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A memetic ant colony optimization algorithm for the dynamic travelling
salesman problem

Michalis Mavrovouniotis · Shengxiang Yang

Abstract Ant colony optimization (ACO) has been suc-
cessfully applied for combinatorial optimization problems,
e.g., the travelling salesman problem (TSP), under station-
ary environments. In this paper, we consider the dynamic
TSP (DTSP), where cities are replaced by new ones during
the execution of the algorithm. Under such environments,
traditional ACO algorithms face a serious challenge: once
they converge, they cannot adapt efficiently to environmen-
tal changes. To improve the performance of ACO on the
DTSP, we investigate a hybridized ACO with local search
(LS), called Memetic ACO (M-ACO) algorithm, which is
based on the population-based ACO (P-ACO) framework
and an adaptive inver-over operator, to solve the DTSP.
Moreover, to address premature convergence, we introduce
random immigrants to the population of M-ACO when iden-
tical ants are stored. The simulation experiments on a series
of dynamic environments generated from a set of bench-
mark TSP instances show that LS is beneficial for ACO al-
gorithms when applied on the DTSP, since it achieves better
performance than other traditional ACO and P-ACO algo-
rithms.
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1 Introduction

Ant colony optimization (ACO) algorithms have been suc-
cessfully applied for different combinatorial optimization
problems [14]. Traditionally, researchers have been focused
on stationary optimization problems, where the environment
remains fixed during the execution of an algorithm. How-
ever, many real-world applications are subject to dynamic
environments. Such a problem becomes more challenging
since the aim of an algorithm is not just to find the opti-
mum of the problem, but to track the changing optima when
changes occur [27].

Traditional ACO algorithms have been designed for sta-
tionary optimization problems [13], and may not be suffi-
cient for dynamic optimization problems (DOPs). This is
due to the fact that the pheromone trails of the previous envi-
ronment will not make sense for the new environment after
a change occurs. Furthermore, they cannot adapt well once
the population converges into an optimum, since a certain
level of diversity is vital to maintain the high quality of out-
put efficiently. A simple way to address this problem is to
re-initialize the pheromone trails and consider every change
as the arrival of a new problem instance which needs to be
solved from scratch. Unfortunately, this restart strategyis
computationally expensive and usually not efficient.

The first application of an ACO algorithm for DOPs
is the AntNET [11], which has been applied for the rout-
ing problem in communication networks. Other specialized
pheromone strategies have been proposed for DOPs, which
include local and global restart strategies [22], pheromone
manipulation schemes to maintain or increase diversity [2,
15,37], and memory-based approaches [20]. These methods
have been applied to the dynamic travelling salesman prob-
lem (DTSP) due to its importance for many real-world appli-
cations. These strategies re-initialize the pheromone trails,
as a restart strategy when a change occurs, but with guid-
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ance in order to help the population to adapt efficiently to
the new environment.

In recent years, there has been an increasing interest on
a class of hybrid evolutionary algorithms (EAs) [30], called
memetic algorithms (MAs), where local search (LS) opera-
tors are hybridized with EAs to improve the solution quality.
MAs have been used for solving many optimization prob-
lems, such as arc routing problems [38,53,54,59], schedul-
ing problems [19,36,60,61], and other applications [1,33,
43,65]. They have been applied for optimization problems
under both stationary and dynamic environments. However,
almost all existing MAs follow the framework of EAs and
very rarely the framework of ACO. Thus, it would be in-
teresting to investigate the performance and robustness of
ACO-based MAs, which has been discussed that they are
able to improve both measurements [9,34].

In this paper, a memetic ACO-based (M-ACO) algo-
rithm, based on the population-based ACO (P-ACO) frame-
work, is proposed and applied to the DTSP. In the M-ACO
algorithm, we use multiple LS operators based on the inver-
over (IO) method [24], which is a specialized operator for
the TSP. This can enhance the solution quality of the al-
gorithm, since it provides strong exploitation to the search
process. On the other hand, it may not be effective for DOPs
since we need to maintain a certain level of diversity within
the population to adapt well in DOPs. Since immigrants
schemes have been found beneficial when integrated with
ACO for changing environments [37], we develop a diver-
sity scheme based on random immigrants.

The rest of the paper is outlined as follows. Sect. 2 ad-
dresses the concept of DOPs and briefly reviews the appli-
cation of EAs (including ACO) and MAs for DOPs. Sect. 3
describes the DTSP, which is the focus of this paper. Sect. 4
presents the standard ACO (S-ACO) and P-ACO algorithms,
indicating their differences. Moreover, a description on how
traditional S-ACO and P-ACO algorithms respond to dy-
namic changes is also given. Sect. 5 presents the proposed
M-ACO algorithms for the DTSP, including the LS op-
erators, with their adaptive mechanism, and the diversity
scheme used. Sect. 6 presents the experimental results and
analysis of the performance and robustness of the investi-
gated algorithms. Finally, Sect. 7 gives the conclusions and
discusses relevant future work.

2 Related work

2.1 EAs for DOPs

The environment in many real-world optimization problems,
including the objective function, the decision variables,the
problem instance, the constraints, etc., may change over
time. As a result, the optimum of a problem may change

as well. Optimization problems with such characteristics are
known as DOPs [27].

One of the simplest ways to react to environmental
changes is to consider each change as the arrival of a new
problem and restart the algorithm to solve it from scratch
[47]. However, this strategy requires substantial computa-
tional effort and time, while for DOPs usually the available
re-optimization time is short.

Over the years, EAs have been a subject of an exten-
sive research to solve DOPs since they can transfer knowl-
edge from past environments. However, traditional EAs can-
not adapt well to the new environment when changes occur
once converged. To address the convergence problem, many
strategies have been proposed to enhance the performance
of EAs for DOPs, including diversity increasing or main-
taining schemes [62,63], memory-based schemes [5], and
multi-population schemes [6].

Similarly, ACO algorithms, which are a special class of
EAs, suffer from exactly the same problem when applied
for DOPs. Thus, inspired from the strategies for EAs, many
ACO applications have also been developed for DOPs, such
as P-ACO [20] which inherits EAs characteristics since it
maintains a memory of limited size to store the best ants that
are repaired when a dynamic change occurs and ACO with
immigrants where new ants are introduced on every iteration
(generation) into the population using different schemes,
i.e., random immigrants, elitism-based immigrants, and hy-
brid immigrants, to increase the diversity [37].

2.2 MAs for DOPs

Apart from the strategies described above, which are used
to address the convergence problem of EAs, MAs have also
been used for DOPs [16–18,55,58]. However, existing MAs
that are applied for either stationary or dynamic environ-
ments usually follow the framework of EAs [55], and rarely
the ACO framework.

LS operators have also been found effective when ap-
plied with ACO [50]. Especially, on graph problems, e.g.,
the TSP, ACO algorithms have a great advantage over tradi-
tional EAs. The reason is due to the use of heuristic informa-
tion, which is available from the problem instance itself, i.e.,
the distance between cities. Such information enables ACO
algorithms to have prior knowledge of the problem from the
initial stage, whereas EAs usually start at random.

It is important to mention that ACO algorithms have ex-
tremely bad results when such heuristic information is not
used. Therefore, for problems where heuristic information
is not available, EAs may be a more suitable choice than
ACO algorithms. But, ACO becomes also suitable when it is
applied with a LS operator. Experiments in [14, pp. 97–98]
show that the best performing ACO algorithm, i.e., Max–
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Min Ant System (MMAS) [51], without the use of heuris-
tic information but with a LS operator, is able to generate
good solutions. More specifically, experiments on the TSP
showed that the MMAS with the well-known 2-opt operator
[32] improves significantly the performance of the algorithm
[50]. Similarly, the solution quality of pure EAs is also sig-
nificantly improved using a LS operator [46].

