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Abstract

In this paper, the distributed state estimation problem is investigated for a class of sensor networks described by

uncertain discrete-time dynamical systems with Markovian jumping parameters and distributed time-delays. The sensor

network consists of sensor nodes characterized by a directed graph with a nonnegative adjacency matrix that specifies the

interconnection topology (or the distribution in the space) of the network. Both the parameters of the target plant and

the sensor measurements are subject to the switches from one mode to another at different times according to a Markov

chain. The parameter uncertainties are norm-bounded that enter into both the plant system as well as the network

outputs. Furthermore, the distributed time-delays are considered which are also dependent on the Markovian jumping

mode. Through the measurements from a small fraction of the sensors, this paper aims to design state estimators that

allow the nodes of the sensor network to track the states of the plant in a distributed way. It is verified that such state

estimators do exist if a set of matrix inequalities are solvable. A numerical example is provided to demonstrate the

effectiveness of the designed distributed state estimators.
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I. Introduction

In the past few years, theoretical research and practical applications of sensor networks have received

increasing research attention from a variety of areas including military sensing, physical security, air traffic

control, distributed robotics, as well as industrial and manufacturing automation. Roughly speaking, a sensor

network consists of a number of sensor nodes distributed over a spatial region. Each sensor node has wireless

communication capability, some level of intelligence for signal processing and for disseminating data. These

sensor nodes collaborate amongst themselves to set up a sensing network [3, 27]. A typical problem in sensor

networks, known as the distributed estimation problem, is how to estimate the state of the dynamic process

(plant target) from spatially distributed nodes that form a wireless ad hoc network with every node having

its own notion of time. In other words, for distributed estimation problems, the individual sensor in a sensor

network locally estimates the system state from not only its own measurement but also its neighboring sensors’
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measurements according to the given topology. Fundamentally different from the traditional central filtering

techniques [9,12,21,24,26,29], the difficulty in designing distributed estimation algorithms stems from 1) the

complicated coupling between the sensor nodes according to a given topology; and 2) the network-induced

phenomena such as distributed communication delays and Markov-type mode switches.

Owing to its importance in collaborative signal processing to efficiently process distributed information

gathered, the distributed estimation problem has gained particular research interests in recent years. For

example, in [18,19], a distributed Kalman filtering algorithm has been developed with different sensing models

and different consensus strategies. In [22], a distributed estimation algorithm has been proposed to adaptively

update the weights for minimizing the estimation error variance. An alternative multiscale approach has been

put forward in [11] to accelerate the convergence of the decentralized consensus problem for networks with

poor connectivity. In [28], a new type of distributed consensus filter is designed, where each sensor can

communicate with the neighboring sensors and filtering can be performed in a distributed way. More recently,

in [5, 6], the distributed diffusion filtering algorithm has been designed with the information diffused across

the network through a sequence of Kalman iterations and data-aggregation. Despite the popularity of the

investigation on various distributed estimation algorithms, the network-induced phenomena that are directly

associated with sensor networks have been largely overlooked due probably to the mathematical complexity,

which motivates our present research.

For wireless sensor networks, the network size, the communication constraints as well as the stringent energy

limit give rise to great challenges to classical estimation techniques that demand enormous storage space and

centralized computation. As such, it is not surprising that distributed estimation algorithms have recently

stirred considerable research attention. Nevertheless, there remain some open issues outlined as follows that

deserve further investigation. 1) A sensor network is often subject to the mode switch according to a Markov

chain. In [8], a sensor network has been shown to have jumping behavior due to the network’s working

environment (normal or hazardous) and the mobility of the sensor node. In [10], it has been concluded

that the shuffle-exchange networks can model practical interconnection systems due to their size of switching

(jumping) elements and uncomplicated configuration. 2) The distributed delays occur naturally in sensor

networks since the wireless information transmission has a spatial nature due to the presence of an amount

of parallel pathways of a variety of node sizes and lengths. Note that, for sensor networks, the distributed

delay typically takes place in a digital (discrete) way, see [16] for more details about the discrete distributed

time-delays. 3) In practice, the actual spatial positions of sensor nodes at the experimentation stage may be

uncertain to some extent and randomly fluctuate around some locations specified at the configuration stage

[20], and the parameters of the modeled sensor networks are inevitably subject to uncertainties. Unfortunately,

up to now, the unavoidable issues of mode switching, distributed delays as well as parameter uncertainties have

not yet been investigated for the distributed state estimation problem of sensor networks. It is, therefore, the

main aim of this paper to shorten such a gap by launching an initial study on the distributed state estimation

for uncertain Markov-type sensor networks with mode-dependent distributed delays.

In this paper, attention is focused on the distributed state estimation problem for a class of sensor net-

works described by uncertain discrete-time stochastic systems with Markovian jumping parameters and mode-

dependent distributed delays. Through available output measurements from each individual sensor, we wish

to design distributed state estimators to approximate the states of the networked dynamic system based on

the sensor’s and its neighboring sensors’ measurements according to certain topology. Sufficient conditions

are presented to guarantee the convergence of the estimation error systems for all admissible parameter un-
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certainties and distributed delays for each mode. The explicit expression of individual estimator is derived to

facilitate the distributed computing of state estimation from each sensor. Finally, numerical example is given

to verify the theoretical results.

The remaining part of the paper is organized as follows. In Section II, the distributed sate estimation

problem is formulated for the sensor network with Markov-type uncertain parameters and distributed delays,

and some preliminaries are briefly outlined. In Section III, by resorting to the inequality techniques combin-

ing with a novel Lyapunov-Krasovskii functional constructed to reflect the mode-dependent time delays, we

conduct the analysis to obtain several sufficient criteria which not only ensure the estimation error systems

to be globally asymptotically stable in the mean square sense but also characterize the explicit expression of

the estimator gains. In Section IV, a numerical example is given to show the applicability of the acquired

conditions. Finally, conclusions are drawn in Section V.

