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Abstract: In this paper, the consensus problem of multiagent nonlinear directed networks (MNDNs)

is discussed in the case that a MNDN does not have a spanning tree to reach the consensus of all nodes.

By using the Lie algebra theory, a linear node-and-node pinning method is proposed to achieve a consen-

sus of a MNDN for all nonlinear functions satisfying a given set of conditions. Based on some optimal

algorithms, large-size networks are aggregated to small-size ones. Then, by applying the principle minor

theory to the small-size networks, a sufficient condition is given to reduce the number of controlled nodes.

Finally, simulation results are given to illustrate the effectiveness of the developed criteria.
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1 Introduction

Over the last decade, the multiagent distributed coordination problem has received much attention in many

fields such as biology, physics and engineering. One of the critical research problems is how to control all

agents in a network to reach a collective state or an ordered state, such as flocking of birds, schooling of

fishes ([1]-[3]). Here, the collective (or ordered) state can be further generalized to consensus, where the

term of consensus means to reach an agreement regarding a certain quantity of interest that depends on

the states of all agents.

Since the pioneering work stemming from management science and statistics in 1960s (see [4] and

the references therein), collective problems have received a great deal of research interests ([5]-[19]). It

is shown in [5] that the consensus can be achieved if the union of the interaction graphs is connected

frequently enough as the system evolves. In order to extend the results in [5], the work in [6] shows that

consensus under dynamically changing interaction topologies can be achieved asymptotically if the union
∗This work was jointly supported by CityU under a research grant (7002355) and GRF funding (CityU 101109).
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of the directed interaction graphs have a spanning tree frequently. In [7], the authors discuss the average-

consensus problem with directed graph, which requires the graph to be strongly connected and balanced.

It should be pointed out that most of the literature mentioned so far has studied the consensus problem

of linear networks. However, in some cases, the state of an agent may be observed to be a nonlinear network.

Hence, it is necessary to consider consensus problems of MNDNs. The work in [20] shows that, for some

kind of nonlinear networks, the consensus of all nodes can be realized if and only if its graph has a spanning

tree. As a result, MNDNs cannot reach a consensus when its graph does not have a spanning tree. Hence,

some control schemes have to be designed to force the nonlinear network to achieve a consensus. Clearly, it

is meaningful if one can design linear controllers to achieve the consensus of nonlinear networks. Therefore,

we shall discuss the consensus of MNDNs by using linear control methods. Moreover, we shall attempt

to achieve the absolute consensus for some kind of nonlinear networks. The detailed definition of absolute

consensus will be described in Section 2.

It is costly and impractical to control all nodes in a network. To reduce the number of nodes to be

controlled, a pinning scheme is introduced on a fraction of network nodes ([21][22]). Subsequently, large

amount of work has been devoted to the study of synchronization or stability of complex networks by using

the pinning control (see [23]-[33] and the references therein). In [23], the authors show, both theoretically

and numerically, that the pinning scheme is more effective by choosing those nodes with the highest degrees

to be controlled. It is demonstrated in [24] that complex networks can achieve a synchronization by pinning

a single controller when the coupling strength in the networks is large. As has been revealed in [25], the

nodes with low degrees should be controlled first if the coupling strength is not large. Also, in [26], it is

shown that the number of controlled nodes cannot be less than m (Here, m is the number of non-negative

eigenvalues of a characteristic matrix). In this paper, a principle minor theory in [34] is applied to reduce

the number of controlled nodes.

Motivated by the above discussions, the contribution of this paper is presented as follows:

1) A node-and-node linear pinning scheme is first addressed to discuss the consensus of nonlinear networks.

In this pinning scheme, some nodes are controlled by some other nodes via directed connections among

the nodes.

2) In order to use the method in [34] correctly, we shall aggregate the original network by taking some

nodes with similar properties as an aggregated node. The objective of this aggregation is to reduce the

number of nodes in the network so that only small-size networks need to be computed.

3) Based on the Lie algebra theory [35; 36], a sufficient condition will be proposed to achieve the absolute

consensus of a MNDN via the node-and-node linear pinning scheme.

The remainder of this paper is organized as follows. In Section 2, some definitions and lemmas about

directed graph are presented. The Lie algebra theory is addressed and the research problem is described in

Section 3. In Section 4, based on some optimal algorithms, large-size networks are aggregated to small-size

ones. By using the principle minor theory to small-size networks correctly [34], a node-and-node linear

pinning-control sufficient condition is derived to ensure the absolute consensus of the small-size MNDN and

reduce the number of controlled nodes in Section 5. In Section 6, simulations are carried out to illustrate

the effectiveness of the main results. Finally, conclusions are drawn in Section 7.
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2 Preliminaries

Let G(V, ε,A) be a digraph of order n with the set of nodes V = {v1, v2, · · · , vn}, ε ⊆ V × V be the set

of edges, and A = (aij)n×n be a weighted adjacency matrix. An edge of G is denoted by eij = (vi, vj).

eij ∈ ε means that there is a directed connection from node vj to node vi. The entry aij > 0 if eij ∈ ε,

and aij = 0 otherwise. Moreover, it is assumed that aii = 0 for all i ∈ {1, 2, · · · , n}. The Laplacian of the

directed graph is defined as L = ∆−A, and ∆ = (∆ij)n×n is a diagonal matrix with ∆ii =
∑n

j=1 aij .

