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Abstract

Dynamical maps for magnetic components are fundamental to studies of

beam dynamics in accelerators. However, it is usually not possible to write

down maps in closed form for anything other than simplified models of

standard accelerator magnets. In the work presented here, the magnetic

field is expressed in analytical form obtained from fitting Fourier series

to a 3D numerical solution of Maxwell’s equations. Dynamical maps are

computed for a particle moving through this field by applying a second order

(with the paraxial approximation) explicit symplectic integrator. These

techniques are used to study the beam dynamics in the first non-scaling

FFAG ever built, EMMA, especially challenging regarding the validity of

the paraxial approximation for the large excursion of particle trajectories.

The EMMA lattice has four degrees of freedom (strength and transverse

position of each of the two quadrupoles in each periodic cell). Dynamical

maps, computed for a set of lattice configurations, may be efficiently used

to predict the dynamics in any lattice configuration. We interpolate the

coefficients of the generating function for the given configuration, ensuring

the symplecticity of the solution. An optimisation routine uses this tool to

look for a lattice defined by four constraints on the time of flight at different

beam energies. This provides a way to determine the tuning of the lattice

required to produce a desired variation of time of flight with energy, which is

one of the key characteristics for beam acceleration in EMMA. These tools

are then benchmarked against data from the recent EMMA commissioning.
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Introduction

1.1 Perspective for new accelerators

1.1.1 Accelerators in various fields of science

The whole scientific community has its eyes turned toward the Large Hadron Collider

(LHC) at CERN in Switzerland; it is about to deliver experimental results from two

beams colliding at energies never achieved before. Similarly other projects like ILC

and CLIC [1, 2], aim at pushing further this ”frontier of energy” and test the particle

physics models. In terms of beam dynamics this type of accelerators requires small size

beams to optimise the collision of particles. In the past they have always been source

of technological development for the rest of accelerators.

Another main type of accelerator is dedicated to photon science and aim for the

highest brightness of light that can be induced by a beam of particles. It includes

Synchrotron light sources such as ESRF and DIAMOND [3, 4] and the relatively new

technology of Free Electron Lasers (FEL) [5]. An important goal for these machines is

a tiny beam size such that the light source is point-like; thus great efforts are made to

minimise the beam size and the divergence of the beam.

A third field of science uses accelerators as high power sources in which the beam
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carries a large amount of power such as the Spallation Neutron Source (SNS) and the

590MeV cyclotron at the Paul Sherrer Institute [6, 7]. This power is the product of

three factors: the energy of each particle, the number of particle per beam and the

repetition rate of the acceleration cycle.

The first factor is increased by using the technology of the high energy frontier

accelerators. It is limited by the price and the size of the machine involved.

The second factor is related to the aperture available for a large number of particle

in a ring. Large aperture requires large accelerator components that are potentially

expensive and difficult to built.

The third factor refers to the time it takes to bring a bunch of particles from the

initial energy to the nominal energy and then set the machine back to the configuration

suitable for injecting a new bunch at low energy. The repetition rate is maximum if

the accelerator handles continuous acceleration (bunches at initial and final energy are

in the ring at the same time). We shall now explain the technological solutions that

optimise these factors.

1.1.2 High beam power accelerators

In most accelerator rings, particles are guided by magnetic fields. The higher is the

energy of the particle, the stronger has to be the magnetic field to bend its trajectory. In

a synchrotron, the magnet strengths are increased during acceleration; the beam stays

on the same orbit even when gaining energy. However the modulation of magnetic field

is slow and is a strong limitation to obtain a high repetition rate in the kHz range;

Synchrotron repetition rate is usually limited to a few tens of Hz. Therefore high

power machines tend to use fixed (in time) magnetic field; As a result particles spiral

outward through acceleration and a larger beam chamber is required. Note that linear

accelerator can also be used to create high power beam; they are generally the most

expensive solution.
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Historically high power beam were produced by cyclotrons composed of simple mag-

nets only bending the beam [8]. Synchrotron accelerators generally contain focusing

magnets to control the divergence of the beam and also decrease the beam size at

the collision point for instance. The more challenging requirements on the beam ex-

tracted from cyclotrons made necessary the use of focusing magnetic field. Moreover

increasing the number of particles in the beam, particles are more subject to repulsive

forces. A magnet field focusing the beam in the transverse horizontal (vertical) plane

is always defocusing in the transverse vertical (horizontal) plane. Therefore in order to

control the beam size in both planes, rings were composed of a sequence of magnetic

gradient alternatively focusing and defocusing the beam (also insuring the bend of the

trajectory).

High power machine logically evolved to use Fixed Field and Alternating Gradient

(FFAG). Cyclotrons are still seen today as the most suitable machine for high power

beam. For instance researches have been done on sector-focused cyclotron [9]; Cy-

clotrons enthusiasts pretend that FFAG are only a particular type of cyclotron. FFAG

enthusiasts reply that cyclotrons are an old-fashioned version of their machine. However

the accelerator community sometimes struggles to define clearly the frontier between

cyclotrons and FFAGs.

1.1.3 Evolution and applications of FFAG accelerators

The concept of FFAG accelerator was developed in the 1950’s at MURA [10] but

technical issues (such as manufacturing of magnets with complex geometries) and lack

of funding stopped its evolution until its rebirth in the 1990’s with the construction of

the Proof of Principle at KEK in Japan [11]. Nowadays four main fields are interested

in the applications of FFAG accelerators:

• The Neutrino factory project in which a proton beam with high power is directed

at a target and creates muons, decaying later in neutrinos [13].

3
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• Accelerator Driven Subcritical nuclear Reactor (ADSR); these are nuclear reac-

tors in which the fission process is initiated by neutrons created by the collision

of a proton beam on a spallation target [14].

• Hadrons therapy which launches hadrons in the body to destroy tumours; this

technique limits the degradation of healthy tissues surrounding the tumour. Here

FFAG accelerators are suitable for their capacity to deliver high intensity pulsed

beam allowing a short irradiation time compared to respiratory motion. In ad-

dition, FFAG accelerators may be significantly smaller and cheaper than syn-

chrotron accelerators and be therefore more suitable for hospitals environment.

• Muons accelerator; Fast acceleration in FFAG is thought to be useful for unstable

particles decaying rapidly such as muons. The original name for the prototype

EMMA was Electron Model for Muons Acceleration, a reduced size prototype

accelerating lighter and more stable lepton: electrons.

1.1.4 Non scaling and scaling FFAG accelerators

Generally FFAG accelerators are separated in two families defined according to the

properties of their magnets. A ”Scaling” FFAG accelerator contains large magnets

whose magnetic field enforces the scaling law [12]. By inducing a highly nonlinear

magnetic field, magnets are designed such that when particles gain energy (see figure

1.1), they spiral outwards experimenting the same focusing strength, keeping the value

of the tune constant. The magnetic field is therefore scaled up from low to high energy

giving its name to the accelerator. According to the value of the tune, a beam can be

sensitive to errors in the lattice and become unstable. With the scaling law, once a

stable shape for the orbit has been found, the beam stays stable through acceleration.

This is explained in more details in section 1.3.3 of this chapter. The main drawback

of this type of machine is the complexity of the magnets. Since particles are moving
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Figure 1.1: Closed orbit for various momenta in a scaling FFAG. The orbits keep the
same shape when the energy is increased. The reference trajectory is the blue circle used
to align the magnet around the ring.

outwards when gaining energy, magnets are generally large radially to accommodate

particles from low energy to high energy. Moreover, the non-linearity of the field is

created by complex geometries requiring extensive 3D modelling of the magnetic fields.

More recently beam dynamics simulations suggested that acceleration in a FFAG

machine could be achieved without following the scaling law in the magnets. The beam

becomes sensitive to errors in the ring; however an acceleration within a few turns only

should not let enough time to the beam to be unstable. Without the scaling law,

magnets can be kept simple and linear. Since orbits at various energies do not conserve

the same shape, they can be compressed to fit in a smaller aperture. Magnets are

therefore smaller and cheaper; also the beam only need to be bent and focused; therefore

in theory the lattice can be composed of dipole magnets (magnetic field constant across

the transverse aperture) and quadrupole magnets (magnetic field varying linearly across

the transverse aperture).

A scaling FFAG accelerator had been successfully built in Japan and proved the

validity of the concept. A prototype of Non-Scaling needed to be built to test the

5
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evolution of the concept. That is why the construction of the Non Scaling FFAG

Electron Model for Many Applications (EMMA) was proposed in 2005.

1.2 The EMMA project

The design and construction of the non scaling FFAG EMMA is part of the Construc-

tion Of an Non-scaling FFAG For Oncology, Radiation and Medicine (CONFORM

project). CONFORM is sponsored by the British Accelerator Science and Radiation

Oncology Consortium (BASROC) and has been awarded a multi-million pound grant

from the RCUK Basic Technology programme to pursue this research. It includes the

design and the construction of two prototypes of FFAG accelerators [15, 16], EMMA

and PAMELA. EMMA - the Electron Model for Many Application [20] will demon-

strate the principle of non-scaling FFAGs and be used to study the features of this type

of accelerator in detail. Although a model of the muon accelerators in a Neutrino Fac-

tory, EMMA will have sufficient flexibility to study a variety of applications including

hadrons machines. PAMELA is a prototype of an Non Scaling FFAG accelerator for

proton used for cancer therapy [17]. Being still at the design stage, positive results from

the EMMA experiment will be an important step towards the start of its construction.

The EMMA machine is being commissioned at Daresbury in the UK since July

2010. Since it is the first machine of this type ever built, extensive simulations had

to be performed for the design. Particle tracking simulations are also relevant during

the commissioning to analyse measurements and predict which tuning of machine will

achieve stable acceleration. Moreover the experimental results will be used to bench-

mark the various codes that simulated the machine; future FFAG accelerators can then

be designed with the most reliable codes.

At the design stage, agreements between tracking results of different codes evaluated

the validity of a given configuration of the ring. Important characteristics for which
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Figure 1.2: EMMA in June 2010.

codes were compared had to be defined. In the next section, we will describe the main

properties of the linear beam dynamics in the EMMA ring.

1.3 Linear transverse dynamics in a non-scaling FFAG

1.3.1 A reference trajectory : the closed orbit

Particle dynamics are generally described with respect to a reference trajectory. In

a ring this can be defined by the trajectory of an ideal particle travelling at fixed

energy without dissipative forces. Often the reference trajectory is chosen such that

the trajectory closes itself after one turn by coming back at the same position. Magnets

are usually aligned with respect to this trajectory called the reference closed orbit. In

a synchrotron, when a particle is accelerated, the strengths of the magnet are increased

in order to keep the beam on the same reference trajectory.

In an FFAG, since the magnetic field in the magnets is fixed, the orbit of a particle

will be displaced toward the outside of the ring when it gains energy. After one turn,

the accelerated particle does not come back to the same transverse position; this means

7
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Figure 1.3: (a) Schematic top view of one EMMA cell.(b) Picture of one cell in the
EMMA ring. Particles travel through a defocusing magnet (blue), a focusing magnet (red)
and a cavity (every other cell). The trajectories at 10MeV, 15MeV and 20MeV are also
represented. We observe that the most important bending occurs at 10MeV

that the orbit is not closed. However it is possible to study the trajectory of a particle

in an FFAG without acceleration; then the orbit is closed. For an FFAG accelerator

there will be a different closed orbit for each energy.

Accelerators structures called ”lattices” are composed of repeated patterns of mag-

netic elements. For instance the EMMA ring is built of 42 identical cells, each cell

containing one defocusing quadrupole and one focusing quadrupole. Ideally, cells are

exactly identical (same magnet strengths, same magnet positions with respect to the

reference) and hence the lattice has a 2π/42 periodicity; beam dynamics in a single cell

characterise the entire ring. However the frame of reference within this cell in which

the dynamics are derived must be chosen with care to represents dynamics in the entire

ring.

One could use an absolute frame of reference defined with respect to the centre of

the ring. The trajectory of a particle over the whole ring could then be derived in the

8
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same frame. This solution has two main drawbacks:

• Since the radius of the EMMA ring is of about 2.5 meters, the transverse posi-

tion of the closed orbit will be defined with value of the same order. However

beam dynamics studies usually deals with millimetre-scale variation of particle

trajectory with respect to the reference trajectory. It is rather non practical to

evaluate millimetre-scales variations on meter-scales values.

• In this study, the magnetic field induced by the magnets is derived by solving

numerically Maxwell’s equation for a 3D model of a single cell. To compute the

trajectory of a particle through the magnetic field in a global frame of reference,

this numerical solution (also called ”field map”) for one cell must be adapted for

each of the 42 cells to the corresponding global location of that cell. For instance

even if the magnetic field in cell 1 and cell 34 are identical because their magnets

are identical, their field maps will be different because the two cells have different

locations. In fact, field maps must be rotated by an angle 2π/42 between two

following cells, taking into account the overlapping and the hole introduced by

the rotation. This process is rather cumbersome.

Instead, we chose to compute the beam dynamics in one cell, with a frame of

reference defined within this cell. From the initial design of the EMMA ring [21], the

reference is a straight line across one cell. The reference straight line of the following

cell is rotated by an angle 2π/42 around the vertical axis. Therefore the coordinates of

the particle at the end of a cell must be rotated by this angle before being tracked in

the next cell, defined by the same field map.

In the baseline lattice configuration in figure 1.4, the magnetic axes of the defocus-

ing (D) magnet (blue) and the focusing (F) magnet (red) are distant from the reference

polygon (orange) by 34.048mm and 7.514mm respectively. THe rotation of the refer-

ence system is performed at the entrance face of the D magnet.
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Figure 1.4: Schematic of the EMMA cell. In the baseline configuration (not up to scale
here), the magnetic axes of the defocusing (D) magnet (blue) and the focusing (F) magnet
(red) are distant from the reference polygon (orange) byXd= 34.048mm andXf=7.514mm
respectively. The rotation of the reference system is performed at the entrance face of the
D magnet.

Figure 1.5 shows the closed orbits for six energies in one EMMA cell. The transverse

coordinates at the exit face would be equal to those at the entrance face after rotation

of 2π/42 not represented in this figure.

1.3.2 Synchronising the transverse dynamics with the acceleration

device: the time of flight (tof)

We observe in figure 1.5 that closed orbits vary with energy. A important characteristic

to evaluate is the change in path length of the trajectory with changes in energy. In

EMMA, particles are accelerated in resonating radio frequency (rf) cavities in which

an electromagnetic field oscillates in time.

There is one cavity every two cells in EMMA and all cavities are tuned with the

same rf frequency. A particle gets the optimal acceleration if it enters a cavity when

the field is maximum. Therefore the time it takes to travel from one cavity to another

must be equal to an integer number of oscillation of the accelerating field. In that case

10
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Figure 1.5: closed orbits for six energies in one EMMA cell. The transverse coordinates
at the exit face would be equal to those at the entrance face after rotation of 2π/42 not
represented in this figure. We observe as in figure 1.3 (a) that the most important bending
occurs at 10MeV

particles can experience the maximum accelerating voltage in all the cavities.

In the case of EMMA, particles are electrons with kinetic energy between 10MeV

and 20MeV. They are relativistic and do not tend to travel faster when they gain energy.

Hence, the path length evolution with energy reflects the time of flight evolution with

energy.

A 20MeV particle travels on the outside of the ring. We expect therefore its path

length to be larger than those of a 10MeV particle. If the path length (or time of flight)

shift with energy is larger than half a period of the field in the cavity, while a particle

at 10MeV experiences an accelerating field, at 20MeV it is decelerated.

To overcome this problem, the lattice was design such that a particle at 10MeV

experiences stronger fields in the magnets and thus follows a larger bend than a rather

straight trajectory at 20MeV (see figure 1.5). Figure 1.6(a) shows the values of the

time of flight for various energies obtained from two simulation techniques (dynamical

maps and PyZgoubi). We observe that two behaviours compete to form a parabola.

From 10MeV to 16.5MeV (minimum of the curve) trajectories are less bended and

their time of flight decreases. From 16.5MeV to 20MeV the orbit moves significantly

11
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Figure 1.6: (a) Values of the time of flight for various energies obtained from two simula-
tion techniques (dynamical maps and PyZgoubi). We observe that two behaviours compete
to form a parabola. From 10MeV to 16.5MeV trajectories are less bended and their time
of flight decreases. From 16.5MeV to 20MeV the orbit moves significantly outside the
ring, hence the time of flight increases with energy. (b) Figure produced by Berg in the
EMMA design report [21] shows the difference in time of flight between the closed obit at
various energy and a particle synchronised with the rf frequency. Each curve represents a
different configuration of the lattice (i.e. different strengths and transverse positions of the
magnets).

outside the ring, hence the time of flight increases with energy.

In this design the time of flight is not constant but is kept within a small range. By

adjusting the cavity frequency to the average time of flight of this parabola, particles

at all energy can experience a positive (accelerating) voltage in the cavity.

The time of flight variation with energy depends on the magnet strengths respon-

sible for the bend of the trajectories. It depends also on the transverse positions of

the magnets since by moving one magnet with respect to the other, the magnetic field

in the cell is changed and the closed orbits are different. The lattice in EMMA has

therefore four parameters in each cell than can be adjusted: the focusing and defocus-

ing quadrupoles strengths and their horizontal transverse positions. To conserve the

periodicity of the lattice, all the cells are always kept with the same values of these

four parameters. The entire EMMA ring has therefore four parameters that can be

adjusted.
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The nominal lattice configuration was designed such that the time of flight parabola

was exactly symmetrical, with its minimum at 15MeV; this was shown to be a stable

configuration to accelerate successfully. Figure 1.6(b) produced by Berg in the EMMA

design report [21] shows the difference in time of flight between the closed obit at

various energy and a particle synchronised with the rf frequency. Each curve represents

a different configuration of the lattice (i.e. different strengths and transverse positions

of the magnets). Because of manufacturing errors and misalignments of the magnets,

the design nominal strengths and positions of the magnets will probably not correspond

to a symmetrical time of flight curve in the real machine. Obtaining the real nominal

configuration of the lattice in terms of time of flight is one of the main criteria to achieve

acceleration in the EMMA FFAG. It is important to be able to model the time of flight

curve for given lattice configurations, taking into account realistic field profiles in the

magnets. Being able to determine the changes in the lattice configuration needed to

achieve desired changes in the time of flight curve is also important. The development

of tools and techniques to provide these capabilities is one of the main objectives of

this study.

1.3.3 Studying instabilities of the beam: the tune

Once a closed orbit has been found for a given energy, it is interesting to study how

particles behave if they are injected with the same energy but off this closed orbit.

We will see in the section 3.1.1.5 of chapter 3 that in the linear approximation beam

dynamics in a quadrupole are equivalent to the harmonic oscillator. A particle with a

given energy E oscillates around the corresponding closed orbit. The amplitude of the

oscillations depends on the initial coordinates of the particle and on the strengths of

the magnet. In accelerator terminology, it is called “betatron oscillations” because it

was first observed in an accelerator called the betatron [22].

To understand the importance of the study of these oscillations, let us imagine
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that a magnetic field error is introduced in the ring at a given longitudinal location

ze. Each time a particles passes by this location ze (once per turn), whatever is its

transverse position, it is slightly kicked towards the outside of the ring. In other words

its transverse angle is increased at each turn. This type of error is called a dipole

error since it has the effect a dipole field added to the lattice. As shown in figure 1.7,

a particle that performs an integer number of oscillation within one turn will see its

amplitude increase turn after turn until it hits the wall of the beam pipe.

*+,-. ./,0

123405 ./,0
6272,2032 4,8+.

9+:4;2 <+3<

Figure 1.7: Description of a first order resonance. A magnetic field error is introduced in
the ring at a given longitudinal location ze. Each time a particles passes by this location
ze (once per turn), whatever is its transverse position, it is slightly kicked towards the
outside of the ring. In other words its transverse angle is increased at each turn. This
type of error is called a dipole error since it has the effect a dipole field added to the
lattice. A particle that performs an integer number of oscillation within one turn will see
its amplitude increase turn after turn until it hits the wall of the beam pipe.

This example illustrates the principle of optical resonance. We observe that if the

particle does not come back to the dipole error with the same transverse position and

14
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angle then the effect is not cumulative. The resonance effect occurs if the particle

performs an integer number of oscillations (8 in figure 1.7) around the reference orbit

in one turn. This is a first order resonance. Quadrupole errors for which the strength

of the kick increases with the transverse excursion of the particle are second order

resonances. In that case a resonance occurs for half integer number of oscillations (for

instance 8+1
2 oscillations). More complex types of error lead to higher order resonances.

Note that resonances can occur in the horizontal transverse plane and also in the vertical

transverse plane since a particle generally oscillates in both planes.

The number of oscillations around the closed orbit over one turn is called the tune.

The fractional part of the tune tells which resonance could be excited and therefore

which kind of field error the beam is sensitive to. It is an important parameter of the

beam dynamics. Since we consider that cells are all identical, we will be considering the

fractional part of the number of oscillation performed in a single cell, referenced as νx

for the horizontal tune per cell and νy for the vertical tune per cell. Note that in theory

an error in the quadrupole field identical in all the cells will excite a resonance not every

turn but every cell. The beam can therefore be lost rapidly. In reality manufacturing

errors and misalignments of the magnets make each cell slightly different from the other

cells.

Since the focusing strength changes with energy in a non-scaling FFAG, the tune also

varies with energy. This variation is called chromaticity. Therefore through acceleration

resonances may be excited. In practise, accelerator lattices are designed such that

nominal dynamics are far from resonance and the chromaticity is kept as small as

possible by using nonlinear magnetic field [32]. Since the EMMA ring is composed

of linear magnets only (quadrupole magnets), the tune variation with energy is large.

Despite the fact that in an FFAG, the accelerated orbit is not closed, we evaluate the

tune for closed orbits found at given energies, as shown in figure 1.5. Even if the

ideal trajectory of an accelerated orbit will not involve a jump from one closed orbit

15
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computation of a dynamical map

to another (but a continuous spiral), we assume that this evaluation of the tune is a

relevant characterisation of a lattice configuration. Figure 1.8(a) shows the values of

the horizontal and vertical fractional part of tune for one cell for various energies.

The (νx,νy)-space, called the tune diagram is covered with resonances appearing as

lines described by aνx + bνy = p. The resonance order is given by a + |b|. One can

plot the evolution of the tune in EMMA in a tune diagram to visualise values of the

tunes that can excite a resonance. Through the commissioning of the machine, the

strengths of both families of quadrupole magnets will be used in order to change the

tune variation of the machine and therefore find a lattice configuration in which the

beam can be accelerated. The four parameters of the EMMA lattice can be adjusted

to study resonance crossing. Several reference lattices have been studied at the design

stage by Berg [21]. The variation with energy of the horizontal and vertical (dashed

line) fractional part of the cell tune for some of the reference lattice configuration (”b”

to ”e”) is shown in figure 1.8(b).

The challenge of the FFAG accelerator EMMA is therefore to accelerate particles

going through resonances without losing the beam. Simulations have shown that it

is possible [23] with the condition that the resonances are crossed quickly. In other

words, if the acceleration is performed in a few turns, the effect of field errors do not

accumulate enough to destroy the beam.

1.4 From the 3D numerical solution to Maxwell’s equa-

tions to the computation of a dynamical map

In EMMA, a highly compact doublet cell is achieved using short quadrupole magnets.

A large aperture requirement compare to the length of the magnets leads to potentially

significant effect of fields at the edges of the magnets, also called fringe fields. Accurate

simulations of the beam dynamics in EMMA may require a dense description of the
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Figure 1.8: (a) Value of the horizontal (νx) and vertical (νy) fractional part of tune for one
EMMA cell for various energies; simulations were carried out with PyZgoubi and dynamical
maps. (b) Variation of the horizontal and vertical tune per cell with energy from 10MeV to
20MeV in the tune diagram ((νx,νy)-space) for some of the reference lattice configuration
(”b” to ”e”) designed by Berg [21]. The four parameters of the EMMA lattice can be
adjusted to study resonance crossing.

magnetic field in 3D.

We generated a 3D numerical representation of the magnetic field by solving Maxwell’s

equations in one EMMA cell using the Finite Element Method implemented in the soft-

ware OPERA [25]. This representation can be used for numerical tracking in EMMA

with PyZgoubi [48, 56, 68]. Numerical tracking means that the position of a parti-

cle is computed throughout the EMMA cell, step by step, by solving numerically the

equations of motion, knowing the numerical value of the magnetic field at each step.

In most cases, PyZgoubi routines are fast and reliable. However, an alternative

approach based on dynamical maps could provide some benefits, particularly where

speed is important; for example, when tracking many particles through many cells.

Dynamical maps also provide the possibility of reading significant quantities (such as

tune and chromaticity) directly from the map, giving an insight into the dynamics that

is not provided directly by purely numerical methods.

To generate a dynamical map, the coordinates of a particle are computed step
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1.4 From the 3D numerical solution to Maxwell’s equations to the

computation of a dynamical map

by step in the EMMA cell not as numerical values but as functions of the starting

coordinates. Generally a particle is defined by six coordinates: the horizontal and

vertical positions x, y and their associated momenta px, py, the longitudinal position

z and the energy deviation δ. A dynamical map is expressed as a function of these

coordinates and the magnetic field also must be expressed in analytical form.

The second chapter of this thesis (following the introduction) will be dedicated to the

construction of the analytical representation of a magnetic system. First we will present

the 3D model of the EMMA magnetic elements in the numerical solver OPERA. We

will describe the numerical solution to Maxwell’s equations obtained by Finite Element

Method. We will discuss the possibility of constructing a 3D representation of the

EMMA cell by adding two numerical solutions computed separately for each magnetic

element. Results will be compared to some measurements of the magnetic field in

real magnets. An analytical representation will then be extracted from the numerical

solution. We will look at the basis functions and coordinate system most adapted to

the geometry of the system and to beam simulations. Having chosen truncated Fourier

series expressed in Cartesian coordinates as an appropriate analytical representation,

we will optimise the chosen truncation order and the adaptation of the periodicity of

this function to the real geometry.

In chapter 3, the theoretical background of the construction of dynamical maps will

be presented. Starting from the general Hamiltonian formalism, we will define sets of

canonical variables relevant for beam simulations and express the Hamiltonian for an

accelerator in a straight coordinate system without dissipative forces. We will show

that solutions to Hamilton’s equations have the common property of being symplectic

resulting in the existence of an invariant of motion for particles in an accelerator. This

invariant called the ”action” is a canonical variable conjugate to the ”angle” variable;

this pair of canonical variables is particularly appropriate to express beam dynamics

in periodic structures. In the second part of this chapter, in order to solve Hamilton’s
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computation of a dynamical map

equations for nonlinear systems, we will express the Hamiltonian as a sum of terms using

the paraxial approximation. We will then introduce the Lie transformation and use its

properties to express the solution to Hamilton’s equations in a form known as Yoshida

Factorisation, in which each factor corresponds to a simple operation on the dynamical

variables. This will result in the definition of an explicit symplectic integrator developed

by Wu, Forest, and Robin [39] which computes a symplectic dynamical map with the

paraxial approximation for particles moving in a magnetic field expressed in analytical

form. We will eventually describe the Differential Algebra code COSY infinity in which

we have implemented the explicit symplectic integrator. We will then take the example

of a dynamical map expressed as a truncated Taylor series and discuss its symplecticity

and the implication of the paraxial approximation.

In chapter 4, we will present the beam dynamics simulations performed with dy-

namical maps for the non-scaling FFAG EMMA. The time of flight, horizontal tune

and vertical tune evolution with energy will be compared to simulations with simplified

models of the magnets and with simulations tracking particles through the numerical

field map. These two types of simulations will be performed with the numerical tracking

code PyZgoubi. Also, since the dynamical maps are defined with a reference trajectory

and a reference energy, we will study the validity of this dynamical map when tracked

particles have a large energy deviation with respect to the reference energy and large

transverse excursions with respect to the reference trajectory. The next section of this

chapter will present a comparison between two methods to study a non linear effect:

the tune shift with amplitude. One method will require the numerical tracking of nu-

merous particles whereas the second method will make use of the information directly

contained in the dynamical map.

We will then describe the longitudinal dynamics in EMMA. It will be shown quali-

tatively that the fast acceleration scheme in EMMA, called serpentine acceleration, can

be simulated with dynamical maps. We will also see that a bunch of particles starting

19
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with different energies loses its structure (in other words ”decoheres”) within a few

turns in EMMA without acceleration.

Eventually in chapter 5, we will investigate how dynamical maps can be efficiently

used to predict the beam dynamics in any configuration of the EMMA lattice. The

EMMA lattice having four degrees of freedom (strengths and transverse position of

both magnets), it would be highly time consuming to compute a 3D field model for

each new configuration of the lattice. Thus we will compute the dynamical map for a

set of configurations and then directly interpolate the coefficients of the dynamical map

for a given configuration. Since the symplecticity is not conserved in this process, we

will instead interpolate the coefficients of the generating function corresponding to the

given configuration, ensuring the symplecticity of the solution. This procedure will be

included in an optimisation routine that looks for the lattice configuration respecting

four constraints on the variation of the time of flight with energy.

The experimental procedure developed to measure the time of flight will then be

presented; the optimisation routine will be applied to the real machine and we will

assess the accuracy of the prediction obtained from beam simulations with dynamical

maps.

The last chapter of this study will be dedicated to a summary of the results and

conclusions obtained in the study. We then finally discuss the achievement of the

original aims and define further objectives to apply this study to other types of FFAG

accelerators, particularly non-linear machines.

1.5 Aims and objectives

Before going into the details of the study, it is important to clarify the overall aims of

this study and the more detailed objectives. The structure of this thesis is such that

each chapter deals with one of the main aims of the study. We listed below the main
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1.5 Aims and objectives

aims and their corresponding objectives:

• Obtain an accurate 3D representation of a magnetic element.

– create a 3D numerical solution of Maxwell’s equations

– optimise the fit of an analytical representation for this 3D model

• Derive the equations of motion of a particle in this magnetic element to obtain a

dynamical map.

– develop the Hamiltonian formalism for particle accelerators.

– construct an explicit symplectic integrator

– apply the integrator to integrate the dynamical variables in the form of

Taylor series (dynamical map) through the analytical representation of the

magnetic element.

• Study the validity of the beam dynamics simulations of FFAG accelerators with

dynamical maps.

– benchmark the dynamical map tracking results against the tracking code

PyZgoubi for the EMMA accelerator for linear dynamics, studying in par-

ticular closed orbit, time of flight, tune per cell.

– study a nonlinear effect of the dynamics

– test the capability of the dynamical map to simulate the longitudinal beam

dynamics in EMMA, especially during fast acceleration.

• Make use of the specificity of this method to analyse the experimental results.

– develop computational tools for constructing a dynamical map for any de-

rived machine configuration by interpolation between maps for a selected set

of standard configurations.
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1.5 Aims and objectives

– discuss the experimental procedure to measure the time of flight in the ma-

chine

– apply the new computational tools to predict the behaviour of the real ma-

chine starting from the measured configuration.
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2

Representation of the magnetic

field

2.1 Introduction

For systems described by a simple geometry a representation of the magnetic field can

be obtained by solving analytically Maxwell’s equations. However modern accelerator

beamlines are often composed of magnets with complex geometries. Therefore deriving

an analytical description of the magnetic field by solving directly Maxwell’s equation in

such complex geometries is often cumbersome. A general approach consists in using the

Finite Element Method (FEM) to obtain a numerical solution to Maxwell’s equations.

Since analytical representation of the magnetic field is needed for the calculation of

Dynamical Map for particle tracking, the objective of this chapter is to compute an

accurate analytical description of the magnetic field from an arbitrary geometry of a

magnetic element for which Maxwell’s equations are solved numerically.

In the first section of this chapter, we will describe the construction of a numeri-

cal field map expressed in the form of a table containing the numerical values of the

components of the magnetic field vector at various positions in a magnetic element.
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2.2 Description of the OPERA model of the EMMA magnets

This will be illustrated by the case study of the FFAG accelerator EMMA; however

the technique can be generalised to any accelerator magneto-static element. First, the

geometry of the magnetic element will be presented along with the hypotheses that will

optimise the numerical computation of the magnetic field. We will then describe the

Finite Element Method (FEM) used for this numerical solution to Maxwell’s equations.

FEM implies the creation of a mesh mapping the studied geometry. We will discuss

the influence of the mesh configuration and compare the computed magnetic field with

measurements of the real EMMA magnets.

In the second part we will derive an analytical description of the field from the

previously created numerical field map. This analytical representation will be used in

the next chapter to compute dynamical maps. Since dynamical maps are created by

integrating the analytical description of the dynamical variables through the magnetic

field, this latter must also be expressed analytically. To start with we will derive an

analytical form in polar cylindrical coordinates by performing a 2D Fourier transform

on the numerical data. Since in general, beam dynamics studies are performed in

Cartesian coordinates, we will present a mathematical transformation of the analyti-

cal description from cylindrical to Cartesian coordinates. Finally we will outline the

geometrical limitations of this transformation.

2.2 Description of the OPERA model of the EMMA mag-

nets

The short lengths and wide apertures of magnets in the EMMA FFAG mean that the

variations of the magnetic field in the longitudinal direction may be significant for beam

dynamics. A 3D numerical solution of Maxwell’s equation may be required to describe

accurately the magnetic field. The EMMA magnets were designed with the software

OPERA-3D [25, 29], solving Maxwell’s equations numerically using the Finite Element
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2.2 Description of the OPERA model of the EMMA magnets

Figure 2.1: 3D view of the OPERA model of the EMMA cell.A particle travelling from
left to right passes through a horizontally defocusing (D) quadrupole magnet (in blue),
and then a horizontally focusing (F) quadrupole magnet (in red). Only the top half of the
magnets are present in the model for symmetry reasons explained further in this section.
Metallic plates (also called clamp plates) are located before the D magnet (in blue) and
after the F magnet (in red). They limit the influence of the magnetic field induced by the
magnets of the cell on the previous and following cell. No clamp plates could be inserted
between the two magnets of a same cell because of a lack of space. The magnetic field is
induced by circulating current in conducting coils wounded around the poles. These coils
can be seen in yellow colour.

Method (FEM). For a given current distribution and a given geometry of the magnet

yokes, the software computes the numerical values of the field at the nodes of a mesh

mapping the whole geometry. The value of the field for positions in between these

nodes must be interpolated.

In this section we will begin with defining the framework of the model, including the

geometrical conventions chosen and the symmetries of the model. We will then briefly

describe the Finite Element Method and the output format of the solution obtained.

We will study how this solution differs when changing the mesh configuration used in

the FEM. Finally, we will focus on the difference between solving Maxwell’s equations

in a system containing various magnetic elements. Either a field map is extracted

from a model including simultaneously all the elements, or field maps are extracted for
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2.2 Description of the OPERA model of the EMMA magnets

individual elements and then superposed to represent the entire system. Field maps

from these two approaches will also be compared to magnet measurements.

2.2.1 Geometrical conventions and symmetries of the model

We worked in a Cartesian coordinate frame (~x, ~y, ~z) where ~x and ~y are the horizontal and

vertical transverse directions respectively and ~z is the longitudinal direction, oriented

in the direction of the beam. This coordinate frame is not following the curvature of

the beam. In each cell, its axes are straight. The EMMA ring is composed of 42 cells

therefore the frame is rotated by an angle 2π/42 around the ~y axis when passing from

one cell to the next. Bx, By and Bz are the components of the magnetic field flux

density vector B along these axes.

0 2000 4000 6000 8000 10000 12000 14000 16000
H[A/m]

0.0
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B
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Figure 2.2: Evolution of the magnetic field B with respect to the magnetic intensity
H.The data are given by the manufacturer of the EMMA magnet [26] and correspond to a
yoke made of 1006 grade steel. The hysteresis effect is not taken into account here; in other
words, figure 2.2 shows the curve of first magnetisation . We observe a sharp increase of B
from 0T to 1.5T for H up to 2000A/m, further increases in magnetic field intensity will
result in no further change in magnetic field. This condition is called magnetic saturation.

The geometry of the EMMA cell used as case study is represented in figure 2.1.
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2.2 Description of the OPERA model of the EMMA magnets

Four distinct elements can be seen. The two thin plates on each side of the cell are

clamp plates. They limit the influence of the magnetic field induced by the magnets of

the cell on the previous and following cell. No clamp plates could be inserted between

the two magnets in the same cell because of the lack of space.

In between the clamp plates, a particle travelling from left to right passes through

a horizontally defocusing (D) quadrupole magnet (in blue), and then a horizontally

focusing (F) quadrupole magnet (in red). Only the top half of the magnets are present

in the model for symmetry reasons explained further in this section.

Each magnet is composed of a yoke joining four poles made of the same magnetic

material around which are wound the conductive coils (in orange). In the case of

EMMA, the magnets are made of magnetic alloy [28]. An important feature of any

magnetic material is its response to an external field. The response of a material to an

external magnetic field B is measured by the magnetic intensity H:

B = µ0µrH (2.1)

where µ0 is a fundamental physical constant, the permeability of free space and

µr is the relative permeability of the material. Often, the relative permeability of a

given material is approximated by a constant; in reality, it is itself function of the

fields that are present, and function also of the frequency of oscillation of the external

field (hysteresis effect). Figure 2.2 shows the evolution of the magnetic field B with

respect to the magnetic intensity H. The data are given by the manufacturer of the

EMMA magnet [26] and correspond to a yoke made of 1006 grade steel. The hysteresis

effect is not taken into account here; in other words, figure 2.2 shows the curve of first

magnetisation before any variation of the field strength. We observe a sharp increase of

B from 0T to 1.5T for H up to 2000A/m, followed by a slow evolution where further

increases in magnetic field intensity will result in no further change in magnetic field.
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2.2 Description of the OPERA model of the EMMA magnets

Figure 2.3: Front view of the full quadrupole magnets. Focusing quadrupole magnet in
red and defocusing quadrupole magnet in blue. Yellow coils are wounded around the poles.
We observe that the magnetic axes are not aligned. The only symmetry of the system is a
two fold symmetry with respect to the median plane (~x, ~z).

This condition is called magnetic saturation.

In accelerator magnets, the magnetic field is induced by circulating current in con-

ducting coils. Considering only magneto-static fields, the magnetic intensity H is re-

lated to current density J by Maxwell’s equation:

∇×H = J (2.2)

We deduce that because of magnetic saturation, increasing current in the coils does

not indefinitely raise the magnetic field in the yoke and therefore in the gap between

the poles. For the magnetic field to follow linearly the current in the coil, we have to

operate the magnet below the saturation threshold.

A quadrupole magnet has a four-fold symmetry and only the description of the

magnetic field in a fourth of the magnet is sufficient to characterise the whole space.

The intersection of the planes of symmetry is the magnetic axis (see figure 2.3). This

axis is used as a reference to position the magnet in the ring. In EMMA, the magnetic

axes of the F and D quadruples are not aligned, so when including both magnets in the

OPERA model, the usual four-fold symmetry of a quadrupole is broken. The symmetry
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Figure 2.4: Upper view of the OPERA model of the EMMA cell with area of interest
for beam dynamics. Most beam dynamics integrators or tracking codes requires a regular
and rectangular numerical field map (corresponding to the yellow rectangular area. The
rotation of the exit face prevents the extraction of a rectangular grid covering the full cell
length because some points (orange area) are out of the solved volume delimited by the
black dashed line. We therefore chose to solve the model with parallel faces with periodic
boundary conditions.

with respect to the median plane (~x, ~z) is conserved; thus, computing the upper half of

the model as seen in figure 2.1 is necessary and sufficient.

The median plane is a boundary of our model but does not have any physical reality.

The characteristic of the field in the plane should therefore conserve the symmetry of

the full system expressed as:

By(y) = By(−y) (2.3)

Bx(y) = −Bx(−y)

Bz(y) = −Bz(−y)

where positive sign for y corresponds to position above the median plane.

Longitudinally, an effort was made to respect the actual configuration of the EMMA
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2.2 Description of the OPERA model of the EMMA magnets

ring. At the edges of the cell, the magnetic field created by the magnets of the previous

and following cells should be taken into account. In OPERA the periodic condition

forces the field on a boundary to be the same as the field on a chosen twin boundary.

By linking the entrance face to the exit face of the cell with the periodic condition, we

simulate in reality the effect of the previous cell and the next cell on the field of the

studied cell.

The EMMA ring is composed of 42 cells, each cell having a straight line as reference.

Magnetic axes of the quadruples in each cell are parallel to that line. The angle between

the reference lines of two adjacent cells is 2π/42. Therefore to match the following

entrance face, the exit face of a cell must also be rotated by that angle. This solution

turned out to be inadequate for two reasons: first, in order to associate two twin

boundaries, OPERA needed to construct exactly the same mesh on both 2D surfaces

and fill up the 3D volume of the cell. The routine did not succeed when faces were not

parallel. Further studies on OPERA routine could certainly solve this issue. Secondly

most beam dynamics integrator or tracking codes requires a regular and rectangular

numerical field map (corresponding to the yellow rectangular area on figure 2.4). The

rotation of the exit face prevents the extraction of a rectangular grid covering the

full cell length because a surface (orange area) remains outside the solved volume

delimited by the black dashed line. We therefore chose to solve the model with parallel

faces with periodic boundary conditions. This periodic boundary condition is thus an

approximation since the straight exit face does not match exactly the entrance face of

the following cell.

The assumption was made that the magnetic field was small enough close to the

exit faces and that its effect on the beam dynamics would therefore be negligible.
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2.2 Description of the OPERA model of the EMMA magnets

Figure 2.5: 3D view of OPERA meshed volumes in the EMMA cell. The OPERA model
are divided into three volumes with different mesh sizes. This allow higher precision of
the calculation in the regions close to the beam avoiding unnecessary precision on the far
edges of the model. This figure shows the two inner air regions located in the gap of the
magnets. The volume in green corresponds to the allowed excursion of the beam.

2.2.2 Finite Element Method (FEM)

The Finite Element Method (FEM) is based on the principle that by solving a set

of equations for a given variable on a finite number of points (defining a mesh), the

numerical value of this variable can be determined everywhere by interpolation [27].

The finer the mesh, the more accurate is the field description, but the longer it takes

to compute a solution. In this study, the equations solved are Maxwell’s equations in

the magneto-static case.

When computing the solution, the non linearity of the magnetic permeability of

the materials is taken into account. Indeed as explained in section 2.2.1, the magnetic

permeability is a function of the external field. Thus it must be calculated after initially

deriving the magnetic field distribution for a constant permeability. Once the actual

permeability is computed, the new distribution of the magnetic field can be derived.
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2.2 Description of the OPERA model of the EMMA magnets

The process is therefore iterative and goes on until the change in B after another

iteration is less than a given tolerance value. This value represents the numerical

error tolerated in the solution at each node of the mesh. In this study we chose the

OPERA default value: 10−6 T , also used for the original design of the magnets. Further

investigations could be useful to optimise this value, limiting computational time.

From the numerical solution of Maxwell’s equations for a given mesh, the value

of each component of the magnetic field B on a regular grid of points covering the

beam path is interpolated. In general, this grid does not correspond to the mesh used

by FEM, this latter being composed of tetrahedral elements that does not suit the

rectangular grid required for particle tracking.