Notations. The notation used throughout this paper is fairly standard. R
n and R

m×n denote the n-

dimensional Euclidean space and the set of all m × n real matrices, respectively. N is used to be the set

{1, 2, . . .}. I and 0 represent, respectively, the identity matrix and the zero matrix of appropriate dimensions.

The Kronecker product of matrices A ∈ R
m×n and B ∈ R

p×q is a matrix in R
mp×nq and denoted as A ⊗ B.

The notation X > 0 for X ∈ R
n×n means that matrix X is real, symmetric and positive definite. diag(· · · )

and col(· · · ) stand for, respectively, the block-diagonal matrix and the matrix column with blocks given by

the matrices in (· · · ). ‖ · ‖ refers to the Euclidean vector norm and the asterisk ‘∗’ in a symmetric matrix

is used to denote the term that is induced by symmetry. For notation (Ω,F ,P), Ω represents the sample

space, F is the σ-algebra of subsets of the sample space and P is the probability measure on F . E{α1},

E{α1|α2} mean, respectively, the mathematical expectation of the stochastic variable α1 and the expectation

of α1 conditional on α2. Matrices, if not stated, are assumed to be compatible for algebraic operations.

II. Problem formulation and some preliminaries

Let the complete probability space (Ω,F ,P) be fixed. Consider the Markov-type uncertain dynamic system

(target plant) with n modes described by the following discrete-time model:

x(k + 1) = D(k, r(k))x(k) +B(k, r(k))f(x(k)) +W (k, r(k))

τ(r(k))∑

v=1

g(x(k − v)) (1)

with N sensors characterized by:

yi(k) = Ci(k, r(k))x(k), i = 1, 2, . . . , N (2)

where k ∈ N; x(k) ∈ R
nx is the state of the target; yi(k) ∈ R

ny is the measurement output from sensor i of the

target plant; v is the time-delay; {r(k) : k ∈ N} is a discrete-time homogeneous Markov chain which governs

the switches among the different system modes and takes values in a finite mode set S , {1, 2, . . . , n} with

mode transition probability matrix Π , {πlm}n×n given by

P{r(k + 1) = m|r(k) = l} = πlm,

where πlm ≥ 0 (l,m ∈ S) is the transition rate from mode l to mode m and, for every l ∈ S,
∑n

m=1 πlm = 1.

τ(r(k)) characterizes the distributed time-delay dependent on the system mode r(k); f(·) and g(·) are nonlinear

functions; D(k, r(k)), B(k, r(k)), W (k, r(k)) and Ci(k, r(k)) (i = 1, 2, . . . , N) are time-varying matrices defined
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on the Markov chain of the form

D(k, r(k)) = D(r(k)) + ∆D(k, r(k)), B(k, r(k)) = B(r(k)) + ∆B(k, r(k)),

W (k, r(k)) = W (r(k)) + ∆W (k, r(k)), Ci(k, r(k)) = Ci(r(k)) + ∆Ci(k, r(k)), (3)

in which the constant matrices D(r(k)), B(r(k)), W (r(k)) and Ci(r(k)) are known, while ∆D(k, r(k)),

∆B(k, r(k)), ∆W (k, r(k)) and ∆Ci(k, r(k)) are unknown matrices representing the time-varying parameter

uncertainties satisfying the following conditions:

[∆D(k, r(k)), ∆B(k, r(k)), ∆W (k, r(k))] = E1(r(k))F1(k, r(k))[M1(r(k)), M2(r(k)), M3(r(k))],

∆Ci(k, r(k)) = E2i(r(k))F2(k, r(k))M4(r(k)); (4)

where E1(r(k)), E2i(r(k)) and Ml(r(k)) (l = 1, 2, 3, 4) are known real constant matrices and F1(k, r(k)),

F2(k, r(k)) are unknown time-varying matrix-valued functions subject to the following conditions:

F T
l (k, r(k))Fl(k, r(k)) ≤ I, l = 1, 2; r(k) ∈ S, k ∈ N. (5)

Remark 1: In practice, the sensor networks often exhibit the special characteristic of Markov mode switch-

ing, that is, the sensor networks sometimes have finite modes that switch from one to another at different

times, and such a switching (or jumping) can be governed by a Markovian chain. For example, the bufferless

packet switching of trees and leveled networks has been illustrated in [4] to be achievable with certain network

topologies. In model (1), the switching signal {r(k) : k ∈ N} in the target plant could be obtained through

statistical experiments. Note that the Markovian jumping system has been well studied for H∞ control and

filtering problems, see e.g. [1] and [21] for discrete- and continuous-time linear systems with mode-dependent

delays. For more information about the mode-dependent time-delay systems, we refer to [13–15].

In this paper, consider the sensor network consisting of N sensor nodes characterized by a directed graph

G = (V, E) with a nonnegative adjacency matrix A = (aij)N×N that specifies the interconnection topology

(or the distribution in the space) of the sensor network. Here, V = {1, 2, . . . , N} denotes the set of sensor

nodes and E ⊆ V × V is the set of edges. Edge (i, j) ∈ E means that there is information transmission from

sensor j to sensor i which is represented equivalently by aij > 0. Moreover, it is also assumed in this paper

that the sensors are self-connected, i.e., aii = 1 for all i ∈ V. Node j is called one of the neighbors of node i if

(i, j) ∈ E . According to the given network topology, in the sensor network, node i ∈ V can receive information

from its neighboring nodes j ∈ Ni, where Ni , {j ∈ V|(i, j) ∈ E}.

It should be noted that, in practice, there are a huge amount of sensors that can measure the target state

x(k) from measurement outputs yi(k) (i = 1, 2, . . . , N). However, it is usually impossible to have only one

centralized processor to collect the measurements from all the sensors, especially in a remote area. Therefore,

it is more appropriate to use local information achieved from neighbors in a distributed way. The objective

of this paper, accordingly, is to design a distributed state estimator to track the state x(k) of the target plant

with an acceptable accuracy.