In a digraph, a directed path is an ordered sequence of vertices such that any two consecutive vertices

are an edge of the digraph. If there is a directed path from every node to the other node, the digraph is

said to be strongly connected ([16]). A digraph is undirected ([16]) if aij = aji for all i, j ∈ {1, 2, · · · , n}.
Obviously, the Laplacian of an undirected graph is symmetric. A directed graph is called weakly connected

if replacing all of its directed edges with undirected edges produces a connected undirected graph. A

digraph H is a spanning tree ([16]) if it has m vertices and m− 1 edges and there exists a root vertex with

directed paths to all other vertices. A directed tree H is a spanning tree of a graph G if H has the same

vertex set as G.

Assume that a network system has n agents, and each agent is regarded as a node in a directed graph

G. Let xi(t) ∈ R denote the state of agent vi, then Gx = (G, x(t)) with x(t) = (x1(t), x2(t), · · · , xn(t))T is a

directed network. Agents vi and vj in the directed network are said to reach a (an) consensus (agreement)

([7]) if and only if |xi(t)− xj(t)| → 0 as t → +∞, for all i, j ∈ {1, 2, · · · , n}, i 6= j. If the nodes are all in

an agreement, the common value X (x) is called the group decision value ([7]).

Suppose the multi-agent nonlinear network has the following dynamics

dxi(t)
dt

=
∑

vj∈Ni

aij(f̆(xj(t))− f̆(xi(t))), i = 1, 2, · · · , n, (1)

where xi(t) is the state of agent vi, f̆(xi(t)) is a nonlinear function and has the same dimension with

xi(t). The dimension of xi(t) could be arbitrary as long as it is the same for all agents. In this paper, for

simplification, we only analyze the case when the dimension of xi(t) is one. It is worth noticing that our

analysis is valid for any dimension n when the system models are rewritten with Kronecker products.

According to the definition of the Laplacian L, (1) can be rearranged as

dx(t)
dt

= −Lf(x(t)), (2)

where x = (x1(t), x2(t), · · · , xn(t))T , f(x(t)) = (f̆(x1(t)), f̆(x2(t)), · · · , f̆(xn(t)))T . Clearly, it is difficult

and almost impossible to discuss the consensus of system (2) without any limitation on the nonlinear

function f(x(t)). Hence, we assume that

Assumption 1 Nonlinear function f̆(·) satisfies that f̆(·) ∈ S, where S denotes a set of nonlin-

ear functions, and each s ∈ S is continuous and strictly increasing. Moreover, for each f̆(ζ) ∈ S,

f̆(ζ) = 0 ⇔ ζ = 0, ∀ ζ ∈ R.
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Definition 1 The multi-agent network (2) is said to achieve an absolute consensus if it obtains a consensus

for every nonlinear function f̆(·) ∈ S.

Throughout the paper, the following Lemmas are needed.

Lemma 1 [37] All eigenvalues of L have non-negative real part. The multiplicity of the zero eigenvalue of

L is equal to the minimum number of directed trees which forms a spanning forest in the digraph.

Lemma 2 [20] Under Assumption 1, model (2) achieves a consensus if and only if the directed graph G
has a spanning tree.

Notation: Throughout this paper, I stands for the identity matrix. The superscript “T” represents the

transpose. For all x = (x1, x2, · · · , xn)T ∈ Rn, the notation ‖x‖ = (
n∑

i=1
x2

i )
1
2 . For a symmetric matrix A,

λm(A) and λM (A) denote the minimal and maximal eigenvalues of matrix A respectively. ‖A‖ denotes the

spectral norm defined by ‖A‖ = (λM (AT A))
1
2 . For real symmetric matrixes X and Y , X > Y (or X ≥ Y )

means that matrix X − Y is positive definite (or positive semi-define).

3 Problem description

In this paper, we assume that graph G does not contain a spanning tree, and the agents have different

initial values. Then, from Lemma 2, system (2) (or (1)) cannot reach a consensus. As a result, some

control methods should be introduced to guarantee the consensus of all agents. In this section, we shall

introduce a node-and-node linear pinning strategy in nonlinear system (1). The pinning controlled system

of model (1) can be described by

dxi(t)
dt

=
∑

vj∈Ni

aij(f̆(xj(t))− f̆(xi(t))) +
∑

i,j∈φ

d̃ij(xj(t)− xi(t)), i = 1, 2, · · · , n, (3)

where φ = {1, 2, · · · , n}, D̃ = (d̃ij)n×n ∈ Rn×n. Here, d̃ij ≥ 0, for all i, j ∈ φ, and d̃ii = 0, for all i ∈ φ. For

all i 6= j, i, j ∈ φ, if node j controls node i (that is, there is a directed edge from node j to node i), then

d̃ij > 0; otherwise, d̃ij = 0. Here, the second term on the right-hand side of (3) is called a node-and-node

pinning controller since it means that some nodes are directly controlled by some other nodes.

