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Abstract 

Decision making under uncertainty is an important yet challenging task; a number 

of alternative paradigms which address this problem have been proposed. Stochas-

tic Programming (SP) and Robust Optimization (RO) are two such modelling ap-

proaches, which we consider; these are natural extensions of Mathematical Pro-

gramming modelling. The process that goes from the conceptualization of an SP 

model to its solution and the use of the optimization results is complex in respect to 

its deterministic counterpart. Many factors contribute to this complexity: (i) the 

representation of the random behaviour of the model parameters, (ii) the interfac-

ing of the decision model with the model of randomness, (iii) the difficulty in solving 

(very) large model instances, (iv) the requirements for result analysis and perfor-

mance evaluation through simulation techniques. An overview of the software tools 

which support stochastic programming modelling is given, and a conceptual struc-

ture and the architecture of such tools are presented. This conceptualization is pre-

sented as various interacting modules, namely (i) scenario generators, (ii) model 

generators, (iii) solvers and (iv) performance evaluation. Reflecting this research, 

we have redesigned and extended an established modelling system to support 

modelling under uncertainty. The collective system which integrates these other-

wise disparate set of model formulations within a common framework is innovative 

and makes the resulting system a powerful modelling tool. The introduction of sce-

nario generation in the ex-ante decision model and the integration with simulation 

and evaluation for the purpose of ex-post analysis by the use of workflows is novel 

and makes a contribution to knowledge. 
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Chapter 1 Introduction and Background 

“God does not play dice” (Albert Einstein, paraphrased from a letter to Max Born, 4 

December 1926) 

1.1 Optimum decision making under uncertainty 

Optimum decision making is concerned with the general problem of computing an 

optimal decision by taking into consideration parameters, their uncertainties and 

restrictions relevant to it. A significant aspect of moving from a qualitative approach 

to a quantitative approach is the introduction of Mathematical Programming (MP) 

paradigm.  

Mathematical Programming models enable the modeller to quantify the effects of 

the decision in terms of the objectives set by the decision maker and these model 

are formulated to ensure that the decision does not violate any of the restrictions. 

Such models express the objectives as functions of the decision variables, which are 

restricted to take values on certain domains. The objective functions are maximized 

or minimized; in case of only one objective function, the problem is called a single 

objective problem and the solution consists of a set of values of the decision varia-

bles which represent the optimum decision, in case of more than one objective 

function, the problem is referred to as a multi-objective problem, and the product 

of the optimization is a Pareto efficient set of values of the decision variables, which 

represent trade-offs between the values of all objective functions. 

In this thesis, we restrict the scope to single objective optimization problems, how-

ever, most concepts and results are easily extended to a multi-objective context. 

A single objective optimization problem is expressed as shown below.  

Given a function  

     →    1.1 

The computational model is to search (for a minimization problem), for an element 

      such that             for all    . 

http://en.wikipedia.org/wiki/Uncertainty
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MP models can be further classified by two main criteria: the form of the domain   

and the type of the decision variables and the objective function.  

Linear Programming (LP) models are characterised by constraints and an objective 

function which are linear combination of the decision variables while Quadratic 

Programming (QP) models can have quadratic terms in the objective function. De-

pending on the type of decision variables, the optimization models are classified as 

Integer Programming (IP) models if all the variables are integer or Mixed Integer 

Programming (MIP) models if some of the variables are integers and the remaining 

are continuous. Following the criteria regarding the form of   we have Second Or-

der Cone Programming (SOCP) models if some constraints are quadratic, see (Lobo 

et al., 1998) and generic Conic Optimization models if   is a convex cone.  

Linear Programming (LP) models were first introduced in the 40’s, by early re-

searchers such as Kantorovich, Dantzig and Von Neumann. LP has found many ap-

plications in diverse fields involving planning and scheduling. Typical examples are 

supply chain logistics, financial planning and despatch of energy (electricity or gas). 

The enormous growth in computational power, as well the development of new 

mathematical techniques and software tools to formulate and solve these classes of 

problems has made it possible to apply these models to real world situations in 

which the number of variables and constraints can be very large.  

It is out of the scope of this thesis to provide a comprehensive history of all MP par-

adigms; what is important is that their success has showed up their limitations. A 

fundamental assumption for this class of decision models is that the parameters 

which define the models are known with certainty. This assumption of certain 

knowledge (deterministic) in many cases does not hold. 

Consider for example the future commodity prices or interest rates in a financial 

planning model, the hourly energy demand in an energy network problem or the 

demand for a particular characteristic in a blending model: assuming these parame-

ters are known with certainty at solution time could lead to solutions that are not 

optimal or even not feasible in the real world. 
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In the field of optimum decision making under uncertainty, the assumption of a de-

terministic world is relaxed and different procedures and paradigms arise. 

A first step in applying MP techniques to a non-deterministic setup is to consider 

parameters estimation as central in the modelling process, however, in spite of 

much care put into forecasting the outcome of non-deterministic events, the fore-

cast could always be incorrect or not precise. The modeller needs therefore to take 

into account the effects introduced by the uncertainty into the underlying optimisa-

tion models and study how the inevitable defects in the forecasting process can af-

fect the quality of the solution obtained.  

Sensitivity analysis is therefore introduced to study the effect on the solution ob-

tained for changes in the parameter values used. It is presented in greater detail by 

many researchers, among which (Arriola & Hyman, 2009). This approach has draw-

backs and limitations, as discussed in (Higle & Wallace, 2003), (Wallace, 2000) and 

(Dupačová, 2002). 

Many researchers have postulated MP paradigms such as Stochastic Programming, 

Dynamic Programming and Robust Optimisation to consider parameter variations. 

In these approaches the modeller can make better use of assumptions he is able to 

make about the uncertainty related to the problem. In many cases, it is possible to 

model the uncertainty itself by means of probability distributions. Stochastic Pro-

gramming models and Dynamic Programming models make use of this added in-

formation about the uncertainty to provide optimal decisions which hedge against 

future uncertainties. Robust Optimisation is an alternative uncertainty aware mod-

elling paradigm in which very few assumptions about the distributions are made, 

but nevertheless leading to solutions which are stable in respect to the uncertain 

future outcomes. In this thesis we focus mainly on Stochastic Programming, how-

ever, some aspects of Robust Optimisation are also considered and presented, as 

the implemented software system provides language features to support the for-

mulation of problem classes with uncertain parameters. 
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1.2 Stochastic Programming Models 

Stochastic Programming (SP) is now a well-established approach to decision making 

under uncertainty; SP requires the explicit inclusion of the uncertainty in the form 

of probability distributions of the model parameters which are random. The SP 

models can be further categorized by the way in which the uncertainty is expressed 

and dealt with in the underlying optimisation model. 

The classification of stochastic programming problems shown in Figure 1 is based 

on the taxonomy proposed by (Gassmann & Ireland, 1996). It has been extended 

with the introduction of the Expected Value models, the problems with Chance 

Constraints and the problems with Integrated Chance Constraints. The alternative 

paradigms (Dynamic Programming and Robust Optimisation) are shown aside, to 

contextualise them in the broad area of modelling under uncertainty. 

 

Figure 1 Paradigms for modelling under uncertainty 
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Definition of a personal planning model  

A simple example has been devised to illustrate the different classes of models in 

this chapter. For each class of SP problems introduced, a subsection titled Example 

will contain some considerations in reference to this model, formulated in the con-

sidered class. The first formulation is deterministic, as a linear optimization prob-

lem, and reads as follows. 

This model focuses on personal time management. The subject is a person, who has 

various duties D to perform (i.e. a study related project and a work related one) and 

to finish by the end of the time horizon (the time set is T, and its members are the 

days which have to be planned).  

The duties require an amount of work units each (     ; work units are completed 

allocating  work hours to that task (Wdt ).  

The subject has different productivity (Pdt) in terms of work units done per hour in 

the different tasks (he might be consider better talented for one or the other duty) 

and also the productivity changes among the planning horizon.   

The aim is to minimize the stress, which is modelled as proportional to the amount 

of overwork Ot the subject undertakes each day (the over-deviation on the average 

working hours HA) and is diminished by under-work Ut  (amount of hours devoted 

to other, relaxing activities). 

 In each day which is part of the time horizon, the subject has to decide how many 

hours to work on each task, taking care not to avoid the maximum allowed working 

hours a day H.  

Table 1 below shows a possible list of the entities for this model. 
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Type Name Nota

ta-

tion 

Description Dimen-

sions 

Unit of 

measure 

In
d

ic
e

s 

(s
et

s)
 DUTIES D Duties to be done   

TIME T Time periods   

P
ar

am
et

e
rs

  

(d
at

a)
 

Wakin 

Hours 

H  Max work hours per day  [hours] 

StressFactor S Stress factor of overwork  [hours-1] 

RelaxFactor R Relax factor of underwork  [hours-1] 

Work  

Required 

    Work units required DUTIES [units] 

Productivity Pdt Productivity DUTIES, 

TIME 

[units/hour] 

 

Average 

Work 

HA Average work hours per 

day 

 [hours] 

V
ar

ia
b

le
s 

Work Wdt  Amount of work to un-

dertake 

DUTIES, 

TIME 

[hours] 

UnderWork Ut Amount of rest  TIME [hours] 

OverWork Ot Amount of overwork TIME [hours] 

Table 1 Personal planning model entities 

Objective function 

The objective of the model is to minimize the stress level of the person on all the 

planning horizon. It is defined as increased, by a factor, by the number of hours of 

overwork each day and decreased, by another factor, by the number of hours of 

underwork (relax). 

    ∑         

   

 1.2 

Day Length constraints 

Each day in the planning horizon, there is a maximum number of hours the subject 

can work. It can be assumed to be determined by the physical length of the day or 

by health regulations. The model would try to allocate as many working hours as 
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possible on the days in which productivity is high; this constraint serves to make the 

solution respect the length of the days, putting a hard limit to the total work under-

taken in each day. 

 ∑      

   

      1.3 

Deviation Definition constraints  

This constraint is what defines the amount of work below and over the average (   

and  ) that the subject undertakes every day. Being the two named variables de-

fined as positive, if there is any variation between the total amount of work allocat-

ed for the day and the average working hours, it will be stored in these variables by 

the constraint, as expressed in equation 1.4. 

 ∑              

   

      1.4 

Figure 2 below illustrates the concept of over and under work. 

 

 

Task completion constraint 

Each task has to be completed at the end of the time horizon, by means of allocat-

ing working hours to them. The amount of work units completed for each hour de-

pends by the productivity    , which is here a multiplier of the amount of work 

hours allocated. The constraint is expressed as in equation 1.5. 

 ∑          

   

      1.5 

0 HA 

Work 

OverWork 

UnderWork 

Work 

Figure 2 Personal planning model: Deviation definition constraint 
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Linear programming 

These problem classes can be illustrated by first considering the linear program-

ming problem: 

         

subject to      

    

where                     

1.6 

 

Let P denote a probability distribution,   be a sigma field and the triplet         

be a probability space where     denote the realizations of the uncertain pa-

rameters. Let the realizations of A, b, c for a given event   be defined as:  

                     1.7 

The associated probabilities of these realizations are often denoted as         

or      . For notational convenience these probabilities are denoted simply 

as     . 

For the same reason, let the feasible regions corresponding to the problem stated 

in 1.6 and 1.7 be defined as: 

    {          }  for      1.8 

   

Example. Deterministic to stochastic 

The personal planning model introduced above can be summarized as follows: 

    ∑         

   

 

              ∑      

   

      

∑             

   

      

∑          

   

      

            ,              

1.9 
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This is a deterministic linear problem; it can be formulated and solved directly, us-

ing normal LP techniques. It is formulated in Chapter 2 using AMPL and SAMPL; the 

focus of this chapter is on the introduction of uncertainty only, therefore suffices to 

say that, given appropriate values to the parameters, it is possible to construct the 

matrix A and the vectors b and c, then solve the problem via simplex or interior 

point methods. 

Possible values for the productivity are, supposing that the set T contains items cor-

responding to three time periods, and that the set of duties D contains the items 

“work” and “study”: 

TimePeriod work study 

1 1 0.9 

2 0.9 1.2 

3 1.3 1.3 

Table 2 Personal planning model: deterministic productivity 

The different productivity values in the various time periods can be interpreted as 

different amount of distractions the person has to cope with each day. A productivi-

ty factor of 1 is “nominal” productivity; a factor lower than 1 means that the person 

is not as productive as he normally is, maybe due to distractions or lack of concen-

tration. A factor greater than 1 can be interpreted as an indicator of a “good day”: a 

day in which the person is very proficient in the task at hand. 

Supposing that the productivity     is not known with certainty, as the person 

might not know how good he will perform the next days in advance, the Stochastic 

Programming approach requires us to model our productivity forecasts for each pe-

riod in the time horizon. Depending on how the forecast is generated (the infor-

mation structure) and how the decision variables are reflecting it, this problem can 

be formulated as a single stage, two stage or multistage SP problem, as shown in 

the remainder  of this section.  

In terms of the just introduced theoretical framework, the parameter     now de-

pends on the particular forecast we are in it. Since     was used in the constraint 

matrix  , the introduction of its dependency from the forecast   causes the feasi-
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ble region    to depend on the particular succession of realizations we have. To 

optimize the strategy, despite this uncertainty, is the aim of Stochastic Program-

ming.  

Distribution based versus Scenario based recourse problems  

The problem defined in 1.6, 1.7 and 1.8 is a mathematical programming model with 

uncertainty about the values of some of the parameters. If the distribution of      

is continuous, the problem is called a distribution based recourse problem 

(Gassmann & Ireland, 1996); except from some trivial cases, such problems cannot 

be solved.  If the distribution is discrete, the cardinality of the support is limited by 

the available computing power, therefore in most practical applications the distri-

butions of the stochastic parameters have to be approximated by discrete distribu-

tions with a limited number of outcomes (Kaut & Wallace, 2003).  

In the discrete statement of the problem given by 1.6, 1.7 and 1.8, the event pa-

rameter takes the range of values          ; there are associated random vec-

tor realisations      and probabilities      such that: 

 ∑            and     ⋃         1.10 

 

The discretization   is usually called a set of scenarios, and its representation fol-

lowing the dynamic structure of the problem is a scenario tree. A stochastic prob-

lem whose event outcomes are represented by a scenario tree is called scenario 

based recourse problem. In this thesis only this class of models are considered. 

Stochastic Programming Problems with Recourse  (Here and now) 

a. Single stage SP Problems 

A simple (single stage) stochastic programming model is formulated as: 

         [     ] 

where      

and   ⋂   
    

1.11 
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The optimal objective function value     denotes the minimum expected costs of 

the stochastic optimisation problem. The optimal solution    
    hedges against 

all possible events      that may occur in the future. 

Example 

In a single stage model, we give scenarios for the productivity parameter; they cor-

respond to different “general moods”, ordered from the least productive to the 

most. They have been obtained simply multiplying the base productivity given in 

Table 2 by a factor, which was increasing with the mood. The parameter     will 

then be dependent on the scenario we are in, thus becoming     . 

 s1 s2 s3 

work(1) 0.8 1 1.3 

work(2) 0.72 0.9 1.17  

work(3) 1.04 1.3 1.69 

study(1) 0.72 0.9 1.17 

study(2) 0.96 1.2 1.56 

study(3) 1.04 1.3 1.69 

Table 3 Personal planning model: single stage productivity realizations 

This creates productivity scenarios, which can be visualized as in the left part of Fig-

ure 3 below. 

 

Figure 3 Personal Planning: Single stage data and solution structure 

An optimal strategy, shown in green in Figure 3, is given by the implementable deci-

sion variables    , and it is a strategy to be followed in each time period and for all 

1 2 3     days 

      

1 2 3     days 

   

, 

Data Solution 
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scenarios. It optimizes the model 1.12, in which Sc is the set of all scenarios and Prs 

is the parameter which stores their probability. 

    ∑         

   

 

              ∑      

   

      

∑             

   

      

∑           

   

            

                       

1.12 

The obtained solution     is by formulation feasible in each scenario and it does 

not depend on any dynamically available information on the uncertainty. Further-

more, note that the objective function for this model in this formulation does not 

consider scenarios at all. This is not generally the case, as the objective function 

could have parameters which depend on scenarios. 

b. Two-stage SP Problems 

The  classical two-stage SP model with recourse is formulated as: 

             [       ] 

subject to      

    

1.13 

where: 

                     

subject to                    , 

        

    

1.14 

 

The matrix A and the vector b are known with certainty. The function       , re-

ferred to as the recourse function, is in turn defined by the linear program set out in 

1.14. The recourse matrix     , the right-hand side     , the technology 

trix     , and the objective function coefficients      of this model may be ran-

dom. If the recourse matrix D is fixed for all realizations then the problem is known 
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as SP problem with fixed recourse; if D takes the form         , it is known as SP 

problem with simple recourse. 

Two-stage Stochastic Programming problems with recourse separate the model’s 

decision variables into first stage and second stage. The dynamic nature of the 

problem can be easily seen: an optimal first-stage decision x is determined such 

that it is feasible for all realisations     and has the minimum cost, while the se-

cond-stage decision      is taken after the outcome   is observed, and compen-

sates and adapts to different realisations. 