Construct the following state estimator on sensor node i:

x̂i(k + 1) = D(r(k))x̂i(k) +B(r(k))f(x̂i(k)) +W (r(k))

τ(r(k))∑

v=1

g(x̂i(k − v))

+
∑

j∈Ni

aijKij(r(k))[yj(k)− Cj(r(k))x̂j(k)], (6)
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where x̂i(k) ∈ R
nx is the estimate for the plant state x(k) on the node i, and Kij(r(k)) ∈ R

nx×ny is the

estimator gain matrix to be determined.

Letting x̃i(k) = x(k)− x̂i(k) be the state estimation error, it follows from (1), (2) and (6) that

x̃i(k + 1) = D(r(k))x̃i(k) + ∆D(k, r(k))x(k) +B(r(k))f̃(x̃i(k)) + ∆B(k, r(k))f(x(k))

+W (r(k))

τ(r(k))∑

v=1

g̃(x̃i(k − v)) + ∆W (k, r(k))

τ(r(k))∑

v=1

g(x(k − v))

−
∑

j∈Ni

aijKij(r(k))[Cj(r(k))x̃j(k) + ∆Cj(k, r(k))x(k)], i = 1, 2, . . . , N (7)

where f̃(x̃i(k)) = f(x(k)) − f(x̂i(k)) and g̃(x̃i(k − v)) = g(x(k − v)) − g(x̂i(k − v)). By using the notation

of Kronecker product, the estimation error dynamics governed by (7) can be rewritten in a compact form as

follows:

x̃(k + 1) = (IN ⊗D(r(k))− K̄(r(k))C̃(r(k)))x̃(k) + (∆D̃(k, r(k)) − K̄(r(k))∆C̄(k, r(k)))x(k)

+(IN ⊗B(r(k)))F (x̃(k)) + ∆B̃(k, r(k))f(x(k))

+(IN ⊗W (r(k)))

τ(r(k))∑

v=1

G(x̃(k − v)) + ∆W̃ (k, r(k))

τ(r(k))∑

v=1

g(x(k − v)), (8)

where x̃(k) = col(x̃1(k), x̃2(k), . . . , x̃N (k)), C̃(r(k)) = diag(C1(r(k)), C2(r(k)), . . . , CN (r(k))),

∆D̃(k, r(k)) = [(∆D(k, r(k)))T , (∆D(k, r(k)))T , . . . , (∆D(k, r(k)))T︸ ︷︷ ︸
N

]T ,

∆B̃(k, r(k)) = [(∆B(k, r(k)))T , (∆B(k, r(k)))T , . . . , (∆B(k, r(k)))T︸ ︷︷ ︸
N

]T ,

∆W̃ (k, r(k)) = [(∆W (k, r(k)))T , (∆W (k, r(k)))T , . . . , (∆W (k, r(k)))T︸ ︷︷ ︸
N

]T

F (x̃(k)) =




f̃(x̃1(k))

f̃(x̃2(k))
...

f̃(x̃N (k))



, G(x̃(k − v)) =




g̃(x̃1(k − v))

g̃(x̃2(k − v))
...

g̃(x̃N (k − v))



,∆C̄(k, r(k)) =




∆C1(k, r(k))

∆C2(k, r(k))
...

∆CN (k, r(k))




and K̄(r(k)) = (aijKij(r(k)))N×N is a sparse matrix satisfying K̄(r(k)) ∈ Wnx×ny
, where Wnx×ny

is defined

as

Wnx×ny
= {Ū = [Uij ] ∈ R

nxN×nyN |Uij ∈ R
nx×ny , Uij = 0 if j /∈ Ni}. (9)

Throughout this paper, the following assumptions are made on the nonlinear functions f(·) and g(·) in the

target system (1).

Assumption 1: f(0) = 0, g(0) = 0.

Assumption 2: There exist matrices Σ1 and Σ2 such that

‖f(u)− f(v)‖ ≤ ‖Σ1(u− v)‖, ‖g(u) − g(v)‖ ≤ ‖Σ2(u− v)‖; ∀u, v ∈ R
nx.
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According to Assumption 2, one can easily obtain that the nonlinear functions F (·) and G(·) defined in (8)

satisfy the following conditions

‖F (x̃(k))‖ ≤ ‖Σ̃1x̃(k)‖, ‖G(x̃(k)‖ ≤ ‖Σ̃2x̃(k)‖; (10)

where Σ̃1 = diag(Σ1,Σ1, . . . ,Σ1) and Σ̃2 = diag(Σ2,Σ2, . . . ,Σ2).

The initial condition associated with (8) is given as

x̃(s) = ϕ(s) ∈ R
nxN , s = −τ̄ ,−τ̄ + 1, . . . , 0 (11)

where τ̄ = max{τ(1), τ(2), . . . , τ(n)}.

Let {x̃(k;ϕ); k ∈ N} denote the corresponding state trajectory of the uncertain error system (8).

Definition 1: The system (6) is said to be a robustly distributed state estimator of the Markov-type dynamic

system (1) with measurement outputs (2) if the estimation error system (8) is robustly asymptotically stable

in the mean square sense, i.e., for any initial condition ϕ(·) and for all parameter uncertainties satisfying

(4)-(5), the following equality

lim
k→∞

E{‖x̃(k;ϕ)‖2} = 0

holds for the corresponding solution {x̃(k;ϕ); k ∈ N} of the error system (8).

Our main aim in this paper is to choose suitable estimator gain matrices Kij(r(k)) such that the estimation

error system (8) is robustly asymptotically stable in the mean square sense. Before deriving the main results,

two useful lemmas are given as follows.

Lemma 1: Let X, Y and F be real matrices of appropriate dimensions with F satisfying F TF ≤ I. Then,

for any scalar ε > 0,

XFY + (XFY )T ≤ ε−1XXT + εY TY.

