
Identification of nonlinear interconnected

systems

Eleni Pepona

Department of Mathematical Sciences

School of Information Systems, Computing and Mathematics

Brunel University

July 2009



Abstract

In this work we address the problem of identifying a discrete-time nonlinear system composed

of a linear dynamical system connected to a static nonlinear component. We use linear

fractional representation to provide a unified framework for the identification of two classes

of such systems.

The first class consists of discrete-time systems consists of a linear time invariant sys-

tem connected to a continuous nonlinear static component. The identification problem of

estimating the unknown parameters of the linear system and simultaneously fitting a m-th

order spline to the nonlinear data is addressed. A simple and tractable algorithm based on

the separable least squares method is proposed for estimating the parameters of the linear

and the nonlinear components. We also provide a sufficient condition on data for consis-

tency of the identification algorithm. Numerical examples illustrate the performance of the

algorithm.

Further, we examine a second class of systems that may involve a nonlinear static element

of a more complex structure. The nonlinearity may not be continuous and is approximated

by piecewise affine maps defined on different convex polyhedra, which are defined by linear

combinations of lagged inputs and outputs. An iterative identification procedure is proposed,

which alternates the estimation of the linear and the nonlinear subsystems. Standard identi-

fication techniques are applied to the linear subsystem, whereas recently developed piecewise

affine system identification techniques are employed for the estimation of the nonlinear com-

ponent. Numerical examples show that the proposed procedure is able to successfully profit

from the knowledge of the interconnection structure, in comparison with a direct black box

identification of the piecewise affine system.



As you set out for Ithaka
hope the voyage is a long one

full of adventure, full of discovery.
Laistrygonians and Cyclops,

wild Poseidon, you won’t encounter them
unless you bring them along inside your soul,
unless your soul sets them up in front of you.

Keep Ithaka always in your mind.
Arriving there is your ultimate goal.
But do not hurry the journey at all.

Better if it lasts for years;
and to anchor at the island when you are old,

rich with all you have gained on the way,
not expecting that Ithaka will offer you riches.

Ithaka has given you the beautiful journey.
Without her you would not have set out on the road.

She has nothing more to give you.
And if you find her poor, Ithaka has not deceived you.

Wise as you have become, so full of experience,
you must already have understood what Ithakas mean.

Ithaka by Constantine P. Cavafy (1911)
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Chapter 1

Introduction

System identification is the area of science that deals with the construction of mathemati-

cal models for dynamical systems based on observed data from the system. Linear system

identification, the area dealing with the identification of linear systems, has been well es-

tablished for many decades. The inability of the linear system structure to describe the

dynamic behaviour of many real systems, however, has driven the research effort in the area

of nonlinear system identification. In this chapter we review the aim of system identification

and the nonlinear identification problem and we provide a brief outline of this thesis.

1.1 System Identification

Given a set of input-output data, the aim of system identification is to fit a model belonging

to a specified model set by optimizing a suitable identification criterion. More analytically,

the system identification procedure constitutes of the following four components [55]. The

system identification loop can be seen in Figure 1.1.

1. An experiment that will provide the data record, the data to be used for the identifi-

cation of the system. In experiment design one can choose when to measure the data,

what data to measure and may also choose the input signal. The ultimate goal is thus

1



Figure 1.1: The system identification loop

to provide a set of data as informative as possible about the system.

2. A set of candidate models, often called model structure. This can be the most chal-

lenging part of system identification and most often the choice of the model structure

is determined according to a priori knowledge of the system structure.

3. The identification method, which is the method by which the model structure is fitted

to the data. The objective here is to choose the ’best’ possible model from the model

set according to a specified criterion of fit.

4. The model validation. Once a model has been selected from the model set one needs to

check whether the model is able to explain any other set of data from the same system.

The problem of identification of linear systems has been exhaustively studied, see [55] for

a review. In this thesis, we focus on the problem of identifying nonlinear systems with a

specific structure. This problem is discussed in the following section.
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1.2 Nonlinear Identification Problem

Up to date most of the nonlinear identification methods proposed in the literature deal with

black-box input-output models. Black-box identification techniques are applied to dynamical

systems for which no a priory information as to the structure of the system is available. In

such settings there are two measurable sequences available for system identification, the input

signal sequence UN
1 = (u1, u2, ..., uN)> and the output signal sequence Y N

1 = (y1, y2, ..., yN)>.

One then needs to establish a relationship, between the so-called regressor vector

zk = z(uk, uk−1, ..., uk−nu , yk−1, yk−2, ..., yk−ny)
> (1.1)

and the outputs {yk}N
k=1, of the form

yk = f(zk, ek) (1.2)

where f is a nonlinear map which needs to be identified and e = {ek}N
k=1 is a sequence of

disturbance terms, probably of a known class but not measurable. In this thesis we will

study Single Input Single Output (SISO) systems only, that is, u, y and e ∈ R. An overview

of regressor and nonlinear mapping possibilities can be found in [78].

One of the first approaches to be studied was the basis expansions, where the nonlinear

mapping f is parameterized as

f(z) =
∑

k

αkfk(z),

fk being basis functions of a known structure, thus reducing to a linear-in-the-parameters

model to be identified. Existence theorems of such expansions are given in [75]. Many

alternatives as to the nature of the basis functions have been proposed. The most usual

technique is the use of Volterra models [28, 76]. An M th-order Volterra model in discrete
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time is given by

yk =
M∑

m=0

∞∑

k1=0

...

∞∑

km=0

hm(k1, k2, ..., km)
m∏

j=1

uk−km ,

where u is the input, y the output and hm the mth-order kernel. Recent works employ La-

guerre functions for the optimal estimation of the Volterra kernels, see [16,50] and references

therein. Other possibilities include the use of splines or wavelets [22, 82].

According to another approach, a linear (affine) estimator f̂ of the nonlinear map f in

equation (1.2) is considered to be of the form

f̂(z∗) = w0 +
N∑

k=1

wtzk,

at a given point z∗, where zk is given by (1.1). The problem is then to estimate the weights

w0 and {wk}N
k=1. As mentioned in [73] different methods following this formulation have

been proposed. These can be classified into kernel methods, local polynomial modelling, least

squares support vector machines and direct weight optimization. For a wide review of these

methods the interested reader is referred to [73] and references therein.

Recent methods have moved a step further to deal with PieceWise Affine systems (PWA)

where the nonlinearity f is considered to be a piecewise affine map. A few notable results

are included in the works of [10, 32, 58]. A more comprehensive overview on this topic will

follow in Chapter 5.

Further, novel techniques for the estimation of the nonlinearity in equation (1.2) is the use

of Neural Networks (NN) [23,47] and fuzzy models. There is a variety of methods developed

in this area in the last decade, from stochastic, dynamic or multilayered NN [49, 67, 80] to

Fuzzy NN (FNN) [11,34], Wavelet NN (WNN) or combinations of these, as in [79].

As mentioned above, all the aforementioned methods are applicable in black-box identi-

fication, when no information on the nature of the nonlinearity is available. It is however

the case in many applications that the mapping f consists of a linear and a purely nonlinear
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component, thus resulting in a nonlinear map overall, that is

f(z) = Az + g(z), (1.3)

where A a constant matrix of appropriate dimensions and g the purely nonlinear map. Such

systems are called partially linear systems [29, 52]. In such systems it is of great interest to

be able to separate the linear from the nonlinear components and identify them separately.

Recently a method has been proposed for inferring nonlinear dependence from measured

data [52]. Current approaches towards the identification of partially linear systems include

the use of support vector machines proposed in [29].

A broader class of systems, which includes those of (1.3), consists of systems formed

by interconnected linear and nonlinear components. The most simple example of such an

interconnection is the serial one, of Figure 1.2 for example. Depending on the nature of the

mappings f1, f2 and f3 different types of systems are derived. Among these, the Hammerstein

system, the Wiener system and their combinations have received great attention over the

past few decades.

Let N denote a static nonlinear map, L a Linear Time Invariant (LTI) system and I

the identity operator. A Hammerstein system consists of a static nonlinear element followed

by a linear system,that is f1 ≡ N , f2 ≡ L and f3 ≡ I, whereas the Wiener system is the

other way round, a linear dynamical system followed by a static nonlinear map, i.e. f1 ≡ L,

f2 ≡ N and f3 ≡ I. Combinations of these have also been studied, the Wiener-Hammerstein

model which is a nonlinear element sandwiched by two linear systems (f1 ≡ L1, f2 ≡ N and

f3 ≡ L2) and the Hammerstein-Wiener model in which two static nonlinearities surround

a linear dynamical system (f1 ≡ N1, f2 ≡ L, f3 ≡ N2). The schemes developed for the

identification of Hammerstein or Wiener systems usually apply to Wiener-Hammerstein sys-

tems as well. This is not the case however for Hammerstein-Wiener systems, mainly because

both the input and output signals to the linearity are unobservable. Therefore, Hammerstein-
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Figure 1.2: General form of serially interconnected systems

Wiener systems are studied separately in the literature. The identification methods proposed

for Hammerstein, Wiener or Wiener-Hammerstein systems can be classified into two broad

categories, parametric and nonparametric.

In parametric methods the nonlinearity is supposed to be of a known structure, usually

polynomial, and the problem consists in estimating the unknown parameters by minimizing

some loss function of the data. The path in this direction was set by Narendra and Gallman in

their original work [59] where an iterative algorithm was proposed. A noniterative algorithm

appeared in [18, 42]. Several parametric schemes have been proposed since. A variation of

the [59] algorithm can be found in [70]. A recursive method based on weighted extended

least squares was proposed in [12], whereas a different approach using Multilayer Feedforward

Neural Networks(MFNN) was discussed in [1]. Recent works include the use of Least Squares

Support Vector Machines(LS-SVM) [38] and expansion of the nonlinear map in Fourier

series [5]. An ARMAX Hammerstein model was considered in [27] where the regressor

vector in (1.1) depends on past values of the disturbance sequence {ek}N
k=1 as well, that is

zk = z(uk, uk−1, ..., uk−nu , yk−1, ..., yk−ny , ek−1, ..., ek−ne).

In many studies, identification of Hammerstein or Wiener systems with special structure of

the nonlinearity is also considered. In [37] the static nonlinearity is modelled as a piecewise

affine map whereas in [19,20] as piecewise linear. Hard input nonlinearities, like saturation,

preload, dead-zone etc. are studied in [6].

In nonparametric methods the structure of the nonlinear map is considered unknown
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and its estimation is attempted by using approximating smooth functions. Methods for

the solution of the identification problem employ kernel regression [41], adaptive orthogonal

series [63], best approximation theory concepts [90], polynomial identification techniques [91],

wavelet theory concepts [43], linearization techniques [74] or probabilistic methods known as

stochastic approximation techniques [40,83].

Exceptions to the above classification are feasible. For example, a combined parametric-

nonparametric algorithm has been proposed in [44]. In another front, identification of

Hammerstein systems from a set-membership (worst-case scenario) point of view is stud-

ied in [9, 30,35].

Finally, a few methods for the identification of Hammerstein-Wiener models have been

developed. Parametric methods for such systems usually employ the Least Squares technique

in order to minimize some loss function [3,89]. Further, a blind approach is proposed in [4],

which allows the recovery of all internal signals based solely on the input and output signal

measurements. Nonparametric techniques are also available, for example by representing the

system’s output in Volterra series as in [81].

A unified framework for representing interconnected systems is based on the Linear Frac-

tional Transformation (LFT) of Figure 1.3. The block L describes the overall linear dynamics

and can be decomposed as

L ∼



Ly

Lz


 =



Lyu Lyw Lye

Lzu Lzw Lze


 , (1.4)

where Lyu, Lyw and Lye are the transfer functions from u, w and e to the system output

y, respectively. Similarly, Lzu, Lzw, Lze are the transfer functions from u, w and e to the

input of the nonlinear part, z, respectively. The block N describes the static nonlinear

element. A wide class of dynamical systems can be described in this framework. Apart

from the Hammerstein and Wiener systems mentioned above, systems which consist of serial

connections between multiple linear systems and multiple static nonlinearities fall under this

7



L

N

uk

ek

yk

wkzk

Figure 1.3: The considered LFT model structure.

category, as do partially linear systems described in [29]. The most important representatives

of the serially interconnected structures are the Wiener-Hammerstein system considered

in [12] and the Hammerstein-Wiener system examined in [89] and [4]. However, more complex

interconnected structures are also encountered in practice.

It is apparent that prior structural knowledge and a set of input-output data {uk, yk}N
k=1

do not provide enough information for the identification of both L and N . One would need

additional information about the internal signals of the LFT system to this end. We can

distinguish the following situations:

1. Both zk and wk are known.

2. wk is known, while zk is unknown.

3. zk is known, while wk is unknown.

Identifying the system under the case (1) is trivial. One can employ linear system identifica-

tion methods for the linear part L and any nonlinear approximation or curve fitting method

to the nonlinear element N . In case (2), only the linear part [ Lyu Lye Lyw ] of L can be

identified. Thus, we argue that case (3) is the most general situation worth of investigation

if one wants to identify both L and N .

Although the LFT model structure is a powerful representation of a wide class of non-

linear systems, relatively little work has been done on the identification of the LFT model.
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In [68] the authors set up a parameter estimation procedure for LFT models where the for-

ward part is represented by a classical linear regression and the feedback part is given by a

nonlinear dynamic map parameterized by a neural network. In [45] the authors propose a

nonparametric estimation algorithm for the identification of the static nonlinear map in the

interconnected system. Early results on this work are also reported in [24].