Furthermore, ACO-based MAs have been found benefi-
cial on other applications, such as path planning in sparse
graphs [35], where the solutions found by the ants undergo
local improvement from a modified version of the 2-opt op-
erator. Similarly, the combination of the 2-opt operator with
another specialized operator improves the solution quality
for the vehicle routing problem [64]. Moreover, ACO has
been used as a LS operator for an EA to help the search
process escape from a local optimum on the multiple se-
quence alignment problem [31]. However, almost all ACO-
based MAs have been applied for stationary problems, with
very rare exceptions, such as an extension of the AntNET
algorithm applied on mobile ad hoc networks [56].

3 The DTSP

The TSP is one of the most popular and well-studiedNP-
hard combinatorial optimization problems. It can be de-
scribed as follows: given a collection of cities, we need to
find the shortest path that starts from one city and visits each
of the other cities once and only once before returning to the
starting city. Usually, the problem is represented by a fully
connected weighted graphG = (V,E), whereV is a set of
vertexes andE is a set of edges. The collection of cities is
represented by the setV and the connection between them
by the setE. In addition, the distances between cities are as-
sociated withC set, which are denoted asC = (cij), where
cij is the distance between cityi and cityj.

A lot of algorithms, either exact algorithms or approx-
imation algorithms (also known as heuristics), have been
proposed to solve the stationary TSP [32,39]. Although ex-
act algorithms guarantee to provide the global optimum so-
lution, in the case ofNP-hard problems they need, in the
worst case, exponential time to find it. On the other hand,
approximation algorithms can provide a solution efficiently
but cannot guarantee the global optimum [41,29].

The TSP becomes more challenging and realistic if it is
subject to a dynamic environment. For example, a salesman
wants to distribute items sold on different cities startingfrom
its home city and returning after he visited all the cities toits
home city again. The task is to optimize his time and plan his
tour as efficiently as possible. Therefore, by considering the
distances between cities it can generate the route and start
the tour. However, after some cities are visited long traffic
delays may affect the route, which increases the time planed.

The salesman will need a new alternative route fast, in order
to avoid long traffic delays and complete the task.

In our DTSP case, cities from the setV may be replaced
by new ones over time. In this way, both cities and their links
may change during the execution. For our experiments, the
dynamic environment is generated by taking away half of
the cities from the actual problem instance to construct a
spare pool of cities. The frequency of change, i.e.,f , de-
notes how often new cities from the spare pool replace ones
in the current pool (i.e., the cities left in the actual problem
instance). The degree of change, i.e.,m, denotes how many
cities from the spare pool replace ones in the current pool.
Therefore, a DTSP instance is generated as follows: every
f iterations, a percentagem of randomly chosen cities from
the spare pool are exchanged with the same percentage of
random ones from the current pool. In this way, the size of
the problem instance remains the same through the whole
run. The objective of the DTSP is not only to efficiently
provide the global optimum solution, but also to efficiently
track the changing optimum through different environments.

4 ACO for DOPs

4.1 The S-ACO approach

The S-ACO algorithm was first proposed and applied for the
stationary TSP [10], which imitates the behaviour of real
ants when they search for food from their nest to the food
sources. Ants communicate using pheromone, which is a
chemical substance produced by them and is applied to their
trails. The more pheromone on a specific trail, the higher
the possibility of that trail to be followed by ants. Using this
scheme, ants indirectly communicate and cooperate to com-
plete their food searching task as efficiently as possible.

A population of µ ants construct solutions based on
pheromone trails and some heuristic information. On the ini-
tial stage, all trails are initialized with an equal amount of
pheromones, and each ant is placed on a randomly selected
city. With a probability1 − q0, where0 ≤ q0 ≤ 1 is a pa-
rameter of the decision rule, an antk, chooses the next city
j while being on cityi, probabilistically, as follows:

pkij =
[τij ]

α
[ηij ]

β

∑

l∈Nk
i
[τil]

α
[ηil]

β
, if j ∈ Nk

i , (1)

whereτij is the existing pheromone trail between cityi and
city j, ηij is the heuristic information available a priori,
which is defined as1/dij , wheredij is the distance between
city i and cityj. Nk

i denotes the neighbourhood of cities of
antk when being on cityi. α andβ are the two parameters
that determine the relative influence of pheromone trail and
heuristic information, respectively. With the probability q0,
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the antk chooses the next city with the maximum probabil-
ity, i.e., cityz, which satisfies the following formula:

z = argmax
j∈Nk

i

[τij ]
α
[ηij ]

β (2)

This process continues until all ants have visited all cities
once. Thereafter, ants deposit pheromone in order to update
their pheromone trails. Ants retrace their solutions and de-
posit pheromone according to their solution quality on the
corresponding trails, as follows:

τij ← τij +∆τkij , ∀ (i, j) ∈ T k, (3)

where∆τkij = 1/Ck is the amount of pheromone that antk
deposits andCk is the cost of the tourT k constructed by ant
k. In addition, a constant amount of pheromone is deduced
from all trails due to the pheromone evaporation, which is
defined as:

τij ← (1− ρ) τij , ∀ (i, j), (4)

where0 < ρ ≤ 1 is the rate of evaporation. Lowering the
pheromone values enables the algorithm to forget bad deci-
sions made in previous iterations [14].

Several variations of the first ACO algorithm, i.e., the
Ant System (AS) [10], have been proposed to improve its
performance. They differ in the way pheromone trails are
updated [4,12,50]. One of the most studied and best per-
forming variation is the MMAS [51]. The main difference
of MMAS from AS lies in the way that pheromone trails
are manipulated. In MMAS, either the best-so-far ant or the
iteration-best ant is allowed to update their pheromone trails.
However, this behaviour may lead the algorithm into a stag-
nation behaviour, where all ants follow the same tour due
to the high intensity of pheromone trails. To address this
issue, the pheromone trail values are kept to the interval
[τmin, τmax] and they are re-initialized toτmax every time
the algorithm shows a stagnation behaviour or when no im-
proved tour has been found for several iterations [14].

Ants in MMAS construct their solutions as in AS and
the evaporation of pheromone is also applied as in Eq. (4)
but with a smaller evaporation rate. On the other hand, the
deposit of new pheromone is defined as follows:

τij ← τij +∆τbest
ij , ∀ (i, j) ∈ Tbest, (5)

where Tbest is the tour of the best ant and∆τbest
ij =

1/Cbest, whereCbestis the cost of the tourTbest. How-
ever, the ant allowed to deposit pheromone may be either
the best-so-far ant, in which case∆τbest

ij = 1/Cbs, where
Cbs is the tour cost of the best-so-far ant, or the iteration-
best ant, in which case∆τbest

ij = 1/Cib, whereCib is the
tour cost of the best ant of the current iteration.