2.2.3 Mesh convergence study

The non material regions (neither yoke nor coil) in the OPERA model are divided into

three volumes with different mesh element sizes. This allow higher precision of the

calculation in the regions close to the beam while avoiding unnecessary precision on

the far edges of the model. Figure 2.5 shows the two inner air regions located in the

gap of the magnets. The volume in green corresponds to the allowed excursion of the

beam. The third volume (not represented in figure 2.5) surrounds the whole system;

it corresponds to the grey external box in figure 2.1. Since the volume of the model is

constant, increasing the number of mesh elements means decreasing the size of these

elements.

By steadily increasing the mesh density and computing the effect on a particle

trajectory, one can determine the mesh density required to give a convergent tracking

behaviour.

First, we looked at the value of the vertical component of the magnetic field in the

median plane (x, z) while increasing the number of mesh elements. This gives a qual-

itative estimation of the convergence behaviour. Figure 2.6 shows the difference ∆By
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2.2 Description of the OPERA model of the EMMA magnets

(a) 14M-1.5M (b) 14M-3.5M

(c) 14M-6.7M (d) 14M-9.1M

Figure 2.6: Difference in the vertical component of magnetic field (By) between 14 million
mesh elements and 1.5 million mesh elements (top left hand side), 3.5 million mesh elements
(top right hand side), 6.7 million mesh elements (bottom left hand side) and 9.1 million
mesh elements (bottom right hand side) . Data are on the median plane (left).
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Figure 2.7: Standard deviation of the difference ∆By between a model with 14 million
mesh elements and models with fewer mesh elements. The standard deviation is calculated
over the median plane (y=0) and over the horizontal plane for y=1cm. The standard
deviation drops rapidly from 16G to 4G when increasing the number of element from 4
million to 6.5 million. Then increasing the number of elements above 7 million decreases
the standard deviation by less than 1G for both planes y=0 and y=1. A sensible choice
for the number of element would therefore be between 7 million and 14 million.

between a model with 14 million mesh elements and models with smaller number of

mesh elements. The smaller is ∆By, the closer to convergence is the solution, since in-

creasing the number of mesh elements does not change the magnetic field configuration

anymore.

Figure 2.7 shows the corresponding standard deviation of the error ∆By over the

median plane (y=0) and over the horizontal plane for y=1 cm. The standard deviation

drops rapidly from 16G to 4G when increasing the number of element from 4 million

to 6.5 million. Then increasing the number of elements above 7 million decreases the

standard deviation by less than 1G for both planes y=0 and y=1. A sensible choice

for the number of element would therefore be between 7 million and 14 million. To

refine this estimation, beam dynamics obtained from field maps have to be compared
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Figure 2.8: Closed orbit positions from 10MeV to 20MeV computed with field map
obtained using different mesh densities. The yellow and black curves for 9.1 million and 14
million elements are overlapped. At 20MeV the difference between the 6.7 million element
curve and the 9.1 million element is still significant (about 300µm). We conclude that the
changes in the closed orbit introduced by increasing the number of mesh elements above
9.1 million would not be measurable in the machine since variations are smaller than the
measurement precision of 50µm.

for these several mesh configurations.

As explained in the first chapter, the main characteristic of the beam dynamics

in EMMA are the closed orbit positions, time of flight and tunes for energies from

10MeV to 20MeV. The influence of the mesh configuration on these factors is shown

in figures 2.8 to 2.11. These results have been processed in a pragmatic approach. A

discrepancy is considered as relevant only if its magnitude is greater than the precision

of the measurements in the real machine.

In an optimistic estimation, the tune per cell and the time of flight can be measured

in the real machine to a precision of the order of 5× 10−3 and 10 ps respectively. The

horizontal position is estimated with a precision of 50µm. We observe that increasing

the number of mesh elements above 9.1 million would not be measurable in the machine

since variations are below the measurement precision.
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Figure 2.9: Time of Flight for one turn computed with field map obtained using different
mesh densities. The four curves are overlapped for all energies except 20MeV. The mea-
surement precision being 10 ps, increasing the number of mesh element above 6.7 M varies
the time of flight by amounts smaller than the measurement precision.
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Figure 2.10: Horizontal tune per cell computed with field maps obtained using differ-
ent mesh densities. The yellow and black curves for 9.1 million and 14 million elements
are overlapped. At high energy, for instance 20MeV, the model with 6.7 million mesh
elements differs from the 9.1 million by about 0.01. This value being larger than the mea-
surement precision, we conclude that a configuration with 9.1 million element is required
for convergent beam dynamics.
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Figure 2.11: Vertical tune per cell computed with field maps obtained using different mesh
densities. The discrepancy in vertical tune is of the order of 5× 10−3 for high energies. It
may be due to the variation of the mesh structure in the second volume (around the small
volume representing the vacuum chamber in figure 2.5) having an effect vertically on the
magnetic field distribution.

The discrepancy in vertical tune between the 9.1 million model and the 14 million

model is of the order of 5 × 10−3 for high energies. It may be due to the variation

of the mesh structure in the second volume (around the small volume representing

the vacuum chamber in figure 2.5) having an effect vertically on the magnetic field

distribution. To increase the number of mesh elements in the model, only the mesh

density in the smaller volume is increased. The discontinuity in the mesh element size

at the boundary between the smaller volume and the surrounding volume is therefore

getting larger when increasing the number of mesh elements to 14 million. Since the

volumes are rectangular with the narrow side in the vertical direction, the discontinuity

in the mesh size over the border may affect more significantly the vertical dynamics. In

order to confirm this hypothesis, the increase in mesh size should be carried on in both

volumes, keeping the variation of the mesh size at the boundary at a constant ratio.

The final argument in favour of a 9.1 million mesh element model is the fact that
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Figure 2.12: Evolution of computation time for an OPERA model with number of mesh
elements. We chose to solve model with 9.1 million mesh elements because the computation
time is about 10 hours allowing an overnight solving of the model. The gain in terms of
beam dynamics simulations of a 14 million elements model that needs 35 hours to be solved
is certainly not measurable in the real machine.

the computation time is about 10 hours allowing an overnight solving of the model (see

figure 2.12). The gain in terms of beam dynamics simulation of a 14 million elements

model of the EMMA cell, which needs 35 hours to be solved is not measurable in the

real machine.

2.2.4 Field map construction

In this section, we will study the validity of the construction of a field map by super-

position of two different field maps, one for each magnet. The process can be useful

when modelling the entire EMMA cell with different gradient strengths. The magnets

strengths can be varied in two ways: either the current in the coil in the OPERA model

is increased and a new numerical solution is computed for each current configuration, or

the field map produced for a given current is multiplied by a given factor. Choosing the

first option means that a new model must be solved for each new current configuration;
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2.2 Description of the OPERA model of the EMMA magnets

the flexibility of the simulation is then highly reduced. We opted for the construction

of field maps from separated model because it made possible the study of a larger range

of lattice configurations.

The second option is valid if the magnetic strength increases linearly with the

current in the coil; the magnet must not be in the saturation regime explained in

section 2.2.1. Magnet measurements have shown [28] that for the range of current used

in EMMA the excitation of the magnets with current was linear to within 2% . This

means that the simulation results to the measured results should be compared in terms

of magnet strengths, taking into account the 2% error in linearity when converting

the current circulating in the real magnet and the corresponding magnetic strength

induced.

To vary independently the two magnet strengths, one need a field map for each

magnet. The field map of the entire EMMA cell is then created by superposition of

the two adjusted field maps for each magnets. However it is not obvious that the

arithmetical addition of the two field maps represents accurately the real configuration.

In a first approximation, one can compute a field map by superposing the field

maps generated by powering each magnet separately and with the magnet powered far

from the other magnet (“D only” + “F only”). In reality the yoke of one magnet may

influence the field created by the other magnet; so we also computed a field map for

the case when one magnet is powered and the yoke of the other magnet is present but

not powered ( “D + F”). Finally the results can be compared with field maps extracted

from models including both magnets powered at the same time (“D&F”).

We studied the difference in magnetic field in the median plane (~x, ~z) between the

two OPERA solutions: F magnet “on” only and F magnet “on” close the yoke of the

D magnet “off”. The result is shown in figure 2.13 on the left hand side. The blue and

red rectangles represent the poles of the D magnet and F magnets respectively. The

main effect occurs at the edge of the D magnet facing the F magnet for z=6 cm and
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Figure 2.13: Difference in By in Gauss between D only and D with F yoke (b) and F
only and F with D yoke (a) configurations. The blue and red rectangles represent the poles
of the D magnet and F magnets respectively. The main effect occurs at the edge of the D
magnet facing the F magnet for z= 6 cm and x= -4 cm where the difference in magnetic
field is -122G. The maximum corresponds to the transverse position where the pole of the
D magnet (“off”) is the closest to the median plane. On the path of particles (between
x=-1 cm and x=+1cm)) the maximum discrepancy is about 40G. Similarly, on the right
hand side of figure 2.13, we see the comparison between D magnet “on” only and D magnet
“on” close the yoke of the F magnet ’off’. The largest discrepancy of 270G is located at
the edge of the F pole facing the D magnet for z=12.5 cm and x=-4.5 cm. The influence
on the beam path is larger than for the previous comparison: about 200G.

x=-4 cm where the difference in magnetic field is -122G. The maximum corresponds

to the transverse position where the pole of the D magnet (“off”) is the closest to the

median plane. This can be understood by observing the shape of the poles in figure 2.3.

On the path of particles (between x=-1 cm and x=+1 cm) the maximum discrepancy

is about 40G. Similarly, on the right hand side in figure 2.13, we see the comparison

between D magnet “on” only and D magnet “on” close the yoke of the F magnet “off”.

The largest discrepancy of 270G is located at the edge of the F pole facing the D

magnet for z=12.5 cm and x=-4.5 cm. The influence on the beam path is larger than

for the previous comparison: about 200G. We conclude that some magnetic field lines

are “captured” by the non powered yoke and as a result the magnetic field in the gap

changes. Hence a quantitative study in terms of beam dynamics is required to conclude

whether the model must always include both magnets yokes.
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Figure 2.14: (a): Closed orbit position from 10 to 20 MeV computed for “Donly +
Fonly”, “D+F” and “D&F” configurations.(b): Time of Flight for one turn versus energy
computed for “Donly + Fonly”, “D+F” and “D&F” configurations. Tracking results in
the “Donly+Fonly” configuration are significantly different from the others configurations.
At 10MeV, the closed orbit is shifted by about 5mm and 10mrad - from (-27, 155) for the
“D+F” configuration to (-32, 165) for the “Donly+Fonly” configuration. Regarding the
time of flight evolution with energy (figure 2.14(b)) a difference of 140ps occurs at 20MeV.
This difference is significant (larger than the estimated measurement precision of 10 ps).
Since the time of flight is crucial parameter for the dynamics in EMMA, we conclude that
the unpowered yoke must be included in the OPERA model.
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2.2 Description of the OPERA model of the EMMA magnets

Figures 2.14(a), 2.14(b) and 2.15 show the difference between different configura-

tions of the OPERA model in terms of positions of the closed orbit in transverse phase

space (x, px) at different energies, in terms of time of flight evolution with energy

and in terms of horizontal and vertical tunes per cell evolution with energy respec-

tively. Particles were tracked in field maps constructed in the three configurations of

the model explained at the beginning of this section. Tracking results in the “D only”

+ “F only” configuration are significantly different from the others configurations. At

10MeV, the closed orbit is shifted by about 5mm and 10mrad —from (-27, 155) for

the “D+F” configuration to (-32, 165) for the“Donly+Fonly” configuration. Regarding

the time of flight evolution with energy (figure 2.14(b)) a difference of 140 ps occurs at

20MeV. This difference is significant (larger than the estimated measurement precision

of 10 ps). Since the time of flight is crucial parameter for the dynamics in EMMA,

we conclude that the unpowered yoke must be included in the OPERA model. As a

remark, in figure 2.15, we can observe a 0.05 difference in vertical tune between these

two configurations. However the presence of the unpowered yoke does not significantly

affect the horizontal tune.

We observe in figure 2.14(a) a 0.5mm shift of the closed orbit at 20MeV from

“D&F” to “D+F” configuration. Such a difference may be measurable but will not

affect significantly the main beam dynamics parameters in EMMA that are the time

of flight and the tune. The maximum discrepancy for the time of flight evolution

with energy differs is 10 ps at 20MeV (see figure 2.14(b)) and the discrepancy for the

horizontal and vertical tune is smaller than 0.001 over the entire range of energy (see

figure 2.15). The difference between the two configurations does not significantly affect

the main parameters of the beam dynamics.

It is now interesting to evaluate the discrepancy between the “D+F” and “D&F”

configurations in terms integrated magnetic gradient along the entire cell. The gradient

∂By

∂x
integrated along straight lines in the median plane through the entire cell for
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Figure 2.15: Horizontal and vertical tune per cell computed for “Donly + Fonly”, “D+F”
and “D&F” configurations. We can observe a 0.05 difference only in vertical tune between
these two configurations. The presence of the unpowered yoke does not significantly affect
the horizontal tune. The discrepancy between “D&F” and “D+F” configurations for the
horizontal and vertical tune is smaller than 0.001 over the entire range of energy
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Figure 2.16: Integrated field along the EMMA cell computed for “D+F” and “D&F”
configurations with simulated data.
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Figure 2.17: Integrated gradient along the EMMA cell computed for “D+F” and “D&F”
configurations with simulated data.
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Figure 2.18: Integrated gradient along the EMMA cell computed for individual magnets
in “D+F” and “D&F” configurations with simulated data.
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2.2 Description of the OPERA model of the EMMA magnets

various horizontal positions. We observe in figure 2.17 that in both configurations,

the integrated field gradient is not constant across the transverse excursion. This

outlines the fact that because of the physical limitations, magnets do not create an

ideal quadrupolar field, for which the field gradient
∂By

∂x
should be constant in the

horizontal transverse direction. For the “D&F” configuration, the relative variation on

the beam path i.e. for x < +10mm from -0.056 T at x=10mm to -0.054 T at x=-20mm

is 3.8%. This result is within the tolerance for the magnet design [28].

Comparing ”D+F” and “D&F” configurations, the integrated gradient is about

0.003 T larger (in absolute value) for the “D&F” configuration which corresponds to a

5% discrepancy between the two configurations. We observed in figures 2.14(a), 2.14(b)

and 2.15 that this discrepancy did not affect significantly the linear beam dynamics.

To summarise, the presence of the unpowered magnet yoke has an influence on

the beam dynamics when using the field map of individually powered magnet. We

observed a large shift of the closed orbit positions over the entire range of energy and

more important a difference in time of flight evolution with energy, greater than 100 ps

for high energies. We concluded that when powering only one magnet, the solved

OPERA model must also included the unpowered magnet.

According to the OPERA model, there is a small difference (5%) in the integrated

gradient for field maps with both magnets on (“D&F”) and the sum of the magnetic

field from each magnet powered individually (“D+F”) including the unpowered magnet.

As a result the discrepancy in terms of beam dynamics is smaller than the measurement

precision on the real machine. This suggests that the fields of the two magnets can

indeed be computed independently, and the total field can be obtained by superposition.

The strength of individual magnet is adjusted by varying the entire numerical field

map by a given factor. This is not valid for large currents where nonlinear features of

the magnets (related to the ”B-H curve in figure 2.2”) may appear. A further study

must be dedicated to evaluate the range of validity of the linear increase of the magnetic
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Figure 2.19: Integrated field along the EMMA cell computed for “D+F” and “D&F”
configurations with measured data. The difference in integrated fields along the EMMA
cell increases when going towards large negative value for x. The allowed transverse ex-
cursion for particles is (-1.5 cm, 1.5 cm). In that range the maximum discrepancy is about
0.1T.mm. The relative difference is then of about 1% as in the same study in section 2.2.4
with OPERA field map in figure 2.16.

strength with the current.

In addition, we studied the validity of the superposition by processing data from

the magnetic field measurement performed on prototype magnets.

2.2.5 Magnetic field measurements in the prototype magnets

The D and F magnets prototypes have been mounted on a measurement bench at

Daresbury Laboratory. The magnetic field in the median plane of the prototype mag-

nets has been measured using a Hall probe. A Cartesian grid of measurements has

been used since the reference axis of a cell is a straight line. For mechanical reason,

the measurement arm did not allow measurements to be made through the entire cell

longitudinally. Thus, the measurements only provide an indication of the agreement

between simulation and reality. Field maps have been measured for each individually

powered magnet, including the unpowered yoke and for both magnets simultaneously

powered. Figure 2.20 shows that the integrated gradients along the EMMA cell dif-

fer by about 0.05 T between “D+F” (purple) and “D&F” (green) configurations for
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Figure 2.20: Integrated gradient along the EMMA cell computed for “D+F” and “D&F”
configurations with measured data. The integrated gradients along the EMMA cell differ
by about 0.05T between “D+F” (purple) and “D&F” (green) configurations for measured
fields. The relative difference is then of about 5% similarly to the same study in section
2.2.4 with OPERA field map in figure 2.17. Moreover, we observe that the discrepancy
between the measured field and the OPERA field is again of the same order of magnitude.

measured fields. The relative difference is then about 5% similar to the result from

the same study in section 2.2.4 with the OPERA field map in figure 2.17. No beam

dynamics results could be derived from the measurements because beam dynamics sim-

ulations requires a three dimensional field map and field measurements had only been

performed in the median plane. However with OPERA field maps, a 5% difference in

the integrated field did not affect significantly the beam dynamics. We can therefore

assume that the agreement between “D+F” and “D&F” configurations for measured

fields can validate the superposition of field map.

We notice also that the integrated gradient for measured field for the “D+F” con-

figuration is larger in absolute value than for the “D&F” configuration. It was the

opposite when studying the field derived from the OPERA model. In addition, for

x < -10mm the discrepancy between OPERA and the measured integrated gradient

increases to about 0.01 T; the measured integrated gradient decreases when moving in-

ward in the ring (negative value of x) whereas the OPERA integrated gradient in 2.17

increases. We conclude that the OPERA model does not match perfectly the real mag-
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2.2 Description of the OPERA model of the EMMA magnets

netic field. This is likely due to manufacturing errors of the real magnets not taken into

account in the OPERA model. Also numerical approximations in the Finite Element

Method may induce discrepancies. More detailed measurements may be necessary to

identify the origin of the discrepancy. Increasing the precision of the FEM solution is

also the subject for a further study. However, beam dynamics in the measured and

simulated field maps should first be compared. A conclusion could then be drawn on

the relevance of the integrated gradient.

The ultimate test to validate a simulation technique is to compare the simulated

dynamics to the real machine dynamics where the discrepancy in integrated gradient

is likely to have a significant effect.

2.2.6 Summary and conclusions

In the first section of this chapter we focused on the construction of a numerical field

map from a given geometry of a magnetic element. To illustrate the process, we used the

EMMA doublet composed of a defocusing quadrupole and a focusing quadrupole. The

Maxwell’s equations are solved numerically by Finite Element Method. We minimised

the volume in which the equations are solved by considering the two-fold symmetry of

the system. The four fold symmetries of each individual magnet were broken by the

fact that their magnetic axes are not coincident.

An optimum number of mesh element of 9 million was chosen as a result of a

compromise between the convergence of the beam dynamics results and the computing

time required.

Then, we compared three ways to construct the field map of the entire EMMA

cell. First we realised that when computing the field distribution for a single magnet

powered, the magnetic field was affected by the presence of the unpowered yoke of the

other magnet. The time of flight evolution with energy and the positions of the closed

orbit at different energies were significantly affected. To be accurate magnets should
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therefore be modelled taking into account the presence of the other magnet.

Eventually, we compared the field map created from the superposition of individual

magnet (including the unpowered magnet) to the field map with both magnet powered

simultaneously. The integrated gradients along the EMMA cell differed by 5% which

resulted in a discrepancy in the beam dynamics smaller than the expected measurement

precision in the machine. A similar result was obtained from measured field maps. We

concluded that the superposition of field maps could give sufficiently accurate results

as a first approach to simulation of an FFAG with dynamical maps. The superposition

allows the study of the beam dynamics with field maps varying independently each

magnet strength without computing a new OPERA model. However tracking simula-

tions with dynamical maps require a further step in the processing of the field map :

deriving an analytical representation of the magnetic field.

2.3 Analytical field representation

2.3.1 Introduction

A numerical field map often takes the form of a table of numerical values. A precise

description of a magnetic element can lead to large tables, that may be cumbersome to

handle. A more compact representation of the field derived from these tables is therefore

of interest. Stronger motivations than the practical aspect justify the attempt to derive

an analytical representation of the field.

Firstly, the solution to the Maxwell’s equation given by FEM is numerical and there-

fore implies approximations. The solution obtained will not exactly respect Maxwell’s

equations. By fitting to the numerical data a function or a set of functions that are

analytical solution to Maxwell’s equations, the representation of the magnetic field is

more physical. This does not mean that the analytical representation is more accurate

with respect to the real magnets, but non physical features can be detected.
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Secondly, with an appropriate choice for the set of functions, characteristics of the

field can be outlined. For instance, by using series functions corresponding to the mode

decomposition of the field, we can evaluate the higher-order modes in the field. On

one hand, measurement or simulation noise can be decreased by filtering out higher-

order modes. On the other hand, errors in magnets can be realistically introduced as

higher-order terms.

Finally, the objective of this study is the simulation of beam dynamics using dy-

namical maps. We developed in more detail in chapter 3 that in order to compute the

dynamical map of a cell, polynomial functions of the dynamical variables - transverse

and longitudinal position and momentum- are propagated through the cell. At each

integration step the equations of motion, relating the magnetic field and the dynamical

variables are solved. This solution requires an analytical representation of the magnetic

field (see chapter 3 section 3.2.3.3).

2.3.2 Analytical solution to Maxwell’s equations in cylindrical coor-

dinates

In this section, we will discuss the choice of Fourier series to fit the numerical data. First

these functions will be expressed in polar cylindrical coordinates, more appropriate to

the symmetry and periodicity of magnetic fields in accelerators. We will present the

result of the fit by comparing the magnetic field derived from the Fourier series to the

original numerical data.

Since conventional beam dynamics are expressed in Cartesian coordinates and more

specifically because the integrator used to compute the dynamical map (see chapter 3)

is written in Cartesian coordinates, an analytical formulation of the field in Cartesian

coordinates will be derived from the previous fit. The resulting field given by Fourier

Series in Cartesian coordinates will be also compared to the original numerical field

map. Since the Fourier series are truncated to a chosen order, we will evaluate the
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influence of high order terms on the fit quality. We will also investigate the effect of

the periodicity imposed by the Fourier Series in Cartesian coordinates not matching

the natural periodicity of the field in the transverse directions.

Eventually, we will discuss the range of validity of the analytical representation

regarding the transverse excursion of the particles in an FFAG.

In free space and absence of electric field E, the relevant Maxwell’s equations are:

∇ ·B = 0, and ∇×B = 0 . (2.4)

Multiple fields of the form :

By + iBx = |Am|e−imθmrm−1ei(m−1)θ (2.5)

provide valid solutions of Maxwell’s equation in free space [30]. r and θ are the polar

coordinates within the magnet and θm is the angle by which the magnet is rolled around

the z axis.

This multipolar field can be generated by currents flowing in coils around magnet

poles as seen in yellow in figure 2.3. The field is a pure 2m pole field if the surface of

the pole corresponds to a surface of constant scalar potential Φ, given by:

Φ = −|Am|r
m

m
sin(mθ − θm) (2.6)

In reality magnet poles have limited size and cannot match perfectly this surface.

Therefore the field is more generally expressed as a superposition of 2m-pole field

giving a multipole decomposition expressed as:

By + iBx =

∞∑

m=1

|Am|e−imθmrm−1ei(m−1)θ (2.7)
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Figure 2.21: Radial component of the magnetic field (left) and residual of the fit (right)
on a reference cylinder of radius ρ0 =12mm within one EMMA cell. The (relatively) large
residuals at the entrance and exit of the cell arise from the non-zero values of the field,
which cannot be represented by the Fourier basis functions we have used. It would be
possible to extend the basis functions to include these fields, however, with errors of the
order of few gauss, this fit is considered good enough for our tracking studies.

and :

Bθ + iBρ = (By + iBx)e
iθ =

∞∑

m=1

|Am|e−imθmrm−1eimθ (2.8)

These expressions are directly related to the azimuthal symmetries of a magnetic

field, however it is only applicable to a 2D field. The longitudinal dependence of the

field is not included in this formulation.

A 3D field representation that satisfies Maxwell’s equations (2.4) is given by:

Bρ =

∫
dkz

∑

m

am(kz)I
′
m(kzρ) sin(mφ) sin(kzz), (2.9)

Bφ =

∫
dkz

∑

m

am(kz)
m

kzρ
Im(kzρ) cos(mφ) sin(kzz), (2.10)

Bz =

∫
dkz

∑

m

am(kz)Im(kzρ) sin(mφ) cos(kzz). (2.11)
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Figure 2.22: Modified Bessel function of the first kind Im(x) for m = 0,1,...,4

Including other phases in the azimuthal angle φ and the longitudinal direction z would

fully generalise these equations. The functions Im(ρ) are modified Bessel functions of

the first kind of order m. For small values of the argument ξ, the modified Bessel

function of order m has the series expansion:

Im(ξ) =
ξm

2mΓ(1 +m)
+O(m+ 1). (2.12)

Functions for order m = 0 to m = 4 are plotted in figure 2.22. For larger value

of ξ, the modified Bessel functions increase exponentially. It means that if we fit

the field to data taken on the surface of a cylinder of radius ρ0, then residual of the

fit will increase exponentially outside the cylinder and decrease exponentially towards

ρ = 0. Accelerator magnets often have a circular aperture, and in such cases, cylindrical

coordinates provide an appropriate coordinate system for describing the field; other

cases like undulator magnets or wigglers [34, 35] used for synchrotron radiation and

free electron laser machines have rectangular aperture and Cartesian coordinate system

is then most appropriate.
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2.3 Analytical field representation

Performing the fit on a inscribed cylinder within the aperture maximise the ”safe”

region of the fit. In addition the modes written in polar basis reflect the real periodicity

of the field with the angle φ given by the azimuthal symmetry ~B(φ+ 2π) = ~B(φ). To

give a better understanding of this representation of the magnetic field, we can define

a relation between the 2D multipole expansion and these 3D forms. If we consider the

coefficients am(kz) given by:

am(kz) = 2mΓ(1 +m)Am
δ(kz)

mkm−1
z

(2.13)

where δ is the Dirac delta function and Am a constant, by substituting this expression

in equations (2.9-2.11) and integrating over kz , we obtain:

Bρ =
∑

m

Amρm−1 sin(mφ), (2.14)

Bφ =
∑

m

Amρm−1 cos(mφ), (2.15)

Bz = 0. (2.16)

We identify these expressions to a multipole field of order n in equation (2.8). Hence a

two-dimensional multipole field is a special case of a three dimensional field expressed in

(2.9-2.11) with mode coefficients given by equation (2.13). The mode coefficients am(kz)

may be obtained by a 2D Fourier transform of the field on the surface of a cylinder of

given radius inscribed in the magnets aperture. Since each coefficient am(kz) is related

to a multipole coefficient of a 2D field, its contribution to the field made at any point

is the contribution of a multipole of order m (e.g. dipole for m=1, quadrupole for m=2

and so on).

The Fourier Transform is performed using a Python library function for a Discrete

Fourier Transform (DFT) [57]. The dependence of the field in the longitudinal direction

is included in the coefficients returned by the DFT; hence the coefficients am(kz) are
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now written amn. The field is given by:

Bρ =
∑

m,n

amnI
′
m(nkzρ) sin(mφ) sin(nkzz), (2.17)

Bφ =
∑

m,n

amn
m

nkzρ
Im(nkzρ) cos(mφ) sin(nkzz),

Bz =
∑

m,n

amnIm(nkzρ) sin(mφ) cos(nkzz).

In this expression “m” is related to the contribution of multipoles of the two dimensional

field and ”n” refers to the longitudinal expansion of this contribution.

Note that equation 2.17 implies that for z = 0 the radial component of the magnetic

field Bρ must be zero. Therefore the fit on the field data will be accurate if the value

for z=0 is close to zero.

Fig. 2.21 shows the radial field component and the residual of the fit on a reference

cylinder of radius ρ0 =12mm in one EMMA cell. The (relatively) large residuals at the

entrance and exit of the cell arise from the non-zero values of the field, which cannot

be represented by the Fourier basis functions we have used. It would be possible to

extend the basis functions to include these fields; however, with errors of the order of

few Gauss, this fit is considered good enough for our tracking studies.

To suppress this entrance residual we should use the general expression of the Fourier

Series given by:

Bρ =
∑

m,n

ãmnI
′
m(nkzρ)e

imφeinkzz +
∑

m,n

b̃mnI
′
m(nkzρ)e

imφe−inkzz + c.c., (2.18)

Bφ =
∑

m,n

ãmn
m

nkzρ
Im(nkzρ)e

imφeinkzz +
∑

m,n

b̃mn
m

nkzρ
Im(nkzρ)e

imφe−inkzz + c.c.,(2.19)

Bz =
∑

m,n

ãmnIm(nkzρ)e
imφeinkzz +

∑

m,n

b̃mnIm(nkzρ)e
imφe−inkzz + c.c. . (2.20)

”c.c” refers to the complex conjugate of the first part of the expression. These expres-

sions still satisfy Maxwell’s equations (2.4).
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2.3.3 From cylindrical to Cartesian coordinates

In this section, we will give an analytical description of the magnetic field as Fourier

series in Cartesian. For reasons explained later in this section, in the following of this

study, we did not perform the Fourier transform directly in Cartesian coordinate as

derived here, but instead performed the Fourier transform in cylindrical corrdinate

and then convert the coefficients of the Fourier transform from cylindrical to Cartesian

coordinates.

2.3.3.1 Field representation in Cartesian basis

Although cylindrical polar coordinates are more appropriate for the field description,

beam dynamics studies are more conveniently performed using Cartesian coordinates.

In that case, we need to obtain a representation of the field using basis functions in

Cartesian coordinates. The field given by:

Bx =

∫∫
ckx,kz

kx
ky

cos(kxx) sin(kzz) sinh(kyy)dkz dkx, (2.21)

By =

∫∫
ckx,kz sin(kxx) sin(kzz) cosh(kyy)dkz dkx, (2.22)

Bz =

∫∫
ckx,kz

kz
ky

sin(kxx) cos(kzz) sinh(kyy)dkz dkx. (2.23)

with k2y = k2x + k2z , satisfies Maxwell’s equations (2.4). It is possible to find similar sets

of equations but with different phase along each of the coordinate axes, and with the

hyperbolic trigonometric function appearing for the dependence on x or z, rather than

y.

We see that considering the vertical component By in (2.22) on a given plane y = y0,

we can derive the coefficients ckx,kz from a discrete Fourier transform of field data given

on a grid over x and z. In expression (2.22) the factor cosh(kyy0) is constant and can

be extracted from the integral over kx and kz . The mode amplitude ckx,kz are then
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2.3 Analytical field representation

given by:

ckx,kz =
1

cosh(kyy0)

∫∫
By sin(kxx) sin(kzz)dkz dkx, (2.24)

Because of the term cosh(kyy), any small error in ckx,kz will be amplified exponentially

in By in (2.22) as we move away from y=y0. On the other hand, any error in ckx,kz

will be damped exponentially as we move towards y = 0. When performing a discrete

Fourier transform, the
∫
is changed to a summation sign

∑
. The field is the given by:

Bx =
∑

m,n

cmn
mkx
ky

cos(mkxx) sinh(kyy) sin(nkzz) (2.25)

By =
∑

m,n

cmn sin(mkxx) cosh(kyy) sin(nkzz) (2.26)

Bz =
∑

m,n

cmn
nkz
ky

cos(mkxx) sinh(kyy) cos(nkzz) , (2.27)

now with k2y = (mkx)
2 + (nkz)

2.

It is best to fit on a plane with y0 as large as possible. The upper limit is given by

the actual position of the magnet poles.

2.3.3.2 Periodicity and symmetry of the field representation

The expressions of the field in equations (2.21) to (2.23) only represent accurately fields

that are periodic in x (with kx kept in finite range). In general in accelerator, fields do

not have such a periodicity hence a large number of modes will be necessary to give

an accurate description which will be valid only over a limited range in x; generally, a

fit to numerical field data based on equations (2.27) is less successful than one using

cylindrical polar coordinates, equation (2.9).

However, it is possible to obtain a reasonable description of the field by converting

the cylindrical mode coefficients amn to the Cartesian mode coefficients cmn. A value

for kx needs to be assumed, and can be chosen to minimise the residual in the final

field description.
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2.3 Analytical field representation

Given a set of coefficients amn, our objective is to find the corresponding set of

coefficients cmn, such that the expressions in polar and Cartesian basis are equivalent.

To reach this objective, we need to separate the coefficients in two groups: one group

for even values of m and the other for odd values of m. These two groups corresponds

in reality to two groups of modes of the magnetic field having different symmetries.

In this section we will derive the relation between amn and cmn coefficients only for

even values of m. The relation between amn and cmn coefficients for odd values of m

has also been derived. Both relations are used when reconstructing the magnetic field

in Cartesian basis from the DFT in polar cylindrical basis.

However, in the case of a general magnetic field given in equations 2.18 to 2.20, the

coefficients given by the DFT on a cylinder are complex. The imaginary part of a given

multipole m gives the skew multipole strength. A m-skew multipole is just obtained by

a rotation of the corresponding m normal multipole by mΦ/2 around the longitudinal

axis z. Most accelerator magnets are built with symmetries which keep skew multipoles

to zero to prevent coupling between horizontal and vertical transverse dynamics [32].

In a real accelerator, skew multipoles are introduced by magnet positioning errors.

Field maps obtained from the OPERA model of the EMMA cell do not contains

such errors since they assume an ideal symmetry. Hence in our case study, we did not

take them into account and we only transformed the real part of the Fourier Trans-

form coefficients from polar basis to Cartesian basis. If we intentionally add a skew

component to the F magnet in the OPERA model (for instance by inverting the sign

of the current in only two of the coils), we must be able to detect it in the analytical

representation of the field.

Figure 2.23 shows the difference in Gauss between the Cartesian multipole expansion

of the field and the initial version of the OPERA field map; this difference is the residual

of the fit. At the location of the F magnet (z=250mm), we observe a linear increase of

the residual along the x axis which corresponds to a skew quadrupole (m=2) introduced

58



2.3 Analytical field representation

in the F magnet. The multipole decomposition method turned out therefore to be useful

to outline errors in the OPERA model or in the real magnet measurements.

Further work must be dedicated to generalise this process transforming the rep-

resentation of the magnetic field in equations 2.18, 2.19 and 2.20 to their Cartesian

equivalent.

The multipole expansion was obtained from converting the normal multipoles de-

rived from the Fourier Transform in cylindrical basis. Along the z axis, the defocusing

and focusing magnets are located as shown in figure 2.13. Once obtaining the analytical

reoresentation of the magnetic field, we derived the corresponding representation for

the potential vector A, being the physical magnitude used to solved the equations of

motion in particle tracking.

The potential vector and the magnetic field are related by :

B = ∇×A (2.28)

From the description of B in (2.27), we obtain the expression for the components

of the potential vector, chossing a gauge in which Ax = 0.

Ax = 0

Ay =
∑

m,n

cmn
nkz

mkxky
cos(mkxx) sinh(kyy) cos(nkzz)

Az =
∑

m,n

cmn
1

kx
cos(mkxx) cosh(kyy) sin(nkzz) , (2.29)

Equations 2.29 are used in the symplectic integrator built in chapter 3 to represent

the magnetic element in which a particle is tracked. Note that the expression for

the potential vector is different for odd and even values of the transverse mode m.

Equations 2.29 are written for odd values of m.
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Figure 2.23: Difference in Gauss between the Cartesian multipole expansion of the field
and the original OPERA field map (also called residual of the fit). At the location of the
F magnet (z=250mm), we observe a linear increase of the residual along the x axis. After
obtaining this result we checked the original OPERA model and found a mistake in the
current distribution of the coils of the F magnet introducing a skew quadrupole (m=2) in
the field.

2.3.3.3 Mathematical transformation from cylindrical to Cartesian basis

The aim of this section is to derive a relation between the amn and cmn coefficients.

We will develop the case for even values of m and then mention the required change for

odd values of m. The skew component of the magnetic field will not be treated here

and should be developed in a further study for a more generalised transformation. We

start with the expressions for the azimuthal component and vertical component of the

magnetic field:

By =
∑

m,n

cmn sin(mkxx) cosh(kyy) sin(nkzz) (2.30)

Bφ =
∑

m,n

amn
m

nkzρ
Im(nkzρ) cos(mφ) sin(nkzz) . (2.31)

Since the field in one representation must equal the field in the other representation

at all points in space, and both fields are entirely determined by the coefficients, we can
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2.3 Analytical field representation

choose any particular point in space to carry out the study. If we can find the relation

between the coefficients amn and cmn by considering the fields at that particular point,

then we have solved the problem.

Let us choose the point:

x = ρ, y = 0, z = π/(2nkz) . (2.32)

For y = 0, i.e in the median plane, the relation between the transverse magnetic field

components in cylindrical and Cartesian bases are given by:

By = Bφ and Bx = Bρ (2.33)

At that location in space, only considering even values for m, expressions (2.30)

and (2.31) become:

Bφ =
∑

m,n

amn
m

nkzρ
Im(nkzρ) , (2.34)

By =
∑

m,n

cmn sin(mkxρ) . (2.35)

Then,
∑

m,n

amn
m

nkzρ
Im(nkzρ) =

∑

m,n

cmn sin(mkxρ) (2.36)

Let us assume that a function f exists such that:

cmn = fmm′am′n (2.37)

Our goal is to find the components fmm′ , which will allow us to transform from

the cylindrical to the Cartesian basis. We make use of the series expansions for the
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derivative of the modified Bessel function:

Im(ρ) =

∞∑

l=0

1

l!m+ l!
(
ρ

2
)(2l+m) (2.38)

and for the sine function:

sin(mkxρ) =

∞∑

l=0

(−1)l
(mkxρ)

2l+1

2l + 1!
(2.39)

As shown in appendix A, we can rewrite 2.36 in matrix form as:

vlm =
∑

m′

klm
′fm′m (2.40)

where we define the matrix v with components:

v
(n)
l′m = m

(−1)l
′

(2l′ + 1)!

(l′ + 1− m
2 )!(l

′ + m
2 + 1)!

(nk z)
2l′+1

22l′+2
(2.41)

and the matrix k with components:

kl′m′ = (m′kx)
2l′+1 (2.42)

Formally, the matrices have an infinite number of components; however, we can

reduce them to finite-sized square matrices by making appropriate truncations in l′, m

and m′. We can then solve equation 2.42 for the required components fmm′ :

fmm ′ =
∑

l′

k−1
ml

′vl′m′ (2.43)

We calculated in a similar way the transformation for odd values of m choosing

x = 0, y = ρ and z = π/(2nkz) as reference point where the relation between the

component of the magnetic field in cylindrical and Cartesian bases are By = Bρ and
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Bx = Bφ. At that new location in space, considering only odd values of m, we have:

Bρ =
∑

m,n

amnI
′
m(nkzρ)(−1)

m−1

2 , (2.44)

By =
∑

m,n

cmn cosh(ky,mnρ) . (2.45)

Eventually we obtain the components g
(n)
mm′ of the g function given by:

g
(n)
mm′ =

∑

l′

k−1
ml′v

(n)
l′m′ , (2.46)

where the coefficient of the matrix vodd are given by:

v
(n)
l′m = (−1)

m−1

2

(2l′ + 1)!(nkz)
2l′

22l′+1(l′ − m−1
2 )!(l′ + m+1

2 )!
(2.47)

and the matrix k with components:

k
(n)
l′m′ = (m′2k2x + n2k2z)

l′ (2.48)

Using equations (2.37), (2.43) and (2.46) one can transform the multipole expansion

of the magnetic field from cylindrical to Cartesian basis. The analytical representation

in Cartesian coordinate of the magnetic field can then be compared to the original

numerical field data.

2.3.4 Cartesian coordinates fit

In EMMA, the excursion of particles in the vertical direction is supposed to be smaller

than 1 cm. To simulate accurately the dynamics, the residual of the fit must be small up

to vertical excursion of y=1 cm. As explained in section 2.3.2, the residual of a fit of the

magnetic field data on a cylinder increases exponentially outside this cylinder. After

transforming the fit coefficients from cylindrical basis to Cartesian basis, the range of
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Figure 2.24: Residuals after Cartesian conversion for different transverse truncation or-
der (mmax). Data are on the median plane.The Fourier expansion retaining only the
quadrupole term m = 2 (a) does not include enough higher multipoles to represent accu-
rately the numerical solution given by OPERA. In figure (b), the residual of fit including
terms up to the 6th order is plotted. The maximum values for the residual are now down
to 2G and -2G in the D and F magnets respectively. The main higher harmonic that had
to be included was therefore for m = 6.
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2.3 Analytical field representation

validity of the analytical representation in Cartesian coordinate must be assessed. In

addition Fourier Series contains in theory an infinite number of modes. Realistically,

they must be truncated to a certain order in m and n. The accuracy of the fit will

depend on the strength of the truncated high orders in the original field map. On the

other hand, computation of high orders takes computational time. A compromise has

to be found between appropriate computing time and an accurate fit. Eventually the

physical meaning and the optimal value of the parameter kx related to the periodicity

of the field in the horizontal direction, must be discussed.

2.3.4.1 Truncation order of the Fourier expansion

In theory, Fourier Series solution to Maxwell’s equations may contain an infinite number

of multipole. In practise, they must be truncated to a certain order in m and n. The

accuracy of the fit will depend on the strength of the truncated higher orders in the

original field map. On the other hand, computation of high orders takes time. Beyond

some point, the higher order coefficients become sensitive to noise (from numerical

precision or inaccuracies in the field solution). Also applying the integrator (see chapter

3) takes longer with a Fourier series with many coefficients.

Since the magnets in EMMA are quadrupoles, the quadrupolar multipole m = 2 is

expected to be the largest coefficient in the Fourier expansion. In theory, the symmetry

of a magnetic field is entirely defined by the geometry of the magnet. The symmetry

of a 2m multipole consists in changing the sign of the field B → -B under a rotation

by π/m about the z axis. However extra harmonics satisfy as well this condition.

For instance in a quadrupole magnet geometry (m = 2), the symmetry of harmonics

m = 6, 10, 14 and so on, also inverses the sign of the field under rotation by π/2 and

are therefore allowed by the geometry of the magnets.

The strength of higher harmonics can be studied by increasing gradually the trun-

cation order in m. In the top left corner of figure 2.24, we observe that the residual of
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Figure 2.25: Residuals after Cartesian conversion for different longitudinal truncation
order (nmax). Data are on the median plane. We observe that the maximum value of the
residual (for x = −10mm and z = 100mm) decreases from 100G (top left corner) to 2G
(bottom left corner) when increasing the truncation order from nmax = 10 to nmax = 40.
Then keeping higher modes up n = 80 does not have significant effect on the residual.
Therefore the longitudinal truncation order chosen is nmax = 40.
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2.3 Analytical field representation

the fit including only terms up to the 2nd order reaches values of the order of 100G for

x = −10mm and z = 150mm (in the D magnet) and values of the order of -100G for

x = −10mm and z = 250mm (in the F magnet). This means the Fourier expansion

retaining only the quadrupole term m = 2 does not include enough higher multipoles to

represent accurately the numerical solution given by OPERA. On the top right corner

of the same figure, the residual of fit including terms up to the 6th order is plotted.

