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Abstract 

 
In this paper, we propose an integrated Quality of Service (QoS) routing algorithm for optical networks. Given a QoS multicast request and the 

delay interval specified by users, the proposed algorithm can find a flexible-QoS-based cost suboptimal routing tree. The algorithm first 
constructs the multicast tree based on the multipopulation-parallel-genetic-simulated-annealing algorithm, and then assigns wavelengths to the 
tree based on the wavelength graph. In the algorithm, routing and wavelength assignment are integrated into a single process. For routing, the 
objective is to find a cost suboptimal multicast tree. For wavelength assignment, the objective is to minimize the delay of the multicast tree, which 
is achieved by minimizing the number of wavelength conversion. Thus both the cost of multicast tree and the user QoS satisfaction degree can 
approach the optimal. Our algorithm also considers load balance. Simulation results show that the proposed algorithm is feasible and effective. 
We also discuss the practical realization mechanisms of the algorithm. 
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1. Introduction 

 
Optical networks [1] have emerged as a promising 

candidate for next-generation networks providing high 
channel bandwidth and low communication latency. It is the 
essential requirement for next-generation networks to 
provide Quality of Service (QoS) [2] and multicast [3] 
capabilities. Hence, we need to address the issue of QoS 
multicast in optical networks. It means to develop efficient 
multicast routing algorithms, which can find the cost 
suboptimal multicast tree and assign wavelengths to it. It has 
been proved that finding such a tree is NP-hard [4].  

A single population genetic algorithm [5] is powerful and 
performs well on a broad class of problems. However, better 
results can be achieved by introducing multiple populations 
(i.e., subpopulations). Every subpopulation evolves for a 
few generations independently (just like the single 
population genetic algorithm), and then one or more 
chromosomes are exchanged between these subpopulations. 
The Multipopulation parallel genetic algorithm [6] models 
the evolution of a species in a way more similar to nature 
than the single population genetic algorithm. There are three 
different models for parallel genetic algorithms, i.e., the 
global model, the diffusion model and the migration model. 

In this paper, the proposed algorithm is based on the 
migration model. The migration model divides the 
population into multiple subpopulations. These 

subpopulations evolve independently from each other for a 
certain number of generations (isolation time). After the 
isolation time a number of chromosomes are exchanged 
between the subpopulations (migration). The number of 
exchanged chromosomes (migration rate), the selection 
method of the chromosomes for migration and the scheme of 
migration determine how much genetic diversity can occur 
in the subpopulations and the exchange of information 
between subpopulations. 

Multipopulation parallel genetic algorithm and simulated 
annealing algorithm [7] are two standard techniques for hard 
combinatorial optimization problems. A new algorithm is 
developed by combining them together, which is named 
multipopulation parallel genetic simulated annealing 
algorithm (MPGSAA) [8-11]. Our proposed algorithm 
generates the cost suboptimal multicast tree based on 
MPGSAA, and then assigns wavelengths to the tree. The 
wavelength assignment algorithm is based on the basic idea 
of the wavelength graph proposed by Chlamtac [12]. The 
objective of wavelength assignment is to minimize the delay 
of the multicast tree, which is an important QoS parameter 
and decides the user QoS satisfaction degree. We integrate 
the algorithm for wavelength assignment into the process of 
the construction of the multicast tree. Thus we avoid that no 
wavelength can be assigned or the assignment result leads to 
a multicast tree with poor QoS performance. Therefore, the 
cost of the multicast tree can approach the optimal, and the 
user QoS requirement is also satisfied simultaneously. 

The rest of this paper is organized as follows. Section 2 
introduces the related work. Section 3 describes the network 
model and mathematical model. Section 4 describes the 
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proposed algorithm and Section 5 discusses its practical 
implementation. Simulation results are presented in Section 
6. We conclude the paper in Section 7. 
 
2. Related work 
 

In recent years, there are a few papers published in the 
area of multicast in WDM optical network. They can be 
divided into two types. The first type reports deterministic 
algorithms [13-17] and the second type reports GA-based 
non-deterministic algorithms [18-20]. Our proposed 
algorithm belongs to the non-deterministic algorithm. In the 
following, we review both deterministic and 
non-deterministic algorithms. 

In [13], two integrated QoS multicast algorithms for 
routing and wavelength assignment were proposed. Both 
algorithms utilize Minimum Spanning Tree (MST) to 
construct low cost multicast trees. During the tree 
construction process, the case that the multicast end-to-end 
delay from the source to a destination exceeds the 
pre-specified upper bound is dealt with. The wavelength 
assignment is based on the greedy strategy, i.e., trying the 
best to assign a currently used wavelength to the multicast 
tree. 

