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Abstract

A general form of temporal strength conditions under variable creep loading
is employed to formulate several new phenomenological accumulation rules
based on the constant-loading durability diagram. Unlike the well-known
Robinson rule of linear accumulation of partial life-times, the new rules allow
to describe the life-time sensibility to the load sequence, observed in exper-
iments. Comparison of one of the new rules with experimental data shows
that it fits the data much more accurately than the Robinson rule.
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1 Introduction

Let σ = σij be the stress tensor and let us consider a time-dependent loading
processes σ(τ) starting at time τ = 0 (i.e., σ(τ) = 0 at τ < 0) and then generally
varying in time at τ ≥ 0. Many materials at elevated temperatures and some
materials at room temperature exhibit dependence of their strength not only on
the level of applied loading at a particular instant but also on the duration of load
application, and generally on the history of loading.

Let t∗0(σ) be a material durability (life-time) under a constant stress state σ =
const, at τ ≥ 0. For uniaxial constant loading the dependence of the durability on
applied load t∗0(σ), or vice-versa, temporal strength on the load duration σ∗0(t) is
usually drown as the durability curve (or durability diagram). Some schematized
examples of the durability diagrams are shown in Figs. 1-3. Such diagrams are
obtained experimentally for many materials and allow easily to predict the material
life time under the constant (at τ ≥ 0) applied load. Evidently, the durability
diagrams can also be obtained for multiaxial constat stresses σ.

However, if the applied stress is not a constant at τ ≥ 0 but a general function of
time, i.e., process σ(τ), then one has to have a model to predict the life-time under
variable lading from the available durability diagram obtained under constant loads.
One of the most popular is the Robinson model (rule) of linear accumulation of
partial life-times, (Robinson, 1938, 1952) (see also e.g. Rabotnov, 1969; Penny and
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Marriott, 1971), which allows to calculate the life-time t∗ = t∗(σ) under a variable
process σ(τ) from the durability diagram under constant loads, t∗0(σ), by equation∫ t∗

0

dτ

t∗0(σ(τ))
= 1. (1)

The well-known non-sensitivity of the Robinson model to the sequence of load
application can be readily observed from (1): applying first higher and then lower
load or vice-versa lead to the same life-time. However many experiments on variable
loading show that this is generally not the case. Although some modifications of
the Robinson model to address this issue have been reported in the literature, see
e.g. (Bui-Quoc 1972, Lokoshchenko and Namestnikova 1983, Gomuc and Bui-Quoc
1986) and references therein, no one seems to be widely accepted.

In this paper we propose new linear and non-linear accumulation rules (NES
accumulation rules), based on the concept of Normalised Equivalent Stress, for pro-
cesses under constant temperature. Similar to the Robinson rule, the NES rules use
the durability diagram under constant load as entry data, but unlike the Robinson
rule, they are sensitive to the load history. It is demonstrated that the linear NES
rule much better fits some experimental results than the Robinson rule. Moreover,
it is shown that the linear NES rule is able to recover several known accumulation
rules from the durability diagram under constant load obtained from them. This
develops some preliminary results presented in (Mikhailov and Namestnikova, 2009).

2 Normalised equivalent stress functional

To propose a new accumulation rule sensible to the load sequence, we first remark
that any model for time-dependent strength and life-time analysis under constant
temperature leads to the temporal strength condition in the form

ΛT (σ; t) < 1 (2)

with the corresponding temporal rupture criterion ΛT (σ; t∗) = 1. Here ΛT (σ; t) is
value of the temporal normalised equivalent stress functional, NESF. Its rigorous def-
inition and properties are given in (Mikhailov, 2003), see also Appendix. For many
practical situations ΛT (σ; t) can be understood as the number Λ such that rupture
under the scaled process σij(τ)/Λ happens just at time t. The NESF ΛT (σ; t) can
be also perceived as an experimentally measurable damage parameter, unlike many
other damage measures that are non-measurable internal variables.

Let us consider some examples of normalised equivalent stresses, which (except
the third one) were analysed in (Mikhailov, 2003), for some well known temporal
strength conditions under a non-negative uniaxial stress process σ(τ) starting at
τ = 0. Although the first two of the four example NESFs are used mostly in dynamic
(i.e. short-time) strength, their qualitative features are similar to the NESFs in
creep (i.e. long-time) strength. Moreover, all the analytical reasoning presented
in the paper in terms of the creep strength can be equally applied to the dynamic
strength analysis.
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The Nikiforovski-Shemyakin dynamic strength condition (Nikiforovsky,
1976; Nikiforovsky and Shemyakin, 1979).∫ t

0

σ(τ)dτ < Ic, (3)

where Ic > 0 is a material parameter. Then in terms of NESF it can be rewritten
as

ΛNS(σ; t) =
1

Ic

∫ t

0

σ(τ)dτ < 1. (4)

The incubation time strength condition, see (Morozov and Petrov, 2000;
Kashtanov and Petrov, 2007; Kashtanov, Petrov, Pugno and Carpinteri 2008), mod-
ified as in (Mikhailov 2003, Section 6.3), has the following form