Algorithm 1 Standard Ant Colony Optimization (S-ACO)
1: Initialize parametersα, β, q0, ρ, andµ
2: Initialize pheromone trailsτinit

3: while termination conditionnot satisfieddo
4: for k := 1 to µ do
5: Construct a solution by antk
6: Update statistics
7: end for
8: Evaporate pheromone with the rateρ using Eq. 4
9: if AS is selectedthen

10: for k := 1 to µ do
11: Deposit pheromone regarding antk using Eq. 3
12: end for
13: end if
14: if MMAS is selectedthen
15: best := find the best ant
16: Deposit pheromone regarding antbest using Eq. 5
17: Limit pheromone trails in the range[τmax, τmin]
18: end if
19: if environmental change is detectedthen
20: Re-initialize pheromone trailsτinit

21: end if
22: end while

Algorithm 1 shows the framework of S-ACO algorithms
with variants AS and MMAS. MMAS is much more ex-
ploratory than AS since its different pheromone manipu-
lation scheme maintains a certain level of diversity, which
avoids the population to get trapped in a local optimum so-
lution.

4.2 The P-ACO approach

The P-ACO algorithm, shown in Algorithm 2, is a memory-
based version of the S-ACO algorithm, which was first ap-
plied on the stationary TSP [21] and later on the DTSP [23].
It differs from the S-ACO framework since it maintains a
memory (population-list) of limited size, which is used to
store the best ants. The population-list is used every itera-
tion to update the pheromone, instead of the whole popula-
tion. The pheromone trails depend on the ants stored in the
population-list. Evaporation of pheromone is not applied in
P-ACO.

The initial phase and the first iterations of the P-ACO
algorithm work in the same way as in the S-ACO algorithm.
The pheromone trails are initialized with an equal amount
of pheromone and the population-listM of sizeK is empty.
For the firstK iterations, the iteration-best ant deposits a
constant amount of pheromone, which is defined as follows:

τij ← τij +∆τkij , ∀ (i, j) ∈ T k, (6)

where∆τkij = (τmax− τinit)/K. Moreover,τmax andτinit
denote the maximum and initial pheromone amount, respec-
tively. This positive update procedure of Eq. 6 is performed
whenever an ant enters the population-list.
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Algorithm 2 Population-Based Ant Colony Optimization
(P-ACO)
1: Initialize parametersα, β, q0, µ, andK
2: Initialize pheromone trailsτinit

3: M := empty
4: while termination conditionnot satisfieddo
5: for k := 1 toµ do
6: Construct a solution by antk
7: Update statistics
8: end for
9: best := find the best ant

10: M .enQueue(best)
11: Add pheromone using Eq. 6
12: if M is full then
13: M .deQueue()
14: Delete pheromone using Eq. 7
15: end if
16: if environmental change is detectedthen
17: Re-initialize pheromone trailsτinit

18: Repair ants inM
19: for each antk in M do
20: Deposit pheromone regarding antk using Eq. 6
21: end for
22: end if
23: end while

On iterationK + 1, the iteration-best ant enters the
population-list and updates its pheromone trails positively.
However, the ant that entered the population-list first needs
to be removed in order to make room for the iteration-best
ant, and thus, a negative constant update to its corresponding
pheromone trails is done, which is defined as:

τij ← τij −∆τkij , ∀ (i, j) ∈ T k, (7)

where∆τkij is defined as in Eq. 6. This mechanism keeps
the pheromone trails between a certainτmin value, which is
equal toτinit, and aτmax value, which can be calculated by
τinit +

∑K

k=1
∆τkij .

This strategy is based on theAge of ants [20]. However,
other strategies have also been proposed by researchers,
such asQuality andProb [20]. From the experimental re-
sults in [20], the defaultAge strategy is more consistent and
performs better than the others, since other strategies have
more chances to maintain identical ants into the population-
list, which leads the algorithm to the stagnation behaviour.
This is due to the fact that high levels of pheromone will
be generated into a single trail and dominate the search
space. Moreover, we have seen the importance of keeping
the pheromone trails within certain bounds from the MMAS
[50], which is one of the state-of-the-art ACO algorithms for
stationary problems [2].

4.3 Response to environmental changes

Theoretically, ACO algorithms are able to adapt to dynamic
changes since they are inspired from nature, which is a con-
tinuous changing process [27]. Technically, they can adapt

by transferring knowledge from past environments [8]. So
far, the description of ACO algorithms above has been made
assuming stationary environments. Considering the DTSP,
ACO needs to be modified in order to adapt to environmen-
tal changes efficiently.

The dynamics used in our DTSP test case, i.e., adding
or deleting cities, affects the genotypic level and, usually,
the phenotypic level of the ant. Therefore, considering that
the solutions are affected by the change in iterationi, the
pheromone trails will not make sense in iterationi + 1. For
the S-ACO algorithms that follow the traditional framework,
it is vital to re-initialize the pheromone trails toτinit after a
dynamic change, which acts as a restart of the algorithm.

For the P-ACO approach, the solutions stored in the
population-list are repaired heuristically and the pheromone
trails are re-generated accordingly. This strategy is called
KeepElitst [23] and uses two greedy heuristics to repair the
genotype of the population: (1) the cities that are no longer
present are removed from the solutions; and (2) the new
cities are placed individually in a greedy fashion where they
cause the minimum increase on the phenotype.

5 Proposed M-ACO algorithms for the DTSP

5.1 Framework of ACO-based MAs

Our proposed M-ACO algorithm is not based on the S-ACO
framework but on the P-ACO algorithm since P-ACO is
more suitable for DOPs. Experiments show that P-ACO is
competitive with a S-ACO with simple re-initialization of
pheromones on even large and slow environmental changes,
where the restart strategy has enough time to converge
to a good optimum and the environments are not similar,
which makes any knowledge transfer inefficient. Moreover,
P-ACO is significantly better on slight and fast environmen-
tal changes [14, pp. 264–265].

In M-ACO, after constructing solutions, the best ant is
selected to be improved by a LS operator. The LS operator
used is an adaptive version of the IO operator, which is one
of the leading operators for the TSP [24]. If a better solution
is found after each LS step, it replaces the selected best ant.
After the LS steps finish, the resulting ant is added into the
population-list and the pheromone trails are updated accord-
ingly, following the update policy of the P-ACO algorithm.

Furthermore, a diversity scheme based on random im-
migrants is applied with the M-ACO algorithm in case the
ants within the population-list are identical. The traditional
P-ACO algorithm faces a high risk to maintain identical
ants into the population-list and prevents ants to explore
other areas in the search space because a high intensity
of pheromone is generated into a single trail. The diver-
sity scheme checks whether the population-list keeps a cer-
tain diversity. If not, the random immigrants scheme is ac-
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Algorithm 3 Proposed M-ACORI Algorithm
1: Initialize parametersα, β, q0, µ, andK
2: Initialize pheromone trailsτinit

3: M := empty
4: while termination conditionnot satisfieddo
5: for k := 1 toµ do
6: Construct a solution by antk
7: Update statistics
8: end for
9: best := find the best ant

10: AIO(best) using Algorithm 5
11: M .enQueue(best)
12: Add pheromone using Eq. 6
13: if M is full then
14: M .deQueue()
15: Delete pheromone using Eq. 7
16: end if
17: if diversity ofM is zerothen
18: temp := generate a random immigrant
19: Replace a randomly selected ant inM by temp
20: end if
21: if environmental change is detectedthen
22: Re-initialize pheromone trailsτinit

23: Repair ants inM
24: for each antk in M do
25: Deposit pheromone regarding antk using Eq. 6
26: end for
27: end if
28: end while

tivated to replace one ant in the population-list with a ran-
dom one, in order to help ants adapt well to the next envi-
ronment. The complete framework of our proposed M-ACO
algorithm with the random immigrants scheme, denoted M-
ACORI, is shown in Algorithm 3.

