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Abstract

Evolution strategies with q-Gaussian mutation, which allows the self-adaptation of the mutation dis-

tribution shape, is proposed for dynamic optimization problems in this paper. In the proposed method,

a real parameter q, which allows to smoothly control the shape of the mutation distribution, is encoded

in the chromosome of the individuals and is allowed to evolve. In the experimental study, the q-Gaussian

mutation is compared to Gaussian and Cauchy mutation on experiments generated from the simulation of

evolutionary robots and on dynamic optimization problems generated by the Moving Peaks generator.

1 Introduction

Dynamic optimization problems (DOPs) have attracted increasing attention from the evolutionary computa-

tion community in recent years. In DOPs, the evaluation function, the representation of the solution, the

dimension of the search space, and/or the constraints of the problem may change during the optimization

process [3], which represents a great challenge for traditional evolutionary algorithms (EAs). Hence, new

approaches have to be developed to enhance the performance of EAs to deal with DOPs.

The simplest approach to deal with a problem change is to restart the optimization process, a procedure

used in many DOPs (e.g., see [8]). However, for many DOPs, a new solution must be found in a short

period after a change, which is generally impossible when the optimization procedure requires a substantial

computational effort. When the new solution after the change in the problem is related to the past solutions,

the search procedure based on previous solutions can save substantial processing time.

Another common approach is to use adaptation mechanisms to deal with the changes in DOPs. The

self-adaptation mechanism used in evolution strategies (ESs), which allows to modify the parameters of the

mutation operator during the run, represents an intrinsic mechanism for adaptation to eventual changes, which
1



makes the use of ESs interesting for DOPs [1, 9, 18]. ESs were proposed in the 1960’s to optimize candidate

solutions composed of real-valued parameters [2], and represent a good choice when gradient based methods

present bad performance due to rugged fitness landscapes in continuous optimization problems. Similar to

other EAs, new candidate solutions are generated in ESs by using a stochastic mutation.

Traditionally in ESs, the Gaussian distribution is used to generate new candidate solutions by mutation

[2]. However, in recent years, researchers have argued that the use of mutation distributions with longer

tails and infinite second moment in ESs can be useful in allowing the population escape from local optima in

multimodal problems. For example, in [19], the Cauchy distribution was employed to generate new candidate

solutions. The use of mutation taken from heavy tail distributions implies jumps of scale-free sizes, which

eventually allows to reach distant regions of the search space faster. This property is interesting for DOPs too,

as it can enable the population to escape faster from local optima located close to the best solution before the

change and to explore new promising regions of the search space. However, when mutation distributions with

longer tails are employed, less local candidate solutions are generated, and the convergence to the new optima

may be slower. Thus, the use of one or other mutation distribution may result in very different performance

on a DOP.

In this paper, the use of the q-Gaussian mutation in ESs to address DOPs is proposed. In the q-Gaussian

mutation, which was previously used in evolutionary programming for stationary optimization problems [16]

and DOPs [15], self-adaptation is employed, not only to control the mutation strength parameter, but also to

control the mutation distribution. The q-Gaussian distribution allows to smoothly control the shape of the

distribution by setting a real parameter q and can reproduce either finite second moment distributions, like

the Gaussian distribution, or infinite second moment distributions, like the Cauchy distribution. In EAs with

q-Gaussian mutation, the real parameter q is encoded in the chromosome of the individuals and is allowed

to evolve. Thus, in the q-Gaussian mutation, the decision on which mutation distribution shape should be

used (and when) is made by self-adaptation. The main contributions of this paper are as follows: (1) the use

of the q-Gaussian mutation in ESs is proposed for DOPs; (2) ESs with Gaussian, Cauchy, and q-Gaussian

mutations are compared in experiments based on the Moving Peaks Benchmark (MPB) DOP generator [3]

and on simulations of evolutionary robots.

The rest of this paper is organized as follows. The q-Gaussian mutation is discussed in Section 2. The

ES with q-Gaussian mutation is presented in Section 3. The experimental study with DOPs generated by

the MPB generator and from the simulation of evolutionary robots is presented in Section 4. Finally, the

conclusions of the paper are presented in Section 5.
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2 The q-Gaussian Mutation

When mutation is applied in ESs, the i-th candidate solution ~̃xi is generated from an m-dimensional solution

~xi according to:

~̃xi = ~xi +C ~z, (1)

where ~z is an m-dimensional vector generated from a random distribution with zero mean and the matrix C,

in the standard ES, is a diagonal matrix, composed of the elements of vector ~σ = [σ(1) σ(2) . . . σ(m)]T, which

defines the mutation strength in each coordinate of the search space. For the q-Gaussian mutation, the vector

~z is generated by sampling m independent q-Gaussian random variables, i.e., the q-Gaussian distribution is

employed instead of the Gaussian distribution (Gaussian mutation) [2] or the Cauchy distribution (Cauchy

mutation) [19].