1

tc

∫ t′

t′−tc

σ(τ)dτ < σc for all t′ ≤ t, (5)

where tc > 0 and σc > 0 are material parameters. In terms of NESF it can be
rewritten as

ΛIT (σ; t) =
1

σctc
max
t′≤t′

∫ t

t′−tc

σ(τ)dτ < 1. (6)

The Abel type strength condition, see Suvorova (1979), Suvorova, Viktorova,
Mashinskaya (1980), has the following form, involving the Abel type integral oper-
ator,

σ(t′) + (1− α)κ

∫ t′

0

σ(τ)dτ

(t′ − τ)α
< σc for all t′ ≤ t, (7)

where κ > 0, α < 1 and σc > 0 are material parameters. In terms of NESF it can
be rewritten as

ΛA(σ; t) =
1

σc

max
t′≤t

{
σ(t′) + (1− α)κ

∫ t′

0

σ(τ)

(t′ − τ)α
dτ

}
< 1. (8)

The temporal strength condition associated with the Robinson rule (1)
can also be re-written in the form

ΛTR(σ; t) < 1, (9)

where ΛTR(σ; t) is the solution (the minimal one if there are several solutions) Λ of
the equation ∫ t∗

0

dτ

t∗0(σ(τ)/Λ)
= 1.

In Section 5 we give an explicit solution of this equation leading to an explicit expres-
sion for ΛTR obtained in (Mikhailov, 2003) for the power-type durability diagram.
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3 Some NES accumulation rules

3.1 Motivation

The temporal strength condition under constant uniaxial loading σ = const starting
at t = 0 can be written as |σ| < σ∗0(t), where the function σ∗0(t) gives another form
of the durability diagram and is inverse to the function t∗0(σ), i.e. the equality
|σ| = σ∗0(t∗0(σ)) is identically satisfied for any σ. Similarly, the temporal strength
condition under constant multiaxial loading σ = const started at t = 0, can be
written as |σ| < σ∗0(σ̃; t), which can be reformulated in terms of the NESF as
ΛT (σ; t) < 1, where

ΛT (σ; t) :=
|σ|

σ∗0(σ̃; t)
. (10)

Here |σ| is a matrix norm of the tensor σ, e.g., |σ| =
√∑3

i,j=1 σijσij, and σ̃ := σ/|σ|
is the unit tensor presenting the stress tensor σ shape. Making formal manipula-
tions, we have from (10),

ΛT (σ; t) =
|σ|

σ∗0(σ̃; 0)
+

∫ t

0

|σ| ∂
∂ξ

[
1

σ∗0(σ̃; ξ)

]
dξ

=
|σ|

σ∗0(σ̃; 0)
+

∫ t

0

|σ| ∂
∂t

[
1

σ∗0(σ̃; t− τ)

]
dτ =

d

dt

∫ t

0

|σ|
σ∗0(σ̃; t− τ)

dτ. (11)

3.2 Linear NES accumulation rule

Hinted by (11), we extend the form for ΛT also to variable loading σij(τ), such that
σij(τ) = 0 at τ < 0, introducing the following strength condition,

ΛTS
1 (σ; t) := max

t′≤t
Λ̂

TS

1 (σ; t′) < 1, (12)

where the value Λ̂
TS

1 (σ; t′), which will be further called the normalised equivalent
stress, is defined as

Λ̂
TS

1 (σ; t′) :=
d

dt′

∫ t′

0

|σ(τ)|
σ∗0(σ̃(τ); t′ − τ)

dτ

=
|σ(t′)|

σ∗0(σ̃(t′); 0)
+

∫ t′

0

|σ(τ)| ∂
∂t′

[
1

σ∗0(σ̃(τ); t′ − τ)

]
dτ

=

∫ t′

−0

{
∂

∂τ

[
|σ(τ)|

σ∗0(σ̃(τ); η)

]}
η=t′−τ

dτ. (13)

The last equality in (13) is obtained by integration by parts and the derivative there
should be understood in the generalised sense, i.e., expressed in terms of the Dirac
delta-function at the finite jumps of the processes σ(t), and the integral then is
understood also in the generalised sense. It is assumed that σ(−0) is zero at the
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lover integration limit τ = −0, to handle the step-like loading σ(τ) jumping from 0
to a finite value at τ = 0.

Not that Λ̂
TS

1 (σ; t′) may be non-monotonous in t′ while ΛTS
1 (σ; t) is non-decreasing

in t. The maximum in (12) and in similar formulas further on should be replaced

with supremum if Λ̂
TS

1 (σ; t′) is discontinuous in t′. We will show in the following
that relations (12)-(13) can be interpreted as a linear accumulation rule for partial
NES, i.e., an alternative counterpart of the Robinson rule of linear accumulation of
partial life-times.

For constant loadings started at t = 0, the NES accumulation rule (12)-(13),
by its deduction above, coincides exactly with predictions of the durability diagram
employed in it, as well as the Robinson rule does. However the memory-type depen-
dence on the difference t′ − τ in (13) produces a sensitivity to load history, which
is absent in the Robinson linear accumulation rule. Note that some other temporal
strength conditions involving the memory-type dependence on t′− τ were suggested
by Il’ushin (1967), see also (Mikhailov, 2003, Section 6.6).

