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Controllable testing from Nondeterministic Finite
State Machines with Multiple Ports

Robert M. Hierons Senior Member, IEEE

Abstract— Some systems have physically distributed
interfaces, called ports, at which they interact with their
environment. We place a tester at each port and if the
testers cannot directly communicate and there is no global
clock then we are using the distributed test architecture.
It is known that this test architecture introduces con-
trollability problems when testing from a deterministic
finite state machine. This paper investigates the problem of
testing from a nondeterministic finite state machine in the
distributed test architecture and explores controllability. It
shows how we can decide in polynomial time whether an
input sequence is controllable. It also gives an algorithm
for generating such an input sequence x̄ and shows how
we can produce testers that implement x̄.

Index Terms— D2.4: Software Engineer-
ing/Software/Program Verification, D2.5: Software
Engineering/Testing and Debugging, finite state
machine, nondeterminism, controllability, distributed test
architecture.

I. INTRODUCTION

REactive systems are state-based and are often
modelled using finite state machines (FSMs)

or languages such as statecharts and SDL based on
extended finite state machines (EFSMs). Since FSM
based test techniques can be applied when testing
from EFSMs there has been much interest in testing
from FSMs ([1], [2], [3]). Some reactive systems
have physically distributed interfaces, called ports,
at which they interact with their environment. Such
systems can be modelled as multi-port FSMs with
each port having input and output alphabets/sets. In
testing we place a tester at each port. If the testers
cannot directly communicate with one another dur-
ing testing and there is no global clock then we
are testing in the distributed test architecture and a
tester observes only the interactions at its port.

We can have controllability problem when testing
from a deterministic FSM (DFSM) in the distributed
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test architecture [4], [5], [6], [7], [8], [9]. Consider,
for example, an input sequence that starts with x1

at port p that should lead to output yp at p and
which we wish to follow with x2 at port q 6= p.
The tester at q does not observe either x1 or yq
and so does not know when to apply x2: there is
a controllability problem. There can also be fault
masking (observability problems) since each tester
only observes events at its port and in general it
is not possible to reconstruct the global sequence
that occurred. Previous work on testing from an
FSM in the distributed test architecture has consid-
ered DFSMs. This work has investigated methods
for producing input sequences that have no con-
trollability problems and for overcoming possible
fault masking. Only recently have new conformance
relations been defined to recognise the reduced
observational power of testing [10].

Given that nondeterminism aids abstraction and
can arise through a system being distributed, the
restriction to DFSMs is a significant limitation.
This paper considers the problem of testing from
a nondeterministic FSM. The underlying notion of
only observing projections of observations has been
investigated in the context of refinement of CSP
[11], although the technical issues are different.
There has also been work on avoiding a different
type of controllability problem that causes races
when a component is embedded in a context [12].

This paper makes the following contributions.
Section III explores testing from an FSM in the
distributed test architecture. In Section IV we define
what it means for an input sequence to have a
controllability problem. In Section V we explain
how one can decide whether an input sequence has
controllability problems and show how this can be
used to drive test generation. We also explain how
we can take an input sequence, with no controlla-
bility problems, and produce testers that implement
this. The concept of a test being controllable has
recently been explored in the context of testing



from an input output transition system (IOTS) [13].
However, this work considered a restricted type of
IOTS (a transition cannot send output to more than
one port) and the algorithms in [13] for deciding
whether an input sequence x̄ is controllable and
producing testers require the construction of all
possible responses of M to x̄ and this set may con-
tain exponentially many sequences. In contrast, the
algorithms given in this paper operate in time that
is polynomial in terms of the number of transitions
of M and the length of x̄.

II. PRELIMINARIES

A. Test sequences

We use X for the set of inputs of the system
under test (SUT) and Y for the set of outputs. The
application of an input sequence from X∗ leads to
an input/output sequence called a trace. We let ε
denote the empty sequence. Trace x1/y1 . . . xk/yk
(for 1 ≤ i ≤ k, xi ∈ X, yi ∈ Y ) can be
represented by x̄/ȳ where x̄ = x1 . . . xk is the
input portion of x̄/ȳ and ȳ = y1 . . . yk. Trace z̄
is a prefix of x1/y1, . . . , xk/yk if either z̄ = ε or
z̄ = x1/y1, . . . , xi/yi for some 1 ≤ i ≤ k. Given set
A of sequences, pre(A) denotes the set of prefixes
of sequences in A.