All these works assume complete knowledge of the linear component L. In the work

reported in this thesis, we drop this assumption. We assume that the components of the

linear dynamical system have a known and specific structure. Thus the identification of

the linear part reduces to the estimation of the corresponding parameters. The nonlinear

component is thought to be a nonlinear static map, either continuous or piecewise continuous.

Two identification techniques for such systems are presented in this work in the subsequent

chapters.

1.3 Thesis Outline

In this section we give a brief outline of the thesis.

In Chapter 1 we gave an introduction to the topic of nonlinear system identification

and we review current trends and techniques established for the identification of nonlinear

systems.

In Chapter 2 we present a selection of preliminary topics, which the reader should be

familiar with before proceeding to the study of the work that follows.

Chapter 3 is dedicated to the introduction of the Linear Fractional Transformation. We

provide a historic account on the subject, a review of the areas where LFTs are applied and

a reasoning for the advantages in using LFTs to model complex interconnected systems.

In Chapter 4 we present a new separable least squares identification technique for a class

of nonlinear systems with static nonlinearities, assuming a continuous parametrization of

the nonlinear map. To support the main work, we provide an introduction on the subjects

9



of separable least squares and curve fitting by use of mth order splines.

In Chapter 5 we review briefly the area of piecewise affine identification and propose a

piecewise affine approach to identifying a class of systems similar to that of Chapter 4, with

the difference that the nonlinear map need not be continuous over polyhedra of lagged inputs

and outputs and only needs to be piecewise continuous.

In Chapter 6 we summarize the work presented in this thesis and the major conclusions

reached. Open problems and suggestions for future research are also discussed here.

I hereby declare that the work presented in this thesis is a result of my own research apart

from the following exceptions:

• The mathematical formulation of the identification algorithm presented in Table 5.1

of Chapter 5 as well as the examples presented in Section 5.4 are a result of joint work

with Dr. Simone Paoletti, Assistant Professor, Department of Information Engineering,

University of Siena, Siena, Italy.

• The programming of the identification algorithm presented in Table 5.1 of Chapter 5

has been delivered by Dr. Simone Paoletti.
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Chapter 2

Preliminaries

In this chapter we present some preliminary theory and results necessary for the understand-

ing of the work presented in the following chapters.

2.1 Hilbert Spaces and Orthogonal Projections

We start with a review of some useful definitions in functional analysis. The material pre-

sented here is based on [26] and [36]. The interested reader is referred to the above references

for details.

Definition 2.1 Let X be a non-empty set, X ⊆ R. The mapping d : X ×X → R, is called

a metric in X (or a distance function) if for any x, y and z ∈ X the following hold:

1. d(x, y) ≥ 0 and the equality holds if and only if x = y,

2. d(x, y) = d(y, x),

3. d(x, y) ≤ d(x, z) + d(z, y).

The pair (X, d) is called a metric space and the number d(x, y) is called the distance of x

from y.
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Definition 2.2 Let X be a vector space, X ⊆ Rn. The mapping ‖ · ‖ : X → R, is called a

norm in X if for any x, y ∈ X and λ ∈ R the following hold:

1. ‖x‖ ≥ 0 and the equality holds if and only if x = 0n,

2. ‖λx‖ = |λ|‖x‖,

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ (“triangle inequality”).

If ‖ · ‖ is a norm on the vector space X, then d(x, y) = ‖x − y‖ is the distance of x from y

on X, for all x, y ∈ X. In the following, unless stated otherwise, by ‖x‖, for any x ∈ Rn, we

will mean the Euclidean norm given by

‖x‖ =
√

x2
1 + . . . + x2

n. (2.1)

A normed space is a vector space X with a given norm on X. Such a space is always

considered as a metric space for the distance ‖x− y‖. A metric space M is called complete

if every Cauchy sequence in M converges in M . A Banach space is a normed space which is

complete.

Definition 2.3 Let X be a vector space, X ⊆ Rn. The mapping < ·, · > : X ×X → R, is

called an inner product on X if for any x, y and z ∈ X and λ, µ ∈ R the following hold:

1. < x, x > ≥ 0 and the equality holds if and only if x = 0n,

2. < x, y >=< y, x >,

3. < λx + µy, z >= λ < x, z > +µ < y, z >.

Two vectors x, y ∈ X are called orthogonal, denoted by x ⊥ y, if < x, y >= 0. Note that

the zero element 0n is orthogonal to every element x ∈ X and is the only element in X with

this property. A vector z is orthogonal to the subspace M of X, if for all y ∈ M it holds

< z, y >= 0. We write z ⊥ M .
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On a vector space X with inner product as above, the mapping ‖ · ‖ : X → R given

by ‖x| =
√

< x, x > is a norm. This norm is called the norm induced on X by the inner

product. A vector space X equipped with the norm induced by the inner product is called

a Hilbert space if it is complete.

Let H be a Hilbert space, M a closed subspace of H and x ∈ H. There is a unique

y0 ∈ M such that

‖x− y0‖ = d(x,M) = inf{‖x− y‖ : y ∈ M}. (2.2)

This unique element y0 ∈ M is denoted by PM(x) and is called the projection of x on M . It

holds that x− PM(x) ⊥ M .

Definition 2.4 Let H be a Hilbert space and A ⊆ H, A 6= ∅. The orthogonal complement

of A, denoted by A⊥, is defined as

A⊥ = {x ∈ H : ∀a ∈ A, < x, a >= 0}. (2.3)

A⊥ is a closed subspace of H.

The mapping x → PM(x) of H onto M is linear, continuous and of norm 1 if M 6= {0}.
Its kernel Ker(M) = P−1

M (0) = M⊥ is the subspace orthogonal to M. The linear mapping

PM is called the orthogonal projection of H in M and its kernel M⊥ is called the orthogonal

supplement of M in H. Finally, H is the topological direct sum of M and M⊥,as stated in

the following theorem.

Theorem 2.1 Let H be a Hilbert space and M a closed subspace of H. Then H = M⊕M⊥,

that is, for every x ∈ H there are unique x1 ∈ M and x2 ∈ M⊥ such that

x = x1 + x2.

The idea of orthogonal projections will be useful later in Chapter 4.
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2.2 Nonlinear Optimization Techniques

In this section we discuss the unconstrained optimization problem [13]

minimize f(x) (2.4)

where f : Rn → R is a convex and twice differentiable mapping. We assume that there is a

solution x∗ to the minimization problem (2.4). Since f is differentiable and convex, a point

x∗ is optimal if and only if

∇f(x∗) = 0. (2.5)

Thus, solving the unconstrained minimization problem (2.4) is equivalent to finding a solution

to the equation (2.5), which is an set of n equations with n unknowns, the n variables x1, x2,

. . ., xn. The algorithms presented here produce a minimizing sequence xj, j = 1, . . ., given

by

xj+1 = xj + tj∆xj, (2.6)

where tj ∈ R with tj ≥ 0 (the equality holds when xj is optimal) is called the step size at

iteration j and ∆x ∈ Rn is called the step or search direction. The methods presented here

are all descent methods, meaning that

f(xj+1) < f(xj), (2.7)

unless xj is optimal. To initialize the algorithms we require a suitable starting point x0 ∈
Dom(f). Moreover, we require that the sublevel set S defined below is closed.

S = {x ∈ Dom(f)|f(x) ≤ f(x0)}. (2.8)
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Since from convexity of f we get that f(y) ≥ f(xj), whenever ∇f(xj)>∆xj ≥ 0, the search

direction in a descent method must satisfy

∇f(xj)>∆xj < 0. (2.9)

The general descent method algorithm is as follows.

Algorithm 2.1 General descent method

Given a starting point x ∈ Dom(f).

Repeat

1. Determine a descent direction ∆x.

2. Line search. Chose a step size t > 0.

3. Update, x := x + t∆x.

Until stopping criterion is satisfied.

At the first step of Algorithm 2.1 we determine the descent direction ∆x. Next, we

perform the line search. Here we need to select where along the line {x + t∆x|t ∈ R+} the

next iterate will be. That is, we need to select the step size t ∈ R+. This selection can be

performed with either the exact line search or an inexact line search.

Following the exact line search, t is chosen as the minimizing argument of f along the

line {x + t∆x|t ∈ R+}, i.e.

t = arg min
s≥0

f(x + s∆x). (2.10)

As noted in [13], this method is used when the cost of the minimization problem with one

variable, required in (2.10), is low compared to the cost of computing the search direction

itself.

The exact line search is rarely used in practice. Instead inexact line search methods are

used. In these methods the step length is chosen to approximately minimize f along the line

{x + t∆x|t ∈ R+}. The method most frequently used in this category is the backtracking
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line search, see [13].

We have discussed different ways of performing the line search for the second step of

Algorithm 2.1. Now we will present the most widely used variations for selecting the descent

direction, ∆x, in the first step of Algorithm 2.1.

The Gradient Direction. The most simple and natural choice is to choose the so called

gradient direction

∆x := −∇f(x). (2.11)

The Steepest Descent Direction. The normalized steepest descent direction is given by

∆x = arg min{∇f(x)>u| ‖ u ‖= 1}, (2.12)

where, ∇f(x)>u is the directional derivative of f at x in the direction of u and ‖ · ‖ is any

norm on Rn. since the first-order Taylor approximation of f(x + u) around x is given by

f(x + u) ≈ f(x) + ∇f(x)>u, the normalized steepest descent is a step of unit norm that

gives the largest decrease in the linear approximation of f , [13].

For the Euclidean norm, ||z||2 = (z>z)1/2, the steepest descent direction is ∆x = −∇f(x),

which is the gradient descent direction.

For a quadratic norm, ||z||P = (z>Pz)1/2 = ||P 1/2z||2, where P is a symmetric, positive

definite, n× n matrix, the normalized steepest descent direction is given by

∆x = −(∇f(x)>P−1∇f(x))−1/2P−1∇f(x).

Newton’s Direction and Newton’s Method. The Newton step is given by

∆x = −∇2f(x)−1∇f(x),
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for x ∈ Dom(f). Newton’s method for unconstrained minimization of f is a descent method

that uses the Newton step as descent direction and backtracking line search for choosing the

step size t. A slight modification to the general descent method of Algorithm 2.1 is that

in Newton’s method, the stopping criterion is checked after computing the search direction,

rather than after the update. Newton’s method is summarized in Algorithm 2.2.

Algorithm 2.2 Newton’s method

Given a starting point x ∈ Dom(f) and tolerance ε > 0.

Repeat

1. Compute the Newton step ∆x = −∇2f(x)−1∇f(x)

and the decrement λ2 := ∇f(x)>∇2f(x)−1∇f(x).

2. Stopping criterion. Stop if λ2/2 ≤ ε.

3. Line search. Choose step size t by backtracking line search.

4. Update, x := x + t∆x.

We have presented a brief summary of nonlinear minimization techniques for the mini-

mization problem (2.4). In the next section we discuss the least squares method for curve

fitting of both linear and non-linear functions.

2.3 Least Squares Estimation

One of the most celebrated techniques in regression analysis is that of the least squares

method. Provided that information is available in the form of measurements of some ex-

plaining variables or regressors x1, x2, ..., xn, regression analysis aims to find an estimate of

the dependent variable y, connected to x̄’s through the model

ŷ = g(x̄; ϑ)
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such that the difference ε = y− ŷ becomes as small as possible, where x̄ = [ x1 · · · xn ]> ∈
Rn, y ∈ R, g : Rn → R is a parametric function of the regressors and ϑ ∈ Rn is the parameter

vector. In dynamical systems it is often the case that y is the system output, x̄ is the system

input, g is the mathematical model describing the input-output relationship of the system

and ϑ the parameter vector to be estimated for the identification of the system. Given a set

of N pairs of measurements (yk, x̄k), k = 1, · · · , N , the Least Squares Estimate(LSE) is the

minimizing argument of the following quadratic cost function,

VN(ϑ) =
1

N

N∑

k=1

(yk − g(x̄k))
2 =

1

N

N∑

k=1

ε2
k =

1

N
ε>ε, (2.13)

that is,

ϑ̂N = arg min
ϑ

VN(ϑ). (2.14)

As remarked in [55], the parameter ϑ̂N is that value of ϑ that gives the best predictor

ŷ = g(x̄), when applied to the data x̄k, k = 1, · · · , N irrespectively of whether we have

imposed a stochastic framework on the problem or not.

2.3.1 Linear Least Squares

The vector function g can take any form. A special case, widely studied in theory and with

extensive practical applications, is when we impose a linear parametrization as follows,

g(x̄) = ϑ1x1 + ϑ2x2 + · · ·+ ϑnxn, (2.15a)

= ϑ>x̄. (2.15b)

Thus, we fit y to a linear combination of the regressors x1, x2, · · · , xn.