System (3) can be rewritten as

dx(t)
dt

= −Lf(x(t))−Dx(t), (4)

where the node-and-node pinning scheme is given by u(t) , −Dx(t), and D = (dij)n×n ∈ Rn×n. For all

i 6= j, i, j ∈ φ, dij = −d̃ij , and dii =
n∑

j=1,j 6=i

d̃ij . Here, matrix D is the Laplacian matrix of matrix D̃. As a

result, the row sum of matrix D is also zero.
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Remark 1 In the existing literature [24; 25; 29] about pinning control, the authors obtain the error system

of a complex network, and then pin the error system with a controller whose matrix is required to be

diagonal. That is, external control actions are forced on some nodes. However, different from previous

work, the corresponding matrix D of controller u(t) is not required to be diagonal. That is, based on the

graph theory and the structure of the discussed network, some nodes are directly controlled by some other

nodes via the directed connections among the nodes. 2

Before proceeding further, some definitions and preliminaries about Lie algebra theory [35] are first intro-

duced.

A vector space L of n × n matrices is called as a matrix Lie algebra if the commutator product

[A,B] = AB −BA ∈ L, for any A,B ∈ L.

Definition 2 [35] A set of n × n matrices {B1, B2, · · · , Bm} is said to generate a Lie algebra L if L =

span{B1, B2, · · · , Bm}, where m is a positive integer.

For a Lie algebra L, define the inductive sequence:

L(0) = L, L(i+1) = {[A,B] : A,B ∈ L(i)}, i = 0, 1, 2, · · · .

It is easy to verity that L(i) is well-defined.

Definition 3 [35] The matrix Lie algebra L is called solvable if there exists an integer p > 0 such that

L(p) = {0}. (5)

If L is a matrix Lie algebra of a set of pairwise commuting matrices, i.e., matrices A,B satisfy that

AB = BA, for all A,B ∈ L, we have L(1) = {0}. That is, the solvable matrix Lie algebra always exists.

Question Q1 has arisen: can condition (5) be satisfied for some p ≤ n if L is a solvable Lie algebra of n×n

matrices? In order to answer this problem, we introduce the following Lemma.

Lemma 3 [36] A matrix Lie algebra L is solvable if and only if there exists a nonsingular matrix T such

that T−1AT is upper triangular for all A ∈ L.

From Lemma 3, it follows that the solvability condition (5) can be verified within finite steps p, where

p ≤ n and n is the order of the matrices. The corresponding detailed description can be seen in the

Appendix. Hence, an answer is given for the aforementioned question Q1.

Lemma 4 [36] A solvable matrix Lie algebra is unitarily equivalent to an upper triangular matrix Lie

algebra, i.e., matrix T in Lemma 3 can be chosen to be a unitary matrix. Here, if matrix T is a real

matrix, T is called as an orthogonal matrix.
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For all matrices A ∈ Rn×n, define

A1 =
1
2
(A + AT ), A2 =

1
2
(A−AT ). (6)

Then, A = A1 + A2, and A1, A2 are the symmetric and skew-symmetric parts of A. The following result

can be obtained from Lemma 3 and Lemma 4.

Lemma 5 [36] Suppose A is a real matrix in Rn×n. If {A1, A2} generates a solvable Lie algebra, we have

{Re λ(A)} = {λ(A1)},

where, λ(A) is an eigenvalue of matrix A and Re λ(A) is the real part of λ(A).

Remark 2 If a matrix A ∈ Rn×n is normal, i.e., AT A = AAT , it is easy to obtain that A1A2 = A2A1. As

a result, {A1, A2} generates a solvable Lie algebra. In addition, if a matrix A ∈ Rn×n is symmetric, i.e.,

A = AT , then {A1, A2} also generates a solvable Lie algebra. Hence, the condition that {A1, A2} generates

a solvable Lie algebra is not difficult to be achieved in practice.

Lemma 6 Let G1 be a maximal-order positive-definite principle minor of a k-order symmetric matrix G,

and rank(G1) = k − l (0 ≤ l ≤ k). If one wants to use a diagonal matrix C =diag(c1, c2, · · · , ck) (ci ≥ 0

is appropriately large) to guarantee

G + C > 0, (7)

then the rank of matrix C is at least l (i.e., p ≥ l), p ≥ 0 is an integer and denotes the total number of

non-zero elements in matrix C. Matrix C is called the pinning controller of G. Actually, the l nodes which

are not in the rows (or columns) of G1 can be pinned to obtain (7).

Proof: one can obtain the result by using the same method in Theorem 2 of [34]. The proof is omitted

here. The Algorithm is shown in Appendix B. 2

Remark 3 In Proposition 7 of [26], the authors concluded that, if G in (7) has w (w is an integer and

0 ≤ w ≤ n) non-positive eigenvalues, the rank of matrix C is not less than w. However, it is not sufficient

to obtain (7) if p = w. For example, in (7), if G =




1 −1 −2
−1 0 −1
−2 −1 1


 , the number of non-positive

eigenvalues of G is 1. However, if p = 1, one cannot achieve (7) even though C is chosen to be very large.

The number of maximal order positive-definite principle minor of matrix G is 1. According to some simple

calculations, (7) can be achieved if p = 2 (such as c1 = 0, c2 > 0, c3 > 0 ). This example shows that the

result in Lemma 6 is more effective than that in [26].