If the durability diagram can be presented as a product,

σ∗0(σ̃; t) = σ0(σ̃)σ∗∗(t), (14)

where the scalar functions σ0 and σ∗∗ are material characteristics, then (13) simplifies
to

Λ̂
TS

1 (σ; t′) =
|σ(t′)|

σ0(σ̃(t′))σ∗∗(0)
−
∫ t′

0

|σ(τ)|
σ0(σ̃(τ))

∂

∂τ

[
1

σ∗∗(t′ − τ)

]
dτ

=

∫ t′

−0

1

σ∗∗(t′ − τ)
d

[
|σ(τ)|

σ0(σ̃(τ))

]
. (15)

Here the last integral should be understood in the Stiltjes sense, i.e., the differential
should be understood as the corresponding jump at the points of discontinuity of
the function σ(t) (if there are any). For example, if σ(t) = 0 for t < 0 and
σ(t) = σ1 = const for t ≥ 0, then (15) gives

Λ̂
TS

1 (σ; t′) =
1

σ∗∗(t′)

[
|σ(+0)|

σ0(σ̃(+0))
− |σ(−0)|

σ0(σ̃(−0))

]
=

1

σ∗∗(t′)

|σ1|
σ0(σ̃1)

=
|σ1|

σ∗0(σ̃1; t′)
,

which coincides with (10), as expected.
Relation (15) simplifies further if we apply it to an in-phase (coaxial) loading,

with the components of the tensor σ(τ) not changing sign (e.g. a uniaxial loading
σ(τ) without change of sign). Then σ̃ = const and one can take σ0(σ̃) = 1 in (14)
and (15) , i.e., take σ∗0(σ̃; t) = σ∗∗(t). This reduces (13) to the following simplified
form of the linear accumulation rule for the notional NES ,

Λ̂
TS

1 (σ; t′) =
d

dt′

∫ t′

0

|σ(τ)|
σ∗∗(t′ − τ)

dτ =

∫ t′

−0

d|σ(τ)|
σ∗∗(t′ − τ)

. (16)

Let us consider a step-wise loading

σ(τ) =

{
0, τ < t0 = 0

σk, tk−1 ≤ τ < tk, 0 < k
(17)
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If σ̃ = const., i.e. the shape tensor is the same on all steps, then (16) becomes

Λ̂
TS

1 (σ; t′) =
∑

0≤tk<t′

|σ(tk + 0)| − |σ(tk − 0)|
σ∗∗(t′ − tk)

. (18)

This means that the total NES accumulates the partial NESes produced by the
changes of the stress tensor and associated with the durability diagram started at
the change instant.

In the general case of step-wise loading, i.e., when σ̃ ̸= const. in (17), expression
(13) gives the following counterpart of (18),

Λ̂
TS

1 (σ; t′) =
∑

0≤tk<t′

[
|σ(tk + 0)|

σ∗0(σ̃(tk + 0), t′ − tk)
− |σ(tk − 0)|

σ∗0(σ̃(tk − 0), t′ − tk)

]
(19)

that can be still interpreted as the linear accumulation rule for partial NESes.

3.3 Non-linear NES accumulation rules

By the argument similar to the derivation of the linear NES rule, one can also arrive
at a more general non-linear (power-type) rule of NES accumulation, leading to the
following strength condition,

ΛTS
β (σ; t) := max

t′≤t
Λ̂

TS

β (σ; t′) < 1, (20)

with the nonlinear NES

Λ̂
TS

β (σ; t′) :=

[
d

dt′

∫ t′

0

∣∣∣∣ σ(τ)

σ∗0(σ̃(τ); t′ − τ)

∣∣∣∣β dτ
]1/β

=

∫ t′

−0

{
∂

∂τ

(∣∣∣∣ σ(τ)

σ∗0(σ̃(τ); η)

∣∣∣∣β
)}

η=t′−τ

dτ

1/β

, (21)

where β > 0 is a material parameter. Under condition (14), expression (21) reduces
to

Λ̂
TS

β (σ; t′) =

[∫ t′

−0

1

[σ∗∗(t′ − τ)]β
d

(∣∣∣∣ σ(τ)

σ0(σ̃(τ))

∣∣∣∣β
)]1/β

. (22)

For a constant multiaxial loading σij = const started at t = 0, expression (21)
reduces to (10) for any β. In the general case of step-wise multiaxial loading, ex-
pression (21) gives,

Λ̂
TS

1 (σ; t′) =

[ ∑
0≤tk<t′

(∣∣∣∣ σ(tk + 0)

σ∗0(σ̃(tk + 0), t′ − tk)

∣∣∣∣β − ∣∣∣∣ σ(tk − 0)

σ∗0(σ̃(tk − 0), t′ − tk)

∣∣∣∣β
)]1/β

(23)
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that can be interpreted as a nonlinear accumulation rule for partial NES. The pa-
rameter β influences the sign and the degree of the deviation from the Robinson
accumulation rule, cf. Sections 5, 6.