Example 

In a two stage model, we allow part of the decision variables (the recourse actions, 

or second stage variables) to depend on the scenario we are in, and therefore react 

to it. It therefore requires data which distinguish between a first stage in which we 

know with certainty our parameters, and a second stage in which we have to make 

forecasts. 

We can reuse the data generated for the single stage model, taking care of the fact 

that at time period 1 all the productivity values should be certain (i.e. equal for all 

scenarios). In our case, we decide that the person knows what his mood at day 1 is, 

and can therefore assume his productivity for that day as certain. The resulting data 

is displayed below. 

 s1 s2 s3 

work(1) 1 1 1 

work(2) 0.72 0.9 1.17  

work(3) 1.04 1.3 1.69 

study(1) 0.9 0.9 0.9 

study(2) 0.96 1.2 1.56 

study(3) 1.04 1.3 1.69 

Table 4 Personal planning model: two stage productivity realizations 

The same kind of decision is taken for the decision variables, we therefore allow for 

decisions at day 2 and 3 to depend on scenario. The resulting data structure and 

solution structure is displayed in Figure 4 below. 
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Figure 4 Personal planning model: Two stage data and solution structure 

The corresponding problem is: 

    ∑    
    

∑           

   

 

              ∑       

   

            

∑                

   

            

∑            

   

            

                              

 

1.15 

in which it is clearly shown that the decision variables are now scenario dependant. 

This would not be true for the decision variables at the first time period, as we de-

cided to place them in stage one, but it is often written in this way to simplify the 

notation. This way of formulating the model is called explicit non-anticipativity, as 

shown in Section 1.3. To enforce the expected behaviour, we use constraints forc-

ing the values of the variables to be equal across all scenarios, for all time periods in 

which these variables are in stage 1. These constraints are called non-anticipativity 

constraints. For this model, they are written below: 

                        -{1} 

                 -{1} 

                 -{1} 

1.16 

1 2 3     days 1 2 3     days 

Data Solution 
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c. Multi stage SP Problems 

The class of two-stage problems specified by 1.13 and 1.14 can be extended to the 

multistage recourse program considering a more complex dynamic setting: instead 

of having the two decisions x and     , we consider now T sequential decisions 

       …,    to be taken at the stages t = 1, 2, .., T. The term “stages” can, but need 

not, be interpreted as “time periods”; although these concepts coincide in many 

applications, a stage can be regarded in general as a step where new information 

about the state of nature is provided.  

A decision made in stage t should be based on the knowledge of the previous deci-

sions and realisations (                    and such decision only affects the sub-

sequent decisions (                . In Stochastic Programming this concept is 

known as non-anticipativity and has to be taken into account when formulating the 

problem in a deterministic equivalent setting. The multistage stochastic program-

ming recourse problem has the form (following (Dempster, 1988), (Ermoliev & 

Wets, 1988)): 

           [     
                      [     

    ] ] 

                  subject to                                                                                                    

                                                                                                                             

                                                                                                                   

                                          .                               . 

                                          .                                          .                                 

                                                                                                

                  with                  , t = 1,...,T 

1.17 

 

 

 

  



` 

16 | P a g e  
 

Example 

As a simple productivity model, we assume that, each day, the person can be either 

in a good (productive) or a non-productive mood, and the mood influences equally 

the productivity in all the duties. The mood in each time period is supposed to be 

independent from all the others. 

The proposed forecasts are therefore easily represented in the following way: 

 

Figure 5 Personal planning model: Multistage data and decision structure 

Realizations for the productivity parameter can therefore be represented by the 

following table, where productivity is multiplied by a parameter g in case of good 

mood and by a parameter b in case of bad mood. 

 1 2 3 4 

work(1) 1 1 1 1 

work(2) 0.9g 0.9g 0.9b 0.9b 

work(3) 1.3g 1.3b 1.3g 1.3b 

study(1) 0.9 0.9 0.9 0.9 

study(2) 1.2g 1.2g 1.2b 1.2b 

study(3) 1.3g 1.3b 1.3g 1.3b 

Table 5 Personal planning model: mood forecast realizations 

The decision variable at each time period can depend on knowing the information 

up to that time period; this means that each time period corresponds to a stage. 

This staging information must be enforced by mean of non anticipativity con-

straints, which are shown below for the variable     . 

g = good mood 

b= bad mood 

1 2 3     days 

      

      

      

      

      

      

      

      

g 

g 

g 
b 

b 

b 

1 2 3     days 

Data Solution 
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                        -{1} 

                   

                   

1.18 

d. Chance Constraints  

The chance-constrained programming problems (CCP) were first introduced in 

(Charnes & Cooper, 1959). This class of problems deals with the fact that, however 

in representing a SP problem modellers often use the goal programming approach 

(i.e. penalties in the objective for violations in the constraints) to account for con-

straints violations, sometimes it is not possible to quantify the penalty, or penalties 

cannot be modelled in any reasonable way. The CCP approach considers a decision 

feasible whenever it is feasible with a high probability. A probabilistic or chance 

constraint can be expressed as follows: 

               1.19 

where x and   are respectively decisions and random vectors, P is a probability 

measure and   {   } is called the probability or reliability level. 

In a two-stage SP problem with m random constraints and defining   {     }, 

we distinguish between individual chance constraints 

                         1.20 

and joint chance constraints 

                        1.21 

Chance constraints are inherently a qualitative risk measure, and have been used in 

a wide range of applications (see, among many others, (Schwaiger, 2009) and refer-

ences in (van der Vlerk, 1996-2007)) however there are applications in which quan-

titative risk measures are more appropriate. Another sometimes undesirable char-

acteristic of chance constraints problems is that they are non-convex in general; in 

particular, this is true if the underlying random vector   follows a discrete distribu-

tion (Dentcheva et al., 2000). 
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Example 

In the personal production model, we might want to allow for a certain probability 

of failure in completing the tasks in the predetermined time horizon. Considering 

the Task Completion constraint (see equation 1.5), we can therefore express it as 

two individual chance constraints, as in: 

 
 (∑            

   

)         

 

1.22 

The individual chance constraints 1.22 above guarantee that the subject will reach 

(independently) the end of each duty, with a probability    The probability of reach-

ing the end of all the tasks is not constrained. 

To control the combined probability of failure among all the tasks, the constraint 

can be reformulated as a joint chance constraint, where the decision guarantees 

that the subject will reach the end of all duties with probability    

 
 (∑            

   

     )       

 

1.23 

e. Integrated Chance Constraints 

The arguments given in the paragraph above motivated the research of a different 

approach; Integrated Chance Constrained Programming has been introduced in 

(Haneveld, 1986) as an alternative, quantitative and in general convex approach to 

control and measure feasibility in a SP problem. The ICCP approach considers a 

problem to be feasible if the expected violation of the constraint is less than a pre-

defined value. Integrated Chance Constraints (ICC) are defined in (Haneveld, 1986) 

as the individual integrated chance constraints: 

   [        ]              1.24 

and the joint integrated chance constraints: 

   [              ]           1.25 
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where          represents the under-deviation that occurs in constraint i under 

realisation  , and    is called the shortfall parameter and it limits the (maximum) 

expected shortfall in the (set of) ICCs. 

Applications of Integrated Chance Constraints are found in many fields, but their 

application in finance defines one important class, as it connects to the well-known 

Conditional Surplus-at-Risk (CSaR, a variant of Conditional Value at Risk (CVaR)), see 

(Fábián & Veszprémi, 2008). 

Example 

Going back to the same model, we might want to allow for a certain average 

“amount” of failure in completing the tasks. The amount of failure could be ex-

pressed as the amount of  units still needed to complete them. To do so, we can 

express the Task Completion constraint as two individual integrated chance con-

straints, as in: 

 
 [(∑               

   

)

 

]         

 

1.26 

The constraints above guarantee that the subject will, in average, not miss more 

than   work units of each task at the end of the planning horizon. 

 As done for the chance constraints, a Joint Integrated Chance Constraint can be 

expressed as follows: 

 
 [   

    
(∑               

   

)

 

 ]       1.27 

This formulation controls the expected maximum units behind schedule among all 

works to be less than    

Expected value problem 

The Expected Value (EV) model is constructed by replacing the random parameters 

by their expected values. Such an EV model is thus a linear program, as the uncer-

tainty is dealt with before it is introduced into the underlying linear optimisation 
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model. It is common practice to formulate and solve the EV problem in order to 

gain some insight into the decision problem.  

Denoting with    
  the decision vector resulting from the optimization of the ex-

pected value problem, its evaluation against all possible scenarios: 

 
     ∑     

 

   

 

where         
   

 

takes the name of Expectation of the Expected Value solution. If there are scenarios 

s for which    
  is not feasible, then      is set to be  . 

Wait and see problems 

Wait and See (WS) problems assume that the decision-maker is somehow able to 

wait until the uncertainty is resolved before implementing the optimal decisions. 

This approach therefore relies upon perfect information about the future; opera-

tively, we solve one separate LP problem for each available scenario, thus obtaining 

the optimal strategy in each scenario. Because of its very assumptions such a solu-

tion cannot be implemented and is known as the “passive approach”. Wait and see 

models are often used to analyse the probability distribution of the objective value. 

We assign to the expectation of the objective values of all the solved Wait and See 

models the notation    . 

 
    ∑     

 

   

 

            

              

 

Stochastic Measures 

It can be shown that the three objective function values              are con-

nected by the following ordered relationship: 

              



` 

21 | P a g e  
 

The inequality:  

          

can be argued in the following way: any feasible solution of the average value ap-

proximation is already considered in the Here and Now model, therefore the opti-

mal Here and Now objective must be better.  

The value of the stochastic solution (VSS)  

The difference between these two solutions defines the Value of the Stochastic So-

lution (VSS) for a minimisation problem: 

             

This is a measure of how much can be saved by implementing the (computationally 

expensive) Here and Now solution as opposed to the deterministic expected value 

solution. The practical computation of VSS is strictly related to the approach used in 

the computation of ZEEV . 

The expected value of perfect information (EVPI)  

Another important index is represented by the Expected Value of Perfect Infor-

mation (EVPI): 

EVPI         

This measure of a stochastic optimisation problem is interpreted as the expected 

value of the amount the decision maker is willing to pay to have perfect infor-

mation (i.e. knowledge) about the future scenarios. A relatively small EVPI indicates 

that better forecasts will not lead to much improvement; a relatively large EVPI 

means that incomplete information about the future may prove costly.  

Bounds on EVPI and VSS 

Some useful bounds on the EVPI and VSS are presented below:  
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These can help in estimating the relative benefit of implementing the computation-

ally costly Stochastic Programming solution, as opposed to approximate solutions 

obtained by processing the Expected Value LP problem. 

Robust Optimization 

Modelling a problem following the Stochastic Programming approach requires the 

analyst to make strong assumptions on the nature of the uncertainty, that is, to 

supply or postulate probability distributions of the random parameters. There are 

cases in which it is impossible, or not practical, to give reasonable estimates of the-

se probability distributions but in which the robustness of the solution obtained is 

vital anyway. The first set of studies which addressed these questions was due to 

Soyster (Soyster, 1973) and led to a framework which is now established as Robust 

Optimization (RO).  

There are now three well known formulations of RO problems; these are given by 

the above mentioned Soyster, Ben-Tal and Nemirovski (see (Ben-Tal & Nemirovski, 

1998), (Ben-Tal & Nemirovski, 1999), (Ben-Tal & Nemirovski, 2000)) and Bertsimas 

and Sim (Bertsimas & Sim, 2004). They all share the advantage that minimal as-

sumptions about the nature of the uncertainties have to be made and they differ in 

respect of the ways in with which they represent the uncertainty sets. More specifi-

cally, the formulations by Soyster and by Bertsimas and Sim use polyhedral uncer-

tainty sets, while the formulation by Ben-Tal and Nemirovski considers an ellipsoi-

dal uncertainty set, transforming the original LP problem into a Second Order Cone 

Programming (SOCP) problem. The solution of these RO problems addresses an im-

portant question as to how much optimality for the nominal problem is given up in 

order to ensure robustness and changes the class of the resulting problem. 
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Consider the following nominal linear optimisation problem: 

           

          ∑    

 

   

   

      

where                     

1.28 

and assume that data uncertainty only affects elements in matrix A.  

The uncertainty model U we consider is the following: 

For a particular row i of the matrix A let    represent the set of coefficients in row i 

that are subject to uncertainty. Each entry          is modelled as a symmetric and 

bounded random variable  ̃        that takes values in [     ̌        ̌  ], 

where  ̌     is the deviation of variable  ̃   around its mean value    . Associated 

with the uncertain data  ̃  , we define the random variable       ̃         ̌  , 

which obeys an unknown but symmetric distribution, and takes values in [-1,1]. 

Example Consider two parameters  

a. Soyster’s Formulation 

In general, Soyster’s formulation considers the linear optimization problem: 

           

          ∑    

 

   

   

         {

[     ̌        ̌  ] 
 

[     ̌        ̌  ] 
}           

     

1.29 

This is an adaption from the formulation given in (Bertsimas & Sim, 2004), which 

was syntactically incorrect.  

Soyster shows that the problem in 1.29 is equivalent to 
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          ∑ 
 
  

 

   

   

    

where  ̅        ̌              

1.30 

If the uncertainty sets follow the model U, the robust formulation of 1.28 following 

1.30 is as follows: 

         

           ∑     
 

 ∑  ̌    
    

            

-               

      

     

1.31 

It can be shown (Bertsimas & Sim, 2004) that the solution to the problem above 

remains feasible for all realizations  ̃       , although concerns have been raised 

regarding the fact that it trades too much of the optimality of the nominal problem 

to gain this robustness.  

b. Ben-Tal and Nemirovski 

Considering the problem set out in 1.28, the following robust problem is construct-

ed (Ben-Tal & Nemirovski, 2000): 

        

               ∑     
 

 ∑  ̌     

    

 √∑  ̌  
    

 

    

              

-                          

      

     

1.32 

If the uncertainty is represented by the model U, the probability that the i con-

straint is violated is at most     
   ; furthermore the model is proven to be less 

conservative than 1.31 as every solution of the latter problem is feasible to the 

former problem. 
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c. Bertsimas and Sim 

In this approach, a parameter    is introduced, that intuitively controls the trade-off 

between robustness and optimality of the solution. The problem, in its equivalent 

linear formulation, is set out below (Bertsimas & Sim, 2004): 

        

              ∑     
 

      ∑    

    

              

        ̌               

-               

              

                 

         ,           

1.33 

Parameter    takes values in the interval [      ] and it has the effect of protecting 

the feasibility of the solution against all cases in which up to ⌊  ⌋ coefficients 

         will change, and one coefficient     changes by     ⌊  ⌋  ̌  . More for-

mally, the solution will remain feasible deterministically if the realisations behave as 

specified above, and moreover, even if more than ⌊  ⌋  parameters change, then the 

robust solution will be feasible with very high probability.    

Example (Soyster formulation) 

Going back to the personal planning example, the planner might not be able to 

know anything about his future productivity rates but the fact that they will range 

between around their mean value (which is given by Table 2). We denote the ampli-

tudes of the ranges   ̌, which for simplicity is supposed constant in time. This 

means that for each t and d, all the productivities are considered as uniformly dis-

tributed in [      ̌        ̌]. 

A Soyster’s formulation of this problem would guarantee that, even in the worst 

case, all the jobs would be finished on time. That is obtained adding some new vari-

ables    , one for each uncertain parameter. The project completion constraints, 

one for each task, will then be reformulated as follows:   



` 

26 | P a g e  
 

 ∑      

   

 ∑      ̌

   

         

                 

                   

 

1.34 

A solution to the problem obtained combining 1.9 with the reformulation above will 

be feasible for each possible future productivities, if they lie in the defined inter-

vals. The logic behind this constraint is simple enough: the amount of work to the 

aim of satisfying the constraint is calculated with the mean value as ∑            

This is then diminished by an amount which correspond to the worse case produc-

tivity, calculated using the range   ̌  and an additional variable     . To ensure that 

the whole constraint represents the worst case productivity, this additional variable 

is defined to be greater or equal than       

1.3 Deterministic Equivalents for SP, CC, ICC, Robust 

Optimization models 

Stochastic programming problems are in general harder to model and solve than 

their deterministic counterparts. In many cases, however, SP models can be trans-

formed into deterministic models, which are investigated using the existing tools 

for LP, MIP or SOCP, depending on the kind of model. Although this approach suf-

fers a number of drawbacks (see section 2.3), it is worth discussing it here, because 

it can still be considered the "standard" approach to modelling SP recourse prob-

lems, given the current capabilities of the algebraic modelling systems and solution 

tools. Chance Constrained and Integrated Change Constrained problems do have 

their deterministic equivalent formulations too, and so do Robust Optimization 

problems; these models fall outside the classical SP framework, but they support 

decision making under uncertainty and are therefore considered. 

1) Stochastic Programming Problems with Recourse 

The deterministic equivalent formulation of a stochastic linear program with re-

course can be constructed when the distributions of the random parameters are 

discrete and are provided either explicitly or in form of scenario data paths, which 

define a scenario tree. It can be shown that a scenario tree can always be derived 
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from the distributions of individual random parameters, by computing the joint dis-

tribution of all random parameters for each stage. Similarly, the distributions of 

random parameters can be determined given a scenario tree. Thus, a distribution-

based recourse problem with discrete and finite probability distributions is trans-

formed into an equivalent scenario-based recourse problem and vice versa.  