B. Multi-port Finite State Machines

A multi-port system has distributed interfaces
called ports and we place a tester at each port.
We assume that there are m > 1 ports with set
P = {1, . . . ,m} of names. The distributed test ar-
chitecture was introduced in protocol conformance
testing with two testers: an upper tester and a lower
tester (see, for example, [14]). Thus, in the examples
we use two ports that we call U and L.

Definition 1 A (possibly nondeterministic) multi-
port finite state machine M with m ports is defined
by a tuple (S, s0, X, Y, T ) in which

1) S is a finite set of states;
2) s0 ∈ S is the initial state;
3) X = X1∪ . . .∪Xm is the finite input alphabet

in which for all p ∈ P , Xp is the set of inputs
that can be received at p. For all 1 ≤ p < q ≤
m, Xp ∩Xq = ∅: if the SUT can receive the
same inputs at different ports we add labels
in order to ensure that the Xp are disjoint;

4) Y = (Y1 ∪ {−}) × . . . × (Ym ∪ {−}) is the
finite output alphabet, where for all p ∈ P , Yp
denotes the set of outputs the SUT can send to
port p and − denotes no output being sent to
p. (y1, . . . , ym) ∈ Y denotes output yp being
sent to port p (1 ≤ p ≤ m); and

5) T is the set of transitions, each transition
being of the form (s, s′, x/y) for s, s′ ∈ S,
x ∈ X , and y ∈ Y .

Throughout this paper we use the following nota-
tion, sometimes with subscripts: An input sequence
will be denoted x̄, a trace z̄, an input x, an input at
port p xp, an output y and an output at port p yp.

Transition (s, s′, x/y) ∈ T means that if M
receives x when in state s then it can output y and
move to s′. A sequence of consecutive transitions
ρ̄ = t1, . . . , tk, ti = (si, si+1, xi/yi), is a path with
label x1/y1, . . . , xk/yk and starting state s1. FSM
M defines the regular language L(M) of labels
of paths that have starting state s0. Given input
sequence x̄, M(x̄) denotes the set of traces from
L(M) with input portion x̄. A multi-port finite state
machine will be called a finite state machine (FSM)
and when we wish to refer to an FSM with one port
we call it a single-port FSM.

Figure 1 shows an FSM called M1. Here a
transition (si, sj, x/y) is represented by an arc from
si to sj with label x/y. For example, the arc from
s2 to s1 with label xL/(yU ,−) represents transition
(s2, s1, x

L/(yU ,−)); if M1 receives xL when in state
s2 then it can move to s1 and output yU at U .

Given y = (y1, . . . , ym) ∈ Y and p ∈ P we let
y|p denote yp. Given input x we let port(x) denote
the port at which x is input and for output y we let
ports(y) denote the set of p ∈ P such that y|p 6=
−. For an input/output pair x/y we let ports(x/y)
denote the set {port(x)}∪ports(y) of ports that are
involved in x/y and for transition t = (s, s′, x/y) we
let ports(t) = ports(x/y).

If for every s ∈ S and x ∈ X there is at most one
transition with starting state s and a label with input
portion x then M is a deterministic FSM (DFSM);
otherwise it is nondeterministic. If for every s ∈ S
and x ∈ X there is at least one transition with
starting state s and a label that has input portion
x then M is completely-specified. In this paper we
assume that specifications and implementations are
completely-specified FSMs but otherwise do not
require FSMs to be completely-specified.
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Fig. 1. The FSM M1

III. TEST ARCHITECTURES

In the ISO distributed test architecture [14] there
is a tester at each port of the SUT, the testers cannot
communicate with one another during testing, and
there is no global clock. The distributed test archi-
tecture is simple to implement: it does not require
the testers to interact during testing. However, we do
allow the observations made at the separate ports to
be brought together later. It is known that this test
architecture can introduce controllability problems
when testing from a DFSM [5]1.