One can see that a linear combination of the nonlinear terms (21) leads to a
strength condition based on even more general non-linear rule of NES accumulation,

ΛTS
mult(σ; t) := max

t′≤t
Λ̂

TS

mult(σ; t
′) < 1, (24)

Λ̂
TS

mult(σ; t
′) :=

N∑
n=1

αnΛ̂
TS

βn
(σ; t′), (25)

where the numbers βn > 0 and αn are material parameters with
∑N

n αn = 1, to
ensure that ΛTS

mult(σ; t) reduces to (10) for σ = const started at t = 0. Such
multi-parameter accumulation rule may be useful for the materials for which one
parameter β does not suffice to fit the experimental data, or when contribution of
several durability mechanisms are to be taken into account. However we will not
use the multi-parameter rule further in this paper.

Note that for fatigue some counterparts of the accumulation rules presented in
this section were given in (Mikhailov and Namestnikova, 2003, 2004).

4 Recovery of accumulation rules from correspond-

ing durability diagrams

Let us validate the Robinson and NES accumulation rules against their ability to
recover the known temporal strength conditions mentioned in Section 2 from their
corresponding durability diagrams.

4.1 Recovery of the Nikiforovski-Shemyakin temporal strength
condition

Substituting the stress, which is constant at τ ≥ 0 in the Nikiforovski-Shemyakin
strength condition (3), we obtain the following two forms of the associated durability
diagram illustrated by Fig. 1,

σ∗0(t) =
Ic
t
, t∗0(σ) =

Ic
σ
. (26)

Let now σ(τ) ≥ 0 be an arbitrary function. Then strength condition correspond-
ing to the Robinson rule (1) and the second relation in (26) give,∫ t∗

0

dτ

t∗0(σ(τ))
=

1

Ic

∫ t∗

0

σ(τ)dτ < 1,

which coincides with (3).
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t

Σ *o

Figure 1: Durability diagram for the Nikiforovski-Shemyakin strength condition.

On the other hand, the strength condition (2), the linear NES accumulation rule
(13) and the first relation in (26) give,

ΛTS
1 (σ; t) = max

t′≤t
Λ̂

TS

1 (σ; t′) = max
t′≤t

d

dt′

∫ t′

0

|σ(τ)|
σ∗0(t′ − τ)

dτ

= max
t′≤t

d

dt′

∫ t′

0

(t′ − τ)σ(τ)

Ic
dτ =

1

Ic

∫ t

0

σ(τ)dτ < 1,

which also coincides with (3).
Thus both, the Robinson accumulation rule and the NES linear accumulation

rule, successfully recover the Nikiforovski-Shemyakin strength condition (3) from its
durability diagram (26).

4.2 Recovery of the incubation time strength condition

Substituting the stress, which is constant at τ ≥ 0 in the incubation time strength
condition (5), we obtain the following two forms of the associated durability diagram
with the threshold σc (see Fig. 2),

σ∗0(t) =


tcσc

t
, 0 ≤ t ≤ tc

σc, 0 ≤ tc < t
, t∗0(σ) =

∞, 0 ≤ |σ| ≤ σc

tcσc

σ
, 0 ≤ σc < |σ|

(27)

Let now σ(τ) ≥ 0 be an arbitrary function. Then strength condition correspond-
ing to the Robinson rule (1) with the second relation in (27) gives,∫ t∗

0

dτ

t∗0(σ(τ))
=

∫ t∗

0

σ(τ)H[σ(τ)− σc]dτ

tcσc

< 1, (28)

where H[x] =

{
x, for x > 0

0, for x ≤ 0
is the Heaviside function. This condition does not

coincide with (5). E.g., for the loading process linear in time, σ(τ) = σcτ/tc the
Robinson rule (28) gives t <

√
3tc, while (5) gives t < 3tc/2.
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tc
t

Σc

Σ *o

Figure 2: Durability diagram for the incubation time strength condition

On the other hand, the strength condition (2), the linear NES accumulation rule
(13) and the first relation in (27) give, if we take into account that σ(τ) = 0 for
τ < 0,

ΛTS
1 (σ; t) = max

t′≤t
Λ̂

TS

1 (σ; t′) = max
t′≤t

d

dt′

∫ t′

0

|σ(τ)|
σ∗0(t′ − τ)

dτ

= max
t′≤t

d

dt′

{
1

σc

∫ t′−tc

−∞
σ(τ)dτ +

1

tcσc

∫ t′

t′−tc

(t′ − τ)σ(τ)dτ

}

= max
t′≤t

{
σ(t′ − tc)

σc

− tcσ(t
′ − tc)

tcσc

+
1

tcσc

∫ t′

t′−tc

σ(τ)dτ

}

=
1

tcσc

max
t′≤t

∫ t′

t′−tc

σ(τ)dτ < 1,

which coincides with (6).