There are two representations of a stochastic programming problem in determinis-

tic equivalent form, namely the explicit (or split-variable) and implicit (or compact) 

representations. The general programming problem with recourse set out in Equa-

tion 1.17 is reported below for ease of reading: 

            [     
           [     

      

                   
    ]] 

                  subject to                                                                                                      

                                                                                                                               

                                                                                                                    

                                          .                               . 

                                          .                               .        . 

                                          .                               .        .       . 

                                                                                                  

                  with                  , t = 1,...,T 

and                           [      ] 

1.35 

The uncertainty associated with the random vector    is represented by a multilevel 

event tree, where each level is associated with a stage. Figure 6 shows an example 

of event tree. A scenario s is a path from the root of the event tree to any of the 

leaves (see scenario 5, highlighted in red in the figure). 
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Let    denote the number of nodes in stage t, and let       [      ]    

[     ] denote the k-th node of the t-th stage of the even tree. A probability     

can be associated with each node     such that       {            }. Hence, 

arcs in the tree represent the probability distribution of   . The set of scenarios 

passing through node     are identified by         . In the example shown in Fig-

ure 6, the number of nodes at each stage is:  

                       . 

The composition of the bundles for each stage is given in Table 6 below: 

Stage Bundles 

1          {        } 

2          {       }          {        }            {          } 

3          {   }          {   }              {     } 

4          { }          { }              {  } 

Table 6 Bundles for example event tree 

Given the regular structure of the tree, the bundles of this example are defined in a 

compact form as: 

 
         {  

  

  

        
  

  
 }                1.36 

          

   

    

 

 

   

    

 

 

   

    

 

 

   

    

 

 

   

    

 

 

Figure 6 Event tree 
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where    is the total number of scenarios. Relation 1.36 is valid for any scenario 

tree with a constant number of branches at each node of a given stage. In order to 

build the deterministic equivalent formulation, one needs to consider that the deci-

sions at each stage have to be the same for all scenarios which are indistinguishable 

up to that stage (that is, the decision are based on the same information, due to the 

non-anticipativity, see Section 1.2). The decision variables of the deterministic 

equivalent model need to be replicated to reflect the dependency of recourse ac-

tions on the event tree, that is, the structure of the problem should allow multiple 

decisions to be taken when they are based on different information, and vice versa. 

The choice of the variables replication scheme determines the type of deterministic 

equivalent model, and determines how the non-anticipativity is enforced in the 

model. 

a) Explicit non-anticipativity (split-variable representation) 

In the split variable representation, decisions are replicated for each scenario in 

each time period. Denoting with     the decision at stage t under scenario s, the 

deterministic equivalent problem of equation 1.35 is formulated as follows: 

 
   ∑  

   

∑      

 

   

 

                  subject to                                                                                       

                                                                                                               

                                                                                                    

                                          .                               .        .       .                                               

                                                                                   

                  with                     , t = 1,...,T 

1.37 

It is easily seen that the problem defined in 1.37 does not fully capture the struc-

ture of an event tree, as all variables are replicated for all scenarios independently 

by the dependencies between them. Due to the concept of non-anticipativity, some 

restrictions needs therefore to be added to ensure that if two scenarios    and 

      , are indistinguishable up to a given time period t, that is,    and    follow 

the same path up to stage t, then the related decisions (solutions), up to that stage, 

must also be the same. These restrictions, known as the non-anticipativity con-
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straints, are explicitly added to the model, hence the nomenclature explicit non-

anticipativity. Formally: 

                                    1.38 

The non anticipativity constraints for the event tree specified in Figure 6 and Table 

6 are therefore: 

                  

                                                          

and similarly for stage 3. 

b) Implicit non-anticipativity (compact representation) 

The structure given by the scenario tree can be enforced in a different way, defining 

a reduced set of decision variables for which the non-anticipativity constraints are 

implicitly satisfied. The compact mathematical formulation of the deterministic 

equivalent of problem 1.37 is obtained refining the definition of the decision varia-

bles, that is, defining        {      }   , as the decision to be taken at time t un-

der all scenarios             . It becomes handy to define the concept of de-

scendants as nodes in the scenario tree which descend from each node      We will 

refer to these sets as         

The mathematical formulation is the following: 

 
   ∑  

   

(∑      

 

   

) 

                  subject to                                                                                          

                                                                                                                 

                                                   

                                                                                                    

                                              
,            

                       .                  .                  .                  .                  .                  .                  

                     
          

           
              

       
             

   

                                              
,            … ,                

                                    

1.39 
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                    with                                [     ]   [      ] 

  

   

Although formulation 1.39 has a structure which is more compact than formulation 

1.37, the explicit definition of non-anticipativity conditions can be exploited for de-

signing specialised algorithms for the efficient solution of the SP problem. 

Independently from the chosen formulation, the structure of the event tree must 

be captured by the model; this fact adds a class of information that is qualitatively 

different from the usual entities defined in Figure 9 (namely sets, parameters, vari-

ables, constraints and objectives) which are used to define a deterministic problem; 

even though the event tree structure can be expressed in terms of these entities 

through deterministic equivalent formulations, as we have just explored, it makes 

sense to preserve the different quality of this information, which gives a strong in-

tellectual rationale for the extension of AMLs to stochastic programming. For fur-

ther reading to the formulation of deterministic equivalent problems, see (Wets, 

1974), (Dempster, 1988), (Messina & Mitra, 1997). 

2) CC problems deterministic equivalent representation 

Considering the two-stage SP problem expressed in equations 1.13 and 1.14, its de-

terministic equivalent formulation can be expressed as: 

 
         ∑           

 

   

 

                                                          

                                                               [     ] 

                                                                         

                                                                               [     ] 

1.40 

where    is the probability of scenario s and where the random parameters are 

supposed to have finite and discrete distributions. 

Under these assumptions, an individual chance constraint expressed by equation 

1.20 and reported in equation 1.41 below for ease of reading: 

                         1.41 
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can be formulated, assuming the constraint corresponds to the i-th row of matrix 

     , as: 

  {  
     

       
      

 }    1.42 

where  0 <     is a reliability level,   
  and   

  denote the i-th elements of vectors 

   and   ;    
  and    

  denote i-th rows of matrices     and    . It can be shown 

that the following system of equations is equivalent to 1.42: 

                     
     

       
                            [     ]  

                              
       

             
          [     ] 

                                                                                   [     ] 

                                                                                  [     ] 

               ∑       
 
        

                           {   }                                           [     ] 

 

1.43 

where M is a suitably chosen large constant,         and    are additional binary varia-

bles. An individual chance constraint with lower and upper limits can therefore be 

represented at the cost of 2|S|+1 additional constraints and 3|S| additional binary 

variables (Haneveld & van der Vlerk, 2006). 

The deterministic equivalent formulation of chance constraint suffers therefore of 

the same drawbacks seen in the DEQ formulations of MSSP, namely unnecessary 

replication of entities and an added complexity in the logic of the model, with the 

additional penalty of having to deal with binary variables, which can lead to in-

stances that are numerically very difficult to solve. 

3) ICC problems deterministic equivalent representation 

Considering the deterministic equivalent of a two-stage problem as expressed in 

equation 1.40, and the individual ICC expressed in 1.24 and reported in Equation 

1.44 below: 

   [        ]              1.44 

it can be formulated, considering   
    for all the realizations of the random pa-

rameters, as: 
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  [(  
     

       
   )

 
]    1.45 

where     and          {    } is the negative part of     and represents 

the negative violation of the i-th constraint. 

The ICC expressed in 1.45 has the following DEQ form: 

    
       

            
      [     ] 

 ∑       
 
      

1.46 

where    are additional continuous variables, see (Haneveld & van der Vlerk, 2006) 

and (Ellison et al., 2009) for additional details. 

4) Robust deterministic equivalent representation 

The Robust Optimization problems, in the formulations of Soyster (1.31), Ben-Tal 

and Nemirovski (Ben-Tal & Nemirovski, 2000) and Bertsimas and Sim (Bertsimas & 

Sim, 2004) , are already in a format which can be represented respectively by LP, 

SOCP and LP models. The robust optimization model includes some additional in-

formation in respect to the deterministic counterpart. This information, which de-

pends on the specific robust formulation of choice, is listed in Table 7 below: 

Formulation Added Parameters Meaning 

Soyster    

  ̌   

Uncertainty model U (scope) 

Uncertainty model U (intervals) 

Ben-Tal and  

Nemirovski 

   

  ̌   

   

Uncertainty model U (scope) 

Uncertainty model U (intervals) 

Robustness: the probability that the i 

constraint is violated is at most     
   ; 

Bertsimas and  

Sim 

   

  ̌   

   

Uncertainty model U (scope) 

Uncertainty model U (intervals) 

Robustness: the solution remains fea-

sible if up to ⌊  ⌋ coefficients          

will change, and one coefficient     

changes by     ⌊  ⌋  ̌  . 

Table 7 Added information for robust optimization problems 

A modeller that would implement a robust formulation without using a specifically 

designed tool would have to manually implement the somewhat complicated struc-
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ture of the robust framework of his choice (that is, the added constraints and varia-

bles expressed by the systems 1.31, 1.32 or 1.33), on the top of the already hard 

work which is the construction of the model itself. As the structure of these systems 

of equations does not change once a formulation is chosen, it makes little or no 

sense - besides eventually for learning purposes - that the problem owner should 

personally and manually execute a process that can be fully automated. Hence the 

language extensions to AMPL we are proposing to express robust optimisation 

problems (see Section 2.4). 

1.4 Applications of Stochastic Programming 

The adoption of Stochastic Programming as a viable computational modelling para-

digm to obtain hedged decisions when the problem is subject to uncertainty has 

faced many barriers to its adaption. These barriers may be listed as (i) computa-

tional complexity and (ii) lack of proper modelling tools to support it. Thirdly (iii) the 

scepticism of the decision makers in front of the increased complexity of the model-

ling effort compared to deterministic models combined with estimates of parame-

ters which are uncertain. This is slowly changing and, as the available computation-

al resources increase by the Moore’s law, and as algorithms and software to effi-

ciently solve SP problems are made available, practitioners are making use of grow-

ing amount of data and information, made available by the evolving IT infrastruc-

ture (consider for example the adoption of OLAP cubes instead of relational data-

bases and the ubiquity of data mining techniques). This growing availability of in-

formation calls for efficient computational tools despite the increase in available 

computing power. 

Areas in which the application of SP is already common are: 

Finance: Pioneering works in Asset and Liability Management (ALM) models under 

uncertainty were undertaken by (Kallberg et al., 1982) and (Kusy & Ziemba, 1986).  

Subsequently a number of substantial applications were developed, for banks, 

hedge and mutual funds, insurance companies and wealthy individuals. Quoting a 

few applications, it is worth considering the Computer-aided asset/liability man-

agement (CALM) model (Consigli & Dempster, 1998), a multistage stochastic pro-
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gramming model which has been applied with good results to various environ-

ments. An overview of models applied to individual asset and liability management, 

as well as hedge funds is given in (Ziemba, 2003). Various paradigms applied to ALM 

are compared in (Schwaiger, 2009), which evaluates deterministic, SP, Chance Con-

strained, Integrated Chance Constrained models applied to a pension fund. In port-

folio selection problems, risk measures, and in particular coherent risk measures 

(Artzner et al., 1999) have become increasingly widespread, and applications of sto-

chastic dominance (SSD) to portfolio selection is lately being explored (Dentcheva & 

Ruszczynski, 2006), (Roman et al., 2006), (Fábián et al., 2009). 

Supply chain: Supply chain has been historically a fertile field of application for sto-

chastic programming, as the uncertainty in the products demand, costs and supply 

can hinder the quality of solutions obtained through deterministic modelling. Large 

scale applications are found in (Escudero et al., 1999), (Koutsoukis et al., 2000), 

(Alonso-Ayuso et al., 2003), (MirHassani et al., 2000).  A comprehensive literature 

review is given in (Stadtler, 2005) 

Transportation: Transportation and logistics were some of the earliest applications 

of stochastic programming. Fleet management in airline operations was used in 

(Dantzig, 1955) to motivate the need of stochastic programming. A stochastic for-

mulation of the empty car distribution problem in the railroad industry is given in 

(Jordan & Törnquist, 1983). A review of such models and algorithms is given in 

(Törnquist, 2005). Aircraft scheduling is another area of growing application, alt-

hough alternative modelling approaches have been successfully applied (Yu & Li, 

2000), (Beasley et al., 2001), stochastic programming has been used too; see (Yen & 

Birge, 2006) for a model and a solution algorithm. 

Telecommunication: Telecommunications has a long tradition of application of ad-

vanced mathematical modelling methods. While the traditional design approach is 

centred on minimization of the network costs under technological and quality of 

service constraints, systematic application of stochastic programming techniques 

includes incorporation of modern tools like evaluation of real options. Comprehen-

sive models, which include pricing and strategic decisions, provide a motivation for 
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further development of this methodology. For examples of use of different kind of 

SP models (SLP, SMIP, SSOCP) in network design see (Gaivoronski, 2006), (Ntaimo & 

Sen, 2005) and (Maggioni et al., 2009). 

Energy: Since most energy investments or operations are faced with uncertainty, a 

stochastic programming approach is normally meaningful. Many of the SP models 

deal with power generation investments, but also oil and gas applications have a 

relevant role in energy optimisation problems; see among others (Maggioni et al., 

2007). (Escudero et al., 1998) propose several models about long-term planning of 

electricity and energy generation. Hydro Thermal optimization problems examples 

are (Sen & Kothari, 1998), (Nowak et al., 2000), (Escudero & Monge, 2008).  With 

the liberalization of the energy markets, considering alternative investments and 

energy spot prices has become common in scheduling energy production, see 

(Fleten et al., 2009), (Konig et al., 2007). 

1.5 Scenario Generation 

Scenario Generation is the term normally used to describe the process of creating a 

tree structure and associated discrete scenarios which are used to describe the un-

certain parameters in SP models. The uncertainty representation by scenarios can 

be summarized as a four steps process, of which the first two are required at mod-

elling time, the latter two at run-time:  

1. Model the uncertainties with (discrete) random processes (or distributions for 

single stage SP) 

The modeller is here required to write his assumptions about the uncertainty in 

mathematical form; the outcome of this step is a random process or a probabil-

ity distribution. As discussed in section 1.2 and in (Birge & Louveaux, 1997), 

these analytic models are not suitable for direct use in SP problems.  

2. Approximate (discretize in case of continuous random processes or aggregate 

in case of discrete ones) the chosen random processes with a tree of discrete 

scenarios 

A range of techniques can be used in this step, which approximates the output 

of the model defined in step 1 with a scenario tree. There is “both a science and 
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an art” (Casey & Sen, 2005) to this process, and a balance between fine dis-

cretization (that lead to numerically unsolvable problems) and coarse discreti-

zation (that could overlook important realizations) has to be obtained. Two re-

lated approaches can be identified, one is based on statistical approximations 

(as in (Høyland & Wallace, 2001)) and the other on approximation theory (as in 

(Hochreiter & Pflug, 2007), (Pflug, 2001), (Dupačová et al., 2000)). 

3. Estimate the parameters for the model of randomness  

Given some data about the reality (usually, this data set comprises historical 

observations) the modeller then is required to estimate the uncertain parame-

ters for a model of randomness (i.e. for a normal distribution, mean and vari-

ance). 

4. Generate the scenario tree 

A scenario tree is then generated by applying the model/algorithm crafted in 

steps 1 and 2, and the data provided by step 3. This scenario tree is then intro-

duced in the description of the SP programming model which in turn is pro-

cessed by an SP solver. 

The role of a scenario generator is very important in describing an SP problem. This 

thesis is mainly concerned with modelling aspects of SP and within the scope of this 

thesis, the concept of Scenario Generators library is introduced, which is a collec-

tion of models of randomness which have been produced by steps 1 and 2 of the 

modus operandi above. In the context of decision making, a scenario generator 

captures in a procedural form a domain-specific model of randomness. Operatively, 

the problem owner may choose between various methods which are part of the SG 

library to model the uncertainty at hand, evaluate its performance with the current 

decision model (i.e. stability tests, see paragraph 2.3) and use it to obtain the ex-

ante decision (see (Di Domenica et al., 2009)).  The problem owner can then evalu-

ate the decision obtained against real data (back testing, or stress testing) or 

against realizations obtained using a different scenario generator (see 0). A short 

and not comprehensive list of scenario generators, their applications fields and 

some references is summarized in Table 8 below . 

 



` 

38 | P a g e  
 

Modelling 
Paradigm 

SG Method Origin Application Field Reference 

Econometric 
Models 

and 
Time Series 

AR (p) Autoregressive 
Models and Genera-
tion of Data Trajec-

tories. 

Finance, Supply 
chains, Environ-

ment models 

(Box et al., 1976) 

MA (q) Moving Average 
Models and Genera-
tion of Data Trajec-

tories 

Finance, Supply 
chains, Environ-

ment models 

(Box et al., 1976) 

ARMA (p,q) Autoregressive Mov-
ing Average Models 
and Generation of 
Data Trajectories. 