Remark 2.1 In the following chapters we deal with affine functions. An affine function has
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the form

g(x̄) = ϑn+1 + ϑ>x̄. (2.16)

Under this framework we can still use the Linear Least Squares formulation by defining the

extended parameter vector ϑ̄ = [ϑ> ϑn+1]
> ∈ Rn+1 and the extended regression vector

z = [x̄ 1]> ∈ Rn+1, thus obtaining

g(x̄) = ϑ̄>z. (2.17)

The cost function VN(ϑ) in (2.13) now takes the form

VN(ϑ) =
1

N

N∑

k=1

(yk − ϑ>x̄k))
2, (2.18)

which is quadratic in ϑ. Thus, it can be minimized analytically (see [56]), yielding a global

minimum ϑ̂N that satisfies the following normal equations

[ 1

N

N∑

k=1

x̄kx̄
>
k

]
ϑ̂N =

1

N

N∑

k=1

x̄kyk. (2.19)

If the matrix on the left-hand side of (2.19) is invertible, the LSE is given by

ϑ̂N =
[ 1

N

N∑

k=1

x̄kx̄
>
k

]−1 1

N

N∑

k=1

x̄kyk. (2.20)

Given the LSE ϑ̂N , the predicted value of y, ŷ is given by

ŷ = ϑ̂>N x̄. (2.21)

The regression residuals ε̂ are the values of the prediction error ε = y − ϑ>x̄, associated to

the LSE ϑ̂N , that is

ε̂ = y − ϑ̂>N x̄. (2.22)
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It can be shown (see [56]) that the sum of squared observations of y can be split into the

sum of squared predictions ŷ and the sum of squared residuals,

N∑

k=1

y2
k =

N∑

k=1

ŷ2
k +

N∑

k=1

ε̂2
k. (2.23)

We say, that the linear regression is successful when the model (2.15) explains the data y,

i.e. the predicted outputs ŷ account for the major part of the observed (actual) outputs

y in (2.23). Therefore a measure of the model’s fit to the data is provided by the squared

correlation coefficient,

R2 =

∑N
k=1 ŷ2

k∑N
k=1 y2

k

= 1−
∑N

k=1 ε̂2
k∑N

k=1 ŷ2
k

. (2.24)

The closer the value of R2 to 1 the better the fit of the regression model to the data

{yk, x̄k}N
k=1.

2.3.2 Nonlinear Least Squares

Returning to the general form of the minimization problem (2.13)-(2.14), for a general non-

linear function g, we can employ any minimization technique to compute the LSE. According

to the general descent method described in Algorithm 2.1 we can use the following iterative

minimization scheme:

ϑ̂j+1
N = ϑ̂j

N + tj∆ϑj, (2.25)

where tj is the step size and ∆ϑj is the descent direction at iteration j = 1, . . .. The descent

direction can be written as

∆ϑj = R−1
j ∇VN(ϑ̂j

N), (2.26)

where the matrix Rj can be chosen in different ways according to which method one wishes

to employ. Usual choices are the following.

- Gradient Direction. For Rj = −I we get the gradient direction.
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- Gauss-Newton Direction. Take Rj = 1
N

ε′>ε′. Then the step direction can be computed as

the solution to the following linear quadratic minimization problem

∆ϑj = arg min
∆ϑj

||ε′∆ϑj − ε|| = (ε′>ε′)−1ε′>ε = ε′†ε. (2.27)

In the above last equation we have used the notation z† = (z>z)−1z> to denote the pseudo-

inverse of z ∈ Rn.

- Levenberg-Marquardt Direction. Use Rj = 1
N

ε′>ε′ + δjI, where δj is used instead of the

step size tj. Similarly to the Gauss-Newton direction, the Levenberg-Marquardt direction is

computed as the solution to the minimization problem

∆ϑj = arg min
∆ϑj

||ε′∆ϑj − ε||+ δj||∆ϑj|| =




ε′

δjI




† [
ε> 0 · · · 0

]>
. (2.28)

This is the proposed descent direction used later in Chapter 4 for the nonlinear least squares

problem encountered in the system identification procedure.

2.4 Curve Fitting

This section is a brief introduction to curve fitting. It is not aimed to be exhaustive and

the interested reader is referred to [13] and [51] for a thorough treatment of the topic. The

material presented here is based on [13].

In curve fitting problems we are given a set of data and based on certain a priori knowl-

edge about the type of function that has generated them we need to choose the member of a

finite-dimensional subspace of functions that best fits the data under certain requirements.

Consider a family of functions f1, . . . , fk : Rn → R with common domain Dom(fi) = D,

for all i = 1, . . . , k. This family of functions is called the basis functions of f , where for each
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u ∈ Rk the function f : Rn → R is defined by

f(x) = u1f1(x) + . . . + ukfk(x), (2.29)

with Dom(f) = D. The basis functions generate a subspace F of functions on D. The vector

u ∈ Rk is called the coefficient vector and it is the variable we need to optimize for best fit of

the function to the data. According to the level of a priori knowledge about the system that

generated the data, we might be able to select a member of the family of functions that truly

generated the data. In case with little prior knowledge however we have to use more generic

families of functions. The families of functions most widely used in curve fitting problems

are described below.

Polynomials: A subspace of functions on R is the set of polynomials of degree less than

k. There are many basis functions for this subspace. The simplest one is the family that

consists of the power functions fi(t) = ti−1, i = 1, . . . , k.

Piecewise-affine functions: First we form a triangulation of the function domain D, i.e.

a set grid points g1, . . . , gk ∈ Rn and a partition of D into a set of simplexes D1, . . . , Dk such

that

D = D1 ∪ . . . ∪Dk, int(Di ∩Dj) = ∅ for i 6= j,

where int(A) denotes the interior of the set A. Then a piecewise affine function f is con-

structed by assigning values f(gi) = xi to the grid points and then extending the function

affinely on each simplex. The basis functions are affine on each simplex and defined by the

conditions

fi(gj) =

{
1 i = j,

0 i 6= j.

Such functions are continuous by construction.
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Piecewise polynomials and splines: Piecewise polynomials are defined as polynomials of

some maximum degree on each simplex of the triangulation. Piecewise polynomial functions

are continuous, that is the polynomials must agree at the boundaries between the simplexes.

Spline functions are piecewise polynomial functions that satisfy the further restrictions of

having continuous derivatives of up to a certain order, which is the order of the spline

function. A choice of basis functions for an m-th order spline is the following

fi(x) = |x− gi|m, i = 1, . . . , k − 2

fk−1(x) = x,

fk(x) = 1.

Thus, for any given u ∈ Rk a spline function of order m is given by

f(x) =
k−2∑
j=1

ui|x− gi|m + uk−1x + uk.

In Chapter 4 we will use cubic splines of this form, i.e. spline functions of third order, to

approximate a continuous nonlinear static map.
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Chapter 3

Linear Fractional Transformations

In this chapter we present the Linear Fractional Transformation (LFT) and we provide a brief

review of its applications in control engineering. Further, we discuss how we can represent

complex interconnected structures under the LFT framework and the advantages of such

representations. Most of the material presented in Sections 3.1 and 3.2 are based on [48]

and [88].

3.1 LFT Definitions

The linear fractional transformation is a term appearing in different branches of physical

sciences. In scalar complex analysis we find the following definitions.

Definition 3.1 The one-complex-variable function F : C→ C of the form

F (s) =
a + bs

c + ds
(3.1)

with a, b,c and d ∈ C is called a linear fractional transformation.

If in particular, c 6= 0 then F (s) can be written as

F (s) = α + βs(1− γs)−1,
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for some α, β and γ ∈ C.

In multivariable complex analysis the linear fractional transformation is defined as follows.

Definition 3.2 Let M be a complex matrix partitioned as

M =




M11 M12

M21 M22


 ∈ C(p1+p2)×(q1+q2),

and let ∆l ∈ Cq2×p2 and ∆u ∈ Cq1×p1 be two other complex matrices. The map

Fl(M, ·) : Cq2×p2 → Cq1×p1

with

Fl(M, ∆l) := M11 + M12∆l(I −M22∆l)
−1M21, (3.2)

provided that the inverse (I −M22∆l)
−1 exists, is called the lower linear fractional transfor-

mation with respect to ∆l. The upper linear fractional transformation with respect to ∆u

is similarly defined as the map

Fu(M, ·) : Cq1×p1 → Cq2×p2

with

Fu(M, ∆u) := M22 + M21∆u(I −M11∆u)
−1M12, (3.3)

provided that the inverse (I −M11∆u)
−1 exists.

In Figure 3.1 we see the graphical representation of the lower (left diagram) and the upper

(right diagram) LFTs. It is easy to see that the diagram on the left represents the following
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Figure 3.1: (Left) Lower LFT, (Right) Upper LFT

set of equations




z1

y1


 = M




w1

u1


 =




M11 M12

M21 M22







w1

u1


 , (3.4a)

u1 = ∆ly1 (3.4b)

and similarly for the diagram on the right the following hold,




y2

z2


 = M




u2

w2


 =




M11 M12

M21 M22







u2

w2


 , (3.5a)

u2 = ∆uy2. (3.5b)

3.2 Applications of LFTs

The linear fractional transformations (LFTs) provide a powerful tool for many control engi-

neering applications. Here we review the most important uses of LFTs and we give a brief

overview of current research in each field.
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3.2.1 State Space Realizations, Transfer Functions and LFTs

The LFT can describe the state space realization of a discrete time system. Let the system

be described in state space form by




xk+1

yk


 =




A B

C D







xk

uk


 = M




xk

uk


 . (3.6)

The transfer function is then given by

G(z) = D + C(zI − A)−1B = Fu

(



A B

C D


 ,

1

z
I
)
. (3.7)

A generalization of the notions of minimality, reachability and observability for parameter

dependent multivariable systems modeled by LFTs is presented in [8].

3.2.2 Frequency Transformation

The bilinear transformation between the z-domain and the s-domain is s = z+1
z−1

, giving

1

s
I = I −

√
2Iz−1I(I + z−1I)−1

√
2I = Fu(N, z−1I), (3.8)

where N =




I
√

2I

−√2I −I


.

3.2.3 State Space Parametric Uncertainty

In many applications there is uncertainty in the parameters of a state space model. The

most celebrated example (see [48]) is the idealized mass/spring/damper system shown in

Figure 3.2, where F is the applied external force, m is the mass of the block, k is the spring
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Figure 3.2: The mass/spring/damper system

constant and c is the damping coefficient. The system is described by the equation

y′′ +
c

m
y′ +

k

m
=

F

m
, (3.9)

where y is the vertical displacement of the mass. Suppose that the parameters m, c and k

are fixed but uncertain, with m = m̃(1 + wmδm), c = c̃(1 + wcδc) and k = k̃(1 + wkδk). Let

x = [ x1 x2 ]>, where x1 = y and x2 = my′. Then the above differential equation can be

written as 


x′

y


 = Fl(M, ∆)




x

F


 ,

where,

∆ = diag(δm, δk, δc) and M =




0 m̃−1 0 −wm 0 0

−k̃ −c̃ 1 0 wk wc

1 0 0 0 0 0

0 m̃−1 0 −wm 0 0

−k̃ 0 0 0 0 0

0 −c̃ 0 0 0 0




.

Most of the works found in the literature on LFTs relate to models for uncertain para-
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metric dynamical systems. State-order reduction methods for uncertain systems represented

by LFTs are discussed in [15] and [33]. Assuming polynomial parametric uncertainty, the

authors in [25] propose a method for obtaining low-order LFTs by exploiting the structure of

the uncertainty. The authors in [21] examine the problem of model validation for uncertain

systems modeled by LFTs in both the cases of structured and un-structured nonlinearities,

by using either time- or frequency-domain data. Their results are extended in the more recent

work of [87] where the authors discuss new validation approaches under which the simulta-

neous use of time- and frequency-domain data is possible. In [7] the concept of minimality

in uncertain and multidimensional systems modeled by LFTs is related to realization the-

ory results for formal power series. An approach employing parameter-dependent Lyapunov

functions for gain-schedule design in LFT systems is discussed in [86].

3.2.4 Modeling Interconnected Systems

The LFT model structure of Figure 1.3 can be used, as discussed in Section 1.1, to model a

variety of interconnected systems that consist of linear and nonlinear components.

The Hammerstein system is a serial interconnection of a nonlinear static map, N1, fol-

lowed by a Linear Time Invariant (LTI) system, L1, as shown on the left diagram of Fig-

ure 3.3. It is one of the simplest interconnected systems but with numerous practical appli-

cations. The right diagram of Figure 3.3 shows the Hammerstein system in LFT form. The

linear system L has been partitioned as in Equation (1.4), whereas for the static nonlinear

map it holds N ≡ N1.

More complex interconnected systems can also be modeled under the LFT framework.

For example, the system on the left diagram of Figure 3.4, which consists of several linear

and nonlinear components connected in serial and parallel configurations, can be modeled

under the LFT framework as shown on the right diagram of Figure 3.4. Here, the nonlinear

map N is a block diagonal matrix function, with each nonlinear component on the main

diagonal.
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Figure 3.3: The Hammerstein system (on the left) modeled under the LFT framework (on
the right).

Figure 3.4: An interconnected system (on the left) modeled under the LFT framework (on
the right).

Further, the LFT model structure has the property that any serial, parallel or feedback

interconnection of two or more LFTs results in a new LFT. This property makes LFTs a

versatile tool in modeling complex interconnected structures.