4.3 Recovery of the Abel type strength condition

Substituting the stress, which is constant at τ ≥ 0 in the Abel type strength con-
dition (7), we obtain the following two forms of the associated durability diagram
possessing a finite instant strength σc, illustrated by Fig. 3,

σ∗0(t) =
σc

1 + κt1−α
, t∗0(σ) =

[(σc

σ
− 1
) 1

κ

] 1
1−α

(29)

Let now σ(τ) ≥ 0 be an arbitrary function. Then strength condition correspond-
ing to the Robinson rule (1) with the second relation in (29) gives,∫ t∗

0

dτ

t∗0(σ(τ))
=

∫ t∗

0

[(
σc

σ(τ)
− 1

)
1

κ

]− 1
1−α

dτ < 1, (30)
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t

Σc

Σ *o

Figure 3: Durability diagram for the Abel type strength condition

which does not coincide with (7). E.g., for the loading process linear in time, σ(τ) =

σcκ
1

1−α τ , and α = 1/2, the numerical calculations show that the Robinson rule (30)

gives t < 0.752κ− 1
1−α , while (7) gives t < 0.650κ− 1

1−α .
On the other hand, the NES strength condition (2), the linear NES accumulation

rule (13) and the first relation in (29) give, if we take into account that σ(τ) = 0 for
τ < 0,

ΛTS
1 (σ; t) = max

t′≤t
Λ̂

TS

1 (σ; t′) = max
t′≤t

{
|σ(t′)|
σ∗0(0)

+

∫ t′

−0

|σ(τ)| ∂
∂t′

[
1

σ∗0(t′ − τ)

]
dτ

}
=

max
t′≤t

{
σ(t′)

σc

+

∫ t′

−0

σ(τ)
∂

∂t′

[
1 + κ(t′ − τ)1−α

σc

]
dτ

}
=

1

σc

max
t′≤t

{
σ(t′) + (1− α)κ

∫ t′

0

σ(τ)

(t′ − τ)α
dτ

}
< 1,

which coincides with (8).
Thus the NES linear accumulation rule successfully recovers the incubation time

strength condition (5) and the Abel type strength condition (7) from their durability
diagrams (27) and (29), respectively, while the Robinson accumulation rule does not.

5 Accumulation rules for Basquin-type

durability diagram

5.1 General loading

Consider the case of the durability diagram under constant uniaxial or multiaxial
loading σ = const starting at t > 0 described by the power-type relation

|σ| = σ∗0(σ̃; t) where σ∗0(σ̃; t) = σ0(σ̃)t−1/b, (31)

Here b is a material constant and σ0 = σ0(σ̃) is a material characteristics possibly
depending on the unit tensor σ̃ = σ/|σ|. Note that (31) is a special case of relation
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(14) with σ∗∗(t) = t−1/b. Durability diagram (31) can be also presented as

t∗0(σ) =

(
|σ|

σ0(σ̃)

)−b

. (32)

For the uniaxial case, relations (31), (32) can be found e.g. in (Rabotnov, 1966;
Penny & Marriott, 1971; Leckie & Hayhurst, 1974; Lokoshenko & Namestnikova,
1983). Note that the Monkman-Grant relation ε̇mcrt

∗0 = const also reduces to (32)
if the power-type Norton relation is assumed between the applied stress and the
minimum creep strain rate ε̇mcr. Similar to fatigue, we will call (31) and (32) the
Basquin-type relations.

Then the Robinson rule (1) can be written in form (9), where the corresponding
NESF (and NES) has the following form (Mikhailov, 2003),

ΛTR(σ; t) = Λ̂
TR

(σ; t) :=

[∫ t

0

dτ

t∗0(σ(τ))

]1/b
=

[∫ t

0

∣∣∣∣ σ(τ)

σ0(σ̃(τ))

∣∣∣∣b dτ
]1/b

.

For a uniaxial process σ(τ), the function σ0(σ̃(τ)) is a constant if the stress σ(τ)
does not change sign at some instant τ .

On the other hand, the NES Λ̂
TS

β (σ; t′) given by (21), for durability diagram (31)
becomes

Λ̂
TS

β (σ; t′) =

[
d

dt′

∫ t′

0

∣∣∣∣ σ(τ)

σ0(σ̃(τ))

∣∣∣∣β (t′ − τ)β/bdτ

]1/β

=

[
β

b

∫ t′

0

∣∣∣∣ σ(τ)

σ0(σ̃(τ))

∣∣∣∣β (t′ − τ)
β
b
−1dτ

]1/β
(33)

=

[∫ t′

−0

(t′ − τ)β/bd

∣∣∣∣ σ(τ)

σ0(σ̃(τ))

∣∣∣∣β
]1/β

.

Particularly, for β = b expression (33) implies that

Λ̂
TS

b (σ; t) = Λ̂
TR

(σ; t).

This means that for the Basquin durability diagram, the Robinson linear summation
rule for partial life-times is a special case of the non-linear rule of NES accumulation
(20)-(21) with β = b.

5.2 Uniaxial step-wise loading

Consider a uniaxial loading σ(τ) ≥ 0 such that

σ(τ) =


0, τ < t0 = 0

σk, tk−1 ≤ τ < tk, 0 < k < K − 1

σK , tK−1 ≤ τ

(34)

11
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Under such process, σ0 is constant in the Basquin durability diagram (32), and the
Robinson rule (1) gives the equation

K∑
k=1

rk = 1

for cumulative durability t∗ = tK , where

rk :=
tk − tk−1

t∗0(σk)
= (tk − tk−1)

(σk

σ0

)b
(35)

are partial life-times. In terms of the NESF ΛTR(σ; t), this is equivalent to the
strength condition (9), where

ΛTR(σ; t) = Λ̂
TR

(σ; t) = Λ̂
TS

b (σ; t)

=
1

σ0

[
k′−1∑
k=1

σb
k(tk − tk−1) + σb

k′(t− tk′−1)

]1/b
=

[
k′−1∑
k=1

rk + rk′

]1/b
, (36)

k′ is such that tk′−1 < t ≤ tk′ , rk′ := (t− tk′−1) (σk′/σ
0)

b
.