In [14], the objective of the QoS multicast algorithms is to 
minimize the number of used wavelengths. For a given set of 
multicast requests with bounded delay, the algorithms can 
construct trees and assign wavelengths. Two basic 
algorithms A and B were firstly proposed. Then two 
optimization algorithms C and D were proposed to further 
minimize the number of wavelengths over the results 
produced by A and B. Algorithm C and D integrate routing 
and wavelength assignment by using rerouting and 
reassigning techniques. 

In [15], an algorithm was proposed, which consists of a 
heuristic multicast algorithm and an optimal wavelength 
assignment algorithm. It defines four kinds of costs related 
with the WDM multicast. The multicast tree is generated by 
combining the optimal unicast lightpaths and aims at 
minimizing the total cost of the multicast session. The 
objective of the wavelength assignment algorithm is to 
minimize the wavelength conversion cost of the multicast 
trees. 

In addition, in [16], three low-cost, delay-bounded 
heuristic multicast algorithms LDR, ILDR and LDF were 
proposed. In [17], a distributed and sender-initiative routing 
and wavelength assignment algorithm was proposed for the 
establishment of a real-time multicast connection in WDM 
networks. 

In [18], it considers the optimal multiple multicast 
problem on WDM ring networks without wavelength 
conversion. Given a set of multicast requests, it proposed 
several genetic algorithms to select a suitable path(s) and 
wavelength(s) for each request to minimize the used 
wavelengths. Since there is no wavelength conversion, there 
is a constraint that not any paths using the same wavelength 

pass through the same link. In [19], the multicast routing 
under delay constraint problem was considered in a WDM 
network with different light splitting. It firstly reduces the 
problem to the MST problem. Then it solves the problem by 
well-designed genetic algorithms. 

In [13-17, 19, 20], the delay requirement is bounded by a 
fixed value and in [18] the delay is not considered. However, 
it is not enough for multicast applications where the users 
have flexible QoS requirements. The algorithms in [13, 14, 
18] are only applicable to single-hop WDM networks, i.e., 
there is no wavelength conversion in networks. Hence, they 
pose a limitation that all the links in a tree can only use the 
same wavelength. The algorithm in [15] separates routing 
and wavelength assignment. As a result, it is possible that 
there are no available wavelengths for the multicast tree or 
the wavelength assignment result leads to poor QoS 
performance. 
 
3. Model description 
 
3.1 Network model 

 
An optical network can be modeled by a directed and 

connected graph G(V, E), where V is the set of nodes 
representing optical nodes and E is the set of edges 
representing optical fibers that connect the nodes. Each edge 
carries two oppositely-directed fibers for data transmission 
in the two directions of the edge. Each directed fiber is called 
a link. 

Every node iv V∈  has multicast capability by equipping 
an optical splitter [21]. We assume an optical signal can be 
split into an arbitrary number of optical signals at a splitter. 
Since the all-optical wavelength converter is still in its early 
development stage and  the optoelectronic conversion not 
only is very expensive but also has limited performance, we 
assume only partial nodes are equipped with full-range 
wavelength converter [21] in the network. The full-range 
wavelength converter is able to convert optical signal on one 
wavelength into any other wavelengths. The wavelength 
conversion also introduces additional processing and control 
delay called wavelength conversion delay. Without loss of 
generality, we assume the conversion between any two 
different wavelengths has the same delay at any optical node 
with the wavelength converter, i.e., tvt i ≡)( . If there is no 
wavelength conversion at an intermediate node iv , we set 

0)( =ivt . 
Each link Evve jiij ∈= ),( is associated with three 

parameters: 
♦ ( )ijeΛ , the set of available wavelengths. 

1 2( ) { , , , }ij we λ λ λΛ ⊆ Λ = L , Λ  is the set of 

wavelengths supported by each link in the network. 
♦ ( )ijeδ , the transmission delay. Here, 

( ) ( )ij jie eδ δ= . 
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♦ ( )ijc e , the link cost. 
 
3.2 Mathematical model 
     

In graph G(V, E), we consider a multicast request for 
multicast connection setup, R(s, D, Δ ), where s is the source 
node, D is the set of destinations. Different from the previous 
literatures [13-17, 19, 20], we define Δ  as the delay 
requirement interval specified by the user. It is more 
practical to represent the delay requirement by an interval 
than by a single value because in practice the network 
information is inaccurate and the user QoS requirement is 
often flexible [22]. The lower bound and the upper bound of 
the delay interval are determined by the user and the 
application. 