Finance, Supply 
chains, Environ-

ment models 

(Box et al., 1976) 

GARCH Generalised Auto-
regressive Condi-

tional Heteroscedas-
ticity and Generation 
of Data Trajectories. 

Finance, Supply 
chains, Environ-

ment models 

(Bollerslev, 
1986), 

(Engle, 1982) 

VAR Vector Auto Regres-
sive Models and 

Generation of Data 
Trajectories 

Finance, Supply 
chains, Environ-

ment models 

(Fair & Shiller, 
1990) 

 

 
BVAR 

 

Bayesian Vector Au-
to Regressive Mod-
els and Generation 

of Data Trajectories. 

Finance, Supply 
chains, Environ-

ment models 

(Ansley & Kohn, 
1986) 

Reduced Rank 
Regression 

Generation of Data 
Trajectories 

Finance, Supply 
chains, Environ-

ment models 

(Engle & 
Granger, 1987) 

Modelling 
Paradigm 

SG Method Origin Application Field Reference 

 
Geometric 
Brownian 
Motion 

 

Wiener Pro-
cesses 

Brownian Motion 
and Diffusion Pro-

cesses 

Finance and Envi-
ronment models 

(Freedman, 
1972) 

Generalised 
Wiener Pro-

cesses 
 

Brownian Motion 
with drift and Diffu-

sion Processes 

Finance and Envi-
ronment models 

(Bollerslev, 
1986) 

Artificial 
Intelligence 

Neural Gas 
 
 

Neural Networks. Supply Chains, 
Energy, Environ-

ment models 

(Martinetz & 
Schulten, 1991) 
(Fritzke, 1995) 

Statistical 
Approaches 

 
 

Property 
Matching 

 

Statistical Approxi-
mation 

Supply Chains, 
Energy models 

(Høyland & 
Wallace, 2001) 

Moment 
Matching 

 

Moment Fitting Supply Chains, 
Energy, Environ-

ment models 

(Høyland et al., 
2003) 

Non Paramet-
ric Methods 

 

Discretisation Finance and Envi-
ronment models 

(Høyland & 
Wallace, 2001) 

 



` 

39 | P a g e  
 

SG Forecast-
ing Methods 

 

Quantile Regression 
and Forecasting 

Methods 

Finance, Supply 
chains, Environ-

ment models 

(Tomasgard et 
al., 1998) 

 
 

Sampling 

Random Sam-
pling 

 

Discrete Sampling Finance and Envi-
ronment models 

(Jobst & Zenios, 
2003) 

(Jobst et al., 
2006) 

 

Stratified 
Sampling 

 

Interval Sampling Finance and Envi-
ronment models 

(Jobst & Zenios, 
2003) 

(Jobst et al., 
2006) 

Bootstrap 
 

Discrete Sampling Finance models (Efron, 1979) 
(Efron & 

Tibshirani, 1997) 

Monte Carlo 
 

Sampling 
 

Finance models (Jerrum & 
Sinclair, 1997) 

Markov 
Chains 

 

Probability Interval 
Sampling 

Finance, Energy, 
Supply Chains, 
Environment 

(Jerrum & 
Sinclair, 1997) 

VECM 
 

Random path and 
Vector Error correc-

tion 

Finance (Volosov et al., 
2005) 

 

Table 8 List of SG methods and applications 

1.6 An architecture for an SP modelling system 

The acceptance of a modelling paradigm depends heavily on the availability of ap-

propriate research results and tools that are based on such research and support 

modelling functionalities. The field of Stochastic Programming has a very active re-

search activity that comprises various fields (from stochastic processes and models 

of randomness to solution algorithms) but the lack of tools that are designed specif-

ically to support it has somewhat slowed down its adoption by analysts and OR 

practitioners. There have been efforts in this direction, among which one of the 

earliest is the precursor to this work (see (Valente, 2002)), and in recent years there 

has been considerable progress.  

What is still lacking is a tool that can exploit, through careful categorisation and de-

sign of data structures and classes, concepts that come from the research in the 

field like compact instance representation and decomposition methods and that 

allows an easy implementation of SP models.  
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In this thesis I report on the design of software tools for Stochastic Programming, 

and I present and formalize the knowledge that I have acquired in recent years dur-

ing which period the SP software system SPInE (Valente et al., 2001), (Valente et al., 

2002-2011) was completely redesigned and implemented. 
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A high level conceptual outline of a SP modelling system from a computer science 

perspective is given in Figure 7 below: 

 

 

 

 

 

 

 

 

 

 

In Figure 7 the three main modules of an SP modelling system (in black) are set out 

in the middle; these modules highlight three different aspects of the process of 

solving an SP problem. The other modules in this figure, displayed in different col-

ours, correspond to different operative phases of the modelling process; these 

phases are described below: 

 Modelling Phase (in red): the “strategic” steps the modeller has to follow to 

successfully set up the system to solve the problem, namely: formulate the 

decision problem, determine and model the randomness (decide what SG to 

use) and decide what solution algorithm to invoke 

 Runtime Phase (in blue): to ultimately obtain results from all the knowledge 

formulated and formalized in the previous step, the consumer of the model 

needs then to: fit the models of randomness chosen at the modelling phase 

to the problem instance under examination, formulate the decision model in 

Scenario 
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Modelling 

System 
Solver 
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Which scenario generators? Which decision model? Which solution method? 

Model(s) of 
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Decision Mod-
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algorithm 

Data structures 
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Solver          
Controls 
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Figure 7 High level overview of a SP modelling system 
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a format which the software can interpret and eventually tune the solver or 

solution method for use 

1. Data Structures (In green): describes how data instances are captured and 

gives an insight into the information that is passed between the modules. 

We refer the reader to section 3.1 for a more detailed discussion about the 

model instance format, and to 1.2 for an analysis of the scenario tree struc-

ture. 

The high level schema reported in Figure 7 is expanded in the following chapters of 

this thesis. An important aspect is the control structure that is needed for setting up 

a simulation and investigation framework; this aspect is considered in detail in 0. 

1.7 Outline of the thesis 

In this thesis we provide a general review of the state-of-the-art of software tools 

which support stochastic programming modelling. In this introduction, we have giv-

en an overview of the various software components that constitute an integrated 

software tool for SP. In following chapters of this thesis we focus on three different 

stages of the modelling and solution process. The thesis is structured as follows: 

Chapter two provides an overview of the software tools available for SP, examining 

in particular the existing modelling languages. A model is then explicitly imple-

mented using the modelling languages AMPL, using the deterministic equivalent 

formulations, and SAMPL, exploiting the advanced features of the language. In 

Chapter three we focus on the solution stage, illustrating requirements and charac-

teristics for an SP solver. Instance level formats are described, which allow the 

communication between the modelling systems and the solvers; sections 3.2 and 

3.3 give an overview of the deterministic equivalent and decomposition techniques 

used to solve various classes of SP problems, and some benchmarks and considera-

tions on their relative performances are made in section 3.4. Finally, in section 3.5, 

the architecture of such solver is introduced, with the novel concept of automated 

mapping between model classes and solution techniques that the author believes is 

central to the development of a usable and performing SP integrated modelling sys-

tem. Scenario Generation is introduced in Chapter 4. A brief overview of the scenar-
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io generation process and its place in the modelling process is given in section 4.1. 

Some common methods and their application areas are given in section 4.2. Some 

desirable properties of scenario generators are introduced in section 4.3. The nec-

essary step of abstraction is then described in section 4.4, abstraction that then 

leads to the concept of a scenario generation library, which is then described in 

both from the programmer’s (0) and the modeller’s (4.6) point of view. Chapter five 

introduces the concept of workflows, and a rationale on their use to create an ex-

tensible investigation framework. The activities (or atomic operations) composing 

such a workflow are presented in section 5.3 and some sample cases are given in 

section 5.4. Finally, summary, conclusions and future works are presented in Chap-

ter six. 

 

 

  



` 

44 | P a g e  
 

Chapter 2 Software tools for Stochastic 

Programming 

This chapter introduces the conceptual components of an integrated tool for sto-

chastic programming, and provides a broad overview of the state-of-the-art tech-

nologies and software available nowadays. Section 2.1 decomposes the process of 

using Stochastic Programming for Decision Making into various research problems 

and links each area to the software tools and components that help in the stages of 

the process. Moreover, it sheds some light on the logical entities (interfaces and 

data structures) that are used along the process, and links these entities to the ap-

propriate section of this thesis.  

Sections 2.2 to 2.4 can be considered literature review: one of the first topics to 

face when getting acquainted to software tools for SP is algebraic modelling lan-

guages (AMLs), which are presented in Section 2.2 in general, while section 2.3 fo-

cuses on the current development of SP-focused languages. In section 2.4 we make 

the case for alternative ways of representing the problems in a modeller’s perspec-

tive.  

In Section 2.5 we present a brief overview and introduction to a modelling language 

(AMPL) and its extended version (which we call SAMPL), implementing in both lan-

guages the example given in section 1.2 and showing the benefits of the formula-

tion using SAMPL. 

The author contribution lies in the extensive design studies to identify the require-

ments of a stochastic modelling system, and in its implementation. What has been 

inherited from his predecessors and collaborators has been almost completely re-

written and is now a working application used by many researchers. In addition, the 

language extensions for CCP, ICCP and Robust Optimization have been completely 

designed by the author. 
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2.1 An Information Technology framework for SP 

Progresses in Stochastic Programming involve and require research in various fields, 

among which we identify (see Figure 8 below):  

 Modelling (applications) which can be further divided in: 

o (a) Decision models – the mathematical description of the decision 

processes  using modelling paradigms as SP, MSP, CCP, ICCP, RO (see 

sections 1.2 and 2.2) 

o (b) Model of randomness – the mathematical representation of the 

uncertainty involved, or Scenario Generation (see section 4.1) 

 Model representation formats  

o (c) Structural level – how to communicate the decision model struc-

ture to a computer, independently from the particular data on which 

the model is instantiated (see sections 2.2 and 2.3) 

o (d) Instance level – how to represent the model generated from the 

combination of the structure and the data (see sections Determinis-

tic Equivalents for SP, CC, ICC, Robust Optimization models1.3 and 

2.4) 

 Solution methods 

o (e) Deterministic equivalents – traditional LP/QP/QMIP solution 

techniques (Simplex, Interior point method, branch and bound) can 

be applied to the deterministic equivalent formulation (see sections 

1.3 and 3.2) 

o (f) Decomposition methods – specialized algorithms can be applied if 

the problem structure is maintained and communicated to the solver 

(see sections 2.4 and 3.3) 

 (g) Results evaluation and interpretation – the results of the optimisation 

should be evaluated and tested, to check if the assumptions about uncer-

tainty and decision process were adequate (see 0) 

All these fields are intertwined and the outcome of these researches should be tak-

en into consideration when designing an application to support Stochastic Pro-
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gramming. The importance of standardized software tools is obvious from the cur-

rent market, in which the emergence of a standard usually makes the difference 

between a successful paradigm and an ignored one. 

Another view of Figure 7 is the following, this time highlighting the research areas 

involved in the various components of the software system: 

 

 

 

 

 

 

 

 

 

Figure 8 Research areas vs software components 

The combination of Figure 8 and this section gives an ordered overview of the con-

tents of this thesis in respect to SP modelling paradigm. Exploded versions of some 

of the blocks are presented in the corresponding sections, along with a more thor-

ough description of each one of them. 

2.2 Algebraic Modelling Languages 

When mathematical programming was first introduced, models were generated by 

ad-hoc computer code written using procedural languages such as FORTRAN. These 

programs were used to generate the matrix related to a given LP/IP model; an ap-

propriate solution algorithm was used to process the matrix and to find and report 

the optimal solutions. This approach was neither scalable nor elastic: even minor 

changes in the model’s data or structure require major adjustments of the genera-
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tion code. To aid practitioners in the creation of mathematical programming mod-

els, new type of languages appeared during the 1970’s, called matrix generators. 

These languages enabled the generation of an LP/IP model’s matrix in a specific 

format, which became a standard interface between modelling and solving sys-

tems. The format, namely Mathematical Programming System (MPS), was intro-

duced by IBM (IBM World Trade Corporation, 1976) and, with some minor modifi-

cations, is still used today. Amongst the main matrix generators were OMNI 

(Hareveley Systems, 1976), DATAFORM (Ketron, 1975), MRGW (IBM World Trade 

Corporation, 1977), GAMMA (Sperry Univac Computer Systems, 1977) and 

MGG/RWG (Scicon Computer Services, 1975) . These languages, however, were af-

fected by a number of limitations; in particular, the formulation was data depend-

ent, thus the model could not be easily re-instantiated using different data sets. 

Modern modelling systems for mathematical programming are based on algebraic 

modelling languages (AMLs), which enable the definition of models via symbolic 

algebraic expressions. Algebraic modelling systems (that is, software systems which 

support algebraic modelling languages), interpret the algebraic model and use a 

given set of data to create model instances in a MPS format or equivalent. The 

availability of algebraic modelling languages has contributed to the acceptance of 

mathematical techniques in the following ways: 

1. Model development and prototyping has become a high productivity pro-

cess. This has led to widespread acceptance of optimisation by the end user 

community based on the proof of concept application rapidly developed by 

OR/MS analysts 

2. Many examples of integration of optimisation techniques into Decision Sup-

port Systems (DSS) can be found used in real world applications 

Algebraic modelling languages are traditionally declarative languages; using this 

class of languages, the modeller describes what a problem is, without specifying 

how the problem is to be solved. The algebraic notation used in the formulation of 

MP models and supported by the AMLs plays an important role in the comprehen-

sion and maintenance of the models (Kuip, 1993). One of the most important ad-



` 

48 | P a g e  
 

vantages is that the algebraic formulation implies the abstraction of the model from 

the specific instance of the problem, thus enabling the separation between data 

modelling and modelling of the problem’s structure. See (Fourer, 1997) for a more 

thorough discussion of the issues of modelling data in relation to MP models. MPL 

(Maxmimal software, 2002), LINGO (Lindo Systems Inc, 2008), CAMS (Lucas & 

Mitra, 1988) are some representative algebraic modelling languages which are 

purely declarative. 

In more recent times, some AMLs have introduced procedural features, such as IF-

THEN-ELSE statements and looping constructs: UIMP (Ellison & Mitra, 1982), LPL 

(Hürlimann, 1993), AMPL (Fourer et al., 2002), GAMS (Brooke et al., 2008), OPL 

(Van Hentenryck et al., 1999) and AIMMS (Bisschop & Entriken, 2009) belong to this 

family of mixed declarative/procedural languages. Procedural constructs enable a 

closer coupling of modelling systems and solvers, which can be exploited for tech-

niques such as column generation and the implementation of decomposition algo-

rithms (see section 3.3). 

Algebraic modelling languages enable the formulation of mathematical program-

ming models in terms of entities such as sets and indices, parameters, decision vari-

ables, constraints and objective functions. The relationships between these entities 

are described in (Dominguez-Ballesteros et al., 2002) and are shown in Figure 9, 

adapted to the new developments in the field. 
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Variables 

 = used in 

Figure 9 Components in an algebraic model 
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An important feature of algebraic modelling languages is the support of sets and 

indexing techniques. Indexing is derived from ordinary algebra and enables mathe-

matical abstraction; indices and sets play an important role in the modelling of large 

scale problems, as these facilitate the classification of entities of conceptually simi-

lar nature. Algebraic modelling languages support several types of sets, including 

ordered sets, derived sets and hierarchical sets. Most of the ALMs also support fun-

damental sets operations such as union, difference, intersection, Cartesian product, 

selection and join. 

Some AMLs such as AIMMS and LPL are capable of performing unit consistency 

checks. This is a valuable feature since one of the most frequent errors in the for-

mulation of MP models is caused by the use of inconsistent measurement units in 

the algebraic expressions (Bisschop, 1986). The ability of expressing logical condi-

tions is another important feature of the AMLs. Williams shows in (Williams, 1987) 

how logical conditions can be introduced into a mathematical programming model 

by mean of binary variables. In (Mitra et al., 1994), the authors propose an exten-

sion of the MPL modelling language which enables the automatic translation of log-

ical relations such as and, or,   and    into MIP models. Fourer (Fourer, 1998) also 

discusses this issue and suggest the use of logical operators, conditional operators 

and variables in subscript in the AMPL language. 

2.3 Extensions of Modelling Languages for SP 

It is always possible to formulate a SP problem using algebraic modelling languages 

which implement the constructs presented in the previous section, however, doing 

so, leads the problem owner to difficulties of two kinds: 

Modelling issues: the formulation of the SP problem becomes unnatural, as 

nonanticipativity constraints as well as the deterministic equivalent formulations of 

ICCs and CCs (see Section 1.3) must be explicitly implemented, thus distracting the 

modeller from the decision problem at hand. Moreover, the three classes of prob-

lems (Wait and See, Expected Value and Here and Now, see Appendix A) along with 

the related stochastic measures (Value of Stochastic Solution ad Expectation of the 
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Expected Value, see Appendix A), if of interest, must be separately formulated and 

solved, even though they are conceptually part of the same family of models and 

constitute the basis for computing stochastic measures. 