On the other hand, for the same process the general power-type NESF by (23)
is

ΛTS
β (σ; t) = max

0≤t′≤t
Λ̂

TS

β (σ; t′),

Λ̂
TS

β (σ; t′) =
1

σ0

[ ∑
0≤tk<t′

(σβ
k+1 − σβ

k )(t
′ − tk)

β/b

]1/β
. (37)

For β = b, the NESF ΛTS
b (σ; t) = ΛTR(σ; t) is not sensitive to the load sequence,

while ΛTS
β (σ; t) is, if β ̸= b. To illustrate this, let us consider the two-step loading,

K = 2, and write (37) for t = t2 > t1 as

ΛTS
β (σ; t2) = max

t1≤t′≤t2
Λ̂

TS

β (σ; t′),

Λ̂
TS

β (σ; t′) =
1

σ0

[
σβ
1 t

′β/b + (σβ
2 − σβ

1 )(t
′ − t1)

β/b
]1/β

=
[
(r1 + sbr′)β/b + (1− sβ)r′β/b

]1/β
. (38)

where r′ = (t′ − t1)/t
∗0(σ2) and s = σ1/σ2 is the parameter of the load sequence,

i.e. s < 1 corresponds to the low-to-high sequence of loading, while s > 1 to the
high-to-low sequence. Particularly, for β = 1 this simplifies to

Λ̂
TS

1 (σ; t′) =
1

σ0

[
σ1t

′1/b + (σ2 − σ1)(t
′ − t1)

1/b
]

=
[
(r1 + sbr′)1/b + (1− s)r′1/b

]
. (39)

12
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On the other hand, by (36),

ΛTR(σ; t2) = ΛTS
b (σ; t2) =

1

σ0

[
σb
1t1 + σb

2(t2 − t1)
]1/b

= [r1 + r2]
1/b . (40)

Equating (38), (39) and (40) to 1, we obtain relations between the partial life
times r1 and r2 in the linear Robinson rule and in the NES nonlinear and linear
accumulation rules.

An example is presented in Fig. 4 for b = 5 and β = 1. All curves are labelled
with corresponding value of s and obtained from the linear NES accumulation rule
(i.e., β = 1), while the straight line s = 1 is produced also by the Robinson rule.
The curves below the straight line give the total life time shorter than predicted
by the Robinson rule, while the curves above the straight line give the total life
time longer than predicted by the Robinson rule. The high dependence on s shows
the high dependence of the durability predictions on the sequence of loading. One
can see that the linear NES accumulation rule predicts well the qualitative effects
observed experimentally for many materials: shorter life-times than the Robinson
rule predicts for low-to-high load sequences, and longer life-times than it predicts
for high-to-low load sequences.

Robinson rule

s = 1.5

s = 2

s = 1

s = 0.67

s = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

r1

r 2

Figure 4: Deviation from the Robinson rule (dotted diagonal straight line) associated
with ΛTS

1 (σ; t) (curved lines) and with the ad hoc rule (41) (dashed lines), for b = 5,
at several values of s.

A simple ad hoc durability criterion is suggested in (Marriott and Penny, 1973),
according to which the total durability is estimated as t2 = t∗0(σ2), i.e., equal to the
durability under the final stress only. By (35) we can reformulate it as

r2 = 1− s−br1, (41)

13
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which is displayed by the corresponding straight dashed lines in Fig. 4. As we can
see from Fig. 4, it deviates not much from the the linear NESF strength condition
at small r1. However since the criterion t2 = t∗0(σ2) effectively replaces the stress on
the first step with the stress on the second step, one should not, of course, expect
this criterion to be valid for larger r1.

6 Comparison with experiments

Let us compare some experimental results with the durability predictions given by
the Robinson and by the NES accumulation rules.

6.1 Comparison with two-step experiments by Marriott and
Penny, 1973

In this section we use the durability experiments for an aluminium alloy at 180◦C
under uniaxial constant and variable (step-wise) stress processes reported in (Mar-
riott and Penny, 1973). Fitting the results from (Marriott and Penny, 1973, Table
2) for constant loading to the Basquin durability diagram (32), we obtained the
following values for its parameters, σ0 = 56109psi · h1/b, b = 5.73.

