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Abstract Evolutionary algorithms have been widely
used for stationary optimization problems. However, the
environments of real world problems are often dynamic.
This seriously challenges traditional evolutionary algo-
rithms. In this paper, the application of Population-
Based Incremental Learning (PBIL) algorithms, a class
of evolutionary algorithms, for dynamic problems is in-
vestigated. Inspired by the complementarity mechanism
in nature a Dual PBIL is proposed, which operates on
two probability vectors that are dual to each other with
respect to the central point in the genotype space. A di-
versity maintaining technique of combining the central
probability vector into PBIL is also proposed to improve
PBIL’s adaptability in dynamic environments. In this
paper, a new dynamic problem generator that can create
required dynamics from any binary-encoded stationary
problem is also formalized. Using this generator, a series
of dynamic problems were systematically constructed
from several benchmark stationary problems and an ex-
perimental study was carried out to compare the perfor-
mance of several PBIL algorithms and two variants of
standard genetic algorithm. Based on the experimental
results, we carried out algorithm performance analysis
regarding the weakness and strength of studied PBIL al-
gorithms and identified several potential improvements
to PBIL for dynamic optimization problems.

Key words Population-based incremental learning, dy-
namic optimization problem, dual population-based in-
cremental learning, genetic algorithm, central probabil-
ity vector, exclusive-or operator

1 Introduction

As a class of meta-heuristic algorithms, evolutionary al-
gorithms (EAs) make use of principles of natural selec-

tion and population genetics. Due to the robust capabil-
ity of finding solutions to difficult problems, EAs have
become the optimization and search techniques of choice
for many applications. Especially, they are widely ap-
plied for solving stationary optimization problems where
the fitness landscape does not change during the course
of computation [13]. However, the environments of real
world optimization problems are often dynamic, where
the problem fitness landscape changes over time. For ex-
ample, in scheduling problems the scheduling demands
and available resources may change over time. This forms
a serious challenge to traditional EAs since they cannot
adapt well to a changed environment once converged.

In recent years, there is a growing interest in the re-
search of applying EAs for dynamic optimization prob-
lems since many of the problems that EAs are being
used to solve are known to vary over time [1], [22]. Usu-
ally the dynamic environment requires EAs to maintain
sufficient diversity for a continuous adaptation to the
changing landscape. Researchers have developed many
approaches into EAs to address this problem. Branke
[7], [8] has grouped them into four categories: 1) in-
creasing diversity after a change, such as the hypermuta-

tion scheme [9], [24]; 2) maintaining diversity throughout
the run, such as the random immigrants scheme [15]; 3)
memory-based methods, such as the diploidy and multi-

ploidy approaches [12], [20], [26]; and 4) multi-population
approaches [6].

In this paper, we investigate the application of a class
of EAs, Population-Based Incremental Learning (PBIL)
algorithms, for solving dynamic optimization problems.
We study the effect of introducing several approaches
into PBIL to address dynamic optimization problems,
such as the multi-population and random immigrants
methods. Inspired by the complementarity mechanism
broadly existing in nature, we propose a Dual PBIL
that operates on two probability vectors that are dual
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to each other with respect to the central point in the
search space. To address the convergence problem, we
also introduce a diversity maintaining technique, similar
to the random immigrants method for GAs, into PBIL to
improve its adaptability under dynamic environments.

In this paper, we also formalize a new dynamic prob-
lem generator, first applied in [30], which can generate
required dynamics from a given stationary problem. Us-
ing this generator, we systematically construct a series
of dynamic problems from two benchmark and one real-
word stationary problems and carry out an experimental
study comparing the investigated PBILs and two vari-
ants of standard genetic algorithm. Based on the analysis
of the experimental results, we identify the weakness and
strength of the studied PBILs and discuss some improve-
ments to PBIL for dynamic optimization problems.

The rest of this paper is organized as follows. The
next section briefly reviews some existing dynamic prob-
lem generators and presents the new dynamic problem
generator. Sect. 3 details several algorithms investigated
in this paper including our proposed Dual PBIL. Sect. 4
describes the test environment for this study, including
the stationary test suite and related dynamic problems.
The basic experimental results and relevant analysis are
presented in Sect. 5. In Sect. 6, we investigate the in-
troduction of a diversity maintaining probability vector
into PBIL for dynamic optimization problems. Finally
we conclude this paper in Sect. 7 and give out discus-
sions on future work in Sect. 8.

2 Dynamic Problem Generators

2.1 Review of Existing Generators

Over the past few years, in order to study the perfor-
mance of EAs for dynamic optimization problems re-
searchers have developed a number of dynamic problem
generators to create dynamic test environments. Gener-
ally speaking, these generators can be roughly divided
into two types. The first type of constructing dynamic
environments is quite simple. The environment is just
switched between two or more stationary problems (or
states of a problem). For example, many researchers have
tested their algorithms on a time varying knapsack prob-
lem where the total weight capacity of the knapsack
changes over time, usually oscillating between two or
more fixed values [11], [20], [22], [26]. Cobb and Grefen-
stette [10] constructed a significantly changing environ-
ment that oscillates between two different fitness land-
scapes. For this type of generators, the dynamics of en-
vironmental change is mainly characterized by the speed
of change. It can be fast or slow relative to EA time and
is usually measured in EA generations.

The second type of dynamic problem generators starts
from a predefined fitness landscape, usually constructed
in n-dimensional real space [5], [16], [23], [28]. This sta-
tionary landscape is composed of a number of compo-

nent landscapes (e.g., cones), each of which can change
independently. Each component has its own morphol-
ogy with such parameters as peak height, peak slope
and peak location. And the center of the peak with the
highest height is taken as the optimum solution of the
landscape. For example, Morrison and De Jong’s gen-
erator [23], called DF1, defines the basic landscape in
n-dimensional real space as follows:

f(x) = max
i=1,...,m



Hi − Ri ×

√

√

√

√

n
∑

j=1

(xj −Xij)2



 (1)

where x = (x1, · · · , xn) is a point in the landscape, m
specifies the number of cones in the environment, and
each cone i is independently specified by its height Hi,
its slope Ri, and its center Xi = (Xi1, · · · , Xin). These
independently specified cones are blended together by
the max function. Based on this stationary landscape,
dynamic problems can be created through changing the
parameters of each component. With respect to how to
change a parameter, there may be a variety of properties.
For example, one property of the dynamics of environ-
mental change is related to the magnitude or step size
of change for each parameter. It may be large or small.
Another dynamics property is related to the speed of
change, which can be slow or fast.

2.2 A New Dynamic Problem Generator

In this paper, we formalize a new dynamic problem gen-
erator that can generate dynamic test problems from any
binary encoded stationary problem. Given a stationary
problem f(x) (x ∈ {0, 1}l where l is the chromosome
length), we can construct dynamic landscape from it as
follows: we first create a binary mask M ∈ {0, 1}l, ran-
domly or in a controlled way, periodically or not. When
evaluating an individual x in the population, we first per-
form the operation x⊕M on it, where “⊕” is the bitwise
exclusive-or (XOR) operator (i.e., 1 ⊕ 1 = 0, 1 ⊕ 0 = 1,
0 ⊕ 0 = 0). The resulting individual is then evaluated
to obtain a fitness value for the individual x. Suppose
that the change happens at generation t, then we have
f(x, t+ 1) = f(x⊕M).

In this way, we can revolve the fitness landscape but
still keep certain properties of the original fitness land-
scape, e.g., the total number of optima and fitness values
of optima though their locations are shifted. For exam-
ple, if we apply a template M = 1111 to Whitley’s 4-bit
deceptive function (to be described in Sect. 4.1), the
original optimal point x∗ = 1111 becomes sub-optimal
while the original deceptive solution x = 0000 becomes
the new optimal point in the changed landscape, but
the optimal fitness value (i.e., 30) and the uniqueness of
optimum keep invariant.

With the new dynamic problem generator, the dy-
namics of environmental change can be characterized by
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two parameters: the speed of change and the magnitude
or degree of change in the sense of Hamming distance.
As for other generators, the first parameter can be mea-
sured in EA generations. In this paper it will be referred
to as the environmental change period, denoted by τ ,
and is defined as the number of EA generations between
two changes. With respect to the degree of change, it can
be measured by the ratio of ones in the maskM, denoted
by ρ. The more ones in the mask, the severer the change
and the bigger the challenge to EAs. When ρ = 0.0, the
problem stays stationary. When ρ = 1.0, it brings in the
extreme or heaviest fitness landscape change in the sense
of Hamming distance, analogous to natural environmen-
tal change between sunny daytime and dark night.

Putting things together, we can generate dynamic
problems from a stationary problem as follows. Suppose
that the environment is periodically changed every τ
generations the dynamics can be formulated as follows:

f(x, t) = f(x⊕M(k)) (2)

where k = ⌈t/τ⌉ is the period index, t is the generation
counter, and M(k) is the XORing mask for period k.
And given a value for parameter ρ, M(k) can be incre-
mentally generated as follows:

M(k) = M(k − 1)⊕T(k) (3)

whereT(k) is an intermediate binary template randomly
created for period k containing ρ × l ones. For the first
period k = 1, M(1) is initialized to be a zero vector.