Lemma 2: [16] Let Q ∈ R
n×n be a positive semi-definite matrix, xi ∈ R

n and scalar constant bi ≥ 0 (i =

1, 2, . . .). If the series concerned is convergent, then the following inequality holds:
(

+∞∑

i=1

bixi

)T

Q

(
+∞∑

i=1

bixi

)
≤

(
+∞∑

i=1

bi

)
+∞∑

i=1

bix
T
i Qxi. (12)

III. Main results

In this section, by utilizing the Lyapunov stability theory and the matrix inequality technique, sufficient

conditions are to be derived which not only ensure the estimation error system (8) to be robustly asymptotically

stable in the mean square sense but also characterize the explicit expression of the estimator gains.

Taking the augmented state vector as e(k) = col(x(k), x̃(k)), the combination of (1) and (8) leads to the

following augmented system:

e(k + 1) = D(k, r(k))e(k) + B(k, r(k))F (e(k)) +W(k, r(k))

τ(r(k))∑

v=1

G(e(k − v)), (13)

where D(k, r(k)) = D(r(k)) + ∆D(k, r(k)), B(k, r(k)) = B(r(k)) + ∆B(k, r(k)), W(k, r(k)) = W(r(k)) +

∆W(k, r(k)) and

D(r(k)) =

[
D(r(k)) 0

0 IN ⊗D(r(k))− K̄(r(k))C̃(r(k))

]
,

B(r(k)) =

[
B(r(k)) 0

0 IN ⊗B(r(k))

]
, W(r(k)) =

[
W (r(k)) 0

0 IN ⊗W (r(k))

]
,



FINAL VERSION 7

∆D(k, r(k)) =

[
∆D(k, r(k)) 0

−K̄(r(k))∆C̄(k, r(k)) + ∆D̃(k, r(k)) 0

]
,

∆B(r(k)) =

[
∆B(k, r(k)) 0

∆B̃(k, r(k)) 0

]
, ∆W(k, r(k)) =

[
∆W (k, r(k)) 0

∆W̃ (k, r(k)) 0

]
,

F (e(k)) =

[
f(x(k))

F (x̃(k))

]
, G(e(k − v)) =

[
g(x(k − v))

G(x̃(k − v))

]
.

In terms of Assumptions 1-2 and the properties of nonlinear functions F (·), G(·) characterized in (10), it

can be easily concluded that the following inequalities

‖F (e(k))‖ ≤ ‖Σ̂1e(k)‖, ‖G(e(k))‖ ≤ ‖Σ̂2e(k)‖ (14)

hold, where Σ̂1 = diag(Σ1, Σ̃1), Σ̂2 = diag(Σ2, Σ̃2) and Σ̃1, Σ̃2 are as defined in (10).

We are now ready to state the main results of this paper as follows.

Theorem 1: Under Assumptions 1-2, for the given K̄(l) (l ∈ S), the estimation error system (8) is robustly

asymptotically stable in the mean square sense if there exist matrices P(l) > 0 (l ∈ S), Q > 0 and positive

scalars ε1, ε2, δ1, δ2 such that the following matrix inequalities hold:



Υ(l) ZT (l)P(l) 0 0

∗ −P(l) P(l)Ê1(l) P(l)Ê2(l)

∗ ∗ −δ1I 0

∗ ∗ ∗ −δ2I



< 0, (l ∈ S) (15)

where P(l) =
n∑

m=1
πlmP(m), Z(l) = [D(l) B(l) 0 W(l)], Υ(l) = Ξ(l) + δ1ℵ

T
1 (l)ℵ1(l) + δ2ℵ

T
3 (l)ℵ3(l),

Ê1(l) = col(E1(l), Ẽ1(l)), Ẽ1(l) = [ET
1 (l), E

T
1 (l), . . . , E

T
1 (l)︸ ︷︷ ︸

N

]T ;

Ê2(l) = col(0, K̄(l)Ẽ2(l)), Ẽ2(l) = [ET
21(l), E

T
22(l), . . . , E

T
2N (l)︸ ︷︷ ︸

N

]T ;

Ξ(l) = diag

(
−P(l) + ε1Σ̂

T
1 Σ̂1 + ε2Σ̂

T
2 Σ̂2,−ε1I,−ε2I + (τ(l) + τ̃)Q,−

1

τ(l)
Q

)
,

ℵ1(l) =
[
M̂1(l) M̂2(l) 0 M̂3(l)

]
, ℵ3(l) =

[
M̂4(l) 0 0 0

]
,

M̂1(l) =
[
M1(l) 0

]
, M̂2(l) =

[
M2(l) 0

]
, M̂3(l) =

[
M3(l) 0

]
, M̂4(l) =

[
M4(l) 0

]

and τ̃ = 1
2(τ̄ − τ)(1− π)(τ̄ + τ + 1), τ = min{τ(1), τ(2), . . . , τ(n)}, π = min{π11, π22, . . . , πnn}.

Proof: The Schur complement lemma [2] ensures that condition (15) is equivalent to the following

inequality:
[

Υ(l) ZT (l)P(l)

∗ −P(l)

]
+ δ−1

1 ℵ2(l)ℵ
T
2 (l) + δ−1

2 ℵ4(l)ℵ
T
4 (l) < 0, (16)

where ℵ2(l) = col(0, 0, 0, 0,P (l)Ê1(l)) and ℵ4(l) = col(0, 0, 0, 0,P (l)Ê2(l)). From the special structure of

matrices ℵ1(l) and ℵ3(l), it is known that (16) is also equivalent to the following condition
[

Ξ(l) ZT (l)P(l)

∗ −P(l)

]
+ δ1ℵ̃

T
1 (l)ℵ̃1(l) + δ2ℵ̃

T
3 (l)ℵ̃3(l) + δ−1

1 ℵ2(l)ℵ
T
2 (l) + δ−1

2 ℵ4(l)ℵ
T
4 (l) < 0, (17)
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where ℵ̃1(l) = [ℵ1(l) 0], ℵ̃3(l) = [ℵ3(l) 0].

