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A memetic ant colony optimization algorithm for the dynamic travelling
salesman problem

Michalis Mavrovouniotis - Shengxiang Yang

Abstract Ant colony optimization (ACO) has been suc- 1 Introduction
cessfully applied for combinatorial optimization problem

e.g., the travelling salesman problem (TSP), under statiorynt colony optimization (ACO) algorithms have been suc-
ary environments. In this paper, we consider the dynamigessfylly applied for different combinatorial optimizaii
TSP (DTSP), where cities are replaced by new ones during,opjems [14]. Traditionally, researchers have been fedus

the execution of the algorithm. Under such environmentsyp, giationary optimization problems, where the envirorimen
traditional ACO algorithms face a serious challenge: oncgamains fixed during the execution of an algorithm. How-

they converge, they cannot adapt efficiently to environmenéver’ many real-world applications are subject to dynamic

tal changes. To improve the performance of ACO on th&pyironments. Such a problem becomes more challenging
DTSP, we investigate a hybridized ACO with local searchjnce the aim of an algorithm is not just to find the opti-

(LS), called Memetic ACO (M-ACO) algorithm, which IS mm of the problem, but to track the changing optima when
based on the population-based ACO (P-ACO) frameworky,anges occur [27].

and an adaptive inver-over operator, to solve the DTSP.

Moreover, to address premature convergence, we introduce 1raditional ACO algorithms have been designed for sta-
random immigrants to the population of M-ACO when iden-tionary optimization problems [13], and may not be suffi-
tical ants are stored. The simulation experiments on aseri€ient for dynamic optimization problems (DOPs). This is
of dynamic environments generated from a set of benchdue to the fact that the pheromone trails of the previous-envi
mark TSP instances show that LS is beneficial for ACO alfonment will not make sense for the new environment after
gorithms when applied on the DTSP, since it achieves bettét change occurs. Furthermore, they cannot adapt well once

performance than other traditional ACO and P-ACO a|go_the population converges into an optimum, since a certain
rithms. level of diversity is vital to maintain the high quality of bu

put efficiently. A simple way to address this problem is to
re-initialize the pheromone trails and consider every gean
as the arrival of a new problem instance which needs to be
solved from scratch. Unfortunately, this restart strategy
computationally expensive and usually not efficient.
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ance in order to help the population to adapt efficiently toas well. Optimization problems with such characteristies a
the new environment. known as DOPs [27].

In recent years, there has been an increasing interest on One of the simplest ways to react to environmental
a class of hybrid evolutionary algorithms (EAs) [30], cdlle changes is to consider each change as the arrival of a new
memetic algorithms (MAs), where local search (LS) opera- problem and restart the algorithm to solve it from scratch
tors are hybridized with EAs to improve the solution quality [47]. However, this strategy requires substantial computa
MAs have been used for solving many optimization prob-tional effort and time, while for DOPs usually the available
lems, such as arc routing problems [38,53,54,59], schedute-optimization time is short.
ing problems [19,36,60,61], and other applications [1,33, Over the years, EAs have been a subject of an exten-
43,65]. They have been applied for optimization problemsive research to solve DOPs since they can transfer knowl-
under both stationary and dynamic environments. Howevegdge from past environments. However, traditional EAs can-
almost all existing MAs follow the framework of EAs and not adapt well to the new environment when changes occur
very rarely the framework of ACO. Thus, it would be in- once converged. To address the convergence problem, many
teresting to investigate the performance and robustness sfrategies have been proposed to enhance the performance
ACO-based MAs, which has been discussed that they amf EAs for DOPs, including diversity increasing or main-
able to improve both measurements [9, 34]. taining schemes [62,63], memory-based schemes [5], and

In this paper, a memetic ACO-based (M-ACO) algo-multi-population schemes [6].
rithm, based on the population-based ACO (P-ACO) frame-  Similarly, ACO algorithms, which are a special class of
work, is proposed and applied to the DTSP. In the M-ACOEAs, suffer from exactly the same problem when applied
algorithm, we use multiple LS operators based on the inverfor DOPs. Thus, inspired from the strategies for EAs, many
over (I0) method [24], which is a specialized operator forACO applications have also been developed for DOPs, such
the TSP. This can enhance the solution quality of the alas P-ACO [20] which inherits EAs characteristics since it
gorithm, since it provides strong exploitation to the skarc maintains a memory of limited size to store the best ants that
process. On the other hand, it may not be effective for DOPare repaired when a dynamic change occurs and ACO with
since we need to maintain a certain level of diversity withinimmigrants where new ants are introduced on every iteration
the population to adapt well in DOPs. Since immigrants(generation) into the population using different schemes,
schemes have been found beneficial when integrated withe., random immigrants, elitism-based immigrants, and hy
ACO for changing environments [37], we develop a diver-brid immigrants, to increase the diversity [37].
sity scheme based on random immigrants.

The rest of the paper is outlined as follows. Sect. 2 ad-
dresses the concept of DOPs and briefly reviews the applp 2 MAs for DOPs
cation of EAs (including ACO) and MAs for DOPs. Sect. 3
describes the DTSP, which is the focus of this paper. Sect. Apart from the strategies described above, which are used
presents the standard ACO (S-ACO) and P-ACO algorithmgg address the convergence problem of EAs, MAs have also
indicating their differences. Moreover, a description @wh  peen used for DOPs [16—18,55,58]. However, existing MAs
traditional S-ACO and P-ACO algorithms respond to dy-that are applied for either stationary or dynamic environ-
namic changes is also given. Sect. 5 presents the proposgfénts usually follow the framework of EAs [55], and rarely
M-ACO algorithms for the DTSP, including the LS op- the ACO framework.
erators, with their adaptive mechanism, and the diversity | 5 pperators have also been found effective when ap-
scheme used. Sect. 6 presents the experimental results af\bg with ACO [50]. Especially, on graph problems, e.g.,
analysis of the performance and robustness of the invesiihe TSP, ACO algorithms have a great advantage over tradi-
gated algorithms. Finally, Sect. 7 gives the conclusiorts antional EAs. The reason is due to the use of heuristic informa-
discusses relevant future work. tion, which is available from the problem instance itse#, i

the distance between cities. Such information enables ACO
algorithms to have prior knowledge of the problem from the

2 Related work initial stage, whereas EAs usually start at random.
Itis important to mention that ACO algorithms have ex-
2.1 EAs for DOPs tremely bad results when such heuristic information is not