When −∞ < q < 3, the q-Gaussian distribution density [11] is given by:

pq(µ̄q ,σ̄q)(x) =

√

Bq

Aq

e
−Bq(x−µ̄q)2

q , (2)

where µ̄q and σ̄q are the q-mean and the q-variance, respectively, Aq is the normalization factor, Bq controls

the width of the q-Gaussian distribution, and e−u2

q (q-Gaussian function of u) is defined as follows:

e−u2

q ≡











(

1 + (q − 1)u2
)− 1

q−1

, if 1 + (q − 1)u2 ≥ 0

0, otherwise
. (3)

In Eq. (2), the q-mean µ̄q and the q-variance σ̄q [11] are respectively defined as follows:

µ̄q ≡
∫

xp(x)qdx
∫

p(x)qdx
, (4)

σ̄2
q ≡

∫

(x− µ̄q)
2p(x)qdx

∫

p(x)qdx
, (5)

and respectively reduce to the usual mean and variance when q → 1. In Eq. (2), the normalization factor Aq

is given by Aq =
∫ +∞
−∞ e

−(x−µ̄q)2

q dx [17] and Bq is given by

Bq =
(

(3− q)σ̄2
q

)−1
. (6)

Figure 1 illustrates the q-Gaussian function for different values of q. In the q-Gaussian function, the real

parameter q controls the shape of the function, which allows to smoothly and continuously change the shape

of the q-Gaussian distribution. For q < 5/3, the second order moment is finite and for q → 1, the q-Gaussian

distribution reproduces the usual Gaussian distribution (see Figure 1). For q < 1, the q-Gaussian distribution

has a compact form, and decays asymptotically according to a power law for 1 < q < 3. When q = 2, the

q-Gaussian distribution reproduces the Cauchy distribution [10]. In this paper, the generalized Box-Müller

method proposed in [11], which is very simple (see its pseudo-code in [11]) and allows to generate samples

from q-Gaussian distributions for −∞ < q < 3, is employed to generate q-Gaussian random variables.
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Figure 1: The q-Gaussian function for different values of q. The Gaussian and Cauchy functions are also

illustrated.

3 ES with q-Gaussian Mutation

In ESs, two main selection procedures are usually employed. In the (µ, λ)-ES, a population of µ parents

creates λ > µ offspring. The best µ offspring are then selected to compose the next population. In the

(µ+λ)-ES, the new population is composed of the best µ individuals obtained from the union of the µ parents

and λ offspring. It can be observed that while the (µ+λ)-ES is elitism-based, i.e., it always preserves the best

individuals from one generation to the next one, the (µ, λ)-ES is not elitism-based. In this way, for DOPs, a

procedure to detect the changes in the problem should be used when the (µ + λ)-ES is employed. Thus, the

(µ, λ)-ES is frequently used in DOPs.

Generally in ESs, the mutation strength parameter of each element j = 1, . . . ,m of the vector ~σi is updated

as follows:

σ̃i(j) = σi(j)e
τbN (0,1)i+τcN (0,1), (7)

where τb denotes the standard deviation of the Gaussian distribution used to generate the random deviation

N (0, 1)i, which is common for all elements of the vector ~σi, and τc is the standard deviation of the Gaussian

distribution used to generate the separated random deviation N (0, 1) for each element j = 1, . . . ,m. The

parameters τb and τc, as suggested by theoretical and empirical works [2], are defined by τb = kb√
2m

and

τc =
kc√
2
√
m
, where kb and kc are positive real numbers.

In this paper, the use of the q-Gaussian mutation, as described in the previous section, in (µ, λ)-ES is

proposed for DOPs. Based on the mutation strength self-adaptation [2], the parameter qi of each individual i

is added to its chromosome and is multiplicatively updated. The parameter qi of each individual i is modified

as follows:

q̃i = qie
τqN (0,1), (8)

where τq denotes the standard deviation of the Gaussian distribution and N (0, 1) denotes a sample vari-
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Algorithm 1 (µ,λ)-ES with q-Gaussian mutation (qGES)

1: Initialize the population of individuals (~xk, ~σk, qk) for k = 1, . . . , µ

2: Evaluate the individuals (~xk, ~σk, qk) for k = 1, . . . , µ

3: while (stop criteria are not satisfied) do

4: Use recombination to generate the individuals (~̃xi, ~̃σi, q̃i) for i = 1, . . . , λ from the individuals (~xk, ~σk, qk) for k = 1, . . . , µ

5: for i← 1 to λ do

6: if rand(0, 1) ≥ rq then

7: Update the mutation strength vector ~̃σi according to Eq. (7).

8: else

9: Update the parameter q̃i according to Eq. (8)

10: end if

11: ~̃xi ← ~̃xi +Ci ~z, where ~z is a vector generated from q-Gaussian distribution with parameter q̃i and Ci = diag(~̃σ
T

i )

12: end for

13: Evaluate the offspring (~̃xi, ~̃σi, q̃i) for i = 1, . . . , λ

14: Select the best µ individuals from the offspring (~̃xi, ~̃σi, q̃i), i = 1, . . . , λ, to compose the new population with individuals

(~xk, ~σk, qk), k = 1, . . . , µ

15: end while

able taken from the Gaussian distribution with zero mean and standard deviation one. This way, different

distributions can be reproduced during different stages of the evolutionary process.

Here, τq in Eq. (8) is given by:

τq =
kq√
2m

, (9)

where kq is a positive real number. As it is not possible to identify the separated influence of a change in ~σi

or qi in the fitness of individual i if both mutation strength vector and parameter q are mutated together for

individual i (e.g., a beneficial mutation in ~σi can be masked in the fitness of individual i if the parameter qi is

mutated to a bad value in the same generation), only ~σi or qi are allowed to mutate in each generation. Thus,

the mutation strength vector ~σi is updated for individual i in each generation if a uniform random number in

the range [0, 1] is equal to or larger than a real parameter rq ∈ [0, 1]; otherwise, the value of qi is updated.