The maximum values for the residual are now down to 2G and -2G in the D and F

magnets respectively. The main higher harmonic that had to be included was therefore

for m = 6. The fact the residual error has opposite sign in the D magnet (z = 150mm)

and in the F magnet (z = 250mm) shows that higher transverse harmonics still have

a non-zero strength.

Including harmonics up to m = 10 in the bottom left corner, we observe that

the maximum of the maximum value of the residual is about 1G for x = −10mm

and z = 150mm but this maximum does not seem to be related to the transverse

configuration of the magnet since it is not visible in the other magnet. It is more likely

to be caused by the truncation of longitudinal modes (studied in figure 2.25). From

the bottom right corner plot, we conclude that increasing the truncation order up to

m = 14 did not have an effect on the accuracy of the fit. We therefore chose mmax = 10

as transverse truncation order.

Because magnets have finite length in the z direction, the Fourier expansion must

include longitudinal variation of the field to accurately match the numerical solution

from OPERA. The longitudinal features are decomposed as modes n in the Fourier

expansion similarly to transverse mode m. These modes represents the frequency of

oscillation of the field along the z direction. Rapid variations (in space) of the field

along z (such as magnet edges) requires high order n modes. The residuals of the fit

for longitudinal truncation order nmax = 10, 20, 40, 80 are shown in figure 2.25 (the

horizontal truncation order is mmax = 10). In all plots, the largest value of the residual
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Figure 2.26: Residuals after Cartesian conversion over a large range in x (r.h.s), and over
a region contained within the original 12mm radius reference cylinder (l.h.s). Data are on
the median plane. The exponential increase in the residuals for transverse position outside
the reference cylinder originally used for obtaining the fit can be seen clearly for large x.
Therefore performing a Fourier transform in cylindrical coordinates and then deriving the
mathematical equivalent in Cartesian coordinates conserves the ”safe zone” in the median
plane for the fit within the reference cylinder, adapted for accelerator magnet.

occurs for z = 100mm corresponding to the entrance face of the D magnet. At that

location the rate of variation of the field requires high order modes. We observe that

the maximum value of the residual (for x = −10mm and z = 100mm) decreases from

100G (top left corner) to 2G (bottom left corner) when increasing the truncation order

from nmax = 10 to nmax = 40. Then keeping higher modes up n = 80 does not have

significant effect on the residual. Therefore the longitudinal truncation order chosen is

nmax = 40.

We will see in section 2.3.4.2 that the residual obtained for that truncation order

(bottom left corner of figure 2.25), which is plotted as well in figure 2.27 was good

enough to simulate dynamics with an accuracy (with respect to the OPERA model)

smaller than the measurement precision of the machine.
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Figure 2.27: Residuals of the fit in the median plane (l.h.s) and in plane with coordinate
y=1 cm (r.h.s). In both cases, the residual increases with the transverse excursion x in
negative values. On the median plane the residual reaches a maximum of 2G at the
entrance of the D magnet. Since the field at that point is of about 2000G, the relative
error is 0.1%. More importantly the discrepancies have peak shapes in the longitudinal
direction corresponds to high order longitudinal mode. It means that their effect on the
integrated gradient is negligible. For y=1 cm, the residual has a maximum of 4G which is
also accurate enough.

2.3.4.2 Validation of the analytical description of the field in Cartesian

basis

In this section Fourier expansions are truncated to the 10th order in m and 40th order

in n meaning that higher orders are not included in the calculation of the magnetic

field.

Figure 2.27 shows the residual of the fit in the median plane on the left hand

side and in plane with coordinate y=1 cm on the right hand side. In both cases, the

residuals increase with the transverse excursion x in negative values. For y=1 cm, the

residual reaches a maximum of 4G for x=-15mm and z=110mm. In figure 2.28, we

observe that the difference in integrated field is 0.2T.mm across the entire transverse

range. Therefore closed orbit and time of flight evolutions with energy are accurately

simulated by the analytical description for vertical coordinates up to y=1 cm. We draw

the same conclusion for the tune evolution with energy since the discrepancy in terms
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Figure 2.28: Comparison of the integrated field between the numerical field map and
the analytical description in Cartesian basis. The field data are in the plane (y=1 cm).
The difference in integrated field is 0.2T.mm across the entire transverse range. The
discrepancy is of the same order as that of figure 2.16 which had small impact on the beam
dynamics (tune and time of flight).

of integrated gradient reaches a maximum of 0.02 T for x=-5mm.

Figure 2.26 shows the residuals after Cartesian conversion over a large range in x

(right hand side), and over a region contained within the original 12mm radius reference

cylinder (left hand side). Data are on the median plane. The residual increases expo-

nentially for transverse position outside the reference cylinder. On the left hand side

the residual reaches a maximum of 2G at the entrance of the D magnet (z=110mm).

The vertical component of the field at that point is about 2000G, so the relative error

is 0.1%.

In section 2.2.4 we studied the effect of magnetic field discrepancy (between “D+F”

and “D&F” configurations) on the linear dynamics (closed orbit, tune and time of flight

evolutions with energy) by evaluating the difference in terms of integrated field and in-

tegrated gradient
∫ ∂By

∂x
dz along the z axis for various transverse positions x. Closed

orbit and time of flight evolutions with energy are linked to the integrated field whereas
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Figure 2.29: Comparison of the integrated gradient between the numerical field map and
the analytical description in Cartesian basis.The field data are in the plane (y=1 cm). We
observe an exponential increase of the residual of the fit outside the 12mm radius reference
cylinder. Within this cylinder the maximum discrepancy is 0.002T for x=-9mm. Since
for the field map superposition in 2.17, we saw that such discrepancies of the same order
did not affect the dynamics we conclude that the analytical representation of the magnetic
field in Cartesian basis is accurate enough.

tune evolution with energy is related to the integrated gradient. The discrepancy in

integrated field reached 0.2T.mm for x=-2.5 cm (see figure 2.16); it resulted in dynam-

ical effects smaller than the precision measurement on the real machine (see figures

2.14(a) and 2.14(b)). The difference in tune evolution with energy was also negligible

(see figures 2.15) for a maximum discrepancy of 0.01T for the integrated gradient (see

figure 2.17).

We now compare the numerical field map and the analytical description in Cartesian

basis in terms of the integrated field and the integrated gradient respectively. The field

data are in the plane y=1 cm, upper limit of the vertical motion of the particles; the

residual decreases exponentially for smaller value of y. The difference in integrated field

is 0.2T.mm across the entire transverse range (see figure 2.28). Also figure 2.29 shows

the exponential increase of the residual of the fit outside the 12mm radius reference

71

MagneticField/figures/intgradfity1.eps


2.3 Analytical field representation

10 12 14 16 18 20
Kinetic Energy [MeV]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Tu
n
e
 p

e
r 
c
e
ll

νx  OPERA map
νx  Fit map
νy  OPERA map

νy  Fit map

(a) Tune per cell vs. energy

10 12 14 16 18 20
Kinetic Energy [MeV]

55.20

55.25

55.30

55.35

55.40

55.45

55.50

T
im
e
 O
f 
F
li
g
h
t 
p
e
r 
tu
rn
 [
n
s
]

OPERA map
Fit map

(b) Time of flight vs. energy

Figure 2.30: Comparison of tracking results in the original numerical field map and
in a field map from the analytical representation (Fourier series in Cartesian coordinates).
Particles are tracked in both maps with PyZgoubi. We observe in (a) that the agreement is
almost perfect for the time of flight from 10MeV to 20MeV. However in (b), a disagreement
in the horizontal tune of about 0.02 occurs at 10MeV; this is likely to be due to the fact
that the 10MeV orbit has a large excursion and therefore the accuracy of the analytical
representation may not be sufficient, and therefore a cylinder with larger radius would be
needed.
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cylinder. Within this cylinder the maximum discrepancy is 0.002 T for x=-9mm.

It is possible to create a numerical field map from the analytical representation by

interpolation of the field on a grid. We can then track particles in this field map (called

“fit map”) and compare with tracking result in the original numerical field map for

values of the tune and time of flight at various energies. Particles are tracked in both

maps with PyZgoubi. We observe in figure 2.30(b) that the agreement is almost perfect

for the time of flight from 10MeV to 20MeV. However in figure 2.30(a), a disagreement

in the horizontal tune of about 0.02 occurs at 10MeV; this is likely to be due to the fact

that the 10MeV orbit has a large excursion and therefore the accuracy of the analytical

representation may not be sufficient; a cylinder with larger radius would be needed.

However we will see in section 2.3.5 that the radius is limited and the solution could

be to scan the aperture with various reference cylinders.

To sum up, we have studied in this section the accuracy of the analytical description

of the magnetic field in terms of magnetic field characteristic. The small differences

with respect to the original field map in terms of integrated field
∫
Bydz and integrated

gradient
∫ ∂By

∂x
dz along the z axis for various transverse positions allowed us to conclude

that the linear dynamics can be accurately simulated with this Fourier expansion in

Cartesian basis.

2.3.4.3 Interpretation and influence of the periodicity parameter kx

As explained in the section 2.3.3.2, the functions representing the field in Cartesian

basis have an inherent periodicity in the x direction arising from the dependence on

a trigonometric function characterised by the parameter kx = π/xmax where xmax

corresponds to the wavelength of the field. In reality the magnetic field is not periodic

along the transverse Cartesian axes ~x and ~y. Nevertheless an accurate fit may be

achieved by choosing an appropriate value for kx; since the field drops to zero for

transverse position x = ±xmax the distance 2xmax corresponds to one period for which
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Figure 2.31: Residuals after transformation of the Fourier coefficient from cylindrical
basis to Cartesian basis for different periodicity criteria kx. Data are on the median plane.
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kx can be found. The value of kx is determined by optimising the fit.

Adjusting this parameter allows an optimisation of the transformation from cylin-

drical to Cartesian coordinates. The residual of the fit for several values of kx has been

plotted in figure 2.31. For kx = 1m−1 (top left corner) the residual reaches values of

300G, whereas the maximum value of the residual drops down to 2G for kx = 10m−1

(see top right corner). Hence values for xmax larger than π/10 = 0.314m do not seem

to be appropriate in this case. For kx = 30m−1 (bottom left corner), the residual

remains optimal under 2G. When kx is greater than 60 (bottom right corner), the

residual increases exponentially in the x direction. The error is of opposite sign in the

D magnet (z = 150mm) and in the F magnet (z = 250mm) which tells us that kx is

related to the transverse modes.

2.3.4.4 Summary and conclusions

In this section we have optimised the residual of the fit in Cartesian basis. We have

checked that choosing the appropriate truncation orders mmax and nmax, and the pa-

rameter kx the analytical description of the field as multipole expansion in Cartesian

basis could represent the original numerical field map given by the OPERA model. We

have shown that with the residual obtain smaller than 2G, the integrated field and in-

tegrated gradient extracted from the analytical representation were close enough to the

numerical one to simulate beam dynamics accurately. This statement was true for the

median plane (y=0) and for vertical coordinate up to y = 1cm. Transversely modes up

to m = 10 had to be kept in the expansion to include higher harmonics allowed by the

geometry of the magnet. Longitudinally, high rate of change of the magnet field at the

entrance face of the magnets required modes up to n = 40 to be included in the series.

Finally we have optimised the residual by adjusting the parameter kx related to the

periodicity of the field along the x axis. We have found that 10m−1 < kx < 30m−1

gives a minimised residual, therefore kx = 30m−1 was chosen as the nominal value for
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the rest of the study.

As a remark, we should note that the optimisation of the residual was done assuming

that the parameters were independent. It might be that the optimal longitudinal

truncation order nmax depends on the value of kx and vice-versa. The value of residual

we obtained by this method was sufficient for our study but a further study would

be needed for more complicated magnetic fields (e.g. highly non-linear scaling FFAG

magnets [12]).

In addition, we evaluated the residual for transverse position varying within x =

±15mm which does not cover the entire excursion of the particles in the EMMA FFAG.

Therefore we shall now study the range of validity of the analytical representation of

the magnetic field.

2.3.5 Geometrical limitation and range of validity

An FFAG accelerator allows large transverse excursion of the beam. In section 2.3.2,

we explained that the Fourier representation in polar basis was valid only within the

reference cylinder. Then in section 2.3.4.2, we concluded that the transformation to the

analytical representation in Cartesian basis conserved this range of validity. To obtain

an accurate fit on the whole range of the particle in EMMA, one has to start with a

cylinder with radius large enough. The radius of the reference cylinder is limited by

the geometry of the cell. The D and F magnets inscribed radius, 53mm and 37mm

respectively, contain the whole beam excursion. The maximum radius for a cylinder

going through both magnet without touching the pole should be 37mm. However in

most of lattice configurations, the magnets are not aligned. Therefore the maximum

allowed radius of a cylinder going through the whole cell is limited to 20mm (see figure

2.32) for configuration with large distance between the magnetic axes of both magnets.

A larger horizontal transverse aperture can be scanned by using several cylinders

with 12mm radius (see figure 2.32). Note that the transverse vertical excursion of the
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Figure 2.32: Geometry with various small cylinders in the aperture of the EMMA mag-
nets. Front view (l.h.s) and top view (r.h.s).
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Figure 2.33: Tune variation with energy for various positions of the reference cylinder.
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beam is expected to be smaller than 10mm.

As it was done to create figure 2.30(a), we can create a numerical field map (called

”fit map”) from the analytical representation with different transverse position of the

reference cylinder for the fit. We can then track particles in these field maps with

PyZgoubi and compare the simulation results with results for particles tracked in the

original numerical map from OPERA. We observe in figure 2.33 that the discrepancy

in the horizontal tune at 10MeV between the OPERA field map (blue line) and the fit

map decreases from 0.03 to 0.01 when the axis of the reference cylinder is located at

x=0.00m (light blue circles) and x=-0.01m (red circles) respectively; x=-0.01m means

that the axis is moved 1 cm towards the centre of the ring with respect to the transverse

position (x=0) defined as geometrical reference for the lattice.

When tracking through the fit map with the axis of the reference cylinder located

at x=-0.02m (green circles), the horizontal tune is the same as for x=-0.01m; however

we observe an offset of 0.02 in the vertical tune (green crosses) over the whole energy

range. The reason may be that the reference cylinder moved by -0.02m is close to

the pole of the magnet where the rate of change of the magnetic field is large and the

interpolation of the field between the nodes of the mesh in the FEM solution requires

a higher precision. Although it is not clear why the horizontal tune is not affected. A

further study is required to get a deeper understanding of this effect.

An optimal solution for this geometrical limitation would consist in fitting an elliptic

cylinder in the aperture. The basis of functions required involves Mathieu functions

[33]. The fit and the transformation to Cartesian coordinates are more challenging. A

further study could be dedicated to this subject.

2.3.6 Another case study: non-linear magnet for the PAMELA FFAG

To validate this method, we applied the same process to the periodic cell designed for

the proton FFAG accelerator PAMELA [17]. The cell is a triplet composed of three
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magnets, alternatively focusing, defocusing and focusing. The design of the PAMELA

ring was done such that the tune variation is small during acceleration. To do so, the

magnetic field is mainly quadrupolar but contains nonlinear components: sextupolar,

octupolar and decapolar components [36]. The vertical component of the magnetic field

in the median plane is shown in figure 2.34(a). We observe that the maximum value

of the magnetic field reaches 1.5 T which is close to the limit of conventional magnets.

Hence PAMELA has been designed with superconducting magnets.

Figure 2.34(b) shows the residual of the fit in Cartesian coordinates. The truncation

order is mmax= 14 and nmax= 100. The residual increases at the entrance and exit

face of the cell because the magnet field at these points is not exactly zero whereas the

basis of functions we used in that case assumed a zero magnetic field. This could be

fixed by extending the basis of functions to the equations 2.18, 2.19 and 2.20.

Far from the edges, the residual oscillates along the z direction below 2G which

corresponds to 0.0001% of the maximum magnetic field. We can therefore conclude

that the fit can be applied to magnets with some nonlinear components. To generalise

this result, a similar study should be applied to a highly nonlinear field of a scaling

FFAG magnet.

2.4 Conclusions

In this chapter, the process to create a convenient representation of the magnetic field

in the EMMA cell has be developed. The starting element was the study of an already

existing OPERA model of the EMMA magnets. We figured out the optimal number of

mesh elements (9 million) for the Finite Element Method resolution. This threshold was

evaluated by looking at the result of beam dynamics simulations (closed orbit position,

time of flight and tune per cell) using different mesh configurations. Discrepancies of

greater than the precision of measurement in the real machine have been considered as
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Figure 2.34: (a):Vertical component of the magnetic field in the median plane of the
PAMELA triplet.(b):The residual of the fit in the median plane (y=0 cm). The residual
increases with the transverse excursion x in negative values. On the median plane the
residual reaches a maximum of 2G at the entrance of the D magnet. Since the field at that
point is of about 2000G, the relative error is 0.1%. More importantly the discrepancies
have peak shapes in the longitudinal direction corresponds to high order longitudinal mode.
It means that their effect on the integrated gradient is negligible. For y=1 cm, the residual
has a maximum of 4G which is also accurate enough.

negligible.

The numerical field map representing the EMMA cell could be built in two different

ways: either by considering both magnets in the same model or by adding the field

created by each magnet independently. When computing a field map created by one

magnet, the yoke of the magnet unpowered has to be included in the geometry. Studying

the beam dynamics in these configurations, we concluded that the dynamics could be

accurately modelled using superposed maps. With the assumption that this is true

when varying the strengths of the magnets, many different EMMA lattices can be

studied with few field maps of D and F magnets, varying their relative strengths and

adding them.

Once the magnetic field has been computed in a numerical format, we developed

an algorithm that fits a power series to those data. Considering the symmetries of
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the system, the fit was first performed in polar cylindrical coordinates. Since beam

dynamics are usually expressed in Cartesian coordinates, a mathematical equivalent of

this power series was derived. This analytical solution was then compared with the

original numerical field. The power series truncation order has been optimised looking

at the magnitude of the residual between analytical and numerical representations.

Modes up to the 10th and 40th order have been included considering transverse and

longitudinal directions respectively. In addition the parameter kx representing the

“pseudo” periodicity of the field in the transverse horizontal direction have been fixed

to kx = 30m−1 minimising the residual.

Finally geometrical limitations due to the non alignment of the magnetic axes of the

magnets have been addressed. The computation of several sets of coefficients fitting the

data with different transverse positions allows coverage of the whole aperture. Small

cylinders will be used for lattice configurations where the transverse excursion of the

beam is larger that the maximum radius allowed for the reference cylinder.

The next step of our study was to develop an integrator solving the equations of

the beam dynamics in the magnetic field obtained in analytical form from our model.
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Computation of a dynamical map

3.1 The accelerator Hamiltonian

The basic and very first idea in studying particle accelerators is to understand the

dynamics of charged particles in an electromagnetic field. This problem has been

largely studied in classical mechanics, through three main fundamentally equivalent

approaches : Newtonian, Lagrangian and Hamiltonian. In each approach, the physics

of the system is contained in a function, respectively the force, the Lagrangian and

the Hamiltonian. Figuring out the dynamics of the system consists in deriving these

functions and solve the equations of motion. According to Newtonian mechanics, the

equation of motion is given by:

d

dt
mẋ = F(x, ẋ; t) , (3.1)

where F is the force, x = (x, y, z) is the vector position, and ẋ = (ẋ, ẏ, ż) is the vector

velocity. The dot over a variable corresponds to its derivative with respect to time. In

an accelerator, the main force for a particle of charge q moving in an electric field E(x)
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and magnetic field B(x) is the Lorentz force defined as:

F = q(E+ ẋ×B) . (3.2)

In Lagrangian mechanics, the equations of motion for a dynamical system is given

by the “Euler-Lagrange equations”:

∂L

∂qi
− ∂

∂t
(
∂L

∂q̇i
) = 0 (3.3)

where qi are components of q, vector of the generalised coordinates of the system, and

L(q,q̇;t) is the Lagrangian of the system. In that case physics consists in deriving the

Lagrangian of the system. It is often defined as:

L = T − V , (3.4)

where T is the kinetic energy of the system, and V is the potential energy. In the case

of motion in one degree of freedom of a particle with kinetic energy T and potential

energy V given by:

T =
1

2
mẋ2 V =

1

2
mω2x2 , (3.5)

the Lagrangian is then:

L = T − V =
1

2
mẋ2 − 1

2
mω2x2 (3.6)

Using (3.3), we find the equations of motion:

d2x

dt2
= −ω2x . (3.7)

An advantage of this method is that the equation of motion can be written for any
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convenient set of coordinate variable qi. Note that in the Euler Lagrange equations each

variable is treated separately even if by definition they are related by differentiation (ẋ

is the rate of change of x). We notice as well that for a motion in n degrees of freedom,

we obtain n second order differential equations.

Representing the dynamics using first-order equations has certain advantages con-

cerning linear methods, stability analysis, etc. To transform the second order equation

in first order equation, one can derive two quantities from the Lagrangian L as follows:

pi =
∂L

∂ẋi
, (3.8)

H =
∑

i

ẋipi − L , (3.9)

with as usual

ẋi =
dxi
dt

. (3.10)

The components pi are the momenta conjugate to the coordinates xi and H is called

the Hamiltonian of the system. Given the Hamiltonian H(xi, pi; t), the equations of

motion are derived in the following manner:

dxi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H

∂xi
, (3.11)

These equations of motion are then first order differential equations.

In Hamiltonian mechanics, the state of a system at any time is defined by specifying

values for the coordinates x (or more generally q) and the momentum p. Consider the

Lagrangian defined in (3.6), the conjugate momentum is :

pi =
∂L

∂ẋi
= mẋi. (3.12)
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We note that in that case the conjugate momentum is equal to the mechanical mo-

mentum mẋ. This is not always the case. Now consider the Lagrangian describing a

non-relativistic particle with two components to its potential energy: a scalar function

Φ(x) of position and a vector potential A(x) :

L =
1

2
ẋ2 − Φ(x) +A(x) · ẋ (3.13)

Note that in general A and Φ can also be functions of time. From (3.8), the conjugate

momentum is:

pi =
∂L

∂ẋi
= mẋi + qAi, (3.14)

and the Hamiltonian is:

H = p · ẋ− L =
(p− qA)2

2m
+ qΦ , (3.15)

In this case the conjugate momentum is not equal to the mechanical momentum pm =

mẋ, but has an additional contribution, qA.

To summarise, we have seen in the first section that a physical system can be

studied in Newtonian, Lagrangian and Hamiltonian approach. We observed that the

Hamiltonian approach was the only one keeping the equation of motion as first-order

differential equations. We shall now describe the Hamiltonian approach for relativistic

particles.
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3.1.1 The relativistic Hamiltonian

3.1.1.1 Expression of the Hamiltonian

In Special Relativity, Einstein’s equation relating energy E and mechanical momentum

pm of a particle with rest mass m is:

E2 = p2mc2 +m2c4 . (3.16)

Note that pm is the mechanical momentum. The Hamiltonian can often take the form:

H = T + V , (3.17)

where T is the kinetic energy and V is the potential energy. This means that the

Hamiltonian corresponds to the total energy of the system expressed in canonical vari-

ables. From (3.16) the relativistic Hamiltonian, in the absence of an electromagnetic

field, becomes:

H =
√

p2c2 +m2c4 , (3.18)

When considering the electromagnetic field for the non-relativistic case we found

that the conjugate momentum was expressed as :

p = mẋ+ qA, (3.19)

By identification, for the relativistic case the Hamiltonian becomes:

H =
√

(p− qA)2c2 +m2c4 + qΦ , (3.20)

where A is the vector potential and Φ a scalar potential. From this Hamiltonian,
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Hamilton’s first equation, (3.11), will give:

dx

dt
=

∂H

∂px
=

c(px − qAx)√
(p− qA)2 +m2c2

. (3.21)

Rearranging the last equation gives:

p− qA = βγmc , (3.22)

where β and γ are the relativistic factors. Note that βc = ẋ + ẏ + ż. Equation (3.22)

gives the canonical momentum :

p = βγmc+ qA . (3.23)

Hamilton’s second equation, gives:

dpx
dt

= −∂H

∂x
=

qc√
(p− qA)2 +m2c2

×
[
(px − qAx)

∂Ax

∂x
+ (py − qAy)

∂Ay

∂x
+ (pz − qAz)

∂Az

∂x

]

−q
∂φ

∂x
. (3.24)

Using equation (3.23) results in the simpler form:

dpx
dt

= q

(
ẋ
∂Ax

∂x
+ ẏ

∂Ay

∂x
+ ż

∂Az

∂x

)
− q

∂φ

∂x
, (3.25)

where ẋ = βγmc, mechanical momentum. If we define the fields E and B given by:

E = −∇Φ− ∂A

∂t
, and B = ∇×A , (3.26)
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then equation (3.25) can be rewritten, in the form:

d

dt
(p− qA) = q(E+ ẋ×B) (3.27)

where ẋ = (ẋ, ẏ, ż). We identify clearly E and B as the electric and magnetic fields

respectively. Hence equation (3.27) is equivalent to the Lorentz force equation (3.2).

This proves that the dynamics corresponding to the Hamiltonian H derived in this

section (see (3.20)) are equivalent to the dynamics in the Newtonian approach.

3.1.1.2 Path length as independent variable

In the Hamiltonian approach, treating independently coordinates and conjugate mo-

menta, equations of motions are kept to first-order differential equations. The dynamics

of a particle are described by expressing the dynamical variables as function of the inde-

pendent variable t. In the present case, t is the time variable. However in accelerators

we do not generally know when a particle reaches a particular lattice element but

instead we know where each lattice element is situated along the beam line. In an

accelerator beamline, the Hamiltonian is a function of the position along the beamline.

Therefore choosing the path length s as independent variable is more convenient than

the time t. A new Hamiltonian has to be written with s as independent variable and

coordinates and canonical momenta as canonical variables. To do so, we use an equa-

tion that relates the canonical variables, the Hamiltonian and the independent variable

t.

Consider the principle of least action: the Euler-Lagrange equations define a path

in a plot of q̇ vs q for which the action S is minimum:

δS = δ

[∫ t1

t0

Ldt

]
= 0 . (3.28)
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From equation (3.15) we can express the action in terms of the Hamiltonian:

S =

∫ t1

t0

(pxẋ+ pyẏ + pzż −H)dt . (3.29)

The particles coordinates and momenta are defined with respect to a reference trajec-

tory. We choose our coordinates so that the z axis defines the reference trajectory. The

action can be expressed with z as integration variable instead of t:

S =

∫ z1

z0

(pxx
′ + pyy

′ + pz −Ht′)dz , (3.30)

where the prime indicates derivatives with respect to z. In equation (3.29) the canonical

variables were:

(x, px), (y, py) (z, pz) , (3.31)

We deduce that the canonical variables with z as independent variable (equation (3.30))

should be:

(x, px), (y, py) (−t,H) , (3.32)

and use for the Hamiltonian H1 = −pz. In this section H was identified as the energy

of the system. The canonical momentum conjugate to the variable −t is now the total

energy of the particle E.

Rearranging equation (3.20) we can derive an expression for pz and H1:

H1 = −pz = −
√

(E − qφ)2

c2
−m2c2 − (px − qAx)2 − (py − qAy)2 − qAz . (3.33)

3.1.1.3 Reference momentum

The description of the dynamics consists in expressing the canonical variables as func-

tion of the independent variable (with respect to a chosen reference trajectory). It is

convenient to choose the reference trajectory such that values of the variables remain
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small. As explained in the next section 3.1.1.5, this allows useful approximations to be

made. To start with, we define a reference momentum P0. The nominal momentum of

particles in the accelerator under study is in general a suitable choice for the value of

P0.

We make the substitutions:

pi → p̃i =
pi
P0

, and H1 → H̃ =
H

P0
, (3.34)

Then the Hamiltonian equations are unchanged and the new Hamiltonian is given by:

H̃ = −
√

(E − qφ)2

P 2
0 c

2
− m2c2

P 2
0

− (p̃x − ax)2 − (p̃y − ay)2 − az , (3.35)

where the normalised vector potential a is defined by:

a = q
A

P0
, (3.36)

where q is the electric charge of the particle.

The largest contribution to the particle total momentum is the longitudinal mo-

mentum since particles are travelling at high speed through accelerators, usually close

to speed of light. The transverse normalised momenta p̃x, p̃y will now be small but from

Einstein’s equation (3.16) the longitudinal normalised momentum E/P0 will generally

be close to the speed of light, c. To overcome this issue we perform a new transfor-

mation of canonical variable. A transformation from one set of canonical variables to

another is called a canonical transformation. There is a useful recipe (or rather, set of

recipes) for constructing canonical transformations. The technique developed in more

details in appendix B is based on generating functions [31, 41]. We use a generating

function of the second kind, function of the “old” coordinates and the “new” momenta

90



3.1 The accelerator Hamiltonian

given by:

F2(x, Px, y, Py ,−t, δ, s) = xPx + yPy +

(
s

β0
− ct

)(
1

β0
+ δ

)
, (3.37)

where Px, Py and δ are the new momentum variables, and β0 is the normalised velocity

of a particle with the reference momentum P0. With the help of equations:

p̃i =
∂F2

∂qi
Qi =

∂F2

∂Pi
K = H̃ +

∂F2

∂z
, (3.38)

we find that the transverse variables remain unchanged,

p̃x = Px X = x

p̃y = Py Y = y . (3.39)

The momenta Px and Py will therefore remain small (i.e. Px << 1, Py << 1). The old

and new longitudinal variables are related by:

E

P0c
= c(

1

β0
+ δ) and Z =

z

β0
− ct. (3.40)

The new Hamiltonian K is then:

K =
δ

β0
−

√(
1

β0
+ δ − qφ

P0c

)2

− (Px − ax)2 − (Py − ay)2 −
m2c2

P 2
0

− az , (3.41)

By rearranging equation (3.40) the “energy deviation” δ is expressed as:

δ =
E

P0c
− 1

β0
. (3.42)

We see that for a particle travelling with the reference momentum P0, δ is zero. There-

fore if the reference momentum is wisely chosen, this canonical variable will also remain
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small. Let us define this accelerator Hamiltonian K using standard notations. For that

we rewrite:

K → H, Pi → pi =
γmẋ+ qAi

P0
, z → s , Z → z , (3.43)

By this we define the variable s as the path length covered by the reference particle and

the variable z is related to the longitudinal position relative to the reference particle.

We then arrive at the so-called “accelerator Hamiltonian”:

H =
δ

β0
−

√(
1

β0
+ δ − qφ

P0c

)2

− (px − ax)2 − (py − ay)2 −
1

γ20β
2
0

− az , (3.44)

where mc
P0

= 1/γ0β0 with γ0 = 1√
1−β2

0

. This Hamiltonian depends on coordinate x, y

and z only through the potential vector ai; To get a sense of the solution of the dynamics

given by this accelerator Hamiltonian, we consider the simple example of a field free

region.

3.1.1.4 Dynamics in a field free region

In a field free region equation (3.44) becomes

H =
δ

β0
−

√(
1

β0
+ δ

)2

− p2x − p2y −
1

β2
0γ

2
0

(3.45)

THe Hamiltonian does not depend on the coordinates therefore from Hamilton equa-

tions the momenta are constant (with respect to the independent variable s):

∆px = 0 , ∆py = 0 , ∆δ = 0 . (3.46)
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For a field free region of length L, the transverse coordinates then will change as:

∆x =
pxL√(

1
β0

+ δ
)2

− p2x − p2y − 1
β2
0
γ2
0

, (3.47)

∆y =
pyL√(

1
β0

+ δ
)2

− p2x − p2y − 1
β2
0
γ2
0

. (3.48)

The change in the longitudinal coordinates is given by

∆z =
L

β0
−

L( 1
β0

+ δ)
√(

1
β0

+ δ
)2

− p2x − p2y − 1
β2
0
γ2
0

. (3.49)

In these equations (3.47), (3.48) and (3.49), the values of the canonical variables at

the exit of the region are expressed as functions of their values at the entrance of the

region. Such relations are called the dynamical map of the region.

An interesting result is the fact that even for the simple example of a drift space, the

exact solution for the dynamics is not linear since the final value do not vary linearly

with the initial values of the variables. However it is possible to describe the dynamics

linearly by making Taylor expansions for the changes in coordinates (3.47), (3.48) and

(3.49). Taylor expansions are valid for small values of the variables justifying the

effort put in choosing the most convenient set of canonical variables in section 3.1.1.3.

Because the approximation is made on the exact solutions, these solutions are not exact

any more. It will be explained in section 3.1.2 that an important characteristic of a

transformation (e.g. change of the canonical variables along a beam line) that satisfies

Hamilton’s equations is its symplecticity. That is, the volumes of small elements in

phase space must be conserved. Conserved quantities are important for an number

of reasons; for example they can be used to estimate the accuracy of analytical and

computational calculations.

Making an approximation on the solution of the Hamilton’s equation violates the
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symplecticity of the dynamics. To express the dynamics in a linear form and still

conserve symplecticity, we can approximate directly the Hamiltonian such that the

solutions are linear. Solutions are still not exact but are symplectic.

The so-called paraxial approximation consists in expanding the relativistic Hamil-

tonian to second order in canonical variables. Beamline elements whose effect on the

beam can be described by this approximation are called linear element. To illustrate

this technique, we can derive the linear map of a quadrupolar field.

3.1.1.5 The paraxial approximation for a quadrupolar field

The magnetic field inside a normal quadrupole is given by:

Bx = b2
y

ρ0
, By = b2

x

ρ0
, Bz = 0 , (3.50)

where the coefficient b2 describes the strength of the quadrupole field. The above field

components can be derived from the potential:

Ax = 0 , Ay = 0 , Az = −1

2

b2
ρ0

(x2 − y2) . (3.51)

The longitudinal component of the normalised potential vector az is therefore given by:

az = q
Az

P0
= −1

2

q

P0

b2
ρ0

(x2 − y2) , (3.52)

The Hamiltonian describing the motion inside a quadrupole, using the usual accel-

erator variables, is:

H =
δ

β0
−

√(
1

β0
+ δ

)2

− p2x − p2y −
1

γ20β
2
0

− az , (3.53)

with q being the charge of the particle and P0 the reference momentum. To simplify
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this expression we define the normalised quadrupole gradient k1 given by:

k1 =
q

P0

b2
ρ0

, (3.54)

then the Hamiltonian can be rewritten as:

H =
δ

β0
−

√(
1

β0
+ δ

)2

− p2x − p2y −
1

γ20β
2
0

− 1

2
k1(x

2 − y2) . (3.55)

This Hamiltonian does not have an exact closed form solution; however expanding it

to second order in the dynamical variables (making the paraxial approximation) we

construct the Hamiltonian:

H2 =
1

2
p2x +

1

2
p2y +

1

2
k1x

2 − 1

2
k1y

2 +
1

2γ20β
2
0

δ2 . (3.56)

Comparing with the description of the Hamiltonian as H = T + V , T and V being the

kinetic and potential energy respectively, equation (3.56) resembles the Hamiltonian for

an harmonic oscillator; the terms 1
2p

2
x,

1
2p

2
y and 1

2γ2
0
β2
0

δ2 compose the kinetic energy K

and the terms 1
2k1x

2 and 1
2k1y

2 horizontally focusing potential and vertically defocusing

potential respectively. There is no focusing in the longitudinal direction. The solutions

to Hamilton’s equations in the horizontal plane for the harmonic oscillator are given

by:

x(L) = x(0) cos ωL+ px(0)
sinωL

ω
(3.57)

px(L) = px(0) cos ωL− ω sinωL (3.58)

where ω =
√
kL. Solutions in the vertical plane are similar to equations (3.57) and

(3.58), using hyperbolic functions sinh and cosh instead of sine and cosine functions.
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In the longitudinal plane solutions are given by:

z(L) = z(0) + δ0
L

2γ20β
2
0

(3.59)

δ(L) = δ0 (3.60)

The equation of motion in a beamline element can be written using linear algebra. If

xinitial and xfinal are vectors of initial coordinates and final coordinates respectively,

then the dynamics are written as: xfinal = R · xinitial, where R is a matrix also called

the transfer map of a beamline element. In the case of a quadrupole, R is given by:

R =




cosωL sinωL
ω

0 0 0 0

−ω sinωL cosωL 0 0 0 0

0 0 coshωL sinhωL
ω

0 0

0 0 ω sinhωL coshωL 0 0

0 0 0 0 1 L
γ2
0
β2
0

0 0 0 0 0 1




(3.61)

Note that a direct consequence of constraints from Maxwell’s equations is that it is

impossible to built a quadrupole focusing (or defocusing) in x and y simultaneously.

3.1.2 Symplectic transport

Conserved quantities are very useful for verifying the accuracy of analytical and com-

putational calculations. We will show in this section that using the property of the

symplecticity Hamiltonian systems are conservative systems. That is, areas of phase

space elements (areas defined in a plot of the conjugate momentum vs the corresponding

coordinate) are conserved for all Hamiltonian systems.
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3.1.2.1 Definition of symplecticity

A matrix M is symplectic if it satisfies:

MT · S ·M = S , (3.62)

where S is a 2n× 2n matrix with block diagonals:

S2 =




0 1

−1 0


 . (3.63)

S has interesting characteristics such as:

ST = −S (3.64)

S2 = −I (3.65)

where I is the 2n× 2n identity matrix.

3.1.2.2 Symplecticity in Hamiltonian mechanics

Let us consider a vector x of canonical (phase space) variables given by:

x = (x, px, y, py, z, δ) , (3.66)

and the values of the canonical variables at any position along the reference trajectory

is defined by:

X = X(x(s);∆s) , (3.67)

We will prove that the Jacobian of this transformation given by:

Jij =
∂Xi

∂xj
, (3.68)
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satisfies :

JT · S · J = S , (3.69)

where S is defined in (3.63). In other words, the Jacobian of a transformation of the

phase space variables in an Hamiltonian system is symplectic. For short, the trans-

formation (also called map) is itself said to be symplectic. Using the S matrix from

(3.63), Hamilton’s equation can be rewritten:

dx

ds
= S · ∂H

∂x
(3.70)

In this case, we choose s as independent variable for the Hamiltonian H. The transport

of variables in the system are linked to the Jacobian by:

dX

ds
=

∂X

∂x
· dx
ds

= J · S · ∂H
∂x

(3.71)

Also we have:

∂H

∂x
= JT · ∂H

∂X
(3.72)

Therefore:

dX

ds
= J · S · JT · ∂H

∂X
(3.73)

The variables X are also canonical variables and their evolution is determined by the

same Hamiltonian H. Therefore as in equation (3.70), we have:

dX

ds
= S · ∂H

∂X
(3.74)

Eventually from equations (3.73) and (3.74) it follows that :

J · S · JT = S , (3.75)
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Using the properties:

S−1 = ST = −S, and (J−1)T = (JT )−1 , (3.76)

Equation (3.75) is written as the symplecticity condition:

JT · S · J = S . (3.77)

Hence the Jacobian of a map from s to s+∆s in an Hamiltonian system is symplectic.

3.1.2.3 Liouville’s theorem

To understand the physical meaning of symplecticity, let us consider the area A defined

in two-dimensional phase space by the vectors v1 and v2 is given by:

A = |v1 × v2| = v1
T · S · v2 . (3.78)

As the system evolves the transformation M(s) is applied to the vectors :

v1 → v1
′ = M(s) · v1 and v2 → v2

′ = M(s) · v2 (3.79)

The area of the new section defined by the vectors v′1 and v′2 is given by:

A′ = v1
′T · S · v2′ (3.80)

= v1
T ·M(s)T · S ·M(s) · v2 (3.81)

It is obvious in equation (3.81) that if M(s) is symplectic the area A′ is equal to A.
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px

x

v1

v2

v2

v1

In the case if a linear transformation, the area bounded by the vector v1 and v2

of any length is preserved (see figure 3.1.2.3). The argument can be extended to the

nonlinear case by considering infinitesimal areas. Also, note that in more than one

degree of freedom there is more than one conserved quantity. It is known as Liouville’s

theorem.

In accelerator physics without dissipative forces (such as synchrotron radiation), Li-

ouville’s theorem tells us that the phase space volume occupied by a bunch of particles,

called the emittance of a bunch, is conserved with the motion of this bunch through

the accelerator. This outlines another interesting reason to use Hamiltonian mechanics:

dissipative forces can be quantified by their contribution to the loss of symplecticity.

In this section we gave a main reason for using Hamiltonian mechanics in accel-

erator. We proved that in a system governed by Hamilton’s equations, the Jacobian

of a transformation of the phase space variables is symplectic. Applying Liouville’s

theorem, we concluded that therefore a phase space volume defined by these variables

is conserved through that transformation.

In accelerator physics, we use the term “map” to refer to a transformation corre-

sponding to the change of the phase space variables along the reference trajectory. The

variables after the change expressed as function of the starting variables are canon-
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ical since the transformation is symplectic. This transformation can therefore also

be described as a transformation from a set of canonical variables to another set of

canonical variables, also called canonical transformation. This tool can be used when

Cartesian coordinates are not the most appropriate variables to describe the dynamics.

To identify a useful set of canonical variable, we will first develop the consequences of

symplecticity on a general beamline element defined by a symplectic transfer matrix.

3.1.3 Linear optics in periodic beamline

In this section we will develop the consequences of symplecticity in the analysis of

dynamics in periodic, uncoupled linear beamlines. We will see that the phase space

volume conserved through symplectic transformation can be defined by parameters

called Twiss parameters. Eventually we will derive a set of canonical variables -action-

angle variables- useful for dynamics in periodic beamlines.

In the case of uncoupled linear dynamics, the projection of the conserved volume

in each phase space (x,px), (y,py) and (z,δ) is an ellipse. To prove this, let us consider

a symplectic transfer matrix R. Generally the transfer 2× 2 matrix for the horizontal

motion can be written:

R2 = I2 cosµx + S2 · A2 sinµx (3.82)

where I2 is the 2 × 2 identity matrix, µx is a parameter, S2 is one of the 2 × 2 block

diagonal of S, and A2 is a 2× 2 symmetric matrix. The matrix R2 has four degrees of

freedom and so has the right hand side of equation (3.82) with the parameter µx and

the three coefficient of A2. Therefore in periodic lattices, there is a unique set of four

parameters at each location in a beamline period. Let us define αx, βx and γx such

that:

A2 =




γx αx

αx βx


 . (3.83)
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R2 is symplectic:

RT
2 · S · R2 = S . (3.84)

which applied to the right hand side of (3.82) gives:

βxγx − α2
x = 1 . (3.85)

If R2 is symplectic, applying the result from (3.85) gives:

RT
2 · A2 · R2 = A2 . (3.86)

which means that the matrix A2 is also an invariant of the motion through the period

defined by R2. Moreover if we construct the quantity Jx:

Jx =
1

2
(x px) ·A2 ·




x

px


 . (3.87)

Propagating a particle through the cell we also have:




x

px


 → R2 ·




x

px


 . (3.88)

Therefore propagating Jx through the cell substituting (3.86) into (3.87) and using

(3.88):

Jx → 1

2
(x px) ·RT

2 · A2 · R2 ·




x

px


 = Jx , (3.89)

we observe that Jx is also an invariant of the motion through the symplectic element.
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Using the parameter defined in (3.83), Jx is given by:

Jx =
1

2
(γxx

2 + 2αxxpx + βxp
2
x) (3.90)

Since we have seen that Jx is constant we identify in (3.90) the equation of an ellipse

in phase space (x,px) (with βx and γx of same sign). The shape of the ellipse is defined

by the parameters αx, βx and γx known as the Twiss parameters. Jx is usually called

the action of a particle. The area of the ellipse is equal to 2πJx.