In order to ensure that (6) is a desired distributed state estimator of (1), we just need to show that

the augmented error system (13) is robustly asymptotically stable in the mean square sense. To do so, let

X (k) , {e(k), e(k − 1), . . . , e(k − τ̄)} and choose the following Lyapunov-Krasovskii functional for system

(13):

V (k,X (k), r(k)) = V1(k,X (k), r(k)) + V2(k,X (k), r(k)) + V3(k,X (k), r(k))

= eT (k)P(r(k))e(k) +

τ(r(k))∑

v=1

k−1∑

s=k−v

GT (e(s))QG(e(s))

+(1− π)
τ̄−1∑

m=τ

m∑

v=1

k−1∑

s=k−v

GT (e(s))QG(e(s)), (18)

For l ∈ S, we have

E{V1(k + 1,X (k + 1), r(k + 1))|X (k), r(k) = l} − V1(k,X (k), l)

= eT (k + 1)P(l)e(k + 1)− eT (k)P(l)e(k)

= ξT (k, l)ZT (k, l)P(l)Z(k, l)ξ(k, l) − eT (k)P(l)e(k), (19)

where ξ(k, l) =
(
eT (k),FT (e(k)),GT (e(k)),

τ(l)∑
v=1

GT (e(k − v))
)T

and Z(k, l) = [D(k, l) B(k, l) 0 W(k, l)].

E{V2(k + 1,X (k + 1), r(k + 1))|X (k), r(k) = l} − V2(k,X (k), l)

=

n∑

m=1

πlm

τ(m)∑

v=1

k∑

s=k+1−v

GT (e(s))QG(e(s)) −

τ(l)∑

v=1

k−1∑

s=k−v

GT (e(s))QG(e(s))

=

n∑

m=1

πlm



τ(m)∑

v=1

k∑

s=k+1−v

−

τ(l)∑

v=1

k∑

s=k+1−v

+

τ(l)∑

v=1

k∑

s=k+1−v

−

τ(l)∑

v=1

k−1∑

s=k−v


GT (e(s))QG(e(s))

=
∑

m6=l

πlm

τ(m)∑

v=τ(l)+1

k∑

s=k+1−v

GT (e(s))QG(e(s)) +

τ(l)∑

v=1

(
GT (e(k))QG(e(k)) − GT (e(k − v))QG(e(k − v))

)

≤ (τ(l) + (τ̄ − τ)(1 − π))GT (e(k))QG(e(k)) −

τ(l)∑

v=1

GT (e(k − v))QG(e(k − v))

+(1− π)
τ̄∑

v=1+τ

k−1∑

s=k+1−v

GT (e(s))QG(e(s)) (20)

and

E{V3(k + 1,X (k + 1), r(k + 1))|X (k), r(k) = l} − V3(k,X (k), l)

= (1− π)
τ̄−1∑

m=τ

m∑

v=1

(
k∑

s=k+1−v

−
k−1∑

s=k−v

)
GT (e(s))QG(e(s))

= (1− π)

τ̄−1∑

m=τ

m∑

v=1

(
GT (e(k))QG(e(k)) − GT (e(k − v))QG(e(k − v))

)

= (1− π)


1
2
(τ̄ − τ)(τ̄ − 1 + τ)GT (e(k))QG(e(k)) −

τ̄∑

m=τ+1

k−1∑

s=k−m+1

GT (e(s))QG(e(s))


 . (21)
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From Lemma 2, it is not difficult to verify that

−

τ(l)∑

v=1

GT (e(k − v))QG(e(k − v)) ≤ −
1

τ(l)
(

τ(l)∑

v=1

G(e(k − v)))TQ(

τ(l)∑

v=1

G(e(k − v))). (22)

At the same time, for any positive scalars ε1 and ε2, condition (14) ensures that the following two inequalities

hold:

ε1e
T (k)Σ̂T

1 Σ̂1e(k) − ε1F
T (e(k))F (e(k)) ≥ 0, ε2e

T (k)Σ̂T
2 Σ̂2e(k)− ε2G

T (e(k))G(e(k)) ≥ 0. (23)

With the relationships from (18) to (23), we have

E{V (k + 1,X (k + 1), r(k + 1))|X (k), r(k) = l} − V (k,X (k), l)

≤ ξT (k, l)
(
Ξ(l) + ZT (k, l)P(l)Z(k, l)

)
ξ(k, l), (24)

where

Z(k, l) = Z(l) + ∆Z(k, l) and ∆Z(k, l) =
[
∆D(k, l) ∆B(k, l) 0 ∆W(k, l)

]
.

From the Lyapunov stability theory, one knows that if the matrix inequality Ξ(l) +ZT (k, l)P(l)Z(k, l) < 0

holds uniformly in k, we could immediately draw our conclusion. Again, from the Schur complement lemma

[2], we know that

Ξ(l) + ZT (k, l)P(l)Z(k, l) < 0 ⇐⇒ Ξ̃(k, l) , Ξ̃(l) + ∆Ξ̃(k, l) < 0, (25)

where

Ξ̃(l) =

[
Ξ(l) ZT (l)P(l)

∗ −P(l)

]
, ∆Ξ̃(k, l) =

[
0 (∆Z(k, l))TP(l)

∗ 0

]
.