In the distributed test architecture the tester at
p ∈ P only observes the events at p. Given trace z̄
and port p ∈ P we let πp(z̄) denote the projection
of z̄ at p. This can be defined by the following
in which yp = y|p: πp(ε) = ε; if x ∈ Xp and
yp 6= − then πp(x/yz̄) = xypπp(z̄); if x ∈ Xp

and yp = − then πp(x/yz̄) = xπp(z̄); if x 6∈ Xp

and yp 6= − then πp(x/yz̄) = ypπp(z̄); if x 6∈ Xp

and yp = − then πp(x/yz̄) = πp(z̄). For example,
πU(xU/(yU , yL)) = xUyU and πL(xU/(yU , yL)) =
yL. If for all p ∈ P we have that πp(z̄1) = πp(z̄2)
then we write z̄1 ∼ z̄2 and we cannot distinguish
between z̄1 and z̄2 in testing. Given a set Z of traces
and port p we let πp(Z) denote the set {z̄|∃z̄′ ∈
Z.z̄ = πp(z̄

′)} of projections of traces from Z.
When testing from a single-port FSM M , an FSM

N with the same input and output alphabets as M

1If we can connect the testers using a network we can sometimes
overcome these problems using external coordination messages but
this is not always feasible, especially if there are timing constraints.

is a reduction of M if L(N) ⊆ L(M). In the
distributed test architecture we need to adapt this
notion of conformance and define the notion of local
reduction, which is equivalent to but simpler than
the relation dioco recently defined for IOTSs [15].

Definition 2 Given completely-specified FSMs M
and N with the same input and output alphabets,
N is a local reduction of M if for every z̄1 ∈ L(N)
there exists z̄2 ∈ L(M) such that z̄1 ∼ z̄2. Further,
N is locally equivalent to M if M is a local
reduction of N and N is a local reduction of M .

When testing from a nondeterministic FSM we
can have a set Z of allowed traces in response to
input sequence x̄ and the tester at port p expects
to observe an element of Zp = πp(Z). We could
have the tester at p produce verdict pass if and only
if it observes an element of Zp. Let us suppose,
however, that x̄ = xU1 and Z contains xU1 /(y

U
1 , y

L
1 )

and xU1 /(y
U
2 , y

L
2 ) with yU1 6= yU2 and yL1 6= yL2 .

If the tester at U observes xU1 y
U
1 and the tester

at L observes yL2 then each returns verdict pass.
However, the set of observations is not consistent
with any trace in Z; a failure has occurred. Thus,
the testers should log their observations and later
a failure is declared if there is no trace of the
specification with this set of projections.

In this paper we assume that we are testing to
determine whether N is a local reduction of M .
However, results and definitions regarding control-
lability do not depend on the conformance relation
used.

IV. CONTROLLABILITY PROBLEMS

When testing from a DFSM a controllability
problem occurs when the next input is to be applied
at a port p such that the tester at p was not
involved in the previous transition. Let us suppose,
for example, that the tester at U should apply input
xU but that the previous transition involved input
xL at L and output yL at L only. The tester at
U cannot know when to apply xU . There has been
much interest in controllability problems for DFSMs
and here we explore controllability problems when
testing from a nondeterministic FSM.

When considering a DFSM we can choose
controllable paths. Path ρ̄ = t1 . . . tk, ti =
(si, si+1, xi, yi) is controllable if for all 1 < i ≤
k, port(xi) ∈ ports(ti−1). We also say that
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x1/y1 . . . xk/yk is controllable. All sequences of
length 0 and 1 are controllable. In M1, xU/(yU ,−)
xU/(−, yL)xL/(yU , yL) is controllable. However,
xU/(yU ,−)xL/(−, yL) is not since the second input
is at port L but the first input/output pair does not
involve L.

When testing from a DFSM we can choose a
controllable path ρ̄ with starting state s0 and apply
the input portion of its label. However, for an FSM
M there may be more than one path that can be trig-
gered by an input sequence. Given input sequence x̄
we require that there are no controllability problems
in any element of M(x̄). However, consider x̄ =
xUxUxL and M1: M1(x̄) contains controllable traces
xU/(yU ,−)xU/(−, yL)xL/(yU , yL) and xU/(−, yL)
xU/(−, yL)xL/(yU , yL). In the first the tester at L
applies xL after yL and in the second it applies xL

after yLyL. If the tester at L observes yL then it does
not know whether to apply xL or to wait for another
yL: there is a controllability problem. Each tester
can only make a decision regarding when to send
inputs on the basis of the observations it makes.

There is only a problem if we have prefixes z̄1 and
z̄2 of traces from M(x̄) such that the actions of the
tester at p should differ after z̄1 and z̄2 but this tester
cannot distinguish between them (πp(z̄1) = πp(z̄2)).