used. Therefore, for problems where heuristic information
The environmentin many real-world optimization problems,is not available, EAs may be a more suitable choice than
including the objective function, the decision variabl®  ACO algorithms. But, ACO becomes also suitable whenit is
problem instance, the constraints, etc., may change ovapplied with a LS operator. Experiments in [14, pp. 97-98]
time. As a result, the optimum of a problem may changeshow that the best performing ACO algorithm, i.e., Max—
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Min Ant System (MMAS) [51], without the use of heuris- The salesman will need a new alternative route fast, in order
tic information but with a LS operator, is able to generateto avoid long traffic delays and complete the task.
good solutions. More specifically, experiments on the TSP In our DTSP case, cities from the détmay be replaced
showed that the MMAS with the well-known 2-opt operator by new ones over time. In this way, both cities and their links
[32] improves significantly the performance of the algarith may change during the execution. For our experiments, the
[50]. Similarly, the solution quality of pure EAs is also sig dynamic environment is generated by taking away half of
nificantly improved using a LS operator [46]. the cities from the actual problem instance to construct a
Furthermore, ACO-based MAs have been found benefispare pool of cities. The frequency of change, ife.de-
cial on other applications, such as path planning in sparseotes how often new cities from the spare pool replace ones
graphs [35], where the solutions found by the ants undergm the current pool (i.e., the cities left in the actual peshl
local improvement from a modified version of the 2-opt op-instance). The degree of change, ie,,denotes how many
erator. Similarly, the combination of the 2-opt operatothwi cities from the spare pool replace ones in the current pool.
another specialized operator improves the solution gualitTherefore, a DTSP instance is generated as follows: every
for the vehicle routing problem [64]. Moreover, ACO has f iterations, a percentage of randomly chosen cities from
been used as a LS operator for an EA to help the seardhe spare pool are exchanged with the same percentage of
process escape from a local optimum on the multiple serandom ones from the current pool. In this way, the size of
guence alignment problem [31]. However, almost all ACO-the problem instance remains the same through the whole
based MAs have been applied for stationary problems, withun. The objective of the DTSP is not only to efficiently
very rare exceptions, such as an extension of the AntNEProvide the global optimum solution, but also to efficiently
algorithm applied on mobile ad hoc networks [56]. track the changing optimum through different environments

3 TheDTSP 4 ACO for DOPs

The TSP is one of the most popular and well-studigtd 4.1 The S-ACO approach
hard combinatorial optimization problems. It can be de-
scribed as follows: given a collection of cities, we need tol he S-ACO algorithm was first proposed and applied for the
find the shortest path that starts from one city and visith eacstationary TSP [10], which imitates the behaviour of real
of the other cities once and only once before returning to th@nts when they search for food from their nest to the food
starting city. Usually, the problem is represented by ayfull sources. Ants communicate using pheromone, which is a
connected weighted gragh = (V, E), whereV is a set of chemical substance produced by them and is applied to their
vertexes and? is a set of edges. The collection of cities is trails. The more pheromone on a specific trail, the higher
represented by the skt and the connection between them the possibility of that trail to be followed by ants. Usingsth
by the setE. In addition, the distances between cities are asScheme, ants indirectly communicate and cooperate to com-
sociated withC' set, which are denoted 85= (c;;), where plete their food searching task as efficiently as possible.
cij is the distance between cityand cityj. A population of i ants construct solutions based on

A lot of algorithms, either exact algorithms or approx- pheromone trails and some heuristic information. On the ini
imation algorithms (also known as heuristics), have beefial stage, all trails are initialized with an equal amoufit o
proposed to solve the stationary TSP [32,39]. Although exPheromones, and each ant is placed on a randomly selected
act algorithms guarantee to provide the global optimum sotity. With a probabilityl — go, where0 < ¢o < 11is a pa-
lution, in the case oNP-hard problems they need, in the rameter of the decision rule, an a@ntchooses the next city
worst case, exponential time to find it. On the other handj While being on cityi, probabilistically, as follows:
approximation algorithms can provide a solution efficigntl
but cannot guarantee the global optimum [41,29]. ko_ [7:5]" [Th'j]ﬁ if j € NF 1)

The TSP becomes more challenging and realistic if it is + ZleNik [Ta]® [ml]B’ ”
subject to a dynamic environment. For example, a salesman
wants to distribute items sold on different cities starfimgn ~ wherer;; is the existing pheromone trail between citgnd
its home city and returning after he visited all the citieigo city j, 7;; is the heuristic information available a priori,
home city again. The task is to optimize his time and plan hisvhich is defined a$/d;;, whered;; is the distance between
tour as efficiently as possible. Therefore, by considetieg t city 7 and city;j. N denotes the neighbourhood of cities of
distances between cities it can generate the route and stamtk when being on city. « andg are the two parameters
the tour. However, after some cities are visited long traffidhat determine the relative influence of pheromone trail and
delays may affect the route, which increases the time planetieuristic information, respectively. With the probalyilify,
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the antk chooses the next city with the maximum probabil- Algorithm 1 Standard Ant Colony Optimization (S-ACO)

ity, i.e., city z, which satisfies the following formula:

1: Initialize parameters;, 3, qo, p, andu

2: Initialize pheromone trails; i+

z = argmax [Tij]a [nij]ﬁ @
JENF

Noak

This process continues until all ants have visited all sitie
once. Thereafter, ants deposit pheromone in order to updatg
their pheromone trails. Ants retrace their solutions and de 9:

posit pheromone according to their solution quality on the}(lJf

corresponding trails, as follows:

7

deposits and’* is the cost of the touf* constructed by ant

k. In addition, a constant amount of pheromone is deduceg.
from all trails due to the pheromone evaporation, which is20:

12:
k & 13:
Tij + Tij + AT; Y (i,7) € TY, 3) 14:

15:
whereAr}; = 1/C* is the amount of pheromone that d@nt  16:

3: whiletermination conditiomot satisfieddo

for k:=1toudo
Construct a solution by ant
Update statistics
end for
Evaporate pheromone with the ratesing Eq. 4
if AS is selectedhen
for k:=1toudo
Deposit pheromone regarding &ntising Eq. 3
end for
end if
if MMAS is selectedhen
best := find the best ant
Deposit pheromone regarding &ast using Eq. 5
Limit pheromone trails in the rand@mnaz, Tmin
end if
if environmental change is detectin
Re-initialize pheromone traits ,, ;¢
end if

defined as: 21:
22: end while

Tij < (17p)Tij’v(i7j)7 (4)

where0 < p < 1 is the rate of evaporation. Lowering the Algorithm 1 shows the framework of S-ACO algorithms

pheromone values enables the algorithm to forget bad dedith variants AS and MMAS. MMAS is much more ex-
sions made in previous iterations [14]. ploratory than AS since its different pheromone manipu-

Several variations of the first ACO algorithm, i.e. thelation scheme maintains a certain level of diversity, which

Ant System (AS) [10], have been proposed to improve itsavpids the population to get trapped in a local optimum so-

performance. They differ in the way pheromone trails argution.

updated [4,12,50]. One of the most studied and best per-

forming variation is the MMAS [51]. The main difference

of MMAS from AS lies in the way that pheromone trails 4-2 The P-ACO approach

are manipulated. In MMAS, either the best-so-far ant or the . . ) .

iteration-best ant is allowed to update their pheromorilstra 1€ P-ACO algorithm, shown in Algorithm 2, is a memory-

However, this behaviour may lead the algorithm into a stagP@sed version of the S-ACO algorithm, which was first ap-

nation behaviour, where all ants follow the same tour dud!i€d on the stationary TSP [21] and later on the DTSP [23].

to the high intensity of pheromone trails. To address thidt differs from the S-ACO framework since it maintains a

issue, the pheromone trail values are kept to the intervd'€Mory (population-list) of limited size, which is used to

[Timin, Tmaz] and they are re-initialized 10,4, every time ;tore the best ants. The populgtlon—llst is used every-itera

the algorithm shows a stagnation behaviour or when no imion to update the pheromone, instead of the whole popula-

proved tour has been found for several iterations [14]. tion. The pheromone trails depend on the ants stored in the
Ants in MMAS construct their solutions as in AS and PopPulation-list. Evaporation of pheromone is not applied i

the evaporation of pheromone is also applied as in Eq. (45)'ACO'

but with a smaller evaporation rate. On the other hand, the The initial phase and the first iterations of the P-ACO
deposit of new pheromone is defined as follows: algorithm work in the same way as in the S-ACO algorithm.