For the periodic case, there exists a unique set of Twiss parameters at each location

along the beamline. Thus the Twiss parameters characterise the beamline rather than

the beam. They are periodic with the lattice and therefore the shape of ellipse also

varies periodically with the lattice having the same shape at the corresponding point

in each of the cells in the beamline.

To understand the implications of this, let us take a simple example. A particle is

launched in a lattice composed of a succession of identical cells, the starting conditions

of this particle can be plotted as a point in phase space. The shape of the ellipse and

the action are not known at this point yet. The position of this particle is recorded

at the entrance of each cell (corresponding to the starting point in the first cell) and

plotted in phase space. All the points will then trace out an ellipse from which the

Twiss parameter and the action of the particle can be derived. In theory, there is no

reason for a particle to perform a complete turn around the ellipse after each cell. This

is because the trajectory of a particle is not necessarily periodic with the lattice. We

will see in the next section that the increase in angle around the ellipse in phase space

is called the phase advance.

It is also interesting to note that if the position of a particle is the same at the

entrance of each cell, the phase space representation of its trajectory will be point-like.

This point is called a closed orbit since if we consider a complete turn around the
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machine, the position of the particle at the end of the turn will be the same as the

starting position. The orbit is therefore closed. In a purely periodic lattice a particle

travelling on the closed orbit will have the same position in phase space at the entrance

of each cell. In reality, successive cells in a lattice are not strictly identical because of

errors introduced during manufacturing and installation. Therefore a particle starting

on the closed orbit comes back to the same position only after one complete turn.

A particle launched away from the closed orbit will take different position on the

ellipse after each turn and therefore perform oscillations around the closed orbit (in

coordinate x and in momentum px). The oscillations in x are called betatron oscillations

and therefore the ellipse is often called the betatron ellipse.

We shall now identify a set of canonical variable that takes advantage of this

parametrisation of the beamline.

3.1.4 Action-angle variables

In order to specify the location of a particle in phase-space we need to know the co-

ordinate x and the conjugate momentum px. An alternative way for this specification

is to give the action Jx and the position (or angle) φx around the phase-space ellipse.

The action Jx and angle φx can be defined so that:

x =
√

2βxJx cosφx ,

px = −
√

2Jx
βx

(sinφx + αx cosφx) . (3.91)

We deduce that:

tan φx = −αx − βx
px
x

, (3.92)

2Jx = γxx
2 + 2αxxpx + βxp

2
x . (3.93)
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It turns out that (φx, Jx) form a pair of canonical variable, φx being the coordinate

and Jx the conjugate momentum. This can be proved by identifying a transformation

that changes (x, px) into (φx, Jx) and which is canonical. We saw in section 3.1.1.3 that

generating functions are a useful recipe to construct canonical transformation. It can

be shown [31, 37] that (φx, Jx) can be derived from the generating function of the first

kind F1(x,Φx) given by:

F1 = F1(x, φx) = − x2

2βx
(tan φx + αx) . (3.94)

The equation of motion expressed in terms of action-angle variables must be derived

from an Hamiltonian H that needs to be defined. Since the action Jx is constant, from

the first Hamilton’s equation:

dJx
ds

= − ∂H

∂φx
= 0 (3.95)

we deduce that the Hamiltonian must be independent of φx. Note that equation (3.95)

is true for linear system (and certain special nonlinear cases). In addition, in the

paraxial approximation the Hamiltonian is second order in (x, px). Since Jx is also

second order in (x, px), the Hamiltonian must be linear in Jx. Also the Hamiltonian

generally involves a momentum term px/2. From equation (3.91) we deduce:

H =
Jx
βx

. (3.96)

The Hamiltonian from (3.96) provides a convenient equation of motion derived from

Hamiltonian equations:

dJx
ds

= − ∂H

∂φx
= 0 (3.97)

dφx

ds
=

∂H

∂Jx
=

1

βx
(3.98)
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We observe from equation (3.98) that the rate of change the angle variable φx is propor-

tional to the inverse of the function βx(s). The change in angle variable when moving

from one point to another along the beamline is often called the phase advance and is

given by:

∆φx =

s+∆s∫

s

1

βx
ds . (3.99)

Note that from equation (3.91), Φx can be interpreted as the phase related to the

betatron oscillation of a particle and βx as the betatron wavelength. Since in a periodic

lattice the beta function is periodic, the phase advance over an entire single cell is the

same, no matter what starting point is chosen for the cell. This means that the angle

performed on the ellipse over one cell is constant.

The phase advance over one turn in a ring is called the betatron tune νx and given

by:

νx =
∆φx

2π
=

C0∫

0

1

βx
ds . (3.100)

where C0 is the path length for one complete turn following the reference trajectory.

It appears in equation (3.100) that the betatron tune corresponds to the number of

oscillation made in one complete turn. νx is very important quantity in FFAG because

if for instance it is an integer it tells that a particle oscillating around the closed orbit

will perform a certain number of entire oscillations and come back at the position in

transverse phase space after one turn. Therefore if there is a dipole error in the ring

that kick slightly the particle towards the wall of the beam pipe, turn after turns, the

particle will see the same kick and the deviation will add up until it is lost. This is the

resonance phenomenon seen in section 1.3.3 of the introduction chapter. There exist

several orders of resonances having cumulative effect on the beam if the tune is either

an integer, half an integer or more generally a “simple” fraction of an integer. The

stability of a lattice depends on the distance from a resonance (in tune space) and on
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the strength of any effect driving the resonance. To design a stable lattice, the value

for the horizontal tune νx and the vertical tune νy must be carefully set. The strength

of the resonance will depend on the accuracy of the construction of the machine.

3.1.5 Summary and conclusions

In this section, we saw that the equation of motion of a particle in an electromagnetic

field could be derived from Hamilton’s equations. A first advantage of the Hamiltonian

approach was the fact that equations of motion were first order differential equations

whereas other approaches involved higher orders.

We then derived the accelerator Hamiltonian for relativistic particles choosing the

path length as independent variable and defining a reference momentum to keep small

values for the canonical variables, allowing us later on to use the paraxial approxima-

tion.

We then applied the Hamiltonian approach to the study of the dynamics to a

field free region. We observed that even for a simple field free region the dynamics

were not linear, raising questions about the accuracy of linear tracking codes. The

dynamical map could be linearised by making a Taylor expansion at the cost of losing

symplecticity. However taking the example of a quadrupolar field, we derived linear

solutions while conserving symplecticity by making a Taylor expansion to second order

of the Hamiltonian itself (paraxial approximation) and solving Hamilton’s equations.

The symplecticity condition led to Liouville’s theorem in accelerator physics stating

that volumes in phase space were conserved with motion through a conservative system.

In periodic, linear and uncoupled beam line, a particle passing along one period of the

beamline maps out an ellipse in phase space when observed at a given point in each

successive period. The area of the ellipse is an invariant of the particle motion, equal

to 2πJ , where J is the action. The action is the conjugate momentum to the angle

variable.
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From the second Hamilton’s equation, the phase advance was defined as the varia-

tion of the angle variable from one point to another along the beamline. We could then

define the tune (phase advance over a complete turn in a ring), which will be a key

characteristics of the dynamics in an accelerator and especially in a non scaling FFAG

regarding the stability of the lattice and the effect of resonances introduced by errors.

3.2 Generation of dynamical maps

We shall now explain how to construct a dynamical map for accelerators elements. We

have already built the dynamical map for a drift space in section 3.1.1.4 but in that

case Hamilton’s equations could be solved exactly. We will show in a first section a

technique for constructing maps for accelerator elements: Lie transformation.

We will see that the Lie transformation provides a symplectic representation of the

map in implicit form (i.e. in a form that requires further algebraic manipulations before

the map can be applied by direct substitution of the values for the dynamical variable).

Lie transformations can be expressed (explicitly) as power series useful for tracking

particles but their truncation makes the map no longer symplectic. Therefore we will

describe a possible method for constructing a representation that is both explicit and

symplectic. The method develop will be a symplectic integrator based on the Yoshida

factorisation generalised by Wu et al. to a general magnetic field.

3.2.1 Example of non-integrable Hamiltonian: a sextuple magnet

The Hamiltonian for a sextuple is given by:

H =
δ

β0
−

√(
1

β0
+ δ

)2

− p2x − p2y −
1

γ20β
2
0

− az , (3.101)
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where az is the potential vector given in this case by:

az(x, y) =
1

6
k2(x

3 − 3xy2) (3.102)

The coordinate variables x and y appear explicitly in the Hamiltonian and therefore

the conjugate momenta px and py are not constant. The equations are non-linear and

cumbersome to solve exactly. We cannot find an exact solution in closed form. The

Hamiltonian is said to be not integrable.

3.2.2 Lie transformation

To integrate the equations of motion that cannot be solved exactly, numerical method

such as the Runge-Kutta algorithm are often used. However they tend to be rather

slow for tracking large number of particles for thousands of turns. For the EMMA case

study, they are still very useful because particles are not performing thousands of turns

in the ring. The aim of this study is more to study the validity of dynamical maps for

modelling the beam dynamics in FFAGs, and investigate potential advantages over a

more conventional, purely numerical techniques. Approximations that may introduce

discrepancies between simulated and experimental results, will be made to write down

an approximate map in closed form.

We define the Lie operator :g: for any function g(p,q):

: g :=
∑

i

∂g

∂qi

∂

∂pi
− ∂g

∂pi

∂

∂qi
(3.103)

where pi and qi are the components of the vector p and q respectively. Consider a

function f of the pair of canonical variable (q,p). The time evolution of f is:

df

dt
=

dq

dt

∂f

∂q
+

dp

dt

∂f

∂p
(3.104)
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and using Hamilton’s equations:

df

dt
=

∂H

∂p

∂f

∂q
− ∂H

∂q

∂f

∂p
(3.105)

Therefore applying the definition of the Lie operator in (3.103):

df

dt
= − : H : f (3.106)

This has the form of a first order differential equation. A solution can be written as:

f(t) = e−:H:tf(0) . (3.107)

where the exponential of the Lie operator is defined by the expansion :

e−:H:t = 1− t : H : +
t2

2
: H :2 − t3

3!
: H :3 +... (3.108)

The operator e:g: is called a Lie transformation. We shall now see how this applies to

the dynamics in an sextupolar field.

By considering the case that f is simply equal to any one of the canonical variables,

we see that:

x(s) = e−:H:sx(0) . (3.109)

where x is the vector of canonical variables.

3.2.3 An explicit symplectic integrator

In this section, we will develop an approach that makes an approximation of the Hamil-

tonian in such a way that the resulting Lie transformation can be expressed as a power

series with a finite number of terms. By not performing any truncation, symplecticity

can be conserved.

110



3.2 Generation of dynamical maps

Let us consider the case of a simplified Hamiltonian for a sextupole of length L in

one degree of freedom (δ = 0 and y = py = 0). Considering fully relativistic particles

(β0 → 1), the Hamiltonian (3.101) becomes:

H = −
√

1− p2x +
1

6
k2x

3. (3.110)

Now let us evaluate the Lie transformations of x and px. To second order in L we

obtain:

x(L) = e−L:H:x0 = x0 +
px0L√
1− p2x0

− k2x
2
0L

2

4(1− p2x0)
3

2

+O(L3), (3.111)

px(L) = e−L:H:px0 = px0 +
1

2
k2x

2
0L− k2x0px0L

2

2(1− p2x0)
3

2

+O(L3), (3.112)

The subscript 0 on a dynamical variable means the value of the variable at s = 0. We

can expect to have a loss of accuracy by ignoring terms of order higher than two. The

computation of higher order terms quickly becomes cumbersome.

As explained in section 3.2.1, the Hamiltonian (3.101) is not integrable. However

each term in the Hamiltonian is separately integrable. A Lie transformation in closed

form is generated for each term:

e−L:Hd:x = x+ Lpx, e−L:Hd:px = px,

e−L:Hk:x = x, e−L:Hk:px = px −
1

2
k2Lx

2, (3.113)

where Hd =
1
2p

2
x and Hk = 1

6k2x
3. So if we can find a relation between the maps e−L:H:,

e−L:Hd: and e−L:Hk:, we could find a solution for the sextupole in closed form.
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3.2.3.1 The Baker-Campbell-Hausdorff formula

To derive the relation between e−L:(Hd+Hk):, e−L:Hd: and e−L:Hd:, we use the Baker-

Campbell-Hausdorff formula (BCH) [38]:

e:A:e:B: = e:C: (3.114)

where

C = A+B +
1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[B, [B,A]] +

1

24
[[[A,B], A], B]] + ... (3.115)

In equation (3.115) the notation [·, ·] stands for the Poisson bracket given by:

[A,B] =
∂A

∂p

∂B

∂q
− ∂A

∂q

∂B

∂p
(3.116)

Clearly we have:

[A,B] =: A : B (3.117)

3.2.3.2 Explicit symplectic integrator for a sextupole

Using BCH formula (3.115), we can write:

e−L:Hd:e−L:Hk: = e−L:H−L
2
[Hd,Hk]+O(L2):. (3.118)

Therefore the map for a sextupole can be expressed as a concatenation of Lie Trans-

formations (each of which expressed in explicit closed form in equations (3.113)) with

an error of order L2 in the generator for the complete map contained in the ignored

Poisson brackets of higher order in the BCH formula (3.115). Here we are doing a

second approximation after the paraxial approximation. Inspecting the left hand side,

we observe that the map of the sextupole may be interpreted as a drift (for the length
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L of the sextupole) followed by a transverse kick (by the amount of the integrated

strength of the sextupole). Moreover using the BCH formula for the concatenation of

three maps drift-kick-drift, we obtain:

e−d1L:Hd:e−L:Hk:e−d2L:Hd: = e−L:(d1+d2)Hd+Hk− 1

2
(d1−d2)L[Hk,Hd]+O(L2):. (3.119)

If d1 = d2 =
1
2 , we find

e−
1

2
L:Hd:e−L:Hk:e−

1

2
L:Hd: = e−L:H+O(L2):. (3.120)

The term in L2 in the exponential in the right hand side disappears. For that for-

mulation of the map the error is therefore of order L3. It can be shown that by

concatenating larger numbers of drifts and kicks with optimised length, the error can

pushed to higher order. This method is sometimes called ”symmetric factorisation” or

”Yoshida factorisation” [42].

3.2.3.3 Explicit symplectic integrator for a general magnetic field

In the previous example, we could split the Hamiltonian in two integrable parts. The

Hamiltonian for a drift space Hd is given by:

Hd =
δ

β0
−

√(
1

β0
+ δ

)2

− p2x − p2y −
1

γ20β
2
0

. (3.121)

and the Hamiltonian for the kick was given by:

Hk =
1

6
k2(x

3 − 3xy2) . (3.122)
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When comparing these expressions with the general accelerator Hamiltonian:

H =
δ

β0
−

√(
1

β0
+ δ − qφ

P0c

)2

− (px − ax)2 − (py − ay)2 −
1

γ20β
2
0

− as , (3.123)

we observe that the sextupole case (in fact any magnetic multipole case) is special be-

cause the dependence of the Hamiltonian on the coordinates (in a) and on the momenta

can be separated into different terms. This is the case when the longitudinal variation

of the magnet field across the magnet is not taken into account. We explained in chap-

ter 2 that the EMMA magnets being short with respect to the size of the gap between

the poles, this approximation may not be valid to simulate the beam dynamics accu-

rately. Therefore the kick-drift approach in the previous example has to be extended

to a general magnetic field. The goal is to develop an explicit symplectic integrator

for a general static magnetic field for which the potential vector is known analytically.

The technique has been developed by Y.Wu, E.Forest and D.Robin [39].

The general normalised potential vector a = (ax, ay, as) is a function of the coordi-

nates:

a = a(x, y, s) . (3.124)

Hence the Hamiltonian is not anymore independent of the coordinate s and the expres-

sion of the dynamical map:

f(t) = e−s:H:f(0) . (3.125)

is not valid anymore. We must extend the phase space by introducing an additional

pair of dynamical variable (s, ps) where ps is the momentum conjugate to s. Also we

define a new independent variable σ which corresponds to the integration step. The

evolution of a system of length L is computing by integrating the equation of motion

with respect to σ, until s = L.
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The evolution of s is given by:

ds

dσ
=

∂H

∂ps
= 1 . (3.126)

Hence if s = 0 when σ = 0, s = σ.

The new Hamiltonian to be split in integrable terms is given by:

H =
δ

β0
−

√(
1

β0
+ δ − qφ

P0c

)2

− (px − ax)2 − (py − ay)2 −
1

γ20β
2
0

+ (ps − as) . (3.127)

Since ax and ay are non-zero and depend on the coordinates, this Hamiltonian

cannot directly be expressed as a sum of integrable terms. The paraxial approximation

is applied to transform this expression, expressing the square root as a Taylor series.

We obtain:

H = H1 +H2 +H3 , (3.128)

where

H1 = −
(

1

β0
+ δ

)
+

1

2γ20β
2
0

(
1

β0
+ δ

)−1

+
δ

β0
+

(px − ax)
2

2( 1
β0

+ δ)
+ ps (3.129)

H2 =
(py − ay)

2

2( 1
β0

+ δ)
(3.130)

H3 = −as . (3.131)

We can make a gauge transformation to make one component of the potential vector

vanish [39]. Choosing the gauge that makes ax equal to zero, the Hamiltonian H1

becomes only function of px and is therefore integrable. H3 is independent of the

momenta and therefore is integrable; the last step to obtain the integrator involves

showing that H2 is integrable, knowing that ay is non-zero.
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Let us write the map generated by H2 as a Lie transform:

M2(∆σ) = e−∆σ:H2: = exp(−∆σ :
(py − ay)

2

2( 1
β0

+ δ)
:) . (3.132)

We shall now use two rules of the Lie transformation [40]:

e:f :e:g:e−:f : = exp : e:f :g : , (3.133)

e:f :g(h) = g
(
e:f :h

)
. (3.134)

This allow us to write:

M2(∆σ) = e:Iy:exp(−∆σ :
p2y

2( 1
β0

+ δ)
:)e−:Iy: , (3.135)

with:

e:Iy:py = py − ay . (3.136)

A generator Iy that satisfies equation (3.136) is given by:

Iy =

y∫

0

ay(x, y
′, s)dy′ . (3.137)

We must now evaluate the effect of the term e:Iy: on the canonical variables. Since Iy

is independent of the momenta px, py and ps, the coordinates (x, y, s) are unchanged.

The changes in the momenta is calculated by solving Hamilton’s equation with Iy as
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Hamiltonian and σ as the independent variable. We obtain:

e:Iy:px = px −
y∫

0

∂

∂x
ay(x, y

′, s)dy′ , (3.138)

e:Iy:py = py − ay , (3.139)

e:Iy:pz = pz −
y∫

0

∂

∂z
ay(x, y

′, s)dy′ , (3.140)

e:Iy:δ = δ . (3.141)

The effect of e−:Iy: = (e:Iy:)−1 is the same as equations (3.138) to (3.141) , but replacing

minus signs by plus signs. Note that this step is equivalent to a canonical transformation

from the canonical variable (py − ay) to pnewy ; hence the term e:Iy: is the explicit Lie

transformation of the generating function associated to this transformation.

Finally the complete explicit symplectic integrator for the map M may be written:

M(∆σ) = e−∆σ:H1+H2+H3: , (3.142)

M(∆σ) ≈ e−
∆σ
2

:H1+H3:e−∆σ:H2:e−
∆σ
2

:H1+H3: , (3.143)

M(∆σ) ≈ e−
∆σ
4

:H1:e−
∆σ
2

:H3:e−
∆σ
4

:H1:e−∆σ:H2:e−
∆σ
4

:H1:e−
∆σ
2

:H3:e−
∆σ
4

:H1: ,(3.144)

where:

e−∆σ:H2: = e:Iy:e−∆σ:H̃2:e−:Iy: , (3.145)

and :

H̃2 =
p2y

2( 1
β0

+ δ)
. (3.146)

The Lie maps e−∆σ:H̃2: and e−
∆σ
4

:H1: are independent of the potential. They can be

called ”drift” maps. The ”kick” maps e−
∆σ
2

:H3: and e:Iy: are expressed explicitly by

using the analytical representation of the potential vector developed in chapter 2.

Note that expression (3.144) for the integrator is an approximation to the exact
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dynamics since the separation of the Hamiltonian in integrable terms has been made

possible by the paraxial approximation. The integrator is therefore of second order in

the dynamical variables. Moreover a second approximation is applied when using the

BCH formula (3.115). An error of order (∆σ)2 is introduced by applying the BCH

formula from the expression (3.142) to the expression (3.143). This error corresponds

to a numerical error linked to the size of the integration step. As seen in section 3.2.3.1,

including more terms in the BCH formula could increase the order of this error. The

explicit symplectic integrator expressed in (3.144) and used for the beam simulations

of chapter 4 is of second order in (∆σ). Each integration step will consist in applying

all the terms in equation (3.144) to the dynamical variables.

3.3 Construction of a dynamical map

We shall now describe the computer tools used to apply the symplectic integrator

obtained in section 3.2.3.3. Each term of the expression (3.144) corresponds to a finite

set of arithmetical operations on the dynamical variables. The map can therefore

be expressed algebraically in closed form. Given the representation of the potential

vector as a function of the coordinates, the equations of motion can be integrated

by a computer code for a particle moving through the magnetic element. We use a

differential algebra (DA) code to construct the Taylor series representing the dynamics

in a given magnetic element. In this section we will first briefly describe this code.

Then we will outline features of the Taylor series obtained from the integration of the

equations of motion. We will give the physical meaning of some of the coefficients.

Finally, we will study the choice of reference trajectory for the dynamical map and the

implications of this choice regarding the paraxial approximation.
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3.3.1 Differential Algebra (DA) code

The explicit symplectic integrator consists of a succession of arithmetical operation on

the dynamical variables. The vector of dynamical variables can be expressed as a vector

of the numerical values of these variables. However this numerical integration has not

much advantage over numerical integration in the original field map using numerical

tracking codes (e.g. PyZgoubi [56]). Therefore we choose to use the differential algebra

code COSY infinity developed by M.Berz [47].

In this study, COSY INFINITY performs all its calculations in the following scaled

coordinates:

X1 = x; X2 = px/p0; (3.147)

X3 = y; X4 = py/p0; (3.148)

X5 = z =
s

β0
− ct; X6 = δ =

E

p0c
− 1

β0
; (3.149)

The variables form three canonically conjugate pairs in which the map is symplectic.

p0, K0 and β0 are the momentum, kinetic energy and velocity of the reference particle

respectively. s is the independent variable and t is the time taken for a particle to

travel from s = 0 to the position defined by s.

In COSY, variables can be expressed as DA objects that represent the Taylor series

to some order in a set of basis variables X(1), X(2), and so on. In our case the basis

variables are the six dynamical variables (x, px, y, py, z, δ). For instance if x and y are

DA objects, writing :

x := X(1); (3.150)

y := ex; (3.151)
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means that y can be written as:

1 +
X(1)

1!
+

X(1)2

2!
+

X(1)3

3!
+ · · · (3.152)

The code performing the various operations on the DA variables at each step of

integration is shown in figure 3.1. The procedures AZFIELD and AYFIELD computed

the DA object of the potential vector and its integral at each step of integration from

the set of coefficients cmn representing the magnetic field (see chapter 2). A more de-

tailed description of the integrator is presented in appendix C. Each block of command

corresponds to the application of one of the Lie maps in expression (3.144) (referenced

between “{}” as comments in the script).

Note that the potential vector is evaluated twice in the script. This is due to the fact

that in the expression (3.144) Lie maps for H3 and Iy are evaluated for at longitudinal

positions ∆σ
4 and ∆σ

2 respectively. These different longitudinal positions within one

integration step are represented by the variable X7 that is progressively increased by

∆σ
4 steps (in this code, ”DL” corresponds to ∆σ).

Special care has to be taken concerning the longitudinal position at which the po-

tential vector is evaluated. The correct physical position is given by the dynamical

variable s (X7 in the script) and not σ. The variable s was introduced by the phase

space extension (see section 3.2.3.3) to the new pair of variables (s,ps). At each in-

tegration step we have ∆σ = ∆s but only s is the actual longitudinal position of the

reference particle in the whole cell. Since only H1 depends on ps, X7 is changed only

when applying the Lie map e−
∆σ
4

:H1:.

3.3.2 Features of the Taylor series

The DA integration routine outputs the dynamical map in explicit form as shown in

figure 3.2. The final six columns indicate, as exponents for the six dynamical variables,
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DP := 1/( 1/BETA0 + X(6) );

DD:=0;

X(1) := X(1) + X(2)*DP*DL/4; {H1}

X(5) := X(5) + (DD - X(2)*X(2)*DP*DP/2 )*DL/4;

X7 := Z + DL/4;

AZFIELD;

X(2) := X(2) - AZDX*DL/2; {H3}

X(4) := X(4) - AZDY*DL/2;

X(1) := X(1) + X(2)*DP*DL/4; {H1}

X(5) := X(5) + (DD - X(2)*X(2)*DP*DP/2 )*DL/4;

X7 := X7 + DL/4;

AYFIELD;

X(2) := X(2) + IADY; {H2(Iy)}

X(4) := X(4) + AY;

X(3) := X(3) + X(4)*DP*DL; {H2}

X(5) := X(5) - X(4)*X(4)*DP*DP*DL/2;

AYFIELD;

X(2) := X(2) - IADY; {H2(Iy)}

X(4) := X(4) - AY;

X(1) := X(1) + X(2)*DP*DL/4; {H1}

X(5) := X(5) + (DD - X(2)*X(2)*DP*DP/2 )*DL/4;

X7 := X7 + DL/4;

AZFIELD;

X(2) := X(2) - AZDX*DL/2; {H3}

X(4) := X(4) - AZDY*DL/2;

X(1) := X(1) + X(2)*DP*DL/4; {H1}

X(5) := X(5) + (DD - X(2)*X(2)*DP*DP/2 )*DL/4;

X7 := X7 + DL/4;

Figure 3.1: Code performing the various operations on the DA variables at each step of
integration is shown in figure 3.1. The procedures AZFIELD and AYFIELD computed the
DA object of the potential vector and its integral at each step of integration from the set
of coefficients cmn representing the magnetic field.
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3.3 Construction of a dynamical map

     I  COEFFICIENT            ORDER EXPONENTS

1   1.111442201528357       1 1 0 0 0 0 0

2  0.2920444940195839       1 0 1 0 0 0 0

3  -.8288397620180908E-02 1 0 0 0 0 0 1

4   2.621390443812261       2 2 0 0 0 0 0

5  0.9589399117226007       2 1 1 0 0 0 0

6  0.1052472136664450       2 0 2 0 0 0 0

7   2.139818636231494       2 0 0 2 0 0 0

8  0.6287214831607242       2 0 0 1 1 0 0

9  0.4315530255088764       2 1 0 0 0 0 1

10  -.1313320036386119       2 0 1 0 0 0 1

11  0.5689838828118509E-01 2 0 0 0 2 0 0

12  0.8677287828463824E-02 2 0 0 0 0 0 2

   -----------------------------------------------

     I  COEFFICIENT            ORDER EXPONENTS

1  -6.098213931760943       1 1 0 0 0 0 0

2  -.7026454466551645       1 0 1 0 0 0 0

3  0.1728159261576379       1 0 0 0 0 0 1

4   18.91670122316419       2 2 0 0 0 0 0

5   7.994146930331629       2 1 1 0 0 0 0

6  0.7759293763919728       2 0 2 0 0 0 0

7  -1.287692099153911       2 0 0 2 0 0 0

8   1.299401526419163       2 0 0 1 1 0 0

9   4.417846016082665       2 1 0 0 0 0 1

10   2.154252397263629       2 0 1 0 0 0 1

11  0.2871015010002934E-01 2 0 0 0 2 0 0

12  -.8805578006296640E-01 2 0 0 0 0 0 2

   -----------------------------------------------

     I  COEFFICIENT            ORDER EXPONENTS

1  -.3633645928289083       1 0 0 1 0 0 0

2  0.3335779793345011       1 0 0 0 1 0 0

3   9.668878416578217       2 1 0 1 0 0 0

4   1.050612280095602       2 0 1 1 0 0 0

5   2.036069704068454       2 1 0 0 1 0 0

6  0.3090989209723089       2 0 1 0 1 0 0

7   1.825938770475264       2 0 0 1 0 0 1

8  -.2242970810900542       2 0 0 0 1 0 1

   -----------------------------------------------

     I  COEFFICIENT            ORDER EXPONENTS

1  -4.518899164061225       1 0 0 1 0 0 0

Figure 3.2: Selected terms from the 2nd order dynamical map for the X variable, for one
EMMA cell at 15MeV reference energy.
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3.3 Construction of a dynamical map

the term in the map to which the coefficient in second column refers. Thus, each

variable is expressed as a power series in the values of the dynamical variables at the

entrance of the cell. For instance the expression for the horizontal position (truncating

coefficients after the fourth digit) is:

X(1) = 1.1114X0 + 0.2920PX0 − 0.0082 δ0 +

2.6213X2
0 + 0.9589X0PX0 · · ·+ 0.0086 δ20 .

Once the dynamical map has been obtained, tracking particles in the EMMA cell

simply involves calculating the output values for a given set of input values. We observe

that there are no zeroth order terms. This means that a particle launched with zero

initial values for the dynamical variables will have zero values at the exit face (except

for the path length variable which will be increased by the length cell). The entrance

coordinates being the same as exit coordinates, the map is said to be computed around

the closed orbit. We will see in section 3.3.4 of this chapter that the reference trajectory

is a straight line. To obtain a dynamical map with no zeroth order terms, the map is

computed with reference straight line starting from the closed orbit position at the

entrance of the cell (blue dashed line for 10MeV in figure 3.8 on the left hand side).

In the EMMA cell, the closed orbit at 10MeV is located at x = −1.7 cm (with

respect to the reference polygon where x=0). The transverse offset of the reference

straight line must be taken into account when tracking particles in the map. A particle

with transverse position of -0.2 cm with respect to the reference trajectory will be sent

with an initial transverse coordinate of 1.5 cm in the 10MeV map (i.e. with respect

to the 10MeV closed orbit). If the exit coordinate for this particle given by the map

is 0.7 cm, then the position of the particle with respect to the reference trajectory is

-1.0 cm.
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3.3 Construction of a dynamical map

3.3.3 Symplectic error

In the expression (3.144), the map M2 is not exact because the Hamiltonian was trans-

formed by the paraxial approximation and also because the factorisation in Lie map

using the BCH formula was truncated to second order in ∆σ. But since each factor in

the factorisation is itself a symplectic map, the total map must be symplectic.

The integration of the equations of motion is done using DA objects for the dy-

namical variables. The purpose of an integrator is to solve the equations of motion in

the form of an expression in closed form. In general, these closed forms expressed as

power series have a very large number of terms. In other words, the integrated solu-

tion includes very high order terms. In practise the computer code needs to truncate

them at a given order (e.g. second order in the example in figure 3.2). Even though

the integration routine is symplectic, this truncation results in a symplectic error. A

symplectic transformation satisfies JT · S · J = S, where S is a block diagonal matrix

constructed from the ‘unit’ 2×2 antisymmetric matrix, and J is the Jacobian of the

transformation. The symplectic error can be quantified by computing the coefficient of

the matrix ∆ given by:

∆ = JT · S · J − S (3.153)

Since the variables are expressed as power series, the coefficients of the Jacobian are also

power series of the dynamical variables. The coefficients of ∆ are therefore calculated for

arbitrary numerical values of the dynamical variables. The computation of symplectic

error is developed in more detail in section 5.1.3.2 in chapter 5.

If a map is truncated at order N then symplectic error is introduced at order N+1.

In the Jacobian, defined in equation (3.68), the error will appear at the order N . The

matrix ∆ will then contain coefficient of order N and higher. Because of numerical

precision, non-zero terms appear in ∆ for order smaller than N .

The fact that tracking of particles with dynamical map gives results with some
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3.3 Construction of a dynamical map

symplectic error may mean that this method does not have great advantage over nu-

merical tracking with standard Runge-Kutta integrator. Since the exact solution of the

equation of motion must be symplectic, improving the accuracy of the Runge-Kutta

integrator (e.g. decrease the step size) will reduce the symplectic error. However, in

the dynamical map approach, the symplectic error up to the order the map comes

from the limited numerical precision, regardless to the integration step size. If the map

is computed using a symplectic integrator (as it is the case for the results presented

here), then the symplectic error depends on the order of truncation, rather than the

integration step size.

A symplectic error in a map may be significant if the map is applied iteratively

many times, or if small non-symplectic physical effects are being investigated.

3.3.4 Reference trajectory and frame rotation

3.3.4.1 Frame rotation

When tracking particles iteratively in one cell, one needs to perform a rotation of the

reference axis before entering the new cell. After one turn, the reference straight line

(not corresponding to the path of any real particle) has drawn a n-sided polygon as

shown in black and red in figure 3.4 (n being the number of cells considered). The real

machine has been built such that the corners of the polygon are situated at the entrance

face of the defocusing magnet (D magnet) since bending of the electrons mainly occurs

in this magnet. The point can be located just before the entrance of the hard edge

model of the magnet.

In the absence of a magnetic field, the equations relating the canonical variables

after rotation (written with subscript “new”) to those before rotation were taken from

[41] and are expressed as followed:
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Figure 3.3: Schematic view of the rotation of reference frame by an angle θ. The blue
lines and the red lines represent the initial and final (after rotation) frames respectively.
The black line represents the trajectory of a particle reaching the end of the cell with a
transverse position x1. The black dashed line corresponds to the effect of the rotation on
this particle changing the coordinate from the point A at the exit face of the first cell to
the point B at the entrance face of the new cell. We notice that this dash line is a straight
extension of the trajectory. The effect of the rotation on the trajectory is equivalent to the
effect of a drift space added in the beam line (corresponding to the light red area). This
choice is realistic only if the magnetic field is negligible in that area in the real machine.

xnew =
x

cos θ(1− px tan θ
pz

)
(3.154)

pnewx = px cos θ + pz sin θ (3.155)

ynew = y +
py x tan θ

pz(1− px tan θ
pz

)
(3.156)

pnewy = py (3.157)

lnew = l +
(1 + δ) x tan θ

pz(1− px tan θ
pz

)
(3.158)

where pz =
√

(1 + δ)2 − p2x − p2y (3.159)

In the absence of a magnetic field, the effect of the rotation on the trajectory of

a particle is equivalent to the effect of a drift space placed between the exit face of
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Figure 3.4: Schematic of the EMMA ring showing two descriptions of the lattice: one
with rotation at the entrance of the D magnet (black) and the other with rotation in the
middle of the long drift (red). In spite of the fact the only 8 cells are present in the figure,
the ring is composed in reality of 42 cells. This modification as been made to show that the
overall length of the polygon in both configuration remains constant. However we observe
that when performing the rotation of the axis of reference far the D magnet (in red) rather
than at its entrance face (in black), the absolute position of the magnets in dashed line is
different form the real position following the black polygon. Hence the lattice is different.

a cell and the entrance face of the following cell (red area in figure 3.3). In reality,

because of the fringe fields for instance, the magnetic field may be non zero at the exit

face of a cell. Hence, when applying the transformation to the particle coordinates

corresponding to the rotation of the reference axis, this magnetic field should be taken

into account.

The vector potential does not appear in equations (3.154) to (3.159). Hence, with

these equations, the magnetic field is not taken into account at the location of the

rotation. We could therefore either derive more complete equations that include the

magnetic field or always perform the rotation where the magnetic field is negligible.

Deriving the equations including the vector potential in analytical form in this geometry

seemed to be rather cumbersome. It would be an interesting subject for a future study.

Instead we reconsidered the positioning of the rotation in two consecutive steps.
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Real lattice
Corrected 
simulation lattice

a

a

Figure 3.5: Top: Schematic of the EMMA ring showing the configuration with rotation
at the entrance of the D magnet (black) and with rotation in the middle of the long drift
corrected to match the real lattice (yellow). The black dashed line show the entrance and
exit faces of the field maps of two consecutive cells. Hence particles coordinates at an
exit face need to be translated to the next cell entrance face. Bottom: a more detailed
view of the geometry of this translation is presented. The correction is composed of two
translations dx and dz along each of the reference axes after rotation.
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3.3 Construction of a dynamical map

First, we shift the location of rotation to the middle of the long drift where the

field is negligible. Consequently, the lattice obtained is different from the real lattice

(see figure 3.4), hence beam dynamics will be different. However since we wanted at

some point to compare the simulation results with the experimental data, we need to

be tracking in the real lattice. Therefore we had to correct the effect of the location of

the rotation.

Figure 3.5 shows the corrected configuration of the lattice. The idea consisted

in applying a transformation to the particle coordinates at the exit of each cell. By

applying an additional transformation to the particle’s coordinates (after applying the

rotation described in (3.154) to (3.159)), i.e a translation by a distance dx along the

new ~x axis and dz along the new ~z axis, we obtained a lattice identical to the real one

while still performing the rotation far from the magnets.

dx = a× sinT

dz = a× (1− cos T ) . (3.160)

a is the distance from the middle of the long drift to the entrance face of the D

magnet.

To verify the validity of the correction, we tracked particles in the different configu-

rations with the hard edge model in PyZgoubi. The horizontal tune νx is insensitive to

the change whereas the vertical tune νy and the time of flight are significantly affected

by it (see figure 3.6). Changing the reference trajectory mainly affects the closed orbit,

therefore the time of flight will vary. Also, with a different closed orbit, particles will

experience different fringe fields, which will affect the vertical tune.

When applying the correction to the lattice with the rotation in the drift, the beam

dynamics are back to the same values as the real lattice. In the following we assumed
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Figure 3.6: Top: variation of time of flight with energy. We observe a large discrepancy
between the configuration with rotation performed at the entrance of the D magnet (blue)
and the rotation performed in the drift (red). When applying the appropriate correction to
the former (green), behaviours of both configurations agree. Bottom: Tune variation with
energy.The horizontal tune (blue) is barely affected by the location of the rotation whereas
the vertical tune is significantly smaller for low energy (0.03 at 10MeV) for rotation in
the long drift (red stars). The rotation affects closed orbits for low energy having larger
excursion in the D magnet. We observe that the correction applied to the rotation in the
drift configuration (red circles) agrees with the real lattice (red triangles)
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Figure 3.7: Closed orbits in one EMMA cell for energy from 10MeV to 20MeV with
2MeV step.

this correction to be valid with field maps, and therefore avoided the need to make a

rotation in a region of non zero magnetic field. We were then able to study the beam

dynamics in the field map corresponding to the real baseline lattice as it was designed

(see section 1.3) and built.

3.3.4.2 Reference trajectory for a dynamical map

The symplectic integrator that we use requires the paraxial approximation. This must

be studied with care, since in an FFAG there is a significant change of trajectory when

gaining energy. Different reference energy may be needed for different energies. Several

maps are computed for a discrete number of energies (e.g. in EMMA, from 10MeV

to 20MeV by 2MeV step); their reference trajectory being as near as possible to the

closed orbit at this energy (see figure 3.7). Particle trajectories should then remain

close to the reference trajectory, and the paraxial approximation should be valid.

Ideally, the closed orbit itself could be used as the reference trajectory at a given
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Figure 3.8: Closed orbits in one EMMA cell for energy from 10MeV to 20MeV with
2MeV step.

reference energy. However the accelerator Hamiltonian used for this study (see equation

(3.127)) is written for a straight coordinate system. More terms must be added to

include a non-zero bending radius to the integrator required to follow the curvature of

the closed orbit in EMMA. The generalisation of this integrator to curved system is an

interesting topic for further investigation.

In this study, we use instead a straight line starting (and ending) at the middle of a

long drift, where the field is close to zero. We chose the horizontal transverse position of

the reference straight line for a given energy to correspond to the position of the closed

orbit for the same energy. The reference straight line for each dynamical therefore

differs from the reference polygon chosen by Berg when designing the EMMA ring [21]

(see orange straight line in figure 1.4 in chapter 1). However the reference polygon is

still used as the reference transverse location with expressing the tracking results (e.g.

a particle with transverse coordinate x=0 is located on the reference polygon and not

necesseraly on the reference trajectory of the dynamical map used for tracking).

Figure 3.8 shows the closed orbits for various reference energies in EMMA. On the

left hand side, the rotation is performed in the middle of the drift but the “frame

correction” is not applied. This configuration is therefore not equivalent to the real
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Figure 3.9: Horizontal tune evolution with energy in the EMMA cell. On the left hand
side results from numerical tracking in the original field map with PyZgoubi are compared
with dynamical maps results. In both codes the rotation is performed in the middle of the
drift and the correction frame is not applied. On the right hand side, the same comparison is
shown but this time with ”frame correction” in both codes. We observe that the agreement
between the two codes is better on the left hand side, especially for low energy. For instance
at 10MeV the discrepancy is 0.005 on the left hand side and 0.1 and the right hand side.

EMMA lattice. On the right hand side, the rotation is also performed in the middle of

the long drift and the “frame correction” is applied. In both cases a different dynamical

map is computed for each reference energy and the analytical representation of the field

is performed with a single reference cylinder of radius 25mm. We observe that in the

case of the “frame correction”, the closed orbits have a larger transverse excursion.

The excursion is defined by the distance between the closed orbit trajectory and the

reference straight line transversely located at the position of the closed orbit at the

beginning of the cell (blue dashed line for 10MeV and yellow dashed line for 20MeV).

For instance at 10MeV in blue in figure 3.8, the excursion without the correction is

maximum at s = 14 cm (symbolised by the black vertical line in the D magnet) and

is equal to 0.5 − (−1.2) = 1.7 cm whereas it reaches −0.2 − (−2.6) = 2.4 cm with the

correction.

Figure 3.9 shows the horizontal tune evolution with energy in the EMMA cell.

On the left hand side results from numerical tracking in the original field map with

PyZgoubi are compared with dynamical maps results. In both codes the rotation is
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3.4 Summary and conclusions

performed in the middle of the drift and the correction frame is not applied. On the

right hand side, the same comparison is shown but this time with ”frame correction”

in both codes. We observe that the agreement between codes is better on the left hand

side, especially for low energy. For instance at 10MeV the discrepancy is less than 0.01

on the left hand side and about 0.06 and the right hand side.

It is important to note that PyZgoubi does not apply the paraxial approximation.

We conclude therefore that when applying the “frame correction”, because the excur-

sion of the closed orbits are larger with respect to the reference straight line in the

dynamical map, two factors may play a role in this discrepancy: first in this case , the

analytical representation was computed only with one reference cylinder. We saw in

section 2.3.4.2 of chapter 3 (see figure 2.30(a)) that this could affect the value of the

tune. Second, the limit of validity of the paraxial approximation for particle with large

excursion could be observed. We will see in chapter 4 that this effect is negligible in

terms of time of flight. For the rest of the study, we will work with the realistic model

(with ”frame correction”) and try to estimate the effect of the paraxial approximation

on other beam dynamics results.

3.4 Summary and conclusions

In this chapter, the aim was to develop a procedure that solves the equations of motions

in an accelerator element defined by an analytical representation of the magnetic field.