The (µ,λ)-ES with q-Gaussian mutation, called qGES in this paper, is presented in Algorithm 1. The

main difference of the ES presented in Algorithm 1 from the standard ES and the fast ES [19] lies in that,

in qGES, the q-Gaussian mutation is employed (step 11) instead of the Gaussian mutation (in the standard

ES) or Cauchy mutation (in the fast ES), and a procedure to update the parameter q is adopted (steps 6, 8,

9 and 10).

4 Experimental Study

In order to evaluate the performance of the q-Gaussian mutation in ESs for DOPs, two sets of experiments

are carried out. In the first set of experiments, the MPB generator [3] is employed to create DOPs (see
5



Section 4.1). In the second set of experiments, evolutionary robots are simulated in dynamic environments

(see Section 4.2). In each experiment, three ESs were executed 50 times (with different random seeds). In the

first algorithm, qGES, the parameter q of the q-Gaussian mutation is allowed to evolve during the optimization

process (see Algorithm 1). In the other two algorithms, the parameter q is fixed, i.e., it starts with a given

value and is not modified during the evolutionary process. In algorithm GES, q = 1, i.e., the q-Gaussian

distribution reproduces the Gaussian distribution. In algorithm CES, q = 2, i.e., the Cauchy distribution

is reproduced by the q-Gaussian distribution. Thus, the three types of mutation, q-Gaussian, Gaussian, and

Cauchy are compared in the experiments.

For each run, the individuals of the initial population were randomly chosen. In all experiments, the

initial q-Gaussian parameter q in qGES was set to 1.0 (a value where the Gaussian distribution is reproduced),

rq = 0.8, and the minimum and maximum values of the q-Gaussian parameter q were respectively set to 0.8 and

2.2, i.e., values respectively smaller and higher than the values of q where the Gaussian and Cauchy mutations

are reproduced. The parameters kb and kc, respectively used to compute τb and τc, were set to 1 (as suggested

by theoretical and empirical works), while in Eq. (9), kq = 1.5 in the evolutionary robots experiments and

kq = 1.0 in the MPB generator experiments (a higher value of kq was chosen for the evolutionary robots

experiments because the individuals in those experiments are longer). Experiments, not presented here, with

different parameter settings showed similar results to those presented in the following sections.

4.1 The Moving Peaks Benchmark (MPB) Generator

The MPB generator was suggested by Branke [3] in order to generate continuous dynamic optimization

problems where the search space is composed by peaks with changeable parameters. A similar DOP generator

was proposed by Morrison [6]. In the MPB generator, np peaks defined in the m-dimensional space are used

to compute the fitness function according to:

f(x, e) = max

(

B(x), max
i=1,...,np

P (x, hi(e), wi(e),pi(e))

)

, (10)

where e = ⌈t/τ⌉ is the index of the change cycle (period where the fitness function is stationary between

two changes), τ is the number of generations in a change cycle (τ remains constant during the evolutionary

process), B(x) is a stationary function (base) and P (x, hi(e), wi(e),pi(e)) is a function that defines the shape

of peak i with its height, width, and position in change cycle e given by hi(e), wi(e), and pi(e), respectively.

Here, the parameters hi(e) and wi(e), for e > 1, are respectively changed according to:

hi(e+ 1) = hi(e) + ρ N (0, 1), (11)

and

wi(e+ 1) = wi(e) + ρ N (0, 1), (12)
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while the vector defining the position of the center of each peak is changed by rotation, multiplying the

position vector in each change cycle e by a rotation matrix composed of successive simple rotations in random

planes, as in the continuous generator proposed in [13]. The angles of the rotation matrix, in degrees, are

given by 180ρ. While the parameter ρ controls the degree of changes, the parameter τ controls the velocity

of changes. For example, Figure 2 shows a 2-dimensional landscape that was changed by the MPB generator

with ρ = 0.2. It can be observed that the height, width, and position of the peaks were changed in this

illustration.
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Figure 2: Two landscapes generated by the Moving Peaks Benchmark generator. The first landscape (a) is

changed with ρ = 0.2 into the second landscape (b).

In this section, experiments with 5 fixed values of ρ, i.e., where ρ does not change during the run, are

presented. Experiments where the value of ρ changes during the run according to a chaotic dynamics (using a

discrete logistic function with parameter 3.67) are also presented (such experiments are identified as ρ = c in

the tables and figures). Experiments with τ = 10, 50, and 300 are presented. This way, 18 experiments with

different values of ρ and τ are generated, i.e., the algorithms are tested with different combinations of degree

and velocity of the changes. For all experiments, the number of changes (nc) during the evolutionary process

was set to 50, m = 10, and the number of peaks is np = 10. For the algorithms, the number of parents (µ)

was set to 15, while the number of offspring (λ) was 100. Intermediate recombination with two parents for

each offspring, where the variable values of the offspring are computed as the mean of the variable values of

the parents, was used.

In order to evaluate the performance of the algorithms, the mean best fitness error found in each change

cycle is computed. The mean best fitness error reached in each change cycle for run j is given by:

ēj =
1

nc

nc
∑

i=1

e∗ij (13)

where nc is the number of changes in run j, e∗ij = f o
ij − f∗

ij is the best fitness error found in change cycle i for

run j, and f∗
ij and f o

ij are, respectively, the fitness of the best individual and the fitness at the global optimum
7



Table 1: Experimental results of the mean error of the best fitness in each change cycle (Eq. (13)) obtained

in the Moving Peaks experiment (Experiment 1) over 50 runs (the best values for the median are in bold).