The pheromone trails are initialized with an equal amount
(5) of pheromone and the population-Iist of size K is empty.
For the firstK iterations, the iteration-best ant deposits a
constant amount of pheromone, which is defined as follows:

Tij < Tij + ATBGSEV (i,5) € Tbes'f

where TP€Stis the tour of the best ant and7PeSt —
best best; best ,

1/C7%=5 whereC is the cos_t of the tou?™==" How-. i Tij + Aﬂ_f;’v (i,7) € T*, (6)

ever, the ant allowed to deposit pheromone may be either

the best-so-far ant, in which cashrit]’-eSt: 1/C"3, where whereAT! = (Tiaz — Tinit) /K. MOTEOVEN Tas @aNdTirit

C"s is the tour cost of the best-so-far ant, or the iteration-denote the maximum and initial pheromone amount, respec-

best ant, in which casATBeSt: 1/C%®, whereC™ is the tively. This positive update procedure of Eq. 6 is performed
tour cost of the best ant of the current iteration. whenever an ant enters the population-list.



A memetic ant colony optimization algorithm 5

Algorithm 2 Population-Based Ant Colony Optimization by transferring knowledge from past environments [8]. So

(P-ACO) far, the description of ACO algorithms above has been made
1: Initialize parameters, 8, qo, p, and K assuming stationary environments. Considering the DTSP,
2: Initialize pheromone trails; . i: ACO needs to be modified in order to adapt to environmen-

3. M = empty

4: whiletermination conditiomot satisfieddo tal changes efficiently.

5. fork:=1topdo The dynamics used in our DTSP test case, i.e., adding
6 Construct a solution by ant or deleting cities, affects the genotypic level and, usyall
v Update statistics the phenotypic level of the ant. Therefore, considering tha
8 endfor the solut ffected by the change in iteratioth
9 best — find the best ant e solutions are affected by the change in iterafiothe
10:  M.enQueudfest) pheromone trails will not make sense in iteration 1. For
11:  Add pheromone using Eq. 6 the S-ACO algorithms that follow the traditional framewprk
ﬁ: if %'zﬂg theno it is vital to re-initialize the pheromone trails tg,;; after a

. .deQueue . . .
12- Delete pheromone using Eq. 7 dynamic change, which acts as a restartlof the algorltlhm.
15:  endif For the P-ACO approach, the solutions stored in the
16:  if environmental change is detectén population-list are repaired heuristically and the pheyom
i;i Ee"”!t'a"zte %Deromone traits it trails are re-generated accordingly. This strategy isedall

. epair ants | . .. .
19- for each antk in M do KeepElitst [23] and uses.two greedy h_eurlsncs to repair the
20 Deposit pheromone regarding &nasing Eq. 6 genotype of the population: (1) the cities that are no longer
21: end for present are removed from the solutions; and (2) the new
22:  endif cities are placed individually in a greedy fashion wherg/the
23: end while

cause the minimum increase on the phenotype.

On iteration K + 1, the iteration-best ant enters the
population-list and updates its pheromone trails poditive
However, the ant that entered the population-list first seed
to be removed in order to make room for the iteration-bes
ant, and thus, a negative constant update to its corresppndi
pheromone trails is done, which is defined as:

5 Proposed M-ACO algorithmsfor the DTSP
?.1 Framework of ACO-based MAs

Our proposed M-ACO algorithm is not based on the S-ACO
framework but on the P-ACO algorithm since P-ACO is
Tij 4 Tij — ATV (i, 5) € T, (7)  more suitable for DOPs. Experiments show that P-ACO is
. , . . . mpetitive with -A with simple re-initialization of
where ArE is defined as in Eq. 6. This mechanism keepsCO petitive with a S-ACO with simple c talization o
g . . _ pheromones on even large and slow environmental changes,
the pheromone trails between a certajp,, value, which is .
. where the restart strategy has enough time to converge
equal tor;,;;, and ar,, 4, Value, which can be calculated by . . o
K & to a good optimum and the environments are not similar,
Tinit + Zk:l ATZ-]-.

This strategy is based on thge of ants [20]. However, which makes any knowledge transfer inefficient. Moreover,

other strategies have also been proposed by researchetI?-ACO is significantly better on slight and fast environmen-

such asQuality and Prob [20]. From the experimental re- a changes [14, pp. 264 265].' . .
. . . In M-ACO, after constructing solutions, the best ant is
sults in [20], the defaulfge strategy is more consistent and .
. . selected to be improved by a LS operator. The LS operator
performs better than the others, since other strategies hav . . . L
o . : . __Uused is an adaptive version of the 10 operator, which is one
more chances to maintain identical ants into the populatlonOf the leading operators for the TSP [24]. If a better sohutio
list, which leads the algorithm to the stagnation behaviour. gop

D . . is foun r hL it repl h | n
This is due to the fact that high levels of pheromone will s found after each LS step, it replaces the selected best ant

. . . ) After the LS steps finish, the resulting ant is added into the
be generated into a single trail and dominate the search

. .rPopuIation-Iist and the pheromone trails are updated aecor
space. Moreover, we have seen the importance of keepi 1901y following the ubdate policy of the P-ACO aldorithm
the pheromone trails within certain bounds from the MMAS gy g P poficy 9 :

[50], which is one of the state-of-the-art ACO algorithms fo _ . Furthe.rmore,_ a d|yerS|ty scheme base_d on random im-
stationary problems [2] migrants is applied with the M-ACO algorithm in case the

ants within the population-list are identical. The traafital
P-ACO algorithm faces a high risk to maintain identical
4.3 Response to environmental changes ants into the population-list and prevents ants to explore
other areas in the search space because a high intensity
Theoretically, ACO algorithms are able to adapt to dynami®f pheromone is generated into a single trail. The diver-
changes since they are inspired from nature, which is a corsity scheme checks whether the population-list keeps a cer-
tinuous changing process [27]. Technically, they can adaptin diversity. If not, the random immigrants scheme is ac-
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Algorithm 3 Proposed M-ACORI Algorithm Algorithm 4 10(S, p)

1: Initialize parameters, 3, qo, 1, and K 1. 8:=8

2: Initialize pheromone trails; i+ 2: select randomly a city from .S’

3: M := empty 3: if rand() < pthen

4: whiletermination conditiormot satisfieddo 4:  select the city’ from the remaining cities it%”

5 for k:= 1topudo 5. dse

6 Construct a solution by ant 6:  select randomly another individuéll’ from the population

7: Update statistics 7:  assign ta’ the next city to the city: € S’/

8: endfor 8: end if

9:  best := find the best ant 9: inverse the tour from the next city of cityto city ¢’ in S’
10:  AlO(best) using Algorithm 5 10: if S’ is better thars then

11:  M.enQueudfest) 11: S:=9'

12:  Add pheromone using Eqg. 6 12: end if

13:  if M isfull then

14: M .deQueue()

15: Delete pheromone using Eq. 7

16: endif

17:  if diversity of M is zerothen . .

18: temp := generate a random immigrant ter global search ability and a higher convergence rate than
19: Replace a randomly selected anflihby temp a S-ACO algorithm and a hybrid ACO algorithm embedded
20:  endif _ with traditional crossover and mutation operators. Furthe
21:  if environmental change is detectdn itis sh h | b fi . fthe 10
2. Re-initialize pheromone traits;; more, it is shown that a large number of iterations of the

23: Repair ants id/ operator does not lead to better results.