The route of the multicast connection is represented by a 
tree ( , )T TT X F= , TX V⊆ , TF E⊆ . The total cost of T  is 
defined as 

( ) ( )
ij T

ij
e F

Cost T c e
∈

= ∑ .                          (1) 

The communication delay on a path consists of two 
components, i.e., link transmission delay and wavelength 
conversion delay.  Let ),( idsP  denote the path from source 
node s to any destination node id  in T and let 

isdD  denote 

the path delay. We have 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= ∑∑

∈∈ ),(),(
)()(

iijii

i
dsPe

ij
dsPv

isd evtD δ .                  (2) 

The delay of T is defined as 
( ) max{ , }

isd iDelay T D d D= ∀ ∈ ,                     (3) 
which is the maximum delay between the source node and all 
the destination nodes. We set ],[ highlow ΔΔ=Δ  and then the 

user QoS satisfaction degree is defined as 

⎪
⎪
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The algorithm should select the links with more available 
wavelengths to balance the network load and thereby reduce 
the call blocking probability. The load on a link is defined as 
the number of channels over that link. We can adjust it by 
defining proper link cost functions. For example, by defining 
heuristic cost functions, for the link with more available 
wavelengths, the cost takes smaller value. In the proposed 
algorithm, we define 

( ) | ( ) |ij ijc e w e= − Λ .                                                                           (5) 

The key optimization objective considered in this paper is 
to minimize the tree cost while the user QoS satisfaction 
degree is still high. In addition, the end-to-end delay of tree 

*T  should not exceed the upper bound of the delay interval. 
Otherwise the user cannot accept it due to the poor QoS 
performance. Furthermore, for any link on tree *T , there 
should exit at least one available wavelength. Otherwise, the 

multicast connection cannot be set up. We use T to denote 
any multicast tree spanning s and D in G(V, E). Therefore, 
we solve the problem of QoS multicast in the optical 
network by finding an optimal multicast tree 

* * * *
* ( , ), { } ,

T T T T
T X F s D X F E∪ ⊆ ⊆ , which minimizes 

*( ) min{ ( )}
T

Cost T Cost T= ,                                                         (6) 

subject to 
*( ) highDelay T ≤ Δ ;                                                                          (7) 

* , | ( ) | 1ij ijT
e F e∀ ∈ Λ ≥ .                                                                        (8) 

 
4. The proposed algorithm 
 
4.1 Expression of the solution 

 
We denote the solution by binary coding. Each bit of 

binary string corresponds to a different network node. The 
graph corresponding to the solution S is ),( EVG ′′′ . Let the 
function bit(S, i) denotes the ith bit of S. If and only if bit(S, 
i)=1, then Vvi ′∈ . For our problem, every solution S 
corresponds to a tree ),( iii FXT ′′′ , which is the minimum cost 
spanning tree of G ′ . iT ′  spans the source node and all the 
destination nodes. 

Another problem is that G ′  may be unconnected. Thus, 
every subgraph of G ′  has a minimum cost spanning tree, 
the solution S corresponds to a minimum cost spanning 
forest, which is also denoted by ),( iii FXT ′′′ . If G ′  is 
unconnected, we add penalty value to the cost and give 
smaller Degree(QoS) to the solution. Thus, every solution S 
corresponds to a graph G ′ , which corresponds to a minimum 
cost spanning forest iT ′  (a forest can have only one tree). 
After pruning, we obtain the forest iT ′ , which corresponds to 
solution S. 
 
4.2 The algorithm for wavelength assignment 

 
If Ti is a tree, we assign wavelengths to it. The objective of 

the proposed wavelength assignment algorithm is to 
minimize the delay of the tree by minimizing the number of 
wavelength conversion. Thus the user can get a high QoS 
satisfaction degree. 

The proposed algorithm is based on the idea of 
wavelength graph [12]. First we construct wavelength graph 
WG for the tree Ti (Xi, Fi). The construction method is stated 
as follows. 

1) 
iXN = , 

U
iij Fe

ijew
∈

Λ= )( . In WG, we create N * w 

number of nodes, namely 
ijv , for 1,2, ,i w= L  and 

1,2,j N= L . All the nodes are arranged into a matrix with 
w rows and N columns. Row i represents the corresponding 
wavelength iλ′  and each column j represents a node jv′  in 
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iT . A mapping table is created to record the corresponding 

relationship between i and iλ′ , and another is created to 

record the relationship between j and jv′ . The two tables 

will help reversely map the paths in WG back to the paths 
and wavelengths in iT . 

2) For 1,2, ,i w= L , in the ith row, we add a horizontal 
directional link ),( ihij vv  between column j and column h if 

there exists a link ),( hjjh vve ′′=′  in iT  from node 
jv′  to node 

hv′  and the wavelength iλ′  is available on this link. We 
assign the transmission delay )( jhe′δ  as its weight. 