Next, an aggregated method is presented to reduce the number of nodes in the network so that only

small-size networks need to be computed.
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4 Aggregation approach

It is worth noting that the result in Lemma 6 is effective to compute for a small-size complex network but

not for a large-size one. Therefore, by using some optimal algorithms, the original network of large size

can be aggregated by taking those nodes with similar properties and, therefore, as an aggregated node.

The objective of this aggregation is to effectively reduce the number of nodes in the network so that only

small-size networks are considered.

Since graph G does not contain a spanning tree, there exist at least two root nodes which have no

information transmission to each other. In graph G, those root nodes are called leaders, and other nodes

are called followers. Then, we state the following general Property.

Property 1 For system (2) (or(1)), the leaders have to decide whether system (2) (or (1)) reaches a

consensus and also the group decision value (if a consensus can be obtained). Those followers may affect

the convergent rate of system (2) (or (1)), but they do not affect the final consensus (or un-consensus)

status.

Remark 4 We shall explain this property via the graph theory. For any leader with one of its followers in

system (2) (or(1)), their connections can be seen in Fig. 1. One can see that the followers always receive

the leaders’ information but the leaders do not receive any information from the followers. Moreover,

according to the received information, the followers adjust their state values to obtain the consensus with

the state values of leaders. In principle, the leaders have to decide two issues: i) whether system (2) (or

(1)) reaches a consensus, ii) the group decision value (if a consensus can be obtained). In contrast, the

followers do not affect the above two issues.

leader

………

follower 

Figure 1: The connection between a leader and a follower.

In addition, when a follower receive its leaders’ information and then adjust its own state value, the

required time depends on the numbers of followers and the distances between the leaders and the followers.

Hence, the followers will affect the convergent rate of system (2) (or (1)).

Now, we shall aggregate the graph of system (2) (or (1)) by using a modified method in [38]. For the

original graph G(V, ε), construct the aggregated graph G̃(Ṽ, ε̃) as follows:

a) The node set is given by Ṽ = {1, 2, · · · , ñ}, and each node i represents a partition set Ui of V. That is,⋃
i Ui = V and Ui ∩ Uj = ∅, ∀ i 6= j. We call the set Ui a group of nodes.

b) The edge set ε̃ = Ṽ × Ṽ satisfies that if (i1, i2) ∈ ε, then (h(i1), h(i2)) ∈ ε̃, where h : ε → ε̃ is the

function indicating the group j that node i belong to such that h(i) = j, or i ∈ Uj .

Compared with the method in [38], the difference is that our aggregated process is implemented based

on the following two points:
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I) In any partition set Ui, i ∈ Ṽ , we restrict that there has only a root node.

II) Note that there may exist two or more leaders for a follower i. We only choose one leader j and then

let the follower i belong to Uj (i.e., i ∈ Uj).

Remark 5 The properties of our aggregation method are summarized as follows:

The purpose of this aggregation is to regroup those followers with one of their leaders (root nodes).

There may be many different combinations of regrouping partition sets when a follower chooses a different

leader. However, the values of the states of different partition sets are still the same when they have a

same root node. The reasons are as follows:

i) Those followers do not affect the consensus (or un-consensus) status of the partition sets (see Property

1);

ii) The values of these partition sets are decided by the root nodes (see Property 1);

iii) The roots nodes are fixed when the network model (1) is given.

iv) Each new node in the aggregated network contains the same leader with other different choices of

followers.

Therefore, one can say that the aggregated network is independent of the choice of the re-grouping of

nodes. However, the convergent rate of the aggregated network may be different for different choices of

re-grouping.

Remark 6 According to Property 1, one knows that the model of the aggregated graph has the same con-

sensus (or un-consensus) status with that of the original graph. The only difference may be the convergent

rate of consensus. As a result, it is reasonable to discuss the consensus property of the aggregated system

instead of the original system. Actually, compared with [38], the advantage of our modified method is that

there is no error between the final decision value (i.e., the final vector value of a system) of the original

graph G(V, ε) and that of the aggregated graph G̃(Ṽ, ε̃). The only difference is the convergent rate, i.e., the

time needed to obtain the final decision value.

We define the weighted matrix of the aggregated graph G̃(Ṽ, ε̃) is Ã, and L̂ is the corresponding laplacian

of matrix Ã. Now, we present a simple example to address how to aggregate a system.

Example 1 Consider the graph consisting seven nodes shown in the left graph (a) of Fig. 2. From the

graph, it is easy to see that nodes 1, 2, 3, 7 are leaders, i.e., root nodes. Nodes 4 and 5 are the followers

of node 3. Node 6 is the follower of node 1 and node 3. We partition the nodes as U1 = {1, 6}, U2 =

{2}, U3 = {3, 4, 5}, U4 = {7} as indicated by the dashed lines. Then, the aggregated graph can be obtained

in the right graph (b) of Fig. 2.

Let all of the connection weights be 1. The laplacian matrices L and L̂ of graphs (a) and (b) are as
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follows

L =




1 0 −1 0 0 0 0
−1 1 0 0 0 0 0
0 −1 1 0 0 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
−1 0 −1 0 0 2 0
0 0 0 0 0 0 0




, L̂ =




1 0 −1 0
−1 1 0 0
0 −1 1 0
0 0 0 0


 .