GES CES qGES

τ ρ Median Mean STD Median Mean STD Median Mean STD

10 0.1 4.00E+00 4.37E+00 1.99E+00 4.42E+00 4.46E+00 1.81E+00 4.05E+00 4.10E+00 1.80E+00

10 0.2 4.47E+00 4.68E+00 1.64E+00 4.62E+00 4.66E+00 1.40E+00 4.56E+00 4.69E+00 1.58E+00

10 0.3 4.49E+00 4.75E+00 1.32E+00 4.73E+00 4.93E+00 1.10E+00 4.33E+00 4.67E+00 1.17E+00

10 0.4 5.41E+00 5.62E+00 1.30E+00 5.52E+00 5.82E+00 1.28E+00 5.35E+00 5.62E+00 1.27E+00

10 0.5 7.14E+00 7.63E+00 2.12E+00 7.05E+00 7.54E+00 2.24E+00 7.07E+00 7.71E+00 2.27E+00

10 c 8.36E+00 8.64E+00 2.41E+00 7.84E+00 8.31E+00 2.45E+00 8.44E+00 8.61E+00 2.37E+00

50 0.1 4.11E+00 3.52E+00 1.72E+00 3.51E+00 3.34E+00 1.61E+00 3.69E+00 3.35E+00 1.73E+00

50 0.2 2.95E+00 3.23E+00 1.70E+00 2.77E+00 2.81E+00 1.48E+00 2.70E+00 2.88E+00 1.58E+00

50 0.3 1.74E+00 1.86E+00 1.17E+00 1.66E+00 1.74E+00 9.65E-01 1.26E+00 1.42E+00 7.96E-01

50 0.4 1.46E+00 1.77E+00 1.23E+00 1.44E+00 1.66E+00 1.03E+00 1.40E+00 1.62E+00 9.45E-01

50 0.5 2.46E+00 2.85E+00 1.84E+00 2.44E+00 2.85E+00 1.85E+00 2.35E+00 2.70E+00 1.69E+00

50 c 3.22E+00 3.86E+00 2.30E+00 3.10E+00 3.74E+00 2.28E+00 2.86E+00 3.70E+00 2.33E+00

300 0.1 3.69E+00 3.46E+00 1.95E+00 3.59E+00 3.15E+00 1.80E+00 3.13E+00 3.07E+00 1.91E+00

300 0.2 3.01E+00 2.93E+00 1.63E+00 2.51E+00 2.58E+00 1.45E+00 2.45E+00 2.65E+00 1.61E+00

300 0.3 1.36E+00 1.49E+00 9.68E-01 1.12E+00 1.33E+00 9.04E-01 9.86E-01 1.34E+00 8.72E-01

300 0.4 1.22E+00 1.57E+00 1.17E+00 1.22E+00 1.42E+00 1.08E+00 1.20E+00 1.47E+00 1.11E+00

300 0.5 1.91E+00 2.43E+00 1.71E+00 1.93E+00 2.48E+00 1.66E+00 1.69E+00 2.42E+00 1.71E+00

300 c 2.51E+00 3.17E+00 2.19E+00 2.57E+00 3.21E+00 2.17E+00 2.42E+00 3.15E+00 2.23E+00

in change cycle i for run j. The objective of the optimization process is to minimize the error ēj .

4.1.1 Experimental Results

Table 1 presents the results regarding the mean best fitness error found in each change cycle for the experiment

with DOPs created by the MPB generator (Experiment 1), where better results mean smaller fitness errors.

The median, mean, and standard deviation for the results over 50 runs for each combination of τ and ρ

(including the case for changing ρ, which is identified by ρ = c) and for each algorithm are presented in Table

1. In Figure 3, the median of the mean best fitness error found in each change cycle for each algorithm for

different values of τ and ρ are presented. The averaged Euclidean norm of the mutation strength parameter

vector and distribution parameter q of the best individual in the last 10 change cycles of the MPB experiment

for τ = 300 and ρ = 0.1 or ρ = 0.2 are shown in Figure 4.

In Table 2, the statistic comparison of the algorithms regarding the mean best fitness error found in each

change cycle (Eq. (13)) is carried out by the Wilcoxon Signed Rank Test [5]. Table 2 shows the p-value

of the Wilcoxon Signed Rank Test for each experiment, which indicates the significance for testing the null

hypothesis that the difference between the matched samples of the results regarding Alg. X and Alg. Y comes

from a distribution with median equal to zero. For each experiment, the result regarding the comparison

Alg. X - Alg. Y is shown, in parentheses, as “=” when the values of the median of Alg. X and Alg. Y are
8
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Figure 3: Median of the mean error of the best fitness in each change cycle (Eq. (13)) in the Moving Peaks

experiment (Experiment 1) for different values of ρ (GES: blue, triangle; CES: green, plus; qGES: red, square).
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Figure 4: Average Euclidean norm of the mutation strength parameter vector and distribution parameter q of

the best individual in the last 10 change cycles of the Moving Peaks experiment (Experiment 1) for τ = 300

and ρ = 0.1 or ρ = 0.2 (GES: blue, solid; CES: green, dashed; qGES: red, dashdot).

equal. When the values of the median are different but the p-value is higher than 0.05, i.e., the test indicates

that the hypothesis that the median of the difference between the results is zero cannot be rejected at the

5% level, the result is respectively shown as “+” when the median of Alg. X is smaller than the median of

Alg. Y and “−” when the median of Alg. X is higher than the median of Alg. Y. Otherwise, when the result

is statistically significant, the result is shown as “s+” or “s−” when the median of Alg. X is smaller or higher

than the median of Alg. Y, respectively.