5.2 Inver-over operator

It has been shown that the combination of LS heuristics and
evolutionary systems enhances the performance of EAs and
ACO algorithms on hard optimization problems [45,50].
LS helps the population to escape local optimum efficiently
and directs individuals (or ants) into promising areas in the
search space.

The IO operator is one of the leading operators used as
local optimizers in EAs for the stationary TSP [24]. It is
based on the inversion operator, where two selected cities
form a segment which is reversed. It has been applied with
a S-ACO algorithm for the stationary TSP [3], where IO is
performed among the best and second best ants, rather than
the whole population, resulting in two offspring. The best
two individuals from the pool created by the two parents
and two offspring are selected. The LS operator is applied
every iteration to help the ACO algorithm escape from local
optimum, improve its solution quality, and increase its con-
vergence speed. The algorithm was tested on relatively small
stationary TSP instances (up to 75 cities) and shows a bet-

Algorithm 4 IO(S, p)
1: S′ := S
2: select randomly a cityc from S′

3: if rand() ≤ p then
4: select the cityc′ from the remaining cities inS′

5: else
6: select randomly another individualS′′ from the population
7: assign toc′ the next city to the cityc ∈ S′′

8: end if
9: inverse the tour from the next city of cityc to city c′ in S′

10: if S′ is better thanS then
11: S := S′

12: end if

ter global search ability and a higher convergence rate than
a S-ACO algorithm and a hybrid ACO algorithm embedded
with traditional crossover and mutation operators. Further-
more, it is shown that a large number of iterations of the IO
operator does not lead to better results.

In fact, the IO operator can be seen as a new EA itself
since it consists of crossover and mutation. The difference
from a pure EA lies in that: (1) each individual competes
with its offspring only, and (2) it uses only one operator,
which is the combination of a blind inversion (BI) and a
guided inversion (GI). The pseudo-code of IO is presented in
Algorithm 4. The BI can be seen as a mutation operator and
has a lower probability to be executed since the second city,
which determines the size of the segment to be reversed, is
selected randomly from the same individual of the first city.
On the other hand, the GI can be seen as a crossover opera-
tor, where the second city is determined according to another
individual randomly selected from the current population.
An example of BI and GI on a TSP solution is presented in
Fig. 1. The selection probability of BI and GI is determined
by the parameterp in Line 3 of Algorithm 4. If p = 1, the
inversion becomes a BI, and ifp = 0, it becomes a GI. The
parameterp used in the IO operator is set to 0.02 by default.

Both inversions provide exploration and maintain suf-
ficient diversity within the population. However, once the
population converges to a solution, the GI may not be effec-
tive anymore since the randomly selected individual has a
high probability to be identical with the current one. Such
behaviour may not be sufficient for the DTSP because no
valid inversion will be performed, which decreases the ex-
ploration ability. However, it may be advantageous to the
convergencespeed of the population because the exploration
provided is guided and can help to provide a solution effi-
ciently in the DTSP. On the other hand, BI may delay the
convergence speed, but can help the population to escape
from a local optimum if it has converged to one. Therefore,
both types of inversions can be useful for the DTSP.
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Fig. 1 Example of BI and GI operators on a TSP solution

5.3 Adaptive inver-over operator

As discussed above, the GI operator may be advantageous
during the first iterations of the algorithm to enhance the
convergence speed and the BI operator may be advantageous
to enhance the solution quality. GI is not effective when the
population has converged since, possibly all solutions within
the population are identical, thus it cannot explore any new
areas in the search space. During that period of time, BI may
be effective to increase the diversity and move the popula-
tion into new promising areas.

The use of multiple LS operators within a MA frame-
work has been found advantageous to address the issue of
problem-dependency of LS operators [49,52,55], e.g., each
inversion type may be effective for some classes of problem
instances. Also, it can be advantageous in different popula-
tion evolution periods, e.g., BI is effective on later stages of
the algorithm and GI is effective on the initial stages of the
algorithm.

There are different adaptive mechanisms used to pro-
mote cooperation and competition between different LS op-
erators. Multiple LS schemes can be executed in parallel
based on competition and a learning mechanism can be used
to give greater chances to those efficient LS operators to be
used at a later stage [28,44]. On the other hand, multiple LS
schemes can also be executed based on cooperation, where
different LS operators are activated during different popula-
tion evolution periods [9,42]. In the adaptive IO (AIO) oper-
ator that is applied in our proposed M-ACO algorithms, both
BI and GI work together. The two inversion operators com-
pete and cooperate in order to obtain the advantages of both

Algorithm 5 AIO(best)
1: if an environmental change occursthen
2: pbi := pgi := 0.5;
3: end if
4: ξbi := ξgi := 0
5: for i := 1 to ls do
6: if rand() ≤ pbi then
7: IO(best, 1.0) using Algorithm 4
8: Updateξbi
9: else

10: IO(best, 0.0) using Algorithm 4
11: Updateξgi
12: end if
13: end for
14: Re-calculatepbi andpgi

of them during different periods when they are effective, as
described above.

BI and GI are denoted as an IO operator withp = 1.0

andp = 0.0, in Lines 7 and 10 of Algorithm 5, respectively.
In the AIO operator, both BI and GI are selected probabilis-
tically at every step of an LS operation on every iteration
of the algorithm. Letpbi andpgi denote the probability of
applying BI and GI to the individual selected for LS, re-
spectively, wherepbi + pgi = 1. Initially, the probabilities
are both set to 0.5 in order to promote a fair competition
between the two operators. The probabilities are adjusted
according to the improvement each inversion operator has
achieved on every LS step. The probability of the operator
with the higher improvement will be increased using a sim-
ilar mechanism as introduced in [55].

Let ξ denote the degree of improvement of the selected
ant after an LS step, which is calculated as follows:

ξ =

∣

∣

∣
Cbest′ − Cbest

∣

∣

∣

Cbest
, (8)

whereCbest′ is the tour cost of the best ant after applying
an LS step (using BI or GI) andCbest is the tour cost of the
best ant before applying the LS step. When the number of
LS steps reaches the preset step size, denoted asls, the de-
gree of improvement regarding BI and GI operators, denoted
asξbi andξgi, respectively, is calculated and used to adjust
the probabilities of selecting BI and GI in the next iteration,
pbi(t+ 1) andpgi(t+ 1), as follows:

pbi(t+ 1) = pbi(t) + ξbi(t), (9)

pgi(t+ 1) = pgi(t) + ξgi(t), (10)

pbi(t+ 1) =
pbi(t+ 1)

pbi(t+ 1) + pgi(t+ 1)
, (11)

pgi(t+ 1) = 1− pbi(t+ 1), (12)

whereξbi(t) andξgi(t) are the total degree of improvement
achieved by BI and GI operators at iterationt, respectively.
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Both pbi andpgi are set to their initial value, i.e., 0.5,
when an environmental change occurs in order to re-start
the cooperation and competition when a new environment
arrives. The pseudo-code of AIO is given in Algorithm 5.

5.4 Increasing and maintaining the population diversity

The main problem of EAs when applied on DOPs is their
premature convergence. Once the algorithm has converged
to an optimum, it cannot adapt well to the new environ-
ment when a change occurs. Even if LS is applied within
an EA, the problem will still remain unsolved, or become
even worse, because of the strong exploitation LS provides.
As a result, the population will later on lose the capabilityof
exploring new promising areas in the search space.