By simple computation, it can be obtained that

∆D(k, l) =

[
E1(l)F1(k, l)M1(l) 0

−K̄(l)Ẽ2(l)F2(k, l)M4(l) + Ẽ1(l)F1(k, l)M1(l) 0

]

= Ê1(l)F1(k, l)M̂1(l)− Ê2(l)F2(k, l)M̂4(l), (26)

∆B(k, l) =

[
∆B(k, l) 0

∆B̃(k, l) 0

]
=

[
E1(l)F1(k, l)M2(l) 0

Ẽ1(l)F1(k, l)M2(l) 0

]
= Ê1(l)F1(k, l)M̂2(l), (27)

∆W(k, l) =

[
∆W (k, l) 0

∆W̃ (k, l) 0

]
=

[
E1(l)F1(k, l)M3(l) 0

Ẽ1(l)F1(k, l)M3(l) 0

]
= Ê1(l)F1(k, l)M̂3(l). (28)

Combining the above three equalities together, we can conclude that for any scalars δ1 > 0 and δ2 > 0,

∆Ξ̃(k, l) = ℵ2(l)F1(k, l)ℵ̃1(l) + (ℵ2(l)F1(k, l)ℵ̃1(l))
T − ℵ4(l)F2(k, l)ℵ̃3(l)− (ℵ4(l)F2(k, l)ℵ̃3(l))

T

≤ δ1ℵ̃
T
1 (l)ℵ̃1(l) + δ−1

1 ℵ2(l)ℵ
T
2 (l) + δ2ℵ̃

T
3 (l)ℵ̃3(l) + δ−1

2 ℵ4(l)ℵ
T
4 (l), (29)

where, in the last step, Lemma 1 has been utilized to derive the inequality. Substituting (29) into the right

side of the inequality in (25), we have from condition (17) that the inequality Ξ(l) + ZT (k, l)P(l)Z(k, l) < 0

does hold uniformly in k, which means that there exists a constant λ < 0 such that

E{V (k + 1,X (k + 1), r(k + 1))|X (k), r(k) = l} − V (k,X (k), l) ≤ λ‖e(k)‖2.
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The remaining part of the proof is similar as that in [13] and therefore omitted here. This completes the proof

of the theorem.

After conducting the analysis for system (13) to be robustly asymptotically stable in the mean square

sense, we are now in a position to design the estimator gains. Note that matrices K̄(l) (l ∈ S) contain all the

information of the desired estimator parameters, to carry on, we still need the following lemma.

Lemma 3: Let S = diag(S11,S22, . . . ,SNN) with Sii ∈ R
nx×nx (i = 1, 2, . . . , N) being invertible matrices.

If X = SŪ for Ū ∈ R
nxN×nyN , then we have Ū ∈ Wnx×ny

⇔ X ∈ Wnx×ny
.

Theorem 2: Under Assumptions 1-2, the system (6) is a robustly distributed state estimator of the Markov-

type dynamic system (1) with measurement outputs (2) if there exist matrices Pi(l) > 0 (i = 1, 2, . . . , N+1; l ∈

S), Q11 > 0, Q22 > 0, Q12, X (l) ∈ Wnx×ny
(l ∈ S) and positive scalars ε1, ε2, δ1, δ2 such that the following

matrix inequalities hold:

Q ,

[
Q11 Q12

∗ Q22

]
> 0 (30)

and

Φ(l) ,




Φ11(l) Φ12(l) 0 Φ14(l) Φ15(l) 0 0

∗ Φ22(l) 0 Φ24(l) Φ25(l) 0 0

∗ ∗ Φ33(l) 0 0 0 0

∗ ∗ ∗ Φ44(l) Φ45(l) 0 0

∗ ∗ ∗ ∗ Φ55(l) Φ56(l) Φ57(l)

∗ ∗ ∗ ∗ ∗ −δ1I 0

∗ ∗ ∗ ∗ ∗ ∗ −δ2I




< 0, (l ∈ S) (31)

where

Φ11(l) = diag(Υ1(l),−P2(l) + ε1Σ̃
T
1 Σ̃1 + ε2Σ̃

T
2 Σ̃2), Φ12(l) = diag(δ1M

T
1 (l)M2(l), 0),

Υ1(l) = −P1(l) + ε1Σ
T
1 Σ1 + ε2Σ

T
2 Σ2 + δ1M

T
1 (l)M1(l) + δ2M

T
4 (l)M4(l),

Φ14(l) = diag(δ1M
T
1 (l)M3(l), 0), Φ15(l) = diag(DT (l)P̄1(l), (IN ⊗D(l))T P̄2(l)− C̃T (l)X T (l)),

Φ22(l) = diag(−ε1I + δ1M
T
2 (l)M2(l),−ε1I), Φ24(l) = diag(δ1M

T
2 (l)M3(l), 0),

Φ25(l) = diag(BT (l)P̄1(l), (IN ⊗B(l))T P̄2(l)), Φ45(l) = diag(W T (l)P̄1(l), (IN ⊗W (l))T P̄2(l)),

Φ33(l) =

[
−ε2I + (τ(l) + τ̃)Q11 (τ(l) + τ̃)Q12

∗ −ε2I + (τ(l) + τ̃)Q22

]
, Φ56(l) =

[
P̄1(l)E1(l)

P̄2(l)Ẽ1(l)

]
,

Φ44(l) =

[
− 1

τ(l)Q11 + δ1M
T
3 (l)M3(l) − 1

τ(l)Q12

∗ − 1
τ(l)Q22

]
, Φ57(l) =

[
0

X (l)Ẽ2(l)

]

and Φ55(l) = diag(−P̄1(l),−P̄2(l)), P2(l) = diag(P2(l), P3(l), . . . , PN+1(l)), P̄i(l) =
n∑

m=1
πlmPi(m) (i =

1, 2, . . . , N + 1; l ∈ S), P̄2(l) = diag(P̄2(l), P̄3(l), . . . , P̄N+1(l)) (l ∈ S), the other symbols are the same as

defined in Theorem 1. Furthermore,

K̄(l) = P̄−1
2 (l)X (l); (l ∈ S) (32)

accordingly, the state estimator gains Kij(l) (i = 1, 2, . . . , N, j ∈ Ni, l ∈ S) can be derived from (9).
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Proof: With the special structure of P̄2(l) and the restriction on matrix X (l) ∈ Wnx×ny
, it follows

from Lemma 3 that P̄−1
2 (l)X (l) ∈ Wnx×ny

. By taking P(l) = diag(P1(l),P2(l)), P(l) = diag(P̄1(l), P̄2(l)) in

Theorem 1 and noticing the condition P̄2(l)K̄(l) = X (l), after some computation it can be shown that