Comparing with other generators, the new dynamic
problem generator has the following properties.

– It is genotype-based. That is, it operates on the prob-
lem genotype instead of phenotype. Hence, we can
carry out theoretical analysis more thoroughly in the
genotype space.

– It is easy to realize required dynamics. We can not
only test the speed of environmental change by tun-
ing the parameter τ , but also test the degree of envi-
ronmental change by tuning the parameter ρ easily.

– With this generator we can study the performance
of algorithms on the dynamic version of many well
studied benchmark problems in EA’s community. For
example, the royal road [21] and deceptive [29] func-
tions are selected as test problems in this paper.

– It can be easily combined with other dynamic prob-
lem generators to generate required dynamic envi-
ronments.

3 Description of Algorithms Investigated

3.1 Population-Based Incremental Learning

The Population-Based Incremental Learning (PBIL) al-
gorithm, first proposed by Baluja [3], is a combination
of evolutionary optimization and competitive learning.

PBIL has proved to be very successful on numerous
benchmark and real-world problems [4], [19]. Theoret-
ical work on PBILs has also been carried out [14], [17].

The aim of PBIL is to generate a real valued proba-
bility vector which, when sampled, creates high quality
solutions with high probability. PBIL starts from an ini-
tial probability vector with values of each entry set to
0.51. This means when sampling by this initial proba-
bility vector random solutions are created because the
probability of generating a 1 or 0 on each locus is equal.
However, as the search progresses, the values in the prob-
ability vector are gradually learnt towards values repre-
senting high evaluation solutions. The evolution process
is described as follows.

At each iteration, a set of samples (solutions) are cre-
ated according to the current probability vector2. The
set of samples are evaluated according to the problem-
specific fitness function. Then the probability vector is
learnt (pushed) towards the solution(s) with the high-
est fitness. The distance the probability vector is pushed
depends on the learning rate parameter. After the prob-
ability vector is updated, a new set of solutions is gen-
erated by sampling from the new probability vector and
this cycle is repeated. As the search progresses, the en-
tries in the probability vector move away from their ini-
tial settings of 0.5 towards either 0.0 or 1.0. The search
progress stops when some termination condition is sat-
isfied, e.g., the maximum allowable number of iterations
tmax is reached or the probability vector is converged to
either 0.0 or 1.0 for each bit position.

The pseudocode for the PBIL investigated in this
paper is shown in Fig. 1. Within this PBIL, at iteration
t a set St of n = 120 solutions are sampled from the
probability vector P t and only the best solution Bt from
the set St is used to learn the probability vector P t. The
learning rate α is set to a commonly used value 0.05.

3.2 Parallel PBIL

Using multi-population instead of one population has
proved to be a good approach for improving the perfor-
mance of EAs for dynamic optimization problems. Sim-
ilarly, multi-population can be introduced into PBIL by
using multiple probability vectors [4], [27]. Each prob-
ability vector is sampled to generate solutions indepen-
dently, and is learnt according to the best solution(s)
generated by itself. For the sake of simplicity, in this pa-
per we investigate a PBIL with two parallel probability

1 For the convenience of description in this paper we will
call the probability vector that has 0.5 for all of its entries
central probability vector or just central vector because it rep-
resents the central point in the genotype space.

2 For each bit position of a solution, assuming binary en-
coded, if a random created real number in the range of [0.0,
1.0] is less than the probability value of corresponding el-
ement in the probability vector, the bit is set to 1 (or 0),
otherwise it is set to 0 (or 1 respectively).
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begin

t := 0;

// initialize probability vector
for i := 1 to l do P 0[i] := 0.5; endfor;

repeat

St := generateSamplesFromProbVector(P t, n);
evaluateSamples(St);
Bt := selectBestSolution(St);

// update probability vector toward best solution
for i := 1 to l do

P t[i] := (1− α) ∗ P t[i] + α ∗ Bt[i];
endfor;

t := t+ 1;
until terminated = true; // e.g., t > tmax

end;

PBIL’s parameter settings:
l: chromosome length (problem specific).
α: the learning rate (0.05).
n: sample size generated by the prob. vector (120).

Fig. 1 Pseudocode for the PBIL with one probability vector.

vectors, called Parallel PBIL (PPBIL2). The pseudocode
for PPBIL2 is shown in Fig. 2.

Within PPBIL2, one of the two probability vectors
P1 is initialized to the central probability vector (for the
sake of performance comparison with the PBIL) and the
other P2 is randomly initialized. P1 and P2 are sampled
and updated independently. Initially P1 and P2 have an
equal sample size. However, in order to give the proba-
bility vector that performs better more chance to gener-
ate samples, the sample sizes of the probability vectors
are slightly adapted within the range of [nmin, nmax] =
[0.2 ∗ n, 0.8 ∗ n] = [24, 96] according to their relative
performance. If one probability vector outperforms the
other, its sample size is increased by a constant value
∆ = 0.05 ∗ n = 6 while the other’s sample size is de-
creased by ∆; otherwise, if the two probability vectors
tie, there is no change to the sample sizes. The learning
rate for both P1 and P2 is the same as that for the PBIL.

3.3 Dual PBIL

Dualism and complementarity are quite common in na-
ture. For example, in biology the DNA molecule consists
of two complementary strands that are twisted together
into a duplex chain. Inspired by the complementarity
mechanism in nature, a primal-dual genetic algorithm
has been proposed and applied for dynamic optimization
problems [30]. In this paper we investigate the applica-
tion of dualism into PBIL and propose a Dual PBIL,
denoted DPBIL2. For the convenience of description, we
first introduce the definition of dual probability vector
here. Given a probability vector P = (P [1], · · · , P [l]) ∈

begin

t := 0;

// initialize probability vectors
for i := 1 to l do

P 0

1 [i] := 0.5; P 0

2 [i] := rand[0.0, 1.0];
endfor;

// initialize sample sizes for probability vectors
n0

1 := n0

2 := n/2;

repeat

St

1 := generateSamplesFromProbVector(P t

1 , n
t

1);
St

2 := generateSamplesFromProbVector(P t

2 , n
t

2);
evaluateSamples(St

1, S
t

2);
Bt

1 := selectBestSolution(St

1);
Bt

2 := selectBestSolution(St

2);

// update probability vectors toward best solutions
for i := 1 to l do

P t

1 [i] := (1− α) ∗ P t

1 [i] + α ∗ Bt

1[i];
P t

2 [i] := (1− α) ∗ P t

2 [i] + α ∗ Bt

2[i];
endfor;

// update sample sizes for probability vectors
if f(Bt

1) > f(Bt

2) then nt

1 := min{nt

1 +∆,nmax};
if f(Bt

1) < f(Bt

2) then nt

1 := max{nt

1 −∆,nmin};
nt

2 := n− nt

1;

t := t+ 1;
until terminated = true; // e.g., t > tmax

end;

PPBIL2’s parameter settings:
l: chromosome length (problem specific).
α: the learning rate (0.05).
n: total sample size by two prob. vectors (120).
nt

1, n
t

2: sample size by prob. vector 1 and 2 at time t.
∆: constant step size of adjusting n1 and n2 (6).
nmin: min sample size by each prob. vector (24).
nmax: max sample size by each prob. vector (96).

Fig. 2 Pseudocode for the Parallel PBIL (PPBIL2).

I = [0.0, 1.0]l of fixed length l, its dual probability vec-
tor is defined as P ′ = dual(P ) = (P ′[1], · · · , P ′[l]) ∈ I
where P ′[i] = 1.0− P [i] (i = 1, · · · , l). That is, a proba-
bility vector’s dual probability vector is the one that is
symmetric to it with respect to the central probability
vector. With this definition, DPBIL2 consists of a pair
of probability vectors that are dual to each other. The
pseudocode of DPBIL2 is given in Fig. 3.

From Fig. 2 and Fig. 3 it can be seen that DPBIL2
differs from PPBIL2 only in the definition of the proba-
bility vector P2 and the learning mechanism. The other
aspects of DPBIL2, such as the sampling mechanism, the
sample size updating mechanism, and relevant parame-
ters, are the same as those of PPBIL2. Within DPBIL2
P2 is now defined to be the dual probability vector of P1.
As the search progresses only P1 is learnt from the best
generated solution since P2 changes with P1 automati-
cally. If the best overall solution is sampled by P t

1
(i.e.,
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begin

t := 0;

// initialize probability vectors
for i := 1 to l do

P 0

1 [i] := 0.5; P 0

2 [i] := 1.0− P 0

1 [i];
endfor;

// initialize sample sizes for probability vectors
n0

1 := n0

2 := n/2;

repeat

St

1 := generateSamplesFromProbVector(P t

1 , n
t

1);
St

2 := generateSamplesFromProbVector(P t

2 , n
t

2);
evaluateSamples(St

1, S
t

2);
Bt

1 := selectBestSolution(St

1);
Bt

2 := selectBestSolution(St

2);

// update probability vectors
for i := 1 to l do

if f(Bt

1) ≥ f(Bt

2) then // learn P t

1 toward Bt

1

P t

1 [i] := (1− α) ∗ P t

1 [i] + α ∗ Bt

1[i];
else // learn P t

1 away from Bt

2

P t

1 [i] := (1− α) ∗ P t

1 [i] + α ∗ (1.0−Bt

2[i]);
P t

2 [i] := 1.0− P t

1 [i];
endfor;

// update sample sizes for probability vectors
if f(Bt

1) > f(Bt

2) then nt

1 := min{nt

1 +∆,nmax};
if f(Bt

1) < f(Bt

2) then nt

1 := max{nt

1 −∆,nmin};
nt

2 := n− nt

1;

t := t+ 1;
until terminated = true; // e.g., t > tmax

end;

DPBIL2’s parameter settings are the same as PPBIL2’s.

