
Characterizing Minimal Semantics-preserving

Slices of predicate-linear, Free, Liberal

Program Schemas

Sebastian Danicic b Robert M Hierons c Mike R Laurence a

aCorresponding author: Mike Laurence, email m.laurence@gold.ac.uk, tel +44 (0)

20 7919 7091, fax +44 (0) 20 7919 7853, address Department of Computing,

Goldsmiths College, University of London, London SE14 6NW, UK.

b Department of Computing, Goldsmiths College, University of London, London

SE14 6NW, UK.

cDepartment of Information Systems and Computing, Brunel University,

Uxbridge, Middlesex, UB8 3PH.

Abstract

A program schema defines a class of programs, all of which have identical statement

structure, but whose functions and predicates may differ. A schema thus defines an

entire class of programs according to how its symbols are interpreted. A slice of a

schema is obtained from a schema by deleting some of its statements. We prove that

given a schema S which is predicate-linear, free and liberal, such that the true and

false parts of every if predicate satisfy a simple additional condition, and a slicing

Preprint submitted to Elsevier Science

criterion defined by the final value of a given variable after execution of any program

defined by S, the minimal slice of S which respects this slicing criterion contains all

the symbols ‘needed’ by the variable according to the data dependence and control

dependence relations used in program slicing, which is the symbol set given by

Weiser’s static slicing algorithm. Thus this algorithm gives predicate-minimal slices

for classes of programs represented by schemas satisfying our set of conditions. We

also give an example to show that the corresponding result with respect to the

slicing criterion defined by termination behaviour is incorrect. This strengthens a

recent result in which S was required to be linear, free and liberal, and termination

behaviour as a slicing criterion was not considered.

Key words: program schemas, Herbrand domain, program slicing, decidability,

free and liberal schemas, linear schemas

1 Introduction

A schema represents the statement structure of a program by replacing real functions

and predicates by symbols representing them. A schema, S, thus defines a whole class

of programs which all have the same structure. Each program can be obtained from

S via a mapping called an interpretation which gives meanings to the function and

predicate symbols in S. As an example, Figure 1 gives a schema S; and the program

P of Figure 2 is defined from S by interpreting the function symbols f, g, h and

! Corresponding author: Mike Laurence, email m.laurence@gold.ac.uk, tel +44 (0) 20 7919

7091, fax +44 (0) 20 7919 7853

2

u :=h();

if p(w) then v := f(u);

else v := g();

Fig. 1. Schema S

the predicate symbol p as given by P . The subject of schema theory is connected

with that of program transformation and was originally motivated by the wish to

compile programs effectively[1]. Schema theory is also relevant to program slicing.

Since program slicing algorithms do not normally take into account the meanings of

the functions and predicates of a program, a schema encodes all the information about

any program which it defines that is available to such algorithms.

A slice of a schema S is defined to be any schema obtained by deleting statements

from S. Given a schema S and a variable v, we wish to find a slice T of S which

satisfies the following condition; given any interpretation and any initial state such

u := 1;

if w > 1 then v := u + 1;

else v := 2;

Fig. 2. Program P

3

that the program defined by S terminates, that defined by T also does, and defines the

same final value for v. In this case we say that T is a v-slice of S. We are particularly

interested in finding minimal v-slices of S (with slices of S ordered according to their

symbol sets).

The main theorem of this paper requires that given any path through a schema S,

there is an interpretation and an initial state such that the program thus defined

follows this path when executed (the freeness condition) and the same term is not

generated more than once as it does so (the liberality condition). These conditions

were first invented by Paterson [2]. We also require that the same predicate symbol

does not occur more than once in S (the predicate-linearity condition), and that if

the same function symbol occurs in both the true and false parts of any if predicate 1 ,

then it assigns to distinct variables in each case. We call schemas satisfying all these

conditions special schemas. We prove that given a schema S which satisfies these

conditions and a variable v, the v-slice of S given by Weiser’s static slicing algorithm[3]

has the unique minimal set of predicate and function symbols of all v-slices of S. The

symbol set given by Weiser’s algorithm is syntactically defined using only the data

and control dependence relations of S. We also define an ω-slice of a schema in which

termination behaviour defines the slicing criterion, and give an example to show that

Weiser’s algorithm, modified in a natural way with respect to this slicing criterion,

need not give a minimal ω-slice. This is in contrast to the situation for function-linear,

1 If the statement if p(v) then T1 else T2 occurs in a predicate-linear schema S, then we say

that T1 and T2 are respectively the true and false parts of p in S

4

free, liberal schemas [4].

Our theorem is a strengthening of the result in [5] in which no symbol was allowed

to occur more than once in the schema S (that is, S had to be linear, as opposed to

just predicate-linear in this paper).

1.1 Organisation of the paper

In the remainder of this section, we explain how the field of program slicing provides

motivation for our results, and we also discuss the history of the study of schemas.

In Section 2, we give formally our basic schema definitions. In Section 3 we define

formally free and liberal schemas, and also give a simple characterisation of schemas

that are both free and liberal, which shows that Weiser’s algorithm preserves the

property of being both free and liberal for slices. In Section 4 we formally define a

slice of a schema. In Section 5 we formally define the data dependence relations !
S

and
final!
S

for a schema S and define Weiser’s labelled symbol set for a schema. We also

give examples of cases in which the slice of a schema containing only the symbols in

Weiser’s set is not the minimal slice satisfying the required conditions. In Section 6,

we define the notion of a p-couple for a predicate p; that is, a pair of interpretations

which differ only on one p-predicate term. In Section 7 we introduce formally the

class of special schemas to which our results apply. In Section 8, we prove our main

theorems. In Section 9, we give an example to show that the slice of a special schema

given by Weiser’s algorithm with respect to termination need not be minimal of all

5

v := g();

if p(u) then v := g();

Fig. 3. Deleting the if statement gives a v-slice of this schema

slices preserving termination behaviour. In Section 10, we discuss our conclusions.

1.2 Relevance of Schema Theory to Program Slicing

The field of (static) program slicing is largely concerned with the design of algorithms

which given a program and a variable v, eliminate as much code as possible from

the program, such that the program (slice) consisting of the remaining code, when

executed from the same initial state, will still give the same final value for v as the

original program, and preserve termination. One algorithm is thus better than another

if it constructs a smaller slice.

Most program slicing algorithms are based on the program dependence graph (PDG)

of a program. This includes Weiser’s algorithm[3], which was, however, expressed in

different language. (For a fuller discussion of program slicing algorithms see [6,7].) The

PDG of a program is a graph whose vertices are the labelled statements of the program

and whose directed edges indicate control or data dependence of one statement upon

another.

We say that in a schema S, a function or predicate symbol x is data dependent upon

a function symbol f , written f!
S

x, if x references the variable to which f assigns,

6

and there is a path through S passing through f before passing through x without

passing through an intermediate assignment to the same variable as f . The relation

final!
S

is defined analogously using terminal path-segments. Thus h!
S

f , f
final!
S

v and

g
final!
S

v hold for the schema of Figure 1; g
final!
S

v means that there is a path through

S passing through g, and not subsequently passing through a later assignment to

the variable v before reaching the end of the schema. This definition of the relations

!
S

,
final!
S

is purely syntactic; feasability of any path is not required for it to hold.