Definition 3 Given FSM M an input sequence x̄
is controllable for M if there do not exist z̄1, z̄2 ∈
pre(M(x̄)) such that |z̄1| 6= |z̄2| and the next input
to be applied after z̄1 is to be applied at a port p
such that πp(z̄1) = πp(z̄2). Where M is clear from
the context we say that x̄ is controllable.

This is similar to the definition in [13] for a
restricted form of IOTS in which a transition can
only send output to one port2. It says that there
cannot be traces z̄1 and z̄2 of different length, and
so are to be followed by different inputs in x̄,
which look identical to the tester that should provide
the next input after z̄1. As shown above, in M1

sequence xUxUxL is not controllable. In contrast, if
we consider xLxUxLxU we find that the traces are
xL/(yU , yL)xU/(−, yL)xL/(yU ,−)xU/(−, yL) and
xL/(yU , yL)xU/(−, yL)xL/(yU , yL)xU/(−, yL) and
so xLxUxLxU is controllable.

2In general we cannot use such IOTSs to represent FSMs since if
we order the outputs in a tuple from Y we can introduce what appear
to be new controllability problems.

Proposition 1 If x̄ is controllable for FSM M then
every trace in M(x̄) is controllable.

Proof: Proof by contradiction: assume that
x̄ is controllable for M and there exists a trace
in M(x̄) that has prefix z̄xi/yixi+1/yi+1 such that
port(xi+1) 6∈ ports(xi/yi). But we can set z̄1 =
z̄xi/yi and z̄2 = z̄, |z̄1| 6= |z̄2|, and z̄1 should be
followed by input at port p = port(xi+1) such that
πp(z̄1) = πp(z̄2), providing a contradiction.

The following result will be useful.

Proposition 2 If there exists z̄1, z̄2 ∈ pre(M(x̄))
such that |z̄1| 6= |z̄2| and the next input xi in x̄ to
be applied after z̄1 is to be applied at a port p such
that πp(z̄1) = πp(z̄2) then |z̄1| > |z̄2|.

Proof: This follows from observing that if
|z̄2| > |z̄1| then the inputs at p in x1, . . . , xi are in
πp(z̄2) but xi is not in πp(z̄1), giving a contradiction.

We can now prove that an input sequence being
controllable is a necessary and sufficient condition
for each tester knowing when to apply input.

Definition 4 Given FSM M and z̄ = x1/y1, . . . ,
xk/yk ∈ L(M), for 1 < i ≤ k the tester
at p = port(xi) can determine when to apply
xi ∈ Xp based on the observation of πp(x1/y1, . . . ,
xi−1/yi−1) if every trace in pre(M(x1, . . . , xk)) in
which the tester observes πp(x1/y1, . . . , xi−1/yi−1)
has input portion x1, . . . , xi−1.

Proposition 3 Given FSM M and input sequence
x̄ = x1 . . . xk, x̄ is controllable for M if and only
if for every x1/y1 . . . xk/yk ∈ M(x̄) and 1 <
i ≤ k the tester at p = port(xi) can determine
when to apply xi based on the observation of
πp(x1/y1 . . . xi−1/yi−1).

Proof: First we assume that x̄ is controllable
for M . By Definition 3, the tester at port(xi) knows
when to apply xi.

Now assume that x̄ is not controllable for M .
Thus there exist z̄1, z̄2 ∈ pre(M(x̄)) such that |z̄1| 6=
|z̄2| and the next input to be applied after z̄1 is to
be applied at a port p such that πp(z̄1) = πp(z̄2).
By Proposition 2 we know that |z̄1| > |z̄2|. The
tester at port p does not know when to apply the
input that follows z̄1, since it cannot differentiate
between traces z̄1 and z̄2. The result thus follows.
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Fig. 2. The FSMs N2 and M2

When testing from a DFSM, if a controllable
input sequence x̄ leads to different traces from two
states or DFSMs then there is a prefix of x̄ that leads
to a failure being observed [10]. This means that
using prefixes of x̄ allows us to overcome the fault
masking that can be introduced: if a controllable
input sequence x̄ leads to a trace in the SUT N that
is not in the DFSM specification M then there is
a prefix of x̄ that leads to a trace of N that is not
equivalent to any trace of M under ∼. This result
does not hold for FSMs.

Proposition 4 Let us suppose that when control-
lable input sequence x̄ is applied to the SUT it can
produce a trace that is not in M(x̄). It is possible
that for every prefix x̄′ of x̄, when x̄′ is applied to
the SUT it must produce a trace z̄′ such that there
exists z̄ ∈M(x̄′) with z̄ ∼ z̄′.