3) For 1,2,j N= L , in the jth column, for 2121 ,, iiii ≠∀ , 
we add a vertical bidirectional link ),(

21 jiji vv  between row 

i1 and row i2 if node jv′  in iT  has the wavelength 

conversion capability. We assign the wavelength conversion 
delay t as its weight. 

Using the above steps the wavelength graph WG is 
constructed. A vertical link in WG represents a wavelength 
conversion at a node and a horizontal link in WG represents 
an actual link in iT . For convenience, we denote the nodes in 
WG by sequential node number wN *~1 . The sequential 
node number for the node in the ith row and jth column in 
WG is 

 
v1 v2

v3 

v6 

v5

v4{w1, w2} {w1, w2} 

{w1} 
{w

1 ,w
2}

{w
2}

 
(a) 

 

w1 

w2 

v1 v2 v3 v4 v5 v6 

 
(b) 
 

 w1: wavelength 1 

w2: wavelength 2 

node with wavelength 
conversion capability  

Fig. 1. The illustration of the construction of a wavelength graph: (a) physical network topology, (b) the corresponding wavelength graph. 



 5

jNix +−= *)1( .                                            (9) 
We treat the wavelength graph WG as an ordinary network 
topology graph and run the following wavelength 
assignment algorithm. 

Fig. 1 illustrates an example of constructing the 
wavelength graph. Fig. 1(a) is the physical network topology 
G where v1 to v6 represent the optical nodes. In the bracket 
near a link, w1 and/or w2 represent that wavelength 1 and/or 
wavelength 2 are available on that link. Node v3 is an optical 
node with wavelength conversion capability. Fig. 1(b) is the 
generated wavelength graph corresponding to the physical 
network topology. 
 
Wavelength Assignment Algorithm 
Input: the wavelength graph WG where the source node and 
all the destination nodes correspond to the column numbers 
in the matrix, i.e., 

mddds jjjj ,,,
21
L . 

Output: the wavelength assignment result for tree iT . 
begin 
for ),,1( ++≤= kmkk  
{                    

for ),,1( ++≤= iwii  
{                   

si jNix +−= *)1( ; 
for ),,1( ++≤= jwjj  
{ 

kdjk jNjy +−= *)1( ; 

Apply the Dijkstra’s shortest path algorithm to find 
the shortest path ),( jki yxP  from node ix  to node 

jky ; 
} 

}1),,(min{),( wjyxPyxP jkiki ≤≤= ; 
} 

}1),,(min{),( wiyxPyxP kik ≤≤= ; 
} 
end 

 
),( kyxP  is the shortest path from source node s to 

destination node 
kd  in WG. We have 

1/)1( +−= Nxi ,                  (10) 
1)%1( +−= Nxj .                 (11) 

Using the above two expressions and the two mapping tables 
created in step 1, we can reversely map the paths consisting 
of the sequential node numbers back to the links and 
wavelengths in Ti conveniently. Thus the wavelength 
assignment is completed. 

The time complexity of the above wavelength assignment 
algorithm is )( 42 wmNΟ , where m is the number of 
destination nodes, N is the number of nodes in Ti, w is the 
number of wavelengths which are available on at least one 
link in Ti. We can see that they all take small integer values. 
In addition, all the wavelength assignments for solutions 

except the final solution will not be used as the final 
wavelength assignment result. Hence, the algorithm need not 
store lots of data and has a low space complexity. 
 
4.3 Fitness function 

 
After assigning wavelengths to Ti, the delay of Ti is 

determined and thereby Degree(QoS) is determined. The 
fitness of solution S is obtained by computing the following 
fitness function 

( ) [ ( ) 1]*( )
( )

( ) [ ( ) 1]*

( )
ij Ti

i i

ij i
e F

Cost T count Tf S
Degree QoS

c e count T

Degree QoS

ρ

ρ
∈

+ −
=

+ −

=
∑

,                      (12) 

where count(Ti) is the number of trees in the forest Ti, ρ  is a 
constant. We can see that a smaller f(S) corresponds to a 
better solution. 
 
4.4 Setting the initial temperature 

 
We set the initial temperature δKt =0 , where K is a 

sufficiently large number, and 
}|)(min{}|)(max{ SpjjfSpjjf ∈−∈=δ ,                     (13) 

where Sp denotes the solution space. δ  can be estimated 
simply as follows. Since 

graphCSpjjf ≤∈ }|)(max{  (i.e., the total cost of the 

current network topology), and 
min{ ( ) | } s Df j j Sp C ∪∈ ≥  (i.e., the cost of the minimum 
spanning tree covering s and D), we have 

graph s DC Cδ ∪= − .                                        (14) 
Due to the use of the penalty value, the cost of the solution 

may be larger than graphC  after the penalty value is added. 