Slicing algorithms do not take account of the meanings of the functions and predicates

occurring in a program, nor do they exploit the knowledge that the same function or

predicate occurs in two different places in a program. This reflects the fact that it

is undecidable whether the deletion of a particular line of code from a program can

affect the final value of a given variable after execution[8]. On the other hand a schema

likewise encapsulates the data and control dependence relations of the programs that

it represents, but whereas it also does not encode the meanings of its function and

predicate symbols, it does record any multiple occurrences of these symbols, and this

extra information may sometimes lead to a proof of the existence of smaller slices. As

an example, it is obvious that the predicate symbol p and the g-assignment that it

controls may be deleted from the schema of Figure 3 without preventing termination or

changing the final value of v (that is, the resulting slice is a v-slice in our terminology),

but most program slicing algorithms will treat the two occurrences of g as if they were

two distinct functions, and therefore will not make any deletion.

In addition, even linear schemas may yield more information about a program than

7

algorithms based on the PDG of a program. As an example, in the schema S of Figure

4, which will be discussed further in Sections 3, 5, 6 and 10, it can be seen that the

slice of S obtained by deleting the f -assignment is a v-slice of S, whereas if the g1-

assignment in S is replaced by an assignment v := g2(v); to give a schema T , then the

f -assignment may not similarly be deleted from T , since the resulting schema is not a

v-slice; but most program slicing algorithms will treat these two cases similarly, and

will require f to be in a v-slice in both cases. Danicic [8] gives other examples of cases

of schemas for which program slicing algorithms will not give minimal slices. This

motivates the mathematical study of schemas, which may lead to the computation of

smaller slices than conventional program slicing techniques can achieve.

1.3 Different classes of schemas

Many subclasses of schemas have been defined:

Structured schemas, in which goto statements are forbidden, and thus loops must

be constructed using while statements. All schemas considered in this paper are

structured.

Linear schemas, in which each function and predicate symbol occurs at most once.

Predicate-linear schemas, which we introduce in this paper, in which each func-

tion symbol occurs at most once, but which may have more than one occurrence of

the same predicate symbol.

Free schemas, where all paths are executable under some interpretation.

8

while q(w) do {

w := h1(w);

u :=h2(u);

if p(u) then {

v := g1();

u := f(u);

}

}

Fig. 4. Deleting the assignment u := f(u); gives a v-slice of this linear schema, although

u := f(u); lies in Weiser’s statement set with respect to v

Conservative schemas, in which every assignment is of the form

v := f(v1, . . . , vr); where v ∈ {v1, . . . , vr}.

Liberal schemas, in which two assignments along any legal path can always be

made to assign distinct values to their respective variables.

It can be easily shown that all conservative schemas are liberal.

Two schemas are said to be equivalent if they have the same termination behaviour,

and give the same final value for every variable, given every symbol interpretation

and initial state. The authors have shown [9,10] that it is decidable whether linear,

9

free, liberal schemas are equivalent.

Paterson [2] gave a proof that it is decidable whether a schema is both liberal and free

(which we give in Subsection 3); and since he also gave an algorithm transforming

a schema S into a schema T such that T is both liberal and free if and only if S

is liberal, it is clearly decidable whether a schema is liberal. It is an open problem

whether freeness is decidable for the class of linear schemas. However he also proved,

using a reduction from the Post Correspondence Problem, that it is not decidable

whether an arbitrary schema is free.

1.4 Previous results on the decidability of schema equivalence

Most previous research on schemas has focused on schema equivalence, as defined

in Section 1.3. All results on the decidability of equivalence of schemas are either

negative or confined to very restrictive classes of schemas. In particular Paterson [2]

proved that equivalence is undecidable for the class of all (unstructured) schemas.

He proved this by showing that the halting problem for Turing machines (which is,

of course, undecidable) is reducible to the equivalence problem for the class of all

schemas. Ashcroft and Manna showed [11] that an arbitrary schema can be effectively

transformed into an equivalent structured schema, provided that statements such

as while ¬p(u) do T are permitted; hence Paterson’s result shows that any class of

schemas for which equivalence can be decided must not contain this class of schemas.

Thus in order to get positive results on this problem, it is plainly necessary to define

10

the relevant classes of schema with great care.

Positive results on the decidability of equivalence of schemas include the following; in

an early result in schema theory, Ianov [12] introduced a restrictive class of schemas,

the Ianov schemas, for which equivalence is decidable. This problem was later shown to

be NP-complete [13,14]. Ianov schemas are monadic (that is, they contain only a single

variable) and all function symbols are unary; hence Ianov schemas are conservative.

Paterson [2] proved that equivalence is decidable for a class of schemas called pro-

gressive schemas, in which every assignment references the variable assigned by the

previous assignment along every legal path.

Sabelfeld [15] proved that equivalence is decidable for another class of schemas called

through schemas. A through schema satisfies two conditions: firstly, that on every

path from an accessible predicate p to a predicate q which does not pass through

another predicate, and every variable x referenced by p, there is a variable referenced

by q which defines a term containing the term defined by x, and secondly, distinct

variables referenced by a predicate can be made to define distinct terms under some

interpretation.

11

2 Basic definitions for schemas

Throughout this paper, F , P, V and l denote fixed infinite sets of function symbols,

predicate symbols, variables and labels respectively. We assume a function

arity : F ∪ P → N.

The arity of a symbol x is the number of arguments referenced by x. Note that in the

case when the arity of a function symbol g is zero, g may be thought of as a constant.

The set Term(F ,V) of terms is defined as follows:

• each variable is a term,

• if f ∈ F is of arity n and t1, . . . , tn are terms then f(t1, . . . , tn) is a term.

We refer to a tuple t = (t1, . . . , tn), where each ti is a term, as a vector term. We call

p(t) a predicate term if p ∈ P and the number of components of the vector term t is

arity(p).

We also define F -terms and vF -terms recursively for F ∈ F∗ and v ∈ V. Any term

f(t1, . . . , tn) is an f -term, and the term v is a v-term. If g ∈ F and at least one of the

terms t1, . . . , tn is an F -term or vF -term, then the term g(t1, . . . , tn) is an Fg-term,

or vFg-term, respectively. Thus any FF ′-term is also an F ′-term.

Definition 1 (schemas) We define the set of all schemas recursively as follows. skip

is a schema. An assignment y := f (l)(x); where y ∈ V, f ∈ F , l ∈ l and x is a vector

of arity(f) variables, is a schema. From these all schemas may be ‘built up’ from the

12

following constructs on schemas.

sequences; S ′ = U1U2 . . . Ur is a schema provided that each Ui for i ∈ {1, . . . , r} is

a schema.

if schemas; S ′′ = if p(l)(x) then {T1} else {T2} is a schema whenever p ∈ P, l ∈ l,

x is a vector of arity(p) variables, and T1, T2 are schemas. We call the schemas T1

and T2 the true and false parts of p(l).

while schemas; S ′′′ = while q(l)(y) do {T} is a schema whenever q ∈ P, l ∈ l, y is

a vector of arity(q) variables, and T is a schema. We call T the body of the while

predicate q(l) in S ′′′. If x is a labelled symbol in T , and there is no labelled while

predicate p(m) in T which also contains x in its body, then we say that q(l) lies

immediately above x.

Thus a schema is a word in a language over an infinite alphabet. We normally omit

the braces { and } if this causes no ambiguity. Also, we may write if p(l)(x) then {T1}

instead of

if p(l))(x) then {T1} else {T2} if T2 = skip.

If no symbol (that is, no element of F ∪ P) appears more than once in a schema S,

then S is said to be linear. If no element of P appears more than once in a schema S,

then S is said to be predicate-linear. We define function-linear schemas analogously

using the set F .