Proof: Consider the FSMs N2 and M2 shown
in Figure 2 in which N2 is the SUT and M2 the
model of the required behaviour. Then L(N2) \
L(M2) contains xU/(yU , yL)xU/(yU ,−). First, ev-
ery proper prefix of this trace is a trace of M2. The
result follows from observing that in the distributed
test architecture we cannot differentiate between
this trace and the trace xU/(yU ,−)xU/(yU , yL) in
L(M2) since they are equivalent under ∼.

The use of the distributed test architecture affects
the ability of testing to distinguish an FSM SUT
and an FSM specification even if there cannot be
controllability problems.

Proposition 5 Let M and N be completely-
specified FSMs with the same input and output
alphabets. If N is a reduction of FSM M then N is
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Fig. 3. The FSMs M3 and M4

a local reduction of M . However, N can be a local
reduction of FSM M and not a reduction of M .

Proof: The first part is immediate from the
definitions of N being a reduction of M and N
being a local reduction of M and the second part
follows from Proposition 4.

V. CONTROLLABLE INPUT SEQUENCES

In this section we show how one can decide
whether an input sequence is controllable, give a
test generation algorithm and discuss how one can
produce testers for a controllable input sequence.

A. Deciding whether a sequence is controllable

For input sequence x̄ = x1, . . . , xk and 1 ≤ i < k
it is sufficient to check each z̄1 = x1/y1 . . . xi/yi ∈
M(x̄) to see whether there is a shorter prefix z̄2

of a trace in M(x̄) such that πp(z̄1) = πp(z̄2)
for port p = port(xi+1) [13]. However, generating
M(x̄) can lead to a combinatorial explosion and
so here we give an algorithm that does not require
us to construct this set. We achieve this by, for
an input sequence x̄ and FSM M , constructing
a (partially-specified) FSM Mx̄ that represents all
possible responses of M to x̄. Algorithm 1 achieves
this through k iterations. The ith iteration takes
the set Si−1 of states reached by x1, . . . , xi−1 and
determines which states of M are reachable from
these by xi, forming the set Si. Transitions are added
between states in Si−1 and Si.

The following is clear from the way Mx̄ is
constructed.
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Algorithm 1
1) Input x̄ = x1 . . . xk, M
2) Output FSM Mx̄ = (Sx̄, s00, X, Y, Tx̄).
3) Let Sx̄ = {s00}; Tx̄ = ∅; S0 = {s00}.

Comment: We represent state sj reached by
x1, . . . , xi as state sij in Si.

4) For i = 1 to k
a) Let Si = ∅
b) For all si−1j ∈ Si−1 and transition

(sj, sj′ , xi/y) ∈ T let Si = Si ∪ {sij′}
and Tx̄ = Tx̄ ∪ (si−1j, sij′ , xi/y)

c) Endfor
d) Let Sx̄ = Sx̄ ∪ Si

5) Endfor
6) Return Mx̄ = (Sx̄, s00, X, Y, Tx̄)

Fig. 4. Generating Mx̄

Proposition 6 Let us suppose that we apply Al-
gorithm 1 to FSM M and input sequence x̄ =
x1, . . . .xk and Mx̄ is returned. Then x̄′/ȳ′ ∈ L(Mx̄)
reaches a state in Si if and only if x̄′ = x1, . . . , xi
and x̄′/ȳ′ ∈ L(M).

Proposition 7 Given an FSM with transition set T
and input sequence with length k, Algorithm 1 has
time complexity of O(k|T |).

Proof: There are k iterations of the outer loop
and each iteration contains at most one step for each
transition in T . The result thus follows.

Given p ∈ P and 1 ≤ i ≤ k we define a
finite automaton whose language corresponds to the
observations that can be made at p if the prefix of
x̄ of length i is applied to M . However, first we
define finite automata. A finite automaton (FA) N
is defined by a tuple (S, s0, A, T, F ) in which S is
a finite set of states; s0 ∈ S is the initial state; A is
the finite alphabet; T is the set of transitions, each
transition being of the form (s, s′, a) for s, s′ ∈ S
and a ∈ A ∪ {−}; and F is the set of final
states. An FSM is a type of FA and so we will
use corresponding terminology such as a path and
the label of a path. The FA N defines the regular
language L(N) of labels of paths that have starting
state s0 and whose ending state is in F ; instances
of − are not included in the label. We now explain
how the FA that we will use can be constructed.