4.1.2 Analysis of the Results

It can be observed from Figure 4 that for the three approaches (with Gaussian, Cauchy, and q-Gaussian

mutations), the mutation strength parameter increases when the environment changes and then converges to

small values after the change. When the change is severer (for ρ = 0.2), the maximum value reached by the
9



Table 2: Statistical comparisons regarding the error of the best fitness in each change cycle for the algorithms

in the Moving Peaks experiment (Experiment 1).

τ ρ qGES - GES qGES - CES

10 0.1 5.02E-01 (−) 2.18E-03 (s+)

10 0.2 3.04E-01 (−) 6.40E-01 (+)

10 0.3 6.40E-01 (+) 2.31E-04 (s+)

10 0.4 8.36E-01 (+) 4.43E-06 (s+)

10 0.5 1.81E-01 (+) 1.60E-02 (s−)

10 c 6.89E-01 (−) 1.64E-04 (s−)

50 0.1 1.97E-01 (+) 2.74E-02 (s−)

50 0.2 6.59E-02 (+) 9.04E-01 (+)

50 0.3 1.44E-02 (s+) 1.28E-03 (s+)

50 0.4 9.59E-02 (+) 7.83E-01 (+)

50 0.5 2.48E-02 (s+) 2.36E-02 (s+)

50 c 9.02E-03 (s+) 3.04E-01 (+)

300 0.1 8.31E-07 (s+) 2.19E-02 (s+)

300 0.2 1.05E-03 (s+) 7.98E-01 (+)

300 0.3 2.24E-02 (s+) 9.88E-01 (+)

300 0.4 2.36E-02 (s+) 3.27E-01 (+)

300 0.5 6.12E-01 (+) 1.38E-01 (+)

300 c 8.36E-01 (+) 5.78E-02 (+)

norm of the mutation strength parameter is higher. Such a behavior occurs in other stages of the evolutionary

process and for other runs, too. Increasing the mutation strength parameter’s norm implies that mutation

distributions have a larger second order moment (note that the mutation strength parameters define the

standard deviation in the Gaussian mutation distribution). When the mutation strength parameters increase

after an environmental change, larger jumps occur more often, which can help the population to reach new

optima faster. Then, smaller mutation strength parameters are selected in order to increase the search close

to the local neighborhood of the current best solution.

Additionally, in the ES with q-Gaussian mutation, the parameter q increases after an environmental

change, which results in distributions with heavier tails. Then, smaller values of q are selected, resulting in

more compact distributions, and increasing the search close to the local neighborhood of the current best

solution. It can be observed that, similar to the mutation strength parameters, the maximum value reached

by q for qGES in Figure 4 is higher when the change is severer (for ρ = 0.2). Such results confirm the

hypothesis that self-adaptation in ES is useful for DOPs as it provides an intrinsic mechanism of adaptation

to the changes of the problem.

Let us now analyze the results of the algorithms with Gaussian and Cauchy mutations. It can be observed

from Figure 3 that the Gaussian mutation presents better results than the Cauchy mutation for τ = 10 (fast

changing environment) when ρ < 0.5. When τ = 10, the algorithms do not have enough time to explore new

peaks after a change, and most of the advantageous mutations occur due to small jumps in the search space
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(hill-climbing process). As the Gaussian distribution produces more small jumps than the Cauchy mutation,

the Gaussian mutation generates better performance when compared to the Cauchy mutation.

For larger τ , the algorithms have more time to explore other peaks and, then, larger jumps can eventually

allow the candidate solutions to jump from the current peak to a new promising peak. As the Cauchy

distribution generates more larger jumps than the Gaussian distribution, it can allow the population to

escape from local optima faster than the Gaussian mutation, mainly in the later stages of the evolution where

the mutation strength parameters have converged to small values. It can be observed in Figure 3 and Table

1 that CES presents better performance than GES for τ > 10, mainly for τ = 300.

In Figure 3, it can also be observed that for τ = 50 and τ = 300, different from the results for τ = 10, the

performance of the algorithms are better for ρ in the range 0 < ρ < 0.4, and worse for larger ρ (ρ ≥ 0.4), i.e.,

the performance curve is U -shaped for τ = 50 and τ = 300. In the MPB generator employed here, larger ρ

implies larger mean difference between the fitness of the current best solution after the change and the height

of the highest peaks (Eq. (11)) and, as a consequence, a larger volume of the region of the search space with

fitness larger than the fitness of the current best solution. Then, the probability of jumping from the current

peak to a promising peak increases with ρ due to the larger changes in the height of the peaks. This explains

the decrease of the fitness error in the range 0 < ρ < 0.4 for τ = 50 and τ = 300, when the algorithms have

more time to explore new regions of the search space by larger jumps (one can observe that the results for

τ = 300 are better than the results for τ = 50). However, larger ρ implies also larger changes in the positions

of the centers of peaks, and more time to reach the center of the current peak. This explains the shape of

the curve for τ = 10, when the algorithms do not have enough time to explore the current peak, and for the

range ρ ≥ 0.4, where the changes in the positions of the peaks are very large.