The labels on function and predicate symbols do not affect the semantics of a schema;

they are merely included in order to distinguish different occurrences of the same

13

symbol in a schema; we always assume that distinct occurrences of a symbol in a

schema have distinct labels. We will often omit labels on symbols in contexts where

they need not be referred to, as in Figure 3, or where a symbol only occurs once in a

schema. In particular, our main theorems assume predicate-linear schemas, hence we

do not label predicate symbols in Section 8.

We define Symbols(S), Funcs(S) and Preds(S) to be the sets of symbols, function

symbols and predicate symbols occurring in a schema S. Their labelled counterparts

are SymbolsL(S), FuncsL(S) and PredsL(S). Also ifPredsL(S) and whilePredsL(S)

are the sets of all labelled if predicates and while predicates in S. A schema without

predicates (that is, a schema which consists of a sequence of assignments and skips)

is called predicate-free.

If a schema S contains an assignment y := f (l)(x); then we define y = assignS(f (l))

and x = refvecS(f (l)). If p(l) ∈ PredsL(S) then refvecS(p(l)) is defined similarly.

Definition 2 (the ↘S relation)

Let S be a schema. If p(l) is a labelled predicate in S and x is any (possibly labelled)

symbol, we say that p(l) ↘S x holds if x lies in the body of p(l) (if p(l) is a while

predicate in S) or x lies in the true or false part of p(l) (if p(l) is an if predicate). We

may strengthen this by writing p(l) ↘S x (Z) for Z ∈ {T, F} to indicate the additional

condition that x lies in the Z-part of p(l) if p(l) ∈ ifPredsL(S), or p(l) ∈ whilePredsL(S)

(if Z = T).

The relation ↘S is the transitive closure of the relation ‘controls’ in program analysis

14

terminology.

2.1 Paths through a Schema

The execution of a program defines a possibly infinite sequence of assignments and

predicates. Each such sequence will correspond to a path through the associated

schema. The set Πω(S) of paths through S is now given.

Definition 3 (the set Πω(S) of paths through S, path-segments of S) If L is

any set, then we write L∗ for the set of finite words over L and Lω for the set containing

both finite and infinite words over L. If σ is a word, or a set of words over an alphabet,

then pre(σ) is the set of all finite prefixes of (elements of) σ.

For each schema S the alphabet of S, written alphabet(S) is the set

{y := f (l)(x)| y := f (l)(x); is an assignment in S}

⋃

{p(l), Z | p(l) ∈ PredsL(S) ∧ Z ∈ {T, F}}.

We define symbol(y := f (l)(x)) = f and symbol(p(l), Z) = p.

The words in Π(S) ⊆ (alphabet(S))∗ are formed by concatenation from the words of

subschemas of S as follows:

For skip,

Π(skip)

15

is the set containing only the empty word.

For assignments,

Π(y := f (l)(x);) = {y := f (l)(x)}.

For sequences, Π(S1S2 . . . Sr) = Π(S1) . . .Π(Sr).

For if schemas, Π(if p(l)(x) then {T1} else {T2}) is the set of all concatenations of

p(l) = T with a word in Π(T1) and all concatenations of p(l) = F with a word in Π(T2).

For while schemas, Π(while q(l)(y) do {T}) = (q(l) = TΠ(T))∗q(l) = F.

We define Πω(S) = {σ ∈ (alphabet(S))ω|pre(σ) ⊆ pre(Π(S))}. Elements of Πω(S) are

called paths through S. Any µ ∈ alphabet(S)∗ is a path-segment (in S) if there are

words µ′, µ′′ such that µ′µµ′′ ∈ Π(S). A terminal path-segment of S is a path-segment

ν such that µν ∈ Π(S) for some µ.

2.2 Semantics of schemas

The symbols upon which schemas are built are given meaning by defining the notions

of a state and of an interpretation. It will be assumed that ‘values’ are given in a

single set D, which will be called the domain. We are mainly interested in the case in

which D = Term(F ,V) (the Herbrand domain) and the function symbols represent

16

the ‘natural’ functions with respect to Term(F ,V).

Definition 4 (states, (Herbrand) interpretations and the natural state e)

Given a domain D, a state is either ⊥ (denoting non-termination) or a function

V → D. The set of all such states will be denoted by State(V, D). An interpretation

i defines, for each function symbol f ∈ F of arity n, a function f i : Dn → D, and for

each predicate symbol p ∈ P of arity m, a function pi : Dm → {T, F}. The set of all

interpretations with domain D will be denoted Int(F ,P, D).

We call the set Term(F ,V) of terms the Herbrand domain, and we say that a function

from V to Term(F ,V) is a Herbrand state. An interpretation i for the Herbrand

domain is said to be Herbrand if the functions f i : Term(F ,V)n → Term(F ,V) for

each f ∈ F are defined as

f i(t1, . . . , tn) = f(t1, . . . , tn)

for all n-tuples of terms (t1, . . . , tn).

We define the natural state e : V → Term(F ,V) by e(v) = v for all v ∈ V.

Note that an interpretation i being Herbrand places no restriction on the mappings

pi : (Term(F ,V))m → {T, F} defined by i for each p ∈ P.

Given a schema S and a domain D, an initial state d ∈ State(V, D) with d (= ⊥ and

an interpretation i ∈ Int(F ,P, D) we now define the final state M[[S]]id ∈ State(V, D)

and the associated path πS(i, d) ∈ Πω(S). In order to do this, we need to define the

predicate-free schema associated with the prefix of a path by considering the sequence

17

of assignments and skip through which it passes.

Definition 5 (the schema schema(σ))

Given a word σ ∈ (alphabet(S))∗ for a schema S, we recursively define the predicate-

free schema schema(σ) by the following rules; schema(λ) = skip if λ is the empty

word, schema(skip) = skip, schema(σv := f(x)) = schema(σ) v := f(x); and

schema(σp(l), X) = schema(σ).

Lemma 6 Let S be a schema. If σ ∈ pre(Π(S)), the set {m ∈ alphabet(S)| σm ∈

pre(Π(S))} is one of the following; a singleton containing an underlined assignment,

a pair {p(l), T, p(l), F} where p(l) ∈ Preds(L)(S), or the empty set, and if σ ∈ Π(S)

then the last case holds.

Lemma 6, which was proved in [4, Lemma 6], reflects the fact that at any point in

the execution of a program, there is never more than one ‘next step’ which may be

taken, and an element of Π(S) cannot be a strict prefix of another.

Definition 7 (semantics of predicate-free schemas) Given a state d (= ⊥, the

final state M[[S]]id and associated path πS(i, d) ∈ Πω(S) of a schema S are defined as

follows:

For skip,

M[[skip]]id = d

and

18

πskip(i, d) is the empty word.

For assignments,

M[[y := f (l)(x);]]id(v) =






d(v) if v (= y,

f i(d(x)) if v = y

(where the vector term d(x) = (d(x1), . . . , d(xn)) for x = (x1, . . . , xn))

and

πy := f(l)(x);(i, d) = y := f (l)(x),

and for sequences S1S2 of predicate-free schemas,

M[[S1S2]]
i
d = M[[S2]]

i
M[[S1]]id

and

πS1S2(i, d) = πS1(i, d)πS2(i,M[[S1]]
i
d).

This uniquely defines M[[S]]id and πS(i, d) if S is predicate-free.

In order to give the semantics of a general schema S, first the path, πS(i, d), of S with

respect to interpretation, i, and initial state d is defined.

Definition 8 (the path πS(i, d)) Given a schema S, an interpretation i, and a state,

d (= ⊥, the path πS(i, d) ∈ Πω(S) is defined by the following condition; for all

σ p(l), X ∈ pre(πS(i, d)), the equality pi(M[[schema(σ)]]id(refvecS(p(l)))) = X holds.