Let us suppose that we have FSM M , in-
put sequence x̄ = x1, . . . , xk, the FSM Mx̄ =

(Sx̄, s00, X, Y, Tx̄) returned by Algorithm 1, 1 ≤
i ≤ k, and port p ∈ P . We will define
FA N(M, x̄, i, p) = (Sx̄i, s00, Xp ∪ Yp, Tx̄i, Si) in
which L(N(M, x̄, i, p)) is the projection onto p
of all possible response of M to x1, . . . , xi and
so L(N(M, x̄, i, p)) = πp(M(x1, . . . , xi)). We can
construct N(M, x̄, i, p) when building Mx̄ by:

1) Returning N(M, x̄, i, p) when the iteration for
xi has finished; and

2) For each transition (s, s′, x/y) added to Tx̄
before the iteration for xi has finished add
transitions to N(M, x̄, i, p) from s to s′ that
form a path with label πp(x/y). There are
three cases here: if πp(x/y) = ε then add a
single transition with label −; if πp(x/y) =
a for some a ∈ Xp ∪ Yp then add a sin-
gle transition from s to s′ with label a; if
πp(x/y) = xpyp for some xp ∈ Xp, yp ∈ Yp
then add a transition with label xp from s to
a new intermediate state s′′ and a transition
with label yp from s′′ to s′.

We now define FA N ′(M, x̄, i, p) whose language
is the projection onto p of possible responses of
M to proper prefixes of x1, . . . , xi. To construct
N ′(M, x̄, i, p) it is sufficient to take N(M, x̄, i, p)
and make S0 ∪ . . .∪ Si−1 the set of final states. We
can now give a condition that allows us to decide
whether x̄ causes a controllability problem using
these FA.

Proposition 8 The input sequence x̄ = x1, . . . , xk
causes a controllability problem with M if and only
if there exist 1 < i ≤ k and port p such that xi ∈ Xp

and L(N(M, x̄, i− 1, p))∩L(N ′(M, x̄, i− 1, p)) 6=
∅. In addition, it is possible to decide this in time
that is polynomial in terms of k and the number of
transitions of M .

Proof: By Proposition 2, input xi at p causes
a controllability problem if and only if there ex-
ist z̄1 ∈ M(x1, . . . , xi−1), j < i, and z̄2 ∈
M(x1, . . . , xj−1) such that πp(z̄1) = πp(z̄2). But this
holds if and only if there exists j < i such that
πp(M(x1, . . . , xi−1)) ∩ πp(M(x1, . . . , xj−1)) 6= ∅.
The first part of the result follows from observing
that πp(M(x1, . . . , xi−1)) = L(N(M, x̄, i − 1, p))
and ∪j<iπp(M(x1, . . . , xj−1)) = L(N ′(M, x̄, i −
1, p)).

For the complexity result first observe that the
FA N(M, x̄, i− 1, p) and N ′(M, x̄, i− 1, p) can be
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Algorithm 2
1) Input M , x̄ = x1 . . . xk
2) Output whether x̄ is controllable for M
3) Result = True
4) For i = 2 to k

a) Let p = port(xi)
b) If L(N(M, x̄, i−1, p))∩L(N ′(M, x̄, i−

1, p)) 6= ∅ then Result = False
5) Endfor
6) Return Result

Fig. 5. Deciding whether x̄ is controllable

constructed alongside Algorithm 1. Second in order
to decide whether L(F1)∩L(F2) = ∅ for FA F1 and
F2 with n1 and n2 states respectively it is sufficient
to use a product automaton with at most n1n2 states
and then decide whether the corresponding language
is empty by determining whether any of its final
states are reachable (see, for example, [16]).

The algorithm is summarised in Algorithm 2.

B. Test generation

Algorithm 3 returns a controllable input se-
quence. The algorithm iterates; at the beginning of
each iteration it can stop and otherwise we check to
see which tester can be the source of the next input.
If the previous input was at p then we use Algorithm
2 to determine whether extending with input at
q 6= p would lead to a controllability problem3.
We find a set P of ports to which we can send
an input without causing a controllability problem
and choose an input from some Xq for q ∈ P .

