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Abstract. We propose a novel generalized algorithmic framework to
utilize particle filter for optimization incorporated with the swarm move
method in particle swarm optimization (PSO). In this way, the PSO
update equation is treated as the system dynamic in the state space
model, while the objective function in optimization problem is designed
as the observation/measurement in the state space model. Particle filter
method is then applied to track the dynamic movement of the particle
swarm and therefore results in a novel stochastic optimization tool, where
the ability of PSO in searching the optimal position can be embedded
into the particle filter optimization method. Finally, simulation results
show that the proposed novel approach has significant improvement in
both convergence speed and final fitness in comparison with the PSO
algorithm over a set of standard benchmark problems.

1 Introduction

Particle filter, also known as sequential Monte Carlo (SMC), is a class of impor-
tance sampling and resampling techniques designed to simulate from a sequence
of probability distributions, which has gained popularity for the last decade to
solve sequential Bayesian inference problems [1]. It was recently extended to a
general framework to deal with static and sequential Bayesian inference, as well
as the global optimization. In order to deal with an optimization problem, a
sequence of artificial dynamic distribution was designed to employ the particle
filter algorithm. The basic idea of particle filter optimization (PFO) method was
first presented in our previous works [2] to solve discrete optimization problems
in wireless communication system. The crucial element in the PFO algorithm is
how to design the system dynamic function, which forces the set of particles to
move toward the ‘promising’ area containing optima.

Particle Swarm Optimization (PSO) is a well studied heuristic optimization
technique inspired by the social behavior observable in nature, such as flocks of
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birds and schools of fish [3]. In a basic PSO algorithm, a set of particles is gener-
ated randomly, and their positions (states) are iteratively updated according to
their own experience and the experience of the swarm (or neighboring particles).
The heuristic strategy of swarm move works well and therefore enable the PSO
algorithm being effective and efficient. However, the PSO is not universal for
all optimization problems because it suffers the premature convergence which
enables the PSO algorithm easily to get stuck in local minima.

A novel algorithmic framework is presented in this paper, where the swarm
move strategy is incorporated into particle filter optimization algorithm. The
update equation of particle swarm move in PSO algorithm is treated as the sys-
tem dynamic of a state space model, while the objective function in optimization
problem is designed as the observation model to motivate the swarm moving to-
ward the optimal position. In particle filter, the particles first evolve according
to the system dynamic model where they ‘learn’ the information from the whole
population. After that, the particles are updated by information from the ob-
servation model where they ‘learn’ the information from the objective function.
Therefore, the particles move towards location of the global optima sequentially
by ‘learning’ the information from these two aspects. By using the swarm move
strategy as the system dynamic, the desirable searching mechanism of PSO is
incorporated into the PFO algorithm and enhance its searching ability. The pro-
posed novel algorithm incorporates the state space probability modelling and
resample strategy to the PSO algorithm, which potentially enhance the ability
of PSO algorithm in two aspects: making it easier to jump out local optima and
further refining the final results.

This paper is organized as follows. Section 2 reviews the basic PSO algorithm.
Section 3 introduces the basic particle filter algorithm. In Section 4, we propose
the particle filter with particle swarm move for optimization problem. In section
5, the proposed algorithm is tested on a set of benchmark problems. Finally, we
conclude the paper in Section 6.

2 Particle Swarm Optimization

2.1 The Basic PSO Algorithm

The basic PSO algorithm first starts with a number of particles which are ran-
domly generated in the function domain space. After that, each particle flies
through the search space with a velocity which is dynamically adjusted accord-
ing to its own flying experience and the experience from neighboring particles.
Specifically, the behavior of each particle is affected by either the local best or
the global best particle to help it fly through a hyperspace. Therefore, by observ-
ing the behavior of the flock and memorizing their flying histories, all particles
in the swarm can quickly converge to near-optimal geographical positions [3].
The particles are updated according to the following equations:

vn = wvn−1 + φ1(xibest − xn−1) + φ2(xgbest − xn−1) (1)
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xn = xn−1 + vn. (2)

Equation (1) calculates a new velocity for each particle (potential solution) based
on its previous velocity vn−1, the particle’s location at which the best fitness has
been achieved xibest, and the population global (or local neighborhood, in the
neighborhood version of the algorithm) location xgbest (or xnbest , in neighbor-
hood version) at which the best fitness so far has been achieved. Equation (2)
updates each particle’s position in solution hyperspace. The two random control
factors φi (i = 1, 2) are drawn from U(0, 2.05). Moreover, ω is applied to further
improve the convergence rate of the PSO, [3].