To satisfy graphCSpjjf ≤∈ }|)(max{ , we let 

graphCSf =)(  when graphCSf >)( . 

 
4.5 Formal description of the algorithm 

 
We first initialize the control parameters including the 

subpopulations number M, the size for every subpopulation 
np, the predefined maximum generation number MAX_GN, 
the individual generation number nG, the crossover 
probability ( )c iρ  for subpopulation i ( 1 i M≤ ≤ ), the 
mutation probability ( )m iρ  for subpopulation i (1 i M≤ ≤ ), 
the coefficient of decreasing temperature α , the initial 
temperature 0 ( )t i  for subpopulation i (1 i M≤ ≤ ). 

1) initialize M random subpopulations. Set GN=0, where 
GN denotes the generation number that the subpopulation 
has evolved so far. Set k=0, where k denotes the number of 
temperature decrease. Set ∞=)(Sopf , where Sop denotes 
the global optimal solution. Set Loop=0, where Loop is a 
counter variant. 
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2) If Loop< nG, go to step 3; otherwise, go to step 5. 
3) For subpopulation i (1 i M≤ ≤ ), perform the following 

operations to generate an offspring subpopulation. 
a) Evaluate the fitness of every chromosome: 

pj njSf L,2,1),( = ; 

b) Select the chromosomes )(, kjSS kj ≠  randomly 

and generate a random number ]1,0[∈num . If 
)(inum cρ> , ,j kS S  are accepted for offspring 

subpopulation directly; otherwise, perform the crossover 
operation to generate two new chromosomes kj SS ′′ , . 

c) Evaluate the fitness )(),( kj SfSf ′′ . We define 

)()( jj SfSff −′=′Δ . If 0<′Δf , accept 
jS′  for offspring 

subpopulation; if 0>′Δf , then accept 
jS′  for offspring 

subpopulation at the probability ))(exp( it
f

k

′Δ− . We have 

)()( kk SfSff −′=′Δ . If 0<′Δf , accept kS ′  for offspring 
subpopulation; if 0>′Δf , then accept kS ′  for offspring 
subpopulation at the probability ))(exp( it

f
k

′Δ− . If kj SS ′′ ,  

are not accepted, ,j kS S  are accepted for offspring 

subpopulation directly. Repeat b) and c) 
2

pn  times, and 

get the offspring subpopulation i ′ . 
d) For every chromosome 

jS  in i ′ , generate a random 

number ]1,0[∈num . If )(inum mρ> , 
jS  is accepted for 

offspring subpopulation directly; otherwise, perform the 
mutation operation to generate a new chromosome 

jS′ . 

Using the above method mentioned in c) to decide 
whether or not to accept 

jS ′  for offspring subpopulation. 

If not, 
jS  is accepted for offspring subpopulation 

directly. After this operation, denote the offspring 
subpopulation as subpopulation i. 
4) GN=GN+1, Loop=Loop+1, go to step 2. 
5) First find the optimal chromosome in each 

subpopulation, and we get M chromosomes. Then find the 
optimal one S among the M chromosomes. Replace the worst 
chromosome of every subpopulation using S. If 

)()( SopfSf < , SSop ← (i.e., replace Sop using S). 
6) If GN=MAX_GN, the algorithm stops; otherwise, 

modify the annealing temperature for each subpopulation, 
i.e., )1,10,0()()(1 Mikitit kk ≤≤<<≥=+ αα . k=k+1, 
Loop=0. Go to step 2. 

When the algorithm terminates, Sop is output as the final 
solution. 
 

5. Discussion on the algorithm implementation 
 
Parallel algorithms are developed to speed up the 

computation by harnessing the power of parallel computers 
or multiple processors computer. During the parallel 
evolution process of the multiple subpopulations, each 
subpopulation evolves independently from each other for a 
certain number of generations (isolation time). After the 
isolation time the optimal solution (chromosome) is 
exchanged between all the subpopulations. 

We assume that the population size of each subpopulation 
is the same and that the crossover probability, mutation 
probability and temperature control parameters of each 
subpopulation may be different. This is a synchronous 
parallel algorithm. The implementation of the algorithm 
should adopt the Multiple Instruction stream Multiple Data 
stream (MIMD) computer architecture [23]. The number of 
processors should be the same as the number of 
subpopulations, and each processor processes the evolution 
of a subpopulation independently. 