Now consider the application of Algorithm 3 to
M1 and assume we initially choose input xU . On
the next iteration we find that input at L after
xU would lead to a controllability problem so if
we are to continue we must use xU , leading to
xUxU . Again, input at L will cause a controllability
problem and so we could choose input xU , leading
to xUxUxU . We could now terminate, returning this
input sequence. The algorithm contains choices and
importantly, if x̄ is a controllable input sequence
then x̄ can be returned by Algorithm 3.

Proposition 9 Given FSM M , an input sequence x̄

3Whether an input in Xq causes a controllability problem after
x1, . . . , xi does not depend on the actual input used.

Algorithm 3
1) Input FSM M .
2) Either return ε and terminate or choose an

initial input x and set x̄ = x.
3) While (true)
4) Return x̄ and terminate or do the following:
5) Let x′ denote the last input in x̄ and let p =

port(x′).
6) P = {p}
7) For all q ∈ P \ {p} do:

a) If there do not exist z̄1, z̄2 ∈ M(x̄) and a
proper prefix z̄′2 of z̄2 such that πq(z̄1) =
πq(z̄

′
2) then P = P ∪{q}. Comment: We

can adapt Algorithm 2 to decide this
8) Choose q ∈ P , some x ∈ Xq and set x̄ = x̄x.
9) Endwhile

Fig. 6. Generating controllable input sequences

is controllable if and only if it can be returned by
Algorithm 3.

Proof: This follows from noting that the
algorithm ensures that when an input sequence is
extended the new input sequence satisfies the con-
dition for a sequence to be controllable but places
no additional restrictions.

Test generation could be random or we might aim
to satisfy a test objective. It may be possible to adapt
techniques for testing from a nondeterministic finite
state machine [17] or use game theory to guide the
choice of next input (see, for example, [18]).

C. Generating the testers
Given controllable input sequence x̄, we need

to produce testers to place at the ports in order to
apply x̄. In contrast to the case with DFSMs, we
may require the tester to be placed at port p to
be adaptive. To see this, consider an FSM M and
input sequence xUxUxL such that M(xUxUxL) =
{xU/(yU , yL1 )xU(−, yL1 )xL/(yU , yL),
xU/(yU ,−)xU/(−, yL2 )xL/(yU , yL)}. The tester at
L sends input xL after observing yL1 y

L
1 or yL2 .

For M and controllable x̄ = x1, . . . , xk, we
can produce a tester for p ∈ P by using the
FA N(M, x̄, k, p) that accepts πp(M(x̄)). Let us
suppose, for example, that we want to produce
testers for x̄ = xUxUxU when testing from M1.
N(M1, x̄, 2, U) and N(M1, x̄, 2, L) both have two
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paths to a final state. In N(M1, x̄, 2, U), the two
paths in the FA that define the tester at U have labels
xUyUxUxUyU and xUxUxUyU ; for N(M1, x̄, 2, L)
the paths have labels yLyLyL and yLyL.

While the problem of generating testers has been
solved for IOTSs [13], the previous approach would
require all elements of M(x̄) to be produced and
this can lead to a combinatorial explosion.

VI. CONCLUSIONS

In the distributed test architecture the tester at
port p only observes events at p, the testers can-
not communicate with one another during testing
and there is no global clock. This can introduce
controllability problems, which have been studied
for testing from deterministic finite state machines
(DFSMs) and this paper has investigated them for
nondeterministic finite state machines (FSMs).

As with DFSMs, a tester can only know when to
apply an input if it was involved in the previous
transition. However, when testing from FSM M
with input sequence x̄ an additional issue arises if
the next required behaviours of the tester at p differ
after two possible responses of M to prefixes of
x̄ and the tester cannot differentiate between these
cases: it does not know which behaviour to use.

We investigated controllability problems and gave
a polynomial time algorithm to decide whether an
input sequence x̄ is controllable for FSM M . We
then gave a test generation algorithm that returns
controllable input sequences. In order to apply input
sequence x̄ it is necessary to produce one tester for
each port and we gave a polynomial time algorithm
to do this. Previous algorithms for these problems,
for testing from an IOTS [13], require us to produce
all responses of M to x̄ and can take time and space
that is exponential in the length of x̄.

There are several avenues for future work. When
trying to achieving a test objective it may be possi-
ble to adapt techniques for testing from an FSM or
by using game theory. Recent work has considered
models in which operations can be triggered by
inputs received from several ports [19] and it would
be interesting to extend the results to such models.
Finally, it is likely that insights will be gained by
using the results in large industrial case studies.
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