2.2 Improvement for PSO algorithm

Improvement for PSO algorithms has been studied extensively in various ways
such as increased swarm diversity [4], evolutionary selection [5] and adaptive
parameters in the velocity update equations [6]. Although these improvements
achieve significant success, they generally obtain superior minima at the expense
of iterations. In other words, they concentrate on how to obtain better final
fitness but not how to obtain them faster.

Obviously, there is a tradeoff between convergence speed and the values of
final fitness for nonlinear optimization methods [4], which means that improving
one is at the expense of the other. However, given an order of magnitude for
the final solution fitness, it is still possible to obtain satisfied solutions faster
[7]. The Kalman swarm (KSwarm) proposed in [7], first tried to address this
issue in PSO. In KSwarm, a reformulated PSO update equation is treated as
the system dynamic in the state space model, while the observation function is
a measurement of the best position each particle has obtained in the past. The
results in [7] showed that the KSwarm algorithm has a significant improvement
in both convergence speed and final fitness. This research works in [7] shows
that the possibility or statistical approaches for improvement in PSO algorithm
has a great potential. Inspired by the KSwarm, we propose a novel algorithmic
framework to combine the particle filter with PSO algorithm, which can effec-
tively get ride of the heavy extra computation problem incurred by KSwarm1.
Moreover, rather than learning from the best position it has obtained in the
past, the particle in the proposed algorithm learns from the information of the
whole probability density function formed by all the particles.

3 Particle Filter

Particle filter, introduced in [8], is a class of importance sampling and resampling
techniques designed to simulate from a sequence of probability distributions for

1 The superior performance of the KSwarm is at the cost of additional computation
complexity which is incurred by the matrix operations in Kalman update equations
whose complexity order is O(d3) in the number of dimensions [7].
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sequential inference problems. These methods have gained popularity in recent
years, due to their simplicity, flexibility, ease of implementation, and modelling
success over a wide range of challenging applications [1].

Give a state space model,

xn = f(xn−1) + wn, (3)

yn = h(xn) + vn, (4)

where f(·) is the system evolution function, h(·) is the observation function,
wn and vn are the system noise and observation noise respectively. We refer to
n as the time index, which is just a simple counter and has not any relation-
ship with ‘real’ time. In the context of sequential Bayesian inference, we are
interested in the posterior distribution π(xn|y1:n) (where y1:n denotes the obser-
vations y1, y2, ..., yn), which can be recursively obtained from the following two
equations:

π(xn|y1:n−1) ∝
∫

p(xn|xn−1)π(xn−1|y1:n−1)dxn−1, (5)

and
π(xn|y1:n) ∝ L(xn; yn)π(xn|y1:n−1), (6)

where p(xn|xn−1) represents the system dynamic in (3), π(xn−1|y1:n−1) in (5) is
the posterior distribution at (n−1), and L(xn; yn) in (6) refers to the likelihood
function obtained in (4). The recursion is initialised with some distribution, for
example, p(x0).

In very limited scenarios, the state space models of interest are ‘weakly’ non-
linear and Gaussian in which one may utilize the Kalman filter and its derivatives
[9], to obtain an approximately optimal solution. In practice, it is well known
that the update expression in (6) is generally analytically intractable for most
models of interest. We therefore turn to sequential Monte Carlo (SMC) methods
[1, 8], also known as particle filters, to provide an efficient numerical approxima-
tion strategy for recursive estimation of complex models.