To do so, we started by deriving the Hamiltonian for an accelerator in a straight co-

ordinate system normalising the dynamical variables and choosing the appropriate set

of variables to keep their values small. To solve Hamilton’s equations for a quadrupo-

lar field, we applied the paraxial approximation and expressed the Hamiltonian as a

sum of integrable terms. We observed that dynamics in a quadrupolar magnet can be

described as an harmonic oscillator. We then proved that a transformation in Hamil-
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tonian systems is symplectic. This implied Liouville’s theorem stating the invariance

of the density of particles in phase space for motion in an Hamiltonian system. We

studied the implication of symplecticity to beam dynamics in periodic beamlines and

derived an invariant quantity J of the motion: the action. This invariant was pro-

portional to the area of the betatron ellipse traced out by a particle in phase space

after each period. We defined a set of parameters, the twiss parameters, characterising

this ellipse and therefore following the periodicity of the lattice. We showed that the

action was the conjugate momentum to a canonical variable called the “angle”. The

new Hamiltonian was found to be simply expressed as the ratio of the action and the

beta function. From the second Hamilton’s equation, the phase advance was defined as

the variation of the angle variable from one point to another along the beamline, and

the tune was defined as the phase advance over a complete turn in a ring divided by

2π.

In the following section, we first observed that Hamilton’s equations could not

easily be solved for a general magnetic field. We saw that using the BCH formula

and useful properties of the Lie transformations, we obtained a symplectic integrator

for a sextupolar field. This integrator took the form of the “Yoshida” factorisation

equivalent to applying to the dynamical variables a sequence of drift and kicks. We

presented the extension of this method to a general magnetic field. By applying the

paraxial approximation to express the Hamiltonian as a sum of integrable terms, we

derived the second order explicit symplectic integrator developed by Wu, Forest and

Robin. This integrator requires the computation of the integral and the differential

of the vector potential, justifying the work made in chapter 2 to obtain an analytical

representation of the magnetic field.

In the last section of this chapter, we presented the computer tools created to

apply this symplectic integrator. The transformations of the dynamical variables were
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expressed as Taylor series obtained by integration through the magnetic field using the

Differential Algebra code COSY infinity. This code is especially written to perform

integration and differentiation (and algebraic manipulation) of Taylor series variables.

Since the Taylor series are truncated, we concluded that the symplecticity of the solution

was lost in the missing high order terms. However, the advantage of this integrator over

a non symplectic integrator (such as the Runge-Kutta algorithm) is that the symplectic

error does not depend on the integration step, but only on the truncation order. Finally,

we discussed the consequences of the paraxial approximation in an FFAG accelerator.

Effects of this approximation are seen when comparing the horizontal tune at low energy

obtained from Pyzgoubi not using the paraxial approximation and dynamical maps.

The reference straight line for the dynamical map at each energy must be carefully

chosen to minimise this effect.

In this chapter, we developed the computer tools that we will use to study beam

dynamics in accelerators. The challenge is to apply this technique to beam dynamics

in FFAG accelerators where the paraxial approximation may not be valid. The Non-

Scaling FFAG EMMA was chosen as case study because simulations and experimental

results could be compared. However the use of dynamical map for EMMA is not of

large benefit compare to numerical tracking in efficient code such as PyZgoubi. Firstly

because the dynamics are expected to be rather linear in the ring; hence conventional

linear code may be precise enough. Secondly symplectic errors may not be significant

since particles only perform few tens of turns in EMMA. The aim of the following study

is therefore not to produce better simulation results than other codes for EMMA but

rather to evaluate the validity of this method with respect to large deviations of the

dynamical variables. If the results are convincing, this method can then be applied to

nonlinear FFAG accelerators with more complex magnetic fields and potentially large

number of turns performed; benefits of this type of approach would then be significant.
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4

Beam dynamics simulations

4.1 Introduction

So far, we have developed computational tools to extract an analytical representation

of the magnetic field in a lattice element and derived an integrator for the equation of

motion in order to track particles in the field. The beam dynamics have been expressed

in the form of a Taylor map using differential algebra routines. The next step is to

apply these tools to the case study EMMA. Most of the work on the field maps has

already been applied to the EMMA cell. In this chapter we will present the detailed

study of the beam dynamics in the magnetic field representation derived in chapter 2,

using the tools contained in chapter 3.

To validate beam dynamics results obtained with dynamical maps, we chose to

study the beam dynamics with another tracking code, the numerical tracking code

PyZgoubi. Its main features will be presented. Both tracking methods will be applied

to the case study EMMA. Thus, the EMMA FFAG cell features relevant to particle

tracking will be outlined. We will compare tracking result from a hard edge simplified

model of the magnets and from a detailed 3D model of the whole cell.

In the second part, single particle beam dynamics in the EMMA cell in terms of tune
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per cell, time of flight and betatron motion will be developed. Results from PyZgoubi

using either a hard edge model or a numerical field map will be compared with results

from the dynamical map. Also we will study the difference between tracking in multiple

dynamical maps with different reference energies and a single map varying the energy

deviation of the tracked particle. Since dynamical maps can be useful to study non

linear effect of the beam dynamics, the tune shift with amplitude will be derived by

different methods, including a direct derivation from the dynamical map coefficients.

We will then focus on longitudinal dynamics. We will present the behaviour of a

group of particles with an initial distribution in energy, tracked at fixed energy (no

acceleration) through the cell either by applying the dynamical map or by numerical

tracking with PyZgoubi; we will outline the effect of energy spread on the betatron

motion measurement.

Finally we will demonstrate that the dynamical map can simulate the serpentine

acceleration agreeing with an analytical model. The longitudinal and transverse distri-

butions of a group of particles through acceleration will be studied. The effect of the

rate of acceleration on the transverse distribution will be presented. It will be shown

that to achieve reasonable accuracy, at least two dynamical maps with different refer-

ence energies are needed to simulate the dynamics through acceleration over the whole

energy range in EMMA.

4.2 General features of the EMMA cell

The EMMA prototype aims to study the Non Scaling FFAG acceleration scheme. The

dynamical behaviour of a beam in such a structure is still experimentally untested,

especially its response to resonance crossing. In order to cover a wide area of dynamics,

the EMMA lattice has been kept adjustable; the horizontal transverse position and

strengths of both quadrupoles within each cell are degrees of freedom. Hence, it will
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4.2 General features of the EMMA cell

be possible to link a certain tune and time of flight evolution with energy with these

parameters. Firstly, this is done by simulation before the commissioning of the real

machine (EMMA commissioning started in July 2010). To do so, one has to model the

magnetic field created by a certain configuration of magnets and track particles in this

map.

The EMMA ring is composed of 42 cells. Within a cell, elements are positioned

with respect to a straight line (see figure 3.5). The ring can then be seen as a 42-

sided polygon. Corners are situated at the entrance of the defocussing magnet (D

magnet) since bending of the electrons mainly occurs in this magnet. The rotation

angle between two adjacent sides is θ = 2π/42. Since (without acceleration) the EMMA

ring is periodic, only one pair of magnets (out of 42 pairs) has to be modelled, and

tracking can be done iteratively using one cell.

4.2.1 Description of the numerical tracking code : PyZgoubi

PyZgoubi is the Python interface of the Fortran tracking code Zgoubi. Zgoubi itself

works with an input text file in which the sequence of beam line elements and their

characteristics (written as matrix of numerical data) is contained. Each time a char-

acteristic of the lattice is changed, a corresponding text file must be created. To make

this process automatic and therefore add flexibility to the tracking code, routines are

written in the Python language allowing the definition of variables. It then automati-

cally creates the corresponding text file for Zgoubi. The tracking results from Zgoubi

are also given in text files. They are processed by a python script by which results can

be defined as variables and linked to plotting or optimisation routines (e.g. closed orbit

seeking). The plotting routines available with Python offer a better quality of graphics

than those created directly by Zgoubi.

Zgoubi uses a stepwise ray-tracing method which means that it tracks the position

of a particle through a lattice element by longitudinal consecutive steps. The integra-
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4.2 General features of the EMMA cell

tion method consists in solving the Newton-Lorentz equation md~v
dt

= q~v × ~b at each

step by expressing the dynamical variables (position and velocity) as truncated Taylor

expansions in the integration step ds. The numerical integration routine minimises

the computing time but it does not use a purely symplectic integrator. Symplecticity

is monitored in Zgoubi by built-in routines computing the symplectic error for every

tracking result. It is the responsibility of the user to optimise the integration step size

to achieve the desired level of symplecticity.

Originally Zgoubi was written in the early 1970’s for spectrometer studies. Since the

magnets were large and the magnetic field precision critical, PyZgoubi was developed

to integrate the equations of motion in a field map created from magnet measurements.

Therefore PyZgoubi has built-in routines handling numerical field maps provided in

separated text files. This feature is crucial for the comparison with dynamical maps

also derived from the integration of particle trajectories through field maps.

In addition, in PyZgoubi the magnetic field and its derivative are computed at each

integration step either from an ideal analytical definition of the magnetic field in the

beam line element, or by reading a numerical data table (created from OPERA, for

instance). This allows us to validate an ideal analytical description of the magnets

(“Hard Edge (HE) Model”) against simulated field maps.

In this study, PyZgoubi has been used only with two dimensional numerical field

maps, representing the field in the median plane of the magnets, being the horizontal

plane (x,z) with a vertical coordinate y=0. A 2D field map gives the three components

Bx (x, 0, z), By (x, 0, z) and Bz (x, 0, z) at each node (x, z). B and its derivatives at any

point (x, y, z) are calculated by polynomial interpolation followed by Taylor expansions

in y derived from Maxwell equations, with the possibility of enforcing symmetries.

This method may not be valid in the case of complex field configuration at the edges

of the magnet. Since the dynamical maps are built with a direct 3D representation of

the magnetic field, discrepancies between the two codes may occur because of the
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Figure 4.1: Gradient along the EMMA cell for Design Hard Edge Model and OPERA
Model. The real magnetic field distribution (in green) falls off smoothly to zero. The
region where the field is non-zero is wider than the actual physical length of the magnet
corresponding the design hard edge model. The peak strengths of the real magnets is
computed such that the integrated field over the cell equates to the design integrated
gradient. One can defined the effective lengths of the magnets by plotting (in red) the
hard edge equivalent model of the real magnets.

difference in these representations.

The choice of Zgoubi for the comparison with the dynamical maps simulations is

also motivated by the fact that it has been benchmarked against scaling FFAGs with

complex magnets and a non-scaling isochronous FFAG lattice [49, 50].

4.2.2 Hard edge model

In this section we will discuss the consequences of using a numerical field map to

describe the EMMA cell in terms of geometry and rotation of the reference frame.

Beam dynamics corresponding to the different approaches will be presented in the next

section.

The preliminary design study of the EMMA ring has been performed with an ideal

“hard edge” model of the magnets [21]. The gradient of the magnetic field is constant

along the magnet length and is equal to zero elsewhere. Only the magnets’ lengths

and strengths are therefore necessary to characterise the lattice. Optimisation routines
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4.2 General features of the EMMA cell

useful at the design stage are fast and rather simple to write.

In reality the magnetic field varies continuously through the cell and falls off smoothly

to zero outside the physical length of the magnet (see figure 4.1). Note that in several

tracking codes including PyZgoubi, these “fringe” fields can be modelled using set of

functions such as Enge functions [48]. These functions can be derived by fitting the

measured or simulated (e.g. with OPERA) magnetic field data. Since PyZgoubi could

handle directly the field map we created from finite element method (FEM) (see chapter

2), we did not investigate the use of analytical fringe fields.

Table 4.1: Description of the cell

Section Hard edge Design Real design

long drift in mm 210.000 217.241
D magnet in mm 75.699 65.000
short drift in mm 50.000 57.240
F magnet in mm 58.782 55.000∫ ∂By

∂x
ds for D in Gs -0.3560 -0.3558∫ ∂By

∂x
ds for F in Gs 0.3940 0.3947

To design the magnet, several constraints have to be taken into account. The price

of a magnet is related to the amount of material needed for the yoke and the coils. Also

manufacturing costs increase with the complexity of its geometry. On the other hand

the geometry must ensure a constant gradient of the magnetic field over the transverse

aperture of each magnets. In EMMA the magnets are designed to achieve a field quality

defined by a tolerance of 1% variation of the gradient across the vacuum chamber in each

magnet aperture. Eventually magnets lengths and nominal currents must be adjusted

such that the integrated gradient along the cell
∫ ∂By

∂x
ds in real magnets and in the

hard edge model are equal. Then the focusing strengths experienced by particles are

expected to be reasonably close to the design values.

The magnets were built to handle larger currents than the design estimates indicated

would be necessary, while keeping the required field quality. Hence, the real physical
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4.3 Beam dynamics simulations with dynamical maps

length of the magnet can be made smaller than the design one conserving the integrated

gradient. There is then more space to fit other components in the beam line. Table 4.1

presents the cell configurations for both cases and figure 4.1 shows the gradient along

the EMMA cell with a hard edge model (in purple) and with an OPERA field map (in

green). The actual magnetic field profile shown in figure 4.1 (in green) extends some

distance outside the magnets.

PyZgoubi which will be used as a benchmarking code for the dynamical maps

results, can handle both hard edge models and numerical field maps to describe a

magnetic element. When tracking particles with hard edge models of the magnets, the

rotation of the reference axis between consecutive cell assuming a zero field region can

be performed just before the entrance of the D magnet. Since in reality the magnetic

field extends outside the D magnet, when working with field map, we had to move the

rotation in the long drift. As explain in section 3.3.4 of chapter 3, a correction of the

particle coordinates at the exit face of a cell had to be applied to perform tracking in

a realistic lattice. In the next section we will present these tracking results obtained

with PyZgoubi and with dynamical maps.

4.3 Beam dynamics simulations with dynamical maps

4.3.1 Transverse beam dynamics

As explained in chapter 3, a dynamical map is valid in the vicinity of a reference

axis, for particles travelling with an energy close to a chosen reference energy. Since

in EMMA the energy range and the transverse excursion range are quite large, the

range of validity of a dynamical map had to be tested against the EMMA FFAG beam

dynamics. The first approach consisted in considering various reference energies across

the whole energy range. As a second approach, we computed a dynamical map for a

reference energy in the middle of the energy range (14MeV or 15MeV) and studied
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4.3 Beam dynamics simulations with dynamical maps

the behaviour of particles with energy deviation δ using that single map.

4.3.1.1 Maps with various reference energies

Eleven dynamical maps are calculated around the closed orbits for reference energies

from 10MeV to 20MeV, in steps of 1MeV as explained in section 3.3.4 of chapter 3.

The tunes (phase advances per cell) can be obtained from the eigenvalues λ of the linear

part of a given map:

λ = e±2πiν , (4.1)

where ν is the tune.

The zeroth-order term in the map for the fifth variable (longitudinal coordinate, z)

represents the difference in path length of the closed orbit with respect to the reference

trajectory.

The comparisons of these features with numerical tracking through the magnetic

field map and in hard edge model with PyZgoubi are plotted in figures 4.2 and 4.3.

Focusing first on the comparison between PyZgoubi with field map (red crosses) and

dynamical map (blue circles) (computed from the magnetic field map), we observe a

discrepancy smaller than the expected measurement precision for the vertical tune and

path length. However, we obtain a larger discrepancy for the horizontal tune at low

energy : 0.04 at 10MeV and 0.02 at 11MeV. A explanation for this discrepancy can

lie in the large excursion of closed orbits for lower energies. At such large excursion,

the analytical representation of magnetic field is at the limit of its validity and may

therefore be slightly different from the original numerical field map used to track with

PyZgoubi.

Tracking results in a hard edge model of the magnets in PyZgoubi is also presented

(in green) on the plots, and indicate the impact of the fringe field : we observed a

maximum discrepancy of about 0.05 at 10MeV for the horizontal and vertical tune per
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4.3 Beam dynamics simulations with dynamical maps

cell with respect to the tracking in field map with PyZgoubi. Hence fringe fields have

more impact on the low energy closed orbits.

In figure 4.3, we observe as well a significant shift of the time of flight curve when

using field maps. The minimum of the curve is shifted from 15MeV with hard edge

model (agreeing with design studies) to 17MeV and decreased by 120 ps. PyZgoubi and

dynamical maps simulations agree on this result which means that this large discrepancy

is due to the difference between the hard edge representation and the more realistic field

map representation of the EMMA cell. The baseline lattice was especially designed to

obtained a parabola shape tof curve centred in 15MeV. This result shows that when

modelling the EMMA cell with field maps, the original baseline configuration does not

ensure the desired shape for the tof curve. If the real machine measurements confirm

this result (see section 5.2.3) a new baseline configuration has to be found to obtain the

correct tof curve (i.e. the minimum of the curve occurs for a particular energy and tof

adapted to the rf frequency of the accelerating cavities). This issue will be discussed

in chapter 5.

After analysing the dynamics of the closed orbit, it is interesting to study the

behaviour of particles around this closed orbit. Betatron motion has been studied

by applying the dynamical maps to particles with some initial transverse offset with

respect to the reference trajectory. Figure 4.4 (top) shows the horizontal phase space for

reference energies from 10MeV to 20MeV, constructed by applying the corresponding

dynamical map (in energy) for 2000 iterations to particles with 1mm initial transverse

offset. We notice that there is some non-physical growth in the amplitude over time

for 10MeV and 12MeV: this is a consequence of a symplectic error introduced by

truncation of the dynamical map to 2nd order. The effect disappears if terms up to 3rd

order are retained (see fig. 4.4 bottom).
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Figure 4.2: Horizontal (top) and vertical (bottom) tune versus kinetic energy computed
from simulations with hard edge model and field maps. We observed a maximum discrep-
ancy of about 0.05 at 10MeV for the horizontal and vertical tune per cell with respect to
the tracking in field map with PyZgoubi. Hence fringe fields have more impact on the low
energy closed orbits.
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Figure 4.3: Time of Flight versus kinetic energy computed from simulations with hard
edge model and field maps. We observe a significant shift of the time of flight curve. The
minimum of the curve is shifted from 15MeV with hard edge model (agreeing with design
studies) to 17MeV and decreased by 200 ns. PyZgoubi and dynamical maps simulations
agree on that result which means that this large discrepancy is due to the difference between
the hard edge representation and the field map representation of the EMMA cell

4.3.1.2 Maps with energy deviation

The number of dynamical maps required to model the dynamics over the full energy

range in EMMA will depend on the range of validity of each map with respect to

variations in the energy deviation δ. Figure 4.5 shows the horizontal tune (in blue)

and the vertical tune (in red) as a function of energy obtained in two different ways:

first, from different dynamical maps computed for different reference energies (circles on

line); and second, from a single dynamical map at a single reference energy (14MeV),

but with different values for the energy deviation δ and for different truncation order of

the map : 3 (triangles), 7 (hexagons) and 9 (crosses). We observe a large discrepancy

between the two methods for low and high energy (i.e. for large energy deviation from

the reference 14MeV). The discrepancy decreases when increasing the truncation order
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Figure 4.4: Top: Betatron motion with multiple dynamical maps order 2. We notice that
there is some non-physical growth in the amplitude over time for 10MeV and 12MeV: this
is a consequence of the truncation of the dynamical map to 2nd order. Bottom: Betatron
motion with multiple dynamical maps order 3. The effect disappears if terms up to 3th

order are retained
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Figure 4.5: Betatron tunes computed with a set of dynamical maps at different refer-
ence energies (circles), and with a single dynamical map with different energy deviations
(crosses). The agreement between the two methods is better than the expected measure-
ment precision 0.01 for energy deviation up to ±2MeV (i.e 15%). This suggests that it
may be necessary to use a three different maps (12.5MeV, 15 MeV and 17.5MeV reference
energies for instance) to reproduce the transverse and longitudinal dynamics obtained with
11 dynamical maps as in section 4.3.1.1.

from 3 to 7 but no significant improvements can be seen when truncating at the 9th

order; this indicates that the 7th is the optimal truncation order for the tune variation

with energy deviation.

The expected precision of the tune measurement in EMMA is 0.01. The agreement

between the two methods is within this range for energy deviation up to ∓2MeV (i.e

15%). This suggests that it may be necessary to use at least three different maps

(12.5MeV, 15MeV and 17.5MeV reference energies for instance) to reproduce the

transverse and longitudinal dynamics over the whole energy range in EMMA (obtained

with 11 dynamical maps in section 4.3.1.1).

In order to simulate acceleration in EMMA, the dynamical maps should also de-

scribe accurately the variation in time of flight with energy. Figure 4.6 shows the time of
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Figure 4.6: Time of flight for various energies computed with a set of dynamical maps
at different reference energies (blue dots), and with a single dynamical map with different
energy deviations (red circles). We see good agreement for the maps truncated at 4th order

flight of the closed orbit at different energies computed in the two ways used previously

for the tune (i.e. multiple maps (red circles) and single map with energy deviation with

different truncation orders: 3 (crosses), 4 (triangles), 7 (black circles) and 9 (purple

circles)). We observe a good agreement (within the measurement precision range of

10 ps) for the whole energy range for a dynamical map truncated at the fourth order;

no significant improvement is obtained when increasing the truncation order up to 9.

We conclude that a single map truncated at the fourth order can simulate the time of

flight variation with energy over the whole energy range.

A last comparison between multiple maps simulation and single map with energy

deviation simulations is made in terms of the betatron motion (1mm offset) in horizon-

tal phase space. In figure 4.7(a) we observe that for a map truncated at the 4th order,

the betatron motion in horizontal phase space has a strong non-physical growth in the

amplitude for small energy deviation ±1MeV. In figure 4.7(b) this effect is reduced
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by retaining terms in the map up to 7th order but still noticeable for energy devia-

tion of ±2MeV. A sensible behaviour in figure 4.7(c) is obtained for energy deviation

of ±2MeV retaining terms in the map up to 9th order. Computational limits in the

COSY routine we used, did not allow us to investigate this effect for higher truncation

order. Also, when increasing the amplitude of the betatron oscillation from 1mm (a,b

and c) to 5mm (d), non physical growth occurs already at 16MeV for a map truncated

at the 9th order. The commissioning of the machine will tell us what is a realistic beta-

tron oscillation achievable to study the dynamics. For instance if we are able to inject

a bunch 1mm away from the closed orbit at a given energy, then simulations from a

dynamical map with reference energy within ±2MeV of the injected energy, retaining

terms up to the 9th order, may show sensible agreement with experimental data.

4.3.1.3 Summary

The large range of transverse positions in an FFAG can be modelled using multiple

dynamical maps with different reference energies. The phase advance per cell and the

time of flight computed using a dynamical map show good agreement with the results

obtained using a numerical tracking code, Zgoubi, except the horizontal tune at low

energy. Accurate description of the betatron motion requires the dynamical maps to be

computed to at least the 4th order, at small energy deviation. If the energy deviation

is large (for example, to cover the full energy range in EMMA from 10MeV to 20MeV

in a single dynamical map), then a map up to 9th order may be required to model the

horizontal motion.

Acceleration may be included in the dynamics by making an appropriate adjustment

to the energy deviation at the end of each cell (representing the effect of an RF cavity

in the cell). The results presented here suggest that it may be possible to achieve a

reasonable description of the dynamics using three different fixed reference energies

computed up to the 9th order to cover the whole energy range.
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Figure 4.7: Betatron motion for different energy deviations, simulated with a single
dynamical map up 4th order (a), 7th order (b) and 9th order (c). We observe that for
a map truncated at the 4th order, the betatron motion in horizontal phase space has a
strong non-physical growth in the amplitude for energy deviation (±2MeV ). In (b) this
effect is reduced by retaining terms in the map up to 7th order but still noticeable for
energy deviation of ±2MeV. A sensible behaviour in (c) is obtained for energy deviation
of ±2MeV retaining terms in the map up to 9th order. However increasing the oscillation
amplitude from 1mm (a,b and c) to 5mm (d) makes non physical growth appears 2MeV
energy deviation with map truncated at the 9th order.
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The truncation order is limited by the computing time and memory management

in the routines used from COSY Infinity [47]. These routines have been used because

they allow handling of differential algebra (DA) objects (see chapter 3). By writing a

separate DA object code, one could optimise the computation of the dynamical maps

focusing on the energy deviation variable. This variable could be truncated at an order

greater than 9th while the other variables truncated at lower orders.

As a result, the tracking study of acceleration would significantly be eased by han-

dling only one map and avoiding possible discontinuities and errors occurring while

swapping maps. Moreover, we will see in chapter 5 that a large number of dynam-

ical maps (about 300) needs to be computed to simulate the various EMMA lattice

configurations and find the optimum configuration for acceleration. Requiring a single

dynamical map for each configuration instead of three maps reduces significantly the

computing time and the inconvenience of handling a large number of files.

4.3.2 Study of a nonlinear effect : tune shift with amplitude

4.3.2.1 Introduction

Another interesting feature of dynamical maps is the fact that they contain information

about nonlinear features of the beam dynamics. Nonlinear refers to order higher than

one in the dynamical variables. When computing the tunes and times of flight for large

energy deviations, we observed that including higher order terms in the δ variable had

an influence on the results. A similar nonlinear effect may be observed in transverse

dynamics. For instance, the horizontal and vertical tune are, in linear approximation,

computed from the linear part of the map (see equation 4.1). However they may vary

with the amplitude of the transverse motion when including terms of order higher than

one in the dynamical variables (x,px) and (y,py). This variation is often referred as

“tune shift with amplitude”. Here the amplitude refers to the area of the ellipse traced

out in transverse phase space by recording the entrance position at each turn of a
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particle tracked several times though the cell at fixed energy. This ellipse is centred on

the closed orbit at this energy (see figure 4.8(a)).

We have seen in chapter 3 that the set of Cartesian canonical variables (x,px) is

linked to the set of action-angle variables (also canonical) (φx,Jx). Since the action Jx is

directly linked to the amplitude of oscillation in transverse phase space, it is convenient

to use action-angle variables when considering the horizontal tune shift with amplitude.

Similarly (φy, Jy) are used for the vertical motion.

The relation between the two sets of canonical variables are:

x =
√

2βxJx cosφx (4.2)

px = −
√

2Jx
βx

(sin φx + αx cosφx) (4.3)

with βx and αx being the Twiss parameters (see chapter 3 section 3.1.3) and νx =

∆φx/2π where ∆φx is the phase advance over one cell and φ0 an arbitrary offset phase

set to zero in the following.

Figure 4.8(a) shows the betatron ellipses traced out by particles with actions J1 =

A1/π and J2 = A2/π, with A1 and A2 areas of the blue and red ellipses respectively; here

J1 < J2. The phase advance is related to the position of a particle around the ellipse

in transverse phase space, however the shape of the ellipse varies along the beamline

with the functions βx and αx in 4.3. The relation between the phase advance and

the position in phase space is therefore not obvious. We can normalise the Cartesian

coordinates such that they are expressed only in terms of the action-angle variables.

To do so, we define the normalisation matrix N such that :




xN

pxN


 = N ·




x

px


 =




√
2Jx cosφx

−
√
2Jx sinφx


 . (4.4)
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Figure 4.8: (a)Schematic view of the betatron ellipse traced out in phase space by a
particle going several time through the EMMA cell. The blue and red ellipses of area A1

and A2 respectively represent the betatron motion of two particles with different actions
J1 = A1/π in blue and J2 = A2/π in red. Here J1 < J2. (b) Schematic view of the
betatron motion in normalised variables. The ellipses in (a) are now circles with radius
being equal to

√
2J1 and

√
2J2. The phase advance over one cell of the particle number 2

is larger than the one of particle number 1. This illustrates the variation of phase advance
with the action, also called ”tune shift with amplitude”.

From 4.2 and 4.3 we have:

N =




1√
βx

0

αx√
βx

√
βx


 . (4.5)

The schematic view of the tune with amplitude in the normalised transverse phase

space (xN ,pxN ) is shown in figure 4.8(b). The betatron motion is now represented by

circles with radius being equal to
√
2J1 and

√
2J2. Dots with subscript “i” represent

the initial positions of the particles on each circle and dots with subscript “e” represent

the exit positions of the particles after one cell. The phase advances per cell (or tunes)

Φ1 and Φ2 are the angles performed by particles with action J1 and J2 respectively. In

that case Φ2 > Φ1 so the tune increases with the amplitude of the action.

As explained in the introduction chapter, the phase advance (or tune) refers to

oscillations of a particle around a stable orbit. These oscillations are caused by focusing

and defocusing strengths. It is therefore equivalent to write that the phase advance

varies with the action of a particle and that particles with different actions experience
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4.3 Beam dynamics simulations with dynamical maps

different focusing and defocusing strengths.

Now if we imagine that in a bunch of particles, particles have different actions,

therefore their oscillations around the stable orbit will be different. In practise diag-

nostic devices can only detect motion of a bunch of particles; since in this case the

bunch oscillation is not coherent, the measurement will give little information on the

betatron motion of individual particles in the beamline. This phenomenon is called

decoherence and is studied in section 4.3.3.1.

In a non-scaling FFAG such as EMMA, the focusing strength experienced by parti-

cles (and therefore the tune) varies significantly with energy (i.e. large chromaticity).

This has a larger effect on the decoherence than the tune shift with amplitude. Nev-

ertheless, in a scaling FFAG, the chromaticity is kept small by using highly non-linear

magnetic fields. Studying the variation of the tune with respect to the action of par-

ticles then becomes interesting; we will see in section 4.3.2.3 why dynamical maps can

then be really convenient.

The aim is to evaluate the tune shift with amplitude from two different methods.

The first method consists in applying the dynamical map to a set of initial coordinates

of particles and then processing their exit coordinates numerically (over many turns)

to find the tune shift with amplitude. This method is called Frequency Map Analysis

(FMA) [51,52]. The second method is based on a direct reading of the coefficients of

the dynamical map expressed in the form of a Lie factorisation [43]. The agreement

between the two methods will outline the usefulness of dynamical maps since complex

dynamics could (at least in principle) be extracted directly from its coefficients and

therefore not require a full tracking procedure.

Also, we will compare the horizontal and vertical tune shifts with amplitude with

results obtained from tracking in PyZgoubi for 19MeV and 15MeV particles. We will

study the accuracy of the magnetic field simulations with PyZgoubi and with dynamical

maps and compare with the original OPERA model. This comparison will show that
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Figure 4.9: Value of the coefficients of the Fourier transform of a set of quantities vk
linked by the equation 4.6 to the positions of a particle going through the EMMA cell 100
times. A large peak occurs for l=19 from which we conclude that the phase advance of the
EMMA cell is 19/100.

the nonlinear vertical dynamics seem to be more accurately simulated with dynamical

maps than with PyZgoubi using a 2D field map.

4.3.2.2 Frequency map analysis

To measure the tune precisely enough to see variation with amplitude, we launch a

particle in the cell and track for hundred passes. At the end of each cell, we record the

exit coordinates (xk,pxk
) of the particle. We then computed the normalised coordinates

(xNk
,pxNk

) using (4.4). For the Frequency Map Analysis (FMA), we define a set of

complex quantities vk as:

vk = xNk
+ ipxNk

(4.6)

with k ranging from 1 to the total number of cells Nc (here Nc = 100).

We perform a Discrete Fourier Transform (DFT) of the set of vk by computing the

quantities ṽl defined as:

ṽl =
∑

k=1...Nc

vk × e2πi
l∗k
Nc (4.7)

We obtain a spectrum plotted in figure 4.9. The tune νx is equal to lmax/Nc with

157

BeamSimu/figures/Spec_Tunex_with_amp19.eps
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lmax being the index for which ṽl is maximum. Note that in a conventional DFT, l

is an integer. In FMA l can take non-integer values in order to find the index lmax

with a good precision. We applied this analysis to tracking results for particles with

various actions Jx launched around the 19MeV closed orbit. The relative horizontal

and vertical tune variations with the action obtained with this method are represented

by the blue crosses in figures 4.10 and 4.11 respectively. This results will be discussed

in the next section when comparing with the second method using Lie factorisation.

4.3.2.3 Tune shift with amplitude extracted from Lie factorisation

In this section, we will study the effect of applying a map representing a general section

of beamline, to the angle variable, representing the phase advance along the beamline.

The generator g of a Lie transformation e−:g: (representing for example the dynam-

ical map for a given beamline) can conveniently be expressed as a polynomial function

of the Cartesian canonical variables :

g = a0 + b0x+ b1px + c0x
2 + c1p

2
x + c2xpx + ... (4.8)

where ai, bi, ci are coefficients of the zeroth, first and second order in the dynamical

variables respectively, characteristics of the beamline. The value of a function f of

dynamical variables at the end of the beamline of length L can then be written:

f(L) = (e−:g:f)s=0 = f(0)− (: g : f)s=0 +
1

2
(: g :2 f)s=0 + ... (4.9)

Note that the Lie operator acts on a variable (or a function of the dynamical variables,

f), not on a value. Since we are interested in the phase advance, we can substitute the

action-angle variables in the generator using 4.3. The generator g of the Lie transfor-
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mation is then given by:

g =
∑

l,m

µx,lmJ l
xe

imφx , (4.10)

where µlm are coefficients characteristics of the beamline.

In (4.10) the generator contains terms mixing both action and angle variables for

m 6= 0 (e.g. for l = 2 and m = 3: J2
x cos 3φx). To derive the tune shift with amplitude

in a clear way, we are interested in expressing the generator as a function of the action

Jx only. To do so, we assume that the terms dependent on the angle variable are small

compared to terms depending on the action: this will be the case if the trajectory of

a particle in phase space is close to an ellipse (the dependence on the angle variable

would lead to a distortion of the ellipse). We average the effect of the terms dependent

on the angle by averaging the generator over the angle variable φx from 0 to 2π. The

generator that results from this averaging is representative of the dynamics if after

many passes through the cell, the variable φx does cover the whole range from 0 to 2π.

This is not the case close to a resonance where φx takes a limited range of values [53].

When averaging the generator in 4.10 for φx over 2π, it turns out that all terms

containing φx cancel out and terms containing only the action remain.

2π∫

0

gdφx = µx0Jx + µx1J
2
x + µx2J

3
x + ... (4.11)

We apply the definition of the Lie operator : g : (see section 3.2.2 of chapter 3) for

the function g(Jx, φx):

: g :=
∂g

∂φx

∂

∂Jx
− ∂g

∂Jx

∂

∂φx
(4.12)

Let us first consider the function g0 = µx0Jx and evaluate the effect of the operator

:g0: on the angle variable φx:

: g0 : φx =
∂µx0Jx
∂φx

∂φx

∂Jx
− ∂µx0Jx

∂Jx

∂φx

∂φx
= 0− µx0 = −µx0 (4.13)
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Then to compute the effect of the map e−:g: on φx, we need to evaluate the effect of

: g0 :
2 on the angle variable φx:

: g0 :
2 φx = : g0 : : g0 : φx

= : g0 : (−µx0)

= 0

Similarly : g0 :3=: g0 :
4= ... = 0 and therefore we have:

e−:µx0Jx:φx = φx + µx0 . (4.14)

Let us now consider the effect of the operator : g1 :=: µx1J
2
x : on φx:

: g1 : φx =
∂(µx1J

2
x)

∂φx

∂φx

∂Jx
− ∂(µx1J

2
x)

∂Jx

∂φx

∂φx
= 0− 2µx1Jx = −2µx1Jx (4.15)

and,

: g1 :
2 φx = : g1 : : g1 : φx

= : g1 : (−2µx1Jx)

=
∂(µx1J

2
x)

∂φx

∂(−2µx1Jx)

∂Jx
− ∂(µx1J

2
x)

∂Jx

∂(−2µx1Jx)

∂φx

= 0 . (4.16)

Similarly we have : g1 :3=: g1 :4= ... = 0. The process can be applied to all the terms

: gi :=: µxiJ
i+1
x : and we obtain an expression for the effect of the map on the angle

variable φx given by:

φx(L) = (e−:g:φx)s=0 = φx(0) + µx0 + µx1Jx(0) +
1

2
µx2Jx(0)

2 + ... . (4.17)
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Figure 4.10: Relative variation of the horizontal tune with the horizontal action Jx.
The discrepancy between the FMA of the dynamical map tracking (blue crosses) and the
reading from the Lie Factorisation (blue line) is rather small : 0.0001 for Jx=60µm and
0.0002 for Jx = 200µm. Red circles correspond to the result of a FMA of tracking results
obtained from PyZgoubi. The agreement between PyZgoubi and dynamical map is better
than 10−5 and gives confidence in both results. We notice also that for actions smaller than
10−1 the results from PyZgoubi appear not to converge. This may be due to numerical
precision error when tracking particles close to the closed orbit in PyZgoubi.

The phase advance ∆φx is the variation of the angle variable through the beamline

(∆φx = φx(L)−φx(0)) and is related to the tune νx by νx = ∆φx/2π. Finally the tune

for this beamline can be expressed as:

νx = νx0 + νx1Jx + νx2J
2
x + ... , (4.18)

where the coefficient νx0 = µx0/2π is the linear part of the tune, the coefficient

νx1 = µx1/2π is the linear tune shift with amplitude and the coefficients νxi = µxi/2π

of the higher orders in Jx represent the higher order tune shift with amplitude. The

process could be applied for the vertical transverse plane substituting the subscript x

by y.

From the dynamical map in power series form computed around the 19MeV closed

orbit, we used COSY Infinity routines [47] to derive the generator of the Lie trans-
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Figure 4.11: Relative variation of vertical tune with vertical action Jy. We notice a large
discrepancy when comparing PyZgoubi (red circles) and dynamical map (blue crosses).
The disagreement in the simulation of the vertical nonlinear effects may be explained by
the difference in description of the magnetic field in the two codes. The tune shift with
amplitude obtained from the Lie Factorisation (blue line) shows good agreement of better
than 10−4 for actions smaller than 100µm with the result of the FMA from tracking using
a dynamical map.

formation expressed as in equation 4.8. COSY returns the generator in Cartesian

coordinates in which we substitute the action-angle variables to identify the coefficients

νi in expression 4.18.

In figures 4.10 and 4.11, the relative tunes variation (determined by the coefficients

νi found using COSY infinity) νx − νx0 for the horizontal motion and νy − νy0 for

the vertical motion are represented by the blue lines. The red points and the blue

crosses show the result of a Frequency Map Analysis on tracking results obtained from

PyZgoubi and from a dynamical map respectively.

First, we observe that the tune shift with amplitude in all cases is small (about

0.001) over a large range of variation of the action (from 0 to 200µm). The order

of magnitude of the horizontal beta-function βx in EMMA is 1m. Therefore from
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equation 4.3, the maximum transverse coordinate equivalent to an action of 200 µm

is xmax =
√
2βxJx = 14mm. We estimate from the early stage of the commissioning

of the EMMA accelerator that a bunch of particles can be injected on the closed orbit

within a precision of a few millimetres (at the location of a maximum for βx). Therefore

in reality, the amplitude of oscillation may remain smaller than 14mm, resulting in a

small tune shift with amplitude.

Regarding the horizontal motion (figure 4.10), the agreement between the FMA of

the dynamical map tracking (blue crosses) and the reading from the Lie Factorisation

(blue line) is rather good : the discrepancy is of order 0.0001 for Jx=60µm and 0.0002

for Jx = 200µm. The agreement between PyZgoubi and dynamical map is better than

10−5 and gives confidence in both results. We notice also that for actions smaller than

10−1 the results from PyZgoubi appear not to converge. This may be due to numerical

precision error when tracking particles close to the closed orbit.

In figure 4.11, the vertical tune shift with vertical action Jy obtained from the Lie

Factorisation (blue line) show good agreement with the result of the FMA from tracking

in dynamical map of less than 10−4 for action smaller than 100µm.

We conclude that if we believe that the dynamical map describe the nonlinear effect

accurately, the direct reading of the Lie Factorisation of the map gives satisfactory

results in terms of horizontal and vertical tune shift with amplitude.

On the other hand, the variation of the vertical tune with amplitude shows large

discrepancy when comparing PyZgoubi (red circles) and dynamical map (blue crosses).

The disagreement in the simulation of the vertical nonlinear effects may be explained

by the difference in the description of the magnetic field: this is discussed further in

the following subsection.
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4.3.2.4 Study of the discrepancy in the variation of the vertical tune with

amplitude

To explore the discrepancy in vertical tune shift with amplitude between PyZgoubi and

the dynamical map, we compare the magnetic field experienced by particles travelling

in straight line through the cell for different vertical positions. To do so, we send

particles with very high energy such that they are not deflected by the magnetic field.

Their horizontal transverse position is kept zero and we vary their vertical position

from 1mm to 20mm. The vertical motion y is affected by the horizontal component of

the magnetic field Bx. We then record the horizontal component of the magnetic field

Bx seen by each particle at a given longitudinal position; for this study, we chose the

centre of the defocusing magnet where the field is expected to be linear. In a further

study it would be interesting to perform the same study at the entrance or exit face of

magnets where non-linearities in the field are expected to be stronger.

In PyZgoubi the magnetic field is derived from a 3D numerical representation of the

magnetic field extrapolated from a 2D field map in the median horizontal plane. The

magnetic field in dynamical maps is computed from the analytical representation of the

magnetic field, expressed as a Fourier expansion, derived from the OPERA model (see

chapter 2).

Results from both tracking methods are compared with the original OPERA model

of the magnet. In figure 4.12, we observe that the variation of Bx with y is almost

perfectly linear for PyZgoubi, OPERA and dynamical map simulations.

The tune shift with amplitude is directly related to the derivatives of Bx with respect

to y. Hence we fit a polynomial function on the results obtained from the three codes,

and then we identify the coefficients ck of this polynomial function with the coefficients
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of Taylor expansion of the magnetic field:

Bx(y) =

∞∑

k=0

1

k!

∂kBx

∂yk

∣∣∣∣
y=0

yk (4.19)

We obtain therefore

ck =
1

k!

∂kBx

∂yk

∣∣∣∣
y=0

(4.20)

In a further study, it can be proved that the tune shift with amplitude is directly

related to the coefficient of order 3 (c3) integrated along the entire cell. This coefficient

is also called octupolar component of the magnetic field. Here, we restrict the study to

the comparison of these coefficients obtained from fitting the magnetic field simulated

from PyZgoubi, dynamical map and OPERA.

In figure 4.13, the value of the coefficients for each order are plotted in a vertical

logarithmic scale. Results agree for the first order, corresponding to the quadrupolar

(or gradient) component of the field ∂Bx

∂y
. However we observe a large discrepancy

between PyZgoubi and the two other codes for other orders.

The coefficients of the polynomial function obtained from PyZgoubi is six orders

of magnitude smaller than the dynamical map and OPERA corresponding coefficients.

There is a much smaller discrepancy of less than one order of magnitude between

the dynamical map and the OPERA coefficients. We conclude that dynamical maps

represent more accurately the non-linearities in the magnetic field than PyZgoubi.

PyZgoubi works in this study with 2D field maps in the median plane (see section

4.2.1) and uses Taylor expansion in the vertical coordinate y to reconstruct a 3D field

map. This Taylor expansion becomes less accurate for increasing values of y. This may

not describe accurately the variation of the fringe field or the nonlinear components of

the magnetic field outside the median plane. This can explain the discrepancy in terms

of nonlinear dynamics observed in figure 4.11 for the vertical tune shift with amplitude.