The synchronization mechanism is needed among 
different processes operating on different processors, i.e., 
after one processor finishes its isolation time, it stops to 
judge if the other ones have finished their isolation time. If 
there exists one processor which has not finished yet, all the 
others which have finished must wait till all the processors 
finish their isolation time. 

There are two kinds of realization mechanisms for 
MPGSAA. One is to establish the shared memory and the 
other is to designate the control processor. The first method 
will establish a shared memory for all the subpopulations. 
Thus all the subpopulations communicate through a global 
shared variant. The present global optimal solution is also 
exchanged among all the subpopulations through the global 
shared variant. Since the global shared variant is a type of 
critical resource, the lock mechanism should apply to it. 
Each processor should create its own critical region for the 
global shared variant to realize the synchronization among 
all the processors. Fig. 2(a) illustrates the shared memory 
method. The second method designates a new processor as 
the control processor. The control processor can also be 
designated by election from all the processors used to 
process the subpopulations. The control processor is 
responsible for the distribution of the present global optimal 
solution and the synchronization among all the processors. 
Fig. 2(b) illustrates the  control processor method. 
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6. Performance evaluation 

 
Due to hardware constraint, our simulation experiments 

are conducted on a single processor computer, and the 
parallel algorithm is implemented in a serial manner 

(pseudo-parallel). The following performance evaluation is 
based on NSFNET network topology [24]. Since the 
optimization objective of the proposed algorithm is to 
minimize the tree cost while the user QoS satisfaction degree 
is high, there is a tradeoff between the tree cost and delay. 
Hence, we evaluate the algorithm in two aspects, i.e., the 

 

 
Sub1 

 
Sub2 

 
SubM 

shared memory 

(global shared variant) 

… 

                                             

 

Sub1 
 

Sub2 SubM 
… 

 
SubN 

control processor 

Process 1

Process N

(synchronization signal) 

Process 2 Process M  
                                                    (a)                                                                                                                                          (b) 

 
Sub1 subpopulation 1 

critical region  
 

Fig. 2. Two possible realization mechanisms for MPGSAA: (a) the shared memory mechanism, (b) the control processor mechanism. 

 
Table 1 
The cost comparison results between the final solutions obtained by GA and the corresponding optimal solutions 
 

Ratio of multicast 
nodes in the network 

Delay interval Running times Optimal fitness 
value 

<=1% <=2% <=5% <=10% <=20% >20% 

21.4% (15, 30) 100 33 0.78 0.00 0.08 0.00 0.04 0.10 
28.6% (15, 30) 100 39 0.90 0.00 0.00 0.00 0.08 0.02 

35.7% (15, 30) 100 38 0.86 0.00 0.00 0.00 0.00 0.14 

42.9% (15, 30) 100 48 0.33 0.00 0.00 0.54 0.13 0.00 

50.0% (15, 30) 100 46 0.80 0.00 0.00 0.07 0.09 0.04 

57.1% (15, 30) 100 50 0.66 0.10 0.00 0.00 0.00 0.24 

64.3% (20, 40) 100 50 1.00 0.00 0.00 0.00 0.00 0.00 

71.4% (20, 40) 100 64 0.53 0.16 0.00 0.25 0.06 0.00 

78.6% (20, 40) 100 69 1.00 0.00 0.00 0.00 0.00 0.00 

92.9% (20, 40) 100 73 1.00 0.00 0.00 0.00 0.00 0.00 

 
Table 2 
The cost comparison results between the final solutions obtained by the proposed MPGSAA algorithm and the corresponding optimal solutions 
 

Ratio of multicast 
nodes in the network 

Delay interval Running times Optimal fitness 
value 

<=1% <=2% <=5% <=10% <=20% >20% 

21.4% (15, 30) 100 33 0.88 0.00 0.06 0.00 0.02 0.04 
28.6% (15, 30) 100 39 0.89 0.00 0.00 0.00 0.11 0.00 

35.7% (15, 30) 100 38 0.96 0.00 0.00 0.00 0.00 0.04 

42.9% (15, 30) 100 48 0.80 0.00 0.00 0.13 0.07 0.00 

50.0% (15, 30) 100 46 0.98 0.00 0.00 0.00 0.02 0.00 

57.1% (15, 30) 100 50 0.96 0.02 0.00 0.00 0.00 0.02 

64.3% (20, 40) 100 50 1.00 0.00 0.00 0.00 0.00 0.00 

71.4% (20, 40) 100 64 0.85 0.05 0.00 0.10 0.00 0.00 

78.6% (20, 40) 100 69 1.00 0.00 0.00 0.00 0.00 0.00 

92.9% (20, 40) 100 73 1.00 0.00 0.00 0.00 0.00 0.00 
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cost and the delay of the final multicast tree. Since single 
population GA has been widely used to solve the QoS 
multicast problem in WDM optical network [18-20], we 
compare our algorithm with it to show the performance 
improvements. 