In other words, the path πS(i, d) has the following property; if a predicate expression

p(l)(refvecS(p(l))) along πS(i, d) is evaluated with respect to the predicate-free schema

19

consisting of the sequence of assignments preceding that predicate in πS(i, d), then

the value of the resulting predicate term given by i ‘agrees’ with the value given in

πS(i, d).

By Lemma 6, this defines the path πS(i, d) ∈ Πω(S) uniquely.

Definition 9 (the semantics of arbitrary schemas) If πS(i, d) is finite, we de-

fine

M[[S]]id = M[[schema(πS(i, d))]]id

(which is already defined, since schema(πS(i, d)) is predicate-free) otherwise πS(i, d)

is infinite and we define M[[S]]id = ⊥. In this last case we may say that M[[S]]id is not

terminating. Also, for schemas S, T and interpretations i and j we write M[[S]]id(ω) =

M[[T]]jd(ω) to mean M[[S]]id = ⊥ ⇐⇒ M[[T]]jd = ⊥. For convenience, if S is predicate-

free and d : V → Term(F ,V) is a state then we define unambiguously M[[S]]d =

M[[S]]id; that is, we assume that the interpretation i is Herbrand if d is a Herbrand

state; and we will write M[[µ]]d to mean M[[schema(µ)]]d for any µ ∈ alphabet(S)∗.

Observe that M[[S1S2]]id = M[[S2]]iM[[S1]]id
and

πS1S2(i, d) = πS1(i, d)πS2(i,M[[S1]]
i
d)

hold for all schemas (not just predicate-free ones).

Given a schema S, let µ ∈ pre(Π(S)). We say that µ passes through a predicate term

p(t) if µ has a prefix µ′ ending in p(l), Y for y ∈ {T, F} such that M[[µ′]]e(refvecS(p(l))) =

t holds. We say that p(t) = Y is a consequence of µ in this case.

20

3 Free and liberal schemas

Given an initial state and an interpretation, a path through a schema defines a term

f(t) or a predicate term p(t) at each symbol that it encounters. For this paper, we

wish to consider the class of schemas for which no term or predicate term is defined

more than once along any path, given e as the initial state and assuming that all

interpretations are Herbrand.

Definition 10 (free and liberal schemas) Let S be a schema.

• If for every σ ∈ pre(Π(S)) there is a Herbrand interpretation i such that σ ∈

pre(πS(i, e)), then S is said to be free.

• If for every Herbrand interpretation i and any prefix µ v := f (l)(a) ν w := g(m)(b) ∈

pre(πS(i, e)), we have

M[[µ v := f (l)(a)]]e(v) (= M[[µ v := f (l)(a) ν w := g(m)(b)]]e(w),

then S is said to be liberal. (If f (= g then of course this condition is trivially

satisfied.)

Thus a schema S is said to be free if for every path through S, there is a Herbrand

interpretation which follows it with the natural state e as the initial state, and a

schema S is said to be liberal if given any path through S passing through two assign-

ments and a Herbrand interpretation which follows it with e as the initial state, the

assignments give distinct values to the variables to which they assign. The definitions

of freeness and liberality were first given in [2].

21

Observe that if a schema S is free, and

µp(l), Xµ′p(m), Y ∈ pre(πS(i, e))

for some Herbrand interpretation i, then

M[[µ]]e(refvecS(p(l))) (= M[[µµ′]]e(refvecS(p(m)))

holds, since otherwise there would be no Herbrand interpretation whose path (for

initial state e) has the prefix µp(l), Xµ′p(m),¬X. Thus a path through a free schema

cannot pass more than once (for initial state e) through the same predicate term.

Hence if a Herbrand interpretation i maps only finitely many predicate terms to T,

and S is a free schema, then the path πS(i, e) terminates. Similarly, if a schema S is

free and predicate-linear, and a Herbrand interpretation j maps finitely many while

predicate terms in S to T, then the path πS(j, e) terminates.

The schemas in Figures 3 and 4 are both free but not liberal. The schema while p(v) do skip

on the other hand, is liberal but not free.

Proposition 11 demonstrates the use of requiring our schemas to be liberal.

Proposition 11 Let S, T1, T2 be predicate-free schemas and assume that each schema

STi is liberal. Let v1, v2 ∈ V. If M[[ST1]]e(v1) = M[[ST2]]e(v2), then M[[T1]]e(v1) =

M[[T2]]e(v2) holds.

Proof. Assume M[[ST1]]e(v1) = M[[ST2]]e(v2) holds. We will prove M[[T1]]e(v1) =

M[[T2]]e(v2) by induction on the number of assignments in T1. We may assume that

22

each schema STi contains an assignment to vi, since if this holds for exactly one value

of i, then a contradiction is obtained, and if it is false for both values of i, then

the conclusion follows immediately. Thus we may assume that T1 and (similarly) T2

contain assignments to v1 and v2 respectively, since if the last assignment to v1 in ST1

occurs in S, then since ST2 is liberal, this is also the last assignment to v1 = v2 in

ST2; hence M[[T1]]e(v1) = M[[T2]]e(v2) = v1 = v2.

Let vi := fi(ui); be the last assignment to vi in Ti for each i. Clearly f1 = f2. Let u1 and

u2 be the first components of u1 and u2 respectively, and write Ti = T ′
i vi := fi(ui); T ′′

i

for each i. By the inductive hypothesis applied to S and each T ′
i , the term M[[T ′

i]]e(ui)

is the same for each i; the Proposition then follows from the analogous result for the

other components of each ui. "

Proposition 11 need not hold for non-liberal schemas; for example, if S and T1 are

both v := g(); (so ST1 is not liberal), T2 = skip and v1 = v2 = v.

As mentioned in the introduction, it was proved in [2] that it is not decidable whether

an (unstructured) schema is free, but it is decidable whether it is liberal, or liberal

and free. Theorem 12 proves the latter result for structured schemas. It is an open

question as to whether freeness of a linear or function-linear schema is decidable.

Theorem 12 (it is decidable whether a schema is liberal and free)

Let S be a schema. Then S is both liberal and free if and only if for every path-segment

x̃µỹ in S with x̃, ỹ ∈ alphabet(S), symbol(x̃) = symbol(ỹ) and such that such that

the same labelled symbol does not occur more than once in x̃µ or in µỹ, then either

23

x̃ and ỹ reference a different vector of variables, or the path-segment x̃µ contains an

assignment to a variable referenced by ỹ.

In particular, it is decidable whether a schema is both liberal and free.

Proof [2]. Assume that S is both liberal and free. Then for any path-segment x̃µỹ

satisfying the conditions given, there is a prefix Θ and a Herbrand interpretation i

such that Θx̃µỹ ∈ pre(πS(i, e)), and distinct (predicate) terms are defined when x̃

and ỹ are reached, thus proving the necessity of the condition.

To prove sufficiency, first observe that the ‘non-repeating’ condition on the letters of

the path-segment µ may be ignored, since path-segments that begin and end with

letters having the same labelled symbol can be removed from within x̃µ and µỹ until

it is satisfied. Consider the set of prefixes of Π(S) of the form Θx̃µỹ with symbol(x̃) =

symbol(ỹ) such that x̃µỹ satisfies the condition given. By induction on the length of

such prefixes, it can be shown that every assignment encountered along such a prefix

defines a different term (for initial state e), and the result follows immediately from

this.