In addition we have studied the same comparison between tune shift with amplitude
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Figure 4.12: Variation of the horizontal component of the magnetic field Bx with re-
spect to the vertical position y in the defocusing quadrupole for PyZgoubi (red crosses),
dynamical map (green circles) and OPERA simulations (blue triangles). In all three cases,
the variation seems to be close to linear, consistent with the fact that the field is derived
in the centre of the D magnet and also consistent with the small nonlinear effect seen on
the tune. The tune shift with amplitude is directly related to the derivatives of Bx with
respect to y.
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Figure 4.13: Value of the coefficients of the polynomial function fitted on the data of figure
4.12 for PyZgoubi (red crosses), dynamical map (green circles) and OPERA simulations
(blue triangles). Coefficients are plotted for each order and the vertical scale is logarithmic.
Results agree for the first order, corresponding to the quadrupolar (or gradient) component
of the field ∂Bx

∂y
. The higher order coefficients of the polynomial function obtained from

PyZgoubi are five orders of magnitude smaller than the corresponding coefficients in the
case of the dynamical map and OPERA. There is a relatively small discrepancy of less
than one order of magnitude between the dynamical map and the OPERA coefficients.
We conclude that dynamical maps represent more accurately the non-linearities in the
magnetic field than PyZgoubi. This can explain the discrepancy in terms of nonlinear
dynamics observed in figure 4.11 for the vertical tune shift with amplitude.

obtained from FMA in PyZgoubi and in a dynamical map for different energies. Figure

4.14 shows the comparison for a 15MeV reference energy. We observe a disagreement

between the two tracking methods. In both cases, the tune first increases with am-

plitude and then decreases. However the decrease starts for action above 70µm for

the dynamical map (blue crosses) and above 200µm for PyZgoubi (red circles). The

discrepancy in tune is about 0.002 for an action of 300 µm. However this value is small

and probably not measurable in the machine. A possible explanation for this difference

lies in the limit of validity of the paraxial approximation made to compute the dynam-

ical map and not used in PyZgoubi [48]. The excursion of the 15MeV closed orbit
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with respect to the reference straight line is larger than for 19MeV for which we had

good agreement (see fig.4.10). Thus the paraxial approximation at low energy limits

the accuracy of simulations of the non-linearities using dynamical maps. The reference

straight line of a map is located at the starting horizontal position of the closed or-

bit for the reference energy of the map. Instead, looking for a reference straight line

that minimises the relative excursion of trajectories along the cell may overcome this

problem. Also, we could validate this hypothesis by constructing a beamline with a

magnet element introducing a strong tune shift with amplitude and for which an an-

alytical solution for the beam dynamics could be derived. For instance a FODO cell

also including an octupole magnet (introducing a tune shift with amplitude [53]). The

analytical solution for non linear dynamics could then be compared to the tracking

method for two purposes: first to validate, with non negligible non-linear effect, the

derivation of nonlinear dynamics from the generator of the Lie transformation; second

to verify if the discrepancy between PyZgoubi and Dynamical map for the horizontal

tune shift with amplitude is caused by the paraxial approximation.

4.3.2.5 Summary and conclusions

In this section, we studied the nonlinear effect on the horizontal and vertical tune per

cell in EMMA. Nonlinear effects can cause the tune value to vary with the magnitude

of the action J . The aim of our study was to show that information about nonlinear

dynamics could be obtained directly from the coefficients of the generator of the Lie

transformation representing the map. Thus we compared the tune shift with amplitude

obtained from frequency map analysis of tracking results from PyZgoubi and dynamical

map, with the value for the tune shift obtained by reading directly the coefficients of the

Lie operator of the dynamical map. At 19MeV we observed a good agreement between

the frequency map analysis of the horizontal motion in PyZgoubi and dynamical map.

The discrepancy with the results obtained from the coefficient of the Lie operator
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Figure 4.14: Comparison between horizontal tune shift with amplitude obtained from
FMA in PyZgoubi (red circles) and dynamical map (Blue crosses) for 15MeV reference
energy. We observe a disagreement between the two tracking methods. In both cases, the
tune first increases with amplitude and then decreases. However the decrease starts for
action above 70µm for the dynamical map and above 200µm (blue crosses for dynamical
maps and red circles for PyZgoubi). The discrepancy in tune is about 0.002 for an action of
300µm. However this value is small and probably not measurable in the machine. A possi-
ble explanation for this difference lies in the limit of validity of the paraxial approximation
done to computed the dynamical map and not used in PyZgoubi [48].

being smaller than measurement precision validates the reading of this nonlinear effect

directly from the map. However we observed a larger disagreement in the vertical

motion. By studying the variation of the horizontal component of the magnetic field

along the vertical axis, we observed that PyZgoubi was not accurately simulating the

nonlinear components of the magnetic field present in the OPERA model. On the other

hand, the agreement between OPERA and the dynamical map descriptions of the field

gives confidence in the simulation of the tune shift with amplitude with dynamical map.

We noticed also the possible limit of validity of the paraxial approximation in the

dynamical map when studying this nonlinear effect for a closed orbit at 15MeV with

larger excursion from the reference axis. The horizontal tune shift with amplitude is in

this case different from results obtained with PyZgoubi, which does not use the paraxial

approximation. Further studies would be necessary to estimate the actual effect of the
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4.3 Beam dynamics simulations with dynamical maps

paraxial approximation in this result. To do so, we could create a simple beamline for

which the tune shift with amplitude could be derived analytically.

4.3.3 Longitudinal dynamics

4.3.3.1 Energy spread in a bunch

In this section, we will look at how particular aspects of the transverse motion of

particles (or bunches of particles) depend on aspects of the longitudinal dynamics. In

an accelerator such as ALICE or EMMA, particles travel by bunches. Along the beam

line, Beam Position Monitors (BPMs) read the transverse position of each bunch by

measuring the change in electric potential at fixed points (the BPM electrode location)

as a bunch of charged particles moves past. The position read is therefore linked to the

centroid of charge of the bunch and not to the position of individual particles. When

trying to measure betatron oscillation, we assume that the whole bunch is coherently

oscillating around a reference trajectory and that the position of the centroid of charge

is significant in terms of beam dynamics.

However, in general each particle belonging to a bunch has unique values for all the

dynamical variables, and the representations of the bunch in longitudinal and transverse

phase spaces are not “point-like”. Variation in the dynamical variables between parti-

cles appear when creating the bunch in the source and are then amplified or reduced

along the beam line depending on the lattice.

We studied the effect of differences in kinetic energy between particles in a single

bunch. Particles with different energies follow different trajectories and the oscillation

of a bunch is not coherent anymore. At the location of a Beam Position Monitor,

particles are spread around the closed orbit and the centroid of charge may be close to

(or on) the closed orbit. The measurement from the BPM gives little indication of the

betatron amplitudes of individual particles. Indeed particles may be close to the wall of

the vacuum chamber and the centre of charge still be on the closed orbit. Simulations
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must be carried out to support a proper interpretation of the BPM data.

We created a bunch of 1000 particles all having the same transverse coordinates (x0,

px0, y0, py0) and longitudinal position z0 with respect to the reference particle but with

various energy deviations with respect to the reference energy. In that way, we studied

only the effect of a longitudinal initial distribution on the transverse dynamics. The

energy deviation of each particle is defined randomly following either a Gaussian or a

uniform distribution. We tracked this bunch in the EMMA ring first using dynamical

maps and then comparing with PyZgoubi with field maps. The position of each particle

was recorded at the end of each cell. To reproduce the reading of a BPM, we computed

the average of the transverse positions of all particles at each reading position.

First, we studied the effect of the distribution of energy deviations in a bunch by

plotting the average transverse position of the bunch going through the EMMA lattice.

For a Gaussian distribution, the energy spread is expressed in terms of σ, the standard

deviation (or, for zero mean, the root mean square (rms)) value of the distribution. For

a uniform distribution, the Full Width at Half Maximum (FWHM) is more relevant

than the rms value. Therefore we chose the FWHM to compare the distributions. The

relationship between the rms value σ and the FWHM for a Gaussian distribution is:

FWHM = 2
√
2 ln 2σ (4.21)

The measured energy spread of the bunch assuming a Gaussian distribution at

the end of the EMMA injector is 0.5% rms equivalent to 1.175% FWHM. We studied

the effect of decoherence for bunches with reference energy of 14MeV and FWHM

of about 150 keV. In figure 4.15 we plotted the relative average horizontal transverse

position of a bunch with respect to the closed orbit at the end of each cell. The zero

position means that the average position of the bunch is on the closed orbit. In order

to study the betatron oscillations, all particles are launched 3mm off closed orbit with
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Figure 4.15: Relative average horizontal transverse position of a bunch with respect to
the closed orbit at the end of each cell. The zero position means that the average position
of the bunch is on the closed orbit. All particles are launched 3mm off closed orbit with no
transverse momentum at the entrance of the first cell. The four plots on the left hand side
show the decoherence of a bunch with a Gaussian distribution for a FWHM equal to 0,
0.2935%, 1.175% and 2.35%. The four plots on the right hand side show the decoherence of
a bunch with a uniform distribution for a FWHM equal to 0, 0.2935%, 1.175% and 2.35%.
In all cases where the FWHM is > 0, we observe a damping of the betatron oscillation after
a few turns. For 1.175% FWHM, the beam is mainly damped in the first 8 turns (with 42
cells per turn) for both distributions. For 2.35% FWHM, the beam is mainly damped in
the first 4 turns for both distributions. However, bunches with uniform distribution seem
to oscillate coherently again after the main damping. For 1.175% FWHM, the oscillation
reaches an amplitude of 1mm after 11 turns and is damped again after 14 turns. This
effect is hardly visible with a Gaussian distribution.
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4.3 Beam dynamics simulations with dynamical maps

no transverse momentum at the entrance of the first cell. The four plots on the left

hand side show the decoherence of a bunch with a Gaussian distribution for a FWHM

equal to 0%, 0.2935%, 1.175% and 2.35%. The four plots on the right hand side show

the decoherence of a bunch with a uniform distribution for a FWHM equal to 0%,

0.2935%, 1.175% and 2.35%. In all cases (except 0%) we observe a damping of the

betatron oscillation after a few turns. For 1.175% FWHM, the oscillations are almost

fully damped in the first 8 turns (with 42 cells per turn) for both distributions. For

2.35% FWHM, the oscillations are almost fully damped in the first 4 turns for both

distributions. However, for bunches with uniform distribution, there appears to be

some recoherence after the main damping. For 1.175% FWHM, the oscillation reaches

an amplitude of 1mm after 11 turns and is damped again after 14 turns. This effect is

hardly visible with a Gaussian distribution.

To understand this phenomenon we plotted in figure 4.16 the position of selected

particles in the bunch in the transverse phase space (x, px) at several turn numbers. On

the top we observe the decoherence of a bunch with Gaussian distribution for 1.175%

FWHM. At turn zero (red triangle), the bunch is point like since all the particles have

to same starting position (3mm away from the closed orbit). After the first turns

(green stars), all particles of the bunch are located around a similar point in phase

space. Although the bunch is not anymore “point-like”, the average position will be

different from the centre of the ellipse (closed orbit). After 10 turns (blue crosses),

particles are uniformly spread around an ellipse and the average position of the bunch

is the centre of the ellipse.

On the bottom plot, for the uniform distribution after ten turns (blue crosses),

particles are also spread in phase space; however in top left corner around the position

(-4,20) we notice a greater density of particles than in the rest of the plot. The average

position is therefore shifted away from the centre of the ellipse towards the left. The

greater density seem to be caused by the superposition of particle moving round the
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Figure 4.16: Position of each particles of the distribution in the transverse phase space
(x, px) after a given turn numbers. Top: we observe the decoherence of a bunch with
Gaussian distribution for 1.175% FWHM. At turn zero (red triangle), the bunch is point
like since all the particles have to same starting position (3mm away from the closed orbit).
After the first turns (green stars), all particles of the bunch are located around a similar
point in phase space. Although the bunch is not anymore “point-like”, the average position
will be different from the centre of the ellipse (close orbit). After 10 turns (blue crosses),
particles are uniformly spread around an ellipse and the average position of the bunch is
the centre of the ellipse. On the bottom plot, for the uniform distribution after ten turns
(blue crosses), particles are also spread in phase space however in top left corner around
the position (-4,20) we notice a greater density of particles than in the rest of the plot. The
average position is therefore shifted away from the centre of the ellipse towards the left.
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phase space ellipse at different rates. Since the angle moved around the ellipse depends

on the energy (chromaticity), for given position around the ring particles with low

energy (high betatron tune) can ”catch up” with particles having high energy (low

betatron tune); the centroid of charge is then shifted towards the overlap and the BPM

reading of the bunch position is not the centre of the ellipse (x 6= 0). Their positions

can either cancel each other or add up. The effect is weaker for a Gaussian distribution

because the ”tails” of the distribution for which the energy difference energy could be

large has low particle density. The effect of recoherence on the BPM reading is therefore

relatively weak.

To validate these results, we tracked a bunch with a Gaussian distribution of energy

deviation for 1.175% and 2.35% FWHM in PyZgoubi using a field map of the EMMA

cell. Note that the dynamical map simulations in this case turned out to be 30 time

faster than the simulations in the field map with PyZgoubi. The left hand side plots

in figure 4.17 results from dynamical maps and the right hand side show result from

PyZgoubi. For both codes, the damping periods of 7 turns for 1.175% FWHM (top)

and 4 turns for 2.35% FWHM. We observe a discrepancy in the frequency of oscillation

of the envelope of the curves. The period of the envelope for PyZgoubi is of about 4

turns while it is about half a turn for the dynamical maps. This discrepancy is due to

the difference of horizontal tune per cell obtained in the two codes.

The ”beats” seen in the betatron motion are a consequence of the fact that we

are sampling the motion at the BPMs: such beats will occur if the tune is close to a

resonance (even if the motion is completely linear and regular). The fractional part

of the horizontal tune per cell at 14MeV obtained from PyZgoubi is 0.248 and from

dynamical map is 0.242 therefore both are close to the 1/4th of an integer (0.25). We

created a simplistic model of the betatron oscillation (x = cos(2πν(42 ∗ n))) where n

is the turn number and ν the tune value close to 0.25. Figure 4.18 shows that the

frequency of the beat is related to the distance of the tune from the resonance.
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Figure 4.17: Relative average horizontal transverse position of a bunch with respect to
the closed orbit at the end of each cell. The left hand side plots on figure 4.17 are result
from dynamical maps and the right hand side show result from PyZgoubi. For both codes,
the damping periods of 7 turns for 1.175% FWHM (top) and 4 turns for 2.35% FWHM.
We observed a discrepancy in the frequency of oscillation of the envelop of the curves. The
period of oscillation of the envelop for PyZgoubi is of about 4 turns whereas it is about
half a turn for the dynamical maps. The frequency of the beat is related to the distance
of the tune from the resonance.
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Figure 4.18: Simplistic model of the betatron oscillation (x = cos(2πν(42 ∗ n))) where

n is the turn number and ν the tune value close to the 1/4
th

of an integer (0.25). The
frequency of the beat is related to the distance of the tune from the resonance.

We conclude that the main damping of the betatron oscillation does not strongly

depend on the distribution of the energy deviations in a bunch. After a certain number

of turns, the particles belonging to a bunch are spread around the betatron ellipse. The

centre of charge of the bunch is then situated at the centre of the ellipse i.e. on the

closed orbit but the structure of bunch is lost and the reading from the BPM gives little

information on the betatron motion of particles. We observed a agreement in terms of

damping period between PyZgoubi and dynamical map. The betatron oscillations of a

bunch with a distribution of energy deviation with a FWHM of 1.175% (corresponding

the actual measurement) is not readable after more than 7 turns. The damping period

drops to less than 4 turns with a FWHM of 2.35%. The direct consequence is the

decrease of amount of data available to study the transverse dynamics.

The interesting characteristics of the transverse dynamics such as tune and optical

functions have to be determined by data taken within these few turns. Since tunes

and optic functions are linked to the periodicity of the lattice, ideally if all the cells
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in EMMA are identical, BPM measurements at the exit of the first few cells could

be sufficient. However magnets are subject to alignment and strength errors and the

periodicity of the lattice is then broken. An average value over several cells of the

tune and optical functions is still interesting to derive but requires sufficient data to be

statistically accurate. Hence the number of turns with coherent motion can be critical.

Simulations have been carried out including random errors in the lattice within the

tolerance expected for the real machine [28]. The data have been processed with NAFF

method [55] or Model Independent Analysis [58, 59] and it has been shown [54] that

the tune per cell could be derived to a precision of 0.01 in less than 1 turn for the

measured energy spread at injection. The NAFF method is equivalent to frequency

map analysis described in section 4.3.2.2 which compute accurately the value of the

tune from a relatively small sample of tracking data.

First results from the commissioning suggest that the tune can be measured with

an accuracy of about 0.01 from the BPM measurements of only 7 consecutive cells [67].

4.3.3.2 Analytical description of the acceleration in EMMA

One of the goal of EMMA is to demonstrate a new acceleration scheme. Synchrotrons

use the so-called bucket acceleration which consists in synchronising the beam revo-

lution time with the oscillations of the accelerating field in the rf cavities. The beam

reaches the cavities always at the same phase of rf voltage. However this is made

possible by increasing the magnet strengths as particles gain energy. The beam path

remains constant during acceleration; for ultra-relativistic particles, the time of flight

remains constant as well which allows the synchronisation with the rf.

In an FFAG (such as EMMA) the magnet strengths are kept constant and particles

change orbits during acceleration. Therefore the time of flight varies. The beam will

not be perfectly synchronised with the rf cavities. The idea is to manage to extract the

beam before it reaches a cavity with negative voltage. There is therefore 180◦ of RF
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phase available for acceleration.

The objective of this section is to show that a dynamical map can be used to

model the dynamics of a particle during acceleration in an FFAG. Comparison will be

made with an analytical description, to aid understanding of the relevant processes.

The analytical solution has been developed by Keil and Sessler in [61]. A complete

analytical derivation can also be found in [62, 63]. The general Hamiltonian for the

longitudinal motion can be expressed as following [46]:

H = h(
η0δ

2

2
+

η1δ
3

3
+

η2δ
4

4
+ ...) +

2πhβ2
rEr

eV Nc
[cos(φs + φ) + φ sinφs] , (4.22)

where h is the harmonic number and δ is the energy deviation with respect to the refer-

ence energy Er. V is the accelerating rf voltage in one of Nc cavities with synchronous

phase φs. φs is measured in radian and equals zero at the zero crossing with negative

gradient of the rf wave form. βr is the speed in units of the light velocity of the ref-

erence particle. The reference particle is synchronised with the rf; hence the harmonic

number, the revolution time and the rf frequency are related by trev = h/frf .

The origin of φ is at the synchronous phase φs. The coefficients ηi are the phase slip

factor η0 and its higher order terms. The phase slip factor is defined as the variation

with energy of the time of flight of a particle over one revolution. Electrons in EMMA

are in the ultra-relativistic regime which means that path length and time of flight

evolutions with energy are equivalent. In conventional bucket acceleration, the lattice

is such that the phase slip factor is mainly determined by its linear part η0. Hence

choosing arbitrarily φs = π, the approximate Hamiltonian becomes:

H1(δ, φ) =
hη0δ

2

2
− 2πhβ2

rEr

eV Nc
cos(φ) . (4.23)

Figure 4.19 shows the contour plot of the Hamiltonian H1 in 4.23 for values of

the parameters arbitrarily chosen. The lines are contours of constant value of the
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Figure 4.19: Contour plot of the Hamiltonian H1 in 4.23 for K2 = 1/4, including
only the linear part of the phase slip factor η0. Particles move along dark blue lines. The
vertical axis is the scaled momentum (with 0 being the reference energy) and the horizontal
axis is the relative phase φ. A stable fixed point is located at (0,0) whereas two unstable
fixed points are located at (-π,0) and (π,0). They are linked by dark blue lines called
separatrices. The largest oscillation in energy is obtained by following closed loops close
to the separatrices.

Hamiltonian. We observe the so called bucket structure. If a particle is launched with

a position in this diagram close to (0,0), because the Hamiltonian is an invariant of the

motion, it will follow a closed loop in phase space around the point (0,0). This point

is called a stable fixed point because it is at the centre of region of closed loop where

the phase is kept within a finite range. On the other hand, the lines passing over the

top and below the bottom of the bucket do not close on themselves. The phase of a

particle following these lines will increase without limit turn after turn. The boundaries

between these two different behaviours are called the separatrices and are manifested

in this diagram by the two lines surrounding the bucket (one up and one down) and

crossing at (-π,0) and (π,0). These points are called unstable fixed points since they

are located in an area where phases drift away following the contours over and below

the stable areas.
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In EMMA, since the evolution of time of flight with energy is a parabola, the phase

slip factor is not accurately represented by η0 only. Hence, we cannot neglect the term

in η1 in the Hamiltonian that relates to the quadratic evolution of time of flight with

energy. The Hamiltonian is then written:

H2(δ, φ) =
hη0δ

2

2
+

hη1δ
3

3
− 2πhβ2

rEr

eV Nc
cos(φ) . (4.24)

Figure 4.20(a) shows the contour plot of the Hamiltonian H2 defined in equation

4.24 for arbitrarily chosen values for the parameters; these values were chosen such

that the unstable fixed point at φ = 0 occurs for δ = −1. We observe new stable fixed

points at (-π,-1) and (π,-1) and a new unstable fixed point at (0, -1). A “serpentine

channel” is created between these various fixed points. A particle travelling on a line

starting at (−π,-1.5) increases its energy until it goes over the (0,0) fixed point and

then decreases its energy until φ = π back to the original value. This behaviour is

not stable (in the sense of following a closed loop in phase space), however the stable

motion is not required for acceleration.

4.3.3.3 Acceleration of a single particle in EMMA with dynamical maps

We implement acceleration in our model using dynamical maps as follows. Particles

are tracked for 20 turns with a single dynamical map with reference energy Eref=

14.5MeV (to be distinguished from rf reference energy) representing a configuration of

the EMMA lattice for which the time of flight variation with energy is shown in figure

4.6.

In EMMA, there is one cavity every other cell, apart from regions close to injection

and extraction, which means 19 cavities in total. At the end of every other dynamical

map (i.e. every other cell), the relative phase φ of the particle with respect to rf phase

φs is computed from the path length of the trajectory. The energy deviation is then
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Figure 4.20: (a): Contour plot of the Hamiltonian H2 in 4.24; the linear and quadratic
part of the phase slip factor η0 and η1 are included. Particles move along lines. The vertical
axis is the scaled momentum (with 0 being the reference momentum) and the horizontal axis
is the relative phase φ. The largest acceleration is obtained following a contour in the region
labelled S in (b). This acceleration scheme is called serpentine acceleration. (b): Blue
lines are called the separatrices. They mark the boundaries between different acceleration
modes.”L” stands for “low acceleration”(region outside separatices). Particles following a
line in this region see their phase drifting monotonically without gaining significant energy.
”B” stands for bucket acceleration (region enclosed by a single separatrix). Phase and
energy of particles following a closed loop in that regime will oscillate around the stable
fixed point. The amount of energy gained by the particle is not optimal. “S” stands for
“serpentine acceleration” (region bounded by different separatrices).
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Figure 4.21: Trajectories over 20 turns in longitudinal phase space for particles injected
at 10MeV with various initial phase. The peak RF voltage sum over one turn is 0.76MV.
For all trajectories a monotonic increase of the relative phase is observed. The energy gain
is only 1.5MeV

increased according to the voltage V corresponding to the phase φ. The peak voltage

and the frequency of the cavity are Vrf and frf respectively. The map for the cavity

can be written as followed:

δnew = δ +
eV

Eref

(4.25)

where V = Vrf sin(φs − φ) (4.26)

φ is related to the longitudinal position of a particle with respect to the reference

particle z by φ =
2πfrf
βc

z.

Since we considered an infinitesimally thin cavity, the other dynamical variables

are not affected. From Hamilton’s equation with s being the independent variable, the
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Figure 4.22: (a): Trajectories over 20 turns in longitudinal phase space for particles
injected at 10MeV with various initial phase. (b): Time of flight at various energy deviation
δ (red circle) for the lattice configuration used for acceleration in (a). The reference time
of flight is the time of flight at reference total energy 19.6MeV (defined by the stable fixed
point in (a)) : trev = 55.25ns. Note that the time of flight at δ = −0.27 is also equal to
the reference time of flight. It corresponds to the other stable fixed point in (a). A second
order polynomial fit is also performed and represented by a blue line. From this fit we
compute η0 = 0.0114 at the reference energy and η1 = 0.0439.
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4.3 Beam dynamics simulations with dynamical maps

variation in δ for a particle going through a cavity of length L can be expressed as

∆δ = −
∫ L

0

∂H

∂z
ds. (4.27)

Hence, the Hamiltonian for this cavity can be written as:

H(z, δ) = − eV βc

2πfLEref
cos(φs −

2πf

βc
z) . (4.28)

A 10MeV particle is launched on the 10MeV closed orbit found in the first section of

this chapter. First we studied the acceleration in a bucket (i.e. rf voltage not large

enough to create a serpentine channel). We show in figure 4.21, the energy of a single

particle with respect to its relative phase. The peak RF voltage summed over one

turn is 0.76MV (or 0.76/19=40 kV per cavity). Different colours correspond to various

relative phase at injection φ0 of the particle. We observe that the serpentine channel

is not reached by any of the initial phases from φ0 = −π to φ0 = π. The maximum

energy gain, 1.5MeV, is therefore rather small.

When increasing the sum voltage over one turn to 1.52MV, the serpentine acceler-

ation is observed for particles with initial phase between −6π/5 and −4π/5 (see figure

4.22(a)). Also, we notice that particles injected at 12MeV with φ0 = 0 and 18MeV

with φ0 = π follow closed lines around stable fixed points located at (14,−π) and

(19.1,0) respectively; injection at 10MeV with φ0 − 4π/5 leads to a monotonic drifting

of the relative phase with low energy gain; this corresponds to the area with the label

’L’ in figure 4.20(b).

To compare simulated and analytical results, the numerical value of the parameters

used for the simulation listed in table 4.2 are implemented in H2 (see (4.24)) to plot

the contour of the analytical Hamiltonian.

The reference total energy Er corresponds to y = 0 in figure 4.20(a) for which there

is a stable fixed point at φ = 0. Comparing with the simulated serpentine acceleration
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Figure 4.23: Superposition of a simulated trajectory in longitudinal phase space and
analytical contour plot of the Hamiltonian defined in equation 4.24. The contours in light
green matches relatively well the main features obtained from simulation: position of the
stable and unstable fixed points, total energy gain from about -0.45 to 0.15, periodicity.
However we observe that the analytical model is symmetric with respect to the horizontal
axis at δ = −0.15 whereas in the simulations, the upper part of the serpentine (for δ greater
than -0.15) is not as wide as the lower part (for δ smaller than -0.15).

in figure 4.22(a), the corresponding stable fixed point occurs at kinetic energy 19.1MeV

(19.6MeV total energy); the reference energy is the energy for which the revolution time

equals the revolution time of the synchronous particle; figure 4.22(b) shows the time of

flight for different value of the total energy. We read that the reference time of flight

(at total energy 19.6MeV) is 55.25 ns.

From the reference time of flight, we derived the harmonic number h, knowing that

the rf frequency is 1.3GHz: h = trev ∗ frf = 71.825. Note that in the case of the

serpentine acceleration scheme, the harmonic number is not necessarily an integer, as

it is generally the case in a synchrotron, using bucket acceleration.

The two parameters η0 and η1 are given by the variation of time of flight with energy.

For the simulations they are found by fitting a second order polynomial function on

the time of flight evolution with energy. The result of this fit is shown in figure 4.22(b)
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4.3 Beam dynamics simulations with dynamical maps

Table 4.2: Parameters for the Hamiltonian description of the serpentine acceleration

Parameter Simulations

rf frequency (GHz) 1.3
rf voltage per turn V ×Nc (MV) 1.52
reference total energy Er (MeV) 19.6
reference βr 0.9997
reference revolution time (ns) 55.25
harmonic number,h = frf ∗ trev 71.825
η0 at Er (i.e. δ = 0) 0.0114
η1 0.0439

from which we compute η0 = 0.0114 at 19.6MeV and η1 = 0.0439.

The comparison between the position in longitudinal phase space of a simulated

trajectory and the analytical model of the Hamiltonian H2 is shown in figure 4.23.

The contours in light green matches relatively well the main features obtained from

simulation: position of the stable and unstable fixed points, total energy gain from

about -0.45 to 0.15, periodicity. However we observe that for the analytical model,

the widths of the bucket around the upper stable fixed point (0,0) and the lower stable

fixed point (−π,-0.25) are identical; therefore the contours in the serpentine channel are

symmetrical with respect to the horizontal axis at δ = −0.15 whereas in the simulation,

the upper part of the serpentine (for δ greater than -0.15) is more narrow than the lower

part (for δ smaller than -0.15). This could be explained in two ways: first the actual

time of flight variation with energy through acceleration could be different from the

time of flight computed at various fixed energies. Second, retaining higher order terms

in δ in the Hamiltonian of equation 4.22 may be necessary to match the simulations.

From our study, we conclude that our simple implementation of acceleration is

capable of reproducing the important characteristics of the longitudinal dynamics in

EMMA.
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4.3.3.4 Evolution of particle distribution through acceleration in EMMA

In this section, we will present results of tracking longitudinal and transverse distri-

butions of particle through the EMMA lattice including the 19 accelerating cavities.

We explained in section 4.3.1 of this chapter that beam dynamics at different energies

could be simulated either with several dynamical maps with various reference energies

or with a single map varying the energy deviation variable. The study of acceleration

in EMMA is a wide subject and an entire thesis could be dedicated to it. However, in

this study, we will only present some examples of simulations with dynamical maps to

demonstrate the capabilities and some limitations of this technique.

First, thousand particles are tracked using 10 dynamical maps with reference en-

ergies from 10MeV to 19MeV increasing with 1MeV step. A particle is tracked in a

map until the energy deviation variable reaches ±0.5MeV . A dynamical map with

different reference energy is then used. Note that the components of the momentum of

a particle are normalised with respect to the reference momentum. In particular, the

six dynamical variables are defined by:

X1 = x; X2 = px/p0; (4.29)

X3 = y; X4 = py/p0; (4.30)

X5 = z =
s

β0
− ct; X6 = δ =

E

p0c
− 1

β0
; (4.31)

where p0, E0 and β0 are the momentum, total energy and velocity of the reference

particle respectively. s is the independent variable and t is the time taken for a particle

to travel from s = 0 to the position defined by s. Therefore when tracking in a new

dynamical map, the final coordinates of the particles obtained from the previous map

must be scaled to the new reference values. For instance let us consider a particle

that travels along a given orbit. For a dynamical map with reference momentum

p0 = β0γ0m0c, the longitudinal position of the particle with respect to the reference
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particle is given by:

z0 =
s

β0
− ct0 . (4.32)

A particle travelling along the same trajectory but tracked with a dynamical map

with reference momentum p1, the longitudinal position variable becomes:

z1 =
s

β1
− ct1 . (4.33)

Since the particle is travelling along the same trajectory in both case, the path length

given by tβc must be the same. This gives:

t1β1c = t0β0c . (4.34)

Multiplying equations 4.32 and 4.33 by β0 and β1 respectively, and subtracting the two

expressions, we obtain:

β1z1 − β0z0 = s− s+ c(t1β1 − t0β0)

= 0 , (4.35)

thus z1 = z0
β0
β1

. (4.36)

Similarly for px we have:

px1 = px0
p0
p1

. (4.37)

In the following, we will study the evolution of different initial distributions of par-

ticles through serpentine acceleration in EMMA. We will carry on the study of the

decoherence effect started in section 4.3.3.1 by defining a purely longitudinal distribu-

tion of particles (tracing an ellipse in the (z,δ) phase space) launched on the closed

orbit. Then we will study the behaviour of this distribution launched with an offset of

1mm with respect to closed orbit and which therefore has an initial betatron amplitude.
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We can then observe the effect of decoherence through acceleration.

Then we will study the evolution of a purely transverse distribution of particles

through acceleration. In particular, we will look at the deformation of this distribution

(initially an ellipse) when crossing resonances.

Finally we will apply dynamical maps with different orders of truncation to a group

of particles with transverse and longitudinal distributions; these distributions are de-

fined by parameters obtained from simulation of the distribution delivered by the AL-

ICE injector [65, 66]. We will also apply different numbers of maps with various refer-

ence energies to the same group of particles. This way we will be able to determine the

minimum order of truncation and the minimum number of maps necessary to simulate

the dynamics for distribution, close to the real machine behaviour, through acceleration

with reasonable accuracy.

Case 1 In figure 4.24 we studied the acceleration of a group of particles with a longi-

tudinal distribution corresponding to an ellipse in longitudinal phase space defined by a

full height ( energy spread) of 100 keV and a full width (bunch length) of 20 ps. All the

particles in the bunch have the same transverse initial position; the energy spread and

the bunch length values correspond to measurements of bunch characteristics coming

from the ALICE injector [64].

The position of each particle of the distribution is recorded (and plotted) after each

turn in longitudinal phase space (as described in section 4.3.3.3) and transverse phase

space for an accelerating voltage of 2MV per turn (distributed over the 19 cavities

around the ring) in figures 4.24(a) and 4.24(b) respectively. The initial transverse

position of the particles is on the closed orbit at 10MeV.

During acceleration through the serpentine channel, the energy spread of the dis-

tribution is multiplied by two from 100 keV at 10MeV to 200 keV at 14MeV (figure

4.24(a)); for large energy up to 20MeV the distribution is tilted and the bunch length
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(a) Longitudinal Phase space, V=2MV
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(b) Transverse Phase space, V=2MV

(c) Longitudinal Phase space, 1mm offset
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Figure 4.24: (a) Acceleration through the serpentine channel for a bunch with a longitu-
dinal distribution corresponding to an ellipse in longitudinal phase space defined by a full
height ( energy spread) of 100keV and a full width (bunch length) of 20 ps. We observe in
the transverse phase space (b) an increase of the bunch width up to 1mm for the 7th turn
in the horizontal transverse direction. We then introduce an offset in the initial transverse
position of the bunch (1mm offset with respect to the closed orbit at 10MeV). In the
longitudinal phase space (c), we observe a distortion of the ellipse, shown for turn 3. In the
transverse phase space (d), after 3 turns, particles are spread around an ellipse and occupy
about 5mm in the transverse direction; extracting the whole bunch may be complicated
in this case.
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4.3 Beam dynamics simulations with dynamical maps

is almost twice as large as the initial one. Also we observe in the transverse phase

space (figure 4.24(b)) an increase of the bunch width up to 1mm for the 7th turn in

the horizontal transverse direction. Note that the initial distribution of the bunch (not

represented here) is point-like in transverse phase space. The extraction scheme needs

to be implemented in the tracking code to evaluate the requirement on the extracted

beam to achieve reasonable extraction.

Case 2 We then introduce an offset in the initial transverse position of the bunch

(1mm offset with respect to the closed orbit at 10MeV). We observe a distortion of the

ellipse in longitudinal phase space (see figure 4.24(c)). In the transverse phase space

(figure 4.24(d)), after 3 turns particles are spread around an ellipse and occupy about

5mm in the transverse direction; extracting the whole bunch may be complicated in

this case. Again, this requires more simulations work.

Case 3 Then we used the routine written to simulate the acceleration in EMMA

with dynamical maps to observe the effect of resonances on the transverse distribution

of a group of particles. All particles have the same initial energy (10MeV) and the

same initial longitudinal position (z=0). In the transverse phase space, the initial

coordinates of the particles are chosen such that they map out the betatron motion

around the closed orbit at 10MeV; this ellipse can be seen in figure 4.4 (bottom)

with the label ”10MeV”. The simulated normalised emittance is ǫN = 10mm.mrad.

We can use this ellipse as being the action JxN of a single particle tracked several

time in one cell. The corresponding action at 10MeV (γ10MeV = 20.57) is therefore

Jx = JxN/βγ ≈ 0.5mm.mrad. The corresponding maximum betatron amplitude in

the middle of the long drift (initial longitudinal position of the dynamical map) is

then xmax =
√
2βxJx = 0.5mm where βx = 0.25m is the value of the horizontal

beta function at this location. We observe in figure 4.4 (bottom) that the maximum

transverse excursion is about 2mm with respect to the centre of the ellipse. Hence we
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(a) Transverse distribution through acceleration
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Figure 4.25: (a) Evolution of the transverse distribution through acceleration for an rf
voltage of 2MV per turn. Each subplot corresponds to one group of particles represented
in the longitudinal phase space in (b). Positions are recorded every 20 cells. We observe
that between 10.37MeV and 11.02MeV, the shape of the distribution (initially an ellipse)
becomes distorted, acquiring the shape of a triangle. This may indicate the effect of a third-
order resonance [23]. The horizontal tune is indeed taking the value 1/3 for 10.70MeV in
(c).
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Figure 4.26: Evolution in the transverse phase space (px in mrad vs x in cm) of the
transverse distribution through acceleration for an rf voltage of 2MV per turn simulated
with PyZgoubi. Each subplot corresponds to one group of particles whose positions are
recorded every 20 cells. We observe a distortion of the shape of the distribution due to the
crossing of a resonance.

are simulating a distribution with a larger action than the expected one; the effect of

non-linearities and resonances should be stronger than in reality.

The position of the particles is recorded every 20 cells and the rf voltage is 2MV

per turn. Figure 4.25(a) shows the evolution of the transverse distribution through

acceleration. Each subplot corresponds to one group of particles represented in the

longitudinal phase space in figure 4.25(b). We observe than between 10.37MeV and

11.02MeV, the shape of the distribution (initially an ellipse) becomes distorted, ac-

quiring the shape of a triangle. This may indicate the effect of a third-order resonance

[23, 24].
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Figure 4.27: Evolution in the transverse phase space (px in mrad vs x in cm) of the
transverse distribution through acceleration for an rf voltage of 0.55MV per turn. Each
subplot corresponds to one group of particles whose positions are recorded every 40 cells.
We observe a strong distortion of the shape of the distribution due to the slow crossing of
resonances.

195

BeamSimu/figures/bunch_shape_V550.eps
BeamSimu/figures/res_pyzgoubiV550.eps


4.3 Beam dynamics simulations with dynamical maps

The variation of the horizontal tune with energy computed at fixed energy with 10

dynamical maps with different reference energies is shown in figure 4.25(c). Note that

the lattice configuration used for acceleration has been chosen such that the time of

flight evolution with energy is a parabola with its minimum at 15MeV, since this is

the nominal configuration for acceleration. Therefore the horizontal tune represented

in figure 4.25(c) is different from the one in figure 4.2 in section 4.3.1.1.

The horizontal tune per cell takes the value 1/3 = 0.33 for 10.7MeV; this value

for the tune correspond to a third order resonance. We observe that the area of the

distribution does not increase significantly when crossing this resonance; this is an

encouraging sign for the success of fast acceleration in the serpentine channel in a

non-scaling FFAG.

To verify the results, we implemented acceleration in PyZgoubi using a field map

to represent the magnets and a similar simple model for the accelerating cavities (zero

length and sinusoidal rf voltage). Representation of the equivalent initial transverse

distribution is shown in figure 4.26. A similar distortion of the ellipse is observed when

particles gain energy. This gives confidence in the accuracy of the results obtained with

dynamical map.

With a high rf voltage (2MV per turn in this case), the distribution is crossing

the resonance quickly enough not to be strongly affected. However, with a slower

acceleration (rf voltage of 0.55MeV per turn) we observe in figure 4.27(a) (position

recorded every 40 cells) that the distortion of the ellipse is significantly stronger. Again

the comparison for low rf voltage with PyZgoubi in figure 4.27(b) gives satisfactory

results. A growth of the transverse distribution could lead to significant beam losses

around the ring and could also make the extraction of particles impossible.

Case 4 We have seen in this chapter that beam simulations for various energies could

be carried out applying a single dynamical map with 15MeV reference energy. Similarly
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(a) truncation order 5 (b) truncation order 7

(c) truncation order 8 (d) truncation order 10

Figure 4.28: (a) to (d) show the longitudinal phase space for tracking a particle distri-
bution with dynamical maps truncated at orders 5, 7, 8 and 10 respectively. Simulations
with maps truncated at the 5th (a) and 7th (b) order show a significant discrepancy with
the simulation with higher truncation order. Dynamics are very similar for maps truncated
at the 8th and 10th orders; it seems than a convergence in the beam dynamics occurs after
the 8th order in this case.

we applied this map to a group of particles having the same longitudinal distribution

as in the previous study in case 1 and 2. In the transverse phase space, the initial

distribution is the same as in case 3. The rf voltage is 2MV per turn.

Simulations are carried out with dynamical maps computed for different truncation

orders. Figures 4.28 (a) to (d) show the longitudinal distribution of a group of particles

tracked with dynamical maps truncated at orders 5, 7, 8 and 10 respectively. Simu-

lations with maps truncated at the 5th and 7th order (see figure 4.28(a) and 4.28(b)

respectively) show a significant discrepancy with the simulation with multiple maps
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(b) 2 maps (10 and 15MeV ref. energies)
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(c) 3 maps (10, 14 and 18MeV ref. energies)
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(d) 10 maps (10 to 19MeV with 1MeV step
ref energies)

Figure 4.29: Longitudinal phase space representation of a distribution of particle tracked
through acceleration in the EMMA lattice using 1, 2, 3 and 10 dynamical maps with
different reference energies. The positions in longitudinal phase space of the seventh and
eighth turns for the single map simulation (a) are shifted to higher relative phases (just
above π for turn 7 and about 3π/2 for turn 8) compared to the three other simulations
((b), (c) and (d)) with the multiple maps cases agreeing almost perfectly (just below π for
turn 7 and about 5π/4 for turn 8). Turns are counted starting from turn 0 at (∆Φ=0,
10MeV).
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4.3 Beam dynamics simulations with dynamical maps

(see figure 4.24(a)). For the map truncated at order 5, a fraction of the beam does

not follow the serpentine channel and instead ”slips” to the area of low acceleration

labelled ”L” in figure 4.20(b).

Dynamics are very similar for maps truncated at 8th and 10th orders; it seems than

a convergence in the beam dynamics occurs after the 8th in this case.

Case 5 It was then interesting to investigate the minimum number of maps with dif-

ferent reference energy that needed to be used to simulate acceleration. Figures 4.29(a)

to 4.29(d) show the longitudinal distribution of a bunch tracked through acceleration

in the EMMA lattice using 1, 2, 3 and 10 dynamical maps with different reference

energies respectively. The corresponding transverse distributions of the bunch at the

initial position and after the first, fifth and eighth turns are shown in figures 4.30(a) to

4.30(d).

The positions in longitudinal phase space of the seventh and eighth turns for the

single map simulation (figure 4.29(a)) are shifted to higher relative phases (just above

π for turn 7 and about 3π/2 for turn 8) compared to the three other simulations with

the multiple maps cases agreeing almost perfectly (just below π for turn 7 and about

5π/4 for turn 8). Turns are counted starting from turn 0 at (∆Φ=0, 10MeV). This

disagreement appears more clearly comparing the transverse distribution of the bunches

through acceleration in figure 4.30. A good agreement is obtained between simulations

performed with 2 maps, 3 maps and 10 maps. The 8th turn is shifted towards negative

values of x (centred on -0.2 cm) for the single map configuration whereas it is centred

on x=0.2 cm in the case of simulations with multiple maps. This observation agrees

with features in figure 4.29(a) in which the average energy of the 8th turn is 19MeV and

20.2MeV for simulations with single map and multiple maps respectively. The position

in transverse phase space of the former, with lower energy, is therefore towards the

inside of the ring (i.e. negative value of x).
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Figure 4.30: Transverse phase space representation of a distribution of particle tracked
through acceleration in the EMMA lattice using 1, 2, 3 and 10 dynamical maps with
different reference energies. A good agreement is obtained between simulations performed
with 2 maps, 3 maps and 10 maps. The 8th turn is shifted towards negative values of x
(centred on -0.2 cm) for the single map configuration whereas it is centred on x=0.2 cm in
the case of simulations with multiple maps. This observation agrees with features in figure
4.29(a) in which the average energy of the 8th turn is 19MeV and 20.2MeV for simulations
with single map and multiple maps respectively.
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4.3 Beam dynamics simulations with dynamical maps

The large value taken by the energy deviation variable when tracking a particle from

10MeV to 20MeV with a single dynamical map affects the precision of the simulations.