As mentioned in Section 1.1, little work has been done in the area of LFT identifica-

tion. In Chapters 4 and 5 we discuss the identification problems in the case of LTI linear

systems, L, and continuous or piecewise continuous static nonlinearities N and we propose

two identification techniques. Contributions and future research directions are summarized

in Chapter 6.
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Chapter 4

A Separable Least Squares approach

to LFT Identification

In this chapter, we will consider a subset of LFT systems of Figure 1.3, with Ly modelled with

an AutoRegressive with eXogeneous input (ARX) structure and Lzu modelled with a Finite

Impulse Response (FIR) structure. Lze and Lzw are both assumed to be zero. This subset of

systems includes Hammerstein systems, Wiener systems, Wiener-Hammerstein systems and

Hammerstein-Wiener systems as special cases. For simplicity of notation, we consider the

case where all signals in Figure 1.3 are scalar.

The nonlinear static map will be approximated by a smooth mth-order spline [51]. Splines

have long been used for the approximation of static nonlinearities. They are usually consid-

ered to provide a much better fit than polynomials as the local action of their coefficients

makes them more flexible and adjustable. Approximation of the nonlinear static map by

a spline has been proposed in the literature in the following cases. In [46] the authors use

splines to approximate the nonlinear part of a Wiener system, whereas approximation us-

ing cardinal splines for Hammerstein systems is introduced in [17] and the identification of

Hammerstein-Wiener systems under cubic spline representation is discussed in [89]. The

framework proposed in this thesis generalises the works of [17], [46] and [89]. In addition,
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a major contribution of our approach is that it provides a new and tractable algorithm for

identifying Wiener-Hammerstein systems using a spline approximation of the nonlinearity.

To the author’s knowledge, the literature on spline approximation has not dealt with Wiener-

Hammerstein type systems previously.

For the identification of the system model under consideration, we will show that the model

is linear in the parameters of the Lyu and Lye subsystems and the parameters of the spline

map, while it is nonlinear in the parameters of the systems Lzu and Lyw. Consequently, a

separable least squares approach is taken for the identification of the system under a predic-

tion error (PE) framework. The variable projection method of [39] is employed to reduce the

original identification problem to an equivalent problem, where the parameters of Lzu and

Lyw are optimized first in a separated prediction error cost minimization and the optimal

parameters of Lyu and Lye are then derived a posteriori. For the solution of the equivalent

nonlinear parameter minimization problem we use the Levenberg-Marquardt algorithm de-

scribed in [55], [77] and [84].

The chapter is organized as follows. In Section 4.1 we introduce some preliminary results

from the separable least squares optimization theory. The identification problem under con-

sideration is presented in Section 4.2. In Section 4.3 we describe the proposed identification

algorithm and propose a scheme for its initialization. Numerical examples illustrating the

performance of the algorithm are reported in Section 4.4. Conclusions and possible future

research directions are summarized in Section 4.5.

Parts of the work presented in this chapter can be found in [64].

4.1 The Separable Least Squares Method

The Separable Least Squares (SLS) method can be applied to a class of nonlinear minimiza-

tion problems whose variables separate. Consider a discrete nonlinear system N , modeled
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by

N : yk = f(ϑ, α; uk) =

p∑
j=1

ϑjφj(α; uk), (4.1)

where, yk and uk, k ∈ Z, are the system’s output and input signals, ϑ ∈ Rp, α ∈ Rq are

parameters that enter the model linearly and non-linearly, respectively, and φj, j = 1, · · · , p

are functions continuously differentiable in α. Note that parameters ϑ and α form two

completely disjoint sets. Given a set of data (uk, yk), k = 1, · · · , N , the nonlinear least

squares optimization method consists in estimating the unknown parameters ϑ and α by

minimizing the nonlinear functional

r(ϑ, α) = ‖y − f(ϑ, α; u)‖2 =
N∑

k=1

(yk −
p∑

j=1

ϑjφj(α; uk))
2, (4.2)

i.e. solving the nonlinear optimization problem

(ϑ̂, α̂) = min
ϑ,α

r(ϑ, α) = min
ϑ,α

‖y − f(ϑ, α; u)‖2. (4.3)

Let Φ = {Φ}k,j = φj(α; uk), k = 1, · · · , N , j = 1, · · · , p. Then, the functional defined in

(4.2) can be written as

r(ϑ, α) = ‖y − Φ(α)ϑ‖2. (4.4)

In order to be able to find a critical point for the functional in (4.4) we need to make the

following assumption.

Assumption 4.1 The matrix Φ(α) has constant rank rank(Φ) ≤ min(N, p) for all α ∈ Ω ⊆
Rq, with Ω an open set that contains the desired solution.

Let Φ†(α) denote the Moore-Penrose generalized inverse of matrix Φ(α). For each α, the

linear operator PΦ(α) = Φ(α)Φ†(α) is the orthogonal projection on the linear space spanned

by the columns of the matrix Φ(α). Denote by Φ⊥(α) = I − Φ(α), the projector on the

orthogonal complement of the column space of Φ(α). For any given α, the functional in
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(4.4) is minimized by the Least Squares Estimate (LSE)

ϑ̂(α) = min
ϑ
‖y − Φ(α)ϑ‖2 ≡ Φ†(α)y. (4.5)

Thus,

minϑ r(ϑ, α) = r(α) = ‖y − Φ(α)Φ†(α)y‖2

= ‖(I − PΦ(α))y‖2

= ‖P⊥
Φ(α)y‖2

(4.6)

Hence, instead of solving the minimization problem (4.3) with respect to two parameter

vectors, one can minimize first the modified functional r2(α), given by

r2(α) = ‖P⊥
Φ(α)y‖2, (4.7)

with respect to α, i.e.

α̂ = min
α

r2(α) = min
α
‖P⊥

Φ(α)y‖2. (4.8)

Once a critical point or a minimizer α̂ of (4.7) has been found, ϑ̂ is obtained by replacing α̂

in (4.5). This procedure is justified by the following theorem, stated below without proof.

The interested reader can refer to [39].

Theorem 4.1 Let r(, ϑ, α) and r2(α) be defined as above. We assume that in the open set

Ω ⊂ Rq, Φ(α) has constant rank rΦ ≤ min(N, p).

(1) If α̂ is a critical point (or global minimizer in Ω) of r2(α) and

ϑ̂ = Φ†(α̂)y, (4.9)

then (ϑ̂, α̂) is a critical point (or global minimizer in Ω) of r(ϑ, α) and r(ϑ, α) = r2(α).

(2) If (ϑ̂, α̂) is a global minimizer of r(ϑ, α) for α ∈ Ω, then α̂ is a global minimizer of r2(α)

in Ω and r(ϑ, α) = r2(α). Furthermore, if there is a unique α̂ among the minimizing pairs
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of r(ϑ, α), then α̂ must satisfy (4.9).

One of the advantages of the Separable Least Squares method over traditional nonlinear

optimization is summarized in the following theorem of Sjöberg and Viberg, which is stated

without proof. The interested reader is referred to [77]. Before stating the theorem we need

the following two definitions.

Definition 4.1 The condition number of matrix A is defined as cond(A) = max(σ(A))
min(σ(A))

where

σ(A) are the singular values of the matrix A. If cond(A) is very large, for example bigger

than 103, then the matrix A is said to be ill-conditioned.

Definition 4.2 Let ε = y−Φ(α)ϑ. An ill-conditioned minimization problem is a minimiza-

tion problem for which ε′ is ill-conditioned.

Theorem 4.2 The separated minimization problem (4.5)-(4.8) is better, or at least as good

conditioned as the non-separated minimization problem (4.3).

However, in identification problems the SLS can be proved a powerful tool. Forming the

separated minimization problem usually involves a considerable reduction in the dimension

of the problem. This point is illustrated in the identification method presented in Section 4.3.

4.2 Problem Formulation

4.2.1 Model Structure

Consider the discrete-time interconnected dynamical system described by the Linear Frac-

tional Transformation (LFT) of the type shown in Figure 1.3. The system consists of a linear

dynamical component interconnected with a static nonlinear element. Although we do not

require knowledge of the nonlinear map N , we do assume that it is smooth enough to be

approximated by a mth order spline, i.e. N (·) ∈ Cr for r ≥ m. Signals uk, yk and ek are the
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system input, output and the unobservable additive noise at time k ∈ Z respectively, while

zk and wk are internal signals representing the input and the output of the nonlinear map.

For simplicity of notation we consider the scalar case, i.e. uk, yk, ek, zk and wk ∈ R.

For the identification of the LFT system in Figure 1.3, the linear system Ly is modeled

as an ARX in (4.10a) below. Lzu in (4.10b) is FIR, while the unknown nonlinear map N is

approximated by a spline of order m as in (4.10c) below.

A(q)yk = B(q)uk + G(q)wk + ek, (4.10a)

zk = D(q)uk, (4.10b)

wk =
s∑

j=1

λj|zk − κj|m + λs+1zk + λ0. (4.10c)

In (4.10a), A(q), B(q), G(q) are finite polynomials of known orders na, nb and ng, respectively,

in the delay operator q−1, i.e.

A(q) = 1 + a1q
−1 + . . . + anaq

−na , (4.11a)

B(q) = b0 + b1q
−1 + . . . + bnb

q−nb , (4.11b)

G(q) = g0 + g1q
−1 + . . . + gngq

−ng . (4.11c)

Similarly, D(q) in (4.11b) is a finite polynomial of known order nd in the delay operator q−1,

D(q) = d0 + d1q
−1 + . . . + dnd

q−nd . (4.12)

In (4.10c), s is the number of knots (assumed to be known and fixed) used to interpolate the

nonlinear input-output data {zk, wk}N
k=1 by an mth order spline and κj, j = 1, · · · , s are the

fixed spline knot points, chosen such that zmin = κ1 < · · · < κs = zmax. We will comment

on choosing the number and the location of knots in Section 4.3.

In the next section, we examine the identifiability of the considered system model (4.10).
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4.2.2 Identifiability

Let a = [a1 · · · ana ]>, b = [ b0 · · · bnb
]>, g = [ g0 g1 · · · gng ]>, d = [ d0 · · · dnd

]> and λ =

[ λ0 λ1 · · · λs λs+1]
> and define the parameter vector ϑ ∈ Rn, with n = na+nb+ng+nd+s+5

given by

ϑ = [ a> b> g> d> λ> ]>. (4.13)

This parametrization of the system model (4.10) is clearly not unique. For any nonzero

constant ξ ∈ R, no identification experiment can distinguish between the pairs of parame-

ters (g, λ) and (ξg, 1
ξ
λ). To account for this identifiability issue, we impose a normalizing

condition that g0 = 1. This is without loss of generality, since we can always suitably

scale the nonlinear map, as it is demonstrated in Example 4.1 below. Similarly, for any

nonzero β ∈ R no identification experiment can distinguish between the products λjzk and

(βλj)(
1
β
zk), for j = 1, · · · , s + 1. To this end, we impose another normalizing condition that

‖d‖2 = 1. Finally, since the model (4.10) contains a term (B(q) + λs+1G(q)D(q)) uk, we

impose a condition that

bici = 0

holds for all i ∈ [0, nl], where ci =
∑i

j=0 gjdi−j and nl = min(nb + 1, ng + nd + 1).

Let Q́ ⊆ Rn be the set of vectors ϑ which satisfy constraints ‖d‖2 = 1, g0 = 1 and

bici = 0, with ci defined as above.

Example 4.1 Consider the system

yk = a1yk−1 + b1uk−1 + g1wk−1 + ek, (4.14a)

zk = d1uk−1 + d2uk−2, (4.14b)

wk = sin(zk). (4.14c)

Let w̃k = sin(zk−1) and g̃0 = g1. Then it holds that g1wk−1 = g̃0w̃k. If, further, we define
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˜̃wk = g̃0w̃k, then system (4.14) is equivalent to

yk = a1yk−1 + b1uk−1 + ˜̃g0
˜̃wk + ek, (4.15a)

zk = d1uk−1 + d2uk−2, (4.15b)

wk = sin(zk), (4.15c)

with ˜̃g0 = 1.

¦

In the next subsection, we consider an identification criterion with the parameter vector

constrained to Q́ .

4.2.3 Identification Criterion

Let

φk = [|zk − κ1|n · · · |zk − κs|n zk 1]>, (4.16)

then wk in (4.10c) can be written as

wk = φ>k λ. (4.17)

The predictor ŷk (which also equals the conditional mean of yk based on data up to time

k − 1) can be derived by equation (4.10a) as follows:

ŷk =
(
1− Â(q)

)
yk + B̂(q)uk + (Ĝ(q)φ̂k)

>λ̂, (4.18)
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where, by X̂ we denote an estimate of X.

The parameter vector ϑ given in (4.13) can be decomposed as follows.

ϑ = [ ϑ>l ϑ>n ]>, where (4.19a)

ϑl = [ a> b> λ> ]>, (4.19b)

ϑnl = [ d> g> ]>. (4.19c)

In the above, ϑl ∈ Rp with p = na + nb + s + 3 and ϑnl ∈ Rq, with q = ng + nd + 1 (with

g0 = 1). Note that the model (4.10) is linear in ϑl and nonlinear in ϑnl.

The identification criterion is formed as follows : Given a set of N input-output data

{uk, yk}N
k=1, find the parameter vector ϑ that minimizes the cost function

VN(ϑ) =
1

2N

N∑

k=1

(yk − ŷk)
2, (4.20)

over Q́ as defined in the last subsection, i.e.