P(l)D(l) = diag(P̄1(l)D(l), P̄2(l)(IN ⊗D(l))− X (l)C̃(l)),

P(l)B(l) = diag(P̄1(l)B(l), P̄2(l)(IN ⊗B(l))), P(l)W(l) = diag(P̄1(l)W (l), P̄2(l)(IN ⊗W (l))),

P(l)Ê1(l) =

[
P̄1(l)E1(l)

P̄2(l)Ẽ1(l)

]
, P(l)Ê2(l) =

[
0

X (l)Ẽ2(l)

]
.

And the corresponding result is derived easily from Theorem 1, the proof is then completed.

Remark 2: Our main results are based on the linear matrix inequality (LMI) conditions. The LMI Control

Toolbox implements state-of-the-art interior-point LMI solvers. While these solvers are significantly faster than

classical convex optimization algorithms, it should be kept in mind that the complexity of LMI computations

remains higher than that of solving, say, a Riccati equation. For instance, problems with a thousand design

variables typically take over an hour on today’s workstations. However, research on LMI optimization is a

very active area in the applied math, optimization and the operations research community, and substantial

speed-ups can be expected in the future.

IV. Numerical Examples

Consider a Markov-type system plant with 3 modes described by the discrete-time model (1) with

D(1) =

[
−0.3 0.2

0.1 −0.2

]
, D(2) =

[
−0.1 0.2

−0.1 −0.1

]
, D(3) =

[
−0.1 0.1

0.1 −0.1

]
;

B(1) =

[
0.2 0.2

0.1 −0.2

]
, B(2) =

[
0.2 0.2

0 0.1

]
, B(3) =

[
0.1 0

0.2 0

]
;

W (1) =

[
0.2 −0.2

0.1 0.2

]
, W (2) =

[
0.1 0.2

0.2 0

]
, W (3) =

[
−0.2 0.1

0.2 0.1

]

and τ(1) = 3, τ(2) = 2, τ(3) = 4; the mode transition probability matrix is given by

Π =




0.6 0.2 0.2

0.1 0.8 0.1

0.2 0.1 0.7


 ,

which means τ̄ = 4, τ = 2 and π = 0.6. The nonlinear functions f(·) and g(·) in (1) are assumed to satisfy

Assumptions 1-2 with

Σ1 =

[
0.2 0.3

−0.1 0.2

]
, Σ2 =

[
0.1 −0.2

0.3 0.2

]
.
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Fig. 1. Topological structure of the sensor network.

The sensor network shown in Fig. 1 consists of 6 nodes with interconnection topology characterized by the

adjacency matrix

A =




1 1 1 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 1 1 1 1

0 0 0 0 0 1




,

which illustrates that Sensor 1 receives information from Sensors 2-4, Sensor 5 receives information from

Sensors 3,4,6, but Sensors 2,3,4,6 receive no information from other sensors. The dynamics of the 6 sensors

are described by equation (2) with

C1(1) =

[
−0.2 0.1

−0.1 0.2

]
, C1(2) =

[
0 0.1

0.1 −0.1

]
, C1(3) =

[
0.2 0

0 0.1

]
;

C2(1) =

[
0.2 −0.2

0.1 0.2

]
, C2(2) =

[
0.1 0.2

0 0.1

]
, C2(3) =

[
0.1 −0.1

0.1 0.2

]
;

C3(1) =

[
−0.2 0.1

0.2 0.3

]
, C3(2) =

[
0.2 −0.1

0 0.1

]
, C3(3) =

[
−0.1 0

0.2 0.1

]
;

C4(1) =

[
0.2 0.2

0 0.3

]
, C4(2) =

[
0.1 0

−0.1 0.2

]
, C4(3) =

[
−0.1 0

0.1 −0.1

]
;

C5(1) =

[
−0.2 0

−0.1 −0.1

]
, C5(2) =

[
−0.1 0.2

0 0

]
, C5(3) =

[
0 0

0.1 −0.2

]
;

C6(1) =

[
0.2 0.1

−0.2 0

]
, C6(2) =

[
0.2 −0.2

0.1 −0.1

]
, C6(3) =

[
0.1 0.2

−0.2 0

]
.
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The parameter uncertainties satisfy conditions (4)-(5) with

E1(1) =

[
0.1

−0.1

]
, E1(2) =

[
0.1

0.2

]
, E1(3) =

[
0

0.1

]
;E21(1) =

[
−0.1

0.1

]
, E21(2) =

[
0.1

0

]
,

E21(3) =

[
0

0.2

]
;E22(1) =

[
0

0.2

]
, E22(2) =

[
0.1

−0.1

]
, E22(3) =

[
−0.1

0.1

]
;

E23(1) =

[
0.1

−0.1

]
, E23(2) =

[
0

0.2

]
, E23(3) =

[
0.1

0.2

]
;E24(1) =

[
0.2

0.1

]
,

E24(2) =

[
0.1

0.2

]
, E24(3) =

[
0.1

0

]
;E25(1) =

[
0.1

0.2

]
, E25(2) =

[
−0.1

0

]
,

E25(3) =

[
0.2

−0.1

]
;E26(1) =

[
0.1

0

]
, E26(2) =

[
0.1

0.2

]
, E26(3) =

[
0.1

0.1

]
;

M1(1) =
[
0.1 0.2

]
,M1(2) =

[
−0.1 0.2

]
,M1(3) =

[
0 0.1

]
,M2(1) =

[
0.2 0

]
,

M2(2) =
[
0.1 −0.1

]
,M2(3) =

[
0 −0.1

]
,M3(1) =

[
−0.1 0.1

]
,M3(2) =

[
0.2 −0.1

]
,

M3(3) =
[
0.1 0.1

]
;M4(1) =

[
−0.1 0.1

]
,M4(2) =

[
0.1 −0.2

]
,M4(3) =

[
0.2 0

]
.