In the experiments with the q-Gaussian mutation, distributions with heavier tails (i.e., higher values of q)

are used by the algorithm just after the changes and compact distributions are used in the later stages after

the changes. It can be observed that the mean value of q in Figure 4 reaches values close to or higher than 2.0

(Cauchy distribution) and decreases to values smaller than 1.0 (Gaussian distribution) after the changes. This

way, larger steps occur more often in the generations just after the changes, which helps the population to

escape from local optima or to converge faster. In the later generations, the distribution with small values of

q enhances local search, which helps the algorithm to reach the best local optima. In the proposed algorithm

(qGES), higher values of the q parameter are employed on some occasions to allow longer jumps between two

peaks.

The ES with q-Gaussian mutation presents a performance better than or similar to the GES algorithm

when the Gaussian mutation is better than Cauchy mutation, and better or similar to the CES when the

Cauchy mutation is better than the Gaussian mutation. This behaviour is reached by the self-adaptation of

the parameter q of the q-Gaussian mutation distribution
11



4.2 Evolutionary Robots

In the experiments presented in this section, DOPs are generated through the simulation of evolutionary

mobile robots navigating in dynamic environments with or without faults. In evolutionary robotics, artificial

evolution is the fundamental force in the adaptation and design of robots and their control laws [7]. Particularly

here, ESs are employed to adjust the synaptic weights in an Elman artificial neural network (ANN) used to

control simulated mobile robots [12]. In the experiments, the robots are simulated in dynamic environments

using a modified version of the Evorobot simulator developed by Nolfi [7].

The four experiments presented in this section are generated from the experiment proposed in [4], where

a Khepera robot with eight infrared distance sensors (six sensors in one side and two in another side of the

robot), two ambient light sensors, and one floor brightness sensor navigates in an arena. The robot has a

measurable limited energy, which is recharged every time the robot crosses a battery recharge area. The

battery recharge area is circular and is indicated by a different color of the floor. The arena is rectangular

and has a light source mounted in a tower in one of its walls or corners.

In the experiments, the fitness function is given by the accumulated averaged rotation speed of the two

wheels of the robot during its life time, i.e., while the battery has energy and while the robot does not crash

into a wall or an obstacle, considering a maximum limit of 60 seconds. A fully charged battery allows the

robot to move for 20 seconds. The fitness is not computed while the robot remains in the battery recharge

area. Although the fitness function does not specify that the robot should return to the battery recharge

area, the individuals that develop the ability to find it and periodically return to it while exploring the arena

without hitting the obstacles accumulate more fitness. The ANN used to control the robot has 17 inputs (8

infrared sensors, 2 light sensors, 1 floor brightness sensor, 1 sensor for the battery energy, and 5 recurrent

units), 5 hidden neurons, and 2 outputs (2 motors coupled to the wheels of the robot). The architecture of

the ANN is illustrated in Figure 5.

Figure 5: Artificial neural network used to control the robot.
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In the first three experiments (Experiment 2, Experiment 3, and Experiment 4), we are interested in

investigating the reconfiguration of the robot after faults [12]. In these experiments, the environment where

the robot evolves is switched every τ = 10 (fast changing problem), 40, or 70 (slow changing problem)

generations between two configurations. In both configurations, the size of the arena is 40cm×45cm. The

first configuration (default arena) is free of obstacles. In the second configuration, the position of the light

source and the recharge area are changed, and a cylindrical obstacle is added.

In Experiment 2 (faults in the light sensors), the responses of the light sensors are reduced by a factor

changed every τ generations. In Experiment 3 (faults in motor 2), the power of the second motor of the robot

is reduced by a factor changed in each τ generations. The factor applied in the response of the light sensors

(Experiment 2) and in the power of the second motor (Experiment 3) in each one of the 10 change cycles

(including the first τ generations) is given by ~vf = [1.0 0.5 0.2 0.9 0.7 0.4 0.8 0.6 0.1 0.7]T, e.g., only 50%

of the power computed by the respective ANN’s output is applied to the second motor in the second change

cycle (between generations τ + 1 and 2τ) of Experiment 3.

In Experiment 4 (faults in the infrared sensors), we are interested in investigating the reconfiguration after

intermittent faults in the infrared sensors. During the evolutionary process, the responses of the infrared

sensors of the robots are affected by two faults, which are switched every τ = 10, 40, or 70 generations. In

the first fault, the responses of the six infrared sensors located in one side of the robot are set to zero when it

is affected by the fault. In the second fault, the responses of the remaining two sensors (located in the other

side) are set to zero. This way, the robot should learn how to navigate using different sets of sensors in each

change cycle.

The last experiment (Experiment 5) is carried out to investigate how a changing environment affects the

learning process (faults are not simulated in the experiment). Environmental changes frequently occur in real

world problems, where some aspects of the environment are frequently modified. Besides, robots are frequently

evolved in simulations to avoid damage, and, when a satisfactory behaviour is reached, the ANN employed

to control the simulated robot is transferred to the real one. In Experiment 5 (changing environment), the

environment where the robot is evolving is changed after τ = 10, 40, or 70 generations. The robot evolves

for the first τ generations in the default arena, which is changed in its dimensions, configuration and in the

number of cylindrical obstacles present in the environment every τ generations.

For all experiments, the number of changes during the evolutionary process is ten. The evolving robot

always starts in a fixed position on the arena, but the initial orientation is randomly varied in a range of 10

degrees. A white noise with a range equal to 0.05 is added to the measures generated by the infrared and light

sensors. The individuals are represented by a vector of integer values corresponding to the synaptic weights

of the ANN. Following [4], in each generation, the 20 best individuals (µ) are selected and each one generates

5 children (λ = 100) by mutation. Recombination is not used in the evolutionary robot experiments because
13



Table 3: Mean best fitness found in each change cycle obtained in the Evolutionary Robots experiments for

algorithms GES, CES, and qGES over 50 runs (the best values for the median are in bold).