This problem becomes even bigger with ACO algo-
rithms because of the way ants construct their solutions.
They use heuristic information, i.e., the distance between
cities for the TSP, and the population of ants is more likely
to be identical from the first iterations. A natural way to
address this problem is to increase the constant parameter
of pheromone in Eq. (1), in order to force ants to consider
more the pheromone trail values over the heuristic informa-
tion values to increase exploration, when they construct their
tours. But, then the algorithm faces a high risk of random-
ization.

Immigrants schemes have been found effective when ap-
plied in P-ACO for DTSPs [37], since they maintain a cer-
tain level of diversity within the population. The general
idea of immigrants schemes is to introduce random immi-
grants, to replace a percentage of individuals in the cur-
rent population every iteration [25]. However, in M-ACO
there is no need to generate immigrants every iteration to
let the LS work without disturbing its optimization process.
Therefore, to both address the convergence issue and limit
the disruption of the optimization process, random immi-
grants are introduced when a predefined diversity thresh-
old is reached. This threshold is calculated by the diversity
within the population-list, since it is based on the P-ACO
algorithm. On every iterationi of run j, the diversity of the
population-list is calculated as follows:

Divij =
1

K(K − 1)

K
∑

p=1

K
∑

q 6=p

CE(p, q), (13)

whereK is the size of the population-list andCE(p, q) is
a similarity metric between antp and antq, which is calcu-
lated as follows:

CE(p, q) = 1−
common edges
number of cities

. (14)

If the diversity of the population-list, calculated by
Eq. 13, is 0.0, it means that all the ants are identical. As a

result, a high intensity of pheromone will be generated into
one trail, forcing the population to converge into one path
only. Therefore, every time the population reachesDiv =

0.0, a random immigrant ant is generated to replace one cur-
rent ant in the population-list.

6 Experimental study

In order to investigate the performance of proposed M-ACO
algorithms for the DTSP, five sets of experiments are carried
out in this study based on a set of test DTSPs constructed
from benchmark stationary TSP instances. The first set of
experiments aims to analyse the effect of LS operators on
the performance of M-ACO algorithms for the stationary
TSP instances. The second set of experiments analyses the
effect of the diversity scheme (i.e., the random immigrants
scheme) on the performance of M-ACO for the DTSP. The
third set of experiments compares the overall performance
of M-ACORI with other ACO algorithms from the literature
for the DTSP. The fourth set of experiments compares the
overall robustness of M-ACORI with other ACO algorithms
from the literature for the DTSP. Finally, the fifth set of ex-
periments investigates the performance of M-ACORI under
dynamic environments of varying degrees of change speed
and change severity.

6.1 Experimental setup

In the experiments, all the algorithms were tested on the
DTSP instances that are constructed from three stationary
benchmark TSP instances taken from TSPLIB,1 which are
visually illustrated in Fig. 2. Our implementation closely
follows the guidelines of the ACOTSP2 implementation,
which is published by the ACO authors. By taking each sta-
tionary problem instance, we have generated dynamic en-
vironments using the method described in Sect. 3. The pa-
rametersf andm indicate the frequency and magnitude of
dynamic changes. Thef parameter is defined as the number
of iterations between two environmental changes, and the
m parameter is defined as the percentage of selected cities
from the spare pool that replace other cities from the actual
instance. The value off was set to 20 and 100, indicating
environmental changes of high and low frequencies, respec-
tively. The value ofm was set to 10, 25, 50, and 75, indi-
cating the degree of environmental changes from small, to
medium, to large, respectively. As a result, eight dynamic
environments, i.e., two values off × four values ofm, were
generated from each stationary TSP instance in order to sys-
tematically analyse the adaption and searching capabilities
of each algorithm on the DTSP.

1 See http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
2 See http://www.aco-metaheuristic.org/aco-code.
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eil76 kroA100

kroB200 att532

Fig. 2 The structure of the TSP instances used in the experiments.

Table 1 Parameter settings for the algorithms investigated, where
Cnn is the length of a tour generated by the nearest-neighbour heuris-
tic andc is the number of cities of the given problem instance

Algorithm τinit α β ρ K q0 µ ls

M-ACOs 1/(c − 1) 1 5 - 3 0.9 30 20
P-ACO 1/(c − 1) 1 5 - 3 0.9 50 -
S-ACO 1/ρCnn 1 5 0.02 - 0.0 50 -

For each algorithm on a DTSP instance,N = 30 in-
dependent runs were executed on the same random envi-
ronmental changes. The algorithms were executed forG =

1000 iterations (or generations) and an observation was
taken on each iteration. The rest of the parameters used,
and found beneficial, for the algorithms are shown in Ta-
ble 1, whereτinit indicates the value of pheromone set in
the initial phase,α andβ determine the relative influence of
pheromone and heuristic information on the construction of
tours, respectively,ρ is the pheromone evaporation rate used
in the S-ACO, but not for P-ACO and M-ACOs,3 K is the
length of the population-list for the P-ACO and M-ACOs,q0
determines the greediness of the ant’s decision rule andµ is
the number of ants which determine the population size. The
proposed M-ACO algorithm has a smaller population size

3 The term M-ACOs denotes all ACO-based MAs used in the exper-
iments

than the others since they perform more evaluations with
the LS steps, i.e.,ls = 20. This is because we want to exe-
cute the same number of evaluations in each iteration for all
algorithms in order to have a fair comparison. Note that S-
ACO uses the MMAS framework, and P-ACO uses theAge
update policy.

6.2 Measurements for dynamic environments

There are several performance measures that have been used
to compare EAs (including ACO algorithms) for DOPs [40,
57]. However, there is not any agreed method to measure the
behaviour [40], since researchers pay attention to different
aspects when they analyze algorithms in dynamic environ-
ments [48]. Some researchers are interested in the extreme
behaviour of the systems, i.e., the best result an algorithm
can obtain, to investigate how well their system can do. On
the other hand, others are interested in the population as a
whole, i.e., the population distribution, to investigate and un-
derstand population-based algorithms as representation of
evolutionary systems. In this paper, we use the measure-
ments discussed in [48], i.e.,performance and robustness,
and both their best and average measures are examined and
reported.
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The performance is one of the most traditional measures
of an algorithm which shows how well a system can do. The
fitness of the best-so-far ant after a change is used to evaluate
the performance. Therefore, the overallBest Performance
Pbestand overallAverage Performance Pavg are defined,
respectively, as follows:

Pbest=
1

G

G
∑

i=1

(
1

N

N
∑

j=1

Pbest
ij ), (15)

Pavg=
1

G

G
∑

i=1

(
1

N

N
∑

j=1

P
avg
ij ), (16)

whereG is the total number of iterations,N is the number of
runs andPbest

ij andP
avg
ij are the best-so-far tour cost (after

a change) and the average tour cost of the whole population
of iterationi of runj, respectively.

The robustness is a measure which shows the persistence
of the algorithm. The previous performance measure may
not be enough to have a complete analysis of the algorithms
for DOPs. Therefore, it is also important to measure the ro-
bustness of the algorithms [26]. As a result, theBest Robust-
ness Rbest

i and theAverage Robustness RAVG
i of iteration

i over all runs, are defined, respectively, as follows:

Rbest
i =

1

N

N
∑

j=1

Rbest
ij , (17)

R
avg
i =

1

N

N
∑

j=1

R
avg
ij , (18)

whereRbest
ij andR

avg
ij are the best robustness and the aver-

age robustness of iterationi of runj, respectively, which are
defined as follows:

Rbest
ij =















1, if Pbest
i

Pbest
i+1

> 1

Pbest
i

Pbest
i+1

, otherwise,
(19)

R
avg
ij =















1, if P
avg
i

P
avg
i+1

> 1

P
avg
i

P
avg
i+1

, otherwise,
(20)

A higher result from Eqs. 17 or 18 indicates a higher robust-
ness level, which means that the solution quality is more
persistent.