Computational issues: when formulated as deterministic equivalents, the resulting 

matrix dimension increases linearly with the number of scenarios and exponentially 

with the number of stages (assuming a tree shape with a constant number of 

branches at each stage) and the solution time grows steeply with it. Moreover, the 

memory occupied by the matrix could become a problem for very large problems 

when formulated as deterministic equivalent, but this could be overcome avoiding 

the replication of deterministic data for all scenarios, which is possible if the system 

keeps the information regarding which parameters are stochastic and which are 

not. This kind of information allows the solution of the problem by means of de-

composition techniques, which are characterized by a much better scale-up proper-

ty in respect to the deterministic equivalent solved by conventional means (see Sec-

tion 3.3). 

These modelling and solving issues can be to a large extent alleviated using a mod-

elling system (and therefore a modelling language) which is specialized for stochas-

tic programming problems. There have been a few attempts to do so, and they are 

briefly listed in this section. 

Gassmann and Ireland in (Gassmann & Ireland, 1995) address the problem of defin-

ing scenario-based recourse problems using existing AMPL constructs. Scenarios are 

specified parametrically and the scenario data can either be imported or ideally 

computed by the AMPL modelling system. The scenario tree structure is represent-

ed by first defining a base scenario, and additional scenarios sharing at least the 

root node with the base scenario are characterised by a parent scenario and the 

first stage in which the scenario differs from its parent.  

Fourer in (Fourer, 1996) proposes extensions to the AMPL modelling language. The-

se permit the definition of a stochastic programming problem with recourse in 

terms of a multistage (deterministic) model, a tree of data scenarios for the model, 

and a stochastic framework to specify the stages and optionally the scenarios and 
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objective. New language constructs such as scenario and stochastic are intro-

duced to enable the definition of a scenario as a collection of data and to declare 

the partition of an underlying time horizon into stages. Scenarios can be solved in-

dividually or as a recourse problem, provided that an appropriate expected value 

objective is defined. The author also hints at the possibility of using a new keyword, 

random, to assign probability distributions to selected parameters, thus enabling 

the definition of distribution-based stochastic programming models.  

In (Gassmann & Ireland, 1996) there is a proposal for other extension to the AMPL 

modelling language, mainly for the definition of probability distributions of the ran-

dom parameters. Again, a language construct random is introduced in distribution-

based recourse problems to identify the random parameters and the variables that 

depend on them.  

Entriken, in (Entriken, 2001), presents two additional syntactical items for modelling 

languages, a random construct for the definition of random parameters, and a rela-

tional operator that indicates precedence between random events. The main idea 

behind this approach is that stochastic programming models may be seen as control 

theory problems, where the random events are assumed to be input to the system 

along with the control variables, so that at a given t, only the past outcomes are 

known, together with the distribution of the future random parameters. The author 

uses the syntax of the AMPL language to declare the underlying linear program, and 

proposes some new constructs for the uncertainty.  

The reference (Buchanan et al., 2001) presents an alternative and innovative ap-

proach to modelling stochastic linear programming problems. They define a lan-

guage called sMAGIC, which permits the recursive definition of models that contain 

other (sub) models. Recursive definition is typical of Dynamic Programming and en-

ables the preservation of the underlying Markov structure, which also characterises 

many multistage stochastic programming models. The event tree for models with a 

Markov structure is compactly represented via a special directed acyclic graph, 

which the authors call a Model Link Graph.  
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The authors of (Fourer & Lopes, 2009) propose an extension of the AMPL modelling 

language whereby stochastic models are formulated using a representation based 

on dynamic programming. 

AIMMS provides functionalities to express SP programs with recourse, where the 

user can define its own routines to generate the values of the random parameters. 

The model can then be generated as deterministic equivalent or solved by a Bend-

er’s decomposition based algorithm embedded in the system (Bisschop & Entriken, 

2009). 

In (Colombo et al., 2009) the authors describe their SML (Structure-Conveying 

Modelling Language), which is implemented as language extensions to AMPL. It ex-

tends AMPL with object-oriented features that allow the users to construct models 

as a combination of sub-models while preserving the block structure, so that the 

structure can be passed to a solver and exploited. It is not specifically designed for 

SP, permitting the formulation of any model that exhibit a block structure. 

Microsoft Solver Foundation (MSF) offers now the possibility to express stochastic 

programming problems in their own modelling language called OML or in any .NET 

language but the support for SP is still at an embryonic stage and not much docu-

mentation has been released at the moment of writing (Microsoft Corporation, 

2010). 

The software system called SPInE (Stochastic Programming Integrated Environ-

ment) has been implemented by the research team in CARISMA of which the au-

thor is a member, it supports and interprets the language SAMPL (Valente et al., 

2009). This is again an extension to the AMPL language specifically designed to sup-

port the formulation, generation and solution of various classes of SP problems. In 

this thesis we highlight the author’s contribution to the design and implementation 

of such system. 

Analysis of modelling issues  

The difficulties that arise when using non-specialized modelling languages to formu-

late SP problems are mainly due to the lack of constructs for the definition of the 
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randomness of the model coefficients and the scenario tree structure. A stochastic 

programming model can be considered as a linear programming model extended 

and refined by the introduction of random parameters (see Figure 10). More pre-

cisely, the underlying LP optimisation model is extended by taking into account the 

probability distribution of the model’s random parameters. Such distributions are 

provided by the models of randomness used in scenario generators (see 0), which 

are specific to the particular optimisation problems under investigation. 

 

Figure 10 Combined Paradigm 

In general, different categories of stochastic programming problems require differ-

ent language features to express the random nature of the problem. We use the 

term stochastic framework to denote the information represented by these con-

structs. 

Modelling scenario-based recourse problems 

The first requirement for the formulation of a stochastic programming problem us-

ing algebraic modelling languages is the declaration of the random parameters. In 

scenario-based recourse problems, the realisations of such parameters are explicit-

ly given in the form of a scenario tree. Each scenario is also associated with a corre-

sponding weight (or probability). In turn, the scenario tree structure is declared in 

terms of stages. The stages identify the sequence of decisions in the dynamics of 

the underlying core model. If the temporal dimension is introduced into the model 

using a specific time set, the stages can be declared as subsets of this set. To sum-
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marise, a stochastic framework for scenario-based recourse problems requires con-

structs for the definition of stages, scenarios and random parameters (see Table 9). 

Entities Language Requirements 

Stage information assignment of variables and constraints to stages 

Scenario information 

scenario set 

tree structure 

scenario probabilities 

Random parameters 
declaration of the random parameters  

in terms of the scenario set 

Table 9 Language requirements for scenario based recourse problems 

Modelling distribution-based recourse problems 

A number of researchers have proposed extensions to algebraic languages for the 

formulation of this class of problems (Fourer, 1996), (Gassmann & Ireland, 1996),  

(Fourer, 2001), (Gay, 2001). In this work, we focus on the class of scenario-based 

recourse problems and only outline the requirements for distribution-based mod-

els. Distribution-based recourse problems rely on the declaration of discrete or con-

tinuous probability distributions for the random parameters. If all random parame-

ters are characterised by discrete distributions, the scenario tree is implied by the 

joint realisations of the random parameters. If one or more distributions are con-

tinuous, then there are infinitely many possible outcomes for the random parame-

ters and the tree structure must be sampled from the joint distributions. A stochas-

tic framework for distribution-based problems requires constructs shown in Table 

10. 

Entities Language Requirements 

Stage information assignment of variables and constraints to stages 

Random parameters declaration of the probability distributions  

associated with the random parameters 

Table 10 Language requirements for distribution based SP problem  
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Overview of our approach 

We present methods of extending algebraic modelling languages based on the con-

cepts of underlying deterministic model and stochastic framework. The underlying 

deterministic model is formulated using the standard constructs provided by an 

AML. Using several new constructs, the modeller then declares the stochastic 

framework, which links the underlying deterministic model to the model of ran-

domness. More specifically, the underlying deterministic model represents a family 

of independent (wait-and-see) models, while the stochastic framework imposes the 

nonanticipativity implied by the structure of the scenario tree. The resulting model 

is the formulation of the stochastic programming recourse problem.  

The underlying deterministic model  

In the formulation and investigation of a stochastic programming problem, it be-

comes necessary to identify the underlying deterministic model (also called the core 

model). This can be the expected value problem or a problem corresponding to any 

sample path of the scenario tree. The underlying deterministic model captures the 

logical structure of the problem as well as the dynamical relations among decision 

variables, their bounds, and the objective function. The Stochastic Programming 

research team in CARISMA has, in the design of the language SAMPL and in the im-

plementation of its interpreter SPInE (Valente et al., 2001), (Valente et al., 2009), 

(Valente et al., 2002-2011), followed the approach of constructing the core model 

to be parametric in the dimension of scenarios. All variables and constraints are in-

dexed over the scenarios, which are the elements of a special set declared in the 

stochastic framework, and the objective function is the expected value over all sce-

narios of the individual objectives.  

Declaration of the stochastic framework 

The stochastic framework depends on the type of stochastic programming model 

that is being developed. For instance, scenario-based recourse problems require 

the explicit declaration of the scenario tree structure while, in a distribution-based 
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recourse problem, the AML should provide a set of constructs for the definition of 

probability distributions.  

 

Figure 11 Extended constructs for SP 

 

Figure 11 shows how the basic constructs of a modelling language for linear pro-

gramming are extended to capture the stochastic framework. The definition of the 

new constructs is adapted to be consistent with the grammar of the underlying 

modelling language. We have successfully applied this approach to the AMPL lan-

guage, but the same ideas can be adapted to virtually any other AML; see for in-

stance (Valente, 2002). The syntax of the extended language constructs for stochas-

tic AMPL (which we call SAMPL) is defined in section 2.4; the modelling system that 

interprets SAMPL and generates the instance of the model is called SPInE (Stochas-

tic Programming Integrated Environment). 

2.4 Alternative representations 

As repeatedly observed in this thesis, the deterministic equivalent formulations of 

SP problems suffer of some disadvantages in respect to their “direct” representa-

tions. From the modeller’s point of view, he is forced to change the model in ac-

cordance with the structure (event tree) he wants to enforce through the use of 

non-anticipativity constraints, or to add variables and constraints to the problem to 
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capture (integrated) chance constraints, and robust optimisation problems; this is 

an added complication as shown in section 1.3. The non-preservation of the prob-

lem’s structure and the redundancy of the instance-level representations derived 

from the use of DEQs are other important issues which are discussed in section 3.1.  

This set of reasons makes a strong case for a language which supports direct repre-

sentation of SP problems, thus maintaining the meta-information which defines the 

SP framework and allowing smart interaction with solvers and scenario generators. 

The author has contributed to this research by designing, implementing and exten-

sion such a system, which is an integrated software system for the representation, 

generation and solution of SP problems. The AMPL modelling language (Fourer et 

al., 2002) has been modified with subsequent extensions (Valente, 2002), (Valente 

et al., 2009), (Valente et al., 2011) to directly represent an increasingly large class of 

problems and features – among which, still unpublished, are the extensions for ro-

bust optimization problems and for scenario generation –  and the underlying sys-

tem SPInE (Messina & Mitra, 1997), (Valente et al., 2001) re-implemented and par-

tially redesigned to support seamless (language supported) connection to scenario 

generators, parallel model generation and a revised interface with the solvers. 

 

2.5 Modelling languages perspective: a tour on AMPL 

and SAMPL 

The aim of this section is twofold: firstly, it presents the modelling language con-

structs interpreted by the system developed by the author, secondly, it shows the 

difference in syntactic clarity between expressing the various classes of SP model 

using these language constructs and without.  

It is presented as a tutorial-like description, using the personal planning model pre-

sented in section 1.2; the various model classes are presented in the same order as 

in above mentioned section. Each class is formulated both in AMPL and SAMPL 

(AMPL including the stochastic extensions), to illustrate the gain in compactness 
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and functionalities achieved using the extended syntax, the syntax is interpreted by 

the system developed by the author. 

1) Personal Planning deterministic model in AMPL 

The AMPL code for the model, is set out below. For a more detailed description of 

the features and the syntax of the language, the reader is referred to (Fourer et al., 

2002). 

set DUTIES; 

set TIME; 

 

param WakingHours; 

param StressFactor; 

param RelaxFactor; 

param WorkRequired{DUTIES}; 

param Productivity{DUTIES, TIME}; 

param AverageWork >= 0, <=8; 

 

var Work{DUTIES, TIME} >= 0, <= WakingHours; 

var UnderWork{TIME} >=0; 

var OverWork{TIME} >= 0; 

 

minimize Stress: sum{t in TIME} (OverWork[t] * StressFactor - 

UnderWork[t] * RelaxFactor); 

 

subject to 

DayLength{t in TIME}: sum{d in DUTIES} Work[d,t] <= WakingHours; 

DeviationDefinition{t in TIME}:  sum{d in DUTIES} Work[d,t] = 

AverageWork + OverWork[t] - UnderWork[t]; 

TaskCompletion{d in DUTIES}: sum{t in TIME} (Productivity[d,t] * 

Work[d,t]) = WorkRequired[d]; 

The data file, containing all the values needed for the model instance to be gener-

ated, is as follows: 

set DUTIES := study work;     

set TIME := 1 2 3; 

 

param WakingHours := 12; 

param StressFactor := 5; 

param RelaxFactor := 4; 

param WorkRequired :=  study 12   work 14; 

 

param Productivity : 1       2      3 := 

study                0.9     1.2    1.3 

work                 1       0.9    1.3; 
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2) Personal Planning SP multi stage  

Introducing the scenarios for the productivity, as discussed in section 1.2, makes us 

firstly add some information to our data. A set (SCENARIOS) is added to represent 

all the scenarios, a parameter (Prob) contains the probability of each scenario and a 

parameter (RProductivity) represents the realizations of our scenarios.  

param RProductivity  

[*, *, 1] : 1       2      3 := 

study       0.9     1.44    1.56 

work        1       1.08    1.56 

[*, *, 2] : 1       2      3 := 

study       0.9     1.44   1.0504 

work        1       1.08    1.0504 

[*, *, 3] : 1       2      3 := 

study       0.9     0.96    1.56 

work        1       0.72    1.56 

[*, *, 4] : 1       2      3 := 

study       0.9     0.96    1.0504 

work        1       0.72    1.0504; 

AMPL Formulation (via deterministic equivalent) 

Following the explicit non-anticipativity representation presented in section 1.3, the 

multi stage model is expressed in AMPL as follows, where the lines added in respect 

to the deterministic version above are reported and all the changes to existing lines 

are highlighted in bold.  

set SCENARIOS := 1..4; 

param Prob{SCENARIOS} := 1/card(SCENARIOS); 

 

param RProductivity{DUTIES, TIME, SCENARIOS}; 

 

var Work{DUTIES, TIME, SCENARIOS} >= 0; 

var UnderWork{TIME, SCENARIOS} >=0; 

var OverWork{TIME, SCENARIOS} >= 0; 

 

minimize Stress: sum{t in TIME, s in SCENARIOS} Prob[s] * 

(OverWork[t,s] * StressFactor - UnderWork[t,s] * RelaxFactor); 

 

subject to 

DayLength{t in TIME, s in SCENARIOS}: sum{d in DUTIES} Work[d,t,s] 

<= WakingHours; 

 

DeviationDefinition{t in TIME, s in SCENARIOS}: sum{d in DUTIES} 

Work[d,t,s] = AverageWork + OverWork[t,s] - UnderWork[t,s]; 

 

TaskCompletion{d in DUTIES, s in SCENARIOS}:  
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sum{t in TIME} (RProductivity[d,t,s] * Work[d,t,s]) = 

WorkRequired[t]; 

 

To complete the explicit non-anticipativity representation, a structure must be en-

forced to ensure that only the information available at each decision node influ-

ences the decision itself. We have therefore to add to the model the non-

anticipativity restrictions, which depend on the tree structure of our choice (see 

section 1.2 for the mathematical formulation of the constraints below) 

NAFIRSTSTAGE{d in DUTIES, s in SCENARIOS}: 

Work[d,1,s] = Work[d,1,1]; 

 

NASECONDSTAGE1{d in DUTIES }: 

Work[d,2,1] = Work[d,2,2]; 

 

NASECONDSTAGE2{d in DUTIES}: 

Work[d,2,3] = Work[d,2,4]; 

SAMPL formulation 

The extended syntax SAMPL provides enables the modeller to capture the stochas-

ticity in the model in a natural way, using ad-hoc constructs. Most importantly, the 

non-anticipativity constraints are not needed, as the generated model enforces the 

desired tree shape automatically. The modifications to the deterministic model to 

achieve its stochastic SAMPL formulation of the model are reported below; it 

should be noted that all Wait and See, Here and Now and Expected Value formula-

tions can be generated automatically by the system starting from SAMPL formula-

tion in SAMPL, and the stochastic measures VSS and EVPI are automatically calcu-

lated. 

scenarioset SCENARIOS := 1..4; 

probability Prob{SCENARIOS} := 1/card(SCENARIOS); 

tree theTree := binary; 

random param RProductivity{DUTIES, TIME, SCENARIOS}; 

var Work{DUTIES, t in TIME, SCENARIOS} >= 0, suffix stage t; 

var UnderWork{t in TIME, SCENARIOS} >=0, suffix stage t; 

var OverWork{t in TIME, SCENARIOS} >= 0, suffix stage t; 
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The compactness of this formulation in respect to the DEQ one is noticeable, and 

the shape of the tree is easily defined with the keyword binary, as the forecasted 

tree has this structure. For a full language reference, the reader is referred to 

(Valente et al., 2002-2011) . 

