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Abstract. Adaptation to dynamic optimization problems is currently
receiving a growing interest as one of the most important applications
of evolutionary algorithms. In this paper, a compound particle swarm
optimization (CPSO) is proposed as a new variant of particle swarm op-
timization to enhance its performance in dynamic environments. Within
CPSO, compound particles are constructed as a novel type of particles
in the search space and their motions are integrated into the swarm.
A special reflection scheme is introduced in order to explore the search
space more comprehensively. Furthermore, some information preserving
and anti-convergence strategies are also developed to improve the per-
formance of CPSO in a new environment. An experimental study shows
the efficiency of CPSO in dynamic environments.

1 Introduction

In recent years, there has been an increasing concern on investigating evolu-
tionary algorithms (EAs) for dynamic optimization problems (DOPs) due to the
relevance to real world applications, where many problems may involve stochastic
changes over time. For DOPs, the goal of EAs is no longer to find a satisfactory
solution, but to trace the moving optimum in the search space. This poses a great
challenge to traditional EAs. To address this challenge, several approaches have
been developed into EAs to improve their performance in dynamic environments,
see [5, 12, 19, 20] for examples.

Recently, particle swarm optimization (PSO), as a class of EAs, has been
applied to address DOPs with promising results [10, 15, 17]. In this paper, one
behavior of particle swarms from the domain of physics is integrated into PSO
and a compound particle swarm optimization (CPSO) is proposed to address
dynamic environments. Within CPSO, a number of “compound particles” are
constructed as a new type of particles that have a geometric structure similar
to that described in [7]. But, instead of using geometric principles, a specialized
reflection scheme is introduced in CPSO in order to explore the search space
more comprehensively in a new environment. Furthermore, in order to improve
the performance of CPSO in a new environment, some information preserving



and anti-convergence strategies are also developed to exploit various valuable
information and avoid collision of particles respectively. An experimental study
is carried out to validate the efficiency of CPSO in dynamic environments.

The rest of this paper is organized as follows. In the next section, we briefly
review the usage of PSO for DOPs. Sec. 3 describes the CPSO proposed in
this paper in details. The experimental results and analysis are given in Sec. 4.
Finally, Sec. 5 concludes this paper with discussions on future work.

2 Particle Swarm Optimization in Dynamic Environments

Particle swarm optimization is a population based optimization technique with
the inspiration from the social behavior of a swarm of birds (particles) that “fly”
through a solution space [1, 13]. Each particle accomplishes its own updating
based on its current velocity and position, the best position seen so far by itself
and by the swarm. The behavior of a particle i, can be described as follows:

vij(t) = ωvij(t − 1) + c1ξ(pij(t) − xij(t)) + c2η(pgj(t) − xij(t)) (1)

xij(t + 1) = xij(t) + vij(t), (2)

where vij(t) and xij(t) represent the current velocity and position of particle i
in the j-th dimension at time t, and pij(t) and pgj(t) represent the position of
the best solution discovered so far by particle i and by all particles in the j-th
dimension. The inertia weight ω controls the degree that a particle’s previous
velocity will be kept. Parameters c1 and c2 are individual and social learning
factors, and ξ and η are random numbers in the range of [0.0, 1.0].

PSO has been widely used for stationary problems [13, 14, 18]. In recent years,
PSO has obtained an increasing concern to solve DOPs [3]. For DOPs, an effi-
cient PSO must show continuous adaptation to track the variation of the optimal
solution. For this aim, the basic PSO needs to be modified to improve the per-
formance due to the following reasons. First, with the increasing of iterations,
particles will congregate to a local or global optimum in the search space. When
the optimum changes, the slackened velocities and convergent particles will result
in a low exploration ability in the changing environment. Second, each particle
takes into account the information from the best particles in the present swarm,
while neglecting some valuable information contained in the inferior particles.
This mono-directional mechanism restricts the ability of PSO to efficiently search
for a new optimum.

Therefore, there are some key considerations to improve the adaptation of
PSO in dynamic environments. They are shown as follows.

– Some weak particles should fly toward a better direction (i.e., the direction
that intends to have increasing fitness) as quickly as possible, in order to
adapt themselves to the changed environment and explore the search space
comprehensively.



– Particles should also exploit the useful information from some other particles
besides the best particle, in order to accelerate the optimization process in
a new environment.