Fig. 3 Pseudocode for the Dual PBIL (DPBIL2).

f(Bt
1
) ≥ f(Bt

2
)) then P t

1
is updated towards Bt

1
; oth-

erwise, P t
1
is updated away from Bt

2
, the best solution

created by P t
2
. The reason to P t

1
learning away from Bt

2

lies in that it is equivalent to P t
2
learning towards Bt

2
.

The motivation of introducing a dual probability vec-
tor into PBIL lies in two aspects: increasing diversity of
generated samples and fighting significant environmental
changes. On the first aspect, usually with the progress
of parallel PBILs the probability vectors will converge
towards each other and the diversity of generated sam-
ples is reduced. This situation doesn’t occur with dual
probability vectors. On the second aspect, when the envi-
ronment is subject to significant changes the dual prob-
ability vector is expected to generate high evaluation
solutions and hence improve PBIL’s adaptability.

3.4 Standard Genetic Algorithm

Genetic algorithms (GAs) are one kind of well stud-
ied evolutionary algorithms. The standard genetic al-
gorithm maintains a population of individuals, usually

begin

t := 0;
initializePopulation(P (0), n);
evaluatePopulation(P (0));
repeat

P ′(t) := selectForReproduction(P (t));
crossover(P ′(t), pc);
mutate(P ′(t), pm);
evaluatePopulation(P ′(t));
t := t+ 1;

until terminated = true; // e.g., t > tmax

end;

SGA’s parameter settings:
n: population size (120).
pc: uniform crossover probability (0.6).
pm: bit mutation probability (0.01).

Fig. 4 Pseudocode for the Standard GA (SGA).

encoded as fixed length binary strings. The initial popu-
lation is randomly created. New populations are created
through a process of selection, recombination (crossover)
and mutation. At each generation, the fitness of each
individual in the population is calculated according to
the problem-specific evaluation function. Then the in-
dividuals are probabilistically selected from the current
population based on their fitness to generate a mating
pool, which is called selection for reproduction. After-
wards, the recombination and mutation operators are
applied to some or all individuals in the mating pool.
The recombination operator randomly combines parts
of two “parents” that are randomly selected from the
mating pool to produce two “offsprings”. And the mu-
tation operator randomly flips each bit of a string with a
small probability pm to create a new string. This process
continues until some termination condition is satisfied,
e.g., the maximum allowable number of generations tmax

is reached [18]. Usually with the iteration of the GA,
the average fitness of the population will progressively
improve due to the selective pressure applied through
the process. The best individual in the final population
should be a highly evolved solution to the given problem.

GAs are closely related to PBILs. In fact PBIL is
an abstraction of the GA that explicitly maintains the
statistics contained in GA’s population [4]. In this study,
one variant of the standard GA (SGA), as shown in
Fig. 4, is taken as a peer EA to compare the performance
of PBILs for dynamic optimization problems. The peer
SGA has the following typical genetic operator and pa-
rameter settings: generational, uniform crossover with a
crossover probability pc = 0.6, traditional bit mutation
with a mutation probability pm = 0.01, and fitness pro-
portionate selection with the Stochastic Universal Sam-
pling (SUS) [2] scheme. There is no elitist scheme used
in the SGA and the population size n is set to 120.
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4 Algorithm Test Environments

In order to compare different PBILs and SGA, a set
of well studied stationary problems, including one GA-
easy royal road function, one GA-hard deceptive func-
tion, and one real world knapsack problem, is selected as
the test suite. A series of dynamic optimization problems
are constructed from these stationary problems using the
dynamic problem generator described in Sect. 2.2.

4.1 Stationary Test Problems

1. Knapsack Problem:

The knapsack problem is a well known NP-complete
combinatorial optimization problem. The problem is to
select from a set of items with varying weights and profits
those items that will yield the maximal summed profit to
fill in the knapsack without exceeding its limited weight
capacity. Given a set of m items and a knapsack, the 0-1
knapsack problem can be described as follows:

max p(x) =

i=m
∑

i=1

pixi (4)

subject to the weight constraint

i=m
∑

i=1

wixi ≤ C (5)

where x = (x1 · · ·xm), xi is 0 or 1, wi and pi are the
weight and profit of item i respectively, and C is the ca-
pacity of the knapsack. If xi = 1, the ith item is selected.

In this paper, a knapsack problem with 100 items us-
ing strongly correlated sets of randomly generated data
is constructed as follows:

wi = uniformly random integer[1, 50] (6)

pi = wi + uniformly random integer[1, 5] (7)

C = 0.6×

i=100
∑

i=1

wi (8)

And given a solution x, its fitness f(x) is evaluated as
follows. If the sum of the item weights is within the ca-
pacity of the knapsack, the sum of the profits of the se-
lected items is used as the fitness. If the solution selects
too many items such that the summed weight exceeds
the capacity of the knapsack, the solution is judged by
how much it exceeds the knapsack capacity (the less, the
better) and its fitness is evaluated to be the difference
between the total weight of all items and the weight of
selected items, multiplied by a small constant 10−10 to
ensure that the solutions that overfill the knapsack are
not competitive with those which do not. Together, the
fitness of a solution x is evaluated as follows:

f(x)=

{
∑i=100

i=1
pixi, if

∑i=100

i=1
wixi ≤ C

10−10 × (
∑i=100

i=1
wi −

∑i=100

i=1
wixi), else

(9)

2. Royal Road Function:

This function is the same as Mitchell, Forrest and Hol-
land’s royal road function R1 [21]. It is defined on a
sixty-four bit string consisting of eight contiguous build-
ing blocks of eight bits, each of which contributes ci = 8
(i = 1, ..., 8) to the total fitness if all of the eight bits
are set to one. The fitness of a bit string x is computed
by summing the coefficients ci corresponding to each of
the given building blocks si of which x is an instance
(denoted by x ∈ si). That is, the royal road function is
defined as follows:

f(x) =

i=8
∑

i=1

ciδi(x) (10)

where δi(x) = {1, if x ∈ si; 0, otherwise}. This function
has an optimum fitness of 64.

3. Deceptive Function:

Deceptive functions are devised as difficult test functions
for GAs. They are a family of functions where there exist
low-order building blocks that do not combine to form
higher-order building blocks: instead they form building
blocks resulting in a solution, called deceptive attractor

[29], which is sub-optimal itself or near a sub-optimal
solution. It is even claimed that the only challenging
problems for GAs are problems that involve some degree
of deception. Based on an algorithm of constructing fully
deceptive functions, Whitley [29] developed a 4-bit fully
deceptive problem as follows:

f(0000)=28 f(0001)=26 f(0010)=24 f(0011)=18

f(0100)=22 f(0101)=6 f(0110)=14 f(0111)=0

f(1000)=20 f(1001)=12 f(1010)=10 f(1011)=2

f(1100)=8 f(1101)=4 f(1110)=6 f(1111)=30

In this study, we construct a deceptive function con-
sisting of 30 copies of Whitley’s 4-bit fully deceptive
function (order-4 subproblem). This function has an op-
timum fitness of 900 and a representation of 120 bits.

4.2 Constructing Dynamic Test Environments

In this paper, we construct dynamic test environments
from above stationary problems in the following way.
The fitness landscape of each stationary problem is pe-
riodically changed every τ generations during the run
of algorithms. Based on our preliminary experiments on
the stationary problems (see Sect. 5.2), τ is set to 10,
100 and 200 respectively to create 3 dynamic problems
with respect to this parameter only. The environmental
change speed parameter τ is set to these values because
on the stationary problems all algorithms are sort of con-
sistently on different search stages at generations of these
values. For example, on the stationary problems almost
all algorithms are at quite early searching stage at gener-
ation 10, at medium searching stage at generation 100,
and at late stage or converged at generation 200. By
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Table 1 The index table for environmental dynamics pa-
rameter setting.

τ Environmental Dynamics Index

10 1 2 3 4 5 6 7
100 8 9 10 11 12 13 14
200 15 16 17 18 19 20 21

ρ ⇒ 0.05 0.2 0.4 0.6 0.8 0.95 rand(0.01, 0.99)

setting τ to these values we can test each algorithm’s
capability of adapting to dynamic environment under
different degree of convergence (or searching stage).