GES CES qGES

Experiment τ Median Mean STD Median Mean STD Median Mean STD

2 10 5.80E-01 5.26E-01 1.89E-01 3.83E-01 4.09E-01 2.11E-01 5.89E-01 5.40E-01 1.75E-01

2 40 6.31E-01 5.89E-01 1.92E-01 6.99E-01 5.76E-01 2.33E-01 7.22E-01 6.66E-01 1.50E-01

2 70 7.13E-01 6.04E-01 1.97E-01 7.47E-01 6.23E-01 2.01E-01 7.00E-01 6.47E-01 1.61E-01

3 10 4.17E-01 3.69E-01 1.38E-01 3.63E-01 3.20E-01 1.20E-01 4.39E-01 3.92E-01 1.23E-01

3 40 4.75E-01 4.36E-01 1.35E-01 4.85E-01 4.06E-01 1.69E-01 4.92E-01 4.79E-01 1.11E-01

3 70 4.21E-01 3.87E-01 1.40E-01 4.95E-01 4.30E-01 1.48E-01 5.02E-01 4.59E-01 1.15E-01

4 10 2.35E-01 2.74E-01 1.34E-01 2.08E-01 2.57E-01 1.32E-01 2.76E-01 2.87E-01 1.18E-01

4 40 3.85E-01 3.61E-01 1.43E-01 3.50E-01 3.99E-01 1.57E-01 3.99E-01 4.00E-01 1.61E-01

4 70 3.49E-01 3.54E-01 1.45E-01 4.67E-01 4.67E-01 1.33E-01 3.82E-01 3.85E-01 1.58E-01

5 10 5.15E-01 4.79E-01 1.36E-01 3.83E-01 4.05E-01 1.17E-01 5.09E-01 4.87E-01 1.34E-01

5 40 5.72E-01 5.35E-01 1.26E-01 5.85E-01 5.56E-01 1.35E-01 6.08E-01 5.83E-01 1.07E-01

5 70 5.42E-01 5.14E-01 1.42E-01 6.35E-01 5.79E-01 1.31E-01 5.85E-01 5.75E-01 1.04E-01

crossing two ANNs in general does not produce good results, as observed in [4].

As the global optimum is not known in the experiments presented in this section, the mean best fitness

found in each change cycle is computed in order to evaluate the performance of the algorithms. The mean

best fitness reached in each change cycle for run j is given by:

f̄j =
1

nc

nc
∑

i=1

f∗
ij (14)

where nc is the number of changes in run j, and f∗
ij is the fitness of the best individual found in change cycle

i for run j. The objective of the evolutionary process is to maximize the fitness f̄j in each run j.

4.2.1 Experimental Results

Table 3 presents the results regarding the mean best fitness found in each change cycle for the experiment

with the simulation of the evolutionary robot (Experiments 2, 3, 4, and 5). Better results mean higher fitness.

The median, mean, and standard deviation for the results over 50 runs for each τ and for each algorithm are

presented in Table 3. Figures 6, 7, and 8 show the mean best fitness in each generation averaged over 50 runs

for the four experiments with τ = 10, 40, and 70 generations, respectively.

In Table 4, the statistic comparison of the algorithms regarding the mean best fitness found in each change

cycle (see Eq. (14)) is carried out by the Wilcoxon Signed Rank Test. The result is respectively shown as “+”

when the median of Alg. Y is smaller than the median of Alg. X and “−” when the median of Alg. Y is higher

than the median of Alg. X. Otherwise, when the result is statistically significant, the result is respectively

shown as “s+” or “s−” when the median of Alg. Y is smaller or higher than the median of Alg. X.
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Figure 6: Average fitness of the best individual in Evolutionary Robots experiments for τ = 10.
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Figure 7: Average fitness of the best individual in Evolutionary Robots experiments for τ = 40.

4.2.2 Analysis of the Results

In the experiments, ESs find, in the first change cycle (before the first change) of most runs, weights of the

ANNs (individuals) that allow the simulated robots navigate in the environment, and periodically return to

the battery recharge area when the battery charge is low. After a change, the strategy adopted by the robot

is evolved in order to allow the navigation in the new environment. This behaviour can be observed in Figure

9, where two simulations of the evolutionary robot for 200 iterations of the ANN (or until the collision with
15
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Figure 8: Average fitness of the best individual in Evolutionary Robots experiments for τ = 70.

Table 4: Statistical comparisons for the mean best fitness found in each change cycle in the Evolutionary

Robots experiments.

Experiment τ qGES - GES qGES - CES

2 10 4.60E-01 (+) 2.90E-03 (s+)

2 40 7.83E-03 (s+) 9.02E-02 (+)

2 70 1.26E-01 (−) 7.76E-01 (−)

3 10 4.20E-01 (+) 5.35E-03 (s+)

3 40 2.74E-02 (s+) 2.81E-02 (s+)

3 70 2.15E-03 (s+) 4.90E-01 (+)

4 10 8.73E-01 (+) 2.26E-01 (+)

4 40 3.66E-02 (s+) 9.65E-01 (+)

4 70 4.04E-01 (+) 3.84E-03 (s−)

5 10 7.03E-01 (−) 1.33E-03 (s+)

5 40 1.19E-02 (s+) 3.57E-01 (+)

5 70 3.72E-03 (s+) 6.75E-01 (−)

a wall or obstacle) are presented. One can observe in Figure 9 that when the robot controlled by the weights

defined by the best individual in the first change cycle, which were obtained while the robot moves in the

default arena, is transferred to a new environment, the robot crashes to an obstacle before the end of the

simulation. However, it is possible to observe that an individual capable of navigating in this environment

can be found by the evolutionary process. One can observe that the strategy adopted by both individuals are

different.