ϑ̂ = arg min
ϑ∈ Q́

VN(ϑ). (4.21)

We will use the results on asymptotic properties of nonlinear least squares estimator in [85]

to establish conditions for data for consistency of the estimate in the next subsection.

4.2.4 Consistency

In order to look at conditions for consistency of the estimator in (4.21), we will denote an

estimate of X by X̂, as before, and the true value of a quantity X by X̃. Accordingly, let

ϑ̃ ∈ Q́ be the true parameter vector. We say that an estimator ϑ̂ based on data {uk, yk}N
k=1

is consistent if ϑ̂ → ϑ̃ as N →∞ with probability 1.

Our main tool to impose conditions on data for consistency of estimator is the following
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result from [85] on consistency of nonlinear least squares problem:

Theorem 4.3 Let yk = f(xk, ϑ̃) + εk, where ϑ̃ ∈ Θ is the true parameter vector, xk is the

input that gives rise to observation yk, εk are independent, identically distributed errors with

a zero mean and a non-zero variance and the parameter space Θ is finite. Assume that the

functions fk(ϑ) = f(xk, ϑ) are continuous in ϑ. Then

N∑
i=1

(
f(xi, ϑ̃)− f(xi, ϑ̂)

)2

→ ∞ as N →∞,∀ ϑ̂ 6= ϑ̃ (4.22)

implies

ϑ̂ → ϑ̃ w.p. 1, as N →∞. (4.23)

As remarked in [85], the finiteness of the parameter space Θ does not impose any severe

restriction since in practice we can only search for the minimum over a finite set, e.g. to

the sixth decimal place. To check whether the estimator proposed in the last section is

consistent, we make an important assumption that D(q) = 1 (which implies b0 = 0 due to

the constraints on the parameter set Q́). Even after this restriction on (4.10), the restricted

model set is still quite general and includes Hammerstein systems as special case.

We now seek a sufficient condition on data for (4.22) to hold (with uk = xk and f(xk, ϑ̃) =

yk as obtained from (4.10a)-(4.10c)); which in turn would be sufficient for the estimator ϑ̂

defined as above to be consistent. For this purpose, we need to define several new quantities

related to data as well as to the error in the parameter estimate. Let p = na + nb + ng + 1
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and for tk > p, let

Fk =

[
Y>k U>k H>

k

]>
, where

Yk =

[
yk−1 yk−2 · · · yk−na

]>
,

Uk =

[
uk−1 uk−2 · · · uk−nb

]>
,

Hk =

[
φ>k φ>k−1 · · · φ>k−ng

]>
,

and where φk is as defined in (4.16). Note that Fk ∈ Rna+nb+(ng+1)(s+2). Next, define two

vectors of errors introduced by error in the parameter estimate:

Ξ =

[
(ã− â)> (b̃− b̂)>

]>
and

Ψ =

[
(λ̃− λ̂)> (g̃1λ̃− ĝ1λ̂)> · · · (g̃ng λ̃− ĝng λ̂)>

]>
(4.24)

With this notation, the condition for consistency is given in the following result:

Lemma 4.1 Assume that D(q) = 1. Further, assume that the data is persistently exciting

in the following sense: there exist an integer M > p and a real constant ρ > 0 such that, for

every r ≥ p,
r+M∑
j=r

(FjF>
j

)
> ρI (4.25)

holds almost surely, where I represents an identity matrix. Then the nonlinear least squares

estimate ϑ̂ given in (4.21) is a consistent estimate of the true parameter vector ϑ̃, i.e.

ϑ̂ → ϑ̃ w.p. 1, as N →∞. (4.26)
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Proof: Suppose that ϑ̂ 6= ϑ̃ and (4.25) holds. Let

∥∥∥∥∥
[
Ξ> Ψ>

]>∥∥∥∥∥
2

= δ,

where δ > 0. Simple algebraic manipulation shows that

M+r∑
j=r

(yj − ŷj)
2 =

[
Ξ> Ψ>

] (
M+r∑
j=r

(FjF>
j

)
) [

Ξ> Ψ>
]>

.

Using the definition of the smallest eigenvalue of a symmetric positive semidefinite matrix,

this gives
M+r∑
j=r

(yj − ŷj)
2 > δρ a.s.

Since this lower bound holds for every r ≥ p,

p+N∑
r=p

Mr∑

j=(r−1)M+r

(yj − ŷj)
2 ≥ Nδρ a.s.

from which the result follows by letting N tend to infinity. ¦
Unlike the fairly general consistency results in [55], the result above is for a specific

class of systems and under a specific identification criterion, viz., nonlinear least squares.

However, the advantage of this result is that it still provides strong consistency condition for

a wide and practically relevant class of nonlinear systems (including Hammerstein systems

with smooth nonlinearities), without requiring Gaussian noise or even noise with bounded

higher order moments. It is difficult to allow for nd > 1 and still yield a meaningful sufficient

condition for consistency on data, similar to the rank condition in the previous lemma.

However, solving (4.21) using the proposed algorithm with nd 6= 1 still yields satisfactory

results, as demonstrated in Section 4.4.
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In the following section we describe the algorithm for the parameter estimation of the

above system.

4.3 Parameter estimation algorithm

In what follows, let 0n ∈ Rn denote a vector with all zero entries. Under the identification

criterion (4.21), the parameters of the system (4.10) can be estimated using the separable

least squares method [39]. To any given vector of nonlinear parameters ϑn, there corresponds

an optimal vector of linear parameters ϑl, given by

ϑ̂l = J†l YN , (4.27)

where Jl is the Jacobian matrix of the linear parameter vector with respect to ϑl:

Jl =
∂ŷ

∂ϑl

=
[ ∂ŷ

∂a

∂ŷ

∂b

∂ŷ

∂λ

]
, (4.28)

and YN is an ordered vector of all output measurements. Here, A† denotes the pseudo-

inverse of a matrix A. The cost function VN(ϑ) in (4.20) is thus expressed as a function of

the nonlinear parameters vector ϑn alone, forming the cost function of the separated problem

VSN(ϑnl) = VN([ ϑT
nl ϑ̂T

l (ϑnl) ]T ). (4.29)

The optimal parameter vector ϑ̂nl is then given as a solution to the separated minimization

problem

ϑ̂nl = arg min
ϑnl

VSN(ϑnl), (4.30)

where the minimum is understood to be a local minimum in general. Note that we have

split a non-convex optimization (4.21) in na + nb + ng + nd + s + 4 variables into two

parts: a non-convex optimization (4.30) in ng + nd + 2 variables (i.e., potentially a much
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smaller number of variables) followed by a simple linear least squares problem (4.28) in the

remaining na + nb + s + 2 variables. This illustrates the clear numerical advantage of using

a model structure which allows us to use separable least squares. This structure also allows

us to update the the parameter vector ϑ̂l recursively using standard recursive least squares

techniques. In section 4.1 it is shown that if ϑ̂nl is a minimizing argument of (4.30) and ϑ̂l

is given by (4.27), then the parameter ϑ̂ = [ ϑ̂T
l ϑ̂T

nl ]T is a minimizing argument of (4.21)

and vice versa.

To solve problem (4.30) one needs to compute the Jacobian of the separated problem Js.

From [39], this is given by

Js = Jn − JlJ
†
l Jn, (4.31)

where, Jl is the Jacobian matrix of the linear parameter vector given in (4.28) and Jn the

Jacobian matrix of the nonlinear parameter vector given by

Jn =
∂ŷ

∂ϑnl

=
[ ∂ŷ

∂d

∂ŷ

∂g

]
. (4.32)

With the Jacobian Js at hand one can use any step descent iterative algorithm to find the

optimal parameter vector ϑ̂nl. In this work, we use the Levenberg-Marquardt algorithm [77],

[84]. The proposed identification scheme is summarized in Table 4.1.

Next, we describe a heuristic proposed for initializing this algorithm.

4.3.1 Algorithm Initialization

When no a priori knowledge or estimation of the parameter vectors ϑl and ϑnl is at hand,

the following initialization process may be employed to obtain the initial estimates needed

in the algorithm summarized in Table 4.1.

44



Table 4.1: Identification algorithm

INITIALIZE : ϑ0
l (see Section 4.3.1)

INITIALIZE ϑ0
nl (see Section 4.3.1)

Solve problem (4.30) by Levenberg-Marquardt iterations.
Choose γ > 1, 0.95 ≤ ρ < 1 and set j = 0, δ = 1.
REPEAT

Set j = j + 1
Compute the next step direction ∆ϑj by

∆ϑj = arg min∆ϑ ‖ Jδ∆ϑ− εδ ‖2

where Jδ =

[
Js√
δjIq

]
and εδ =

[
ε
0q

]

with εi = yi − ŷj
i , for i = 1, · · · , N .

Update ϑj+1
nl = ϑj

nl + ∆ϑj

IF VSN(ϑj+1
nl ) > VSN(ϑj

nl)
THEN δ = γδ
ELSE δ = δ/γ

UNTIL VSN(ϑj+1
nl ) / VSN(ϑj

nl) ≤ ρ

RETURN : ϑ̂nl

Estimate ϑl by use of (4.27).

RETURN : ϑ̂l

1. Solve the linear regression

yk = Y>k a + U>k b + w̄ + ek (4.33)

in a least squares sense, thus obtaining initial estimates a0 and b0. The constant term

w̄ accounts for the neglected effect of the nonlinear output signal w in (4.10a).

2. Compute the signal

vk = yk − Y>k a0 − U>k b0. (4.34)

This is an estimate of the signal w corrupted by the system noise and the model error

in the estimation of the a0 and b0 parameters.
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3. Assuming N (·) is the identity function, solve in a least squares sense the linear regres-

sion

vk = U>
k d + εk, (4.35)

where Uk =

[
uk−1 uk−2 · · · uk−nd

]>
. Thus obtain an initial estimate d0.

4. Compute an estimate of the internal signal zk

ẑk = U>
k d0. (4.36)

5. Fit a nth-order spline to the data (ẑk, vk)
N
k=1 of the form

vk =
s∑

j=1

λj|ẑk − κj|n + λ0 + λs+1ẑk. (4.37)

The choice of s, n and κi can be made at this stage by observing the graph of ẑk versus

vk. It was found that using n = 3 and using uniformly spaced κi over signal range are

sufficient for most applications. This gives the first estimate λ0 of λ.

6. Let ϑ0
l =

[
(a0)> (b0)> (λ0)>

]>
and ϑ0

nl =

[
(d0)> 0>ng

]>
.

Use the vectors ϑ0
n and ϑ0

l to initialize the separable least squares algorithm summarized in

Table 4.1.

4.4 Numerical Examples

In this section we present some illustrative examples to showcase the performance of the

proposed algorithm.
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Example 4.2 In this example we consider the following Wiener system.

yk =
zk√

0.1 + 0.9z2
k

+ ek, (4.38a)

zk = d1uk−1 + d2uk−2 + d3uk−3. (4.38b)

A data set of N = 2000 data points (uk, yk) is generated with uk uniformly distributed in

[−0.7, 2.5] and ek normally distributed with zero mean and 0.1 standard deviation. Half

of the data were used for identification purposes and the rest for validating the resulting

model.The initialization process described in Section 4.3.1 was used to initialize the separable

least squares algorithm. For the approximation of the nonlinear map, a cubic spline, i.e.

n = 3, was fitted with a fixed a priori set of 12 knot points equally spaced in the range of

the signal zk. The true values and the initial and final estimates of the FIR coefficients are

given in Table 2.

The performance of the model was measured by means of the Variance Accounted For

(VAF%)

VAF % =
(
1− V ar(ŷ − y)

V ar(y)

)
∗ 100% (4.39)

The VAF% measures the proportion of the variance in the data {yk}N
k=1 that is explained

by the fitted values {ŷk}N
k=1. Thus, the closer VAF% is to 100% the better the accuracy of

the estimated model. In this example, for the validation data set, VAF% = 98.11%. The

approximation of the nonlinearity by the cubic spline is shown in Figure 4.2.

Table 4.2. Identification results in Example 4.2

True Initial Final

d1 -0.8944 -0.9237 -0.8958

d2 0.2683 0.2157 0.2617

d3 -0.3578 -0.3236 -0.3439
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Figure 4.1: Approximation of the nonlinear map by a cubic spline in example 4.2.

Example 4.3 In this example we consider the Wiener-Hammerstein system given in (4.40)

below.

yk = a1yk−1 + wk + g1wk−1 + ek, (4.40a)

wk = tan−1(zk − 1), (4.40b)

zk = d1uk−1 + d2uk−2. (4.40c)

A data set of N = 2000 data points (uk, yk) is generated with uk uniformly distributed in

[−2.5, 2.5] and ek normally distributed with mean 0 and 0.1 standard deviation. Half of the

data were used for identification purposes and the rest for validating the resulting model.

The initialization process described in Section 4.3.1 was used to initialize the separable least

squares algorithm. For the approximation of the nonlinear map, a cubic spline was fitted

with a fixed a priori set of 15 knot points equally spaced in the range of the signal zk.

Table 4.3 summarizes the true values and the initial and final estimates of the parameters

to be identified.