Scenario Generation 

Although the random parameters can be generated by the procedure described in 

section 1.2, the data has to be explicitly provided to AMPL in order to be able to 

instantiate the model. With SAMPL, there is an alternative approach: the modeller 

can choose to program a scenario generator module (see Chapter 4) and the system 

will take care of generating the values at runtime.  

Using the developed libraries, accessible to anyone that wishes to extend the system with a new 
scenario generator, which contain the definition of some classes, the author has developed a sce-
nario generator implementing the procedure described in C#. If the module follows the specified 

interface, the system is then able to see it.  
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Figure 12 shows the application developed by the user discovering the scenario 

generator implemented for this model. The top window shows the dynamically 

populated list of available scenario generators (just one, in this instance) and its de-

scription and the parameters it needs. All this information is found out at runtime 

for compliant scenario generators. The user does not need to specify the realization 

explicitly; just the parameters needed to the scenario generator needs to be incor-

porated instead.  
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Figure 12 Personal planning model: Screenshot from SG 
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A C# code snippet of the generation procedure is reported below for completeness, 

it uses the classes ScenarioTree and ScenarioTreeNode which can be found in 

the SG library main module implemented by the author. It recursively populates a 

binary tree with arrays obtained multiplying each element of a base array by the 

numbers v1 or v2, depending on the branch. This is obviously implementing the 

scenario generation procedure intended for this model. 

public void GenerateNode(ScenarioTree<double[]>.ScenarioTreeNode 

node, double coefficient) 

{ 

      node.Contents = new double[indepNames.Length]; 

 

for(int i=0; i<indepNames.Length; i++) 

node.Contents[i]= baseValues[node.Stage][i] * coefficient; 

 

if(node.hasChildren) 

{ 

GenerateNode(node.Children[0], v1); 

      GenerateNode(node.Children[1], v2); 

} 

} 

At this point, the data can then be eliminated, and the declaration of the random 

parameter becomes: 

random param RProductivity{DUTIES, TIME, SCENARIOS} sg Bernoul-

li(1.2, 0.8, "{{0.9, 1.2, 1.3}, {1, 0.9, 1.3}}" ); 

Two remarks can be made on this topic: 

- Having the model expressed in this way, allows the modeller to increase the 

number of items in the set DUTIES, or increase the number of time periods 

in the model, without worrying to regenerate the data: it will automatically 

be generated by the system at runtime 

- One limitation of the current system is apparent on this line: it is not al-

lowed to pass AMPL parameters to the scenario generator. The solution to 

this problem is one of the future developments, which can be found in sec-

tion 6.3. 

 



` 

65 | P a g e  
 

3) Chance Constraints  

AMPL Formulation 

The AMPL formulation of the chance constrained version of the model follows once 

more the deterministic equivalent formulation. For this formulation, binary varia-

bles have to be added to count the amount of violations in the constraints, and a 

counting constraint has to be included. The deterministic equivalent formulation of 

the individual chance constraints expressed in 1.22 is the following (see section 1.3 

for reference): 

 ∑                     

   

              

∑       

    

         

          {   }           

 

2.1 

Translating that to AMPL is straight forward and it reads like: 

param alpha := 0.6; 

var delta{DUTIES, SCENARIOS} binary; 

 

TaskCompletionCC{d in DUTIES, s in SCENARIOS}:  

sum{t in TIME} (RProductivity[d,t,s] * Work[d,t,s]) + 

delta[t,s]*WorkRequired[t] = WorkRequired[t]; 

 

CCCount{d in DUTIES}: 

sum{s in SCENARIOS} Prob[s]*delta[d,s] <= alpha; 

The artifices introduced in the model due to the deterministic equivalent formula-

tion are highlighted in bold. It is worth noticing that this formulation introduces one 

binary variable for each scenario and for each individual constraint.  

SAMPL Formulation 

The formulation of the chance constraint using SAMPL extended syntax, as in 

(Valente et al., 2011) is: 

AmountWorkedCC{d in DUTIES} {probability s in SCENARIOS:  

sum{t in TIME}RProductivity[d,t,s] * Work[d,t,s] = WorkRequired[d]} 

<= alpha; 
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Having a specific construct for this allows for a much cleaner formulation, the sys-

tem can then check if a solver has a specific solution algorithm for this class of prob-

lems and eventually exploit it. 

4) Integrated Chance Constraints 

The deterministic equivalent formulation of the Integrated Chance Constrained 

model follows; this formulation limits the expected “units behind schedule” for 

each task to  . It includes the needed added variables  and the added constraint 

calculating the expected violation.  

 ∑                  

   

              

∑       

    

         

                       

 

2.2 

The AMPL implementation of the formulation above follows: 

param beta := 3; 

var mu{DUTIES, SCENARIOS} >= 0; 

 

TaskCompletionICC{d in DUTIES, s in SCENARIOS}:  

sum{t in TIME} (RProductivity[d,t,s] * Work[d,t,s]) + mu[d,s] = 

WorkRequired[t]; 

 

ICCAverage{d in DUTIES}: 

sum{s in SCENARIOS} Prob[s]* mu[d,s] <= beta; 

It is worth noticing that this formulation introduces one continuous variable for 

each scenario and for each individual constraint.  

SAMPL Formulation 

The formulation of the integrated chance constraint using SAMPL extended syntax, 

as in (Valente et al., 2011) is: 

ICCP{d in DUTIES}: expectation{s in SCENARIO} {WorkRequired[d] less 

sum{t in TIME}RProductivity[d,t,s] * Work[d,t,s]} <= beta; 

Once again, this reformulation is much more compact and readable and allows the 

system to use a solver that is especially designed to solve ICCPs through specialized 

algorithms (see  (Haneveld & van der Vlerk, 2006) for an example). 
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5) Robust formulations  

To avoid being too prolix on a topic – the formulation of robust optimisation prob-

lems – which is not central to this thesis, only the formulation given by Soyster (see 

section 1.2) is explicitly given here. Its only assumption is that we know the ranges 

in which the non-deterministic parameters can vary. 

AMPL Formulation 

The deterministic equivalent formulation of the robust optimization problem was 

given in 1.34. The added parameters    ̌  are the amplitude of the allowed deviation 

from the mean value of the productivity values      

To formulate the robust optimization problem, we use the deterministic version as 

a starting point, then we add the following, which is the AMPL equivalent of 1.34: 

var y[DUTIES, TIME] >= 0; 

 

param ProdRange[TIME]; 

 

TaskCompletion{d in DUTIES}:  

sum{t in TIME} (Productivity[d, t] * Work[d,t])  

- sum{t in TIME} (y[d,t] * ProdRange[t]) 

>= WorkRequired[d]; 

 

YConstraint{d in DUTIES, t in TIME}: 

-y[d,t] <= Work[d,t] <= y[d,t]; 

SAMPL Formulation 

Expressed using SAMPL extended syntax, the steps above are simplified. The defini-

tion of the random parameter is changed to: 

random param RProductivity{d in DUTIES, t in TIME} 

    dist symmetric(Productivity[d,t] - ProdRange[t],  

                   Productivity[d,t] + ProdRange[t]); 

 

option RobustForm Soyster; 

 

AmountWorked{d in DUTIES}:  

sum{t in TIME} Productivity[d, t] * Work[d,t] >= WorkRequired[d]; 

The system takes care of generating the artificial variables and the additional con-

straints automatically, thus allowing the modeller to concentrate on the problem 

instead of the formal specification of the uncertainty set. To obtain the other for-
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mulations (Ben Tal and Nemirovsky, or Bertsimas and Sim), the modeller simply us-

es a different value for the RobustForm option. These two formulations require ad-

ditional parameters to specify the desired trade-off between optimality and ro-

bustness. This parameter is specified in the constraint declaration, as: 

AmountWorked{d in DUTIES} suffix robustness gamma[d]:  

sum{t in TIME} Productivity[d, t] * Work[d,t] >= WorkRequired[d]; 

where gamma is an AMPL parameter containing the chosen robustness value. 

2.6 Conclusions 

In this chapter we have presented a literature review to highlight the data and 

knowledge flows involved in the definition of a Stochastic Programming problem. 

We have focused on modelling languages which support the specification of the op-

timization problem and link with the scenario generation library (see Chapter 4). In 

section 2.5 we have illustrated (by means of an example) the language features in-

terpreted by the system implemented by the author. The benefit of using these 

language features over the standard LP model formulation is highlighted.  
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Chapter 3 Requirements and character-

istics of SP solvers 

Following the conceptual division between modelling system and solver introduced 

in Chapter 2, which is widely followed in deterministic optimization too, the impli-

cations and the communication requirements of these two systems are hereby dis-

cussed. These requirements can be split in three major categories: instance level 

model representation formats, solution methods and auxiliary data communication. 

Stochastic Programming models differ from deterministic mathematical program-

ming problems as there are alternative ways to represent them at instance level. 

The formats and the methodologies to do so are presented in section 3.1 and 3.2 

respectively. The structure inherent to SP models is exploited by various algorithms, 

which are briefly presented in section 3.3, together with some comparative bench-

marks. Sections 3.1 to 3.3 are mainly literature review. Section 3.4 shows the model 

generation capabilities of the implemented system, as an alternative to normal 

modelling tools. In section 3.5 we present the solver architecture chosen to exploit 

the availability of such algorithms in an integrated system. 

The contribution given by the author is the analysis of possible mappings between 

model classes and solution methods, in the design of an interface that makes these 

mappings possible and in its implementation. The other main contribution is the 

implementation of the model instance generator, which has been used to generate 

many SP model and its benchmarks, presented in section 3.4. 

3.1 Instance level formats 

Algebraic modelling systems are capable of translating the models from a format 

which is easily understood and developed by the modeller into a computer reada-

ble form which is acceptable by the solvers. In the previous chapter, it has been 

shown that a model expressed in AMPL (or in any other modelling language) can 

easily be instantiated over different data sets; a model, at that level, can therefore 

be considered a template which describes the model’s structure. The solvers are 

programs which implement various algorithms that can be applied only on fully de-
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scribed numerical models; we call such a fully described model an instance of a 

model. See Figure 13 for a highlight of the role of model instance formats in the 

context of the comprehensive modelling system diagram reported in Figure 7. 

 

 

 

 

 

 

 

The MPS(X) Format 

MPS (Mathematical Programming System) and, more precisely, its extended incar-

nation MPSX (IBM World Trade Corporation, 1976) is an instance level format in-

troduced in the 1970s for linear and integer programming problem and it is still to-

day, despite its shortcomings, the de facto standard for LP problems exchange. It 

played a major role in the development of solution algorithms and software sys-

tems for handling these types of problems. The existence of a standard format facil-

itates the communication of models between modelling and solving software tools, 

hence enabling the solvers to be seen as interchangeable “black boxes”. This in turn 

allows the designers of solution algorithms to test their software implementations 

against libraries of benchmark models such as NETLIB (Anon., 2010) and MIPLIB 

(Bixby et al., 1998). 

Stochastic programming models can also be instantiated in MPS format by way of 

their deterministic equivalent formulations, however there are two major draw-

backs to this approach: the deterministic data is replicated for each scenario, caus-

ing a unnecessary high data volume and the inherent structure of SP models is 

scrambled and lost. 

  

 

Model Instance: formats as MPSX, 
LP, OSiL, SMPS(X), OSiL/SE or 

equivalent in-memory descriptions 

Modelling 

System 
Solver 

Figure 13 Instance level formats' role in a modelling system 
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The SMPS format 

The SMPS format (Birge et al., 1987) was introduced in the late 1980s and address-

es the drawbacks listed above, following the general structure and guidelines of the 

MPS standard. The fundamental aim of SMPS is to allow the conversion of existing 

deterministic linear programs into stochastic linear programs by adding information 

about the dynamic structure and the randomness, preserving the structure and 

avoiding data redundancy. The standard specifies the use of three separate files, all 

organized into fields according to the MPS record layout: the core file, the stoch file 

and the time file.  

The core file is a normal MPS(X) file containing the formulation of the problem for a 

single realization of the random variables, thus a normal LP problem but with a spe-

cific ordering of variables and constraints to create a lower block-triangular matrix, 

which we call the core problem. The meaning of core and the resulting matrix shape 

can easily be seen considering the deterministic equivalent formulation of a multi-

stage recourse program, given by the system of equations 1.37 and reported below 

for ease of reading: 

 
   ∑  

   

∑      

 

   

 

                  subject to                                                                                       

                                                                                                               

                                                                                                    

                                          .                               .        .       .                                                 

                                                                                   

                  with                     , t = 1,...,T 

3.1 

The data defining this problem can be arranged in an LP formulation for a single re-

alization of the random variables, which we call core problem:  

                      

                  subject to                                                                               

                                                                                                        

                                                                                             

                                                                                 

                                   with                  , t = 1,...,T 

3.2 
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All entries in the matrices     and vectors:   ,       ,    can be random, but in prac-

tice all but a few entries will be deterministic. This very last fact illustrates the prob-

lem of non-necessary data redundancy inherent in the deterministic equivalent 

formulation, as all the mentioned vectors are entirely specified for each scenario, 

even though most parts of them are deterministic and therefore remain the same 

among all scenarios. 

The time file specifies the dynamic structure of the problem, partitioning the matrix 

specified in the core file into different stages.  

The stoch file indicates the distributions of the random parameters, in three possi-

ble ways: 

Independent: The individual coefficients are supposed to be mutually independent, 

and their distribution is algebraically specified, describing its type and some param-

eters which depend on the type of the distribution. Some common distributions are 

natively supported by the standard and, for non-standard distributions, the use of a 

user defined routine can be specified. 

Blocks: Considered as mutually independent random vectors. 

Scenarios: In case of a scenario based recourse problem, the probabilities of the 

scenarios, their branching stage and the values of the realizations of the random 

coefficients are listed in this section. 

SMPS, in its extended recent version (Gassmann & Schweitzer, 2001), is the most 

common instance level format for stochastic programming problems. I cannot omit 

the fact that, even though SMPS is the de facto standard instance level language for 

SP problems, its adoption is not nearly as widespread as the one of the MPS format, 

slowing down the evolution of specialized solvers for Stochastic Programming. 

SMPS inherited many limitations that are intrinsic to the aging tabular nature of 

MPS; to address these problems some alternative formats have been developed in 

recent years. 
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New directions: XML 

The new approach, which takes into consideration contemporary technical assump-

tions, is based on eXtended Mark-up Language (XML). The wealth of functionality 

and software available for exploiting XML is an important factor in the acceptance 

of an XML-based mathematical programming standard. XML vocabularies proposed 

for this role have included OptML (Kristjansson, 2001) and LPFML (Fourer et al., 

2005). LPFML has grown into OSiL (Fourer et al., 2006), which can represent linear 

programs, quadratic programs and general nonlinear program.  

OSiL is the instance level format part of the framework Optimization Services 

(Optimization Services, 2008), which is a general design for XML-based service-

oriented, optimization-centred distributed architecture. Optimization Services is 

intended to be an open source computational infrastructure for running optimiza-

tion as services on distributed systems and defines some protocols named OSxL 

(Optimization Services Languages) to standardize three areas of Operational Re-

search namely Optimization Instance Representation, Optimization Communication 

and Optimization Service registration and discovery. OSiL/SE (Fourer et al., 2009) is 

an extension to the OSiL schema designed to capture stochastic programming prob-

lems with recourse as well as (integrated) chance-constrained models and other 

forms of optimization under uncertainty. It is a very general design, and it is able to 

handle continuous as well as discrete distributions, stochastic problem dimensions, 

various kinds of stochastic processes, linear and nonlinear objectives and con-

straints and, due to its XML nature, can easily be embedded in SOAP messages 

which are the native language of web services communications. 

Example: MPS vs SMPS 

A small example is presented below, to illustrate the difference between the MPS 

and the SMPS formats (other SP-specific instance level representations as OSiL/SE 

are different in the grammar used but similar conceptually). 

Consider the following two-stage problem instance: 
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         ∑  

   

        

                  subject to                                                                                    

                                                                                                                         

                                                                                                                          

                                                                                                                           

 

                                   with       ,         ,                    

3.3 

Using the following numeric values: 

  {      },    =1,    {
 

 
 
 

 
 
 

 
}        ,       ,      ,  

    {       },      {         },        

The resulting MPS file is: 

NAME          mps 

ROWS 

 G  R0001 

 G  R0002 

 G  R0003 

 G  R0004 

 N  R0005 

COLUMNS 

    X1     R0001     1 

    X1     R0005     1 

    X2     R0001     -2 

    X2     R0002     4 

    X2     R0003     4 

    X2     R0004     4 

    X3     R0002     -8 

    X3     R0005     -1.666666667 

    X4     R0003     -9 

    X4     R0005     -1.833333333 

    X5     R0004     -10 

    X5     R0005     -2 

RHS 

BOUNDS 

 UP BOUND     X3     200 

 UP BOUND     X4     200 

 UP BOUND     X5     200 

ENDATA 

This file represent, with the correct numerical values, the matrix as in equation 3.3. 