3.1 Sequential Importance Sampling

The basic idea behind particle filters is very simple: the target distribution is
represented by a weighted set of Monte Carlo samples which are called particles
in this paper. These particles are propagated and updated using a sequential
version of importance sampling as new measurements become available. Hence
statistical inferences of the posterior π(xn|y1:n) can be computed by these par-
ticles.

From a large set of particles
{

x
(i)
n−1

}N

i=1
associated importance weights

{

w
(i)
n−1

}N

i=1
,

we approximate the posterior distribution function π (xn−1|y1:n−1) as follows:

π (xn−1|y1:n−1) ≈
N

∑

i=1

w
(i)
n−1δ

(

xn−1 − x
(i)
n−1

)

, (7)
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where δ (·) is the Dirac delta function. We would like to generate a set of new

particles
{

x
(i)
n

}N

i=1
from an appropriately selected proposal function, i.e.,

x(i)
n ∼ q

(

xn|x(i)
n−1, y1:n

)

, i = {1, ..., N}. (8)

With the set of state particles
{

x
(i)
n

}

obtained from (8), the importance weights

w
(i)
n are recursively updated as follows:

w(i)
n ∝ w

(i)
n−1 ×

L
(

x
(i)
n ; yn

)

p
(

x
(i)
n |x(i)

n−1

)

q
(

x
(i)
n |x(i)

n−1, y1:n

) (9)

with
∑N

i=1 w
(i)
n = 1. It follows that the new set of particles

{

x
(i)
n

}N

i=1
with

the associated importance weights
{

w
(i)
n

}N

i=1
is then approximately distributed

according to π (xn|y1:n).
As the particle filters operate, only a few particles contribute significant im-

portance weights in (9), which leads to a degeneracy problem [10]. To avoid this
problem, one possible method is to resample the particles according to the im-
portance weights. With this method, the particles with more significant weights
will be selected more frequently than those with less significant weights. More
detailed discussions of degeneracy and resampling can be found in [10].

An important element in generating a set of weighted particles which could
well approximate the posterior distribution function in (4) is the selection of the

proposal importance sampling function q(x
(i)
n |y1:n) in (8). One choice of the state

proposal function is the dynamic prior, q (xn|xn−1, y1:n) = p (xn|xn−1). Weights
become proportional to likelihood, wn ∝ wn−1L(xn; yn). In the proposed particle
filter optimization algorithm in the following sections, we will restrict to utilize
this simple but generic effective proposal.

3.2 Particle Filter for Optimization

Particle filter technique has recently been extended to a general framework to
deal with the static and sequential Bayesian inference, as well as the global op-
timization [11], which is also called sequential Monte Carlo sampler. To apply
the SMC sampler for optimization problem, a sequence of artificial intermediate
distributions is required, for example πn(x) = [π(x)]τn where {τn}N

n=1 is such
that 0 < τ1 < · · · < τN and 1 << τN to ensure that π0(·) is easy to sample from
and πN (·) is concentrated around the set of global maxima of π(·). Given some
sequence of distributions, SMC propagates samples forward from one distribu-
tion to the next according to a sequence of Markov kernels, Kn, and corrects for
the discrepancy between the proposal and the target distribution by importance
sampling [11]. The choice of forward and backward transition kernels is critical in
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SMC sampler [11]. For example, in [2], the forward transition kernel was chosen
as the Markov chain transition kernel from an adaptive Metropolized indepen-
dence sampler. Due to the efficiency of the adaptive Metropolized independence
sampler, the resulting optimization algorithm performs well for combination op-
timization problems. However, heuristic optimization techniques are not easy to
incorporate into the SMC sampler, since it is generic too sophisticated to formu-
late a heuristic optimization method as the forward and/or backward transition
kernel.