In order to test the effect of another dynamics param-
eter, the degree of environmental change, on the perfor-
mance of algorithms, the value of ρ is set to 0.05, 0.2,
0.4, 0.6, 0.8, and 0.95 respectively for each run of an
algorithm on a problem. These values represent differ-
ent environmental change levels, from very light shifting
(ρ = 0.05) to medium variation (ρ = 0.2, 0.4, 0.6, 0.8)
to significant change (ρ = 0.95). In order to study the
behavior of algorithms in randomly changing environ-
ment we also set ρ to be a random number uniformly
distributed in [0.01, 0.99], i.e., ρ = rand(0.01, 0.99).

Totally, we systematically construct a series of 21 dy-
namic problems, 3 values of τ combined with 7 values of
ρ, from each stationary test problem. The environmental
dynamics parameter settings are summarized in Table 1.

5 Experimental Study

5.1 Experimental Design

Experiments were carried out to compare the perfor-
mance of PBILs as well as the SGA on the test envi-
ronments constructed above. In addition to the above
described PBILs, we also test the effect of the re-start
scheme on the performance of PBIL in dynamic environ-
ments. A complete re-start of EAs after a change in the
environment has occurred is the simplest option to main-
tain diversity in the population and react to changes in
the environment. However, it is not always possible to
detect a change and do a re-start deliberately. In this
study, for the sake of algorithm performance compari-
son we also investigate the PBIL with an ideal re-start
scheme, called PBILr, where whenever the environment
changes the PBIL is re-started from scratch. That is,
with PBILc all elements in the probability vector is re-
set to 0.5 whenever the environment changes.

For each experiment of combining different algorithm
and test problem (no matter stationary or dynamic), 50
independent runs were executed with the same set of
50 random seeds. For each run of different algorithm on
each problem, the best-of-generation fitness was recorded
every generation. And for each run of an algorithm on a

dynamic problem, 10 periods of environmental changes
are allowed3.

The overall performance of an algorithm on a prob-
lem is measured by the mean best-of-generation fitness.
It is defined as the best-of-generation fitness averaged
across the number of total runs and then averaged over
the data gathering period. More formally this is:

FBG =
1

G

G
∑

i=1

(
1

N

N
∑

j=1

FBGij
) (11)

where FBG is the mean best-of-generation fitness, G is
the number of generations which is equivalent to 10 peri-
ods of environmental changes (i.e., G = 10 ∗ τ), N = 50
is the total number of runs, and FBGij

is the best-of-
generation fitness of generation i of run j.

5.2 Experimental Results on Stationary Problems

In order to help analyze the experimental results on dy-
namic problems later on in this paper, preliminary ex-
periments were carried out on the stationary test prob-
lems. For each run of different algorithm on each problem
the maximum allowable number of generations was set
to 200. The preliminary experimental results are shown
in Fig. 5 where the data were averaged over 50 runs.

From Fig. 5, it can be seen that in general all PBILs
outperform SGA. This result is consistent with other
researchers’ study [4]. On the knapsack and royal road
problems PBIL outperforms PPBIL2 and DPBIL2 while
PPBIL2 performs as well as DPBIL2. This result shows
that on stationary problems introducing extra probabil-
ity vector may not be beneficial because the existence
of an extra probability vector that performs worse may
slow down the learning speed of the other probability
vector that performs better. However, on the deceptive
function the situation seems quite different. PBIL and
PPBIL2 performs equally well while both are beaten by
DPBIL2 during late searching stage. This happens be-
cause the deceptive attractor x = 00...0 in this function
strongly draws the probability vectors of PBIL and PP-
BIL2 towards its trap. The existence of the dual proba-
bility vector in DPBIL2 slows down the process of trap-
ping, and after about 140 generations when the fitness
level 840 of the deceptive attractor is reached, the dual
probability vector helps escaping the local optimum and
pushes the searching towards the global optimum.

5.3 Experimental Results on Dynamic Problems

The experimental results on dynamic problems and some
key statistical test results are summarized in Table 2

3 For the convenience of analyzing experimental results on
dynamic problems, we herein call the first period stationary

since the behavior of an algorithm on a dynamic problem dur-
ing this period is the same as that on the relevant stationary
problem. And the other 9 periods are called dynamic.
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Fig. 5 Experimental results with respect to best-of-
generation fitness against generations of algorithms on sta-
tionary problems: (a) Knapsack, (b) Royal Road, and (c)
Deceptive. The data were averaged over 50 runs.

and Table 3 respectively. The experimental results are
also plotted in Fig. 6, where the environmental dynamics
setting can be indexed according to Table 1. From Table
2, Table 3 and Fig. 6 several results can be observed.

First, the performance of PBILr increases with the
value of τ but doesnot change much with the value of
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Fig. 6 Experimental results of SGA, PBIL, PBILr, PPBIL2,
and DPBIL2 with respect to mean best-of-generation fitness
against different environmental dynamics parameter settings
on dynamic problems: (a) Knapsack, (b) Royal Road, and
(c) Deceptive.

ρ. This is easy to understand. Given the perfect re-start
scheme, each time the environment changes PBILr is in
fact starting from the same initial state to search the
equivalent problem regardless of the changing degree,
i.e., the value of ρ. And with the increasing of τ PBILr
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Table 2 Experimental results of SGA, PBIL, PBILr, PPBIL2, and DPBIL2 on dynamic problems with respect to overall
mean best-of-generation fitness.

Dynamics Knapsack Problem Royal Road Function Deceptive Function

τ ρ SGA PBIL PBILr PPBIL2 DPBIL2 SGA PBIL PBILr PPBIL2 DPBIL2 SGA PBIL PBILr PPBIL2 DPBIL2

10 0.05 1413.2 1432.7 1415.1 1430.0 1429.1 26.9 17.8 8.7 17.2 16.1 615.7 654.2 585.7 652.6 639.7
10 0.2 1411.7 1421.9 1415.0 1420.1 1419.2 16.6 10.4 8.6 10.3 10.0 599.8 605.7 585.7 605.7 597.5
10 0.4 1410.3 1415.2 1415.3 1414.2 1413.4 11.0 8.9 8.7 8.8 8.6 589.6 588.6 586.2 588.6 585.4
10 0.6 1409.4 1410.7 1415.1 1411.0 1411.4 9.8 8.6 8.6 8.5 8.4 585.8 583.9 585.7 585.2 583.5
10 0.8 1408.2 1408.7 1415.5 1407.6 1412.5 11.2 8.7 8.6 8.5 8.7 585.2 584.7 585.5 586.3 588.3
10 0.95 1407.8 1407.2 1414.9 1406.6 1420.1 15.7 10.1 8.6 10.0 11.1 584.1 595.9 586.5 608.1 612.5
10 rand 1409.5 1411.9 1415.3 1411.1 1413.8 11.5 9.0 8.6 8.9 8.9 588.9 588.2 585.8 591.8 589.6

100 0.05 1414.9 1416.2 1438.7 1443.8 1443.6 45.5 22.5 25.0 22.2 21.5 658.4 782.1 691.4 781.4 777.1
100 0.2 1414.3 1399.8 1438.8 1414.8 1413.2 36.3 8.7 24.7 9.6 9.2 647.0 667.6 692.0 663.2 655.2
100 0.4 1413.8 1383.4 1438.6 1400.3 1407.1 28.9 5.7 24.6 6.3 6.5 633.1 604.2 692.3 608.8 604.3
100 0.6 1413.3 1373.1 1438.6 1391.7 1408.6 24.7 5.2 24.7 6.0 5.8 622.1 595.5 691.9 601.3 601.5
100 0.8 1412.8 1367.3 1438.7 1385.7 1415.3 23.2 5.3 24.6 6.4 8.5 611.8 612.8 691.6 619.0 644.1
100 0.95 1412.5 1365.2 1438.7 1379.8 1440.2 23.8 9.8 24.5 11.2 22.2 605.9 731.6 693.5 720.8 758.2
100 rand 1413.6 1371.7 1438.6 1393.5 1415.2 27.2 6.8 24.5 7.7 8.8 627.4 621.1 692.8 627.2 635.4

200 0.05 1414.9 1392.9 1454.1 1430.3 1440.8 49.9 19.0 39.4 19.8 18.3 662.2 793.5 763.7 791.5 798.6
200 0.2 1414.6 1373.6 1454.0 1404.6 1405.9 41.4 6.9 39.7 7.5 7.1 655.9 682.1 764.4 678.9 676.1
200 0.4 1414.5 1340.9 1454.0 1381.7 1401.4 34.5 5.1 39.4 5.4 5.7 648.4 613.6 764.2 618.8 612.6
200 0.6 1414.2 1331.6 1454.1 1369.1 1402.1 30.1 4.6 39.1 5.5 5.5 640.6 601.4 764.4 609.9 607.7
200 0.8 1413.8 1316.5 1454.0 1355.8 1412.7 27.5 4.8 39.4 5.6 7.7 632.4 632.3 764.6 634.0 669.4
200 0.95 1413.5 1281.1 1454.1 1329.3 1441.1 26.5 8.8 39.0 10.2 24.1 626.6 761.0 764.1 754.2 786.7
200 rand 1414.2 1334.6 1454.0 1367.9 1408.8 32.9 5.9 39.1 6.4 8.1 643.4 632.1 764.0 636.4 643.3