6.3 Experimental analysis on the effect of LS operators

We first study the effect of BI, GI and AIO LS operators
when applied to P-ACO on the stationary test problems.
Moreover, the diversity scheme of random immigrants is
applied to enhance the performance of the MAs. We use
M-ACORI1, M-ACORI2, and M-ACORI3 to denote M-
ACORI with BI, M-ACORI with GI, and M-ACORI with
the proposed AIO which combines both BI and GI, respec-
tively. The experimental results are shown in Fig. 3 and sev-
eral results can be observed.

First, it is obvious that all MAs outperform the P-ACO
algorithm on all the test problems as expected since they
converge to a much better solution. However, different MAs
work better on different instances. M-ACORI1 locates a bet-
ter solution onkroA100, M-ACORI2 oneil76, and M-
ACORI3 onkroB200. This result indicates that LS oper-
ators are problem-dependent, which is natural since it is al-
most impossible to develop an algorithm to outperform the
remaining algorithms on all problem instances.

Second, M-ACORI3, which uses the proposed AIO, al-
ways performs reasonably well since it combines both mer-
its of BI and GI, i.e., the convergence speed and solu-
tion quality. M-ACORI3 converges equally fast as the other
two algorithms on the first iterations. However, it requires
slightly more time than the others to locate a good solution.
Thus, it is a good choice for the DTSP and will be used for
the rest of our experiments, and it will be denoted as M-
ACORI for the rest of the paper.

6.4 Experimental analysis on the effect of the diversity
scheme

In the second set of experiments, we study whether the di-
versity provided by the random immigrants scheme is ef-
fective on ACO-based MAs. In the experiments, we com-
pare M-ACO and M-ACORI, which denotes an ACO-based
MA without the diversity scheme and an ACO-based MA
with the proposed diversity scheme, respectively. In the first
section of Table 2, the results of theBest Performance are
given and in the second section the corresponding statistical
results of comparing the algorithms by the two-tailedt-test
with 58 degree of freedom at a 0.05 level of significance
are given. In Table 2, “s+” or “ s−” indicates that the first
algorithm or the second algorithm is significantly better, re-
spectively, whereas “∼” indicates that the two algorithms
are statistically equivalent. From Table 2, several results can
be observed.

First, the proposed diversity scheme efficiently improves
the performance of M-ACO, since M-ACORI is signifi-
cantly better in almost all dynamic test cases. This is due to
the fact that once the population converges to an optimum,
random immigrant ants are generated and replace other ants
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Fig. 3 Experimental results regarding theBest Performance of M-ACOs in comparison with traditional P-ACO on stationary test problems.

Table 2 Experimental results regarding theBest Performance of ACO-based MAs with diversity scheme (M-ACORI) and without a diversity
scheme (M-ACO).

Algorithms eil76 kroA100 kroB200

Best Performance
f = 20, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
M-ACO 357.6 369.3 375.4 376.9 16568.4 16298.1 16634.4 16661.2 23004.4 23429.9 23174.2 23387.3
M-ACORI 356.9 368.7 374.6 375.9 16530.4 16269.6 16598.4 16631.3 22973.0 23392.5 23154.8 23391.4
f = 100, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
M-ACO 363.1 367.3 364.3 374.8 16801.8 16177.3 16278.1 16391.4 22272.9 22913.6 22445.9 22796.2
M-ACORI 361.9 366.0 362.7 372.9 16724.9 16124.8 16210.3 16285.8 22174.0 22802.8 22319.8 22687.6

t-Test Result
f = 20, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
M-ACO⇔M-ACORI s− s− s− s− s− s− s− s− ∼ s− ∼ ∼

f = 100, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
M-ACO⇔M-ACORI s− s− s− s− s− s− s− s− s− s− s− s−

into the population-list and helps the LS to escape from a
possible local optimum.

Second, on all test cases withf = 100, which denotes
slow changing environments, M-ACORI is significantly bet-
ter. However, on some cases withf = 20, which denotes
fast changing environments, M-ACORI performs equivalent
with M-ACO. The reason lies in the time the proposed AIO
needs in order to be effective, as discussed in Sect. 6.3. Pos-
sibly a scheme that can provide more diversity may be suit-
able on cases where the environment changes fast.

Moreover, in Fig. 4, theTotal Diversity of the two algo-
rithms is presented, which is calculated as follows:

Divtotal =
1

G

G
∑

i=1

(
1

N

N
∑

j=1

Divij), (21)

whereG is the total number of iterations,N is the total num-
ber of runs, andDivij is calculated as in Eq. 13 but for the
actual ant population instead for the population-listM . The
diversity of ACO, in general, can never reach a very high
level. This is due to the guidance ants gain from the heuris-
tic information, i.e, the distance between cities, when they
are constructing their solutions. Therefore, even a small in-
crease in the diversity of the population has a significant im-
pact on the performance of the ACO algorithms. This can
be observed from both Fig. 4 and Table 2, where M-ACORI

maintains a higher diversity level than M-ACO and achieves
betterBest Performance.

6.5 Experimental study regarding the overall performance

In the third set of experiments, we study the overall perfor-
mance (bothBest Performance andAverage Performance)
of M-ACORI in comparison with other ACO algorithms (S-
ACO and P-ACO). The comparison results are given in Ta-
ble 3, by the two-tailedt-test with 58 degree of freedom
at a 0.05 level of significance, where “s+”, “ s−”, and “∼”
have the same meaning as in Table 2. In addition, to visu-
ally observe the dynamic performance of the algorithms, the
results regarding theBest Performance and theAverage Per-
formance are plotted in Figs. 5 and 6, respectively. For both
figures, the two values ofm, i.e.,m = 10% andm = 75%,
are plotted, which represent slight and significant changes,
respectively. Thef value with a fast frequency of change,
i.e., f = 20, is used in Fig. 5 for theBest Performance,
and with a slow frequency of change, i.e.,f = 100, is used
in Fig. 6 for theAverage Performance. From Table 3 and
Figs. 5 and 6, several results can be observed.

First, regarding the overallBest Performance results,
the proposed M-ACORI algorithm significantly outperforms
both P-ACO and S-ACO algorithms on almost all problem
instances, with either slight or significant changes and with
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Fig. 4 Experimental results regarding theTotal Diversity of population of M-ACORI in comparison with M-ACO on dynamictest problems.

Table 3 Statistical test results regarding the overall performance of comparing M-ACORI with other ACO algorithms.