Since there are finitely many path-segments in S satisfying the conditions given for

x̃µỹ and these can be enumerated, the decidability of liberality and freeness for the

set of schemas follows easily. "

24

4 Slices and slicing conditions

Definition 13 (slices of a schema) The set of slices of a schema S is the minimal

set of schemas which satisfies the following rules;

• skip is a slice of any schema.

• S1 and S2 are both slices of any schema S1S2.

• If S ′ is a slice of S, then S ′T and TS ′ are slices of S ′T and TS ′ respectively.

• if T ′ is a slice of T then while p(u) do T ′ is a slice of while p(u) do T ;

• if T ′ is a slice of T then the if schema if q(u) then S else T ′ is a slice of

if q(u) then S else T (the true and false parts may be interchanged in this example);

• a slice of a slice of S is itself a slice of S.

Definition 14 (the semantic u-slice condition for u ∈ V ∪ {ω}) Let T be a slice

of a schema S. Then given u ∈ V, we say that T is a u-slice of S if given any

domain D, any state d : V → D and any i ∈ Int(F ,P, D), M[[S]]id (= ⊥ ⇒

(M[[T]]id (= ⊥ ∧ M[[S]]id(u) = M[[T]]id(u)) holds. We also say that T is an ω-slice

of S if given any domain D, any state d : V → D and any i ∈ Int(F ,P, D),

M[[S]]id (= ⊥ ⇐⇒ M[[T]]id (= ⊥ holds.

Thus the u-slice condition is given in terms of every conceivable domain and initial

state; however it is well known that the Herbrand domain is the only one that needs

to be considered when considering many schema problems. Theorem 15, which is

virtually a restatement of [16, Theorem 4-1], ensures that for slicing purposes, we

25

only need to consider Herbrand interpretations and the natural state e.

Theorem 15 Let χ be a set of schemas, let D be a domain, let d be a function from

the set of variables into D and let i be an interpretation using this domain. Then there

is a Herbrand interpretation j such that the following hold.

(1) For all S ∈ χ, the path πS(j, e) = πS(i, d).

(2) If S1, S2 ∈ χ and v1, v2 are variables and ρk ∈ pre(πSk
(j, e)) for k = 1, 2 and

M[[ρ1]]e(v1) = M[[ρ2]]e(v2), then also M[[ρ1]]id(v1) = M[[ρ2]]id(v2) holds.

Throughout the remainder of the paper, all interpretations will be assumed to be

Herbrand.

5 The data dependence relations !
S

and
final!

S
and Weiser’s labelled symbol

set

Definition 16 formalises the !
S

and
final!
S

relations introduced in Section 1.2.

Definition 16 (the !
S

and
final!

S
relations and parameterised path-segments)

Let S be a schema and let σ be a path-segment in S.

We call σ an F -path-segment, or vF -path-segment for F ∈ F∗ and v ∈ V if M[[σ]]e(u)

for some u ∈ V is an F -term, or vF -term, respectively. We also call these path-

segments an Fu-path-segment or vFu-path-segment respectively.

We call σp(l), Z an Fp-path-segment or Fp(l)-path-segment in S if M[[σ]]e(u) is an

F -term for some u ∈ V referenced by p(l) in S. We define vFp(l)-path-segments anal-

26

ogously.

We sometimes strengthen these definitions by using labelled function symbols in the

word F to indicate which labelled assignment in S creates the appropriate subterm of

M[[σ]]e(u). We write f (l)!
S

g(m) if S contains an f (l)g(m)-path-segment for f ∈ F and

g ∈ F ∪ P, and write f (l) final!
S

u if S contains a terminal path-segment σ such that

M[[σ]]e(u) is an f -term.

The relations ! and
final! correspond to the data dependence relation in program

slicing.

Definition 17 (Weiser’s labelled symbol set) Let S be a schema and let u ∈

{ω} ∪ V. Then we define NS(u) ⊆ FuncsL(S) ∪ PredsL(S) to be the minimal set

satisfying the following conditions.

(1) If f (l) final!
S

u ∈ V, then f (l) ∈ NS(u) holds.

(2) If u = ω then whilePredsL(S) ⊆ NS(u).

(3) If x ∈ NS(u) and f (l)!
S

x, then f (l) ∈ NS(u) holds.

(4) If x ∈ NS(u) and p(l) ↘S x then p(l) ∈ NS(u).

The set NS(u) (traditionally only defined for the case in which u ∈ V, and for programs

rather than schemas) is fundamental to most slicing algorithms. It contains all symbols

which might conceivably affect the final value of u (if u is a variable) or termination

(if u = ω). This assertion is formalised in Theorem 18.

27

w := h();

if p(w) then u := g();

else u := g();

Fig. 5. h ∈ NS(u), but deleting the assignment w := h() gives a u-slice of S

Given a schema S and a set Σ ⊆ SymbolsL(S) satisfying (x ∈ Σ ∧ p(l) ↘S x) ⇒

p(l) ∈ Σ, there is a slice T of S such that SymbolsL(T) = Σ, obtained from S by

deleting all elements of SymbolsL(S) − Σ from S. This slice is easily shown to be

unique. In particular, for any u ∈ V ∪ {ω}, every schema S has a unique slice T

satisfying SymbolsL(T) = NS(u). By Theorem 12, if S is both free and liberal, then

so is T .

Theorem 18 Let S be any schema, let u ∈ V ∪ {ω} and let T be a slice of S. If

SymbolsL(T) = NS(u), then T is a u-slice of S.

Proof. Proved in [4, Theorem 18].

If S is liberal, free, and function-linear, then a slice T of S is the u-slice of S with

the minimal number of labelled symbols if and only if SymbolsL(T) = NS(u) holds,

as was proved in [4]; but in general this is false. To see this, consider the schema

S in Figure 5. It is clearly irrelevant whether p(w) maps to T or F, and hence the

assignment w := h() may be deleted to give a u-slice.

28

Even if a schema is both free and linear, Weiser’s algorithm need not give minimal

slices. To see this, consider the linear schema S of Figure 4 which can easily be seen

to be free. Owing to the constant g1-assignment, S is not liberal; any path entering

the true part of p more than once would assign the same value, g1(), to v each time.

Since S contains the fh2p-path-segment u := f(u) q, Tw :=h1(w) u :=h2(u) p, T, and

p ↘S g1 and g1!
S

v hold, f ∈ NS(v) follows; but the slice S ′ of S in which the

assignment u := f(u); is deleted is a v-slice of S, since any interpretation j satisfying

M[[S ′]]je(v) (= M[[S]]je(v) would have to define a path πS(j, e) passing through the

f -assignment (since otherwise the deletion of f from S would make no difference to

M[[S]]je(v)), and so the value of v would be thus fixed at g1().

6 Couples of interpretations

In order to establish which predicate symbols of a schema must be included in a slice

in order to preserve our desired semantics, we define the notion of a p-couple for a

predicate p.

Definition 19 (couples) Let i, j be interpretations and let p ∈ P. We say that the

set {i, j} is a p-couple if there is a vector term t such that i and j differ only at

the predicate term p(t). In this case we may also say that {i, j} is a p(t)-couple. If

a component of t is an F -term for F ∈ F∗, then {i, j} is an Fp-couple. Given any

u ∈ V and schema S, we also say that {i, j} is an Fpu-couple or p(t)u-couple for S

if also M[[S]]ie(u) (= M[[S]]je(u) and both sides terminate. Lastly, we may label p (an

29

Fp(l)u-couple, or p(l)(t)u-couple for S) to indicate that the paths πS(i, e) and πS(j, e)

diverge at p(l) (at which point the predicate term p(t) is defined).