In recent years, several variations of the traditional PSO have been developed
in the literature for promising performance in dynamic environments. Carlisle
and Dozier [6] carried out a thorough investigation of PSOs on a large number
of dynamic test problems and improved the performance of PSOs in both static
and dynamic environments. An adaptive PSO that tracks various changes au-
tonomously in a non-stationary environment was proposed in [8, 10]. Blackwell
and Bentley [2] introduced a charged PSO for DOPs, which was then extended
[4] by constructing interacting multi-swarms and using the charged sub-swarm to
maintain population diversity for tracking multiple peaks in a dynamic environ-
ment. Parrott and Li [17] investigated a PSO model using a speciation scheme
and employed this method to track multiple peaks simultaneously, the experi-
ments manifested that the technique was able to track the changing trajectory.

3 Compound Particle Swarm Optimization

The concept of “compound particle” is derived from a branch of physics [9, 16]. It
refers to a particular sort of particles that are composed by at least two particles
through the chemical bond. Such particle possesses not only the qualities of each
“member particle”, but also some composite characters [16]. The characteristics
of CPSO lie mainly in the following three aspects: 1) having the basic framework
of canonical PSO; 2) incorporating the construction and update of compound
particles; 3) employing a specialized reflection strategy and an integral-moving
scheme for compound particles. In the following sections, the construction and
operation for compound particles are described in details.

3.1 Initialization

Initially, a number of compound particles are created. Each compound parti-
cle is created as a simple geometrical structure that consists of three particles:
one particle is selected from the initial swarm randomly and the other two are
randomly generated to form a triangle with the length of the interconnecting
edges being L. The three particles in a compound particle are denoted as “mem-
ber particles”. The particles in the swarm that do not belong to any compound
particle are denoted as “independent particles”.

3.2 Self-Adjustment

Each compound particle will adjust its internal structure in order to track the
trace of the changing optimum. The essential steps involve constructing a new
compound particle to explore good solutions in a new environment, and iden-
tifying a “representative particle” for each compound particle to participate in
the canonical PSO. The procedures are exhibited as follows.



W

R

E

B

C

A

Fig. 1. Constructing a new compound particle.

Velocity-anisotropic reflection scheme: The construction of a new com-
pound particle is illustrated in Fig. 1. The position of the worst particle in a
compound particle is denoted as W and the position of the central point be-
tween the other two member particles is denoted as C. Then, the compound
particle is reflected in accordance with the point W to a point R. The new com-
pound particle consists of points A, R and B. If the solution at point R is better
than that at point W , an expansion is further made in that direction to point
E and the compound particle is updated to consist of points A, E, and B. The
reflection point R and the extension point E are calculated as follows:

WR = WC + γ × WC (3)

WE = η × WR, if f(R) > f(W ), (4)

where γ is the inequality-velocity reflection vector and η is the extension factor.
Since the structure of a compound particle is a triangle in 2-dimensional

space, in order to ensure that particles can explore the search space in N -
dimension, a velocity-anisotropic reflection (abbreviated as VAR) scheme is in-
troduced in the relevant vector.

Definition: An N -dimension vector γ = (γ1, γ2, · · · , γN) is a VAR vector, if
it complies with:

0 < |γi − γj | ≤ d, i, j ∈ (1, 2, ..., N), (5)

where d is the maximum difference between reflection velocities for each dimen-
sion, which determines the degree of departure from the initial direction WC.
The larger the value of d, the larger space of compound particles could explore.

It is clear that with the VAR vector shown in Eq. (5), WR can not be linearly
represented by WA and WB in any case [11], that is, the VAR vector can drive
compound particles to explore in the N -dimension search space. In this paper,
each constituent in the VAR vector γ is generated as follows:

γij = rand(0, e−|vij/vmax|), j ∈ (1, 2, · · · , N), (6)



where vij and γij are the velocity and the reflection velocity of the i-th compound
particle in the j-th dimension respectively.

In Eq. (6), the reflection velocity is designed to be relevant to the velocity
of the member particle. We adopt such a rule for two reasons. First, when the
velocities have a tendency to shrink up to a small value, especially when the
population becomes convergent, the numerical range of the reflection velocity
tends to be larger. Hence, the exploration ability will be enhanced adaptively
because the degree of departure from the original direction is enlarged. second,
the difference of each dimensional reflection velocity d will be restricted to a mod-
erate degree in case the reflection direction deviates from the “better” direction
significantly.