Let f(x(t)) = (f̆(x1(t)), f̆(x2(t)), · · · , f̆(x7(t)))T with f̆(xi(t)) = x3
i (t), i = 1, 2, · · · , 7. Let the ini-

tial value of nodes in graph (a) be (−1, 2, 3, 1, 5,−2, 4)T . By writing some simple computer programs

based on the MATLAB Toolbox, one can obtain that the final decision value of nodes in graph (a)

is (1.3333, 1.3333, 1.3333, 1.3333, 1.3333, 1.3333, 4)T . In graph (b), since nodes 1, 2, 3, 7 are leaders,

then the initial value of set {U1, U2, U3, U4} are assigned as the initial value of nodes 1, 2, 3, 7, i.e.,

(U1, U2, U3, U4)T = (−1, 2, 3, 4)T . Similarly, by using the same MATLAB program, one can obtain that

the final decision value of set {U1, U2, U3, U4} in graph (b) is (1.3333, 1.3333, 1.3333, 4)T . Since nodes 1,

2, 3, 7 are leaders, correspondingly, one can obtain that the final decision value of seven nodes in the

original network is also (1.3333, 1.3333, 1.3333, 1.3333, 1.3333, 1.3333, 4)T . Hence, we say that there is no

error between the final decision value of the original graph G(V, ε) and that of the aggregated graph G̃(Ṽ, ε̃).

1 2

3

4

5

6

7

(b)(a)

Figure 2: The left graph (a) is the original graph, and the right graph (b) is the aggregated graph.

For the small-size networks like Example 1, it is easy to find out the root nodes and then obtain the

aggregated graph. However, it is difficult to find out all the root nodes to obtain the aggregated graph

for a large-size network. Hence, an algorithm is proposed to illustrate how to obtain the aggregated graph

effectively for a large-size network.

Algorithm 1 For the Laplacian matrix L = (lij)n×n of the original graph G(V, ε), we implement the

following three steps:

1) Check the columns of matrix L. If there has only one nonzero element lij in a column, then we delete

the ith row and the jth column of matrix L.
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2) Repeat the above process until one cannot find a column which has only one nonzero element.

3) The retained matrix is matrix L̂. Correspondingly, one can get the aggregated graph G̃(Ṽ, ε̃).

Remark 7 Note that the above aggregation method is only effective for a large-size network with small

numbers of root nodes but not for a general large-size one. We attempted to use the same aggregated method

in [38] to aggregate a general large-size network to a small-size one. Unfortunately, we found that the error

between the final decision value of the original network and that of the aggregated one is big. We have to

say that our proposed method is crude at this stage, but it thus provides some insights to the aggregated

problem. Hence, it is still an open problem to find an appropriate method with small (or without) errors

to aggregate a general large-size network.

In this section, we have proposed an aggregation method to reduce the number of nodes in large-size

multiagent networks. Next, we shall discuss the absolute consensus of the aggregated model of system (2)

based on Lemma 6 and the node-and-node pinning method.

5 Absolute consensus of MNDNs based on Lie algebra

The aggregated model of system (2) can be rearranged as

dx̂(t)
dt

= −L̂f̂(x̂(t)), (8)

where x̂(t) = (x̂1(t), x̂2(t), · · · , x̂ñ(t))T , and x̂i(t) ∈ R (i ∈ {1, 2, · · · , ñ}) is the state of set Ui in graph

G̃(Ṽ, ε̃). f̂(x̂(t)) = (f̆(x̂1(t)), f̆(x̂2(t)), · · · , f̆(x̂ñ(t)))T The node-and-node linear pinning controlled system

of model (8) can be described by

dx̂(t)
dt

= −L̂f̂(x̂(t))− D̂x̂(t), (9)

where the node-and-node pinning scheme is given by û(t) , −D̂x̂(t), and D̂ = (d̂ij)ñ×ñ ∈ Rñ×ñ. Here,

matrix D̂ has the similar definition with matrix D of (4). That is, the row sum of matrix D̂ is also zero.

In the following, we shall address the absolute consensus of system (9). Without loss of generality, we

assume that the consensus means that all other ñ− 1 nodes move to the position of node ñ respectively in

this paper.

To model the above phenomena, let y(t) = Qx̂(t) with matrix Q =




1 0 · · · 0 −1
0 1 · · · 0 −1
· · · · · · · · · · · · · · ·
0 0 · · · 1 −1
0 0 · · · 0 1




ñ×ñ

,

then y(t) = (x̂1(t)− x̂ñ(t), x̂2(t)− x̂ñ(t), · · · , x̂ñ−1(t)− x̂ñ(t), x̂ñ(t))T . System (9) can be rewritten as

dy(t)
dt

= −QL̂Q−1Qf̂(x̂(t))−QD̂Q−1y(t). (10)
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Let z(t) = (z1(t), z2(t), · · · , zn−1(t))T , (x̂1(t) − x̂ñ(t), x̂2(t) − x̂ñ(t), · · · , x̂ñ−1(t) − x̂ñ(t))T , then one

has y(t) = (zT (t), x̂ñ(t))T . Hence, a consensus of all agents is reached if one obtains z(t) → 0 as t → +∞.