Algorithms eil76 kroA100 kroB200

Best Performance
f = 20, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACO⇔P-ACO s− s− s− s− s− s− s− s− s− s− s− s−
S-ACO⇔M-ACORI s− s− s− s− s− s− s− s− s− s− s− s−
P-ACO⇔M-ACORI s− s− s− s− s− s− s− s− s− s− s− s−
f = 100, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACO⇔P-ACO s− s− s− s− s− s− − s− s− s− s− s−
S-ACO⇔M-ACORI s− s− s− s− s− s− s− s− s− s− s− s−
P-ACO⇔M-ACORI s− s− s− s− s− s− s− s− s− s− s− s−
Average Performance
f = 20, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACO⇔P-ACO s− s− s− s− s− s− s− s− s− s− s− s−
S-ACO⇔M-ACORI s− s− s− s− s− s− s− s− s− s− s− s−
P-ACO⇔M-ACORI s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
f = 100, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACO⇔P-ACO s− s− s− s− s− s− − s− s− s− s− s−
S-ACO⇔M-ACORI s− s− s− s− s− s− s− s− s− s− s− s−
P-ACO⇔M-ACORI ∼ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

either fast or slow changes. The reason for this result is that
the AIO operator, which is used as the LS operator in M-
ACO, helps the population to converge fast at the early it-
erations, using GI, and later on maintains diversity with BI
and the random immigrants scheme. This effect can be ob-
served from Table 3 and Fig. 5, where the performance of M-
ACORI is significantly better than P-ACO after a dynamic
change. This is because P-ACO has a high risk of storing
identical ants to the population-list, which leads to a high
intensity of pheromone trails. The trails that contain a high
intensity of pheromone lead the algorithm to a stagnation be-
haviour, i.e., the premature convergence of the P-ACO algo-

rithm. However, the AIO operator with the diversity scheme
used in M-ACORI is able to overcome this problem because
it maintains a certain level of diversity in the population-list.
As a result, the trails with a high intensity of pheromone are
eliminated using the adaptive and evolutionary components
of M-ACORI.

Second, it was expected that the S-ACO with a simple
pheromone re-initialization strategy would outperform both
P-ACO and M-ACORI algorithms on problem instances
with significant and slowly changing environments, since
the ants stored in the population-list of P-ACO and M-
ACORI will not make much sense when different environ-
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Fig. 5 Experiments regarding the overallBest Performance of M-ACORI with other ACO algorithms on dynamic environments.

ments are not similar. However, in our experiments, this
is not the case since S-ACO is always significantly worse
than the other algorithms. There are several reasons to ex-
plain this: (1) S-ACO pheromone trails are re-initialized
with an equal amount of pheromone, without any guidance,
(2) the ants stored in the population-list are repaired heuris-
tically based on the new changing environment, using the
KeepElitist strategy [20], and the pheromone trails are
re-initialized with guidance, (3) the initial experimentsof
comparing a traditional P-ACO and S-ACO with simple re-
initialization strategy showed that they are competitive even
when the changes are significant [14, pp. 264-265], and (4)
apart from the guidance of the pheromone trails and the
heuristic information, the AIO operator used in M-ACORI
provides even more guidance to the population.

Third, regarding the overallAverage Performance re-
sults, M-ACORI performs significantly worse than P-ACO.
This is due to the fact that the LS operator in M-ACORI
is applied only to the best ant in every iteration and not to
the whole population. Therefore, only one ant improves its
solution quality. In addition, the diversity scheme based on
random immigrants avoids the population to converge into
a single optimum. It is natural that the population may ex-
plore areas in the search space that are not advantageous for
the current environment.

Fourth, as it was expected the S-ACO outperforms both
P-ACO and M-ACORI on theAverage Performance in
slowly changing environments with significant changes be-
cause the ants stored in the population-list of P-ACO and
M-ACORI do not seem to make much sense when the differ-
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Fig. 6 Experiments regarding the overallAverage Performance of M-ACORI with other ACO algorithms on dynamic environments.

ent environments are not similar. Therefore, using the restart
strategy of S-ACO seems making more sense to start from
scratch. Similarly, with theBest Performance, this is not the
case in our experiments due to one of the possible reasons
discussed above.

6.6 Experimental study regarding the overall robustness

In the fourth set of experiments, we study the overall ro-
bustness (bothBest Robustness andAverage Robustness) of
M-ACORI in comparison with other ACO algorithms (S-
ACO and P-ACO). The comparison results are given in Ta-
ble 4, by the two-tailedt-test with 58 degree of freedom at a
0.05 level of significance, where “s+”, “ s−”, and “∼” have

the same meaning as explained before. In addition, to visu-
ally observe the dynamic performance of the algorithms, the
results regarding theBest Robustness and theAverage Ro-
bustness are plotted in Figs. 7 and 8, respectively. For both
figures, the two values ofm, i.e.,m = 10% andm = 75%,
are plotted, which represent slight and significant changes,
respectively. Thef value with a fast frequency of change,
i.e., f = 20, is used in Fig. 7 for theBest Robustness, and
with a slow frequency of change, i.e.,f = 100, is used in
Fig. 8 for theAverage Robustness. From Table 4 and Figs. 7
and 8, several results can be observed.

First, in general, all algorithms have a high robustness
level due to the use of the heuristic information, i.e.,η,
which is used in the probabilistic rule of ants in Eq. 1. In
[63], it was discussed that performance and robustness can-
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Table 4 Statistical test results regarding the overall robustnessof comparing M-ACORI with other ACO algorithms.

Algorithms eil76 kroA100 kroB200

Best Robustness
f = 20, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACO⇔P-ACO ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

S-ACO⇔M-ACORI ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

P-ACO⇔M-ACORI ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

f = 100, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACO⇔P-ACO ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

S-ACO⇔M-ACORI ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

P-ACO⇔M-ACORI ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

Average Robustness
f = 20, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACO⇔P-ACO s+ s+ s+ s+ s+ s+ ∼ s+ s+ s+ s+ s+
S-ACO⇔M-ACORI s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
P-ACO⇔M-ACORI ∼ ∼ ∼ ∼ ∼ ∼ s+ ∼ ∼ ∼ ∼ ∼

f = 100, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
S-ACO⇔P-ACO s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
S-ACO⇔M-ACORI s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
P-ACO⇔M-ACORI ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

not be optimized simultaneously. This may be true for EAs,
but not always true for ACO algorithms, especially ACO-
based MAs, because of the prior knowledge they have be-
forehand and the extra knowledge from the LS operation.
As a result, the population of ants cannot reach an extremely
high diversity level, even with a global re-initializationof
pheromone trails, to force the robustness to fall. This can
be observed from the results where M-ACORI has a bet-
ter performance than P-ACO while their robustness is not
significantly different. For example, P-ACO and M-ACORI
slightly sacrifice theirBest Robustness for the sake ofBest
Performance whereas they significantly sacrifice theirAver-
age Robustness for the sake ofAverage Performance. This
can be observed from the statistical test results in Tables 3
and 4.

Second, regarding the overallBest Robustness results,
the proposed M-ACORI algorithm is slightly beaten by
the other two algorithms on almost all problem instances,
whereas S-ACO slightly beats P-ACO. Although M-ACORI
improves theBest Performance in comparison with both P-
ACO and S-ACO, they are not significantly different re-
garding theBest Robustness. Similarly, as it was expected
S-ACO has better robustness than P-ACO and M-ACORI,
since usually methods with worse performance have bet-
ter robustness. This shows that S-ACO with simple re-
initialization of pheromones may not be an effective method
for DTSPs.

Third, regarding the overallAverage Robustness results,
S-ACO significantly beats the other two algorithms on all
problem instances, either with slow or fast frequencies of
change. Although LS in M-ACORI improves theAverage
Performance in comparison with S-ACO, theAverage Ro-
bustness is degraded. This is expected because, as discussed
previously, LS does not affect the whole population but only

one ant. On the other hand, P-ACO significantly beats M-
ACORI regardingAverage Performance, but they are not
significantly different regardingAverage Robustness.

