq RCqikjl
( ) ( ) ( )+ = − ∗1          (19) 

3.3 SOLVING STEPS OF CSANN 

Step 1: Build up CSANN model, set H and W values;  
Step 2: Initialize the starting time Sikp ( )0  for each 

operation Oikp  as the initial net input I SUi k p
 of each 

S-unit SU ikp ; 

Step 3: Run each SC-unit SCikl of SC-block, calculate 

its activation with equation (9). A tSCikl
( ) ≠ 0  means the 

dissatisfaction of sequence constraint, then adjust 
activations of relative S-units with equations (10, 11); 

Step 4: Run each RC-unit RCqikjl  of RC-block, 

calculate its activation with equation (13) or (17). 
A tRCqikjl

( ) ≠ 0  means the dissatisfaction of resource 

constraint corresponding to equation (2). Then adjust 
S tikp ( )+1  and S tilq ( )+1  with equations (14, 15) or 

equations (18, 19) or with equations (20); 
Step 5: Repeat step 3 and step 4 until all units are in 

stable states without changes, which means that the 
sequence and resource constraints are satisfied and the 
feasible solution is obtained. 

During the processing of CSANN there may appear the 
phenomenon of “dead lock”  which can result in no 
feasible solution. In order to remove “dead lock” , we use 
the following heuristic: exchange the orders of two near 
operations sharing the same machine by exchanging their 
starting times. Assuming Oikq , O Rjlq q∈ , during the 

processing of CSANN, if H t Hqikjl ( ) ≥ , the following 

two equations work. 
S t S ti kq j lq( ) ( )+ =1 , S t S tj lq i kq( ) ( )+ =1     (20) 

where variable H tqikjl ( )  is the summed times that 

operation pairsOikq  and O jlq  have their starting times 

changed continuously with the same adjusting effects 
because of resource conflict on machine q at time t ever 
since the previous zero-reset. H is a positive integer. With 
above heuristic, “dead lock”  can be effectively avoided. 
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4. HYBRID APPROACH 

4.1 GENETIC ALGORITHM 

The main components of proposed GA are as follows: 
Encoding mode: Each chromosome is formed of 

several subchromosomes, one for each machine. The 
length of chromosome is the total operations of all jobs. 
Each subchromosomes is formed of natural number string, 
each number identifying the job number to which the 
operation that has to be processed on the relevant machine 
belongs. For example, a subchromosome being 563241 of 
machine i means on machine i the first operation to be 
processed belongs to job 5, second belongs to job 6, and 
so on. 

Fitness function: The fitness of chromosome i in 
generation K, denoted by C iK ( ) , is calculated by: 

F i MAX M iK K( ) ( )= − , where F iK ( )  is the fitness of 

C iK ( ) , M iK ( ) is its relevant makespan and MAX  is a 

prescribed big enough positive integer. The bigger the 
fitness, the shorter the makespan. 

Select policy: To form the population of new generation, 
a set of individuals is selected from old population to 
reproduce itself, the select takes place in a random way but 
with a probability proportional to fitness. The probability 
of C iK ( ) being selected to reproduce is:  

P i
f i f

f j f
K

K K

K Kj

PN
( )

( )

[ ( ) ]
=

−

−
=� 1

          (21) 

where { }f f i i PNK K= =min ( ), , ,1�  and PN is the size 

of population.  
Genetic operator: The crossover operators used are 

Partially Mapped Crossover (PMX ) and Uniform 
Crossover (UX); The mutation operator are Converse 
Mutation (CM), Right Shift Mutation (RSM) and Swap 
Mutation (SM). All genetic operations are limited in 
subchromosome to create meaningful “children” . 

During the processes of crossover and mutation, the 
starting times of operations are changed according to the 
changes of relevant genes. For example, table 1 shows a 
subchromosome and the starting times of operations to 
which relevant genes correspond orderly before and after 
crossover or mutation operation. 

Status Subchromosome Starting times 
Pre-operation  1 2 3 4 5 6 0,2,6,9,12,14 

Operating … … 
Post-operation 5 1 3 4 6 2 0,2,6,9,12,14 

Table 1 STARTING TIMES CHANGES WITH GENES 

 Through the operating of genetic operator, the 
chromosomes which represent feasible solutions may be 
changed into chromosomes which represent non-feasible 
solutions. Then the obtained non-feasible solutions are 
processed by CSANN to solve new feasible solutions to 

which corresponding chromosomes form the population of 
the new next generation.  

Stop threshold: The maximal generation (MG) is used.

4.2 MAIN STEPS OF HYBRID APPROACH 

Step 1: Set values for PN, MG, the crossover 
probability PC  and the mutation probability PM ; 

Step 2: Randomly create PN chromosomes, the initial 
solutions of chromosomes are deduced as follows: 
Assuming a subchromosome being J J Jn1 2� , 

{ }J ni ∈ 1, ,� ( { }i n∈ 1, ,� ), J i  is the job number to 

which operation i on relevant machine belongs, then the 
starting times of the operations are calculated by: 

{ }S S S T i ni i i1 10 1 1= = + ∈ −+, , , ,� , where Si  and 

Ti  are the starting time and processing time of operation i. 