Table 3 Statistical comparison of algorithms on dynamic problems by one-tailed t-test with 98 degrees of freedom at a 0.05
level of significance. The t-test result regarding Alg. 1 − Alg. 2 is shown as “+”, “−”, or “∼” when Alg. 1 is significantly
better than, significantly worse than, or statistically equivalent to Alg. 2 respectively.

t-test Result Knapsack Problem Royal Road Function Deceptive Function

τ = 10, ρ ⇒ .05 .2 .4 .6 .8 .95 rand .05 .2 .4 .6 .8 .95 rand .05 .2 .4 .6 .8 .95 rand

DPBIL2− SGA + + + + + + + − − − − − − − + − − − + + ∼
DPBIL2− PBIL − − − + + + + − − − − ∼ + ∼ − − − ∼ + + ∼

DPBIL2− PPBIL2 ∼ − − ∼ + + + − − ∼ ∼ + + ∼ − − − − + + −
PPBIL2− PBIL − − − ∼ − ∼ ∼ ∼ ∼ ∼ ∼ − ∼ ∼ ∼ ∼ ∼ + + + +
PBILr − PBIL − − ∼ + + + + − − − ∼ ∼ − − − − − + ∼ − −

PBILr − PPBIL2 − − + + + + + − − ∼ ∼ ∼ − − − − − ∼ ∼ − −
PBILr −DPPBIL2 − − + + + − + − − ∼ + ∼ − − − − ∼ + − − −

τ = 100, ρ ⇒ .05 .2 .4 .6 .8 .95 rand .05 .2 .4 .6 .8 .95 rand .05 .2 .4 .6 .8 .95 rand

DPBIL2− SGA + ∼ − − + + ∼ − − − − − − − + + − − + + +
DPBIL2− PBIL + + + + + + + ∼ + + + + + + − − ∼ + + + +

DPBIL2− PPBIL2 ∼ ∼ + + + + + ∼ ∼ ∼ ∼ + + + − − − ∼ + + +
PPBIL2− PBIL + + + + + + + ∼ + + + + + + ∼ − + + + − ∼
PBILr − PBIL + + + + + + + + + + + + + + − + + + + − +

PBILr − PPBIL2 − + + + + + + + + + + + + + − + + + + − +
PBILr −DPPBIL2 − + + + + ∼ + + + + + + + + − + + + + − +

τ = 200, ρ ⇒ .05 .2 .4 .6 .8 .95 rand .05 .2 .4 .6 .8 .95 rand .05 .2 .4 .6 .8 .95 rand

DPBIL2− SGA + − − − ∼ + − − − − − − − − + + − − + + ∼
DPBIL2− PBIL + + + + + + + ∼ ∼ + + + + + + − ∼ + + + +

DPBIL2− PPBIL2 + ∼ + + + + + ∼ ∼ ∼ ∼ + + + + ∼ − ∼ + + ∼
PPBIL2− PBIL + + + + + + + ∼ + + + + + ∼ ∼ ∼ + + ∼ − ∼
PBILr − PBIL + + + + + + + + + + + + + + − + + + + ∼ +

PBILr − PPBIL2 + + + + + + + + + + + + + + − + + + + + +
PBILr −DPPBIL2 + + + + + + + + + + + + + + − + + + + − +

has more time to search solutions with higher fitness
before the next change.

PBILr outperforms other algorithms in many dy-
namic problems, especially when the environment changes
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slowly (and hence convergence becomes a problem). This
is due to the maximum diversity the re-start scheme in-
troduces into the population. However, in slightly chang-
ing environments (ρ = 0.05) PBILr is beaten by other
PBILs in many cases due to the lack of information
transfer from the last generation of the last dynamic
period. Since it is usually not possible to detect environ-
mental change timely and perform the re-start scheme
immediately when the environment changes, we will ex-
clude PBILr in following algorithm performance com-
parison and analysis.

Second, from Fig. 6 it is easy to see that for each fixed
τ DPBIL2 outperforms other algorithms (even including
PBILr) on most of the dynamic problems when the en-
vironment is subject to significant changes, e.g., when ρ
is set to 0.95. In fact, from Table 3 it can be seen that
when ρ = 0.95, DPBIL2 statistically significantly out-
performs PBIL and PPBIL2 on all dynamic problems
and SGA on all dynamic knapsack and deceptive func-
tions. This result confirms our expectation of introduc-
ing the dual probability vector into DPBIL2. When the
environment suffers significant changes, the dual proba-
bility vector takes effect quickly to adapt DPBIL2 to the
changed environment. This effect on DPBIL2 also takes
place when ρ is set to 0.6 and 0.8. DPBIL2 still statis-
tically significantly outperforms PBIL and PPBIL2 on
most dynamic problems when ρ equals 0.6 and 0.8 and
SGA on most dynamic knapsack problems and deceptive
functions when ρ = 0.8.

Third, PBIL is now beaten by both PPBIL2 and DP-
BIL2 on most dynamic problems except when the value
of ρ is small. When ρ is small, the dynamic problems
are close to their corresponding stationary problems. For
stationary (and nearly stationary) problems introduc-
ing an extra probability vector may not be beneficial,
which has been verified in our preliminary experiments
in Sect. 5.2 (see Fig. 5). However, when the value of ρ
increases the introduction of an extra probability vector
helps improving PBIL’s performance.

Fourth, as opposed to stationary problems, SGA now
outperforms PBILs on many dynamic problems, espe-
cially when the value of τ is large. This happens be-
cause when τ is large the algorithms are given more
time to search before the next environmental change and
hence they are more likely to converge. Convergence de-
prives PBILs of the adaptability to changing environ-
ments. However, the mutation mechanism embedded in
SGA gives it more diversity than PBILs and hence bet-
ter adaptability to environmental changes. Hence, SGA
outperforms PBILs in many dynamic problems.

It seems that SGA performs much better on dynamic
royal road functions than on dynamic knapsack prob-
lems and dynamic deceptive functions when the value
of τ is large. The reason lies in the intrinsic characteris-
tics of the royal road function where there exists a big
gap with respect to the fitness levels of its component
building block. Only when all ones appear in a building

block it will contribute 8 to the whole fitness, otherwise
for all other cases it will contribute 0. This makes the
effect of the mutation scheme in SGA more significant
on dynamic royal road functions.

Fifth, given a value of τ when the environment changes
randomly with respect to the changing severity, i.e., ρ =
rand(0.01, 0.99), the performance of algorithms is simi-
lar to the situation of setting ρ to medium values, e.g.,
0.4 or 0.6. This fits well with the fact that the expected
value of rand(0.01, 0.99) is about 0.5. It is also notable
that when ρ = rand(0.01, 0.99), DPBIL2 still signifi-
cantly outperforms PBIL and PPBIL2 on most dynamic
problems and SGA on several cases. This happens be-
cause the dual probability vector inside DPBIL2 im-
proves its adaptability if by chance the environment is
subject to significant changes, i.e., ρ is randomly set to
a big value.

Finally, from Fig. 6 an interesting result that can
be seen is that for each fixed τ with the increasing of
the value of ρ (excluding the random situation) DPBIL2
performs consistently across the three series of dynamic
problems (knapsack, royal road and deceptive). When
ρ increases from 0.05 to 0.2, 0.4, 0.6, 0.8 to 0.95 the
performance curve of DPBIL2 looks like a big “U”. PBIL
and PPBIL2 have this performance curve on dynamic
royal road and deceptive functions, while on the dynamic
knapsack problems they have the performance curve of
“falling stone”. SGA has a “falling stone” performance
curve on almost all dynamic problems. The reason to
this observation lies in the intrinsic characteristics of the
problems and will be further explained below.

In order to better understand the experimental re-
sults, we need to have a deeper look into the dynamic
behavior of different algorithms. The dynamic behavior
of different algorithms with respect to best-of-generation
fitness against generations on the three series of dynamic
problems is shown in Fig. 7 to Fig. 9 respectively, where
the data were averaged over 50 runs. In these figures τ
is set to 10 (left column) and 200 (right column) respec-
tively, and ρ is set to 0.05, 0.4, and 0.95 from top row
to bottom row respectively. From these figures it can be
easily observed that for PBILr on all dynamic problems
its dynamic behavior for each dynamic period is almost
the same as that for the stationary period.