Identifying the representative particle: In order to maintain diversity as
well as guarantee the searching precision in compound particles, two factors are
integrated in identifying the representative particle: one is the fitness and the
other is the total distance from one member particle to the other two particles.
For each compound particle, its representative particle is identified according to
the following probability:

Pci = (1 − β)P f
ci + βP d

ci, (7)

where P f
ci and P d

ci is the proportion of the fitness and the proportion of the total
distance of the i-th member particle in the c-th compound particle respectively,
β is the identification factor, and Pci is the probability that the i-th member
particle of the c-th compound particle becomes the representative particle.

3.3 Integral Movement

After the representative particles have updated their positions, an information
preserving scheme is employed. In Blackwell and Branke’s model [4], the up-
dating of member particles all rely on their sub-swarm attractors and particle
attractors. In this work, the velocity of a representative particle is conveyed to
the other two member particles in the compound particle. That is, we first cal-
culate the distance that a representative particle has moved and then move the
other two member particles in the corresponding compound particle by the same
distance. The reason for introducing this scheme lies in that the tendency of all
member particles moving towards the local optimum is reduced and hence the
convergence of the population is avoided and that, in the meantime, valuable
information is preserved for the next iteration.

Fig. 2 is the pseudo-code of the CPSO we proposed.

4 Experimental Study

To test the validity of the proposed algorithm, Branke’s moving peaks function
[5] was used as a benchmark dynamic problem. The fitness at a point of the



begin

Parameterize
t := 0
Initialize population (swarm of particles) P (0) randomly
Initialize compound particles C(0) based on the value of L

repeat

for each compound particle do

Perform self-adjustment according to Eqs. (3) and (4)
Identify the representative particle according to Eq. (7)

end for

Create population P (t) containing independent and representative particles
for each particle i in P (t) do

Update vi and xi by Eqs. (1) and (2)
if f(xi) < f(pi) then pi := xi

end for

pg := arg min
pi

{f(pi)|i = 1, · · · , swarm size}

for each compound particle do

Calculate the distance the representative particle has moved after update
Move the other two member particles by the same distance

end for

t := t + 1
until the termination condition is met

end

Fig. 2. Pseudo-code of the Compound Particle Swarm Optimization (CPSO)

fitness landscape is assigned the maximum height of all optima at that point as
below.

F (x, t) = max
i=1,...,M

Hi(t)

1 + Wi(t)
∑N

j=1
(xj(t) − Xij(t))2

, (8)

In the experiments, we set N = 5, M = 10, and x ∈ [Xmax, Xmin]5 =
[0, 100]5. The height and width of each peak were randomly generated with a
uniform distribution in [30, 70] and [1, 12] respectively. The locations of peaks
are changed as follows:

vi(t) =
s

|r + vi(t − 1)|
((1 − λ)r + λvi(t − 1)) (9)

Xi(t) = Xi(t − 1) + vi(t), (10)

where the vector vi(t) is a linear combination of a random vector r ∈ [0.0, 1.0]N

and the previous vector vi(t − 1) and is normalized by the length factor s (s
controls the severity of changes), and λ is the correlation parameter. In our ex-
periment, λ is set 0, which indicates that the movement of peaks is uncorrelated.



Table 1. Dynamic environments.

τ Scenario

10 1 2 3
50 4 5 6
100 7 8 9

s → 0.05 0.5 1.0

Table 2. The t-test results of comparing algorithms on dynamic problems.

t-test Scenario
results 1 2 3 4 5 6 7 8 9

SPSO − PSO + + ∼ + + + + + +
R-CPSO − PSO + + ∼ + + + + + +
R-CPSO − SPSO ∼ ∼ ∼ − + + ∼ − −

CPSO − PSO + + + + + + + + +
CPSO − SPSO + + + + + + ∼ ∼ +

CPSO − R-CPSO + + + + + + ∼ + +

The performance of CPSO is compared with the simple PSO model (PSO)
and the speciation based PSO (SPSO) proposed by Parrott and Li [17]. In order
to test the effect of the VAR scheme, a corresponding algorithm called R-CPSO
with γij = rand(0, 1) is involved in the experiments, which implies a random
exploration within a constrained space. For all PSO models, the learning factors
c1 = c2 = 2.0, the inertia weight ω = ωmax − (ωmax − ωmin) ∗ iter/itermax