That is, x̂i(t) → x̂ñ(t) if z(t) → 0 as t → +∞, i = 1, 2, · · · , ñ− 1.

Remark 8 Without loss of generality, we assume that the group decision value is x̂ñ in system (9). Ac-

tually, different group decision value can be obtained if different transformation matrix Q is chosen. For

example, if Q =




1 0 · · · 0 0
−1 1 · · · 0 0
· · · · · · · · · · · · · · ·
−1 0 · · · 1 0
−1 0 · · · 0 1




ñ×ñ

, then a consensus embodies that the other ñ − 1 nodes

move to the position of node 1. If Q =




ñ−1
ñ

−1
ñ · · · −1

ñ
−1
ñ−1

ñ
ñ−1

ñ · · · −1
ñ

−1
ñ

· · · · · · · · · · · · · · ·
−1
ñ

−1
ñ · · · ñ−1

ñ
−1
ñ−1

ñ
−1
ñ · · · −1

ñ
ñ−1

ñ




ñ×ñ

, then it will form an average-

consensus.

According to the property of Laplacian matrix, system (10) can be written as

(
dz(t)/dt
dx̂ñ(t)/dt

)
= −

(
L̃ 0
L1 0

)(
g(z(t))
f̆(x̂ñ(t))

)
−

(
D 0
D1 0

)(
z(t)
x̂ñ(t)

)
, (11)

where Qf̂(x̂(t)) , (gT (z(t)), f̆(x̂ñ(t)))T , with g(z(t)) = (ğ(z1(t)), ğ(z2(t)), · · · , ğ(zñ−1(t)))T = (f̆(x̂1(t)) −
f̆(x̂ñ(t)), f̆(x̂2(t))−f̆(x̂ñ(t)), · · · , f̆(xñ−1(t))−f̆(x̂ñ(t)))T , L̂ = (l̂ij)ñ×ñ, L̃ = (l̂ij−l̂ñj)(ñ−1)×(ñ−1), and L1 =

(l̂ñ1, l̂ñ2, · · · , l̂ñ(ñ−1))T , D = (dij)(ñ−1)×(ñ−1) = (d̂ij − d̂ñj)(ñ−1)×(ñ−1), and D1 = (d̂ñ1, d̂ñ2, · · · , d̂ñ(ñ−1))T .

One can obtain from (11)

dz(t)
dt

= −L̃g(z(t))−Dz(t). (12)

As mentioned above, in this paper, the consensus means that all other ñ−1 nodes move to the position

of node ñ respectively. That is, the state of node ñ is the final consensus state. Naturally, it is very effective

if the connections in the node-and-node pinning strategy are constructed to be directed edges from node

n to other nodes. Hence, for matrix D̂ = (d̂ij)ñ×ñ, we define that

{ d̂ij = 0, i 6= j, i, j = 1, 2, · · · , ñ− 1,

d̂iñ ≤ 0, d̂ii = −d̂iñ, i = 1, 2, · · · , ñ− 1,

d̂ñj = 0, j = 1, 2, · · · , ñ.

(13)

As a result, matrix D is diagonal and dii = d̂ii ≥ 0, for i = 1, 2, · · · , ñ− 1.

Model (12) is said to be absolutely stable if it is globally asymptotically stable for every function f̆(·) ∈ S.

Clearly, system (4) can obtain an absolute consensus if model (12) is absolutely stable. Hence, we shall

discuss the absolute stability of model (12) in the following.
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Remark 9 Note that, the graph G does not contain a spanning tree in this paper. That is, at least two

eigenvalues of L̂ are zero and other eigenvalues have positive real-parts according to Lemma 1. From (11)

and (12), one knows that L̂ has the same eigenvalues with L̃ except for a zero eigenvalue. Hence, all

eigenvalues of L̃ have non-negative real-parts.

Theorem 1 Suppose {L̃1, L̃2} generates a solvable Lie algebra and f̆(ζ) is differentiable with the derivative

f̆ ′(ζ) ≤ 1, ∀ ζ ∈ R. Then the absolute stability of system (12) can be achieved if

Re1≤i≤ñ−1λi(L̃ + D) > 0. (14)

Proof: Since g(z(t)) = (ğ(z1(t)), ğ(z2(t)), · · · , ğ(zñ−1(t)))T = (f̆(x̂1(t))− f̆(x̂ñ(t)), f̆(x̂2(t))− f̆(x̂ñ(t)), · · · ,

f̆(xñ−1(t)) − f̆(x̂ñ(t)))T , and f̆(·) ∈ S. One has that ğ(·) ∈ S. That is, ğ(·) satisfies the conditions in

Assumption 1. Hence, one can construct the following Lyapunov function

V (z(t)) =
ñ−1∑

i=1

∫ zi(t)

0
ğ(r)dr. (15)

Clearly, V (z(t)) is positive definite and radially unbounded. The time derivative of V (z(t)) along the

solution of system (12) is

dV (z(t))
dt

= −gT (z(t))L̃g(z(t))− gT (z(t))Dz(t)