We also make analogous definitions if instead u = ω; we say {i, j} is a pω-couple for

S if exactly one path in {πS(i, e), πS(j, e)} terminates.

Note that a pu-couple is simply an Fpu-couple with F as the empty word. The

existence of a pu-couple for a schema S ‘witnesses’ the fact that p affects the semantics

of S, as defined by u.

Proposition 20 follows immediately from Definition 19.

Proposition 20 If u ∈ V and T is a u-slice of a schema S, then a pu-couple for S

is also a pu-couple for T . "

Definition 21 (head and tails of a couple) Let S be a schema. Let u ∈ V, and

let q ∈ Preds(S). Let I = {i, j} be a qu-couple for S and write

πS(k, e) = µq(l), Zk ρk

for each k ∈ I and {Zi, Zj} = {T, F}; then we define tailS(I, k) = ρk for each k ∈ I,

and µ = headS(I).

The motivation for Definition 21 is given by Lemma 22, which shows that given a pu-

couple for a free liberal schema, a new pu-couple may be obtained from it by replacing

its head by any prefix leading to p, while keeping the same tails.

Lemma 22 (Changing the head of a couple) Let S be a free liberal schema and

30

let p(l) ∈ PredsL(S) and u ∈ V. Suppose there is a p(l)u-couple I for S and a pre-

fix µ p(l), T in S, then there is a pu-couple I ′ for S such that µ = headS(I ′) and

{tailS(I, k)| k ∈ I} = {tailS(I ′, k)| k ∈ I ′}. In particular, if there is a p(l)u-couple I

for S and S contains an Fp(l)-path-segment for F ∈ F∗, then there exists an Fp(l)u-

couple I ′ for S.

Proof. Write I = {i, j}. Since S is free, there exist interpretations i′, j′ defining paths

µp(l), ZtailS(I, i) and µp(l),¬ZtailS(I, j) for Z ∈ {T, F}, and by Proposition 11, the

final value of u after each path is still distinct. Thus it suffices to prove that i′, j′

need not differ on any predicate term except the p-predicate term defined after µ.

However, if this is false, then q(t′) = Y must be a consequence of one of the paths

and q(t′) = ¬Y must be a consequence of the other, for some predicate term q(t′) and

Y ∈ {T, F}. Again, since S is free, q(t′) must occur on the tails of both paths, and

by Proposition 11 applied to the variables referenced by the appropriate occurrences

of q on each path and the prefixes of the paths preceding these occurrences, the same

incompatibility would contradict the existence of the p(l)u-couple I. Thus we may

define I ′ = {i′, j′}. "

For the remainder of this paper, we use the following terminology with interpretations.

If i is an interpretation, p(t) is a predicate term and X ∈ {T, F}, then i(p(t) = X)

is the interpretation which maps every predicate term to the same value as i except

p(t), which it maps to X.

31

Lemma 22 need not hold for schemas that are not both free and liberal. To see this,

consider the free, linear, non-liberal schema S of Figure 4.

Let the interpretation i satisfy qi(t) = T if and only if the term t = w, and pi(h2(u)) =

T. If the interpretation j = i(p(h2(u)) = F), then {i, j} is an h2pv-couple for S, since

M[[S]]ie(v) = g1() whereas M[[S]]je(v) = v, but there is no fh2pv-couple for S, although

S contains an fh2p-path-segment, since any interpretation k such that πS(k, e) passes

through the f -assignment must satisfy M[[S]]ke(v) = g1().

7 Restriction to Special Schemas

In order to prove our main results, we need to exclude from consideration schemas

such as the one in Figure 5. Therefore we will now only consider schemas such that

if the same function symbol occurs in both parts of any if predicate, then the oc-

curences assign to different variables. The utility of this assumption is demonstrated

by Proposition 24.

Definition 23 (Special schemas) Let S be a predicate-linear free liberal schema.

We say that S is special if given any p ∈ ifPreds(S) and f ∈ F such that p ↘S f (l) (T)

and p ↘S f (m) (F) hold, assignS(f (l)) (= assignS(f (m)) holds.

Figure 6 gives an example of a special schema.

Proposition 24 Let v ∈ V and let R, S1, S2 be predicate-free schemas such that

either S1 or S2 contains an assignment to v, each schema RSj is liberal and for all

32

f ∈ F , if S1 and S2 both contain assignments with function symbol f , then they assign

to different variables. Then M[[RS1]]e(v) (= M[[RS2]]e(v) holds.

Proof. If only one schema in the set {S1, S2} contains an assignment to v, then the

result follows from the liberality condition. If both do, let fj be the function symbol

of the last assignment to v in each Sj . By our hypotheses, f1 (= f2, and each term

M[[RSj]]e(v) has fj as the outermost function symbol, giving the result. "

u := f(u);

while q(u) do u := f(u);

Fig. 6. A non-linear special schema

8 Main Theorems

We wish to prove that for any u ∈ V, every schema which is a u-slice of a given

special schema S contains every symbol occurring in NS(u). Thus we need to refer to

the recursive definition of NS(u). This motivates Lemmas 25, 28 and 29, and Definition

26.

Lemma 25 Let S be a free predicate-linear schema and assume p ↘S q for p, q ∈

Preds(S). Let u ∈ V. If there exists a qu-couple for S, then there exists a pu-couple

for S.

33

Proof. Assume p ↘S q (X) and let {i, j} be a qu-couple for S. The paths πS(i, e), πS(j, e)

terminate and must both pass through p, X. Assume {i, j} is chosen so that i and j

map finitely many while predicate terms to T and such that the number of predicate

terms p(s) that i and hence j map to X is minimal; clearly this number is positive

and thus there is a predicate term p(t) which the interpretations both map to X. Let

i′ = i(p(t) = ¬X) and define j′ similarly. By the freeness of S, the interpretations

i′ and j′ define terminating paths, and by the minimality hypothesis, {i′, j′} is not

a qu-couple for S and so either M[[S]]ie(u) (= M[[S]]i
′

e (u) or M[[S]]je(u) (= M[[S]]j
′

e (u),

with both sides terminating, giving the result. "

It is convenient to make the following definitions.

Definition 26 ((p, X)-links and v-feeding path-segments) Let S be a predicate-

linear schema.

Let p ∈ ifPreds(S) and X ∈ {T, F}. A (p, X)-link in S is a path-segment p, Xν for

some path ν in the X-part of p in S.

If p ∈ whilePreds(S), then the path-segment p, F is called a (p, F)-link in S; and a path-

segment in (p, TΠ(bodyS(p)))∗p, F which passes at least once through Π(bodyS(p)) is

a (p, T)-link.

Let p, q ∈ Preds(S) and let v ∈ V. We say that a path-segment µ in S v-feeds p to q if

there exists X ∈ {T, F} such that νµq, T is a path-segment in S for some (p, X)-link

ν and M[[µ]]e(w) is a vF -term for some F ∈ F∗ and q references the variable w.

Proposition 27 Let S1, S2, T be predicate-free schemas and let v, w be variables such

34

that M[[S1]]e(v) (= M[[S2]]e(v) and assume that M[[T]]e(w) is a vG-term for some

G ∈ F∗. Then M[[S1T]]e(w) (= M[[S2T]]e(w) holds.