To provide some insight on the steps of the algorithm, the stages of approximation of the

nonlinear map by the cubic spline is shown in Figures 4.3-4.5. Figure 4.3 corresponds to the

first approximation at initialization as described in Step (5) of Section 4.3.1. Figure 4.3 (left)

shows the slightly enhanced fit achieved once the separated minimization problem (4.30) has

48



−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

z
k
 sorted

w
k

 

 

True w
k

Estimated w
k

Figure 4.2: Samples (ẑk, ŵk) at initialization in example 4.3.
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Figure 4.3: (left) ẑk, ŵk for updated values of ϑ̂n at the last iteration of the L-M algorithm
(right) Final fit for updated values of ϑ̂l in example 4.3.

been solved. Finally, Figure 4.3 (right) shows the fit achieved once the spline parameters

have been updated by use of (4.27). The VAF% in the validation data turned out to be

98.32% .

Table 4.3. Identification results in Example 4.3

True Initial Final

a1 -0.4 -0.4472 -0.4005

d1 0.53 0.5663 0.5345

d2 -0.848 -0.8242 -0.8452

g1 -0.5 0 -0.5078
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Example 4.4 We will close this section with an example of a general LFT model. Consider

the following LFT system.

yk = a1yk−1 + b1uk−1 + wk + g1wk−1 + ek, (4.41a)

zk = yk−2, (4.41b)

wk = |zk − 2|+ 0.8 tan−1(zk). (4.41c)

A data set of N = 1000 data points (uk, yk) is generated with uk uniformly distributed

in [−2.5, 2.5] and ek uniformly distributed in [−0.25, 0.25]. Half of the data were used

for identification purposes and the rest for validating the resulting model. The initialization

process described in Section 4.3.1 was used to initialize the separable least squares algorithm.

For the approximation of the nonlinear map, a cubic spline was fitted with a fixed a priori

set of 13 knot points equally spaced in the range of the signal zk. Table 4.4 summarizes

the true values and the initial and final estimates of the parameters to be identified.The

approximation of the nonlinearity by the cubic spline is shown in Figure 4.4. The VAF% in

the validation data turned out to be 97.85%

Table 4.4. Identification results in Example 4.4

True Estimated

a1 0.4 0.4004

b1 1.2 1.1989

g1 0.5 0.5178

4.5 Summary

In this chapter we have proposed a unified framework for a class of interconnected systems

with dynamic linear components and static nonlinear components. We considered a subset of

LFT systems of Figure 1.3, with Ly modelled with an AutoRegressive with eXogeneous input

(ARX) structure and Lzu modelled with a Finite Impulse Response (FIR) structure. Lze
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Figure 4.4: Approximation of the nonlinear map by a cubic spline in example 4.4.

and Lzw were both assumed to be zero. Further, the nonlinear static map was approximated

by a smooth mth-order spline. We have developed an identification method based on the

Separable Least Squares technique. For a restricted model set, we have also provided a

sufficient condition on data for the consistency of the parameter estimate. The proposed

algorithm is numerically tractable and can be initialized with little prior knowledge. The

performance of the algorithm has been demonstrated with numerical examples for identifying

a Wiener system as well as a Wiener-Hammerstein system and a general LFT system. Future

directions regarding the research work presented here are outlined in Section 6.2.
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Chapter 5

Piecewise Affine Identification

Nonlinear system identification has been an active research field in the last few decades, and

a number of black-box identification approaches have been proposed as detailed in Chapter

1 and references therein. In particular, PieceWise Affine (PWA) system identification has

recently deserved a lot of attention, mainly motivated by the universal approximation prop-

erties of PWA maps [14, 53]. Compared to other parametric approaches, PWA black-box

identification has a major advantage. PWA maps can model a wide class of discontinuities.

Therefore, PWA identification is most beneficial when no a priory knowledge is available

on the continuity of the nonlinearity at hand, or when indeed dealing with a discontinuous

nonlinear function.

In the previous chapter we examined the identification problem of a system given in the

LFT form of Figure 1.3 under the assumption that the nonlinear static map N is continuous

over the domain of the input signal zk. In this chapter we relax this assumption. Employing

a PWA identification technique for the approximation of the static nonlinear map N we

are able to identify also piecewise continuous maps. We address the identification problem

for an LFT interconnection composed by a LTI system and a static nonlinearity. Many

nonlinear black-box structures can be used to this aim. In particular, one could identify a

PieceWise affine ARX (PWARX) model of the LFT system by using any one of the PWA
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system identification techniques proposed in the literature, as will be detailed in Section 5.1.

However, the resulting model will typically not reflect the internal structure of the system,

and will be more complex than needed in terms of number of parameters to be estimated.

Motivated by this, an identification procedure is proposed which exploits the knowledge

of the interconnection structure of the system generating the data. Numerical examples

show that the proposed iterative scheme is able to exploit the knowledge of the system

interconnection structure, thus providing simpler models compared to those obtained when

applying black-box PWA identification techniques to the overall system. Parts of the work

presented in this chapter can be found in [65], [61] and [66].

In Section 5.1 of this chapter we review the existing techniques in PWA system identifi-

cation and particularly we present two distinct techniques that we will use in the following.

In Section 5.2 we present the considered model structure in SISO form and the associated

identifiability requirements, followed by the proposed iterative identification scheme in Sec-

tion 5.3 and concluded by numerical examples illustrating the performance of the algorithm

in Section 5.4. Finally, conclusions and possible future research directions are summarized

in Section 5.5.

5.1 PWA identification of nonlinear systems : An overview

A PWA map f : Rn → R is given by

f(x) =





θ>1




x

1


 , if x ∈ X1,

...

θ>s




x

1


 , if x ∈ Xs,

(5.1)
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where the regressor space X ⊂ Rn is a bounded polyhedron and the set {Xi}s
i=1 is a poly-

hedral partition of X , i.e. each set Xi is a convex polyhedron such that Xi ∩ Xj = ∅, ∀i 6= j

and ∪s
i=1Xi = X . The map is parametrised by the parameters θi ∈ Rn+1, i = 1, . . . , s.

Given a set of input-output data {uk, yk}N
k=1 generated by a nonlinear system N , PWA

identification consists in estimating a PWA map f such that

yk = f(xk) + εk, (5.2)

where εk are error terms due to the system noise and/or identification error. The regressor

vector xk ∈ Rn is constructed by the previous values of the input and output signals. In

most of the applications considered in the literature xk is defined as follows

xk =

[
yk−1 ... yk−na uk−1 ... uk−nb

]>
. (5.3)

That is, at each region Xi, an AutoRegressive eXogenous model is identified. The resulting

PWA system is thus called PWARX (PieceWise ARX).

The identification process consists in estimating the hyperplanes that define the partition

{Xi}s
i=1 of the regressors domain X and the parameters {θi}s

i=1 of the affine submodels

in each region Xi of the partition. Clearly, the most challenging issue arising here is the

classification of the pairs of data points {uk, yk}N
k=1 in their corresponding regions Xi, i =

1, ..., s. The proposed identification techniques either fix the number of affine submodels a

priori [32, 54, 58, 69, 72], or estimate it from data [10, 31, 57]. For an extensive overview on

PWA system identification, the interested reader is referred to [71] or [62].

5.1.1 A bounded-error procedure for PWA identification

In this section, the main features of the bounded-error procedure for identification of PWA

models presented in [10] are briefly reviewed. Given N data pairs (wk, zk), k = 1, . . . , N ,
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where z ∈ Rnz and w ∈ R are the independent and dependent variables, respectively, the

aim of the bounded-error procedure is to fit a PWA map (5.7) such that the bounded-error

condition

|wk − f(zk)| ≤ δ, ∀k = 1, . . . , N, (5.4)

is satisfied for a given quantity δ > 0. The procedure works in three stages. First, a MIN

PFS approach [2] is employed to simultaneously classify the data points and estimate a

minimum number s of modes so that (5.4) is satisfied (notice that s is not fixed a priori).

At second stage, refinement of the data point classification takes place, where misclassified

data are reduced and the parameters are estimated afresh. Finally, the polyhedral partition

of the domain Z is estimated using two-class or multiclass linear separation techniques. For

further details on the algorithm and its implementation, the interested reader is referred

to [10]. It turns out that the bound δ in (5.4) is a tuning parameter of the algorithm that

can be used to achieve the desired trade off between model accuracy and complexity. In

fact, the smaller δ, the larger is typically the number of modes needed to fit the data (with

noisy measurements, this brings on the risk of overfit). Conversely, the larger δ, the worse

is the fit, since larger errors are allowed. The choice of a suitable δ can be made by plotting

the number of modes versus δ, and selecting δ at the knee of the curve (see also Section 5.4

below, where this idea for the selection of δ is applied).

5.2 Problem Formulation

5.2.1 Model Structure

We consider discrete-time networked dynamical systems defined as the interconnection of

linear and nonlinear components, and represented by LFTs of the type shown in Figure 1.3.

The block L is a linear time-invariant dynamical system, while the block N is assumed to

be a static nonlinearity. The scalar signals uk, yk and ek ∈ R are the system input, output
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and noise at time k ∈ Z, while zk ∈ Rnz and wk ∈ R are internal signals representing the

input and the output of the nonlinear part.

Let Z be a collection of ny past values of y and the current and nu past values of the

input u, that is Z = {yk−1, · · · , yk−ny , uk, uk−1, · · · , uk−nu}, where the orders ny and nu are

assumed to be known. Then zk is a vector containing some or all of the elements of Z,

zk ∈ Rnz , where nz ≤ ny + nu + 1.

For the LFT system in Figure 1.3, the following model class is considered:

A(q)yk = B(q)uk−nk
+ G(q)wk + εk, (5.5a)

wk = f(zk). (5.5b)

The linear part L is described by the ARX model (5.5a), where εk ∈ R is the error term,

and A(q), B(q), G(q) are finite polynomials of known orders na, nb, nk and ng respectively,

in the delay operator q−1, namely

A(q) = 1 + a1q
−1 + . . . + anaq

−na , (5.6a)

B(q) = b0 + b1q
−1 + . . . + bnb

q−nb , (5.6b)

G(q) = g0 + g1q
−1 + . . . + gngq

−ng . (5.6c)

The nonlinear part N is described by the static relation (5.5b), where f(·) is a PWA map

of the form

f(z) =





θ>1 φ if z ∈ Z1,

...

θ>s φ if z ∈ Zs.

(5.7)

In (5.7), φ = [ z> 1 ]>, s is the number of modes, θi ∈ Rnz+1, i = 1, ..., s, are the parameters of

each mode, and {Zi}s
i=1 is a complete partition of the domain Z ⊆ Rnz where f(·) is defined.

Each set Zi, i = 1, ..., s, is a convex polyhedron described by Zi = {z ∈ Rnz : Hiφ ¹[i] 0},
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where Hi ∈ Rµi×(nz+1), i = 1, . . . , s, µi is the number of linear inequalities defining the ith

polyhedral region Zi, and the symbol ¹[i] denotes a µi-dimensional vector whose elements

can be the symbols ≤ and <, to avoid that the sets Zi overlap over common boundaries.

In the following, it will be useful to write Equation (5.5a) in regression form as follows:

yk = η>L ϕk + wk + εk, (5.8)

where

ηL = [ η>ζ η>ω ]>, with (5.9a)

ηζ = [ a1 . . . ana b0 b1 . . . bnb
]> and (5.9b)

ηω = [ g1 . . . gng ]T> (5.9c)

is the unknown parameter vector,ηL ∈ RnL , nL = na + nb + ng + 2 and

ϕk = [ ζ>k ω>k ]>, with (5.10a)

ζk = [ −yk−1 . . . − yk−na uk uk−1 . . . uk−nb
]> and (5.10b)

ωk = [ wk−1 . . . wk−ng ]>, (5.10c)

is the (partially unknown) regression vector.

In the following section we discuss the identifiability of the proposed model class (5.5).
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5.2.2 Identifiability

In this section we discuss the identifiability of the proposed model.

Let wk = f(zk) =
∑s

i=1(θ
(i))>φkδik, where

δik =

{
1, if zk ∈ Zi,

0, otherwise.

Equation (5.5) becomes

A(q)yk = B(q)uk−nk
+

s∑
i=1

(θ(i))T δikG(q)φk + εk. (5.11)

Using the notation introduced in (5.9) and (5.10), equation (5.11) can be re-written as

yk = ζ>k ηζ +
s∑

i=1

(θ(i))>δikG(q)φk + εk (5.12)

or in more detail, as:

yk = −a1yk−1 − ...− anayk−na + b0uk−nk
+ ... + bnb

uk−nk−nb

+g0

s∑
i=1

(θ
(i)
1 yk−1 + ... + θ

(i)
ny+1uk + ... + θ(i)

nz
uk−nu + θ

(i)
nz+1)δik

︸ ︷︷ ︸
wk

+g1

s∑
i=1

(θ
(i)
1 yk−2 + ... + θ

(i)
ny+1uk−1 + ... + θ(i)

nz
uk−nu−1 + θ

(i)
nz+1)δi(k−1)

︸ ︷︷ ︸
wk−1

+...

+gng

s∑
i=1

(θ
(i)
1 yk−ng + ... + θ

(i)
ny+1uk−ng + ... + θ(i)

nz
uk−nu−ng + θ

(i)
nz+1)δi(k−ng)

︸ ︷︷ ︸
wk−ng

+εk

(5.13)
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The model (5.12) is ill-posed. Firstly, for any β 6= 0, one can choose parameters g̃j = βgj,

j = 1, · · · , ng and θ̃(i) = 1
β
θ(i), i = 1, · · · , s such that gjθ

(i) = g̃j θ̃
(i). Without loss of

generality, in order to overcome this breach of identifiability we set g0 = 1, since for g0 6= 1

we can always scale the nonlinear map accordingly.