Five rows have been generated (R0005 is the objective function) and five columns 
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(X3, X4 and X5 correspond to the      in the mathematical formulation, instantiated 

for all three scenarios). To be noticed, in bold, the replicated values for     and for 

  ; replication is one of the drawbacks of this kind of representation, and its 

amount of it increases with the number of scenarios and the size of the model in 

general. The information about probability and number of scenarios is lost, the first 

being now a multiplier for some coefficients in the objective row and the latter driv-

ing the repetition of rows. 

The SMPS version of the file is more compact, and retains the structure of the prob-

lem. The three files which comprise the SMPS standard are listed below. 

COR File: (the “core” structure of the problem) 

NAME           

ROWS 

 N  OBJ 

 G  R0001 

 G  R0002 

COLUMNS 

    X1     R0001     1 

    X1     OBJ       1 

    X2     R0001     -2 

    X2     R0002     4 

    X3     R0002     -8 

    X3     OBJ       -5 

RHS 

BOUNDS 

 UP BOUND     X3     200 

ENDATA 

This file captures the fact that the columns      are logically the same entity, just for 

different scenarios, as the last three constraints of formulation 3.2. In total, this 

core instance has three rows and three columns. 

TIM File: (specifies the separation of time periods) 

TIME           

PERIODS 

    X1     R0001                    PERIOD1 

    X3     R0002                    PERIOD2 

ENDATA 

The second time period entities start with row R0002 and with column X3. 
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STO File: (contains the values of stochastic parameters and information about the 

event tree)  

STOCH          

SCENARIOS     DISCRETE 

 SC S0000001  ROOT       0.3333333333  PERIOD1 

 SC S0000002  S0000001   0.3333333333  PERIOD2 

    X3     OBJ       -5.5 

    X3     R0002     -9 

 SC S0000003  S0000001   0.3333333333  PERIOD2 

    X3     OBJ       -6 

    X3     R0002     -10 

ENDATA 

The file contains the probabilities of each scenario and the values that the stochas-

tic parameters assume in each scenario. Already this simple example shows how an 

SMPS like format is more suitable to represent SP problems instances, as no repeti-

tion is created and, equally importantly, the information about the structure of the 

problem is kept. The comparison between MPS and SMPS formats is expanded in 

section 3.4, where the system developed by the author is used to generate instanc-

es of some problems in both formats. 

3.2 Deterministic equivalent 

Taking into consideration Section 1.3, which described the deterministic equivalent 

formulation for various classes of SP problems and Section 3.1, which illustrated 

how the model instances are passed on to a solver, it is reasonable to draw the 

conclusion that the formulation, generation and the solution of SP problems could 

rely solely on the already existing tools for deterministic optimisation. 

This approach is called deterministic equivalent (DEQ) and it is still the standard way 

to get a numeric solution of a SP problem. To summarize, the deterministic equiva-

lent formulation is an optimisation problem instance that includes explicit or implic-

it non-anticipativity for two-stage or multistage recourse problems, and various al-

ternative formulations for (I)CCPs and Robust Optimization problems (see section 

1.3). These formulations are agnostic of the structure of the problem and, due to 

this lack of information, tend to replicate the deterministic data along with the real-

isations of the random parameters. The resulting model is then passed to a non-

specialized solver, which uses an algorithm appropriate to the kind of problem (i.e. 
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simplex or interior point/barrier method) to find a solution. Various drawbacks of 

this methodology have been mentioned in this thesis, and in this section we high-

light a few other issues. 

Spatial difficulty 

Due to the replication of the data inherent to the deterministic equivalent formula-

tion, its size tends to grow very sharply with the number of scenarios, soon becom-

ing unmanageable. As an example, if the approximation of the distributions are 

modelled using a fixed number of outcomes at each stage (and the filtration is rep-

resented by a tree with an equal number of branches for each node), the number of 

columns of the problem grows linearly with the number of scenarios, but exponen-

tially with the number of stages. Further information on this topic can be found in 

section 3.4. 

Computational difficulty 

As the size of the model grows with the increase in the number of scenarios, the 

deterministic equivalent model becomes increasingly difficult to solve. The inherent 

block structure of the problem – reported below in 3.4 for a two-stage recourse 

problem with S scenarios – could be exploited by solution algorithms.  

 

  

[
 
 
 
 
 
  

    

     

    
           ]

 
 
 
 
 

 3.4 

There exist efficient implementations of the two major solution methods for gen-

eral LP problems, namely simplex (SSX) and interior-point (IPM) methods. The im-

plementation of both approaches might exploit the structure of the problem in 

many ways, for example using heuristics to detect the presence of certain struc-

tures and taking appropriate actions in case these structures are present. A number 

of researchers have proposed structure-exploiting solution algorithms; a non-

exhaustive list includes (Fourer, 1984), (Birge & Qi, 1988), (Choi & Goldfarb, 1993), 

(Grigoriadis & Khachiyan, 1996), (Schultz & Meyer, 1991). For some benchmarks of 
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direct methods applied to deterministic equivalent, the reader is referred to Table 

11 below. 

If a structure exploiting method is applied, the illustrated process of modelling and 

solving an SP problem seems illogical, because the inherent structure of the model 

is firstly scrambled by the generation of the deterministic equivalent, and then 

guessed by the heuristics. As all SP problems with recourse present the same struc-

ture, it should be passed from the modelling system to the solver, so that solution 

algorithms can take advantage of it.  

3.3 Decomposition techniques 

The classes of problems included in the taxonomy shown in Figure 1 have all a pe-

culiar structure and researches have been made to use this structure to speed up 

the solution process. In general, these methods are called decomposition methods, 

as they don’t attempt to solve the whole deterministic equivalent in one go; instead 

they solve sub problems by applying solution procedures to sub-structures that are 

inherent in the particular class of problem. Decomposition and structure exploita-

tion is not a unique characteristic of SP problems, there has been considerable re-

search effort diverted to speed up solution of particular models (for example port-

folio planning models (Mitra et al., 2007), (Bonami & Lejeune, 2009) and set cover-

ing problems (Beasley, 1987), (Beasley & Jornsten, 1992)), and to allow generic 

structure exploitation (see (Makowski, 2005)  (Colombo et al., 2009) for a structure 

conveying modelling system and (Gondzio & Sarkissian, 2003) (Gondzio & Grothey, 

2009) for solution methods based on IPM that can make use of it). The peculiarity 

of SP problems is that their structure is defined once the class of model (recourse 

problem, chance constrained problem or integrated change constrained problem) is 

chosen. 
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Two-stage and multi stage recourse problems  

Considering the general formulation of a two-stage recourse problem, given in 

equations 1.13 and 1.14 and replicated below: 

             [       ] 

                  subject to                  

    

                   where 

                    

                   subject to                      , 

        

    

3.5 

The basic idea behind decomposition algorithms is the approximation of the re-

course function        which is non-linear, obtained applying cuts to the feasible 

region of the problem, cuts that are obtained solving many small problems. The L-

shaped method (Van Slyke & Wets, 1969) is a version of Benders decomposition 

(Benders, 1962) adapted to stochastic programming problems; it exploits the fact 

that the recourse function is convex and polyhedral when it has finite support (i.e. 

the random parameters follow discrete probability distributions, which is always 

the case in scenario based recourse problems). For a detailed and in depth descrip-

tions of this method, the reader is referred to the previously mentioned papers, or 

to (Birge, 1997) which contains a formal descriptions of various solution approach-

es. Benders’ decomposition has also been generalized to multi stage SP problems 

(Birge, 1985), and it is usually referred to as nested Benders’ decomposition. 

Various improvements of Benders decomposition methods have been developed, 

mostly to regularize the “jumps” in the current objective value occurring during the 

solution process. Regularization techniques can be found in (Rockafellar, 1976), 

(Lemaréchal, 1978), (Kiwiel, 1985), (Rockafellar, 1976); a more recent development 

is the level method (Lemaréchal et al., 1995), subsequently extended to inexact da-

ta (Fábián, 2000) and finally applied to solve SP problems (Fábián & Szőke, 2007).  

The software system implemented as practical work for this PhD has been designed 

in close collaboration with the group implementing FortSP (Zverovich et al., 2009), a 
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solver designed specifically for SP problems. The communication of the models to 

the solver is achieved through library calls which pass the data in a form that closely 

resembles the SMPS format. This makes the use of the decomposition techniques 

implemented in the solver possible. A benchmark of the performance of such solver 

using Benders’ decomposition and level decomposition and of CPLEX 11 used di-

rectly to solve the deterministic equivalent is reported in Table 11  below. The table 

is taken from a study made by our research group (Zverovich et al., 2009) in the de-

velopment of solution methods for SP problems. It reports, among the solution 

times for various solution methods, the size of the deterministic equivalent repre-

sentation for a set of test problems, both in terms of matrix size (rows x columns) 

and of non-zeroes; some of these problems are taken from standard SP problems 

collections available on SMPS format (POST (Holmes, 1995), Slptestset and then 

converted to their deterministic equivalent formulation, some have been generated 

using SPInE, namely the models SAPHIR (Konig et al., 2007), and WATSON (Consigli 

& Dempster, 1998). More on the coupling of SPInE and the FortSP follows in section 

3.4.  
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Collection Name Scenarios Size Non Zeroes CPLEX (s) 

  Simplex                     

IPM 

FortSP (s) 

  Benders           Level     

POSTS pltexpA2 6 

16 

686x1820 

1726x4540 

3703 

9233 

0.15 

0.17 

0.06 

0.13 

0.04 

0.08 

0.03 

0.10 

Fxm2 6 

16 

1520x2172 

3900x5602 

12139 

31239 

0.24 

0.47 

0.09 

0.20 

0.29 

0.39 

0.35 

0.53 

stormG2 8 

27 

125 

1000 

4409x10193 

14441x34114 

66185x157496 

528185x1259121 

27424 

90903 

418321 

3341696 

0.32 

0.87 

7.00 

305.81 

0.38 

3.33 

12.33 

189.53 

0.60 

1.93 

8.38 

80.20 

0.83 

1.65 

4.99 

34.46 

Slptestset AITL2 25 152x204 604 0.14 0.04 0.08 0.16 

LandS 3 23x40 92 0.11 0.04 0.01 0.04 

4node 16 

32 

64 

128 

256 

512 

1024 

2048 

4096 

8192 

16384 

32768 

1198x3028 

2382x6004 

4750x11956 

9486x23860 

18958x47668 

37902x95284 

75790x190516 

151566x380980 

303118x761908 

606222x1523764 

1212430x3047476 

2424846x6094900 

7743 

15231 

30207 

60159 

120063 

239871 

479487 

958719 

1917183 

3834111 

7667967 

15335679 

0.20 

0.37 

0.88 

2.48 

9.88 

41.74 

457.53 

1262.75 

11733.86 

* 

‡ 

‡ 

0.19 

0.65 

0.70 

0.71 

1.53 

3.38 

7.51 

17.93 

44.95 

79.73 

‡ 

‡ 

1.44 

3.60 

6.79 

10.25 

16.17 

34.04 

69.13 

240.25 

538.26 

1474.48 

1850.52 

5785.07 

1.18 

1.87 

2.36 

3.37 

8.75 

18.08 

36.34 

63.28 

129.57 

229.72 

459.27 

1029.74 

SAPHIR SAPHIR 50 

100 

200 

500 

1000 

433932x196253 

867832x392453 

1735632x784853 

4339032x1962053 

8678032x3924053 

1136753 

2273403 

4546703 

11366603 

22733103 

255.03 

916.04 

7579.14 

‡ 

‡ 

‡ 

‡ 

‡ 

‡ 

‡ 

465.18 

701.14 

† 

2556.06 

4294.47 

369.59 

533.06 

2555.47 

2339.76 

4650.19 

WATSON WATSON 128 

256 

1024 

41483x75151 

82955x150287 

331787x601103 

188828 

377628 

1510428 

1.44 

3.66 

14.44 

1.71 

3.89 

20.27 

0.92 

1.58 

5.12 

0.92 

1.59 

5.31 

Table 11 Performance of various algorithms 

* Failed to solve due to timeout       † Failed to solve due to numerical difficulties 

‡ Failed to solve due to insufficient memory 
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 (Integrated) Chance Constrained Problems 

Chance Constrained Problems have a deterministic equivalent formulation (see sec-

tion 1.3), which follows immediately from the general formulation. The formulation 

requires the introduction of binary variables for each scenario to indicate the occur-

rences of violations in the constraints and the creation of an extra constraint to 

count and relate them to probability. These stratagems are mechanical, once the 

description of the chance constraint has been given, and the formulation highly re-

dundant; a solver could thus generate all these structures internally, without the 

need of over sizing the communicated model.  

An equivalent formulation for ICCPs is available (see section 1.3) however for this 

class of problems cutting plane approaches are available (Haneveld & van der Vlerk, 

2006). The proposed cutting plane algorithm speeds up the solution process and, as 

for recourse problems, offer a greater scalability than direct methods. 

3.4 Model generation 

The implemented system ran through a long series of QA models, to prove the cor-

rectness of the generated model instances and to benchmark how the generation 

ability scales up with the number of scenarios. It is easily seen that the model size 

increases rapidly with the number of scenarios; in fact the dependence is linear, 

with a coefficient that depends on the relative size of the first and second stage ma-

trix. 

All the models have been written in AMPL as deterministic equivalents and in 

SAMPL; the two representations have been instantiated using respectively AMPL 

and SPInE. Finally, MPS or SMPS files have been generated as appropriate. The fol-

lowing table shows some statistics, obtained using an Intel Core 2 Duo 2.8 Ghz, 4 

GB RAM, Windows 7 64 bits. 
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Model Core Size Deterministic Eq. Size SMPS – SPInE MPS -AMPL 

 Cols Rows Scen Columns Rows Size (Bytes) Memory 

Diff. [kB] 

Size (Bytes) Memory 

Diff. [kB] 

Dakota 9 10 3 27 48 1620 1280 4129 704 

ICCPDakota 9 13 3 39 40 2104 1280 4313 1216 

ICCPDakota10 9 13 10 123 124 3660 1280 13428 912 

Power 12 9 4 39 27 1742 1280 4024 1024 

ALMsmall 14 8 2 28 30 1482 1280 2490 92364 

ALMTwoStage 280 103 360 100800 62280 2667463 60736 9075248 111860 

Prod2Stage 156 108 8 1248 1176 20938 1280 147639 848 

prodMStage 156 108 8 1248 1440 21034 1280 157968 0 

prodCCP 120 108 8 1248 1212 20134 2560 158524 720 

prodICCP 120 108 8 1536 1212 20244 1280 157199 784 

Informer 3 2 10 42 11 1350 1280 2045 1024 

saphir2 3971 8704 2 3974 8704 872168 2048 831538 5440 

saphir10 3971 8704 10 39236 86788 1136119 89984 8347386 22384 

saphir20 3971 8704 20 78416 173548 1468465 136768 16773657 49860 

saphir50 3971 8704 50 195956 433828 2460251 153024 42091503 122232 

saphir100 3971 8704 100 391856 867628 4118397 185728 84287526 241548 

saphir200 3971 8704 200 783656 1735228 7580814 185728 1.7E+08 461324 

saphir500 3971 8704 500 1959056 4338028 17813339 229056 4.26E+08 1188332 

saphir1000 3971 8704 1000 NA NA 36059441 320128 NA NA 

saphir2000 3971 8704 2000 NA NA 72195561 571008 NA NA 

saphir5000 3971 8704 5000 NA NA 1.8E+08 870231.3 NA NA 

Figure 14 Model generation statistics 

The shaded columns show data from the deterministic equivalent formulation, 

generated using AMPL while the white columns contain statistics on the SAMPL 

version of the same model, generated using SPInE. It is worth noticing that the last 

three models couldn’t be generated using AMPL 32 bits, as the requested memory 

hit 2GB, limit for 32 bit processes in windows.  

The column Size shows the size in bytes of the generated MPS or SMPS model, the 

column Memory diff. shows the memory allocated above the normal runtime envi-

ronment of AMPL or SPInE in kB. I have chosen to show the peak memory variation 

which occurs while generating the model over the “empty” runtime environment 

instead of the peak memory allocation because the two applications are coded us-

ing completely different systems (C in case of AMPL, C# under .NET framework 3.5 
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in case of SPInE). For completeness, the initialization of AMPL takes 59 MB, while 

for SPInE the figure runs up to 166 MB. 

It is clear however that, as the number of scenario increases, the generation of the 

model using SPInE and its representation using SMPS become increasingly advanta-

geous over the deterministic counterparts. The graph in Figure 15 below shows the 

memory usage differential for the model Saphir, as the number of scenario increas-

es. 

 

Figure 15 Comparison of memory usage in model generation 

It can be seen that generating the deterministic equivalent version is advantageous 

at the beginning of the graph, due to the efficiency of AMPL and its runtime envi-

ronment but, as the number of scenarios increases, the generation of the SAMPL 

model using SPInE becomes clearly more efficient.  