Proof. This follows by induction on the total number of assignments and occurrences

of skip in T . If T = skip then v = vG = w and the result is straightforward. If

T = T ′skip or T = T ′ w′ := g(u); for w′ (= w, then M[[SiT]]e(w) = M[[SiT ′]]e(w) for

each i and so the result follows from the inductive hypothesis applied to T ′. Thus

we may assume that T = T ′ w := g(w1, . . . , wm);. Hence we may write G = G′g

such that for some j ≤ m, M[[T ′]]e(wj) is a vG′-term. From the inductive hy-

pothesis applied to T ′, M[[S1T ′]]e(wj) (= M[[S2T ′]]e(wj) holds. Since M[[SiT]]e(w) =

g(M[[SiT ′]]e(w1), . . . ,M[[SiT ′]]e(wm)) for each i, the result follows. "

Lemma 28 Let S be a special schema. Let u, v ∈ V and p, q ∈ Preds(S). Assume

that there exists a qu-couple for S. Suppose that there exists an assignment to v in

the body or in one part of p in S and that there exists a path-segment in S v-feeding

p to q. Then there exists a pu-couple for S.

Proof. Given a fixed pair (p, u), we will assume that the conclusion of the Lemma

is false, but that the hypotheses are true for some triple (q, v, σ), where σ is a path-

segment in S v-feeding p to q, and will show that this leads to a contradiction. We will

assume that the triple (q, v, σ) is chosen such that the path-segment σ is of minimal

length such that the hypotheses of the Lemma are satisfied.

For some X ∈ {T, F}, let ρ be a (p, X)-link passing through an assignment to v and

let µρσ ∈ pre(Π(S)). By Lemma 22, we can choose a qu-couple I = {i, j} for S

35

such that headS(I) = µρσ. We may assume that i and j map finitely many while

predicate terms to T, since the interpretations define terminating paths. Let m be the

total number of r-predicate terms which i and j both map to T, where r is the while

predicate lying immediately above q if q ∈ ifPreds(S), or q itself if q ∈ whilePreds(S).

If q ∈ ifPreds(S) and q does not lie in the body of a while predicate, then m and r

are undefined. We assume that I is chosen such that if defined, m is minimal for the

chosen values of q, v and σ.

Let ρ′ be any (p,¬X)-link and let Γ be the set of all pairs (q̃(̃t), Z) such that q̃(̃t) = Z

is a consequence of the prefix µρ′σ, but is not a consequence of µρσ.

Let the interpretations i′, j′ be obtained by altering i and j respectively in accordance

with the pairs in Γ; thus, if (q̃(̃t), Z) ∈ Γ then q̃i′ (̃t) = Z, otherwise q̃i′ (̃t) = q̃i(̃t),

and similarly for j′. By the freeness of S, the set Γ does not contain any subset of the

form {(q̃(̃t), Z), (q̃(̃t),¬Z)} and so i′ and j′ are well-defined. We write I ′ = {i′, j′}.

Clearly i′, j′ define paths having µρ′σ as a prefix. We now show that a contradiction

is obtained. The proof proceeds in stages.

(1) For any (q̃(̃t), Z) ∈ Γ, we now show that there is no q̃u-couple for S. Assume

this is false for some (q̃(̃t), Z). By the definition of Γ, q̃(̃t) does not occur on

µ, and by Lemma 25 and the fact that p (= q̃ by the falsity of the conclusion of

the Lemma, q̃(̃t) does not occur on µρ′ either, and so µρ′σ has a prefix µρ′σ′q̃, Z

such that q̃ defines q̃(̃t) after µρ′σ′ and since q̃(̃t) = Z is not a consequence of

µρσ, replacing ρ by ρ′ in µρσ′ changes the q̃-predicate term defined after µρσ′.

Hence for some variable v′ in the body or in one part of p, σ′ v′-feeds p to q̃,

36

contradicting the minimality of σ′.

(2) We now show that I ′ is a qu-couple for S. Suppose this is false. Since I is a

qu-couple for S, either M[[S]]ie(u) (= M[[S]]i
′

e (u) or the analogous assertion holds

for j and j′. However, since S is free, changing i or j at finitely many predicate

terms still results in an interpretation defining a terminating path through S,

and by (1), does not change the final value of u if the predicate terms have the

form q̃(t̂) for some (q̃(̃t), Z) ∈ Γ, thus contradicting the definitions of i′ and j′

immediately.

(3) Hence I ′ is a qu-couple for S. Let t = M[[µρσ]]e(refvecS(q)); thus i and j differ

only at q(t). Clearly i′ and j′ also differ only at q(t) and so their paths diverge

at q(t). Since S is free, q(t) = Z is not a consequence of µρσ for either Z,

and so by (1) and the definition of Γ, q(t) does not occur on µρ′σ either. Also,

M[[µρσ]]e(w) (= M[[µρ′σ]]e(w) holds for at least one variable w referenced by q, by

the assumptions on ρ and σ and Proposition 24 applied to schema(µ), schema(ρ)

and schema(ρ′), and Proposition 27 applied to schema(µρ), schema(µρ′) and

schema(σ), and so q does not define q(t) after µρ′σ. Thus πS(i′, e) and πS(j′, e)

pass at least twice through q after µρ′σ, and m and r are defined and headS(I ′) =

µρ′στ for some path-segment τ passing at least once through r, T.

(4) Thus by Lemma 22, there exists a qu-couple Ĩ = {̃i, j̃} for S which has the same

pair of tails as I ′ and such that headS(Ĩ) = µρ′σ. We may assume that each

r-predicate term which is not a consequence of either path πS (̃i, e) or πS(j̃, e)

is mapped to F by both interpretations in Ĩ. We now show that this ‘cutting

37

out’ of the path-segment τ passing through r, T from headS(I ′) contradicts the

minimality of m. By (1) and Lemma 25, the elements of I ′ map the same number

of r-predicate terms to T as those in I do. Thus it suffices to prove that the inter-

pretations in Ĩ map fewer r-predicate terms to T than those in I ′. By the freeness

of S and our assumption on Ĩ, the number of r-predicate terms mapped to T

by both interpretations in Ĩ is obtained by adding up the number of occurrences

of r, T on headS(Ĩ) to those on either tail of Ĩ, and subtracting the number of

r-predicate terms mapped to T occurring on both tails of Ĩ. The analogous asser-

tion holds for I ′. Clearly headS(Ĩ) has fewer occurrences of r, T than headS(I ′)

has. Since I ′ and Ĩ have the same tails, it thus remains only to prove that the

same number of r-predicate terms mapping to T occur on both tailS(I ′, i′) and

tailS(I ′, j′) after headS(I ′) as after headS(Ĩ), and this follows from Proposition

11, since replacing the prefix headS(I ′) by headS(Ĩ) preserves equalities between

predicate terms occurring along tailS(I ′, i′) and tailS(I ′, j′). "

Lemma 29 Let S be a special schema. Let u, v ∈ V and p ∈ Preds(S). Suppose that

there exists an assignment to v in the body or in one part of p in S and that there

exists a terminal path-segment σ in S such that for some G ∈ F∗, M[[µ′]]e(u) is a

vG-term. Then there exists a pu-couple for S.

Proof. Let T be the schema S if q(u) then u := g1(); else u := g2();, where q, g1, g2 are

distinct symbols not occurring in S. Clearly T is special and the path-segment σ

v-feeds p to q in T . The result follows from Lemma 28 applied to T . "

38

Theorem 30 Let S be a special schema. Let u ∈ V.

(1) For all p ∈ NS(u) ∩ P there exists a pu-couple for S.

(2) For all f (l) ∈ NS(u) ∩ F (L), either there exists an interpretation i such that the

term M[[S]]ie(u) contains the symbol f , or there exists p ∈ NS(u) ∩ P such that

there exists a p(t)u-couple for S for some vector term t containing f .

Proof.

Let Θ be the set of all predicates p in S such that there exists a pu-couple for S and

let P = NS(u) ∩ P.