Remark 5.1 In general ARX LTI systems, requiring that g0 = 1 is a strict constraint, as it

implicitly assumes that the corresponding signal w enters the system without delay. However

in our case, we can always define the approximating PWA map f(·) such that g0 is taken

non-zero. In support of this argument we provide the following illustrative example. As a

result, the choice of g0 = 1 is merely a normalization operation and does not impose any

severe restriction on the system structure.

Example 5.1 Consider the following LFT system :

yk = b1uk−1 + g1wk−1 + εk, (5.14a)

wk = yk−1u
2
k−1. (5.14b)

To approximate this nonlinearity by a PWA map one could use zk = [ yk−1 uk−1 ]T and could

try to estimate a map f(·) such that wk = f(zk), which corresponds to the system (5.14).

However, it is always possible to define z̃k = [ yk−2 uk−2 ]T and estimate a PWA map

f̃(·) such that w̃k = f̃(z̃k). This formulation corresponds to the system

yk = b1uk−1 + g̃0w̃k + εk, (5.15a)

w̃k = yk−2u
2
k−2. (5.15b)

with g̃0 = g1, which is equivalent to system (5.14).

¦
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A close inspection of (5.12) reveals another identifiability issue. The possibility of com-

mon regressors in yk−j, for some j = 1, · · · , max(na, ny + ng) and/or in uk−l for some

l = 1, · · · , max(nk +nb, nu+ng) in the regression vectors ζk of the linear system and φk of the

PWA map, imposes another ill-conditioning on the system. The following lemma provides

necessary and sufficient conditions for the identifiability of system (5.12).

Lemma 5.1 The system model of (5.5) with g0 = 1 is identifiable if and only if the following

conditions hold :

aj+lθ
(i)
j = 0, (5.16)

for all i = 1, · · · , s, j = 1, · · · , min(na, ny) and l = 0, · · · , ng such that j + l ≤ na and

bj−nk+lθ
(i)
ny+1+j = 0, (5.17)

for all i = 1, · · · , s, j = 0, · · · , min(nk+nb, nu) and l = 0, · · · , ng such that 0 ≤ j−nk+l ≤ nb.

Conditions (5.16)-(5.17) are equivalent to requiring that there is no common regressor in all

pairs of (ζk,zk), (ζk,zk−1), · · · , (ζk,zk−ng).

Proof.

To prove necessity, suppose for contradiction that there appears one common regressor

in one of the pairs (ζk,zk), (ζk,zk−1), · · · , (ζk,zk−ng). Without loss of generality suppose

that the common regressor is yk−1 in the pair (ζk,zk), i.e. condition a1θ
(i)
1 = 0 is violated

for some i = 1, · · · , s.

Let ηL =

[
a1 η̃T

L

]T

and θ(i) =

[
θ

(i)
1 (θ̃(i))T

]T

and define ζ̃k and φ̃k accordingly. Then

equation (5.11) becomes

yk = (a1 +
s∑

i=1

θ
(i)
1 δik)yk−1 + ζ̃k

T
η̃L +

s∑
i=1

(θ̃(i))T G(q)φ̃k + εk (5.18)

But this model is not uniquely identifiable since for any choice of α 6= 0 in (5.18) the
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transformation

{a1 + α︸ ︷︷ ︸
ā1

+
s∑

i=1

(θ
(i)
1 − α)︸ ︷︷ ︸

θ̄
(i)
1

δik}yk−1

will generate the same input/output behaviour. That is, there exist infinitely many param-

eter vectors η∗, with ϑ 6= ϑ∗, of the form

η∗ = [ (η∗L)T (η∗NL)T ],

η∗L = [ ā1 η̃T
L ]T ,

η∗NL = [ (θ(1))T · · · [ θ̄
(i)
1 θ̃(i)]T · · · (θ(s))T ]T ,

such that Fη(L,N ) = Fη∗(L,N ), which contradicts the assumption of global identifiability.

To prove sufficiency, notice that if no common regressors appear in all pairs (ζk, zk),

(ζk,zk−1), · · · , (ζk,zk−ng), i.e. conditions (5.16)-(5.17) hold then equation (5.12) can be

written as the linear regression model

yk = [ ζT
k wk · · · wk−ng ]ηL + εk (5.19)

which is globally identifiable [55].

¦

In the following section we describe an iterative algorithm for the identification of system

(5.5) under the identifiability conditions presented above.

5.3 Parameter estimation algorithm

A challenging issue in the considered identification problem is the fact that the internal

signal wk is not measured, and hence it must be estimated along with the polynomials

A(q), B(q), and G(q). In this section, we propose an iterative identification procedure

which alternates between the estimation of the linear and the nonlinear part. This makes
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it possible to recover wk by means of smoothing techniques, as suggested in [24]. Then, a

PWA map f(·) can be fitted to the pairs (wk,zk). On the other hand, once wk is known, the

identification of the linear part can be easily carried out by means of standard identification

techniques [55]. The above discussion suggests the formulation of the iterative identification

procedure summarized in Table 5.1, where each iteration consists of two stages, namely the

PWA approximation of the nonlinear part and the identification of the linear part. These

two stages are described below.

Let j = 1, 2, . . . be the iteration counter, and ηj−1
L be the estimate of the ARX coefficients

in (5.9) computed at iteration j − 1. An estimate η 0 must be provided for initialization.

Moreover, let

n̄ = max{na, nb + nk, ng + ny, ng + nu}. (5.20)

PWA approximation of the nonlinear part

Given the estimate ηj−1
L of the ARX coefficients, standard smoothing techniques are used to

recover a suitable signal {vj
k}N

k=n̄−ng+1 according to the estimated linear dynamics

yk = (ηj−1
ζ )T ζk + vj

k + (ηj−1
ω )T




vj
k−1

...
vj

k−ng


 + εk, (5.21)

with k = n̄ + 1, ..., N . Note that (5.21) is obtained by replacing ηL with ηj−1
L in (5.12). In

general, the role of the error term εk depends on the particular smoothing algorithm chosen.

A very simple choice for the considered ARX model is to set εk = 0 for all k, and then to

recover the signal vj
k as a particular solution of the set of linear equations resulting from

(5.21).

The next step is to fit a PWA map f j(·) to the samples (vj
k,zk), k = n̄− ng + 1, . . . , N .

To this aim we adopt the bounded-error technique proposed in [10]. An attractive feature of

this method is that the number of modes of the PWA map is automatically estimated from

data. A short description of the adopted procedure is given in Section 5.1.1.
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Table 5.1: Iterative identification algorithm

Given: η0
L, γ

Set: j = 0

Repeat

Set: j = j + 1

% PWA approximation of the nonlinear part

Estimate {vj
k} according to (5.21)

Fit a PWA map f j(·) to the samples (vj
k,zk)

Compute wj
k as in (5.22)

% Identification of the linear part

Compute ηj
L from the linear regression (5.23)

Until ‖ηj
L − ηj−1

L ‖2 ≤ γ ‖ηj
L‖2

Return: ηj
L, f j(·)

Once a PWA map f j(·) has been fitted to the data, an estimate of the unknown sequence

{wk}N
k=n̄−ng+1 can be obtained as

wj
k = f j(zk), k = n̄− ng + 1, . . . , N. (5.22)

It is stressed that, in the proposed scheme, vj
k is seen as a “noisy” version of wj

k, where by

“noisy” it is meant that vj
k will typically include the effects of both the system noise and the

model error. Hence, the role of the PWA approximation stage is not only to provide an ana-

lytic expression of the static nonlinearity, but also to improve the smoothing of the unknown

signal wk. This feature of the proposed procedure is illustrated below in Example 5.1.

Identification of the linear part

Given the estimated signal {wj
k}N

k=n̄−ng+1, one can form the estimated regression vectors

{ϕj
k}N

k=n̄+1 by replacing wk with wj
k in the definition of ωk in (5.10c). Then, an estimate ηj

L

of the ARX coefficients can be easily computed through standard techniques (for instance,

63



least squares) from the linear regression

yk − wj
k = (ηj

L)T ϕj
k + εk, k = n̄ + 1, . . . , N. (5.23)

The procedure terminates when no significant changes occur to the estimated ARX coeffi-

cients between two consecutive iterations. This criterion is implemented by checking if

‖ηj
L − ηj−1

L ‖2 ≤ γ ‖ϑj
L‖2, (5.24)

where γ is a positive threshold defined by the user, and ‖ · ‖2 denotes the Euclidean norm of

a vector.

5.4 Numerical examples

In this section, three numerical examples are presented to illustrate the performance of the

proposed identification procedure. Static nonlinearities N (·) of piecewise affine type are con-

sidered. Since in this case the overall interconnected system is still PWA, one can compare

directly the models estimated by the proposed iterative procedure and those obtained by

identifying a PWARX model of the overall system (i.e., without exploiting the interconnec-

tion structure).

Example 5.1 This simple example illustrates the basic features of the proposed identifica-

tion algorithm. Consider the Hammerstein system with continuous PWA static nonlinearity

yk = −a1 yk−1 + wk + ek (5.25a)

wk =





α1 uk if uk ≥ τ

α2 uk if uk < τ,

(5.25b)

64



−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

u
k
 (sorted)

v k

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

u
k
 (sorted)

w
k

Figure 5.1: First algorithm iteration in Example 5.1: (left) Circles represent the “noisy”
signal v1

k, while the dashed lines represent a PWA map with two modes that is fitted to the
samples (v1

k, uk); (right) Circles represent the corresponding “smoothed” signal w1
k.

where a1 = −0.8, α1 = 1, α2 = −0.5, and τ = 0. A data set of N = 100 data points

(yk, uk), k = 1, . . . , N , is generated with uk and ek uniformly distributed in [−2, 2] and

[−0.2, 0.2], respectively. The iterative algorithm described in Table 5.1 is then applied with

initial estimate a0
1 = −0.5, and γ = 0.001. Due to the simple linear dynamics (5.25a), at

each iteration the signal vj
k can be readily obtained as vj

k = yk +aj−1
1 yk−1, k = 2, . . . , N . It is

apparent that vj
k includes three contributions: the output wk of the nonlinear part, the noise

signal ek and the model error of the linear part. Figure 5.1 shows the “noisy” signal v1
k at

the first iteration of the algorithm and the corresponding “smoothed” signal w1
k, obtained by

fitting a PWA map with two modes to the samples (v1
k, uk), k = 2, . . . , N . It can be observed

that the shape of the system nonlinearity is already well estimated at the first iteration,

while the vertical shift is significant (about 1.2). The iterative algorithm terminates after

5 iterations, providing the estimates â1 = −0.778, α̂1 = 0.976, α̂2 = −0.497, τ̂ = 0.091,

that are all close to the corresponding true values. Quite notably, the vertical shift of the

estimated PWA map is reduced to about 0.1, which is clearly acceptable if compared to the

noise magnitude.
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Example 5.2 Consider the following LFT system:

yk = −a1 yk−1 + b1 uk−1 + wk + g1 wk−1 + ek (5.26a)

wk =





θT
1

[ yk−2
uk−2

1

]
if hT

[ yk−2
uk−2

1

]
≤ 0

θT
2

[ yk−2
uk−2

1

]
if hT

[ yk−2
uk−2

1

]
> 0,

(5.26b)

where a1 = −0.4, b1 = 1.2, g1 = −0.5, and θ1, θ2, and h are reported in Table 5.2. A data

set of N = 1000 data points (yk, uk), k = 1, . . . , N , is generated with uk and ek uniformly

distributed in [−1, 1] and [−0.25, 0.25], respectively. To apply the identification algorithm

described in Section 5.3, initial estimates a0
1 = −0.4645 and b0

1 = 1.2529 are obtained by

fitting the ARX model

yk = −a0
1 yk−1 + b0

1 uk−1 + w̄0 + εk (5.27)

to the data by least squares, while g0
1 is set equal to 0. The constant term w̄0, to be estimated

in (5.27), accounts for the effects of the neglected terms depending on the unknown signal

wk (i.e. for the presence of the nonlinearity). Estimation of the static nonlinearity is carried

out by applying the bounded-error procedure described in Section 5.1.1, with δ = 0.6 at the

first iteration, and δ = 0.3 in the next iterations. Least squares are used for estimation of the

ARX coefficients. The iterative algorithm terminates after 13 iterations for γ = 0.001. The

estimates â1 = −0.3904, b̂1 = 1.2041 and ĝ1 = −0.4914 are finally returned. The sequence

of estimates is plotted in Figure 5.2, showing the convergence of the iterative procedure.

Concerning the reconstruction of the static nonlinearity (5.26b), two modes are correctly

Table 5.2: True and estimated parameters in Example 5.2

θ1 θ̂1 θ2 θ̂2 h ĥ

0.5 0.4940 -0.7 -0.6766 1.5 1.4829
1 1.0195 1.5 1.5151 -0.5 -0.4980

-0.25 -0.2826 0 -0.0095 1 1
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Figure 5.2: Sequence of estimates of the ARX coefficients −a1, b1 and g1 in Example 5.2
(dotted lines are true values).

estimated, with parameters θ̂1, θ̂2, and ĥ reported in Table 5.2. It is apparent that all the

estimated parameters of both the ARX dynamics and the static nonlinearity are very close

to the corresponding true values.