It can be observed in Figures 6-8 that GES (where the Gaussian mutation is reproduced) presents better

results than CES (where the Cauchy mutation is reproduced) in the first change cycle. In the simulated
16



Figure 9: Two simulations of the evolutionary robot in the last environment of Experiment 5. The robot

is represented by a white circle and its trajectory by a dashed line. The recharge area and light tower are,

respectively, represented by a large circle with green line and by a small blue circle. The cylindrical obstacles

are represented by red circles. The output signals o0 and o1 (see Figure 5), the input signals I0 to I16, and

the outputs of the hidden nodes h0 to h4 during the simulations are shown in the graphics on the right of

the environment representation. The first simulation is for the best individual found before the first change

(a). The second simulation is for the best individual in the last generation (b). The individuals are obtained

in the same run of the algorithm qGES for Experiment 5 with τ = 70. The figures were generated by the

Evorobot simulator.

evolutionary robot, large modifications in the vector of synaptic weights cause a large change in the current

navigation strategy found by the evolutionary process. This way, compact mutation distributions produce

better results in the first change cycle as more solutions are generated close to the current best solution. In

qGES, smaller values of q are selected by self-adaptation during the first change cycle. Hence, the performance

of qGES is close to the performance of GES in the first change cycle.

When changes occur in the environment, new navigation strategies should be found. In Experiment 2,

the changes in the problem are, in general, small, as the changes in the light of the environment cause small

modifications in the weights of the ANNs. As a result, it can be observed that GES presents better results

than CES in most change cycles. However, it is possible to observe that CES presents better results than

GES in some change cycles, where the changes are severer, and in the last change cycles for τ = 70. For

slower changing environments, the algorithms have more time to reach the optima and it is more difficult to

escape from it using small jumps. It can be observed that qGES presents the best result in this experiment

for τ = 10 and τ = 70. As the value of q is modified according to the problem in qGES, small values are

generally selected when the changes in the problem are small (and GES presents better results than CES),

while larger values of q are selected when the changes are severer (and CES presents better results than GES).
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Similar results can be found in other experiments. In Experiments 3 and 4, the changes in the problems

are severer, which explains the smaller values of mean final fitness found in each change cycle. Particularly in

Experiment 4, the reconfiguration of the navigation strategy after the change in the problem is very difficult.

The robot learns to navigate in the direction that it has more sensors (called here front of the robot). When

the problem changes, all the sensors in the front of the robot are affected by the fault. This way, the robot

should learn how to navigate in the new environment after losing all infrared sensors in its front. It can be

observed that it is difficult for the ESs to find new navigation strategies for change cycles 2, 4, 6, 8, and 10,

as the robot tries to keep the navigation strategy learnt in the first change cycle. In the figures, it is possible

to observe that CES presents better results than GES in change cycles 2, 4, 6, 8, and 10 for larger τ . For

larger τ , it is harder to find a new strategy for the even change cycles as the fitness value found in change

cycle 1 is high and the diversity of the population is reduced due to the longer change cycle duration. This

way, longer jumps occasionally occurred in order to allow escaping from the best solution before the change

(local optimum). This explains the better results of CES. It can be observed that qGES presents the best

results in Experiments 3 and 4 because the shape of the distribution is self-adapted during the evolutionary

process. Over the runs, the values of q are higher as mutation distributions with longer tails are eventually

selected by the population in order to allow the individuals to escape from the local optima (solutions before

the change) generated by changing the problem.

In Experiment 5, small and large environmental changes occur in the problem, as the degree of adaptation

of the control laws varies according to the different environments. As a consequence, GES presents better

results than CES in some change cycles where the required adaptation of the ANN is small, while CES presents

better results in others change cycles where the ANN is required to change in a higher degree. In Experiment

5, qGES presents good performance too as, like in the other experiments, the mutation distribution is self-

adapted in order to allow less or more longer jumps according to the environment.

5 Conclusions

In this paper, self-adaptation of the mutation distribution in ESs is proposed for DOPs. The shape of the

mutation distribution is controlled by changing the parameter q of the q-Gaussian distribution, which can

reproduce either finite or infinite second moment distributions. In the proposed algorithm, the real parameter

q is encoded in the chromosome of the individual and is allowed to evolve, what allows to smoothly change

the shape of the mutation distribution.

In the proposed method, the decision of choosing which distribution is more indicated for a given problem

and at a given moment of the evolutionary process is minimized by letting the algorithm to decide which

mutation distribution should be used. The experimental results indicate that this property can be useful

for ES in DOPs as, after the environmental changes, the parameter q can be increased resulting in a higher
18



number of long jumps (like the Cauchy mutation), which can help the population to escape from local optima

generated by the changes in the problem. In later stages, after the environmental changes, the parameter q

reaches small values, which improves the local search (like the Gaussian mutation).

In the future, other control methods for the q parameter should be investigated, including self-organization

[14]. Also, the proposed algorithm will be investigated on other DOPs.
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