(1) Observe that from Conditions (1,3,4) of Definition 17, P is the minimal subset

of Preds(S) satisfying the following two conditions.

• If p ∈ Preds(S) and p ↘S f (l) for a labelled function symbol f (l) and there

exists a terminal f (l)Fu-path-segment for some F ∈ F (L)∗, then p ∈ P holds.

• If p ∈ Preds(S) and p ↘S f (l) for a labelled function symbol f (l) and q ∈ P

and S contains an f (l)Fq-path-segment for some F ∈ F (L)∗, then p ∈ P .

By Lemmas 29 and 28 respectively, Θ also satisfies both these conditions; hence

P ⊆ Θ, as required.

(2) If f (l) ∈ NS(u) ∩ F (L), then from Definition 17, one of the following two possi-

bilities must occur.

• There exists an f (l)Fu-path-segment for some F ∈ F (L)∗, in which case by

the freeness of S there exists an interpretation i such that the term M[[S]]ie(u)

contains the symbol f , as required.

39

• The schema S contains an f (l)Fp-path-segment for some F ∈ F (L)∗ and p ∈

P ⊆ Θ holds by Part (1) of this Theorem, in which case by Lemma 22, there

exists a p(t)u-couple for S for some vector term t one of whose components is

an fF -term, proving the result.

"

Theorem 31 Let S be a special schema. Let u ∈ V and let T be a slice of S.

(1) If SymbolsL(T) = NS(u) then T is a u-slice of S.

(2) If T is a u-slice of S, then T contains at least one occurrence of every symbol in

NS(u). In particular, if SymbolsL(T) = NS(u), then no slice T ′ of T satisfying

T ′ (= T is a u-slice of S unless there exists f ∈ Funcs(T) such that T contains at

least two occurrences of f and T ′ contains at least one, but not all occurrences

of f lying in T .

Proof. Part (1) is a restatement of Theorem 18 for the subclass of special schemas.

Part (2) follows immediately from Theorem 30 and Proposition 20, and the definition

of a u-slice. "

9 Weiser’s algorithm does not give minimal ω-slices for Special Schemas

Theorems 30 and Part (2) of Theorem 31 do not hold if the variable u is replaced

by ω. To see this, consider the special schema S of Figure 7. By iterating Conditions

40

(2,3,4) of Definition 17, {c, p, g1, f, q} ⊆ NS(ω) follows, but we now show that there is

no pω-couple for S. For suppose that {i, j} is a pω-couple for S, and so i and j define

paths passing different ways through p. Let Ω = {πS(i, e), πS(j, e)}. Observe that

one path in Ω defines the same predicate term on the second occasion that it passes

through q as the other does on the first occasion, and that if n ≥ 3, the two paths in

Ω define the same predicate term on the nth occasion that they pass through q. Thus

suppose that one path terminates after passing m times through q. If m ∈ {1, 2},

then the other also terminates after passing not more than 3 −m times through q. If

m ≥ 3, then so does the other after passing not more than m times through q, giving

a contradiction.

Thus Part (1) of Theorem 30 is false in this case, and hence it follows easily that the

slice of S obtained by deleting the assignment x := c(); is an ω-slice.

10 Conclusions and suggestions for further work

We have shown that for any variable u and a special schema S, the slice T of S

containing the set of predicate symbols and labelled function symbols in the ‘Weiser

set’ NS(u), and no others, has the minimal set of predicate and function symbols of

any u-slice of S.

This leaves open the possibility that there exists a smaller slice of S, with the same

symbol set as T but with fewer labelled function symbols, which might be a u-slice

of S. It is not clear whether such a schema would still be free and liberal. Further

41

research should investigate these problems.

For u = ω, we have shown that the corresponding result fails, as the special schema

in Figure 7 shows.

The special schema of Figure 6 shows the strengthening of our main result compared

to that of [5].

Further work will also concentrate on obtaining minimal u-slices for larger classes of

schemas. In particular, it would be of interest to be able to effectively characterise

minimal slices for a reasonable class of schemas containing those in Figures 3 and 4,

which are not liberal.

In addition, the main theorem of the paper can almost certainly be generalised to

allow slicing criteria according to which the value of a given variable at a particular

point within a program must be preserved by a slice, rather than at the end.

Acknowledgements

This work was supported by a grant from the Engineering and Physical Sciences

Research Council, Grant EP/E002919/1.

References

[1] S. Greibach, Theory of program structures: schemes, semantics, verification, Vol. 36 of

Lecture Notes in Computer Science, Springer-Verlag Inc., New York, NY, USA, 1975.

42

[2] M. S. Paterson, Equivalence problems in a model of computation, Ph.D. thesis,

University of Cambridge, UK (1967).

[3] M. Weiser, Program slices: Formal, psychological, and practical investigations of an

automatic program abstraction method, PhD thesis, University of Michigan, Ann Arbor,

MI (1979).

[4] M. R. Laurence, Characterising minimal semantics-preserving slices of function-linear,

free, liberal program schemas, Journal of Logic and Algebraic Programming 72 (2)

(2005) 157–172.

[5] S. Danicic, C. Fox, M. Harman, R. Hierons, J. Howroyd, M. R. Laurence, Static program

slicing algorithms are minimal for free liberal program schemas, The Computer Journal

48 (6) (2005) 737–748.

[6] F. Tip, A survey of program slicing techniques, Tech. Rep. CS-R9438, Centrum voor

Wiskunde en Informatica, Amsterdam (1994).

[7] D. W. Binkley, K. B. Gallagher, Program slicing, in: M. Zelkowitz (Ed.), Advances in

Computing, Volume 43, Academic Press, 1996, pp. 1–50.

[8] S. Danicic, Dataflow minimal slicing, PhD thesis, University of North London, UK,

School of Informatics (Apr. 1999).

[9] M. R. Laurence, S. Danicic, M. Harman, R. Hierons, J. Howroyd, Equivalence of

conservative, free, linear program schemas is decidable, Theoretical Computer Science

290 (2003) 831–862.

[10] M. R. Laurence, S. Danicic, M. Harman, R. Hierons, J. Howroyd, Equivalence

of linear, free, liberal, structured program schemas is decidable in polynomial

43

time, Tech. Rep. ULCS-04-014, University of Liverpool, electronically available at

http://www.csc.liv.ac.uk/research/techreports/ (2004).

[11] E. A. Ashcroft, Z. Manna, Translating program schemas to while-schemas, SIAM

Journal on Computing 4 (2) (1975) 125–146.

[12] Y. I. Ianov, The logical schemes of algorithms, in: Problems of Cybernetics, Vol. 1,

Pergamon Press, New York, 1960, pp. 82–140.

[13] J. D. Rutledge, On Ianov’s program schemata, J. ACM 11 (1) (1964) 1–9.

[14] H. B. Hunt, R. L. Constable, S. Sahni, On the computational complexity of program

scheme equivalence, SIAM J. Comput 9 (2) (1980) 396–416.

[15] V. K. Sabelfeld, An algorithm for deciding functional equivalence in a new class of

program schemes, Journal of Theoretical Computer Science 71 (1990) 265–279.

[16] Z. Manna, Mathematical Theory of Computation, McGraw–Hill, 1974.

44

x := c();

if p(x) then {

u := g1();

v := g2();

}

else {

v := g1();

u := g2();

}

w := f(u);

while q(w) do {

w := f(v);

a := h(a);

v := k(a);

}

Fig. 7. Deleting the assignment x := c(); gives an ω-slice of this special schema, although

c ∈ NS(ω)
45