Fig. 5-10 show the graphs of [Λ̂
TS

1 (σ; t)]b, [ΛTS
1 (σ; t)]b, given by the linear NES

accumulation rule (solid lines) and [ΛTR(σ; t)]b given by the Robinson linear accu-
mulation rule (dashed lines) vs. time, calculated from (39) and (40), respectively, for
the 2-step low-to-high and high-to-low loading processes from (Marriott and Penny,
1973, Tables 3, 4), where the solid dots show the experimental rupture times. We
raised values of Λ with the exponent b just to make the graphs for [ΛTR(σ; t)]b piece-
wise linear. The predicted rupture times, to be compared with the experimental
data, are given by the intersections of the graphs with the line Λb = 1. The loading

programs are given in the figure captions. The graphs for [Λ̂
TS

1 (σ; t)]b and [ΛTS
1 (σ; t)]b

coincide except on small parts for s > 1, i.e. for high-to-low processes, which means

that the normalised equivalent stress [Λ̂
TS

1 (σ; t)]b can decrease on these parts while
the normalised equivalent stress functional [ΛTS

1 (σ; t)]b is always monotonous.
The results from Fig. 5-10 are summarised on Fig. 11 that shows the experimen-

tal dots for residual normalized durabilities r2 on the second step of the two-step
loading processes from the same data by (Marriott and Penny, 1973), the dotted
straight line of the durability prediction by the Robinson rule, the curves given by
the NES linear rule (β = 1) and the dashed straight lines given by ad hoc rule
(41). Note that the curve given by the NES linear rule for s = 1.43 overlaps on the
graph with the straight line of rule (41) for s = 1.33. Fig. 12, similarly, shows the
same experimental data and the durability prediction by the Robinson rule and by
rule (41), but the curves are given by the NES non-linear rule with β = 1/2. The
auxiliary vertical lines connect the experimental points with the corresponding NES
prediction curves (having the same values of s).

As one can conclude from the data, the Robinson linear rule of partial life-times

14



S.E.Mikhailov, I.N.Namestnikova

100 200 300 400 500

t HhL

0.2

0.4

0.6

0.8

1

L
b

s = 0.7

L
TR

L
1

TS

Test Result

Figure 5: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t;[211h @ 14000 psi + 200h @ 20000 psi]
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Figure 6: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t;[115h @ 18000 psi + 237h @ 20000 psi]
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Figure 7: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t;[114h @ 20000 psi + 573h @ 18000 psi]

accumulation prediction of the residual relative durability r2 differs from the exper-
iments up to 73%. Implementation of the linear NES accumulation rule increases
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Figure 8: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t;[30h @ 24000 psi + 670h @ 18000 psi]
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Figure 9: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t;[69h @ 20000 psi + 2590h @ 14000 psi]
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Figure 10: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t;

[93h @ 20000 psi + 2751h @ 14000 psi]
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Β = 1

s = 1.43

s = 1.33

s = 1.11

s = 0.9

s = 0.7 Robinson rule
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Figure 11: Experimental normalized durabilities r2 on step 2 and their predictions
by the Robinson rule (dotted diagonal straight line), NES linear rule (β = 1)(curved
lines) and the ad hoc rule (41) (dashed straight lines), for b = 5.73 .

the prediction accuracy from 2 to 6 times making the maximum difference with
the experimental durabilities less than 14.3%. The non-linear NES accumulation
rule with β = 1/2 increases accuracy from 3 to 28 times, making the maximum
difference with the experimental durabilities less than 10.3%. Thus the NES accu-
mulation rules with β ≤ 1 provide a viable alternative to the Robinson rule. The
ad hoc rule (41) seems to give also a good fit to the experimental data but this
can be explained by rather small (up to 0.3) value of the parameter r1 for the used
experimental data; for higher r1 the difference between experiments and the ad hoc
rule is expected to increase.
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Figure 12: Experimental normalized durabilities r2 on step 2 and their predictions by
the Robinson rule (dotted diagonal straight line), NES linear rule (β = 1/2)(curved
lines) and the ad hoc rule (41) (dashed straight lines), for b = 5.73 .

6.2 Comparison with multi-step experiments by Goldhoff,
1965

In this section we use the durability experiments for three types of steel at constant
temperatures 1000◦F (538◦C) or 1050◦F (566◦C) under uniaxial constant and multi-
step stress processes reported in (Goldhoff, 1965). Fitting the results from (Goldhoff,
1965, Table 2) for constant loading to the Basquin durability diagram (32), we
obtained the following values for its parameters: σ0 = 63069psi · h1/b, b = 8.17 for
Steel 1; σ0 = 71955psi·h1/b, b = 13.4 for Steel 2; and σ0 = 65412psi·h1/b, b = 11.0 for
Steel 3. These steels were subjected to the following multi-step loading programs,
(Goldhoff, 1965, Table 3).

Steel 1, Program 1: 2.7h @ 40000psi + 20.5h @ 35000psi + 52.9h @ 30000psi
+ 116.2h @ 25000psi + 213.6h @ 21000psi + 363.9h @ 30000psi.

Steel 1, Program 2: 719.2h @ 21000psi + 190.2h @ 25000psi + 97.6h @
30000psi + 4.5h @ 35000psi.

Steel 2: 6.7h @ 50000psi + 42.1h @ 45000psi + 364.1h @ 40000psi + 741.5h @
35000psi+ 130h @ 45000psi.