For DPBIL2 on all dynamic problems the dynamic
performance drops heavier and heavier when the value
of ρ increases from 0.05 to 0.4. However, when ρ = 0.8
(not shown in Fig. 7) and 0.95 the situation is different.
Now, when τ = 10 its performance rises instead of drops
with the increment of dynamic periods due to less con-
vergence and high adaptability brought in by the dual
probability vector, while when τ = 200 with the incre-
ment of dynamic periods DPBIL2’s performance main-
tains almost the same on dynamic knapsack problems
or drops much less severe on dynamic royal road and
deceptive problems. For both values of τ whenever the
environment changes the dual probability vector adapts
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Fig. 7 Dynamic behavior of algorithms on dynamic knapsack problems. The environmental dynamics parameter τ is set to
10 (Left Column) and 200 (Right Column) respectively and ρ is set to 0.05, 0.4, and 0.95 from top to bottom row respectively.

DPBIL2 quickly to the new environment. This stops its
performance from significant drop for dynamic periods.
All in all, this results in DPBIL2’s big “U” performance
curve on all the dynamic problems.

For PBIL and PPBIL2, generally speaking, when the
value of ρ increases from 0.05 to 0.4 their dynamic per-
formance drops heavier and heavier on all dynamic prob-
lems, which is similar to DPBIL2’s dynamic performance.
However, when ρ = 0.95 their dynamic performance
is different from DPBIL2’s. When ρ = 0.95, the dy-
namic behavior of PBIL and PPBIL2 is sort of switch-

ing between odd and even environmental periods. They
start from a harsher state for even environmental pe-
riods than for odd environmental periods. The reason
to this lies in that after the stationary period for the
following odd period the environment is in fact greatly
returned or repeated from previous odd period given
ρ = 0.95. Hence at the start of odd environmental peri-
ods the performance of PBIL and PPBIL2 doesnot drop
as heavy as it does at the start of even periods. This ben-
efits the whole performance of PBIL and PPBIL2 and
also results in the big “U” overall performance curve for
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Fig. 8 Dynamic behavior of algorithms on dynamic royal road functions. The environmental dynamics parameter τ is set to
10 (Left Column) and 200 (Right Column) respectively and ρ is set to 0.05, 0.4, and 0.95 from top to bottom row respectively.

them on dynamic royal road and deceptive functions.
However, the inside mechanism is that PBIL and PP-
BIL2 are sort of waiting for the return of previously well
sought environment, which is totally different from DP-
BIL2 where the high performance is achieved by rapid
adaptation to the newly changed environment. On dy-
namic knapsack problems, PBIL and PPBIL2 do not
have the big “U” overall performance curve because their
performance drops too much during the start of even en-
vironmental periods to be compensated by the benefit
gained during odd periods.

In order to better understand the above discussion,
in Fig. 10 we present extra experimental results with the
extreme environmental dynamics of ρ = 1.0 and τ = 200
on the dynamic problems. From Fig. 10 it can be clearly
seen that when the environment changes DPBIL2 imme-
diately adapts to the new environment while PBIL and
PPBIL2 switch between two states: one low fitness state
of even environmental periods where PBIL and PPBIL2
are poorly searching or in fact waiting for the return
of their previously adapted environment, and the other
high fitness state of odd periods.
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Fig. 9 Dynamic behavior of algorithms on dynamic deceptive functions. The environmental dynamics parameter τ is set to
10 (Left Column) and 200 (Right Column) respectively and ρ is set to 0.05, 0.4, and 0.95 from top to bottom row respectively.

For SGA the mutation scheme gives it certain learn-
ing capacity in dynamic environments. Hence, its aver-
age performance for each dynamic period does not drop
too heavily with the growing of dynamic periods. How-
ever, when the environment undergoes severer and sev-
erer changes, i.e., when the value of ρ changes from 0.05
to 0.95, SGA faces harsher and harsher starting points
when the environment changes. Hence, the performance
of SGA degrades consistently with the increasing of ρ
and SGA does not have a big “U” performance curve on
most dynamic optimization problems.

6 Introducing the Central Probability Vector

6.1 Modified Algorithms

One major problem for EAs to solve dynamic optimiza-
tion problems is due to the convergence of population or
probability vector. Once converged, the EA loses the re-
quired diversity to adapt to the changing environment.
To address this problem, Grefenstette [15] introduced
the random immigrants approach into GAs where in ev-
ery generation the population is partly replaced by ran-
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Fig. 10 Dynamic behavior of algorithms on dynamic prob-
lems: (Top) Knapsack, (Middle) Royal Road, and (Bottom)
Deceptive. The environmental dynamics parameter τ is set
to 200 and ρ is set to 1.0.

domly created individuals (random immigrants). Since
the approach only replaces a small ratio, e.g. 10%, of
the population, it introduces diversity without disrupt-
ing the ongoing search progress greatly.

In this paper, incorporating a similar technique into
PBILs is also investigated. The idea is to introduce the
central probability vector into PBIL since from it ran-
dom solutions can be sampled. We add a central proba-
bility vector into PBIL, PPBIL2, and DPBIL2 and call

begin

t := 0;

// initialize probability vectors
for i := 1 to l do P 0

1 [i] := 0.5; P2[i] := 0.5; endfor;

// initialize sample sizes for probability vectors
n1 := 0.9 ∗ n; n2 := 0.1 ∗ n;

repeat

St

1 := generateSamplesFromProbVector(P t

1 , n1);
St

2 := generateSamplesFromProbVector(P2 , n2);
evaluateSamples(St

1, S
t

2);
Bt

1 := selectBestSolution(St

1);
Bt

2 := selectBestSolution(St

2);

// update probability vectors
for i := 1 to l do

if f(Bt

1) ≥ f(Bt

2) then // learn P t

1 toward Bt

1

P t

1 [i] := (1− α) ∗ P t

1 [i] + α ∗Bt

1[i];
else P t

1 [i] := (1− α) ∗ P t

1 [i] + α ∗Bt

2[i];
endfor;

t := t+ 1;
until terminated = true; // e.g., t > tmax

end;

PBILc’s parameters l, α and n are the same as PBIL’s.

Fig. 11 Pseudocode for PBILc.

the obtained algorithms PBILc, PPBIL3, and DPBIL3
respectively. The pseudocodes for PBILc, PPBIL3, and
DPBIL3 are shown in Fig. 11 to Fig. 13 respectively.

Within PBILc, PPBIL3, and DPBIL3, we set the
sample size of the central probability vector to a small
constant value, 0.1 ∗ n, in order to limit its effect on the
algorithm as a whole. The sampling mechanism is the
same as that in PPBIL2 and DPBIL2. The probability
vectors are independently sampled to generate their own
set of solutions. However, the central probability vector
doesn’t change or learn over time. Within PPBIL3 the
other two probability vectors learn from the best solution
generated by themselves independently. However, if the
best solution generated by the central probability vector
is better than their best solution, they learn from that
solution. Within PBILc and DPBIL3, the learning mech-
anism is a little different. As in DPBIL2 only the first
probability vector P1 learns. In PBILc, if P1’s best sam-
ple B1 has higher fitness than P2’s best sample B2, P1

will learn towards B1; otherwise, P1 will learn towards
B2. In DPBIL3 if P1’s best sample B1 has the overall
highest fitness, P1 will learn towards B1; if P3’s best
sample B3 has higher fitness than both P1’s and P2’s,
P1 will learn towards B3; otherwise, if f(B2) > f(B1)
and f(B2) ≥ f(B3), P1 will learn away from B2.

As in PPBIL2 and DPBIL2, within PPBIL3 and DP-
BIL3 the sample size of the two varying probability vec-
tors is initialized to an equal value and is slightly adapted
by a constant value∆ = 6 within the range of [nmin, nmax]
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begin

t := 0;

// initialize probability vectors
for i := 1 to l do

P 0

1 [i] := 0.5; P 0

2 [i] := rand[0.0, 1.0]; P3[i] := 0.5;
endfor;

// initialize sample sizes for probability vectors
n0

1 := n0

2 := 0.45 ∗ n; n3 := 0.1 ∗ n;

repeat

St

1 := generateSamplesFromProbVector(P t

1 , n
t

1);
St

2 := generateSamplesFromProbVector(P t

2 , n
t

2);
St

3 := generateSamplesFromProbVector(P3, n3);
evaluateSamples(St

1, S
t

2, S
t

3);
Bt

1 := selectBestSolution(St

1);
Bt

2 := selectBestSolution(St

2);
Bt

3 := selectBestSolution(St

3);

// update probability vectors
for i := 1 to l do

if f(Bt

1) ≥ f(Bt

3) then // learn P t

1 toward Bt

1

P t

1 [i] := (1− α) ∗ P t

1 [i] + α ∗ Bt

1[i];
else P t

1 [i] := (1− α) ∗ P t

1 [i] + α ∗ Bt

3[i];
if f(Bt

2) ≥ f(Bt

3) then // learn P t

2 toward Bt

2

P t

2 [i] := (1− α) ∗ P t

2 [i] + α ∗ Bt

2[i];
else P t

2 [i] := (1− α) ∗ P t

2 [i] + α ∗ Bt

3[i];
endfor;

// update sample sizes for probability vectors
if f(Bt

1) > f(Bt

2) then nt

1 := min{nt

1 +∆,nmax};
if f(Bt

1) < f(Bt

2) then nt

1 := max{nt

1 −∆,nmin};
nt

2 := n− n3 − nt

1;

t := t+ 1;
until terminated = true; // e.g., t > tmax

end;

PPBIL3’s parameter settings:
l, α, ∆, n, nt

1, n
t

2: the same as PPBIL2’s
n3: constant sample size by the 3rd prob. vector (12).
nmin: min sample size by prob. vector 1 and 2 (24).
nmax: max sample size by prob. vector 1 and 2 (84).