24: for each ant in M do

;gf - deifos't pheromone regarding aniising Eq. 6 In fact, the 10 operator can be seen as a new EA itself
27 endif since it consists of crossover and mutation. The difference
28: end while from a pure EA lies in that: (1) each individual competes

with its offspring only, and (2) it uses only one operator,
which is the combination of a blind inversion (BI) and a
tivated to replace one ant in the population-list with a ranguided inversion (Gl). The pseudo-code of IO is presented in
dom one, in order to help ants adapt well to the next enviAlgorithm 4. The Bl can be seen as a mutation operator and
ronment. The complete framework of our proposed M-ACOhas a lower probability to be executed since the second city,
algorithm with the random immigrants scheme, denoted Mwhich determines the size of the segment to be reversed, is
ACORI, is shown in Algorithm 3. selected randomly from the same individual of the first city.
On the other hand, the GI can be seen as a crossover opera-
tor, where the second city is determined according to amothe
5.2 Inver-over operator individual randomly selected from the current population.
An example of Bl and Gl on a TSP solution is presented in
It has been shown that the combination of LS heuristics anffig. 1. The selection probability of Bl and Gl is determined
evolutionary systems enhances the performance of EAs arlgy the parametep in Line 3 of Algorithm 4. If p = 1, the
ACO algorithms on hard optimization problems [45,50].inversion becomes a Bl, andif= 0, it becomes a Gl. The
LS helps the population to escape local optimum efficientlyparametep used in the 10 operator is set to 0.02 by default.
and directs individuals (or ants) into promising areas & th
search space. Both inversions provide exploration and maintain suf-
The 10 operator is one of the leading operators used aficient diversity within the population. However, once the
local optimizers in EAs for the stationary TSP [24]. It is population converges to a solution, the Gl may not be effec-
based on the inversion operator, where two selected citigs/e anymore since the randomly selected individual has a
form a segment which is reversed. It has been applied withigh probability to be identical with the current one. Such
a S-ACO algorithm for the stationary TSP [3], where IO isbehaviour may not be sufficient for the DTSP because no
performed among the best and second best ants, rather thaadid inversion will be performed, which decreases the ex-
the whole population, resulting in two offspring. The bestploration ability. However, it may be advantageous to the
two individuals from the pool created by the two parentsconvergence speed of the population because the exploratio
and two offspring are selected. The LS operator is appliegrovided is guided and can help to provide a solution effi-
every iteration to help the ACO algorithm escape from locakiently in the DTSP. On the other hand, Bl may delay the
optimum, improve its solution quality, and increase its-con convergence speed, but can help the population to escape
vergence speed. The algorithm was tested on relativelyl smdtom a local optimum if it has converged to one. Therefore,
stationary TSP instances (up to 75 cities) and shows a beboth types of inversions can be useful for the DTSP.
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Algorithm 5 AlO(best)
if an environmental change occthen
Pbi = pgi := 0.5;
end if
Ebi :=8gi =0
for i := 1tolsdo
if rand() < pp; then
IO(best, 1.0) using Algorithm 4

parent ... - @ - @ - @2< ------------ current city

\ /

®
@ @ S" = (1,6,4,3,5,7,9.2,8)

selected

CoOXNDUAWNE

Blind Inversion Guided Inversion 3 Updategbi
dse
/ \ I0(est, 0.0) using Algorithm 4
randomCity (S) = 8 nextCity (S" 3) 5 11: Updatef g5
@ @ = @ 12:  endif
@ 13: end for

14: Re-calculatey,; andpg;

|
|

|

|

o

®

@ s g
|

of them during different periods when they are effective, as
described above.

Bl and Gl are denoted as an 10 operator with= 1.0
reversed segment from current city up to second city andp = 0.0, in Lines 7 and 10 of Algorithm 5, respectively.
In the AIO operator, both Bl and Gl are selected probabilis-
tically at every step of an LS operation on every iteration
of the algorithm. Letp,; andp,; denote the probability of
applying Bl and Gl to the individual selected for LS, re-
5.3 Adaptive inver-over operator spectively, wherey,; + pg; = 1. Initially, the probabilities

are both set to 0.5 in order to promote a fair competition
As discussed above, the Gl operator may be advantageobstween the two operators. The probabilities are adjusted
during the first iterations of the algorithm to enhance theaccording to the improvement each inversion operator has
convergence speed and the Bl operator may be advantage@ghieved on every LS step. The probability of the operator
to enhance the solution quality. Gl is not effective when thewith the higher improvement will be increased using a sim-
population has converged since, possibly all solutionsiwit  ilar mechanism as introduced in [55].
the population are identical, thus it cannot explore any new Let ¢ denote the degree of improvement of the selected
areas in the search space. During that period of time, Bl magnt after an LS step, which is calculated as follows:
be effective to increase the diversity and move the popula-
tion into new promising areas. Chest’ — Cbest

The use of multiple LS operators within a MA frame- £= T (Obest (8)
work has been found advantageous to address the issue of
problem-dependency of LS operators [49,52,55], e.g., eackhereC’!" is the tour cost of the best ant after applying
inversion type may be effective for some classes of probler@n LS step (using Bl or Gl) an@"**" is the tour cost of the
instances. Also, it can be advantageous in different pepuld€st ant before applying the LS step. When the number of
tion evolution periods, e.g., Bl is effective on later stagé LS steps reaches the preset step size, denoted te de-
the algorithm and Gl is effective on the initial stages of thegree ofimprovementregarding Bl and Gl operators, denoted
algorithm. as&,; and{y, respectively, is calculated and used to adjust

There are different adaptive mechanisms used to prdhe probabilities of selecting Bl and Gl in the next iteratio
mote cooperation and competition between different LS oppvi(t + 1) andpy;(t + 1), as follows:
erators. Multiple LS schemes can be executed in parallel
based on competition and a learning mechanism can be usBe (¢ 1) = pui(t) + &i(t), (9)
to give greater chances to those efficient LS operators to be
usgd atga later stage [28,44]. On the other hans multiple ngz( 1) =Pailt) + &a®), (10)

Fig. 1 Example of Bl and Gl operators on a TSP solution

schemes can also be executed based on cooperation, Where(t +1) = Doi(t + 1) (11)
different LS operators are activated during different dapu poi(t + 1)+ pgi(t +1)

tion evolution periods [9,42]. In the adaptive IO (AIO) oper o

ator that is applied in our proposed M-ACO algorithms, botPeilt 1) =1 —pu(t +1), (12)

Bl and GI work together. The two inversion operators com-where&;(t) and{,;(t) are the total degree of improvement
pete and cooperate in order to obtain the advantages of bo#ithieved by Bl and Gl operators at iteratiomespectively.
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Both py; andpg, are set to their initial value, i.e., 0.5, result, a high intensity of pheromone will be generated into
when an environmental change occurs in order to re-stadne trail, forcing the population to converge into one path
the cooperation and competition when a new environmendnly. Therefore, every time the population reactigs =
arrives. The pseudo-code of AlO is given in Algorithm 5. 0.0, a random immigrant ant is generated to replace one cur-

rent ant in the population-list.