6.7 Experimental study under dynamic environments of
varying change frequency and magnitude

We finally study the overall performance (bothBest Per-
formance andAverage Performance) of M-ACORI in com-
parison with other ACO algorithms under dynamic environ-
ments with varying frequencies and magnitudes. In the ba-
sic experiments in Sect. 6.5, we have investigated the over-
all performance, bothBest Performance andAverage Per-
formance, of compared algorithms under dynamic environ-
ments with different fixed values off andm, respectively.
That is, the values off andm remain fixed throughout the
execution of an algorithm. However, for real-world prob-
lems, both values off andm may vary during the execu-
tion of an algorithm. In order to investigate the performance
of our proposed M-ACORI algorithm in comparison with
the existing S-ACO and P-ACO algorithms under more re-
alistic environments, a larger benchmark TSP problem, i.e.,
att532, was used to construct the DTSP, and a spare pool
of cities was generated as in the basic experiments. The val-
ues off andm were both generated randomly within the
interval of [1, 100] and [0, 100], respectively, as presented
in Fig. 9, for 1,000 iterations over 30 runs, using the same
parameters and performance measurements as in the basic
experiments.

The experimental results with the corresponding statisti-
cal test results are presented in Table 5 and Fig. 10. In Table
5, “s+” indicates that the algorithm in the row is signifi-
cantly better than the one in the column, “s−” indicates that
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Fig. 7 Experiments regarding the overallBest Robustness of M-ACORI with other ACO algorithms on dynamic environments.

the algorithm in the column is significantly better than the
one in the row, and “∼” indicates statistically equivalent.

The results match our previous analysis regardingBest
Performance, since M-ACORI continues to perform signif-
icantly better than its competitors. On the other hand, the
results of theAverage Performance do not match the results
in our basic experiments. The difference is that theAverage
Performance of P-ACO is slightly better than M-ACORI,
and not significantly better as analysed in our basic experi-
ments previously. Even if their results are not significantly
different, LS still does not affect the population as a whole,
but only the best ant as discussed in the basic experiments.4

4 The corresponding results ofBest Robustness andAverage Robust-
ness for the environment with varying magnitudes and frequencies are
similar with our basic experimental results.

The reason may be due to the distribution of cities in the spe-
cific TSP instance. If we take a closer look in Fig. 2, most of
the cities inatt532 almost overlap, in comparison with the
other instances used in the basic experiments. As a result, the
distances between a city and its neighbourhood have more
chances to be similar even after a dynamic change. Due to
the heuristic information used from ACO algorithms when
they construct their solutions, they have less chances to ex-
plore areas that may cause an increase to theAverage Per-
formance, as it is caused in the basic experiments with the
other problem instances.

The S-ACO algorithm continues to perform significantly
worse than both P-ACO and M-ACORI algorithms regard-
ing both theBest Performance andAverage Performance. Its
small standard deviation, especially on theAverage Perfor-
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Fig. 8 Experiments regarding the overallAverage Robustness of M-ACORI with other ACO algorithms on dynamic environments.

mance, indicates that S-ACO explores only a small area in
the search space; see Table 5.

7 Conclusions and future work

In this paper, an ACO-based MA is developed, which uses
an adaptive LS operator based on the IO operator inside an
ACO algorithm with an enhanced population-list, to solve
the DTSP. The component operators within the adaptive LS
operator are activated adaptively in different periods of pop-
ulation evolution. The adaptive LS operator is used to further
improve the quality of the solution obtained by the P-ACO
algorithm with its strong exploitation. In addition, to main-
tain a sufficient diversity level within the population in or-

der to adapt well to dynamic changes, random immigrants
are generated as soon as the algorithm reaches stagnation
behaviour. Several sets of experiments were carried out to
compare the performance and robustness of M-ACORI with
a number of existing ACO algorithms.

From the experimental results and analysis of the pro-
posed M-ACORI algorithm in comparison with S-ACO and
P-ACO on the dynamic test problems, several concluding
remarks can be drawn.

First, for ACO algorithms on DTSPs, especially ACO-
based MAs, it is not always the case that performance and
robustness cannot be optimized simultaneously as with EAs
[63]. This is due to the prior knowledge ACO algorithms
gain with the use of the heuristic information and the extra
knowledge from the LS operation.
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Fig. 9 The varying values off andm generated for the dynamic en-
vironment with varying dynamics, which are used in Fig. 10. Note that
the value off is calculated with the iterations.

Table 5 Experimental results of comparing the overall performance
of M-ACORI with other ACO algorithms on the dynamicatt532
problem with varying change frequency and magnitude

Algorithms S-ACO P-ACO M-ACORI

Best Performance (Standard Deviation)
75276.2(156.7) 68038.4(221.4) 67839.2(307.7)

t-Test Result
S-ACO s− s−
P-ACO s+ s−

M-ACORI s+ s+
Average Performance (Standard Deviation)

85152.6(19.7) 72622.9(351.5) 72662(416.9)
t-Test Result

S-ACO s− s−
P-ACO s+ ∼

M-ACORI s+ ∼

Second, the proposed M-ACORI algorithm with the use
of the diversity scheme improves the solution quality of the
M-ACO algorithm without the diversity scheme. The com-
bination of ACO with an LS operator provides strong ex-
ploitation which may not be advantageous when addressing
DOPs. Therefore, ACO-based MAs enhanced with the di-
versity scheme appropriately, i.e., introducing random im-
migrants once the population has converged, leads the al-
gorithm to achieving betterBest Performance; otherwise, a
high level of diversity may lead to randomization, and not
always to good results.

Third, the proposed AIO operator promotes cooperation
of different operators that can be advantageous on differ-
ent test problems or during different periods of population
evolution. It is known that different operators are problem
dependent. However, the AIO operator helps M-ACORI en-
hance its convergence speed and solution quality simultane-
ously.

Fourth, although M-ACORI improves theBest Perfor-
mance, it maintains its robustness, since theBest Robust-
ness from the experimental results shows no significant dif-
ference in comparison with the other ACO algorithms.
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Fig. 10 Experimental results regarding theBest Performance andAv-
erage Performance of M-ACORI in comparison with other ACO al-
gorithms on the dynamicatt532 problem with varying change fre-
quency and magnitude.

Fifth, the Average Performance depends on the distri-
bution of cities of the stationary TSP instance used to gen-
erate DTSPs. It is natural to have an increase in theAver-
age Performance when a certain level of diversity is always
maintained in the population because some ants within the
population have more chances to locate areas that may not
be advantageous for the distribution of the population as a
whole, but it may be advantageous for the best ant of the
new environment. However, when too many cities overlap
on their distribution, the population has less chances to ex-
plore new areas since the new environment generated has
more chances to be similar with the previous one.

Finally, the S-ACO algorithm with the restart strategy
is significantly worse on all dynamic test cases, regarding
bothBest Performance andAverage Performance. However,
S-ACO is significantly better on all dynamic test cases, re-
gardingAverage Robustness. S-ACO explores only a small
area in the search space which makes the population more
stable as a whole, but not so consistent with its best output.

For future work, the proposed M-ACORI framework is
a good start point for developing other ACO-based MAs for
DTSPs. Since multiple LS operators are effective with a di-
versity scheme, it would be interesting to apply other more
sophisticated methods [32] as LS operators, develop other
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diversity schemes, and hybridize them. Also, it would be
interesting to apply LS to the whole population-list of an
ACO-based MA. This may also affect the population as a
whole and improve theAverage Performance andAverage
Robustness.
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