Identification results obtained by applying the proposed iterative algorithm are compared

to those obtained by fitting directly a PWARX model to the data. To this aim, note that

the system defined by (5.26) can be rewritten as a PWARX system with four modes, i.e.

yk =





ΘT
1,1 [ rk

1 ] if rk ∈ R1,1

ΘT
1,2 [ rk

1 ] if rk ∈ R1,2

ΘT
2,1 [ rk

1 ] if rk ∈ R2,1

ΘT
2,2 [ rk

1 ] if rk ∈ R2,2,

(5.28)

where rk = [ yk−1 yk−2 yk−3 uk−1 uk−2 uk−3 ]T , and the mode characterized by subscripts

(i, j), i, j = 1, 2, corresponds to the situation when wk and wk−1 are generated by the ith and

jth mode of (5.26b), respectively. Note that the LFT representation of the system is more

parsimonious than the PWARX representation (5.28), as the former requires 9 parameters

(a1, b1, g1, θ1 and θ2), while the latter 21 (Θ1,1, Θ1,2, Θ2,1 and Θ2,2). For a given finite data
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Table 5.3: Comparison of identification results in Example 5.2

mode
‖Θ̃i,j−Θi,j‖
‖Θi,j‖ × 100

‖Θ̂i,j−Θi,j‖
‖Θi,j‖ × 100

(1, 1) 8.7534 1.7109
(1, 2) 2.7883 2.1367
(2, 1) 9.6381 1.4323
(2, 2) 7.2664 1.5740

set, this is expected to affect the quality of the identification results. In order to directly

identify (5.28) from data, the most favorable situation is when the partition of the regressors

domain is known. Indeed, in that case the PWA system identification problem reduces to

a standard linear identification problem for each mode, and parameter estimates Θ̃1,1, Θ̃1,2,

Θ̃2,1 and Θ̃2,2 can be computed via least squares. For comparison purposes, estimates Θ̂1,1,

Θ̂1,2, Θ̂2,1 and Θ̂2,2 are reconstructed from the estimated parameters â1, b̂1, ĝ1, θ̂1 and θ̂2

provided by the iterative procedure. Both Θ̃i,j and Θ̂i,j are compared to the corresponding

true values Θi,j: relative estimation errors are reported in Table 5.3. It turns out that the

reconstructed estimates Θ̂i,j are closer to the true values than the estimates Θ̃i,j identified

directly. This shows that enhanced identification accuracy can be achieved by exploiting the

system LFT structure, rather than identifying a PWARX model of the whole system.

To stress the difficulty of estimating a PWARX model of the whole system in a real

situation when both the partition and the number of modes of (5.28) are not known, the

bounded-error procedure [10] is also applied to the considered data set. If δ is taken equal to

the true noise bound, i.e. δ = 0.25, the procedure fails to reconstruct four linearly separable

clusters of points. This is due to the suboptimality of the greedy randomized algorithm

employed to partition the data set at initialization, which is not able to single out four

distinct dynamics in the considered data set due to the quite high noise level. A valid

PWARX model satisfying the given bound is identified by setting δ = 0.4. However, the

returned model contains only two modes, representing a quite rough approximation of the
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true dynamics (5.28).

Example 5.3 Consider the following LFT system with FIR linear dynamics:

yk = wk + g1 wk−1 + g2 wk−2

+ g3 wk−3 + g4 wk−4 + ek

(5.29a)

wk =





θT
1

[ yk−1
uk−1

1

]
if hT

[ yk−1
uk−1

1

]
≤ 0

θT
2

[ yk−1
uk−1

1

]
if hT

[ yk−1
uk−1

1

]
> 0,

(5.29b)

where gi = λi, i = 1, . . . , 4, λ = −0.9, and θ1, θ2, and h are reported in Table 5.4. This

example is challenging, because (5.29a) is a linear regression where the regressors are com-

pletely unknown. A data set of N = 1000 data points (yk, uk), k = 1, . . . , N , is generated

with uk and ek uniformly distributed in [−1, 1] and [−0.2, 0.2], respectively. To apply the

identification algorithm described in Section 5.3, initial estimates g0
i , i = 1, . . . , 4, are set

equal to 0. Least squares are used for estimation of the FIR coefficients, while estimation of

the static nonlinearity is carried out by applying the bounded-error procedure described in

Section 5.1.1. Figure 5.3 shows how the bound δ is selected at each iteration to fit a suitable

PWA map to the samples (vj
k, zk), with zk = [ yk−1 uk−1 ]T . At the first iteration, the sam-

ples (v1
k,zk) do not show a clear partition into distinct affine modes (top left in Figure 5.3),

and a large δ (namely, δ = 1) is chosen to cluster the points into two modes (top right). As

long as the iterations proceed, the partition of the samples into two distinct affine modes

becomes apparent (bottom left), and δ can be reduced. For instance, δ = 0.4 is chosen at

Table 5.4: True and estimated parameters in Example 5.3

θ1 θ̂1 θ2 θ̂2 h ĥ

0.2 0.2099 -0.5 -0.5014 1 1.0006
-0.8 -0.8316 0.2 0.2106 0 0.0054
-2.2 -2.1680 0 0.0334 1 1
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Figure 5.3: Example 5.3: (Top left) Samples (v1
k, rk) at the first iteration. (Top right)

Number of modes versus the bound δ when a PWA map is fitted to the samples (v1
k, rk).

(Bottom) The same at the third iteration, i.e. for the samples (v3
k, rk).

the third iteration (bottom right). The iterative algorithm terminates after 10 iterations

for γ = 0.001. Figure 5.4 shows convergence of the estimates of the FIR coefficients to

the corresponding true values. The two modes of the static nonlinearity are also correctly

reconstructed, as can be noticed from the estimated parameters θ̂1, θ̂2, and ĥ reported in

Table 5.4.

It is stressed that the equivalent PWARX representation of system (5.29) has up to 25 =

32 modes, corresponding to all possible mode combinations for the 5-tuple (wk, . . . , wk−4). In

the considered data set, 26 modes out of 32 are visited, and only 8 modes contain a sufficient

number of data points to allow for the estimation of the corresponding 11-dimensional pa-

rameter vectors. A 8-mode PWARX model is identified by the bounded-error procedure [10]
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Figure 5.4: Sequence of estimates of the FIR coefficients g1, g2, g3, and g4 in Example 5.3
(dotted lines are true values).

for δ = 0.5, i.e. for an error significantly larger than the true noise bound.

5.5 Summary

In this chapter an iterative approach for PWA identification of systems described by the

LFT interconnection of a linear time-invariant system and a static nonlinearity has been

proposed. The nonlinear map needs to be at least piecewise continuous, such that Piecewise

Affine(PWA) identification techniques can be applied. By combining the use of classical

linear identification tools with recently developed methods for PWA system identification, the

proposed approach provides explicit models for both the linear and the nonlinear part of the

system. The obtained results are promising, since they show that the identification process

can be profitably enhanced by exploiting the knowledge of the interconnection structure of

the system. Several open problems are worth to be addressed in the considered identification

framework. These are outlined in Section 6.2.
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Chapter 6

Contributions and Future Research

In this thesis we have discussed the problem of identifying a discrete time interconnected

system represented by a LFT. In the following we summarize our contributions and we

outline future research directions and open problems.

6.1 Outline of Contributions

In Chapter 4 we proposed a unified framework for a class of interconnected systems with

dynamic linear components and static nonlinear components. For black-box identification,

we employed spline approximation for the static nonlinear component. The separable least

squares method was used to identify the parameters of the linear dynamical system and to fit

a spline to the nonlinear map. For a restricted model set, we provided a sufficient condition

on data for the consistency of the parameter estimate. The proposed algorithm is numerically

tractable and can be initialized with little prior knowledge. The performance of the algorithm

has been demonstrated with numerical examples for identifying a Wiener system, a Wiener-

Hammerstein system and a more complex interconnected system. Similar methods have

been reported in the literature of separable least squares algorithms for the identification

of Wiener, Hammerstein and Hammerstein-Wiener systems (eg. [84], [46]). Our method
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provides a generalization of these early works to include more challenging identification

tasks, like those of identifying Wiener-Hammerstein systems and general LFT systems.

In Chapter 5 an iterative approach for PWA identification of systems described by the

LFT interconnection of a LTI system and a static nonlinearity has been proposed. By com-

bining the use of classical linear identification tools with recently developed methods for

PWA system identification, the proposed approach provides explicit models for both the

linear and the nonlinear part of the system. We have compared the identification results ob-

tained by exploiting the LFT structure of the system against those obtaining by imposing a

black-box framework. The obtained results are promising, since they show that the identifi-

cation process can be profitably enhanced by exploiting the knowledge of the interconnection

structure of the system.

The two methods complement each other. The first method targets to identify systems

consisting of rich linear systems interconnected to smooth nonlinear elements. The overall

system is thus dominated by the linear part. On the other hand, the second method deals

with systems that include richer nonlinear elements, with more complex structure and be-

haviour. The tradeoff comes in the form of the linear system. Only simple interconnections

can be dealt with, like the Hammerstein system. Wiener or Wiener-Hammerstein systems

for example can not be considered under this framework as the resulting problem is ill-posed.

The two formulations presented in this thesis can be used to model a plethora of systems

arising in practical experiments.

6.2 Future Research

There are two theoretically challenging issues identified through the work presented in Chap-

ter 4 for further research. Firstly, the issue of identifiability for nonlinear models of this type

needs deeper exploration. Secondly, while the algorithm appears to perform satisfactorily

in practice over a large number of simulation examples, the set of inputs which ensure the
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consistency of parameter estimates remains to be characterized. From a practical point of

view, it will be interesting to consider an application of this methodology in an adaptive

identification and control setting, where the computational benefit of separable least squares

will be more valuable. Finally, the issues of identifiability and consistency for more general

models need deeper exploration and are topics of current research.

Concerning the work presented in Chapter 5, several open problems are worth addressing

in the considered identification framework. Relationships with other PWA model structures

deserve deeper investigation. The asymptotic properties of the iterative identification algo-

rithm need to be addressed (at least under strong assumptions like the model class matching

perfectly the system generating the data). Moreover, the proposed iterative procedure should

be extended to the case of multi input-multi output systems and multi-dimensional internal

signal wk. In particular, the latter issue requires the PWA approximation algorithm to deal

with vector-valued PWA maps. The considered bounded-error identification procedure can

be suitably amended to this aim, as detailed in [60].

Finally, it is worth exploring the relationship between the two system structures presented

in this thesis. Intuitively, under proper conditions the system model presented in Chapter 5

forms a subclass of that presented in Chapter 4. However, vigorous mathematical formulation

is yet to be achieved.
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[77] J. Sjöberg and M. Viberg. Separable non-linear least squares minimization - possi-

ble improvements for neural net fitting. IEEE Workshop Neural Network and Signal

Processing, 7:345–354, 1997.

[78] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P-Y. Glorennec, H. Hjal-

marsson, and A. Juditsky. Nonlinear black-box modeling in system identification: A

unified overview. Automatica, 31(12):1691–1724, 1995.

[79] S. Sristava. Modelling of non-linear systems by FWNNs and their intelligent control.

Int. Journal of Adapted Control and Signal Processing, 19:505–530, 2005.

[80] M. Tanaka. Identification of nonlinear systems with missing data using Stochastic Neural

Networks. In Proc. of the 35th IEEE Conf. on Decision and Control and the European

Control Conference, pages 933–934, December 1996. Kobe, Japan.

[81] G. Vandersteen and J. Schoukens. Measurement and identification of nonlinear systems

consisting of linear dynamic blocks and one static nonlinearity. IEEE Transactions

Automatic Control, 44(6):1266–1231, 1999.

[82] G. Wahba. Spline Models for Observational Data. SIAM, Philadelphia, PA, 1990.

[83] M.T. Wasan. Stochastic Approximation. Cambridge University Press, Cambridge, UK,

1969.

[84] D.T. Westwick and R.E. Kearney. Separable least squares identification of nonlinear

Hammerstein models: Application to stretch reflex dynamics. Annals of Biomedical

Engineering, 29:707–718, 2001.

[85] C.F. Wu. Asymptotic theory of nonlinear least squares estimation. Annals of Statistics,

9(3):501–513, 1981.

[86] F. Wu and K. Dong. Gain scheduling control of lft systems using parameter-dependent

lyapunov functions. Automatica, 42:39–50, 2006.

83



[87] D. Xu Z. Ren, G. Gu and J. Chen. LFT uncertain model validation with time- and

frequency-domain measurements. IEEE Transactions Automatic Control, 44(7):1435–

1442, 1999.

[88] K. Zhou and J.C. Doyle. Essentials of Robust Control. Prentice Hall, Upper Saddle

River, New Jersey, 1998.

[89] Y. Zhu. Estimation of an N-L-N Hammerstein-Wiener model. Automatica, 38:1607–

1614, 2002.

[90] L. Zi-Qiang. On the identification of controlled plants described by the Hammerstein

model. IEEE Transactions Automatic Control, 39(3):569–573, 1994.

[91] L. Zi-Qiang. A nonparametric polynomial identification algorithm for the Hammerstein

system. IEEE Transactions Automatic Control, 42(10):1435–1441, 1997.

84