5.4 Increasing and maintaining the population diversity
6 Experimental study
The main problem of EAs when applied on DOPs is their _ _
premature convergence. Once the algorithm has convergdgorder to investigate the performance of proposed M-ACO
to an Optimum, it cannot adapt well to the new environ_algoritthfor the DTSP, five sets of eXperimentS are carried

ment when a Change occurs. Even if LS is app“ed Withirput in this StUdy based on a set of test DTSPs constructed
an EA, the problem will still remain unsolved, or becomefrom benchmark stationary TSP instances. The first set of
even worse, because of the strong exploitation LS provide€xperiments aims to analyse the effect of LS operators on
As a result, the population will later on lose the capability the performance of M-ACO algorithms for the stationary
exploring new promising areas in the search space. TSP instances. The second set of experiments analyses the
This problem becomes even bigger with ACO algo-€ffect of the diversity scheme (i.e., the random immigrants
rithms because of the way ants construct their solutiongscheme) on the performance of M-ACO for the DTSP. The
They use heuristic information, i.e., the distance betweefhird set of experiments compares the overall performance
cities for the TSP, and the population of ants is more likelyof M-ACORI with other ACO algorithms from the literature
to be identical from the first iterations. A natural way to for the DTSP. The fourth set of experiments compares the
address this problem is to increase the constant paramet@yerall robustness of M-ACORI with other ACO algorithms
of pheromone in Eq. (1), in order to force ants to considefrom the literature for the DTSP. Finally, the fifth set of ex-
more the pheromone trail values over the heuristic informaPeriments investigates the performance of M-ACORI under
tion values to increase exploration, when they constrigit th dynamic environments of varying degrees of change speed
tours. But, then the algorithm faces a high risk of randomand change severity.
ization.
Immigrants schemes have been found effective when as 4 Experimental setup
plied in P-ACO for DTSPs [37], since they maintain a cer-

tain level of diversity within the population. The general.In the experiments, all the algorithms were tested on the

idea of immigrants schemes is to |nt.rod.u.ce ranr_:lom IMMIHTSP instances that are constructed from three stationary
grants, to replace a p-ercer.nage of |nd|V|duaIs. in the CUbenchmark TSP instances taken from TSPEBhich are
rent pppulatlon every |terat|0n- [25,]' However, n M'A_CO visually illustrated in Fig. 2. Our implementation closely
there is no need.to gengrate .lmn.ngranFs every iteration gy ows the guidelines of the ACOTSPmplementation,

let the LS work without disturbing its optimization process which is published by the ACO authors. By taking each sta-

Therefore, to both address the convergence issue and "mlbnary problem instance, we have generated dynamic en-

the disruption of ihe optimization process, random MMy ironments using the method described in Sect. 3. The pa-

grants are introduced when a predefined diversity thresr]"ametersf andm indicate the frequency and magnitude of
Ol_d i_s reached. Th_is th_resh(_)ld is_cz_alculated by the diV’HrSitdynamic changes. Theparameter is defined as the number

W'th”.] the populatlor_]-llst,.5|.nce It IS base‘? on _the P-ACOt iterations between two environmental changes, and the
algorithm. On every iterationof run j, the diversity of the m parameter is defined as the percentage of selected cities

population-listis calculated as follows: from the spare pool that replace other cities from the actual

1 K K instance. The value of was set to 20 and 100, indicating
Div;; = K1 Z Z CE(p,q), (13) environmental changes of high and low frequencies, respec-
(K —1) p=1 q#p tively. The value ofm was set to 10, 25, 50, and 75, indi-

cating the degree of environmental changes from small, to
medium, to large, respectively. As a result, eight dynamic
environments, i.e., two values ¢fx four values ofn, were
generated from each stationary TSP instance in order to sys-
tematically analyse the adaption and searching capaiiliti
of each algorithm on the DTSP.

If the diversity of the population-list, calculated by 1 see http://comopt.ifi.uni-heidelberg.de/software/ TR/,
Eqg. 13, is 0.0, it means that all the ants are identical. As a ? See http://www.aco-metaheuristic.org/aco-code.

where K is the size of the population-list ardE(p, q) is
a similarity metric between anptand antg, which is calcu-
lated as follows:

common edges

CE =1-—m .
(p,q) number of cities

(14)
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Fig. 2 The structure of the TSP instances used in the experiments.

Table 1 Parameter settings for the algorithms investigated, wherdhan the others since they perform more evaluations with
Cn™is the length of a tour generated by the nearest-neighbaufshe  the LS steps, i.els = 20. This is because we want to exe-
ticandeis the number of cities of the given problem instance cute the same number of evaluations in each iteration for all

Algorithm — 7;,,4¢ a B p K q p s algorithms in order to have a fair comparison. Note that S-
M-ACOs 1/(c—1) 1 5 - 3 09 30 20 ACO usesthe MMAS framework, and P-ACO uses Age
P-ACO 1/(e—=1) 1 5 - 3 09 50 - update policy.

S-ACO 1/pCm™ 1 5 002 - 00 50 -

For each algorithm on a DTSP instanc¢é, = 30 in- 6.2 Measurements for dynamic environments
dependent runs were executed on the same random envi-

ronmgntal f:hanges. The aIg_onthms were executed?fef There are several performance measures that have been used
1000 iterations (or generations) and an observation wag compare EAs (including ACO algorithms) for DOPs [40

takder; on degch |]'E.er.aflofn. -trr:] N rIe St ?:] the pararr]n eter§ u_?e 7]. However, there is not any agreed method to measure the
and found beneticial, Tor the algorithms are Snown In 1ay, oy igyr [40], since researchers pay attention to diftere
ble 1, wherer;,;; indicates the value of pheromone set in

. . . aspects when they analyze algorithms in dynamic environ-
the initial phaseq and determine the relative influence of P y y ¢ y

h d heuristic inf i th ructi ents [48]. Some researchers are interested in the extreme
pheromone and neursic information on the construction zg‘ehaviour of the systems, i.e., the best result an algorithm

tours, respectively, is the pheromone evaporation rate use can obtain, to investigate how well their system can do. On
:n this;ﬁf O, bUtI ntqt fol_r IthA(fr? T:nigl (;AC;?sl\j(Awéthe the other hand, others are interested in the population as a
engthotthe population-istior te - and M-ACQ@s, whole, i.e., the population distribution, to investigate ain-

;jhetenrmrrl]r;)es;tr}e gtresfrl:inisj (:f :rr]neinan:rf dec's'?r:irLrjllqi'gBdThderstand population-based algorithms as representation o
€ number ot ants which dete € the population size. gvolutionary systems. In this paper, we use the measure-

proposed M-ACO algorithm has a smaller population Siz%ents discussed in [48], i.eperformance and robustness,

3 The term M-ACOs denotes all ACO-based MAs used in the exper2nd both their best and average measures are examined and
iments reported.




10 M. Mavrovouniotis, S. Yang

The performance is one of the most traditional measure8.3 Experimental analysis on the effect of LS operators
of an algorithm which shows how well a system can do. The
fitness of the best-so-far ant after a change is used to eégalua/Ve first study the effect of BI, Gl and AlO LS operators
the performance. Therefore, the overBéist Performance  When applied to P-ACO on the stationary test problems.
pbestang overallAverage Performance P2V9 are defined, Moreover, the diversity scheme of random immigrants is
respectively, as follows: applied to enhance the performance of the MAs. We use
M-ACORI1, M-ACORI2, and M-ACORI3 to denote M-
N ACORI with Bl, M-ACORI with GlI, and M-ACORI with
1 Zpi?ess, (15) the proposed AIO which combines both Bl and GlI, respec-
=1 tively. The experimental results are shown in Fig. 3 and sev-
eral results can be observed.
First, it is obvious that all MAs outperform the P-ACO
1N av algorithm on all the test problems as expected since they
( Z Py g>7 (16) converge to a much better solution. However, different MAs
=1 work better on differentinstances. M-ACORI1 locates a bet-

whered is the total number of iterationd] is the number of  ter solution orkr 0A100, M'ACOR!Z (?nei | 76, and M-
runs andPPeStand P2YY are the best-so-far tour cost (after ACORI3 onkr 0B200. This result indicates that LS oper-
ij ij

a change) and the average tour cost of the whole populatigHOrs are problem-dependent, which is natural since itis al

of iterationi of run j, respectively. most impossible to develop an algorithm to outperform the
The robustness is a measure which shows the persisten&@naining algorithms on all problem instances.