In this paper, we provide an alternative way to incorporate heuristic opti-
mization techniques, particularly the population based optimization methods,
into the particle filter optimization method. The basic idea is to utilize the de-
sirable tracking ability of particle filter to track the movement of the individuals
in the population based optimization algorithms. The location of the global op-
tima is treated as the observation of the dynamic system. Therefore, by treating
the location of global optima as the destination, the individuals in the popu-
lation will move towards it sequentially. Moreover, the move strategy can be
very heuristic and efficient since it comes from the excellent population based
optimization algorithms.

So the PFO algorithm can be designed as follows: the move strategy in the
population based optimization algorithms is reformatted as a system dynamic
function. The second step is the definition of observation function. Take the min-
imization problem x∗ = argminx∈X g(x) as an example. The ‘best’ observation
is of course the exact location of the global minimum of the problem of interest,
but it is unknown. If the value of the objective function at the global minimum
point is known, i.e. g(x∗), then it can be served as the observation. Therefore
we can define the observation function (measurement likelihood) as follows

L(x; g(x∗)) = exp

{

− [g(x) − g(x∗)]
2

τ

}

, (10)

where τ is a properly chosen temperature in the Boltman distribution. However,
in plenty of problems, the value of g(x∗) is unknown. In such cases, if we can guess
a value g∗ which is less than the value of g(x∗), we can define the observation
function as,

L(x; g∗) = exp

{− [g(x) − g∗]

τ

}

. (11)

If we can not even guess such a value, we can also use an observation function
as,

L(x; a, b) = exp

{−a ∗ [g(x) − b]

τ

}

, (12)

where a and b are two constant values, which are properly chosen to make the
value of L(x; a, b) reasonable (not extremely large or small).

When the system dynamic and observation in the state space model have
been defined, the particle filter is then applied to simulate this model and the
particles will move toward the global optima sequentially.
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4 Particle Filter Optimization with Particle Swarm

Movement

In this section, we will introduce the details of particle filter optimization algo-
rithm. The system dynamic function in the state space model is

zn ,

[

xn

vn

]

=

[

xn−1 + wvn−1 + φ1(xibest − xn−1) + φ2(xgbest − xn−1)
wvn−1 + φ1(xibest − xn−1) + φ2(xgbest − xn−1)

]

+

[

ǫx

ǫv

]

(13)
where ǫx ∼ N(0, Σx), εv ∼ N(0, Σv), and φi ∼ U(0, 2.05) (i = 1, 2). The ob-
servation function can be defined as (10), (11), (12) depending on the concrete
problem, here denoted as L(x; ·). Description of the particle filter optimization
algorithm is presented as follows:

Step 1: At iteration n = 1, sample N particles
{

z
(i)
n

}N

i=1
∼ U(z; θ) (i =

1, ..., N) according to an uniform distribution with a predefined parameter θ

(i.e. the parameter to define the feasible solution space of the problem), and

compute w
(i)
1 ∝ L(x

(i)
1 ; ·).

Step 2: Evolve particles
{

z
(i)
n

}N

i=1
according to the dynamic function (13).

Step 3: Calculate the important weights, w
(i)
n ∝ w

(i)
n−1L

(

x
(i)
n ; ·

)

.

Step 4: Resample the particle representation
{

w
(i)
n , z

(i)
n

}

.

Step 5: Update the location xibest and xgbest.
Step 6: If the stopping criterion is satisfied, then stop; otherwise, set n :=

n + 1 and go back to step 2.

It is worth noting that in the PFO algorithm, compared with the PSO al-
gorithm, the additional computation is the resampling step, which has the com-
plexity O(N) in the number of particles (N). This additional computation com-
plexity is significantly less than the one in KSwarm whose complexity is about
O(Nd3). Moreover, the number of iterations required by the PFO algorithm is
much smaller than those of the PSO and KSwarm algorithm.

5 Experiments

PFO will be compared with the PSO and KSwarm algorithm via the follow-
ing four benchmark problems: Sphere, DejongF4, Rosenbrock and Griewank.
Herein, the first three are unimodal optimization problems, while the last one
is multimodal. In all experiments, the dimensionality d = 30. The mathematical
definitions of four benchmark functions are given as follows:

Sphere(x) =

d
∑

i=1

x2
i , x ∈ (−50, 50)

d
(14)
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Table 1. Final Values Comparison among PSO, KSwarm and PFO.