In the present study, simulations of accelerations with two dynamical maps agree with

simulations with 10 maps. Therefore only two maps may be sufficient.

Note that the 10MeV map is always used as the starting map when using multiple

maps. Thus the initial transverse distribution corresponding to the betatron ellipse

at 10MeV matches the dynamics at the initial reference energy. In the case of a

single map with reference energy 15MeV, the equivalent situation would be obtained

by using the betatron ellipse at fixed energy 10MeV defined by the energy deviation

variable. However we observed in figure 4.7(c) the non physical growth at fixed energy

observed for large energy deviation. Therefore we could not recreate the equivalent

initial transverse distribution at 10MeV and used the same ellipse as for the study

with multiple maps (scaling up the momentum according to equation 4.37). This

difference of starting condition is likely to explain the discrepancy between simulations

with single map and multiple maps in this case.

Also we observed in section 4.3.1.2 for large values of the energy deviation for the

horizontal and vertical tune between single map and multiple map simulations. Here

again a single map may not accurate enough to simulation the acceleration of a bunch

over the whole range of energy in EMMA. An interesting study would consist in looking

for the minimum number of maps required to simulate accurately the nonlinear beam

dynamics through acceleration.

From the design studies, cavities in EMMA had a rather simple field profile and no

significant non linear effect were predicted by the model. However, in other types of

FFAG, in particular in scaling FFAG where cavities must be large radially to accom-

modate large excursions of the particles, non linear effect may appear. It could then

be required to construct a dynamical map for the cavity itself and apply it to tracked

particles. Variation with time of the electromagnetic field in the cavity must also be
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taken into account.

4.4 Summary and conclusions

In this chapter, we have studied the beam dynamics obtained from dynamical maps in

explicit form. Firstly we presented a summary of PyZgoubi, chosen as a comparative

tracking code because of its ability to handle numerical field maps and hard edge models.

We presented as well the geometry features of the EMMA cell considering fringe field

rather than hard edge model. Special care has been taken regarding the rotation of the

reference frame, being performed in a field free region but also simulating realistically

the EMMA lattice. Appropriate translation of the particle coordinates and momenta

at the end of each cell respected both requirements.

In the following section, we focused on the crucial beam dynamics parameters for

an FFAG, namely the tune per cell and time of flight. We compared the results ob-

tained from PyZgoubi with Hard Edge model, from PyZgoubi with field map, and from

dynamical maps. The shape of the time of flight curve changed significantly when

tracking in an hard edge model or in field map; this can have an impact on the opti-

misation of the lattice to achieve acceleration. PyZgoubi and dynamical map results

with field map show good agreement for the tof curve, however there was a discrepancy

in the horizontal tune for low energies. This is likely to be due to the inaccuracy for

large particle excursions of the analytical representation of the magnetic field used for

dynamical map and also to the limit of validity of the paraxial approximation for large

excursions of the particles.

We then studied the range of validity in energy of the dynamical maps. We com-

pared the tune and time of flight evolution with energy either by computing a dynamical

map for different reference energy or by considering the energy dependence of the dy-

namics in a single map. We concluded that a single dynamical map computed up to
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the 4th order could be used to predict the time of flight and the tune within a range

of about ±3MeV around the 14MeV reference energy. Furthermore, plotting betatron

ellipses around closed orbits at various energies with a single map led to the conclu-

sion that the dynamical map needs to be computed up to the 9th order to keep the

symplectic error to an acceptably low value over that range.

We then looked at a nonlinear feature: the tune shift with amplitude. We first used

the Frequency Map Analysis (FMA) technique to process numerical tracking results

from PyZgoubi and the dynamical map of the EMMA cell for a reference energy of

19MeV. We observed for both codes that the horizontal and vertical tune shift with

amplitude was small (the tune changes by less than 10−4 for an action of 100µm).

The two codes agreed for the horizontal tune shift with amplitude but because of a

difference of representation of the 3D magnetic field in PyZgoubi we observed a large

discrepancy in the vertical plane. We studied in more detail the field experienced by

particle following the same trajectory in the two codes and noticed that PyZgoubi

represented inaccurately the nonlinear variation of the horizontal component Bx of the

magnetic field present in the OPERA model. Since the dynamical map representation

of the magnetic field agreed with the OPERA model, we concluded that the vertical

tune shift with amplitude obtained from dynamical map was likely to be more accurate.

We then looked at a method allowing the evaluation of the tune shift with amplitude

directly from the Lie Factorisation of the dynamical map. Comparing the results with

the one obtained with FMA, we concluded that the agreement was good enough to

derive this nonlinear feature of the dynamics directly from the map, without performing

any tracking. However, when studying the same feature for a reference energy of 15MeV

for which the closed orbit excursion with respect to the reference trajectory is large,

the discrepancy between the results from PyZgoubi and the dynamical map suggested

that the paraxial approximation could limit the validity of the derivation of non-linear

features from the dynamical map.
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The next section was dedicated to the study of longitudinal dynamics. First, we

looked at coupling between the longitudinal structure of a bunch of charged particles

and its transverse dynamics. We studied the average horizontal position of a bunch

of particles tracked through the EMMA cell not including any acceleration feature.

Particles were launched with the same transverse position and angle, 3mm off closed

orbit but with different kinetic energies. The distribution of these energies was either

uniform or Gaussian centred on the 14MeV reference energy. Particles with different

energies experience different focusing (and defocusing) strengths. Therefore after a

certain number of turns, particles that had the same starting transverse position, do

not oscillate around the stable orbit with the same betatron frequency. In transverse

phase space, particles within a given bunch are spread around the betatron ellipse. Thus

the average transverse position of the bunch corresponds to the centre of the ellipse and

does not characterise the oscillations of particles around the stable orbit. We observed

that the decoherence period does not significantly depend on the distribution.

Decoherence periods have been assessed for bunches with various widths of energy

distribution tracked in PyZgoubi and dynamical maps. Codes agree on the damping

period of about 7 turns for a Full Width at Half Maximum (FWHM) of 1.175% (mea-

sured value of the energy spread at the end of the injector line) and less than 4 turns

for a FWHM of 2.35%. To measure the tune and the optic functions in the EMMA

ring, the periodicity of the lattice is critical. If magnet random misalignments are

large, then the lattice is not periodic and more data (i.e. more turns) are necessary

to measured these features accurately. In that case the damping period is critical and

efficient methods to process the measured position of the bunch had to be developed

(e.g. NAFF). Simulations show that less than one turn could sufficient. First results

of the commissioning tend to validate this statement since a measurement of the tune

per cell with an accuracy of 0.01 is obtained using BPM measurements from seven

consecutive cells.
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We then derived the analytical model of the acceleration in a standard accelerator.

Particles follow lines of constant Hamiltonian in the longitudinal phase space. Stable

trajectories are represented by closed loops and correspond to bucket acceleration.

Then we derived the analytical description of the serpentine acceleration, specific to

the EMMA ring. By retaining a term in the Hamiltonian of 3rd order in the energy

deviation, we observed that particle could be accelerated by following lines in between

the stable fixed points. In that way, a large amount of kinetic energy could be gained

if the particles were extracted at the optimal moment. This analytical model was

then compared to tracking results from dynamical map. We conclude that our simple

implementation of acceleration is capable of reproducing the important characteristics

of the longitudinal dynamics in EMMA.

In the last section, we applied the accelerating voltage to a distribution of particles

and studied its representation in longitudinal and transverse phase space. We observed

that a group of particles starting from the same transverse coordinates but with various

energies and positions with respect to the reference trajectory, had different transverse

positions after being accelerated from 10MeV to 20MeV within 8 turns. This illustrated

that longitudinal and transverse dynamics are coupled in EMMA. Also the transverse

size of the distribution was significantly increased by including the effect of the betatron

motion of particle through acceleration.

We then draw the conclusion that simulation of acceleration with reasonable accu-

racy over the whole range of energy in EMMA required at least two dynamical maps

with different reference energies and truncated to the 8th order. For this study, we

added a non zero transverse distribution to the group of particle.

Finally we found that the distortion of the transverse distribution of particles

through acceleration between 10MeV to 11MeV was consistent with the resonance

crossing predicted by the horizontal tune variation with energy computed with fixed

energy. We then clearly observed the importance of the rate of acceleration when cross-
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ing resonance by observing the strong distortion of the initial ellipse for an rf voltage

of 0.55MV.

To conclude this chapter, we must assess if the objectives have been fulfilled. Firstly,

using dynamical maps to simulate the beam dynamics in an FFAG accelerator was chal-

lenging in terms of range of validity of this map. Indeed from 10MeV to 20MeV, the

dynamics of particles such as the transverse excursion and the time of flight, varied

significantly. We therefore studied the validity of the dynamical map by comparing

tracking results with PyZgoubi using field maps. We concluded that using dynami-

cal maps with different reference energies would allow an accurate description of the

whole range of dynamics in EMMA. Using the canonical variable related to the energy

deviation in each map reduces the number of maps needed to cover the whole energy

range. We also showed that longitudinal dynamics such as serpentine acceleration and

decoherence, could be simulated with dynamical maps.

Secondly, our objective was to demonstrate the benefits and the drawbacks of per-

forming tracking studies with dynamical maps with respect to other tracking methods.

A possible limitation is the effect of paraxial approximation on nonlinear dynamics.

For particles with large excursion with respect to the reference trajectory, we could see

discrepancies with PyZgoubi results. An alternative integration technique creating a

dynamical map with a non straight line reference trajectory may be appropriate (but

symplecticity may be an issue). On the other hand, we observed that the 3D analytical

representation of the magnetic field used to construct the dynamical maps was more

appropriate to study nonlinear feature of the vertical motion.

In addition, we proved by comparing with hard edge model results, that the use

of field maps to model the EMMA cell was relevant. Tracking in dynamical maps was

significantly faster than tracking in field map with PyZgoubi. The main benefit (in this

chapter) of the dynamical map is that having obtained the map, any particle (i.e. with

any initial values for the dynamical variables) can be tracked through a cell in ”one
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step”; in PyZgoubi, tracking a ”new” particle must be done in small steps each time.

Finally when considering all the different lattices available by moving the magnets

and changing their strength, PyZgoubi seemed to be rather inconvenient; a magnetic

field map has to be created for each new configuration. This will be treated in the next

chapter.
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5

Application of the Dynamical

Maps to Experimental Procedure

5.1 Interpolation between different EMMA lattices

5.1.1 Introduction

Having studied the dynamics in a given configuration of the lattice, it is interesting

to find a way to extend the use of the dynamical map approach, to allow a range of

different machine configurations to be easily modelled and compared. When using a

hard edge model for the magnets, it is trivial to study any lattice by directly adjusting

the parameters and performing the tracking study. However, the use of a field map is

of a significant improvement in the lattice description; but then a different field map

is needed for each configuration. This would mean that an accurate OPERA model

would have to be solved each time a new lattice is tried requiring considerable computer

time. During the commissioning of the machine a real-time simulation of the effect of

a change in the lattice configuration is useful.

We solved a series of OPERA models with various lattice parameters. A grid of

lattice configurations (including a range of magnet strengths and positions) is then
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5.1 Interpolation between different EMMA lattices

obtained and any configuration can be studied by interpolation within this grid. Beam

dynamics for a given configuration can be interpolated from the dynamical map in

explicit form (power series). However the symplecticity of the map is not preserved

if no specific constraints are applied to the interpolation. To overcome this issue,

we developed a routine performing the interpolation from the generating functions

corresponding to the “solved” configurations. These two approaches will be discussed

in this section.

5.1.2 Preparation of the field maps

To compute the dynamics for various lattice configurations, we first need to create each

analytical representation of the field. Our starting point in the process is the OPERA

model of the magnets. In chapter 2 section 2.2.4, we have seen that the field map of the

entire cell could be created by superposition of the field maps with individual magnets

powered. We assume that the magnetic field (in the vacuum chamber) induced by a

magnet varies proportionally to the current in its coils. In other words, we assume

that there is no magnetic saturation in the magnet yokes. This assumption allows us

to consider that it is equivalent to multiply the field map obtained for one magnet by

a given factor and to increase the current in the magnet by the same factor. Therefore

when creating the field map for a lattice configuration in which the D magnet current

is 90% of nominal current and the F magnet is 103% of the nominal current, we will

superpose the field map from the D magnet multiplied by a factor Ad= 0.9 and the

field map from the F magnet multiplied by a factor Af= 1.03. However, the model

for one magnet powered had to be solved including the unpowered yoke of the other

magnet. This means that the distance between the magnetic axes of the magnets must

still be taken into account.

Hence, we create OPERA models of the EMMA cell for distances between magnetic

axes varying from 20mm to 42mm in 2mm steps. These models are then solved with
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one magnet powered and the yoke of the other magnet unpowered. When extracting

the numerical magnetic maps, we consider the positions of the magnets with respect

to the design polygon. From one model with a given distance between the magnets,

several lattice configuration can be extracted. For instance Xf=6mm/Xd=34mm and

Xf=10mm/Xd=38mm are two different configurations extracted from the same model

(Xf and Xd being the position with respect to the polygon of the F magnet and D

magnet respectively).

Dynamical maps with 14MeV reference kinetic energy were computed for 300 lattice

configurations: Af and Ad were varied from 94% to 110% in 4% steps (so 5 configura-

tions each), Xd was varied from 32mm to 38mm in 2mm steps (4 configurations)and

Xf was varied from 8mm to 12mm in 2mm steps (3 configurations). We thus ob-

tained a grid of configurations with 300 nodes (5x5x4x3). This process takes about 300

minutes for dynamical maps computed up to the 5th order.

For the remainder of this chapter lattice configurations will be described as quadru-

ples such as (102, 104, 6.4, 36.2) corresponding to a configuration where the focusing

(F) and defocusing (D) magnets strengths are 102% and 104% of the baseline magnet

strengths value respectively; and the F and D magnetic centres are displaced by 6.4mm

and 36.2mm with respect to the reference polygon.

5.1.3 Approach with dynamical maps in explicit form

For a given lattice configuration, a dynamical map in explicit form (truncated power

series) is computed as explained in the previous chapter. Dynamical maps up to the

8th order are computed for each lattice configuration described above. We obtain a 4

dimensional grid for each coefficient of the dynamical map. We attempt to construct

dynamical maps for lattice configurations between the known grid points by interpo-

lating the coefficients of the Taylor series representations of the dynamical maps. In

practise each coefficient is interpolated independently. Thus there are no constraints
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to enforce symplecticity (to a given order) of an interpolated map, although the map

at any grid points should have a small symplectic error (arising only from truncation

of the power series).

5.1.3.1 Dynamics in the interpolated dynamical map

To discuss the validity of the explicit form interpolation, we compared the beam dynam-

ics resulting from an interpolated map with the dynamics from the directly computed

map for the same lattice configuration. The expected worst case scenario for the inter-

polation is when the point is located far from the mesh nodes in the 4 dimensional grid.

The lattice configuration (100, 100, 7, 35) has been chosen because it is located half

way between two nodes in all directions and moreover it is close to the baseline lattice

configuration (100, 100, 7.514, 34.048). Beam dynamics for various energies are com-

puted in a single map by using different values for the energy deviation. As described

in section 4.3.1.2 of chapter 4, this approach is satisfactory for energy deviations up

to 15% when considering a map with 14MeV reference energy computed to the 9th

order. If we want a more accurate description of the dynamics over the whole range of

energies, a 4 dimensional grid of dynamical maps should be derived for each reference

energy. As a first approach, considering the amount of computing time necessary to

create all the dynamical maps, in the following we limit ourselves to a grid with a single

reference energy.

In figure 5.1, we observe that the horizontal tune extracted from the coefficients

of the interpolated map (eigenvalues expressed as function of the energy deviation

variable) is in good agreement, to within less than 0.01, with the directly computed

model. The results from these two methods regarding the vertical tune shows a slightly

larger discrepancy (of the order of 0.01), of the order of the expected measurement

precision.

In figure 5.1.b, for 20MeV, the time of flight obtained from the interpolated power
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Figure 5.1: Top: Variation of horizontal (blue) and vertical (purple) tune per cell with
energy. There is good agreement in the horizontal tune between the directly computed and
interpolated dynamical maps in power series form. Results are obtained from dynamical
maps with 14MeV reference energy in both case. There is a discrepancy of the order
of measurement precision in vertical tune. This error increases with energy. Bottom:
Variation of time of flight with energy. A large discrepancy (35 ps difference at 20MeV)
between computed and interpolated solution is observed for high energy.
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Figure 5.2: Betatron motion for various value of the energy deviation in a dynamical
map of order 8 with reference energy 14MeV compared with dynamical maps with different
reference energies. A strong non symplectic behaviour is observed for non zero values of
the energy deviation in the interpolated map

series is about 35 ps smaller than for the directly computed map. Since a better preci-

sion is expected for the machine measurement, we conclude that substantial errors in

the power series are introduced by this interpolation method, and the results obtained

from the interpolated map are not satisfactory regarding the evolution of the time of

flight with energy.

In addition, the beam dynamics shows evidence of non symplectic behaviour. Figure

5.2 shows the betatron motion of particles launched off the closed orbit for various

energies, similar to figure 4.7(a) in chapter 4; the reference energy is 14MeV. We

observe a good agreement between the directly computed map ellipses in red and the

interpolated map tracking in blue for the reference energy 14MeV. However, the ellipses

shapes are lost for the interpolate map at 12MeV and 16MeV (±15% energy deviation).

The position of the particles spirals out with respect to the centre of the ellipse in
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Figure 5.3: Symplectic error for a directly computed map (l.h.s) and interpolated map
(r.h.s) in explicit form. Both maps are truncated at order n (≤ 9) and therefore the Ja-
cobian can be computed to order n− 1 (≤ 8). In both case the error grows exponentially
(linearly in logarithmic scale) with the truncation order. Also, we observe that the max-
imum symplectic error (over all coefficients at each order) is about 5 order of magnitude
higher for the interpolated map than for the computed map. This can explain the dis-
crepancy observed in terms of time of flight and betatron motion (see fig 5.1.b and fig
5.2).

successive turns. In the case of a symplectic transformation, the action J of a particle

is conserved. In one degree of freedom, the area of the phase space ellipse traced out

by the particle is equal to πJ and is therefore invariant. This seems not to be the case

for the interpolated map which may thus have a strong symplectic error.

It is interesting to evaluate in a more quantitative way the relative symplecticity of

these two approaches (directly computed and interpolated).

5.1.3.2 Symplectic error

Symplecticity is defined in terms of the Jacobian J of the map. If we consider a

transformation ~X acting on vector of canonical variables ~x, the Jacobian is expressed

as:

Jij =
∂Xi

∂xj
(5.1)
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with i and j varying from 1 to 6 corresponding to the six canonical variables. We

notice that if a transformation is expressed as a power series truncated at order n, the

Jacobian will be a polynomial of order n − 1 (after differentiation of the map). The

transformation (or map) is symplectic if:

JT · S · J = S (5.2)

where S is a 6× 6 block-diagonal constructed from 2× 2 antisymmetric matrices S2:

S2 =




0 1

− 1 0


 (5.3)

It is possible to characterise the symplectic error in terms of the components of the

matrix ∆ defined as:

∆ = JT · S · J − S (5.4)

For a dynamical map expressed in power series form truncated to order n, each term

of the Jacobian Jij in equation 5.1 is a polynomial in the canonical variables. Thus

the components of the matrix JT · S · J are also expressed as polynomial functions. To

evaluate numerically the components of the matrix ∆, we must replace the variables

by some values; these values can be chosen arbitrarily. We expect the Taylor series to

be valid if the coordinates x, y and z take values much smaller than 1m, and if the

momenta px, py and δ are each much smaller than 1. Therefore we can consider an

“extreme” case to be one where all variables take value equal to 1.

In figure 5.3, each point corresponds to a component of the matrix ∆ computed for

various truncation orders for the directly computed map and the interpolated power

series on the left hand side and right hand side respectively. We focus on the maximum

value of this difference for each truncation order. In the case of the computed map the
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Figure 5.4: Symplectic error for computed map (l.h.s) and interpolated map (r.h.s) in
explicit form. The canonical variables are set to the value 0.01 and 0.001 respectively. We
observe that the symplectic error remains constant with a maximum around 10−6 for the
computed map and 10−3 for the interpolated power series. The range of magnitude of
the variables allowing an increase of the truncation order without losing symplecticity is
reduce by a factor 10 when using an interpolated power series. In addition, the value of
the symplectic error is three orders of magnitude larger for an interpolated map than for
a computed map.

difference ranges from about 10−5 for the truncation at first order to about 1010 for

the truncation at the 9th order in the map. In the case of the interpolated map the

difference ranges from about 10−1 for the truncation at first order to about 1016 for the

truncation at 9th order in the map. We observe in both cases an exponential growth

(linear in logarithmic scale) of this difference when increasing the truncation order;

however the value is consistently five orders of magnitude larger for the interpolated

map.

Since the choice of the numerical value of the variable was arbitrary, the vertical axis

of the two plots do not have an explicit meaning. Instead we can adjust the value given

to the variables (being the same for each of the six variables) such that the symplectic

error remains constant when increasing the truncation order. Figure 5.4 shows the

symplectic error of the directly computed map (l.h.s) and the interpolated power series

(r.h.s) when setting the six canonical variables to the value 0.01 and 0.001 respectively.
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5.1 Interpolation between different EMMA lattices

We observe that the symplectic error remains constant with a maximum around 10−6

for the computed map and 10−3 for the interpolated power series. For these ranges of

values higher orders in the map appear to increase the symplectic error.

The range of magnitude of the variables allowing an increase of the truncation

order without losing symplecticity is reduced by a factor 10 when using an interpolated

power series. In addition, the value of the symplectic error is three orders of magnitude

larger for an interpolated map than for a directly computed map. The difference in

symplectic error between the directly computed map and the interpolated power series

is not surprising since when interpolating the coefficients independently, no special

care was taken to preserve the symplecticity. Not preserving symplecticity may partly

explain the discrepancies observed in figure 5.1 and figure 5.2 in terms of tune and time

of flight variation with energy and betatron motion.

Note that these values (0.01 and 0.001) are not strict upper limits for tracking

simulations; the symplectic error introduced by high orders can still be considered

small enough for larger values of the dynamical variables; also simulations may be

accurate for a truncation order lower than 9th order.

These results obtained by interpolating the dynamical map in explicit form are not

fully satisfactory, because of the loss of symplecticity. It is therefore of interest to

develop this process a step further to obtain a dynamical map with lower symplectic

error.

5.1.4 Interpolation of generating functions

Using a COSY infinity routine, it is possible to construct a generating function (gf)

that reproduces the map of order n from any dynamical map expressed in the form

of a power series of order n [47,45]. A gf is not in explicit form (i.e. it cannot be

used directly for particle tracking), however a map represented in the form of a gf is

necessarily symplectic. It can be reconverted to a power series such that the symplectic
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Figure 5.5: Top: horizontal (blue) and vertical (purple) tune per cell for closed orbit at
various energies. The comparison between directly computed power series and power series
derived from interpolated generating functions shows a better agreement than with interpo-
lated power series, especially for the vertical tune (see fig. 5.1). A slight discrepancy is still
present however it is below the measurement precision threshold of 0.1. Bottom:Variation
of time of flight with energy. We observe a good agreement between the computed map
and the map from interpolated generating function. The discrepancy observed previously
with the interpolated power series is corrected.
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Figure 5.6: Betatron motion with multiple dynamical maps order 8 for five energy devi-
ations with 14MeV reference energy. For the computed map (red) and the map derived
from interpolated gf (blue), effect of non symplecticity occurs for energy deviation of 3MeV
(20%). We observe that even the non symplectic behaviour is similar in both cases.

error of the final power series is smaller than the original one.

To solve the problem of symplecticity encountered in the previous section, the idea

is here to interpolate the coefficients of the gf for a given lattice and compute the

corresponding dynamical map in explicit form. A four dimensional grid of generating

functions is created from the power series grid created previously.

5.1.4.1 Dynamics in the interpolated generating function

Figures 5.5 shows the horizontal and vertical tunes and times of flight of closed orbits

for various kinetic energies obtained from a directly computed power series and from a

power series derived from an interpolated generating function. The reference energy is

still 14MeV. Horizontal and vertical tunes obtained from the interpolated generating

function agree more closely with the computed power series than does the interpolated
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Figure 5.7: Symplectic error with respect to the order included in the calculation for
computed map and map derived from interpolated generating function. The agreement
between the two plots confirms the preservation of symplecticity when interpolating the
lattice configuration from generating function.

power series in fig 5.1 (these points are also shown again in figure 5.5 for comparison).

The discrepancy is still below the measurement precision threshold. The evolution of

time of flight with energy computed from the interpolated generating function matches

the direct computation for the whole range of energy.

We observe also that the transverse horizontal phase space representations of the

betatron motion around reference trajectories for 11, 12, 14, 16 and 17MeV (Fig. 5.6)

agree. In both cases (computed power series and interpolated gf), non symplectic

behaviour (a steady “spiralling out” of the particle in phase space) appears for energy

deviations larger than 15% (2MeV deviation from 14MeV reference energy).

These results seem to justify the choice of interpolating the coefficients of the gf

rather than those of the power series. Similarly we must evaluate the symplectic error

of a map derived from an interpolated gf.

5.1.4.2 Symplectic error

As we did in section 5.1.3.2, we compute the Jacobian of the map derived from the

interpolated gf using equation 5.1. We then evaluate the coefficients of the matrix ∆ to
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5.1 Interpolation between different EMMA lattices

characterise the symplectic error. First the dynamical variables are set to unit values.

In the results presented in figure 5.7, symplectic error in the directly computed map

(l.h.s.) and in the map derived from interpolated gf (r.h.s.) have similar evolutions

while increasing the truncation order. The symplectic error of the latter is 4 orders of

magnitude smaller than the symplectic error in the interpolated power series (r.h.s in

figure 5.3).

In addition, we evaluate the symplectic error setting the canonical variables to 0.01

for the computed map and 0.007 for the interpolated gf. We observe in figure 5.8 that

in both cases maximum values for the coefficients remain close to 10−6 when increasing

the truncation order. The value of the variables in the case of the interpolated gf

being slightly smaller, we conclude that the symplecticity achieved by this method is

not as good as the original computed map, however there is a significant improvement

compared to the interpolated power series whose symplectic error was 10−3 for canonical

variables set to 0.001.

5.1.4.3 Summary

In this section, we looked at the construction of a dynamical map for any chosen

lattice configuration interpolating between a grid of computed dynamical map. When

interpolating the coefficients of the map in explicit form (power series) we observed a

discrepancy of the order of the expected measurement precision in the tune per cell

evolution with energy with results from the directly computed map. A significant

discrepancy appeared at high energy in the time of flight and for large energy deviation

in the betatron motion. We derived a numerical evaluation of the symplectic error

outlining the loss of symplecticity resulting from this method of interpolation.

We then studied the beam dynamics results obtained from a map in explicit form

derived from an interpolated gf. The agreement (with directly computed map) in terms

of tune and time of flight evolutions with energy and betatron motion was within the
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Figure 5.8: Symplectic error with respect to the order of terms included in the calculation
for a directly computed map and a map derived from interpolated generating function.
The agreement between the two plots confirms the preservation of symplecticity when
constructing the map by interpolating between gf for known lattice configurations.

expected measurement precision. We then observed that the symplectic error of the

map built by this method was of the same order of magnitude as the directly computed

map.

We conclude that the interpolation of the gf is a more suitable method since it

preserves symplecticity. It also reproduces more accurately the beam dynamics results

of a directly computed map. The reason for such an improvement in the description of

the beam dynamics may not simply lie in the decrease of the symplectic error and is

an interesting issue for future further investigation.

Eventually, we will see in the next section that this technique can be useful when

looking for the lattice that fulfils requirements regarding (for example) tune and time

of flight. By developing a routine that finds by interpolation the lattice corresponding

to a chosen set of constraints, we create a powerful tool for the commissioning of the

machine both to define a suitable working point and to estimate from measurements

the errors in the lattice (e.g. magnet strengths and positions).
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5.2 Application to the EMMA experiment

5.2 Application to the EMMA experiment

5.2.1 Experimental setting

The beam injected into EMMA is driven from the electron gun to the EMMA ring

by the ALICE accelerator. Ideally the beam could be injected into EMMA at any

energy between 10MeV and 20MeV. However ALICE is a complex accelerator because

it is used for several other experiments [64]. It has been commissioned only relatively

recently and the injected beam still has limited flexibility. To ensure the stability of

the beam and the reproducibility the experiment, the injector was optimised to inject

the beam in EMMA with a fixed kinetic energy of 12MeV (equivalent to fixed beam

momentum of 12.511MeV/c, c being the speed of light).

However the EMMA lattice is characterised by linear dynamics for several fixed

energies (i.e. without acceleration) from 10MeV to 20Mev. We therefore used the fact

that a decrease in the strength of the magnets is equivalent in terms of beam dynamics

to an increase of the beam momentum. This can be proved by looking at the general

expression of the Hamiltonian given by:

H =
δ

β0
−

√(
1

β0
+ δ − qφ

P0c

)2

− (px − ax)2 − (py − ay)2 −
1

γ20β
2
0

− az , (5.5)

where the normalised vector potential a is defined by:

a = q
A

P0
. (5.6)

P0 is the reference momentum. We see here that it is equivalent for the Hamiltonian

in (5.5) (i.e. for the dynamics) either to half the vector potential A or to multiply the

reference momentum P0 by a factor two. In practise, this equivalence is valid if the

relative magnitude of the magnets multipole components remain constant when varying

the current in the coils; this feature of the magnets will be evaluated experimentally
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5.2 Application to the EMMA experiment

by optimising ALICE to inject at other fixed energies. Equivalent and real energies

dynamics will then be compared.

To give an example, let us take the baseline lattice for which the nominal current

in the magnets should be: 350A for the defocusing magnet and 320A for the focusing

magnet. Decreasing both currents by 20% (to 280A and 256A respectively) is equiva-

lent to studying the same lattice with a beam with 20% higher momentum (15MeV/c).

Hence, even if the real momentum is fixed at 12.5MeV/c, we can study a given lat-

tice configuration for various momentum keeping the same ratio between the magnet

currents.

Note that the time of flight measured for an equivalent energy needs to be corrected

by the relativistic beta factor to reflect the time of flight for real energy. For instance

the relativistic factor for electrons at 12MeV and at 16MeV is β = 0.998817 and

β = 0.99952 respectively. The time of flight teq measured with equivalent energy

16MeV (while the real energy from the injector is 12MeV) is related to the real time

of flight at 16MeV treal by:

treal =
0.9952

0.998817
teq . (5.7)

The effect of this correction is shown in figure 5.9.

5.2.2 Time of flight measurement

We shall now present the measurements of the tof evolution with energy for various

lattice configurations. The tof is measured using the beam position monitors (BPMs)

[69], composed of four electrodes (or “buttons”) located on the beam pipe; each buttons

detects the change in electric potential when a bunch passes nearby, the closer is the

bunch, the stronger is the change in potential. The time between two consecutive

signals observed on a scope connected to one button corresponds to the revolution time

of a bunch in the ring (i.e. tof for one turn)
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Figure 5.9: Measurements of the tof for one turn in EMMA for various equivalent mo-
menta without correction of the real velocity (blue line) and with correction described by
equation 5.7. This correction modifies the tof by up to 30ps at high energy (20MeV) and
must therefore be taken into account when comparing simulations for real momenta and
measurements for equivalent momenta.

To perform a precise tof measurement, a reliable time reference is needed. A sinu-

soidal clock signal (part of the low level rf system) is used as reference for the rf wave

generator in the ALICE accelerating cavities [18, 19]. The rf frequency is 1.3GHz;

therefore an rf period lasts 0.77 ns. We can estimate the tof for one turn in EMMA,

by counting the number of rf period for each turn of the beam; hence this clock signal

can be used as reference for the tof measurements.

Figure 5.10 shows the ALICE rf signal in blue and the signal from a bpm in the

ring in red. Each peak corresponds to one pass of the beam and the time between

two peaks is the time of flight for one turn. The 1.3GHz oscillations can be seen by

zooming on this plot (see figure 5.10 (b) and (c)). Note that the oscillations of the blue

trace between -0.08V and 0.06V in figure 5.10 (a) are due to electronic noises from

other devices present in the accelerator room.
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Figure 5.10: (a) Waveform exported from the oscilloscope reading signals coming from
devices located in the ring. In red the raw signal from one BPM in the ring. Each
vertical spike corresponds to one turn in the ring. The time difference between two spikes
is therefore the time of flight for one turn. The 1.3GHz rf signal is represented in blue.
Electronic noise from other devices in the accelerator room is superposed to the sinusoidal
signal at 1.3GHz. The oscillation can be seen by zooming on this plot (b) and (c). Each
period is 0.77ns. First the tof is measured by counting the number of oscillation between
two red spikes in (b). Then the position of the spike is read within one oscillation in (c).
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A python routine [74] processes the numerical data extracted from the scope for

these two traces and counts the number of rf oscillations (detecting the zero-crossing in

the positive slope of each period), between two BPM signals. It is possible to refine this

measurement evaluating the position of the BPM signal within one rf oscillation. The

precision is related to the sampling speed of the scope. The scope used had a frequency

of measurement of 20GHz meaning that each rf oscillation contains 15.3 measurements

which allows a precise reconstruction of the sinusoidal signal. We estimate that the

zero crossing with positive slope of the signal is obtained with a precision of the order

of 50 ps.

To increase the precision, we can measure the tof of particles over several turns.

Without acceleration the variation of the tof, mainly due to beam losing energy through

beam loading in the cavities, is negligible. The limitation in the number of turns

available is the amplitude of the signal detected by the BPM decreasing due to beam

loss; 20 turns are used in this case.

With 20 turns, the relative error of measurement within one rf period is divided by

20 with respect to the relative error with one turn. For instance if the time of flight of

the beam for one turn is 55.35 ns, the measurement within one turn is 55.35 ns ± 0.05 ns

whereas the measurement over 20 turns will be 55.35× 20 = 1107 ns ±0.05 ns since the

precision is still linked to the position of the peak in the rf oscillation. The time of

flight over 20 turns is then divided by 20 and the result over one turn is in the range of

[1106.95/20, 1107.05/20]= [55.3475, 55.3525]. The precision of the measurement is then

±0.0025 ns. The number of turn considered for the measurement had to be seen the

same for all the measurements. Since the beam was lost in a few turns when injecting

at certain equivalent energy, we had to limit the number of turn taken into account in

the measurement to 10. The measurement precision was then of ±0.005 ns.

Each measurement is made taking a snapshot of the scope signal and processing the

data. Each bunch coming from the injector ALICE may has slightly different momen-
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Figure 5.11: Comparison between measurements and simulations of the time of flight
variation with energy for this lattice configuration. We observe that the measured lattice
has a minimum time of flight of 55.275ns at 15MeV whereas the simulated lattice has a
minimum time of flight of 55.225ns at 17MeV.

tum, energy spread or transverse position because of rf phase jitter or different electron

gun conditions; therefore several snapshots are saved for each tof measurements. In the

following section, we plotted the mean value and the standard deviation (error bar) for

sets of eight measurements.

5.2.3 Comparison between measurements and simulations

Note that from the magnetic field measurements in the ring magnets, it has been

found that the currents corresponding to the nominal (i.e. for the baseline lattice

configuration) integrated gradients were 310.32 A for the D magnet and 262.68 A for

the F magnet; hence the nominal ratio of magnet strength is 1.18. As explain in section

5.2.1, the kinetic energy of the injected beam from ALICE is fixed (12MeV). The time

of flight variation with energy is studied by decreasing the magnet strengths conserving
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the same ratio between them.

In practise, we looked for a magnet strength ratio for which injection was good

(many turns before the beam signal is lost on the scope) over a wide range of equivalent

energies. With a magnet strength ratio of 1.12 and moving both magnets outward

by 2mm with respect to their nominal positions, we managed injection from 11MeV

equivalent to 20MeV equivalent.

We used the generation function interpolation routine to simulate the beam dy-

namics of this lattice configuration. Figure 5.11 shows the comparison between mea-

surements and simulations of the time of flight variation with energy for this lattice

configuration. We observe that the measured lattice has a minimum time of flight

of 55.275 ns at 15MeV whereas the simulated lattice has a minimum time of flight

of 55.225 ns at 17MeV. We conclude from this discrepancy that the actual measured

lattice contains error in magnet strengths and positioning not taken into account in

the simulation, that changes the time of flight variation with energy. In other words,

there appears to be some significant systematic difference between the machine and the

model.

The next step consists in using the grid of lattice configurations to find which simu-

lated lattice corresponds to the measurements. To do so we use an optimisation routine

based on the interpolation method described in section 5.1 to look for a simulated lattice

configuration that matches four constraints defined by the time of flight measurements

at four different energies.

5.2.4 Prediction of the lattice configuration from the optimisation

routine

The time of flight evolution with energy has been measured for various EMMA lattices.

The aim of the section is to compare the measurements to the results obtained with an

optimisation routine written in Mathematica using the simplex method [72,73,75].
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5.2.4.1 Time of flight variation with magnets transverse displacement

For each lattice configuration of the grid, we use the dynamical map to compute the

tof of the closed orbits from 10MeV to 20MeV, varying the energy deviation. In many

lattice configurations, especially close to the edges of the grid, no closed orbit could

be found for energies higher than 18MeV; therefore the time of flight could only be

interpolated between 10MeV and 18MeV.

Note that finding the closed orbits and extracting the tof for 9 energies for 300

configurations takes about 20 seconds using the dynamical maps whereas the same

tasks takes more than 4 hours with numerical tracking in 300 numerical magnetic field

maps with PyZgoubi. Considering only the computation of the time of flight and

including the 300 minutes to compute the grid of dynamical maps, both codes seems to

be equivalent in terms of computing time. However, to compute the tof for a different

energy than the 9 energies already computed, it takes about half an hour (4 hours/9)

with PyZgoubi and a few seconds with dynamical maps. Moreover in order to compute

any other characteristic of the dynamics such as tune and dispersion, only a few tens of

seconds will be needed with dynamical maps since information are already contained in

the coefficients of the map, whereas another few hours would be necessary by numerical

tracking in PyZgoubi.

The created grid of tof for all the lattice configurations between 10MeV and 18MeV

is used by the optimisation routine to find the lattice that most closely matches the tof

measurements from the EMMA accelerator.

Figure 5.12 shows the result of the comparison between measurements and simula-

tions from the lattice configuration found by the optimisation routine. The measure-

ments were performed with a magnet ratio of 1.12 and both magnets moved outward by

2mm with respect to their nominal positions (same as section 5.2.3). The experimental

lattice, referenced as E1 is written according to the notation explained in section 5.1.2 of

this chapter as: (Af =105.6%, Ad =100%, Xf =9.51mm, Xd =36.048mm). From the
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tof measurements (blue dots with error bars) four constraints (green triangles) are de-

fined for the optimisation routine; the lattice S1 found by the routine is : (94.30, 100.02,

11.56, 34.00). The time of flight for a range of energy between 10MeV and 20MeV is

then computed for this lattice (red dashed line) from the interpolated generated func-

tion for the corresponding lattice. It shows good agreement with measurements with a

maximum discrepancy of about 20 ps at 10.5MeV. All the other measurements agree

within less than 10 ps; another measurement for an energy close to 11MeV would be

useful to confirm the discrepancy.

Lattices S1 and E1 are then compared in terms of tune per cell. The experimental

values of the tune is obtained from the orbit transverse position (given by BPMs around

the ring) by the NAFF method [55]. We observe in figure 5.13(a) that there is a

relatively good agreement for the horizontal tune (in red) for energies smaller than

16MeV. The simulated vertical tune (green circles on line) is significantly larger than

the measurement (green stars), especially for large energy. Note that the simulated tune

is computed from a single dynamical map with a reference energy of 14MeV which is

not as accurate as the simulation with several maps with different reference energies.

Comparing this figure 5.13(a) with figure 4.2 in chapter 4, we observe that com-

puting the tune from maps with different reference energies gives smaller values for the

tune at high energy. This may explain part of the discrepancy. In order to interpolate

a generating function with a different reference energy, a new grid of dynamical maps

must be computed for each energy.

Instead we can solve the OPERA model for the lattice configuration found by

the routine, derive the analytical representation of the magnetic field and directly

compute the dynamical maps with different reference energies. The agreement between

measurements and multiple computed map simulations is lower than 0.005 for the

horizontal tune (see figure 5.13(b)); the simulated vertical tune is still larger than the

measurement however the discrepancy is significantly reduced at high energy.
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Figure 5.12: From the tof measurements (blue dots with error bars) four constraints
(green triangles) are defined for the optimisation routine; the lattice S1 found by the rou-
tine is : (94.30, 100.02, 11.56, 34.00). The time of flight for a range of energies between
10MeV and 20MeV is then computed for this lattice (red dashed line) from the inter-
polated generated function for the corresponding lattice. It shows good agreement with
measurements with a maximum discrepancy of about 20 ps at 10.5MeV.
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Figure 5.13: (a):Lattices S1 (circles) and E1 (stars) are compared in terms of tune per
cell. The experimental value of the tune is obtained by the NAFF method [55]. There
is a relatively good agreement for the horizontal tune (in red) for energies smaller than
16MeV. The simulated vertical tune is significantly larger than the measurement, especially
for large energy. The simulated tune is computed from a single with a reference energy of
14MeV.(b) Same as (a) but the simulation results are obtained with multiple maps with
different reference energies. The discrepancy is significantly reduced, especially for the
vertical tune at high energy.
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Figure 5.14: Comparing the experimental result to the simulated results, we observe that
for lattices 1, 2 and 3, the agreement is within 20 ps apart from some specific measurements
for which the actual kinetic energy of the beam coming from ALICE might not have been
12MeV exactly because of rf phase jitter and electron gun instabilities. The discrepancy for
the fourth lattice is larger and can be explained by the fact the configuration is outside the
grid requiring an extrapolation of the data. However there is agreement on the minimum
value of 55.22 ns between 14MeV and 15MeV; this value is important to evaluate the
optimal rf frequency of the cavity to achieve acceleration.
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5.2 Application to the EMMA experiment

We conclude that the lattice found by the optimisation routine to match the mea-

surement agrees also with the measurements of the horizontal tune at various energies.

This is a interesting result since it gives confidence in the use of the optimisation routine

not only to characterise longitudinal dynamics but also to investigate the transverse

dynamics such as resonance crossing.

However, there is a large discrepancy for the vertical tune per cell. This can be

explained by the fact that when varying slightly the target values in the optimisation

routine, lattices different from S1 that still match relatively well the time of flight

variation with energy, could be found. This is especially true if the time of flight mainly

depends on the magnet position; the magnet strengths could then be adjusted to agree

with the tune measurement while still matching the tof constraints. In other words a

new constraint on the value of the vertical tune at high energy could be implemented

in the routine. The new lattice found would correspond better to the experimental

lattice. This is a possible topic for a further study.