of the algorithm. The previous performance measure may >¢¢ond. M-ACORI3, which uses the proposed AIO, al-

not be enough to have a complete analysis of the algorithrﬁ_@ays performs reasonably well since it combines both mer-

for DOPs. Therefore, it is also important to measure the roltS ©f Bl and Gl, i.e., the convergence speed and solu-
bustness of the algorithms [26]. As a result, Best Robust- tion quality. M-ACORI3 converges equally fast as the other

ness RZbeStand theAverage Robustness Rf\VG of iteration two algorithms on the first iterations. However, it requires

. . . slightly more time than the others to locate a good solution.
over all runs, are defined, respectively, as follows: - . ;
‘ P 4 Thus, it is a good choice for the DTSP and will be used for

N the rest of our experiments, and it will be denoted as M-
best_ 1 best ACORI for the rest of the paper.
RP®= < > RPES 17)
j=1

1
phest_

K2

Ql
»—-MQ
=],

Ma

2|

1
pavg_ -
Gi

1

6.4 Experimental analysis on the effect of the diversity
scheme

K2

N

1
RM=2S"RYY (18) . _

N = I In the second set of experiments, we study whether the di-
versity provided by the random immigrants scheme is ef-
whereRPeStand 29 are the best robustness and the averfective on ACO-based MAs. In the experiments, we com-

1] 1] .
age robustness of iteratiomf run j, respectively, which are Pare M-ACO and M-ACORI, which denotes an ACO-based
defined as follows: MA without the diversity scheme and an ACO-based MA
with the proposed diversity scheme, respectively. In trse fir
section of Table 2, the results of tiBest Performance are

es
best L, if gbe_st >1 given and in the S(_acond sectio_n the corresponding statlistic
Rij=>'= phest o _ (19)  results of comparing the algorithms by the two-tailetst
ﬁbﬁt otherwise with 58 degree of freedom at a 0.05 level of significance
e are given. In Table 2,44” or “s—" indicates that the first
algorithm or the second algorithm is significantly better, r
. pavgy spectively, whereas~" indicates that the two algorithms
avg L, if P > 1 are statistically equivalent. From Table 2, several restdh
Rij 7=4 ,avg R (20)  pe observed.
Savy: otherwise First, the proposed diversity scheme efficiently improves

i+1

the performance of M-ACO, since M-ACORI is signifi-

A higher result from Eqgs. 17 or 18 indicates a higher robusteantly better in almost all dynamic test cases. This is due to
ness level, which means that the solution quality is morehe fact that once the population converges to an optimum,
persistent. random immigrant ants are generated and replace other ants
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Fig. 3 Experimental results regarding tBest Performance of M-ACOs in comparison with traditional P-ACO on statiopéest problems.

Table 2 Experimental results regarding tlBest Performance of ACO-based MAs with diversity scheme (M-ACORI) and with@udiversity
scheme (M-ACO).

Algorithms | eil 76 | kr oA100 | kr oB200

Best Performance

f=20,m= 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%

M-ACO 357.6 369.3 3754 376.9 16568.4 16298.1 16634.4 1@66123004.4 23429.9 23174.2 23387.3

M-ACORI 356.9 368.7 374.6 375.9 16530.4 16269.6 16598.4 316 22973.0 23392.5 23154.8 23391.4

f=100,m = 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%

M-ACO 363.1 367.3 364.3 374.8 16801.8 16177.3 16278.1 1@39122272.9 22913.6 22445.9 22796.2

M-ACORI 361.9 366.0 362.7 3729 167249 16124.8 16210.383® 22174.0 22802.8 22319.8 22687.6
t-Test Result

f=20,m= 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%

M-ACO<M-ACORI s— s— s— s— s— s— s— s— ~ s— ~ ~

f =100, m = 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%

M-ACO<M-ACORI s— s— s— s— s— s— s— s— s— s— s— s—

into the population-list and helps the LS to escape from anaintains a higher diversity level than M-ACO and achieves
possible local optimum. betterBest Performance.
Second, on all test cases with= 100, which denotes
slow changing environments, M-ACORI is significantly bet-
ter. However, on some cases with= 20, which denotes 6.5 Experimental study regarding the overall performance
fast changing environments, M-ACORI performs equivalent _ i
with M-ACO. The reason lies in the time the proposed Alon the third set of experiments, we study the overall perfor-
needs in order to be effective, as discussed in Sect. 6.3. pdgiance (botrBest Performance and Average Performance)
sibly a scheme that can provide more diversity may be suit?f M-ACORIin comparison with other ACO algorithms (S-
able on cases where the environment changes fast. ACO and P-ACO). The comparison results are given in Ta-
Moreover, in Fig. 4, thdotal Diversity of the two algo- ble 3, by the two-tailed-test with 58 degree of freedom

rithms is presented, which is calculated as follows: ata 0.05 level of S|gn!f|cancg, where-£”, * s, .a.nd -
have the same meaning as in Table 2. In addition, to visu-

G N ally observe the dynamic performance of the algorithms, the
Divtotel — 1 Z(l Z Divy;), (21)  results regarding thBest Performance and theAverage Per-

im1 N i=1 formance are plotted in Figs. 5 and 6, respectively. For both
figures, the two values of,, i.e.,m = 10% andm = 75%,
whereG is the total number of iterationd/ is the total num-  are plotted, which represent slight and significant changes
ber of runs, andiv,; is calculated as in Eq. 13 but for the respectively. Thef value with a fast frequency of change,
actual ant population instead for the populationdist The i.e., f = 20, is used in Fig. 5 for théBest Performance,
diversity of ACO, in general, can never reach a very highand with a slow frequency of change, i.¢.= 100, is used
level. This is due to the guidance ants gain from the heurisn Fig. 6 for the Average Performance. From Table 3 and
tic information, i.e, the distance between cities, wherythe Figs. 5 and 6, several results can be observed.
are constructing their solutions. Therefore, even a small i First, regarding the overaBest Performance results,
crease in the diversity of the population has a significant imthe proposed M-ACORI algorithm significantly outperforms
pact on the performance of the ACO algorithms. This carboth P-ACO and S-ACO algorithms on almost all problem
be observed from both Fig. 4 and Table 2, where M-ACORIinstances, with either slight or significant changes and wit

Q
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Fig. 4 Experimental results regarding tfietal Diversity of population of M-ACORI in comparison with M-ACO on dynantist problems.

Table 3 Statistical test results regarding the overall perforneasfccomparing M-ACORI with other ACO algorithms.