Function PSO [7] KSwarm [7] PFO

Sphere 370.041 4.723 5.548e-6
DejongF4 4346.714 4.609 2.236e-9
Rosenbrock 2.61e7 3.28e3 3.16e-2
Griewank 13.865 0.996 2.845e-5

DeJongF4(x) =
d

∑

i=1

ix4
i , x ∈ (−20, 20)d (15)

Rosenbrock(x) =

d−1
∑

i=1

[

100
(

xi+1 − x2
i

)2
+ (xi − 1)2

]

, x ∈ (−100, 100)
d

(16)

Griewank(x) =
1

4000

d
∑

i=1

x2
i −

d
∏

i=1

cos

(

xi√
i

)

+ 1, x ∈ (−600, 600)
d

(17)

In all experiments, the particle size is set to 100. The stopping criterion
is that the algorithm reaches its maximum iteration number 200. Then, the
number of objective function evaluations is the same as it is in [7], which makes
the comparison reasonable. We run each experiment 50 times for 200 iterations,
and averaged the results to account for stochastic differences. The inertia weight
w is 0.5 in all the experiments. The variance of system noise is given as Σx = γId,
Σv = γId, where the scalar γ indicates the magnitude of the variance in each
dimension, specifically, γ = 0.001 when iteration number n ≤ 100 and γ =
0.00001 when n > 100 for all experiments. A large variance enables the algorithm
to explore the space quickly while a small variance enables the algorithm to
improve the final fitness. In design of the observation function, we assumed that
we have only ‘weak’ prior knowledge of the value of the optimal objective function
g(x∗). For instance, in all the experiment, we used the observation function
(12) by simply setting a = 1 and b = 0. The temperature in the Boltzmann
distribution τ is set by experience. Herein, in all the experiments, τ = 10.

Table 1 shows the final values of basic PSO and KSwarm algorithms after
1000 iterations, as well as the final values of PFO after 200 iteration. It can be
seen that the values obtained by PFO are several orders of magnitude better
than the basic PSO and KSwarm algorithms in all four benchmark problems.
Afterwards, Figs. 1 - 4 pictorially depict the best value versus the number of
iterations. Herein, in order to compare the PFO, PSO and KSarm under the
same complexity condition, the number of iterations for PFO is set to 200, while
the number of iterations for PSO and KSwarm is set to 1000. Although the
number of iterations is different, the number of time of calculating the objective
function is same. Through simulations, we observe that, compared with the PSO
algorithm, the additional computation efforts of PFO is negligible, while KSwarm
take significant additional computation due to its matrix operations.
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Fig. 1. Sphere
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Fig. 2. Dejong
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Fig. 3. Rosenbrock
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Fig. 4. Griewank

Moreover, the plots of the best value obtained per iteration show that the PFO
tends to find good solutions faster than the other two methods. These simulation
results demonstrate a significant improvement for the PSO, not only in exploring
final solutions, but also in the speed to find them.

6 Conclusions

In this paper, we propose a novel generalized framework for stochastic optimiza-
tion in which the PFO is incorporated with the swarm move method in PSO.
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The particle swarm move in PSO algorithm is treated as the system dynamic
in the state space model, while the objective function in optimization problem
is designed as the observation model. Particle filter method is then applied to
track the dynamic movement of the particle swarm in PSO algorithm. By incor-
porating the state space probability modelling and resample strategy into the
PSO algorithm, the PFO can potentially enhance the ability of PSO algorithm
in two aspects: making it easier to jump out local optima and refining the final
result. Compared with the PSO and KSwarm algorithm, the PFO algorithm
can obtain better final fitness with a negligible additional computation effort.
Finally, simulation results demonstrate a significant improvement for the PFO,
not only in exploring final solutions, but also in the speed to find them.
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