= −gT (z(t))L̃1g(z(t))− gT (z(t))Dz(t)

= −gT (z(t))(L̃1 + D)g(z(t))− gT (z(t))D(z(t)− g(z(t))). (16)

According to Lemma 5 and (14), one obtains that L̃1 + D > 0. Since ğ(·) ∈ S, one has

gT (z(t))(L̃1 + D)g(z(t)) > 0, ∀ z(t) 6= 0. (17)

Let function h(ζ) = ζ − f̆(ζ), ∀ ζ ∈ R. Since f̆ ′(ζ) ≤ 1, ∀ ζ ∈ R, then one has h′(ζ) = 1− f̆ ′(ζ) ≥ 0,

which means that h(·) is an increasing function. Furthermore, one has h(0) = 0 according to Assumption

1. Hence, h(zi(t)) , h(x̂i(t))− h(x̂ñ(t)) = x̂i(t)− f̆(x̂i(t))− (x̂ñ(t)− f̆(x̂ñ(t))) = zi(t)− ğ(zi(t)) ≥ 0 when

zi(t) ≥ 0, i = 1, 2, · · · , ñ − 1. As a result, the function H(z(t)) , z(t) − g(z(t)) is also an increasing

function and H(z(t)) = 0 ⇔ z(t) = 0. Since matrix D ≥ 0 is diagonal, one has

gT (z(t))D(z(t)− g(z(t))) ≥ 0, ∀ z(t) 6= 0. (18)

Hence, dV (z(t))
dt < 0, for all z(t) 6= 0. This shows the absolute stability of model (12). As a result, the

absolute consensus of system (4) is achieved. The proof is completed. 2

Theorem 2 Suppose f̆(ζ) is differentiable with the derivative f̆ ′(ζ) ≤ 1, ∀ ζ ∈ R. Let the order of a

maximal-order positive-definite principle minor of matrix L̃1 be n−1−γ (0 ≤ γ ≤ n−1), then the absolute

stability of system (12) can be achieved if the diagonal matrix D ≥ 0 is chosen with rank(D) ≥ γ.

12



Proof: Construct the same Lyapunov function with (15), one has

dV (z(t))
dt

= −gT (z(t))(L̃1 + D)g(z(t))− gT (z(t))D(z(t)− g(z(t))). (19)

Note that matrix L̃1 is symmetric and the order of a maximal-order positive-definite principle minor of

L̃1 is ñ− 1− γ. One can let Q be a maximal-order positive-definite principle minor of L̃1 and the the row

(or column) numbers of Q in G be l1, l2, · · · , lñ−1−γ . Let D = (dij)(ñ−1)×(ñ−1) be a diagonal matrix with

dii

{
= 0, i ∈ {l1, l2, · · · , lñ−1−γ},
> 0, otherwise.

If dii > 0 ( ∀ i ∈ {1, 2, · · · , ñ− 1}− {l1, l2, · · · , lñ−1−γ}) is appropriately large, one can obtain L̃1 + D > 0

according to Lemma 6. Since ğ(·) ∈ S, one has gT (z(t))(L̃1 + D)g(z(t)) > 0, ∀ z(t) 6= 0.

Then, with the similar analysis in Theorem 1, one obtain dV (z(t))
dt < 0, for all z(t) 6= 0. This shows the

absolute stability of model (12). As a result, the absolute consensus of system (4) is achieved. The proof

is completed. 2

Remark 10 The consensus problem in a multi-agent system with general nonlinear coupling has been

thoroughly investigated in [33]. It has been clearly demonstrated in [33] that, under suitable conditions on

communication, all agents would approach a prescribed value if a small fraction of them are controlled by

a simple feedback control. This paper studies the similar problem from a different angle and therefore our

results complement those of [33]. The distinguishing features of this paper can be stated as follows:

1) A linear node-and-node pinning method is used in our paper. By using the Lie algebra theory and a

completely new pinning method, an absolute consensus of a MNDN is achieved for all nonlinear functions

satisfying a given set of conditions in Assumption 1.

2) Based on Lemma 6 and Algorithm 1, our focus of this paper is mainly on discussing the least number

of nodes required to be controlled to reach the absolute consensus of a MNDN according to the principle

minor of a matrix.

6 An illustrative example

In this section, a numerical example is presented to demonstrate the effectiveness of our results on Theorem

2.

Example 2 In this example, a network with 74 nodes is considered based on system (2). Moreover,

f(x̂(t)) = (x1(t) + tanh(x1(t)), x2(t) + tanh(x2(t)), · · · , x74(t) + tanh(x74(t)))T .

In the given network, we assume that the original graph G(V, ε) can be aggregated to be graph G̃(Ṽ, ε̃) by

using Algorithm 1. Graph G̃(Ṽ, ε̃) includes 8 nodes and the corresponding structure can be seen in Fig. 3.

Since the original graph G(V, ε) and the aggregated graph G̃(Ṽ, ε̃) has the same consensus (or un-consensus)
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status, we only need to discuss the node-to-node linear pinning control of the aggregated model.