Algorithms | eil 76 | kr oA100 | kr oB200

Best Performance

f=20,m= 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACO&P-ACO s— s— s— s— s— s— s— s— s— s— s— s—
S-ACO&M-ACORI s— s— s— s— s— s— s— s— s— s— s— s—
P-ACO<M-ACORI s— s— s— s— s— s— s— s— s— s— s— s—
f=100,m = 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACO&P-ACO s— s— s— s— s— s— — s— s— s— s— s—
S-ACO&M-ACORI s— s— s— s— s— s— s— s— s— s— s— s—
P-ACO<M-ACORI s— s— s— s— s— s— s— s— s— s— s— s—
Average Performance

f=20,m= 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACO&P-ACO s— s— s— s— s— s— s— S— s— s— s— s—
S-ACO&M-ACORI s— s— s— s— s— s— s— s— s— s— s— s—
P-ACO<M-ACORI s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

f =100, m = 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACO&P-ACO s— s— s— s— s— s— — s— s— s— s— s—
S-ACO&M-ACORI s— s— s— s— s— s— s— s— s— s— s— s—

P-ACO<M-ACORI ~ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

either fast or slow changes. The reason for this result is thaithm. However, the AlO operator with the diversity scheme
the AIO operator, which is used as the LS operator in M-used in M-ACORI is able to overcome this problem because
ACO, helps the population to converge fast at the early itit maintains a certain level of diversity in the populatilist-
erations, using Gl, and later on maintains diversity with BIAs a result, the trails with a high intensity of pheromone are
and the random immigrants scheme. This effect can be oleliminated using the adaptive and evolutionary components
served from Table 3 and Fig. 5, where the performance of Mef M-ACORI.

ACORI is significantly better than P-ACO after a dynamic
change. This is because P-ACO has a high risk of storin

identical ants to the population-list, which leads to a hig 5.ACO and M-ACORI aldorith bl ,
intensity of pheromone trails. The trails that contain ehhig "\~ 2hd M- algorithms on problem instances
with significant and slowly changing environments, since

intensity of pheromone lead the algorithm to a stagnatien be

haviour, i.e., the premature convergence of the P-ACO algot-he ants _stored in the population-list of _P'ACO a”‘?' M-
ACORI will not make much sense when different environ-

Second, it was expected that the S-ACO with a simple
heromone re-initialization strategy would outperfornthbo
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Fig. 5 Experiments regarding the over&st Performance of M-ACORI with other ACO algorithms on dynamic environmgnt

ments are not similar. However, in our experiments, this Third, regarding the overalverage Performance re-

is not the case since S-ACO is always significantly worsesults, M-ACORI performs significantly worse than P-ACO.
than the other algorithms. There are several reasons to eXhis is due to the fact that the LS operator in M-ACORI
plain this: (1) S-ACO pheromone trails are re-initializedis applied only to the best ant in every iteration and not to
with an equal amount of pheromone, without any guidancethe whole population. Therefore, only one ant improves its
(2) the ants stored in the population-list are repairedibeur solution quality. In addition, the diversity scheme basad o
tically based on the new changing environment, using theandom immigrants avoids the population to converge into
KeepFElitist strategy [20], and the pheromone trails area single optimum. It is natural that the population may ex-
re-initialized with guidance, (3) the initial experimerds  plore areas in the search space that are not advantageous for
comparing a traditional P-ACO and S-ACO with simple re-the current environment.

initialization strategy sholwe.d. that they are competitivere Fourth, as it was expected the S-ACO outperforms both
when the changes.are significant [14, pp. 264-2§5], and (4|5-ACO and M-ACORI on theAverage Performance in

apart from the guidance of the pheromone trails and thg|q1y changing environments with significant changes be-
heuristic information, the AlO operator used in M-ACORI ., ;se the ants stored in the population-list of P-ACO and

provides even more guidance to the population. M-ACORI do not seem to make much sense when the differ-
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Fig. 6 Experiments regarding the overallerage Performance of M-ACORI with other ACO algorithms on dynamic environment

ent environments are not similar. Therefore, using therest the same meaning as explained before. In addition, to visu-
strategy of S-ACO seems making more sense to start fromlly observe the dynamic performance of the algorithms, the
scratch. Similarly, with th®est Performance, this is notthe results regarding thBest Robustness and theAverage Ro-
case in our experiments due to one of the possible reasobastness are plotted in Figs. 7 and 8, respectively. For both
discussed above. figures, the two values afi, i.e.,m = 10% andm = 75%,

are plotted, which represent slight and significant changes
respectively. Thef value with a fast frequency of change,
i.e., f = 20, is used in Fig. 7 for th®est Robustness, and
with a slow frequency of change, i.¢f,= 100, is used in

In the fourth set of experiments, we study the overall ro-F19- 8 for theAverage Robusiness. From Table 4 and Figs. 7

bustness (botBest Robustness andAverage Robustness) of ~ @nd 8, several results can be observed.

M-ACORI in comparison with other ACO algorithms (S- First, in general, all algorithms have a high robustness
ACO and P-ACO). The comparison results are given in Talevel due to the use of the heuristic information, i®.,

ble 4, by the two-tailed-test with 58 degree of freedom at a which is used in the probabilistic rule of ants in Eqg. 1. In
0.05 level of significance, where+”, “ s—", and “~" have  [63], it was discussed that performance and robustness can-

6.6 Experimental study regarding the overall robustness
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Table 4 Statistical test results regarding the overall robusteéssmparing M-ACORI with other ACO algorithms.

Algorithms | ei 176 | kr oA100 | kr oB200
Best Robustness
f=20,m= 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%

S-ACO&P-ACO ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
S-ACO&M-ACORI ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
P-ACO&M-ACORI ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

f =100, m = 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACO&P-ACO ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
S-ACO&M-ACORI ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
P-ACO&M-ACORI ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Average Robustness

f=20,m= 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACOsP-ACO s+ s+ s+ s+ s+ s+ ~ s+ s+ s+ s+ s+
S-ACO&M-ACORI s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
P-ACO&M-ACORI ~ ~ ~ ~ ~ ~ s+ ~ ~ ~ ~ ~

f =100, m = 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACOsP-ACO s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
S-ACO&M-ACORI s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
P-ACO&M-ACORI ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

not be optimized simultaneously. This may be true for EAspne ant. On the other hand, P-ACO significantly beats M-
but not always true for ACO algorithms, especially ACO- ACORI regardingAverage Performance, but they are not
based MAs, because of the prior knowledge they have besignificantly different regardingverage Robustness.

forehand and the extra knowledge from the LS operation.

As a result, the population of ants cannot reach an extremely

high diversity level, even with a global re-initializatiarf : . .
) . 6.7 Experimental study under dynamic environments of
pheromone trails, to force the robustness to fall. This can

be observed from the results where M-ACORI has a bet\_/arylng change frequency and magnitude
ter performance than P-ACO while their robustness is n
significantly different. For example, P-ACO and M-ACORI
slightly sacrifice theiBest Robustness for the sake oBest
Performance whereas they significantly sacrifice théirer-

age Robustness for the sake ofAverage Performance. This

can be observed from the statistical test results in Tablesal performance, botiBest Performance and Average Per-
and 4. : ; .
formance, of compared algorithms under dynamic environ-
Second, regarding the overdest Robustness results, ments with different fixed values gf andm, respectively.
the proposed M-ACORI algorithm is slightly beaten by That is, the values of andm remain fixed throughout the
the other two algorithms on almost all problem instancesgyecution of an algorithm. However, for real-world prob-
whereas S-ACO Sllghtly beats P-ACO. Although M-ACORI |emS, both values Of andm may vary during the execu-
improves theBest Performance in comparison with both P-  tjon of an algorithm. In order to investigate the performanc
ACO and S-ACO, they are not significantly different re- of our proposed M-ACORI algorithm in comparison with
garding theBest Robustness. Similarly, as it was expected the existing S-ACO and P-ACO algorithms under more re-
S-ACO has better robustness than P-ACO and M-ACORIajistic environments, a larger benchmark TSP problem, i.e.
since usually methods with worse performance have begt t 532, was used to construct the DTSP, and a spare pool
ter robustness. This shows that S-ACO with simple reof cities was generated as in the basic experiments. The val-
initialization of pheromones may not be an effective method,es of f andm were both generated randomly within the
for DTSPs. interval of [1,100] and [0, 100], respectively, as presented
Third, regarding the overafverage Robustnessresults, in Fig. 9, for 1,000 iterations over 30 runs, using the same
S-ACO significantly beats the other two algorithms on allparameters and performance measurements as in the basic
problem instances, either with slow or fast frequencies o&xperiments.
change. Although LS in M-ACORI improves therage The experimental results with the corresponding statisti-
Performance in comparison with S-ACO, th@verage Ro-  cal test results are presented in Table 5 and Fig. 10. In Table
bustnessis degraded. This is expected because, as discussgd“s+" indicates that the algorithm in the row is signifi-

previously, LS does not affect the whole population but onlycantly better than the one in the colums;-" indicates that