Fig. 12 Pseudocode for PPBIL3.

= [0.2 ∗ n, 0.7 ∗ n] = [24, 84] according to their relative
performance. If one probability vector outperforms the
other, its sample size is increased by ∆ while the other’s
decreased by∆; otherwise, there is no change. The learn-
ing rate α is set to 0.05 for all PBILs.

In order to compare the effect of introducing the cen-
tral probability vector into PBILs with the random im-
migrants technique in GAs one variant of SGA, called
RIGA, which combines the random immigrants tech-
nique within SGA is also studied as a peer algorithm.
RIGA differs from SGA only in that when the popula-
tion has undergone the crossover and mutation opera-
tions and just before it is put to evaluation, a subset of
randomly selected individuals (10% of the population)
is replaced by randomly created individuals. Then the

begin

t := 0;

// initialize probability vectors
for i := 1 to l do P 0

1 [i] := P 0

2 [i] := P3[i] := 0.5; endfor;

// initialize sample sizes for probability vectors
n0

1 := n0

2 := 0.45 ∗ n; n3 := 0.1 ∗ n;

repeat

St

1 := generateSamplesFromProbVector(P t

1 , n
t

1);
St

2 := generateSamplesFromProbVector(P t

2 , n
t

2);
St

3 := generateSamplesFromProbVector(P3, n3);
evaluateSamples(St

1, S
t

2, S
t

3);
Bt

1 := selectBestSolution(St

1);
Bt

2 := selectBestSolution(St

2);
Bt

3 := selectBestSolution(St

3);

// update probability vectors
for i := 1 to l do

if f(Bt

1) ≥ max{f(Bt

2), f(B
t

3)} then

P t

1 [i] := (1− α) ∗ P t

1 [i] + α ∗Bt

1[i];
else if f(Bt

3) > max{f(Bt

1), f(B
t

2)} then

P t

1 [i] := (1− α) ∗ P t

1 [i] + α ∗Bt

3[i];
else P t

1 [i] := (1− α) ∗ P t

1 [i] + α ∗ (1.0−Bt

2[i]);
P t

2 [i] := 1.0 − P t

1 [i];
endfor;

// update sample sizes for probability vectors
if f(Bt

1) > f(Bt

2) then nt

1 := min{nt

1 +∆,nmax};
if f(Bt

1) < f(Bt

2) then nt

1 := max{nt

1 −∆, nmin};
nt

2 := n− n3 − nt

1;

t := t+ 1;
until terminated = true; // e.g., t > tmax

end;

DPBIL3’s parameter settings are the same as PPBIL3’s.

Fig. 13 Pseudocode for DPBIL3.

population is evaluated and put to next evolution cycle.
The genetic operators and relevant parameter settings
for RIGA are all the same as those for SGA.

6.2 Experimental Results

The experimental settings for RIGA, PBILc, PPBIL3
and DPBIL3 are the same as previous settings. The ex-
perimental results are shown in Fig. 14 (where the envi-
ronmental parameter setting is indexed the same way by
Table 1) and Table 4. Some key statistical test results
are given in Table 5. From Table 4, Table 5 and Fig. 14
the following results can be observed.

First, generally speaking PBILc, PPBIL3, and DP-
BIL3 outperform their peers PBIL, PPBIL2, and DP-
BIL2 respectively, especially when the environmental dy-
namics parameter τ is large and ρ is set to medium val-
ues of 0.4 and 0.6 or rand(0.01, 0.99). When τ = 10,
the effect of introducing the central probability vector
is not significant in many cases or is negative in some
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Fig. 14 Experimental results of RIGA, PBILc, PPBIL3,
and DPBIL3 with respect to mean best-of-generation fitness
against different environmental dynamics parameter settings
on dynamic problems: (a) Knapsack, (b) Royal Road, and
(c) Deceptive.

cases. This is because convergence is not very serious
when the environment changes quickly. When ρ is set to
medium values, PBILc, PPBIL3, and DPBIL3 achieve
statistically significantly better performance over their
peers respectively, see Table 5 for the t-test results with

respect to PBILc − PBIL, PPBIL3 − PPBIL2, and
DPBIL3−DPBIL2. This happens because the central
probability vector works well under dynamic environ-
ments with medium degree of changes. In the genotype
space with ρ set to a medium value each time when the
environment changes an optimal solution is shifted about
halfway away from its original point toward its comple-
mentary point in terms of Hamming distance, and falls
into the very area represented by the central vector.

Second, both PPBIL3 and DPBIL3 now outperform
RIGA on most dynamic knapsack and deceptive prob-
lems, see the t-test results with respect to PPBIL3 −
RIGA andDPBIL3−RIGA in Table 5. This result hap-
pens because the advantage of introducing diversity by
the mutation mechanism in RIGA is now overrun by the
effect of the central probability vector in PPBIL3 and
DPBIL3. However, on dynamic royal road functions it
seems that the central probability vector in PPBIL3 and
DPBIL3 is not strong enough for them to beat RIGA.

Third, comparing PBILc with PPBIL2 and DPBIL2,
from the t-test results in Table 5 with respect to PBILc−
PPBIL2 and PBILc − DPBIL2 it can be seen that
when τ is large PBILc significantly outperforms PPBIL2
on almost all dynamic problems and it outperforms DP-
BIL2 on most dynamic problems except when ρ is set to
0.95. This means when convergence becomes a problem,
the central probability vector is more helpful than just
an extra or dual probability vector. However, when the
environment suffers significant changes, e.g., ρ = 0.95,
introducing the dual probability vector is more helpful
than the central probability vector.

Finally, from Table 5 an interesting and sort of con-
fusing observation is that RIGA outperforms SGA on
several dynamic royal road functions when ρ is set to
medium values and on dynamic knapsack problems when
τ = 10 and ρ = 0.05 while it is beaten by SGA on most
other dynamic problems. The reason lies in the interac-
tive effect between SGA and the problems. According to
our extra experimental results (not shown in this paper)
decreasing the mutation probability pm in SGA from
0.01 to 0.001 increases SGA’s performance on the sta-
tionary knapsack problem and deceptive function while
decreasing its performance on the stationary royal road
function. This means strengthening the mutation and
hence the diversity may not be beneficial for the knap-
sack and deceptive problems. This also sort of explains
that the effect of introducing random immigrants into
SGA is problem-dependent.

Similarly, in order to better understand the effect
of the central probability vector, we give the dynamic
behavior of RIGA, PBILc, PPBIL2, DPBIL2, PPBIL3,
and DPBIL3 with respect to best-of-generation fitness
against generations on dynamic problems in Fig. 15 to
Fig. 17 respectively, where the value of τ equals 200
and ρ equals 0.05, 0.4, and 0.95 from top to bottom
row respectively. From these figures it can be seen that
when ρ is small or large, the central probability vector
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Table 4 Experimental results of RIGA, PBILc, PPBIL3, and DPBIL3 on dynamic problems with respect to overall mean
best-of-generation fitness.

Dynamics Knapsack Problem Royal Road Function Deceptive Function

τ ρ RIGA PBILc PPBIL3 DPBIL3 RIGA PBILc PPBIL3 DPBIL3 RIGA PBILc PPBIL3 DPBIL3

10 0.05 1411.1 1432.0 1429.2 1427.2 25.6 17.3 16.6 15.6 592.9 650.1 650.9 636.4
10 0.2 1411.0 1421.8 1420.4 1418.0 17.3 10.2 10.1 9.8 588.6 603.3 603.8 594.7
10 0.4 1410.4 1415.8 1414.8 1413.2 13.3 8.9 8.8 8.6 587.1 588.2 588.3 584.1
10 0.6 1409.7 1412.2 1411.9 1411.1 12.1 8.6 8.5 8.5 585.5 583.7 584.7 582.2
10 0.8 1409.0 1409.5 1409.8 1412.0 12.6 8.6 8.6 8.7 584.6 583.4 584.2 586.5
10 0.95 1409.0 1408.0 1408.4 1417.8 15.7 9.8 10.0 10.7 583.3 591.9 598.8 609.2
10 rand 1409.8 1412.8 1412.8 1413.5 13.7 8.9 8.9 8.7 585.7 586.7 589.7 586.9