The obtained initial solution is used as the initial state of 
CSANN to solve feasible solution. The chromosomes 
conversed from these feasible solutions constitute the 
initial population, i.e., the first generation. 

Step 3: Calculate the fitness for each chromosome; 
Step 4: Calculate the selecting probability for each 

chromosome and randomly select individuals according to 
the probability into the mate pool to reproduce; 

Step 5: From the selected set of individuals select two 
chromosomes to generate new chromosomes by applying 
different crossover and mutation operators, the obtained 
chromosomes represent nonfeasible solutions. Use 
CSANN to solve feasible solutions from these nonfeasible 
solutions. The chromosomes conversed from obtained 
feasible solutions constitute the new population, i.e. the 
new generation. From the new generation randomly select 
an individual to be replaced by the best individual of last 
generation.  

Step 6: If stop threshold is reached, stop the process, 
otherwise go to step 3. 

5. SIMULATION STUDY 

We use a famous 6/6/J/ Cmax  problem [4] as example, 

which has minimal makespan of 55. The simulations are 
finished on a PC 586/133 under Visual C++ 5.0.  

We first use CSANN only to solve the example problem 
to test the performance of CSANN. 100 experiments are 
executed. For 100 experiments the first one is executed 
under zero initial condition with initial starting times of all 
operations setting to zero, the other 99 experiments are 
carried out with the initial starting times of all operations 
valued in a random uniformed distribution between 
[0,100]. Of all experiments, the two parameters are valued 
as follows: H = 5 , W = 05. . The completion time 
restriction for all jobs is given in advance, which is used as 
the common due date for jobs in the simulations. And the 
release dates for all jobs are set to zero. Table 2 shows the 
statistics of simulation results with respect to average, 
minimum and maximum of obtained makespan and the 
program runtimes respectively. In Table 2, runtime is zero 



 

means it is less than one second. 

Makespan 
(E) 

Runtime 
(Sec.) 

Completion 
time 

restriction 

Initial starting 
times set for 
operations ave/min/max ave/min/max 

200 0 76 1 

200 
Randomly 
generated 

106/96/117 1/0/1 

58 0 58 50 

58 
Randomly 
generated 

58/58/58 48/25/97 

Table 2  SIMULATION RESULTS BY CSANN ONLY 

Table 2 shows the feasibility of CSANN for job-shop 
scheduling problems. From table 2 we can see: 1) Given 
zero initial solution, the CSANN can find good schedules 
for different complete time restriction; 2) Given 
appropriate complete time restriction, the CSANN can 
always find very good solution for most actual problems; 3) 
Because of the parallel processing capability of neural 
network, the solving speed of CSANN is very high. 

Secondly we use the proposed hybrid approach to solve 
the same problem to test its performance. The parameters 
of CSANN are the same with above case: H = 5,W = 05. . 
And the complete time restriction for CSANN is set to a 
positive integer , big enough for CSANN to solve feasible 
solutions, e.g. 500. The parameters of GA are as follows: 
PN=20, MG=200, MAX=10000, PC =1 and PM =0.4. 

Table 3 presents the simulation results as to the average, 
minimum and maximum of makespan and the program 
runtimes respectively.  

Crossover 
mode 

PMX UX 

Makespan 
 (E) 

Makespan  
(E) Mutation 

mode ave min max 

Run 
time 

(Sec.) ave min max 

Run 
time 

(Sec.) 

CM 62 60 72 137 60 58 65 114 
RSM 64 61 78 150 63 60 69 135 
SM 63 61 74 145 62 59 75 130 

Table 3  RESULTS BY HYBRID APPROACH 

Fig. 3 shows a Gantt chart of a near-optimal solution 
with makespan being 58, obtained by the hybrid approach. 
From table 4 and Fig.3 we can see: the hybrid approach 
has good performance for job-shop scheduling problems 
with respect to the quality of solutions and the solving 
speed. Comparing between the crossover and mutation 
operator we can find that the UX crossover operator is 
better than PMX for the hybrid approach and the CM 
mutation operator is better than the other two mutation 
operators: RSM and SM. 

 

Fig.3  A NEAR-OPTIMAL SOLUTION 

6. CONCLUSIONS 

The proposed hybrid approach for job-shop scheduling 
is an idea originated from combining generic algorithm 
and CSANN. The adaptive property of CSANN makes it 
different from other constraints satisfaction networks and 
results in a simpler architecture of CSANN. When only 
CSANN is used for practical job-shop scheduling 
problems the quality of obtained feasible solution heavily 
depends on the choice of a complete time restriction.  

When GA is used in a hybrid approach with CSANN, 
good schedules can always been obtained independent on 
the complete time restriction prescribed for CSANN. 
Simulations have shown that the proposed hybrid 
approach for job-shop scheduling has good performance 
as to the quality of solution and the speed of calculation. 
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