With the above parameters, by resorting to the Matlab toolbox, the matrix inequalities in (30)-(31) are

solvable with feasible solution as follows (here only some of the matrices are listed for space saving):

ε1 = 13.3632, ε2 = 50.4805, δ1 = 14.4284, δ2 = 13.4711,

P1(1) =

[
14.5824 1.7032

1.7032 15.5435

]
, P2(2) =

[
14.4964 0.8935

0.8935 14.8581

]
, P3(3) =

[
14.8398 1.4817

1.4817 14.8786

]
,

P4(1) =

[
14.5694 1.5955

1.5955 14.9914

]
, P5(2) =

[
14.4554 0.9990

0.9990 14.8456

]
, P6(3) =

[
14.8805 1.4923

1.4923 14.8647

]
,

P7(1) =

[
14.5396 1.6435

1.6435 15.0343

]
, Q11 =

[
8.9461 −0.0047

−0.0047 8.9307

]
.

From Theorem 2, we know that system (6) is a robustly distributed state estimator of the Markov-type

dynamic system (1) with measurement outputs (2). The estimation gain matrices can be obtained from (32)

as follows

K11(1) =

[
1.1380 0.5299

−0.1974 −0.8014

]
,K12(1) =

[
0.0211 0.0869

0.0213 0.0877

]
,K13(1) =

[
0.0407 −0.0113

0.0402 −0.0111

]
,

K14(1) =

[
0.0648 −0.0235

0.0690 −0.0250

]
,K22(1) =

[
−1.3023 −0.2051

0.6984 −0.2023

]
,K33(1) =

[
1.4388 0.1756

−0.8127 −0.3919

]
,

K44(1) =

[
−1.2707 1.5833

0.5028 −1.0010

]
,K53(1) =

[
0.0532 −0.0147

−0.0883 0.0244

]
,K54(1) =

[
0.0853 −0.0309

−0.1433 0.0520

]
,

K55(1) =

[
2.3527 −1.5978

−1.2534 1.3268

]
,K56(1) =

[
0.2769 0.2854

−0.4593 −0.4735

]
,K66(1) =

[
1.1286 2.6005

−1.1294 −1.6011

]
;
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K11(2) =

[
0.9209 −1.0391

−1.8212 −0.9115

]
,K12(2) =

[
−0.1467 0.3593

0.2878 −0.7048

]
,K13(2) =

[
−0.0176 −0.1056

0.0371 0.2207

]
,

K14(2) =

[
−0.0714 −0.0329

0.1442 0.0663

]
,K22(2) =

[
0.2918 0.8373

−0.4807 −0.2707

]
,K33(2) =

[
−0.6959 0.3358

−0.3032 −0.3285

]
,

K44(2) =

[
−0.7166 0.6706

−0.5977 −0.0851

]
,K53(2) =

[
−0.0009 −0.0051

−0.0021 −0.0113

]
,K54(2) =

[
−0.0047 −0.0021

−0.0104 −0.0046

]
,

K55(2) =

[
1.0006 0

−0.2424 0

]
,K56(2) =

[
−0.3429 0.6859

0.0602 −0.1203

]
,K66(2) =

[
−1.0012 0.5051

−0.0103 0.0150

]
;

and

K11(3) =

[
−0.4937 0.8411

0.4937 −0.8392

]
,K12(3) =

[
0.0387 −0.0080

−0.0381 0.0079

]
,K13(3) =

[
−0.7443 −0.3208

0.7445 0.3208

]
,

K14(3) =

[
−0.1473 −0.0732

0.1491 0.0741

]
,K22(3) =

[
−0.7439 −0.0522

0.7429 0.0524

]
,K33(3) =

[
0.4997 −0.0776

−0.4970 0.0787

]
,

K44(3) =

[
−0.0001 −1.0000

0.0040 1.0020

]
,K53(3) =

[
0.0001 0.0001

−0.0112 −0.0049

]
,K54(3) =

[
0.0000 0.0000

−0.0005 −0.0003

]
,

K55(3) =

[
−0.2948 −0.5892

0.3097 0.5892

]
,K56(3) =

[
0.0000 0.0000

−0.0009 −0.0011

]
,K66(3) =

[
0.2764 0.4779

−0.2757 −0.4770

]
.

Remark 3: In this paper, the sensor network consists of n modes and the network switches from one mode

to another according to a Markov chain with known transition probability. In our future work, we could

further consider two independent Markovian jumping modes for node switching as well as network topology

switching, which would reflect more features of the complexity. On the other hand, the topology for many

sensor networks in a real world can be described by a random graph and the study about random dynamical

networks is therefore quite interesting and useful. One of our future research topics would be the extension

of our results to random dynamical networks.

V. Conclusions

In this paper, we have studied the state estimation problem for a class of Markov-type uncertain dynamical

systems with mode-dependent distributed delays. Through the measurement outputs obtained by the sensors

in sensor networks, a distributed state estimator has been designed to estimate the states of the dynamical

plant. By resorting to the Lyapuonv stability theory and the matrix inequality techniques, sufficient criteria

have been obtained to ensure the estimation error system to be robustly asymptotically stable in the mean

square sense which in turn show that the designed estimator is a robustly distributed state estimator of the

original plant system. Furthermore, the estimation gains have been explicitly characterized by the solution

of the matrix inequality conditions. Finally, an illustrative example has been given to demonstrate the

effectiveness of our results. Future research topics include the extension of the present results to other systems

such as fuzzy systems [30,31] and networked control systems [17,17,23,25].
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