100 0.05 1411.1 1459.3 1458.1 1457.3 44.2 26.3 27.4 25.1 595.6 780.2 781.5 771.7
100 0.2 1411.1 1442.3 1442.8 1439.5 35.4 17.5 20.1 16.5 595.1 697.3 712.9 691.9
100 0.4 1411.0 1433.6 1433.6 1429.6 28.3 14.8 17.0 13.8 594.6 697.0 702.9 688.1
100 0.6 1411.1 1427.1 1428.2 1428.0 25.0 13.5 16.1 13.5 593.9 690.3 693.2 688.3
100 0.8 1411.0 1421.8 1423.8 1439.3 23.8 14.3 16.7 15.8 594.1 703.7 711.5 689.2
100 0.95 1410.8 1418.9 1421.4 1455.6 23.9 15.9 18.2 23.9 593.7 742.2 752.5 754.4
100 rand 1410.9 1433.5 1433.3 1437.9 27.8 15.5 17.9 17.1 594.6 717.4 723.4 705.6

200 0.05 1411.1 1461.2 1462.0 1459.8 48.5 25.8 26.8 24.5 595.9 789.6 794.0 793.1
200 0.2 1411.1 1448.0 1450.0 1445.7 40.9 18.6 21.1 17.7 595.5 713.3 736.3 711.8
200 0.4 1411.1 1442.1 1443.1 1437.4 34.1 17.0 21.3 16.6 595.2 745.6 756.7 744.4
200 0.6 1411.1 1438.6 1439.5 1437.1 30.6 16.9 20.1 15.6 595.2 756.3 760.0 741.7
200 0.8 1410.9 1434.4 1436.5 1446.3 29.1 17.0 20.1 17.4 594.8 749.0 764.8 712.0
200 0.95 1411.1 1432.0 1435.2 1459.8 28.2 17.9 19.9 25.6 594.7 763.9 773.5 782.9
200 rand 1411.1 1444.0 1444.6 1445.4 33.7 18.0 21.1 17.8 595.2 758.9 766.5 741.6

Table 5 Statistical comparison of algorithms on dynamic problems by one-tailed t-test with 98 degrees of freedom at a 0.05
level of significance. The t-test result regarding Alg. 1 − Alg. 2 is shown as “+”, “−”, or “∼” when Alg. 1 is significantly
better than, significantly worse than, or statistically equivalent to Alg. 2 respectively.

t-test Result Knapsack Problem Royal Road Function Deceptive Function

τ = 10, ρ ⇒ .05 .2 .4 .6 .8 .95 rand .05 .2 .4 .6 .8 .95 rand .05 .2 .4 .6 .8 .95 rand

PPBIL3− PPBIL2 ∼ ∼ + + + + + ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ − − ∼
DPBIL3−DPBIL2 − − ∼ ∼ ∼ − ∼ ∼ ∼ ∼ ∼ ∼ − − ∼ − − − ∼ ∼ −
PPBIL3−RIGA + + + + + − + − − − − − − − + + ∼ ∼ ∼ + +
DPBIL3−RIGA + + + + + + + − − − − − − − + + − − + + ∼
PBILc− PBIL − ∼ ∼ + + + ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ − − ∼ ∼ − − ∼

PBILc− PPBIL2 + + + + + + + ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ − ∼ − − − −
PBILc−DPBIL2 + + + + − − − + ∼ + + − − ∼ + + + ∼ − − −

RIGA− SGA − − ∼ ∼ + + ∼ − ∼ + + + ∼ + − − − ∼ ∼ ∼ −

τ = 100, ρ ⇒ .05 .2 .4 .6 .8 .95 rand .05 .2 .4 .6 .8 .95 rand .05 .2 .4 .6 .8 .95 rand

PPBIL3− PPBIL2 + + + + + + + + + + + + + + ∼ + + + + + +
DPBIL3−DPBIL2 + + + + + + + + + + + + + + − + + + + − +
PPBIL3−RIGA + + + + + + + − − − − − − − + + + + + + +
DPBIL3−RIGA + + + + + + + − − − − − ∼ − + + + + + + +
PBILc− PBIL + + + + + + + + + + + + + + ∼ + + + + + +

PBILc− PPBIL2 + + + + + + + + + + + + + + ∼ + + + + + +
PBILc−DPBIL2 + + + + + − + + + + + + − + ∼ + + + + − +

RIGA− SGA − − − − − − − − − − ∼ + ∼ ∼ − − − − − − −

τ = 200, ρ ⇒ .05 .2 .4 .6 .8 .95 rand .05 .2 .4 .6 .8 .95 rand .05 .2 .4 .6 .8 .95 rand

PPBIL3− PPBIL2 + + + + + + + + + + + + + + ∼ + + + + + +
DPBIL3−DPBIL2 + + + + + + + + + + + + + + − + + + + − +
PPBIL3−RIGA + + + + + + + − − − − − − − + + + + + + +
DPBIL3−RIGA + + + + + + + − − − − − − − + + + + + + +
PBILc− PBIL + + + + + + + + + + + + + + ∼ + + + + ∼ +

PBILc− PPBIL2 + + + + + + + + + + + + + + ∼ + + + + + +
PBILc−DPBIL2 + + + + + − + + + + + + − + − + + + + − +

RIGA− SGA − − − − − − − − − ∼ + + + ∼ − − − − − − −
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Fig. 15 Dynamic behavior of algorithms on dynamic knap-
sack problems. The environmental dynamics parameter τ is
set to 200 and ρ is set to 0.05, 0.4, and 0.95 from top to
bottom respectively.

does not help much. However, when ρ is set to medium
values (e.g., 0.4), the performance of PBILc, PPBIL3
and DPBIL3 is greatly improved in comparison to their
peers (the performance of PBIL is not shown) respec-
tively during dynamic periods. The central probability
vector stops their performance from significant dropping.
From Fig. 15 and Fig. 17 it can also be seen that for
RIGA due to the random immigrants scheme its perfor-
mance is degraded heavily during the stationary period
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Fig. 16 Dynamic behavior of algorithms on dynamic royal
road functions. The environmental dynamics parameter τ is
set to 200 and ρ is set to 0.05, 0.4, and 0.95 from top to
bottom respectively.

and hence the following dynamic periods on dynamic
knapsack problems and dynamic deceptive functions.

7 Conclusions

In this paper we investigate the application of Population-
Based Incremental Learning (PBIL) algorithms for dy-
namic optimization problems. We study the effect of in-
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Fig. 17 Dynamic behavior of algorithms on dynamic decep-
tive functions. The environmental dynamics parameter τ is
set to 200 and ρ is set to 0.05, 0.4, and 0.95 from top to
bottom respectively.

troducing several approaches, such as the re-start, multi-
population, and random immigrants methods, from EA’s
community into PBIL to improve its performance in dy-
namic environments. Inspired by the complementarity
mechanism broadly existing in nature, we propose a Dual
PBIL that operates on a pair of probability vectors that
are dual to each other with respect to the central point in
the genotype space. In order to counterbalance the prob-

lem caused by the convergence of probability vectors, the
central probability vector is also introduced into PBILs.

This paper also formalizes a new dynamic problem
generator that can generate required dynamics from any
binary encoded stationary problem. This generator is
genotype-based, easy to realize required dynamics, and
convenient for theoretical analysis. Based on the new dy-
namic problem generator, a series of dynamic problems
are systematically constructed from several benchmark
stationary problems. These dynamic problems are used
as the test base for the experimental study to compare
the investigated PBILs and two variants of standard GA.

From the experimental results, the following conclu-
sions can be achieved on the tested dynamic problems.

First, on the stationary problems introducing extra
probability vector into PBIL may not be beneficial.

Second, if it is feasible to timely detect environmental
changes, the re-start scheme is a good choice for PBIL
in dynamic environments, especially when the environ-
ment changes slowly and hence convergence becomes a
problem. However, it is usually not possible to detect en-
vironmental changes timely, which greatly degrades the
re-start scheme for PBIL in dynamic environments.

Third, when the environment is subject to significant
changes in the sense of genotype space, introducing the
dual probability vector into PBIL can achieve very high
performance improvement.

Fourth, introducing the central probability vector can
improve PBIL’s performance under dynamic environ-
ments, especially when the environment is subject to
medium degree of changes in the genotype space.

Finally, the effect of introducing the random immi-
grants scheme into SGA is problem dependent.

Generally speaking, the experimental results indicate
that PBILs with dual and central probability vectors
seem to be a good choice as EAs for dynamic problems.

8 Future Work

This paper starts an interesting work on applying PBILs
for dynamic optimization problems. Based on this paper
there are several works to be carried out in the future.

First, PBILs investigated in this paper are relatively
simple. It is an interesting work to investigate more mech-
anisms, such as mutation, population interaction schemes
[4], and the hypermutation technique from EA’s com-
munity into PBILs and compare their performance for
dynamic optimization problems.

Second, it is also an interesting future work to extend
the results in this paper to other Estimation of Distribu-
tion Algorithms (EDAs) [19], [25], of which PBILs are a
sub-class, and compare obtained algorithms with other
GAs or EAs for dynamic optimization problems.

Finally, based on the new dynamic problem gener-
ator it is an important work to carry out theoretical
analysis of the performance of PBILs and other EAs for
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dynamic optimization problems, e.g, with respect to the
environmental change speed and change severity.
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