Based on Fig. 3, for models (8) and (12), one has

L̂ =




3 −2 −1 0 0 0 0 0
−2 2 0 0 0 0 0 0
−1 0 6 −3 −2 0 0 0
0 0 −3 3 0 0 0 0
0 0 −2 0 2 0 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0




, L̃ =




3 −2 −1 0 0 0 0
−2 2 0 0 0 0 0
−1 0 6 −3 −2 0 0
0 0 −3 3 0 0 0
0 0 −2 0 2 0 0
0 0 0 0 0 1 −1
0 0 0 0 0 −1 1




.

Using the Algorithm DN in [34] (see Appendix B), it is easy to compute the order of a maximal-order

positive-definite principle minor of matrix L̃1 in Theorem 2 is 5. As a result, the Algorithm DN will also

indicates that one pair of nodes (such as nodes 5 and 6, or nodes 5 and 7, or nodes 1 and 7 and so on)

need to be pinned to achieve the absolute stability of model (12). Given an initial vector value (here, the

initial value of every node is chosen to be arbitrarily different) for the network (2), the corresponding state

trajectories of system (2) are shown in Fig. 4. one can find the corresponding initial vector value of model

(12) from that of system (2), and the state trajectories of system (12) without controller are shown in Fig.

5.

If nodes 5 and 6 in model (12) are pinned, i.e., the diagonal matrix D = diag(0, 0, 0, 0, 4, 3, 0)T , one can

obtain the absolute stability of model (12). The corresponding state trajectories of system (12) are shown

in Fig. 6. If the corresponding nodes in model (2) are pinned, one can obtain the absolute consensus of

system (4). The state trajectories of system (4) are shown in Fig. 7. Consequently, the results in Theorem

2 are effective.

1

3

4

5

2

6 7

8

2 2

3

3 2

2
1

1

1

1

Figure 3: The aggregated graph of system (2) with 74 nodes.

7 Conclusions

In this paper, we have shed some lights on the pinning consensus of a MNDN. Based on the Lie algebra

theory, a node-and-node linear pinning scheme has been introduced to achieve the absolute consensus of

a MNDN. Based on some optimal algorithms, large-size networks have first been aggregated to small-size

ones. Then, by using the principle minor theory to small-size networks effectively, another new pinning

strategy has been proposed to achieve the absolute consensus of a MNDN. Finally, numerical examples

with the computer simulations have been provided to illustrate the effectiveness of the obtained criteria.
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Figure 4: The numeric simulation of state
variable x(t) of system (2) in Example 2.
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Figure 5: The numeric simulation of state
variable z(t) of system (12) without controllers.
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Figure 6: The numeric simulation of state
variable z(t) of system (12) in Example 2 with

the proposed pinning scheme.

0 10 20 30 40 50 60
−60

−50

−40

−30

−20

−10

0

10

20

t

x(
t)

Figure 7: The numeric simulation of state
variable x(t) of system (4) in Example 2 with

the proposed pinning scheme.

15



8 Appendix A

Here, some details are shown to answer the question Q1.

According to Lemma 3, without loss of generality, we suppose that L(0) only consists of upper triangular

matrices. For all A,B ∈ L(0), both AB and BA are upper triangular and they have the same diagonal

elements. Hence, the diagonal elements of the commutator product [A,B] are zero and L(1) consists of

upper triangular matrices with zero main diagonal, i.e.,

L(1) = {A|A = (aij)n×n, with aij = 0, for 1 ≤ j ≤ i ≤ n}.

Analogously,

L(k) = {A|A = (aij)n×n, with aij = 0, for 1 ≤ j ≤ i + k − 1}, k = 1, 2, 3, · · · . (20)

We shall apply the mathematical induction to prove (20). Suppose that (20) is true for all k ≤ N , N

is a positive integer.

When k = N + 1, ∀ A,B ∈ L(N), letting AB = M = (mij)n×n, for j ≤ i + N, we have

mij =
n∑

s=1

aisBsj

=
i+N−1∑

s=1

aisBsj +
n∑

s=i+N

aisBsj = 0 + 0 = 0.

Let BA = M = (mij)n×n. Similarly, it follows that

mij = 0, for j ≤ i + N,

namely,

L(N+1) = {A|A = (aij)n×n, with aij = 0, for 1 ≤ j ≤ i + N}.

Hence, (20) is true. By induction, all matrices of L(n) are zero, i.e.,

L(n) = {0}.

9 Appendix B

Algorithm DN (see [34])

1) For matrix G, calculate the eigenvalues of matrices G, and find the number of non-positive eigenvalues

k.

2) Set j := k. (Here, j is the number of nodes to be pinned. Clearly, j ≥ k. That is, the initial choice of j

is the number (i.e., k) of non-positive eigenvalues of G.)
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3) If G contains a (n− j)-order positive definite principle minor, then the number of pinned nodes will be

j.

• The j nodes which are not included in the (n − j)-order positive definite principle minor should be

pinned.

• Note that the (n − j)-order positive definite principle minor may not be unique. Therefore, there

may be more than one set of j nodes which can be pinned. One may only choose one of those sets to be

the pinned nodes and stop the process.

• Stop the whole process when j = n. Here, n nodes should be all pinned.

4) If G does not contain a (n− j)-order positive definite principle minor, then set j := k + 1 (i.e., increase

the number of nodes to be pinned). Go to step 3.
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