The simulation lattice S1 that matches the tof measurements does not correspond

to the experimental lattice E1. Although simulations and measurements do not agree

in absolute terms, it is interesting to compare the response to changes in the lattice

predicted by the model with the response to changes measured in the machine. To do

so, we measured the time of flight for various energies for three transverse positions of

both magnets: both moved 1mm outward (lattice E2, +1mm offset), both in nominal

position (lattice E3, 0mm offset) and 1mm inward (lattice E4, -1mm offset); the

magnet strengths are kept constant; for instance the lattice E2 is (105.6, 100, 8.51,

35.048). The tof measurements for these lattices are represented by stars with error

bars in figure 5.14. We then apply the corresponding moves of the magnets to the

lattice S1 and obtain the lattices S2, S3 and S4; for instance lattice S2 is (94.30, 100.02,

10.56, 33.00). For each corresponding position of the magnets, the experimental and

simulated results are plotted in the same colour.
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5.2 Application to the EMMA experiment

For these simulated lattices, the tof at different energies is calculated in two different

ways. The dots on the dashed line are values interpolated directly from the tof grid,

hence limited to 18MeV. The continuous line is obtained by interpolating the generating

function for the corresponding lattice from the dynamical map grid. The lattice S4

is found to be outside the grid (Xd < 32) and while the tof could be extrapolated,

the generating function could not be derived. For the three other configurations, the

generating functions agree perfectly with the interpolated tof.

We observe that for lattices 1, 2 and 3, the agreement between measurement and

simulation is within 20 ps apart from some specific measurements for which the actual

kinetic energy of the beam coming from ALICE might not have been 12MeV exactly

because of ALICE rf phase jitter and electron gun instabilities. The discrepancy for

the fourth lattice is larger and can be explained by the fact the configuration is outside

the grid, hence the simulated data were extrapolated. However there is agreement on

the minimum value of 55.22 ns between 14MeV and 15MeV; this value is important to

evaluate the optimal rf frequency of the cavity to achieve acceleration.

We can then conclude that simulations could be used to predict the effect on the

time of flight when moving both magnets by the same amount. This prediction could

be used to optimise acceleration. The next steps would be to measure the tof for

magnets moved further outwards and also for magnets moved independently; the range

of validity of the optimisation process could be then characterised more precisely.

Finally, the tune per cell measurements are obtained from the transverse position

of the beam in each cell. At that stage of the commissioning, the transverse position

of the orbit was measured by directly connecting the BPM signal to a four input

channel scope in the control room; measuring the orbit around the entire ring required

therefore a significant time (cabling and averaging) and it was not done for the other

experimental lattices described here. In a near future, all the BPMs will be connected

to an EPICS interface [70,71] and hence the measurement of orbit position and tunes
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Figure 5.15: The initial measured lattice, E1b is: (112.68, 100.00, 7.51, 34.048) repre-
sented by the blue stars with error bars; the corresponding magnet ratio is Ad/Af = 1.04.
The corresponding simulated lattice S1b (red dashed line) matching the four targets val-
ues (purple dashed line) is: (98.9, 94, 9.97, 33.50). The magnet ratio for this lattice is
1.123. Here again the simulated lattice does not correspond to the actual lattice. Also, the
dynamics obtained from the generating function interpolated for this configuration (green
line) agree perfectly with the interpolated tof.

will be instantaneous. A more rigorous and complete evaluation of the optimisation

routine will then be made more feasible.

5.2.4.2 Time of flight variation with change in magnets strengths

Measurements have also been carried out for lattices with different magnet strengths

without moving the magnets. The initial measured lattice, E1b is: (112.68, 100.00, 7.51,

34.05) represented by the blue stars with error bars in figure 5.15; the corresponding

magnet ratio is Ad/Af = 1.04. The simulated lattice S1b matching the four targets val-

ues (green triangles) is: (98.90, 94.00, 9.97, 33.50) and is represented by the red dashed

line; the simulations from its interpolated gf (red line) also shows good agreement with

the measurements. the magnet ratio for this lattice is 1.123. Here again the simulated
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Figure 5.16: comparison of the response to a change in the magnet strength ratio pre-
dicted by the model with the response of the machine to the same change in magnet
strength ratio. The tof measurements and the simulation results are represented by stars
with error bars and dashed line respectively. The discrepancy between the tof for various
energies between the lattices E2b and S2b (green) reaches 15 ps at 15MeV/c. However,
the measurement performed at that point seems to be out of the trend of the other tof
measurements for this lattice. The agreement is within less than 10 ps for the other data
points.
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lattice S1b does not correspond to the actual lattice E1b.

To study the relative agreement between experimental and simulated results when

varying the magnet strength ratio Ad/Af , we measured the time of flight for various

energies for another magnet ratio of 1.12 corresponding the lattice E2b is: (105.40,

100.00, 7.51, 34.05). Note that the strength of the D magnet is kept constant. Figure

5.16 shows the comparison of the response to a change in the magnet strength ratio

predicted by the model with the response of the machine to the same change in magnet

strength ratio. The tof measurements are represented by stars with error bars. From a

ratio of 1.04 to 1.12 the relative change is of 7.6%. We apply the same relative change

to the lattice S1b (red) conserving the strength of the D magnet and obtain the lattice

S2b (green) with ratio 1.20 : (91.90, 94.00, 9.97, 33.50). Note that the gf could not be

derived because the lattice configuration was outside the grid but the tof for energies

between 10MeV and 18MeV could be extrapolated from the grid of tof for known

lattice configurations.

The discrepancy between the tof for various energies between the lattices E2b and

S2b reaches 15 ps at 15MeV/c. However the measurement performed at that point

seems to be out of the trend of the other tof measurements for this lattice. Extending

this study to other magnet strength ratio would be necessary before drawing firm

conclusions on the stability of the optimisation process. At this stage of the study, this

result is very encouraging and validates the use of the dynamical maps to predict linear

beam dynamics in FFAG accelerators.

The success of the acceleration in EMMA depends largely on the chosen lattice

configuration. The accelerating system can be optimised for a given variation of the

time of flight with energy. However, some features of the rf system are limited in

range (e.g. frequency, voltage) and it is instead necessary to adapt the lattice to the rf

capabilities. Also, since crossing resonances through acceleration may destroy the beam,

setting the lattice to avoid the most destructive resonances is crucial. We saw that this
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routine can give an estimate of the changes needed in the lattice parameters to optimise

the lattice. More experimental data in the following months of the commissioning will

help refining this process and also define its limitations.

5.3 Summary and conclusions

In the first section of this chapter the objective was to predict the beam dynamics

in any configuration of the lattice by constructing dynamical maps by interpolation

between known configurations forming a grid.

First we observed that the interpolation of the coefficients of the Taylor series

representation of the dynamical map introduced a large symplectic error in the beam

dynamics. We then showed that interpolating the coefficients of the generating function

preserved the symplecticity of the interpolated solution and gave better agreement with

the directly computed solution for the tune, time of flight and betatron motion.

In the second part of this chapter, we applied these results to compare time of

flight measurements obtained from the EMMA commissioning and simulations. The

tof is measured with a precision of 15 ps by counting the number of rf periods between

consecutive turns detected by a BPM and then evaluating the exact arrival time within

one rf period. Therefore agreement between different tracking codes within 15 ps is

satisfactory at that stage of the commissioning (more precise measurement techniques

may be developed later).

The tof at different energies obtained from the interpolated generating function for

the experimental lattice had large discrepancy with the measurements. We concluded

that the experimental lattice and the simulated lattice were not equivalent. The origin

of the disagreement is not clear at present.

An optimisation routine identified the simulated configuration of the lattice that

matches the time of flight measurements. The tune per cell variation with energy de-
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5.3 Summary and conclusions

rived from the interpolated generating function showed large discrepancies with the

measurements especially at high energy for the vertical tune per cell. The discrepancy

was decreased by computing dynamical maps with various reference energies. The

agreement was within 0.005 for the horizontal tune per cell. This confirms the conclu-

sions of chapter 4 stating that a single dynamical map may not be sufficient to simulate

accurately the dynamics over the whole range of energy in EMMA.

In addition, a constraint on the vertical tune should be added to the routine to

obtain a lattice that agrees with the experimental results for the time of flight and for

linear transverse beam dynamics.

It was then shown that the effect predicted from simulation on the time of flight

of moving both magnets horizontally inward and outward by a few millimetres agreed

within 15 ps with the experimental measurements for the corresponding move. Also

simulations could predict the effect on the time of flight of a change in magnet strength

ratio. The agreement in terms of vertical and horizontal tunes could not be verified

because of the lack of orbit position measurements.

These results partly validate the simulations of linear beam dynamics in FFAG with

dynamical maps. They show that the work carried out to construct the optimisation

routine is relevant since it agrees within reasonable tolerances with the experimental

data. An improvement would be to understand why the lattice found from simulation

is different from the experimental lattice. However the ability to predict the effects of

changes in the lattice configuration (magnet strengths and positions) is already useful

for the optimisation of the lattice to achieve acceleration. This must be studied more

widely for arbitrary changes in the four parameters of the lattice configuration. More

experimental data obtained in the next months of the commissioning will certainly

allow for an improvement of this technique.
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6

Discussion

The objective of this last chapter is to discuss, after having presented the whole study,

the initial aims and objectives defined in the introduction chapter. We will recall each

aim and briefly sum up the part of the study relevant to the related objectives. We will

then discuss whether the aims were achieved and potentially define additional objectives

for a further completion.

6.1 Aim 1: Obtain an accurate 3D representation of a

magnetic element.

Since in many cases of particle accelerator, the 3D geometry of the magnets is too

complex to solve Maxwell’s equations exactly, a numerical solver is required. We used

the 3D OPERA model of the EMMA cell created for the design of the machine and

obtained a numerical solution of the magnetic field by finite element method. We

evaluated the minimum mesh density such that an increase of this density would affect

the first order beam dynamics (tune and time of flight) by an amount smaller than the

measurement precision in the machine. It would be interesting to study the effect of the

mesh density on nonlinear dynamics. The nonlinear effects in the case study EMMA
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6.1 Aim 1: Obtain an accurate 3D representation of a magnetic element.

may be too weak to draw clear conclusions on that study and another case study, such

as complex magnets in scaling FFAGs, would be more relevant.

We constructed the field representation of the entire cell by superposing the field

from each magnet. An important result was the fact that the presence of the unpow-

ered yoke when solving each magnet separately had a significant effect on the dynamics;

beam dynamics codes using simple hard edge model for the magnets (and therefore not

taking into account neither edge effect of the magnets nor the interferences between

magnets) are not as accurate as codes using detailed 3D field maps. Some discrepancies

in the magnetic field could be observed between the field map for the entire cell and

the superposition of maps; however their effect on linear beam dynamics seemed neg-

ligible. Nevertheless in order to model the FFAG EMMA ring with higher precision,

the OPERA model should be compared to a detailed three dimensional map measured

in the ring magnets. We considered at that stage of the study that the representation

was accurate enough.

In order to construct a dynamical map, differential algebra objects were used as

variables for the symplectic integration through the magnetic field of the beamline.

The magnetic field also needed to be expressed in analytical form. An analytical rep-

resentation of the magnetic field in the form of Fourier series in cylindrical coordinates

was derived by fitting a set of coefficients on the numerical values of the field interpo-

lated on a reference cylinder from the field map obtained from OPERA; the residual

of the fit increases exponentially outside this cylinder. Then the set of coefficients was

transformed to Cartesian coordinates more adapted to beam dynamics studies. The

residual of the fit was kept smaller than a few Gauss within the reference cylinder and

the tune and time of flight obtained from tracking in the original field map and in

the fitted representation differed by a smaller amount than the measurement precision

for trajectories contained in the reference cylinder; however several cylinders are then

needed to cover the whole aperture when a large cylinder is limited by the magnets
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6.2 Aim 2: Derive the equations of motion of a particle in a general

magnetic element to obtain a dynamical map.

poles.

In the case of accelerators like EMMA with large horizontal excursion of the par-

ticles, instead of covering the aperture with several cylinders, other sets of functions

such as Mathieu’s function fitting on a cylinder with elliptical base may be more ap-

propriate; the conversion to Cartesian coordinates can then be rather cumbersome and

hence the most practical solution could be to include this basis of functions in elliptical

cylindrical coordinates directly in the integrator script.

6.2 Aim 2: Derive the equations of motion of a particle

in a general magnetic element to obtain a dynamical

map.

Solving the equations of motion for a particle moving in a magnetic field is a very

common problem which we chose to solve such that we obtained a symplectic solution

expressed in the form of a dynamical map.

The first objective was therefore to derive the equations of motions such that a

symplectic solution could be computed. Since Hamiltonian systems are intrinsically

symplectic, we chose the Hamiltonian formalism for the expression of the dynamics. We

derived the accelerator Hamiltonian for a straight reference trajectory. Unfortunately,

systems described by this Hamiltonian in general do not have exact solution in closed

form. Making the paraxial approximation, we could expand this Hamiltonian in a

sum of integrable terms and find approximate solutions in closed form for multipole

magnets. The next objective was to extend this result to a general magnetic field and

use it to build a symplectic integrator.
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6.2 Aim 2: Derive the equations of motion of a particle in a general

magnetic element to obtain a dynamical map.

Using a technique developed by Wu et al, the Lie transformation and its properties

allowed us to express the dynamics in a general magnetic field as the concatenation

of integrable maps. We obtained a symplectic explicit integrator of the second order

(paraxial approximation) in the step size. The effect of the paraxial approximation is

crucial in the case study of an FFAG where trajectories can have large excursion with

respect to the reference trajectory.

From the symplectic integrator, the map could be expressed algebraically in closed

form. We used a differential algebra (DA) code to construct the Taylor series represent-

ing the dynamics in a given magnetic element described by an analytical representation

of the magnetic field. The dynamical map in this form provides a convenient, compact

and efficient description of the particle motion; and may also, by inspection of the map,

provide useful information directly on the impact the magnetic component may have

on the beam dynamics in an accelerator. However the integrated solution in the form

of Taylor series contains a very large number of terms which in practice the comput-

ing routine needs to truncate at a given order. The effect of the truncation on the

symplecticity can be quantified through the Jacobian of the map. It is important to

note that the symplectic error comes from the limited numerical precision, regardless

of the integration step size. This is a fundamentally different approach to standard

Runge-Kutta integrator that only reaches symplecticity as it becomes more accurate

by decreasing the step size.

This technique has been mathematically developed further by Wu et al. and also

by Berz and Makino to construct a explicit symplectic integrator of higher order not

making the paraxial approximation. A study of the dynamics in the FFAG EMMA

with this integrator would give a deeper understanding of the effect of the paraxial

approximation in our simulation results (corresponding to the following aim of the

study). Also developing the symplectic integrator for a curvilinear reference trajectory
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accelerators with dynamical maps.

may improve the accuracy of the simulation in an FFAG where trajectories can be

significantly curved.

6.3 Aim 3: Study the validity of the beam dynamics sim-

ulations of FFAG accelerators with dynamical maps.

We then aimed at studying the validity of the beam dynamics simulations of FFAG

accelerators with dynamical maps. Although it was hoped that use of dynamical maps

would offer some benefits for simulation studies (compared to purely numerical tech-

niques) the main motivation of the present study was to assess the limitations of this

technique for FFAGs. A stronger motivation for applying dynamical maps to this type

of accelerator is that in general in FFAGs the dynamics are non linear. For instance

scaling FFAG magnetic fields are highly non linear. Dynamical maps could therefore

be an interesting tool for such machines because of their ability to provide an insight

into the dynamics not provided by purely numerical tracking techniques. However as

a first stage for this new type of study, we tested our technique on a more linear case:

the linear non scaling FFAG EMMA.

Among all the codes that had been used to simulate beam dynamics in this accel-

erator, we decided to compare dynamical maps results with PyZgoubi since it could

track particles in numerical field maps provided by an OPERA model and also in sim-

ple hard edge model of a magnet. The agreement between codes was considered to be

satisfactory if the discrepancy was smaller than the expected measurement precision

for the data (i.e. 10 ps for the time of flight and 0.01 for the tune per cell).

First we looked at the disagreement between simulations with hard edge model and

with field maps. We found significant differences for the time of flight for different fixed

energies. Therefore, simulations with field maps may be required to model accurately
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6.3 Aim 3: Study the validity of the beam dynamics simulations of FFAG

accelerators with dynamical maps.

the beam dynamics in EMMA. For instance, tracking in field maps indicated that the

time of flight was smaller than the design one derived with tracking through hard edge

representations of the magnets. This implied that the frequency of the cavities had

to be increased or that the magnets had to be moved outwards to increased the path

length of the particles to optimise the lattice for acceleration.

Then we observed a discrepancy in the tune per cell at various energies from simu-

lations with dynamical maps and with PyZgoubi using numerical field representation.

This discrepancy was significant only for low energies for which the excursion of the

closed orbit with respect to the dynamical map reference trajectory was large. This

suggests that the paraxial approximation may not be valid in that case, since PyZgoubi

did not make this approximation.

We then studied the accuracy of the beam dynamics simulation with dynamical

maps when varying the energy deviation. The time of flight could be predicted for

the whole energy range with a single map truncated to the 4th order. However, even

retaining terms up to 9th order in the map did not allow an accurate computation of

the horizontal and vertical tune for energy deviation larger than 15%. We concluded

that three maps with different reference energies are required to simulate accurately

the linear dynamics over the full range in energy in EMMA.

After studying the linear dynamics in EMMA, we focused on nonlinear effects that

can cause the tune value to vary with the value of the betatron action. We computed

the tune shift with amplitude obtained from frequency map analysis of tracking results

from PyZgoubi and dynamical map, and compared this result with the value for the

tune shift obtained by reading directly the coefficients of the generator of the Lie

transformation representing the dynamical map.

The discrepancy with the results obtained from the coefficients of the Lie generator

was smaller than measurement precision; this validates the reading of this nonlinear
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6.3 Aim 3: Study the validity of the beam dynamics simulations of FFAG

accelerators with dynamical maps.

effect directly from the map. However we observed a larger disagreement in the vertical

motion.

PyZgoubi was not accurately simulating the nonlinear components of the magnetic

field present in the OPERA model; whereas the agreement of the tune shift estimated

from the OPERA and the 3D analytical form (used to construct the dynamical map)

descriptions of the field gives confidence in the simulation of the vertical tune shift with

amplitude with dynamical map.

Finally, another objective raised from this study: we made the assumption that the

discrepancy between PyZgoubi and the dynamical maps simulations could result from

the paraxial approximation made to construct the dynamical map. To validate this

assumption, we need to simulate a beamline for which the tune shift with amplitude

could be derived analytically. We could then draw a conclusion on the effect of large

values of the variables on the accuracy of the simulations.

The last objective was dedicated to the study of the longitudinal dynamics in EMMA.

First we observed that a group of particles with an initial longitudinal distribution

(either Gaussian or uniform) rapidly lost its coherent transverse motion when tracked

for several turns in the ring at fixed energy. For an initial distribution chosen according

to experimental measurements, we observed that simulations with dynamical maps and

PyZgoubi predicted a complete decoherence (when BPM readings corresponds to the

stable orbit) of the betatron oscillations within 7 turns (for a distribution with energy

spread being 1.175% FWHM).

Furthermore, we included a simple model of acceleration in the simulations with

dynamical maps. First, we showed that dynamical maps were capable of simulating fast

acceleration in the case of EMMA (serpentine acceleration) predicted by the analytical

model. Although one dynamical map was sufficient to model the time of flight over the

full energy range, this study showed two dynamical maps with different reference energy
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accelerators with dynamical maps.

and truncated to order 8, may be required to reproduce the evolution of a distribution

(similar to the measured distribution in longitudinal phase space at injection in EMMA)

through acceleration from 10MeV to 20MeV. Transverse distributions with different

values for the horizontal action of particles should be studied to verify if the simulations

with two maps are still accurate. Note that the estimation regarding the computation

of the tune for various value of the energy deviation was that three maps would be

necessary.

Eventually simulations with PyZgoubi and dynamical maps of the distortion of

a transverse distribution passing through a third order resonance during acceleration

with 2MV per turn in the cavities showed good agreement. No significant growth of

the transverse size of the distribution occurred, giving confidence in the capability of

a non-scaling FFAG to accelerate a beam without losses in a serpentine channel. We

could also observe in both codes, a larger distortion of the initial ellipse shape for lower

rate of acceleration (i.e. decreasing the rf voltage to 0.55MV per turn).

From this chapter we can conclude that dynamical maps are capable of simulating

basic transverse and longitudinal beam dynamics in a non-scaling FFAG. A deeper

study of the capability of dynamical maps to simulate dynamics in FFAG can be carried

out in three ways:

1. Construct a dynamical map for beamline with strongly non-linear elements in

which the beam dynamics can be solved analytically. The effect of the paraxial

approximation could then more easily be investigated.

2. Apply the technique to a different machine, in particular a scaling FFAG in which

non linear effects are expected to be larger.

3. Compare the simulations to experimental data from EMMA. Although this task

was partially tackled in the last chapter, a better knowledge of the machine will

allow more precise evaluation of the different simulation techniques.
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6.4 Aim 4: Make use of dynamical maps to analyse the experimental

results.

6.4 Aim 4: Make use of dynamical maps to analyse the

experimental results.

To achieve the last aim of this study, we had to define a task for which the technique

that we had developed would be useful. The fact that experimental data started to be

available from the commissioning of the machine helped to define this task.

The starting observation was that the actual experimental lattice was not precisely

known. A fit on the measurements would in principle allow us to derive the corre-

sponding simulated lattice. The development of a model that accurately predicts the

behaviour of the real machine would be of great value in tuning and operating the

accelerator. However we believed that the hard edge model would not be as accurate

as the analytical representation of the field that we had derived. The task would then

be to find the simulated lattice with dynamical map that matches the experimental

data.

The first objective was to predict the beam dynamics in any configuration of the

EMMA lattice. This was achieved by interpolating the dynamical map between known

configurations forming a grid. We observed that interpolating the coefficients of the

Taylor series introduced a significant symplectic error that was largely decreased when

interpolating the coefficients of the generating function. We observed also that using

an interpolated generating function, the beam dynamics agreed better with the results

from directly computed map for the given configuration.

We then had to decide which experimental data would be the most appropriate to

be measured and then fitted. Since the measurement of the transverse position of the

beam at that stage of the commissioning was cumbersome, measurements of the tune

were not easily available. However the measurement of the time of flight was relatively

straightforward. Since the EMMA lattice was defined by four parameters (strengths

and positions of the two magnets), we chose the four constraints on the fit to be the
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measured time of flight at four momenta.

We found that the simulated lattice obtained from the optimisation routine by

fitting the time of flight measurements did not correspond very closely to the configu-

ration of the experimental lattice. However we noticed that the simulated vertical tune

also did not agree with the measurements; it is therefore likely there are several lattice

configurations matching the time of flight measurements but having different variation

of the tune with energy. Measured tune values should be included as constraints in the

optimisation routine to avoid the degeneracy of the result.

Despite this disagreement, we showed that the response in terms of time of flight to

changes in the lattice parameters predicted by the model agreed (within measurement

precision) with the response to changes measured in the machine. The changes applied

to the lattice were: first, a move of both magnets transversely, and second, a variation

of the ratio of the magnet strengths. This should be generalised to the prediction

of the beam dynamics for any change in the four parameters of the lattice. This

procedure could then stand as a powerful tool in order to set the machine in the

optimal configuration for serpentine acceleration or for a particular resonance crossing.

6.5 Conclusions

The technique presented in this study consists in the application of three indepen-

dent tasks: firstly deriving an accurate analytical representation of any magnetic field

configuration; secondly making use of an integrator that preserves an important charac-

teristic of Hamiltonian system (in particular the symplecticity); and thirdly performing

particle tracking using differential algebra and creating a dynamical map in the form

of a power series of the dynamical variables or in the form of generating functions.

The case study for this procedure was chosen to be the non-scaling FFAG accelerator

EMMA for four main reasons:
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• the particular design of the magnets in which the magnetic field at the entrance

and exit faces may have a strong influence on the dynamics. This can be signifi-

cant in the modelling of the lattice for simulations.

• The flexibility of the lattice with its four degrees of freedom, which requires also

the flexibility of a code simulating dynamics in EMMA.

• The large excursion of particle trajectories with respect to a given straight ref-

erence trajectory, suggesting the approximation made on the small variation of

variable may not apply for FFAGs.

• The fact that the commissioning of the machine, being the first ever built non

scaling FFAG, was occurring on site; this therefore offered access to the expertise

of the physicists working on this project and also allowed us to take and process

the first experimental data.

There are close links between the three tasks involved in the analysis and these

four motivations. First, the complicated design of the magnets required a precise

understanding of the properties of the magnetic field and the analytical representation

was a convenient form for the rest of the study. The first task and the first motivation

are closely related.

The need for a symplectic integrator does not appear really relevant at first sight

since symplecticity is more often an issue occurring in a lattice where thousands of

turns are performed by the particles. However the link is here two-fold: first, since it

is the first time that such a machine with non conventional beam dynamics is built,

no particle tracking codes have been benchmarked against this kind of simulations.

Therefore in order not to be “walking blindly” in the study of the machine, it is useful

to be able to confirm that tracking results respect theoretical constraints. Symplecticity

is a convenient constraint, since it imposes a number of conserved quantities, that can

be easily evaluated. The significance of the symplectic constraint confirmed when we
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obtained more accurate results for the interpolation of the generating function than

for the interpolation of the power series. Second, the symplectic integrator we used

required the paraxial approximation; trajectories with large excursions in FFAGs stood

therefore as a crucial test for this technique and EMMA was particularly interesting

since experimental data allowed a benchmarking of the integrator.

Finally the use of dynamical maps was very convenient to predict the beam dynam-

ics in any configuration of the EMMA lattice using a precise 3D representation of the

magnetic field. We saw that dynamical maps contain a large amount of information in

a compact format. This is a crucial feature for optimisation routines and a powerful

tool for the commissioning of the machine.

An important aspect that was not tackled in this study was the relevance of this

process for beam dynamics with strong non linearities in scaling FFAGs. However the

satisfactory agreement shown in this study between dynamical maps and numerical

methods, and the understanding obtained of the benefits and limitations of the appli-

cation of dynamical maps to non-scaling FFAGs, provide an important foundation for

a more detailed study of the stronger non-linear effects expected in scaling FFAGs.
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Appendix A

Transformation of Fourier series

coefficients from cylindrical to

Cartesian coordinates

The aim of this section is to derive a relation between the amn and cmn coefficients

for even value of m. We start with the expressions for the azimuthal component and

vertical component of the magnetic field:

By =
∑

m,n

cmn sin(mkxx) cosh(kyy) sin(nkzz) (A.1)

Bφ =
∑

m,n

amn
m

nkzρ
Im(nkzρ) cos(mφ) sin(nkzz) . (A.2)

Since the field in one representation must equal the field in the other representation

at all points in space, and both fields are entirely determined by the coefficients, we

can choose any particular point in space to carry out the study. If we can find the

coefficients amn by considering the fields at that particular point, then we have solved

the problem.
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Let us choose the point:

x = ρ, y = 0, z = π/(2nkz) . (A.3)

For y = 0, i.e in the median plane, the relation between the transverse magnetic field

components in cylindrical and Cartesian bases are given by:

By = Bφ and Bx = Bρ (A.4)

At that location in space, only considering even values for m, expressions (A.1) and

(A.2) become:

Bφ =
∑

m,n

amn
m

nkzρ
Im(nkzρ) , (A.5)

By =
∑

m,n

cmn sin(mkxρ) . (A.6)

Then,
∑

m,n

amn
m

nkzρ
Im(nkzρ) =

∑

m,n

cmn sin(mkxρ) (A.7)

Let us assume that a function f exists such that:

cmn = fmm′am′n (A.8)

Our goal is to find the components fmm′ , which will allow us to transform from the

cylindrical to the Cartesian basis. Substituting equation (A.8) into (A.7) gives:

∑

mn

amn
m

nkzρ
Im(nkzρ) =

∑

m,n,m′

fmm′am′n sin(mkxρ) (A.9)

This equation is satisfied (a sufficient but not necessary condition) if each term in
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the summation over n on one side is the same as the corresponding term on the right

hand side. Then, we can simply drop the summation over n:

∑

m

amn
m

nkzρ
Im(nkzρ) =

∑

mm′

fmm′am′n sin(mkxρ) (A.10)

Now we make use of the series expansions for the derivative of the modified Bessel

function:

Im(ρ) =

∞∑

l=0

1

l!m+ l!
(
ρ

2
)(2l+m) (A.11)

and for the sine function:

sin(mkxρ) =

∞∑

l=0

(−1)l
(mkxρ)

2l+1

2l + 1!
(A.12)

Substituting equations (A.12) and (A.11) into (A.10) gives:

∑

m,l

amn

m

l!m+ l!

(nk zρ)
2l+m−1

22l+m
=

∑

m,m′,l

fmm ′am′n(−1)l
(mkxρ)

2l+1

2l + 1!
(A.13)

Equation (A.13) must be true for all values of ρ. Therefore, the coefficients of equal

powers of ρ on either side must be equal. Let us consider the coefficients of 2l′ +1. On

the right hand side, this is simply the term in the summation over l with:l = l′. On the

left hand side, with is the term in the summation over l with:

2l +m− 1 = 2l′ + 1...thus...l = l′ + 1− m

2
(A.14)

Hence, comparing coefficients of powers of ρ gives:

∑

m

amn

m

(l′ + 1− m
2 )!(l

′ + m
2 + 1)!

(nk z)
2l′+1

22l′+2
=

∑

m,m′

fmm ′am′n(−1)l
mkx

2l′+1

2l′ + 1!
(A.15)
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Let us interchange the labels m and m′ on the right hand side:

∑

m

amn

m

(l′ + 1− m
2 )!(l

′ + m
2 + 1)!

(nk z)
2l′+1

22l′+2
=

∑

m′,m

fm′mamn(−1)l
m′kx

2l′+1

2l′ + 1!
(A.16)

As before we can equate corresponding terms in the summation; in this case, we

take the summation over m:

m

(l′ + 1− m
2 )!(l

′ + m
2 + 1)!

(nk z)
2l′+1

22l′+2
=

∑

m′

fm′m(−1)l
′ (m′kx)

2l′+1

(2l′ + 1)!
(A.17)

Since there is no summation over l, this becomes:

m
(2l′ + 1!)(−1)l

′

(l′ + 1− m
2 )!(l

′ + m
2 + 1)!

(nk z)
2l′+1

22l′+2
=

∑

m′

fm′m(m′kx)
2l′+1 (A.18)

Now we observe we can write this in matrix form as:

vlm =
∑

m′

klm
′fm′m (A.19)

where we define the matrix v with components:

v
(n)
l′m = m

(−1)l
′

(2l′ + 1)!

(l′ + 1− m
2 )!(l

′ + m
2 + 1)!

(nk z)
2l′+1

22l′+2
(A.20)

and the matrix k with components:

kl′m′ = (m′kx)
2l′+1 (A.21)

Formally, the matrices have an infinite number of components; however, we can

reduce them to finite-sized square matrices by making appropriate truncations in l′, m
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and m′. We can then solve equation A.21 for the required components fmm′ :

fmm ′ =
∑

l′

k−1
ml

′vl′m′ (A.22)

We calculated in a similar way the transformation for odd values of m choosing

x = 0, y = ρ and z = π/(2nkz) as reference point where the relation between the

component of the magnetic field in cylindrical and Cartesian bases are:

By = Bρ and Bx = Bφ (A.23)

At that new location in space, considering only odd values of m, we have:

Bρ =
∑

m,n

amnI
′
m(nkzρ)(−1)

m−1

2 , (A.24)

By =
∑

m,n

cmn cosh(ky,mnρ) . (A.25)

Eventually we obtain the components g
(n)
mm′ of the g function given by:

g
(n)
mm′ =

∑

l′

k−1
ml′v

(n)
l′m′ , (A.26)

where the coefficient of the matrix vodd are given by:

v
(n)
l′m = (−1)

m−1

2

(2l′ + 1)!(nkz)
2l′

22l′+1(l′ − m−1
2 )!(l′ + m+1

2 )!
(A.27)

and the matrix k with components:

k
(n)
l′m′ = (m′2k2x + n2k2z)

l′ (A.28)

Using equations (A.8), (A.22) and (A.26) one can transform the multipole expansion
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of the magnetic field from cylindrical to Cartesian basis. The analytical representation

in Cartesian coordinate of the magnetic field can then be compared to the original

numerical field data.
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Appendix B

Generating functions

Generating functions are a very useful tool to represent a canonical transformation.

Any canonical transformation and therefore any symplectic map can be represented by

at least one generating function. However the dynamical map expressed in form of a

generating function is implicit. There are four generally used generating function:

F1 = F1(qi, qf , t) , F2 = F2(qi, pf , t) , F3 = F3(pi, qf , t) , F4 = F4(pi, pf , t) (B.1)

where qi are the old coordinates and qf are the new coordinates. pi and pf are their

respective conjugate momenta. These generating functions generate a canonical trans-

formation in which the old and new variables are related by:

pi =
∂F1

∂qi
pf = −∂F1

∂qf
(B.2)

pi =
∂F2

∂qi
qf =

∂F2

∂pf
(B.3)

qi = −∂F3

∂pi
pf = −∂F3

∂qf
(B.4)

qi = −∂F4

∂pi
qf =

∂F4

∂pf
(B.5)
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and in all cases the new Hamiltonian K with z as independent variable is given by:

K = H +
∂Fn

∂z
, (B.6)

We observe that F1, generating function of the first kind, is a function of the old

coordinates and the new coordinates, whereas the other generating functions of other

kind mix up old and new canonical variables. Note that since the action-angle variables

(φx,Jx) are obtained from the Cartesian variables (x,px) by a canonical transformation,

then we can construct a generating function mixing the pairs of variable:

F1(x, φx) = − x2

2βx
(tanφx + αx) (B.7)

We can verify the validity of the function by computing px and Jx recalling that:

x =
√

2βxJx cosφx , (B.8)

px = −
√

2Jx
βx

(sinφx + αx cosφx) . (B.9)

In other word:

tan φx = −αx − βx
px
x

, (B.10)

2Jx = γxx
2 + 2αxxpx + βxp

2
x . (B.11)

Using the generating function, Jx is given by:

Jx =
∂F1

∂φx

=
x2

2βx cos2 φx
(B.12)
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From B.12 we have:

x2 = 2βxJx cos
2 φx , (B.13)

which is equivalent to B.8.

For px:

px =
∂F1

∂x

= − x

βx
(tan φx + αx) (B.14)

Expression B.10 is derived straightforwardly from B.14.

This gives a brief example of how generating functions can be used. Their full

derivation and construction are explained in more details in [41, 44].
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Appendix C

Symplectic Integrator in COSY

routine

In this appendix, we will give an overview of the script of the explicit symplectic integra-

tor. This script uses routine from COSY infinity [47]. It includes general functions such

that input/output functions (READ/WRITE), sinusoidal functions (COS/SIN/SINH

/COSH) and some basic mathematical operations (ABS/SQRT). Moreover it includes

function that can handle Differential Algebra (DA) objects. The DA objects are cre-

ated by “DAINI” which sets also the order of truncation and the number of dynamical

variables involved. Finally two functions “FIT” and “POLVAL” are used to find the

closed orbit at a given energy. “POLVAL” applies a dynamical map in Taylor model

form to a set of numerical initial coordinates. The “FIT” procedure uses recursively

“POLVAL” in order to find the transverse initial coordinates that are unchanged when

applying the map. These coordinates are the coordinate of the closed orbit.
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C.1 Potential Vector

C.1 Potential Vector

The potential vector, defined as a DA object ( and therefore takes the form of a Taylor

series) is computed at each integration step. The position of the particle in space

(x,y,z) is defined by the variables (X(1),X(3),X7). The potential vector has a different

expression whether the index m of the transverse multipole is even or odd. The parity

of m is tested by the function “MOD(m,2)”.

Let us remember that the symplectic integrator (see C.6 in this appendix) include

the Lie transformation e:Iy: that acts on the dynamical variables as follow:

e:Iy:px = px −
y∫

0

∂

∂x
ay(x, y

′, s)dy′ , (C.1)

e:Iy:py = py − ay , (C.2)

e:Iy:δ = δ . (C.3)

For the variables “AY” and “IADY” corresponding to ay and
∫

∂
∂x

aydy in C.1 and

C.2.

PROCEDURE AYFIELD;

LOOP J 1 NMODES;

MKX := CMN(J,1)*KX;

NKZ := CMN(J,2)*KZ;

KY := SQRT(MKX*MKX + NKZ*NKZ);

C := CMN(J,3);

EVEN:= MOD(CMN(J,1),2);

IF EVEN=1;

AY := AY + C*SIN(MKX*X(1))*COS(NKZ*X7)*SINH(KY*X(3))*NKZ/MKX/KY;

IADY := IADY + C*COS(MKX*X(1))*COS(NKZ*X7)*(COSH(KY*X(3)) - 1.0)*NKZ/KY/KY;

ELSEIF 1=1;

AY := AY - C*COS(MKX*X(1))*COS(NKZ*X7)*SINH(KY*X(3))*NKZ/MKX/KY;

IADY := IADY + C*SIN(MKX*X(1))*COS(NKZ*X7)*(COSH(KY*X(3)) - 1.0)*NKZ/KY/KY;
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C.2 Integrator

ENDIF;

ENDLOOP;

ENDPROCEDURE;

Similarly for the Lie transformation e:H3:, we compute ∂
∂x
as and ∂

∂y
as:

PROCEDURE ASFIELD;

LOOP J 1 NMODES;

IF EVEN=1;

ASDX := ASDX - C*COS(MKX*X(1))*SIN(NKZ*X7)*COSH(KY*X(3));

ASDY := ASDY - C*SIN(MKX*X(1))*SIN(NKZ*X7)*SINH(KY*X(3))*KY/MKX;

ELSEIF (1=1);

ASDX := ASDX - C*SIN(MKX*X(1))*SIN(NKZ*X7)*COSH(KY*X(3));

ASDY := ASDY + C*COS(MKX*X(1))*SIN(NKZ*X7)*SINH(KY*X(3))*KY/MKX;

ENDIF;

ENDLOOP;

ENDPROCEDURE;

C.2 Integrator

In this section, we will present the code performing the symplectic integration. First

let us recall the expression of the symplectic integrator derived in section 3.2.3.3 in

chapter 3. The dynamical map M(∆σ) of a beamline can be expressed as follows:

M(∆σ) = e−∆σ:H1+H2+H3: , (C.4)

M(∆σ) ≈ e−
∆σ
2

:H1+H3:e−∆σ:H2:e−
∆σ
2

:H1+H3: , (C.5)

M(∆σ) ≈ e−
∆σ
4

:H1:e−
∆σ
2

:H3:e−
∆σ
4

:H1:e−∆σ:H2:e−
∆σ
4

:H1:e−
∆σ
2

:H3:e−
∆σ
4

:H1: , (C.6)

where:

e−∆σ:H2: = e:Iy:e−∆σ:H̃2:e−:Iy: , (C.7)
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C.2 Integrator

and :

H1 = −
(

1

β0
+ δ

)
+

1

2γ20β
2
0

(
1

β0
+ δ

)−1

+
δ

β0
+

(px − ax)
2

2( 1
β0

+ δ)
+ ps (C.8)

H̃2 =
(py − ay)

2

2( 1
β0

+ δ)
(C.9)

H3 = −as . (C.10)

The corresponding code using COSY routine to handle DA object is:

PROCEDURE STEPX Z;

DP := 1/( 1/BETA0 + X(6) );

DD := 1/BETA0 - 1 - DP*DP/2/BETA0/BETA0/GAMMA0/GAMMA0;

Here, we defined DPand DD corresponding to terms in H1.

X(1) := X(1) + X(2)*DP*DL/4;

X(5) := X(5) + (DD - X(2)*X(2)*DP*DP/2 )*DL/4;

The corresponding operations are: e−
∆σ
4

:H1:x, e−
∆σ
4

:H1:z.

X7 := Z + DL/4;

ASFIELD;

X(2) := X(2) - ASDX*DL/2;

X(4) := X(4) - ASDY*DL/2;

X(1) := X(1) + X(2)*DP*DL/4;

X(5) := X(5) + (DD - X(2)*X(2)*DP*DP/2 )*DL/4;

The corresponding operations are: e−
∆σ
2

:H3:px, e
−∆σ

2
:H3:py, e

−∆σ
4

:H1:x, e−
∆σ
4

:H1:z.

X7 := X7 + DL/4;

AYFIELD;

X(2) := X(2) + IADY;
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C.3 Rotation

X(4) := X(4) + AY;

X(3) := X(3) + X(4)*DP*DL;

X(5) := X(5) - X(4)*X(4)*DP*DP*DL/2;

We here had to call the function AYFIELD in order to perform the operations: e−
∆σ
4

:Iy:px,

e−
∆σ
4

:Iy:py, e
−∆σ:H2:y, e−∆σ:H2:z.

AYFIELD;

X(2) := X(2) - IADY;

X(4) := X(4) - AY;

X(1) := X(1) + X(2)*DP*DL/4;

X(5) := X(5) + (DD - X(2)*X(2)*DP*DP/2 )*DL/4;

since e−∆σ:H2: had an effect on X(3) and X(5), AYFIELD is called again before apply-

ing: e−
∆σ
4

:−Iy:px, e
−∆σ

4
:−Iy:py, e

−∆σ
4

:H1:x, e−
∆σ
4

:H1:z.

X7 := X7 + DL/4;

ASFIELD;

X(2) := X(2) - ASDX*DL/2;

X(4) := X(4) - ASDY*DL/2;

X(1) := X(1) + X(2)*DP*DL/4;

X(5) := X(5) + (DD - X(2)*X(2)*DP*DP/2 )*DL/4;

X7 := X7 + DL/4;

ENDPROCEDURE;

And finally: e−
∆σ
4

:H3:px, e
−∆σ

4
:H3:py, e

−∆σ
4

:H1:x, e−
∆σ
4

:H1:z

This whole sequence is performed at every integration step

C.3 Rotation

In the absence of a magnetic field, the equations relating the canonical variables after

rotation (written with subscript “new”) to those before rotation were taken from 41
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C.3 Rotation

and are expressed as followed:

xnew =
x

cos θ(1− px tan θ
pz

)
(C.11)

pnewx = px cos θ + pz sin θ (C.12)

ynew = y +
py x tan θ

pz(1− px tan θ
pz

)
(C.13)

pnewy = py (C.14)

lnew = l +
(1 + δ) x tan θ

pz(1− px tan θ
pz

)
(C.15)

where pz =
√

(1 + δ)2 − p2x − p2y (C.16)

which corresponds to the script:

PZ:=sqrt((1+X(6))*(1+X(6))-X(4)*X(4)-X(2)*X(2));

X(5):=X(5)-(1+X(6))*X(1)*tan(T)/(PZ*(1-X(2)*tan(T)/PZ));

X(3):=X(3)+X(4)*X(1)*tan(T)/(PZ*(1-X(2)*tan(T)/PZ));

X(1):=X(1)/(cos(T)*(1-X(2)*tan(T)/PZ));

X(2):=X(2)*cos(T)+sin(T)*PZ;

X(4):=X(4);

X(6):=X(6);

X(1):=X(1)+XS;

X(5):=X(5)+ZS;
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