(ωmax = 0.7, ωmin = 0.5, itermax and iter are the max number of iterations
and the current iteration respectively). Parameters in SPSO are set as [17]:
Pmax = 20 and r = 20. Parameters in CPSO are set as follows: the length
of edges L = 0.01 × (Xmax − Xmin) = 1, the extension factor η = 1.25, the
identification factor β = 0.5, implying that the ingredients of fitness and distance
in Eq. (7) have an equal strength. The total number of particles is set to 50 for
PSO and SPSO and is set to 20 for CPSO and R-CPSO, where half of particles
in the initial swarm are selected to construct compound particles, to ensure the
fairness of comparisons between algorithms.

For environmental dynamics parameters, we set s ∈ {0.05, 0.5, 1.0} and τ ∈
{10, 50, 100}, where τ determines the speed of change (i.e., the environment
changes every τ generations). This gives 9 different scenarios, i.e., 9 pairs of (s,
τ). For each scenario, 20 random instances were created and the results were
averaged over the 20 runs. For each run the error concerned with the best-of-
period fitness was record every iteration [15]. The mean error of an algorithm is
calculated as follows:

Emean =
1

G

G∑

i=1

(
1

N

N∑

j=1

eij), (11)
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Fig. 3. The mean error of PSOs on different dynamic problems.

where G = 10 is the total number of changes for a run, this way, the number of
iterations Itermax = 10τ , N = 20 is the total number of runs, eij is the error of
the last iteration at the i-th change in the j-th run.

The experimental results are plotted in Fig. 3 for different dynamic problems,
which are indexed by the combination of the pairs (s, τ), as shown in Table 1.
The statistical test results of comparing algorithms by one-tailed t-test with 38
degrees of freedom at a 0.05 level of significance are given in Table 2, and the
t-test result regarding Alg. 1 − Alg. 2 is shown as “+” or “∼” when Alg. 1 is
significantly better than or statistically equivalent to Alg. 2 respectively.

From Fig. 3 and Table 2, it can be seen that both SPSO and CPSO signifi-
cantly outperform PSO on the dynamic problems with different environmental
dynamics, CPSO outperforms SPSO on most dynamic problems, and CPSO per-
forms significantly better than R-CPSO. This result validates our expectation
of CPSO. The better performance of CPSO is because compound particles in
CPSO integrate valuable information effectively, and comparing with the ran-
dom exploration scheme in a guideless way within R-PSO, the VAR scheme
has an intensive exploration ability and helps the compound particles to search
for more optimal solutions continuously rather than converging into a solution
ahead. Furthermore, the information preserving scheme in the process of Integral
Movement can improve the exploitation ability of CPSO.

In order to further investigate the performance of CPSO, the dynamic perfor-
mance of algorithms PSO, SPSO, and CPSO regarding the offline performance
defined in [5] with s = 1.0 and different speed of changes is plotted in Fig. 4.
From Fig. 4, some conclusions similar to the previous ones can be drawn, and,
furthermore, CPSO is only beaten by SPSO occasionally. This is because when
s = 1.0, the problem endures severe changes and hence some previous infor-
mation may not be valid. However, when the environment changes slowly, e.g.,
when τ = 100, CPSO performs better due to the VAR scheme.
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Fig. 4. Dynamic performance of PSOs on dynamic problems with s = 1.0: (a) τ = 10,
(b) τ = 50, and (c) τ = 100

5 Conclusions

This paper introduces a new kind of particles, called “compound particles”, to-
gether with some specialized operating mechanisms into PSO for DOPs. The
compound particles introduced can aggregate more valuable information with a
simple configuration, which is an improvement over traditional PSO. A velocity-
anisotropic reflection method is proposed to construct new compound particles,
which can drive particles to search for a better solution especially in a new envi-
ronment. Furthermore, the information preserving and anti-convergence strate-
gies are also applied to the motion of compound particles. Experimental study
over a benchmark dynamic problem shows that the proposed schemes efficiently
improve the performance of PSO in dynamic environments.

For future work, it would be valuable to investigate the effect of different
modifications to CPSO for DOPs. The VAR mechanism in CPSO are quite
general and hence can be integrated to other optimization methods to improve
their capability in dynamic environments. This is another interesting research
for the future work.
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