0\tl\/e finally study the overall performance (boBest Per-
formance and Average Performance) of M-ACORI in com-
parison with other ACO algorithms under dynamic environ-
ments with varying frequencies and magnitudes. In the ba-
ic experiments in Sect. 6.5, we have investigated the over-
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Fig. 7 Experiments regarding the over8st Robustness of M-ACORI with other ACO algorithms on dynamic environmgnt

the algorithm in the column is significantly better than theThe reason may be due to the distribution of cities in the spe-
one in the row, and~”" indicates statistically equivalent. cific TSP instance. If we take a closer look in Fig. 2, most of
The results match our previous analysis regardegs  the cities inat t 532 almost overlap, in comparison with the
Performance, since M-ACORI continues to perform signif- otherinstances used in the basic experiments. As a rdsailt, t
icantly better than its competitors. On the other hand, thelistances between a city and its neighbourhood have more
results of theAverage Performance do not match the results chances to be similar even after a dynamic change. Due to
in our basic experiments. The difference is thatAaerage  the heuristic information used from ACO algorithms when
Performance of P-ACO is slightly better than M-ACORI, they construct their solutions, they have less chances-to ex
and not significantly better as analysed in our basic experplore areas that may cause an increase tcAtleeage Per-
ments previously. Even if their results are not significantl formance, as it is caused in the basic experiments with the

different, LS still does not affect the population as a whole other problem instances.

but only the best ant as discussed in the basic experifients. The S-ACO algorithm continues to perform significantly

4 The corresponding results Bést Robustness andAverage Robust- Worse than both P-ACO and M-ACORI algorithms regard-
ing both theBest Performance andAverage Performance. Its

ness for the environment with varying magnitudes and frequeneies
similar with our basic experimental results. small standard deviation, especially on #herage Perfor-
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Fig. 8 Experiments regarding the overallerage Robustness of M-ACORI with other ACO algorithms on dynamic environment

mance, indicates that S-ACO explores only a small area inder to adapt well to dynamic changes, random immigrants
the search space; see Table 5. are generated as soon as the algorithm reaches stagnation
behaviour. Several sets of experiments were carried out to
compare the performance and robustness of M-ACORI with
a number of existing ACO algorithms.

From the experimental results and analysis of the pro-

In this paper, an ACO-based MA is developed, which use®osed M-ACORI algorithm in comparison with S-ACO and
an adaptive LS operator based on the IO operator inside dirACO on the dynamic test problems, several concluding
ACO algorithm with an enhanced population-list, to solveremarks can be drawn.

the DTSP. The component operators within the adaptive LS First, for ACO algorithms on DTSPs, especially ACO-
operator are activated adaptively in different periodsagp based MAs, it is not always the case that performance and
ulation evolution. The adaptive LS operator is used to farth robustness cannot be optimized simultaneously as with EAs
improve the quality of the solution obtained by the P-ACO[63]. This is due to the prior knowledge ACO algorithms
algorithm with its strong exploitation. In addition, to mai  gain with the use of the heuristic information and the extra
tain a sufficient diversity level within the population in-or knowledge from the LS operation.

7 Conclusions and future work
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Fig. 9 The varying values of andm generated for the dynamic en- att532f = rand(1,100),m = rand(0,100)
vironment with varying dynamics, which are used in Fig. 10té\that ooooo ' . R
the value off is calculated with the iterations. 85000

80000
Table 5 Experimental results of comparing the overall performance
of M-ACORI with other ACO algorithms on the dynamat t 532
problem with varying change frequency and magnitude

75000

70000

65000

60000

Algorithms || S-ACO | P-ACO | M-ACORI
Best Performance (Standard Deviation)

|| 75276.2(156.7)] 68038.4(221.4)] 67839.2(307.7) 50000

t-Test Result 45000

S-ACO s— s— .

P-ACO s+ Ss— Iteration

M-ACORI s+ s+
Average Performance (Standard Deviation)

| 85152.6(19.7) | 72622.9(351.5)] 72662(416.9)

Average Performance

55000

1 1
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Rl L

Fig. 10 Experimental results regarding tBest Performance and Av-
erage Performance of M-ACORI in comparison with other ACO al-
gorithms on the dynamiat t 532 problem with varying change fre-

t-Test Result quency and magnitude.
S-ACO s— S
P-ACO s+ ~
M-ACORI s+ ~

Fifth, the Average Performance depends on the distri-
bution of cities of the stationary TSP instance used to gen-

Second, the proposed M-ACORI algorithm with the use€raté DTSPs. It is natural to have an increase inAvee-
of the diversity scheme improves the solution quality of the?de Performance when a certain level of diversity is always
M-ACO algorithm without the diversity scheme. The com- Maintained in the population because some ants within the
bination of ACO with an LS operator provides strong ex-Population have more chances to locate areas that may not
ploitation which may not be advantageous when addressingf a@dvantageous for the distribution of the population as a
DOPs. Therefore, ACO-based MAs enhanced with the diwhole, but it may be advantageous for the best ant of the
versity scheme appropriately, i.e., introducing random im N€W environment. However, when too many cities overlap
migrants once the population has converged, leads the 1 their distribution, the population has less chances {0 ex
gorithm to achieving betteBest Performance; otherwise, a  Plore new areas since the new environment generated has
high level of diversity may lead to randomization, and notMOre chances to be similar with the previous one.
always to good results. Finally, the S-ACO algorithm with the restart strategy

Third, the proposed AlO operator promotes cooperatiofis Significantly worse on all dynamic test cases, regarding
of different operators that can be advantageous on diffel0thBest Performance andAverage Performance. However,
ent test problems or during different periods of populationS-ACO is significantly better on all dynamic test cases, re-
evolution. It is known that different operators are problemgardingAverage Robustness. S-ACO explores only a small
dependent. However, the AlO operator helps M-ACORI enarea in the search space which makes the population more
hance its convergence speed and solution quality simultanétable as a whole, but not so consistent with its best output.
ously. For future work, the proposed M-ACORI framework is

Fourth, although M-ACORI improves thBest Perfor-  a good start point for developing other ACO-based MAs for
mance, it maintains its robustness, since tBest Robust-  DTSPs. Since multiple LS operators are effective with a di-
ness from the experimental results shows no significant dif-versity scheme, it would be interesting to apply other more
ference in comparison with the other ACO algorithms. sophisticated methods [32] as LS operators, develop other
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diversity schemes, and hybridize them. Also, it would be 17.

interesting to apply LS to the whole population-list of an
ACO-based MA. This may also affect the population as a

whole and improve théverage Performance and Average

Robustness.
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