Referring to the simulation model established in [17], we 
set the transmission delay on each link to be a small integer 
in [1, 10], which is also in direct proportion to the length of 
the link. We set the wavelength conversion delay to be a 
constant integer in [1, 10]. We choose the 50% of all the 
nodes which have higher node degrees to be equipped with 
wavelength converters. We set 20=Λ  and 

15)(10 ≤Λ≤ ije . 

If the fitness values of some chromosomes are too large, 
the difference between other chromosomes will be shielded. 
To avoid it, when Degree(QoS) is less than a small value val, 
we take Degree(QoS)=val in the fitness calculation. If the 
solution corresponding to the chromosome is unfeasible, we 
also take Degree(QoS)=val. By running extensive 
simulation experiments, we have chosen the appropriate 
values for the parameters of MPGSAA. 
 

6.1 The evaluation on the tree cost 
 
Both single population GA and the proposed MPGSAA 

algorithm are run to obtain the multicast trees. We run each 
algorithm 100 times and get 100 final solutions for each 
multicast session. We compare them with the optimal 
multicast tree, which is obtained by exhaustive search. The 
results are shown in Table 1 and Table 2, respectively.  

In both Table 1 and Table 2, <=1% means that the ratio of 
the cost deviation of the final solution (i.e., the difference 
between the cost of the final solution and the cost of the 
optimal solution) to the cost of the optimal solution is <=1%. 
<=2% means that the ratio is >1% and <=2%. Similar 
meanings apply to other ratio intervals. The value under each 
ratio interval means the percentage of the final solutions 
whose cost deviation ratios fall into this interval.  

These multicast session nodes are chosen randomly from 
sparse mode [25] to dense mode [26]. From these two tables 
we can get that for the actual topology like NSFNET, the 
quality of the final solutions obtained by the proposed 
MPGSAA algorithm is very good in terms of the cost. To 
show the performance improvement of the proposed 
MPGSAA algorithm over the single population GA, we plot 

Table 3 
The delay comparison results between GA considering QoS and GA without considering QoS 
 

Ratio of multicast 
nodes in the network 

Delay interval Running times Maximum average end-to-end delay 
when QoS is not considered 

Maximum average end-to-end delay 
when QoS is considered 

21.4% (15, 30) 5 18.6 16.2 
28.6% (15, 30) 5 16.8 15.8 

35.7% (15, 30) 5 22.6 16.6 

42.9% (15, 30) 5 26.4 19.4 

50.0% (15, 30) 5 22.2 19.2 

57.1% (15, 30) 5 25.4 20.0 

64.3% (20, 40) 5 33.0 33.0 

71.4% (20, 40) 5 26.0 23.2 

78.6% (20, 40) 5 31.0 23.0 

92.9% (20, 40) 5 29.0 29.0 

 
Table 4 
The delay comparison results between MPGSAA considering QoS and MPGSAA without considering QoS 
 

Ratio of multicast 
nodes in the network 

Delay interval Running times Maximum average end-to-end delay 
when QoS is not considered 

Maximum average end-to-end delay 
when QoS is considered 

21.4% (15, 30) 5 19.0 16.0 
28.6% (15, 30) 5 17.4 15.0 

35.7% (15, 30) 5 27.0 15.0 

42.9% (15, 30) 5 25.2 19.2 

50.0% (15, 30) 5 25.0 19.2 

57.1% (15, 30) 5 26.4 20.0 

64.3% (20, 40) 5 33.0 33.0 

71.4% (20, 40) 5 25.0 22.0 

78.6% (20, 40) 5 33.0 23.0 

92.9% (20, 40) 5 29.0 29.0 
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Fig. 3 to compare their percentage values of the solutions 
falling into the ratio interval <=1%. 

 
6.2 The evaluation on the delay 

 
We define the concept of the user QoS satisfaction degree 

and consider the QoS performance of chromosomes when 
the fitness values are calculated in MPGSAA. Hence, we 
evaluate both the cost and the maximum end-to-end delay 
when choosing chromosomes. The use of the user QoS 
satisfaction degree helps to make an ideal tradeoff between 
the cost and the delay of the multicast trees. 

To evaluate the performance improvement made by using 
the user QoS satisfaction degree, we also run both GA and 
MPGSAA under the scenario that QoS (i.e., the user QoS 
satisfaction degree) is not considered. Then we compare the 
delay of the multicast trees obtained by the algorithms 
considering QoS and the one obtained by the algorithms 
without considering QoS. The results are shown in Table 3 
and Table 4, respectively. 