Steel 3: 498.3h @ 30000psi + 191.1h @ 32000psi + 5.2h @ 40000psi + 3.6h @
46000psi+ 130h @ 45000psi.
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Fig. 13-15 show the graphs of [Λ̂
TS

1 (σ; t)]b, [ΛTS
1 (σ; t)]b, given by the linear NES

accumulation rule (solid lines) and [ΛTR(σ; t)]b given by the Robinson linear accu-
mulation rule (dashed lines) vs. time, calculated from (37) for the multi-step loading
programs, where the solid dots show the experimental rupture times. As before, we
raised values of Λ with the exponent b to make the graphs for [ΛTR(σ; t)]b piece-wise
linear. The predicted rupture times, to be compared with the experimental data,
are given by the intersections of the graphs with the line Λb = 1. Note that similar

to Figs. 7-10, the graphs for [Λ̂
TS

1 (σ; t)]b and [ΛTS
1 (σ; t)]b on Fig. 13 (for Program 1)

and on Fig. 14 do not coincide, when high-to-low parts of the process are present.
We put on the graphs also the dots giving the rupture time predictions by (A) the
direct application of the Robinson rule (without approximating the experimental
data under constant loading by the Basquin relation (32)), (B) strain hardening
theory and (C) strain fraction theory, taken from (Goldhoff, 1965, Table 4).
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Figure 13: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t; comparison with experiment from

Goldhoff, 1965, Steel 1, and with other theories.

The linear NES accumulation rule does not fit well to the experimental data,
while the nonlinear NES accumulation rules with β = 4 for Steels 1 and 3 and β = 2.7
for Steel 2 give rather good fit, as one can see from the graphs. Implementation of
the NES accumulation rule increases the prediction accuracy by 20% for Program 1
and about 5 times for Program 2 for Steel 1. Since there is only 1 multi-step test in
(Goldhoff, 1965) for each of Steels 2 and 3, the graphs on Figs. 14 and 15 confirm
the possibility to find β values that fit the experimental rapture times but more
data are needed to verify if these values can be taken as material constants.
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Figure 14: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t; comparison with experiment experi-

ment from Goldhoff, 1965, Steel 2, and with other theories.
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Figure 15: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t; comparison with experiment from

Goldhoff, 1965, Steel 3, and with other theories.

Conclusion

The concept of Normalised Equivalent Stress was employed in this paper for the
life-time prediction under creep loading. The Robinson linear accumulation rule
of partial life times is based on the durability diagram under constant loading.
However, the Robinson rule is not sensitive to the loading history, which contradicts
some experiments.

We introduced in the paper some accumulation rules for the normalised equiva-
lent stress as an alternative to the Robinson rule. To employ the linear version of
the NES accumulation rule for a variable loading, one needs only (a good approxi-
mation of) the durability diagram for constant loadings, σ∗c(t), at least for times t
between zero and expected life-time under the variable loading. The nonlinear NES
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accumulation rule used in the paper needs one more material parameter that can
be obtained by fitting experimental data.

The linear NES rule allowed to recover the three known temporal strength condi-
tions, considered in the paper, from their corresponding durability diagrams under
constant load, while the Robinson rule allowed to do this only for one of them.
When compared with some experiments available in the literature, the life time pre-
diction by the NES accumulation rules appeared to be much more accurate than
by the Robinson, strain hardening and strain fraction accumulation rules, for these
experiments

For the Basquin type durability diagram, the nonlinear NES accumulation rule
coincides with the Robinson rule, when the non-linearity parameter β equals the
Basquin diagram parameter b, that shows that the NES approach generalises, in a
sense, the Robinson rule complementing it with the loading history sensitivity. This
history sensitivity is related with the counting any finite or infinitesimal change of
loading in conjunction with the durability diagram starting at the change instant,
see e.g. (18), (19), (23), which might be the key in explanation of the higher accuracy
of the NES approach.

In this paper the NES accumulation rules were implemented in total temporal
strength conditions (rupture criteria). But they can be equally employed in local
or nonlocal strength conditions generalising in the latter the approaches analysed
in (Mikhailov 1995a, 1995b; Isupov & Mikhailov 1998)) at a stress concentrator,
particularly for crack propagation analysis, cf. (Mikhailov and Namestnikova, 2003,
2004).

The developed NES accumulation rules can be used not only for creep but also for
dynamic strength predictions and can be modified to describe the fatigue durability,
cf. (Mikhailov and Namestnikova, 2003, 2004).

APPENDIX

Normalised Equivalent Stress Definition and Properties

For a given process σ(τ) and an instant t, the temporal normalised equivalent stress
functional is defined in (Mikhailov, 2003) as infimum of numbers Λ′ > 0 such that
there is no rupture at or before the time t under the process 1

Λ′′σ(τ) for any Λ′′ > Λ′;

if there is no such Λ′, we assign ΛT (σ; t) = ∞.
So defined, the temporal normalised equivalent stress functional ΛT is a material

characteristics and should be identified from experiments and/or a model. The def-
inition implies that the functional ΛT (σ; t) is non-negative positively-homogeneous
of the order +1 in the first argument and non-decreasing in the second argument,
that is

ΛT (kσ; t) = kΛ(σ; t) ≥ 0 for any k > 0, ΛT (σ; t′′) ≥ ΛT (σ; t′) if t′′ > t′.

These properties make ΛT uniquely determinable and narrow down the admissible
forms of ΛT , to be approximated from experimental data.
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