From Table 3 and Table 4, we can see that the delay of the 
multicast trees obtained by the algorithm considering QoS is 
less than the one without considering QoS. It proves that 

with the use of the user QoS satisfaction degree, we can 
achieve the multicast trees with a better QoS performance. 
We plot Fig. 4 to compare the maximum average end-to-end 
delay of the multicast trees obtained by the proposed 
MPGSAA algorithm and the single population GA. 

From Fig. 3 and Fig. 4, we can see that the proposed 
MPGSAA algorithm performs better than GA in terms of 
both the tree cost and the end-to-end delay. Furthermore, the 
MPGSAA algorithm overcomes the drawback of premature 
convergence of the traditional GA and has better stability. 
What the MPGSAA has paid for the performance 
improvements is larger memory storage space and more 
powerful hardware. 
 
6.3 The theoretical comparison on the time consumption 
 

We now theoretically compare the time consumption of 
single population GA with that of MPGSAA. Since the 
predefined maximum generation number of MPGSAA is 
MAX_GN and the individual generation number is nG, the 
times that the global optimal solution needs to be exchanged 
are 

⎥⎥
⎤

⎢⎢
⎡

Gn
GNMAX _ . Since we have M subpopulations in 

MPGSAA, the maximum generation number of GA is 
M*MAX_GN. We assume that the average time 
consumption, the average maximum time consumption, and 
the average minimum time consumption of each isolated 
evolution are 

GT , Max
GT , and Min

GT , separately. We have 
Min

GT <
GT < Max

GT .                   
(15) 

We assume that in MPGSAA the average time 
consumption to determine the global optimal solution is 

DeterT , and the average time consumption to exchange the 
global optimal solution is 

ExchaT . We use 
syncT  to denote the 

average synchronization time after the isolated evolution of 
all the subpopulations. We have 

syncT =
ExchaDeter TT + .                  

(16) 
We use 

GAT  and 
MPGSAAT  to denote the total time 

consumption of GA and MPGSAA, respectively. We have 

G
G

GA Tn
GNMAXMT *_*

⎥⎥
⎤

⎢⎢
⎡= ,                  

(17) 
Since within each isolated evolution, the subpopulation 
which has the maximum time consumption determines the 
ending time, the average time of each isolated evolution is 

Max
GT  in MPGSAA. Therefore, we have   

)(*_
sync

Max
G

G
MPGSAA TTn

GNMAXT +⎥⎥
⎤

⎢⎢
⎡= .                  

(18)  
The difference of the time consumption between GA and 
MPGSAA is 

21.4% 28.6% 35.7% 42.9% 50% 57.1% 64.3% 71.4% 78.6% 92.9%
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Fig. 3. The comparison between GA and MPGSAA in terms of their 
percentage values of the solutions falling into the ratio interval <=1%.  
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Fig. 4. The comparison between GA and MPGSAA in terms of the maximum 
average end-to-end delay. 



 10

)*(*_
sync

Max
GG

G

MPGSAAGA

TTTMn
GNMAX

TTT

−−⎥⎥
⎤

⎢⎢
⎡=

−=Δ
.                          (19) 

If we fix MAX_GN and take 
GT ,  Max

GT and 
syncT  as constants, 

we can see that TΔ  is mostly related to M and nG. It means 
that more subpopulations and less individual generation 
number will lead to more time savings in MPGSAA. 
  
7. Conclusions 

 
In this paper, we first analyze the actual optical networks 

to abstract the network model, and then define the 
mathematical model for the QoS multicast routing problem 
in optical networks. Due to the problem complexity and 
network dynamics, the network state information cannot be 
accurate inherently. Hence, it is more practical for the user to 
propose the QoS requirements in a flexible way, e.g., by the 
delay interval. So we define a new concept- the user QoS 
satisfaction degree.  

Based on the MPGSAA and the idea of wavelength graph, 
we propose a QoS multicast routing algorithm for optical 
networks. By the elaborate design of MPGSAA, the 
proposed algorithm can find a cost suboptimal routing tree. 
Each time a feasible multicast tree is found, we assign 
wavelengths to it with the goal of minimizing the end-to-end 
delay. Thus, we integrate the wavelength pre-assigning into 
the routing tree construction. A better tradeoff between the 
cost and the end-to-end delay is achieved for evaluating the 
quality of a multicast tree. By simulations, we evaluate the 
performance of the proposed algorithm in terms of the 
multicast tree cost and the multicast end-to-end delay, 
respectively. The results show that the proposed algorithm 
has a better performance than a single population GA. 
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