3.5 Solver architecture and interface 

The previous sections of this chapter explain that there are well defined classes of 

model that could benefit by the application of specific solution approaches. An ef-

fective software tool for stochastic programming therefore identifies the class of 

model which is being implemented and takes the appropriate steps to ensure its 

fast and efficient solution.  
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FortSP, the solver mentioned in various section on this thesis, has been developed 

in parallel with the development of SPInE, by the SP team in CARISMA. The latest 

additions and their recent redesign followed the same pattern, resulting in a great 

interoperability of the two systems. The software system FortSP (Ellison et al., 

2009; Zverovich et al., 2009) offers a choice of algorithms, which have different per-

formance and that can be used on different classes of models: 

 Benders decomposition (L shaped method) 

 Variant of level decomposition 

 Nested Benders decomposition 

 Cutting plane algorithm for ICCPs 

 Deterministic Equivalents generation and solution 

The first two are applicable to two-stage SP problems with recourse, the third one 

to multi stage SP problems, the fourth one to ICCPs and the fifth to all the classes of 

models. All these methods share the need of an external solver to solve the sub 

problems or the whole problem (in case of deterministic equivalent). The classes of 

these problems (Linear Programs, Quadratic Programs, Mixed Integer Programs, 

Quadratic Mixed Integer Programs, and Second Order Cone Programs) depend on 

the considered class of starting (SP) model and on the solution method chosen; 

FortSP has a plug-in system to connect to various external solvers, each of them can 

have different capabilities in terms of solvable models. The process of chosen the 

solution method could be at least partially automated, as the requirements in terms 

of solvers will be known by the modelling system, if the meta-information regarding 

the model is retained.  

A mapping between various methods is possible, and it is reported in Figure 16 for 

the methods currently implemented in FortSP. Retaining the information about the 

starting class of the model is possible in a modelling system using specialized syn-

tactic constructs like the ones available in SAMPL (see section 2.5). Aware of this 

information, the implemented system SPInE can easily exclude some combinations 

of solution methods and sub solvers. The mapping is currently stored in an external 

XML file; as new solution methods and solvers are made available, it can be extend-
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ed to include the new possibilities. Another, more elegant, approach would be to 

define a simple service discovery API, which would enable solution methods and 

sub solvers to be self-descriptive. In this way, the update of the mapping could be 

automated; the system has not been developed in this way because, due to the lim-

ited amount of entities and rules, it is easy enough to manually update the XML file. 
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The interface that SPInE uses to communicate with FortSP is shown, as displayed by 

Visual Studio, in Figure 17 below. 

 

  

Figure 17 Interface between SPInE and FortSP 
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Once generated, the procedure to pass the model to the solver is quite simple. 

SPInE has the Model class in memory, which contains all the needed information 

about the model instance. An instance of the solver is created, then the core prob-

lem is passed row-wise, in a sparse row representation. The stochastic information 

(the parameters which distinguish the scenarios) is then passed in a separate data 

structure, and finally the objective sense and the eventual type of chance con-

straints or integrated chance constraints are passed with separate library calls.  

The code snippet below, taken from the actual SPInE C# codebase shows this part 

of the program. It can be noted that, although the interface has been designed 

closely interacting with the developers of FortSP, there are some differences be-

tween the data structures of the solver and of SPInE. This can be noticed in the 

code at the moment of passing the stochastic elements: a local function 

(createStochElementsArray) is called to convert the stochastic elements from 

SPInE’s internal representation to FortSP’s. 

// Create an instance of the solver 

result = FortSPDLL.FortSP_Open(ref FortSP); 

 

// Create a pointer to the solver rep of the problem 

result = FortSPDLL.FortSP_CreateProblem(FortSP, ref FortSPProblem); 

 

// Add the columns with their lower bounds, upper bounds and costs, 

but no A matrix 

result = FortSPDLL.FortSP_AddCols(FortSPProblem, model.nc, null, 

null, null, model.lob, model.upb, model.cost); 

 

// Get the sparse row representation from the SPInE model class 

int [] rowstarts; 

int [] colins; 

double []values; 

model.getSparseRowRepresentation(out rowstarts, out colins, out 

values); 

 

// Pass the obtained A matrixs to the solver 

result = FortSPDLL.FortSP_AddRows(FortSPProblem, model.nr, 

rowstarts, colins, values, model.lhs, model.rhs); 

 

// Add the stages information 

result = FortSPDLL.FortSP_AddStages(FortSPProblem, model.nt - 1,  

 model.rowstart, model.colstart[); 

 

// Create the array of stochastic elements in the format FortSP 

expects it  
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FortSPDLL.FortSPStochElem[] stochElements = 

createStochElementsArray(model); 

int[] newstoinds = new int[model.ns + 1]; 

model.stoind.CopyTo(newstoinds, 0); 

newstoinds[model.ns] = model.nd; 

 

// Pass the stochastic elements to the solver 

result = FortSPDLL.FortSP_AddScenarios(FortSPProblem, model.ns, 

model.prob, model.basescen, model.stage, model.stoind, 

stochElements); 

 

// Set objective sense 

FortSPDLL.FortSP_SetObjSense(FortSPProblem, (int) 

model.objectiveSense); 

 

// If present, set the types of chance constraints or integrated 

change constraints 

if (model.CCnumberOfCCs > 0) 

{ 

result=FortSPDLL.FortSP_SetRowTypes(FortSPProblem, 

model.CCnumberOfCCs , model.CCrowindices, model.CCrowTypes, 

model.CCrowDirection, model.CCrhsValue); 

} 

 

This kind of interface is easy yet functional enough, and it has proven to be solid 

across many months of testing.  

3.6 Conclusions 

In this chapter we have highlighted the differences between deterministic and SP 

problems in terms of model instance generation, representation and solution. We 

have shown that the developed system has the means to automatically generate 

efficient SP model instances, and the benefits of such technique are shown in the 

benchmarks set out in section 3.4. Solution speed and memory usage can greatly 

benefit by the use of decomposition methods, and the interface devised to auto-

matically select and use a method depending on the problem at hand is shown in 

section 3.5. 
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Chapter 4 Requirements for a Scenario 

Generation library 

The computational solution of SP problems, except for some trivial cases, cannot be 

obtained with continuous distributions of the random model parameters. Therefore 

in almost all cases discrete distributions are used, leading to scenario based sto-

chastic programming problems, and indeed the discrete scenario based models are 

supported by most solution methods. Moreover, the number of scenarios of the 

discrete distributions is limited by the available computing power, and therefore 

these distributions have to be approximated by a limited number of outcomes. The 

approximation is usually in the form of a scenario tree, and the mathemati-

cal/software tools used to generate them are referred to as scenario generators. In 

this chapter we present the requirement analysis for a scenario generator library. 

Our aim in defining a scenario generator library and capturing alternative SG meth-

ods are as follows: through the many procedures listed in the library, we capture 

well established knowledge of leading methods, and we connect them to a decision 

model in a user friendly way; this system has been implemented in SPInE. The chap-

ter starts with a formalization of scenario generators, given in section 4.1. Two sec-

tions of literature review then cover respectively the classification of scenario gen-

eration methods (section 4.2) and their desirable properties (section 4.3). Finally 

the scenario generation library is presented and described in two sections 4.4 and 

0. These sections respectively set out successive formalizations of the concept of 

scenario generator, define the software requirements and present some excerpts 

of the implementation of the library itself. Section 4.6 gives then a formal introduc-

tion to the new syntax introduced in SAMPL to integrate scenario generation into 

the decision model. 

The author’s contributions in respect to this chapter are the analysis, design and 

implementation of the scenario generation library, as reported in sections 4.4 and 0 

and the specification of the language extensions to support it at a modelling level 

(4.6). 
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4.1 Scenario Generators: a modelling perspective 

The creation of the scenario tree used in scenario based stochastic programming is 

usually performed by specialized applications called scenario generators. The pro-

cess of capturing the computational SP models involves therefore two distinct 

modelling steps, which are: 

(i) Expressing the logic of the application’s domain into a (SP) decision model 

(ii) Representing the randomness properties of the application’s domain with 

stochastic processes and create scenario trees 

Depending on the domain of application, the domain experts typically apply well 

established models to specify the random model parameters, finely tuned and 

matching the problem at hand. For instance in financial applications CAPM, GARCH, 

Geometric Brownian Motion, Regime Switching Markov models have been exten-

sively used. For a more comprehensive description of scenario generators for finan-

cial models, the readers are referred to some recent research reports and publica-

tions of CARISMA (Roman et al., 2009), (Mitra, 2009). Other domains have other 

typical models; a short list of such domains and common techniques is given in Ta-

ble 8.  

The next necessary step is to connect the chosen scenario generator to the decision 

model; this is usually performed by importing the generated scenario tree in the 

form of data structured typically as a multidimensional table into the modelling sys-

tem. This procedure is often time consuming and error prone; creating an integrat-

ed software tool for SP should avoid this manual step, thus a further analysis of the 

connection between SGs and decision model is required. Figure 18 below illustrates 

the two conditions that are vital for the implementation of such a connection: a 

structural compliance between the SGs parameters and the algebraic model and 

the communication of controls between modelling system and scenario generator. 

The first condition (Compliance) is related to modelling, and is expanded in the rest 

of this section, while the second (Control) is related to the software infrastructure, 

and is discussed in sections 4.4 and 4.5.  
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A scenario generator f captures in a procedural form a domain-specific model of 

randomness. In particular it very often uses (i) historical information, (ii) an event 

tree structure and (iii) some other specific parameters needed by the model of ran-

domness. We therefore separate the three groups of parameters as: 

(i) H History  

(ii) τ Event Tree shape 

(iii)   Remaining Parameters, needed by the model of randomness 

Using this notation, the set of scenarios Ξ can be seen as the output of the genera-

tion procedure, as: 

            4.1 

The event tree structure is specified in the decision model too; it is actually en-

forced through non-anticipativity constraints or by appropriate variable definitions 

in normal modelling languages, or defined as a stand-alone entity in languages with 

specific constructs for SP (see section 2.5 for examples). We define the tree struc-

ture expressed to the decision model as τ’. 

The two trees need to be congruent; in other words, the tree structure τ assumed 

by the scenario generator has to be the same as the tree structure τ’ specified in 

the optimization model (see Figure 19). 

Scenario 

Generator 

Modelling 

System 

SG Parameters Algebraic 
model 

Scenario Tree 

Structural 

Compliance 

Control 

Figure 18 Link between Scenario Generators and Modelling System 
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Logic dictates that there are two ways to ensure this consistency: the first is to 

check whether the two definitions of τ and τ’ coincide; the second is to define the 

tree structure just once, thus eliminating any possibility of inconsistencies. In the 

current version of SPInE, the tree structure is defined using the SAMPL construct 

tree in the decision model and it is automatically communicated to the scenario 

generators used. This might not be the best possible choice, as scenario generators 

with integrated scenario reduction techniques or with internal sampling methods 

(see the next section), might be able to provide a tree structure automatically given 

a desired level of precision in the representation of the underlying stochastic pro-

cess. The approach of getting τ from the scenario generators is currently under re-

search. 

4.2 Overview of SG methods 

Scenario generation is possible following various general approaches; on top of the-

se techniques there are methods to then reduce the number of scenarios to a trac-

table case. The common aim of all methods and techniques is to be able to approx-

imate a distribution with a treatable scenario tree; the following categorization is 

largely taken from (Kaut & Wallace, 2003). 

1. Generating scenarios 

o Conditional sampling 

At every node of the scenario tree, realizations of the stochastic pro-

cess { ̃ } are sampled, either by sampling directly from the distribu-

tion of { ̃ } or by evolving the process discretely, according to a for-

mula of the type  ̃       ̃     where   is the current random vec-

         

Scenario Generator 

  

Scenarios Decision model 

(contains τ’) 

  

  

  

Condition τ= τ’ 

Figure 19 Structural compliance between model and SG 
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tor. Traditional sampling methods have a limitation: when sampling 

from more than a random variable, there is the need to sample eve-

ry marginal separately and combine them afterwards, generating a 

tree whose size grows exponentially with the dimensions of the ran-

dom vector. 

o Sampling from specified marginals and correlations 

To overcome the difficulties in generating multivariate vectors, espe-

cially if correlated, these methods require the specification of the 

marginal distributions and the correlation matrix. Copulas are often 

used in these methods to bind together the various marginals. 

o Moment matching 

If the distributions are not known, they can be described using their 

moments (mean, variance, skewness etc.), the correlation matrix in 

case of multivariate vectors and possibly other statistical properties. 

A discrete distribution can then be constructed that matches the giv-

en statistical properties (Hochreiter & Pflug, 2007), (Smith, 1993). 

Bootstrapping can be seen as a moment matching technique, in 

which the desired distribution is created by mean of values sampled 

directly from the original distribution’s values. 

o Path-based methods 

In these methods, whole paths (or fans) are generated evolving the 

stochastic process over time, one for each scenario. These scenarios 

have then to be clustered into a scenario tree of the desired shape. 

2. Related techniques  

o Clustering 

Clustering is the technique used to convert a set of scenarios in form 

of fans to a scenario tree. See (Dupačová et al., 2000) or (Heitsch & 

Römisch, 2009) for a combined clustering/reduction approach. 
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o Internal sampling methods 

These methods differ from the others, as the sampling of scenarios is 

performed during the solution procedure. Most important methods 

of this kind are stochastic decomposition (Higle et al., 2009), im-

portance sampling in Benders decomposition and stochastic quasi-

gradient methods. 

o Scenario reduction 

Scenario reduction is a method to decrease the size of an already 

generated scenario tree, trying to find a scenario subset of pre-

scribed size that is closest to the initial distribution in terms of de-

fined probability metrics (Dupačová et al., 2003), (Henrion et al., 

2008), (Heitsch & Römisch, 2009). 

In general, all these methods can be divided into Statistical models or other models, 

depending whether the underlying random process is describing the real world 

based on scientific/mathematical theories of the given field, or just based on statis-

tical properties (i.e. moments) of observed historical data. 
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There are some common models of randomness, whose use spreads across various 

application fields and are therefore listed below. They are not direct scenario gen-

eration techniques, as they generate time series, but continuous time models from 

which a scenario tree can be derived using sampling or clustering methods. 

Diffusion processes 

Diffusion processes are widely used in finance to model the future evolution of 

stock prices, interest rates and mortality ratio. They are continuous time models, 

and include: 

Wiener Processes (Brownian motion) 

Brownian motion is one of the simplest stochastic processes, and it is described in a 

mathematically convenient form. It is traditionally regarded as discovered by Rob-

ert Brown in 1828 (Brown, 1828) applied to the movement of pollen particles, 

mathematically formalized in 1880 by Thorvald N. Theile (Thiele, 1880), but its first 

well known application is due to Albert Einstein in 1905 as a description of the 

movement of small particles in a stationary fluid (Einstein, 1906). 

A Wiener process is a stochastic process which is defined as: 

     √                  4.2 

and dz is the drift of the value of the process in dt. The process has the following 

important properties: 

1. It is a Markov process, so future probability distributions depend only on the 

current value of the process and not on past values or other information 

2. The increments over two defined time intervals are independent 

3. Changes in the process over any finite time interval are normally distributed 

with a variance which increases linearly over time 
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Generalized Wiener Processes (Brownian motion with drift) 

A generalized Wiener process is defined as follows: 

            4.3 

where dz is the increment of a standard Wiener process,   is the drift parameter 

and   is the standard deviation. Over any time interval ∆t, the corresponding ∆x is 

normally distributed with mean     and variance     .  

Ito Processes 

The Ito process is a generalization of Brownian motion with drift and can be ex-

pressed as: 

                      4.4 

where dz is the increment of a standard Wiener process,        and        are the 

drift and the standard deviation expressed as functions of the current state and 

time. A particular case of the Ito process is the Geometric Brownian Motion (GBM), 

where          and         .  

The use or one or the other models depends on the assumptions made on the de-

scribed reality: in case of modelling share prices, if we assume that the expected 

percentage return and the variance of the return are independent from the current 

price, the price can be modelled by a GBM, otherwise not. 

Time series 

Time series are commonly used to estimate parameters which explain the behav-

iour of a random variable based on past observations. Three broad category of 

models of practical importance are the autoregressive (AR) models, the integrated 

models (I) and the moving average (MA) models, which can be combined and which 

all assume linear dependence between the current data point and the previous 

one(s). Non-linear dependency is possible, like in the conditional heteroskedasticity 

models, in which the variance varies over time. 
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Autoregressive models: AR(p) 

AR model of order p assume that the current value of a random variable depends 

solely on the past p observations of the same variable. The general form of an AR(p) 

process is: 

 
     ∑         

 

   

                     4.5 

where    is the value of the process at time t,    are the parameters of the model, c 

is a constant and    is white noise. The AR(1) model is known as random walk. 

Moving Average models: MA(q) 

The moving average model is conceptually a linear regression of the current value 

of the random variable against previous (unobserved) white noise terms. A moving 

average model of order q is expressed as: 

 
        ∑      

 

   

                     

  

4.6 

where    is the value of the series at time t,    are the parameters of the model, μ is 

the mean of the series and    are white noise error terms. 

Autoregressive Moving Average models: ARMA(p,q) 

Autoregressive moving average models are defined as a combination of AR and MA 

models. An ARMA(p,q) model is therefore expressed as: 

 
        ∑       ∑                           

 

   

  

 

   

 4.7 

where all the symbols have the meaning defined for the AR and the MA formula-

tions. 

Autoregressive Conditional Heteroskedasticity models: ARCH(q) 
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This class of AR models assume that the random variable is characterized by non-

constant variance over time, that is: the variance of the current error is considered 

to be a function of the values of the previous time periods’ errors. The process is 

then modelled with an AR(q) model, as: 

 
     ∑         

 

   

 4.8 

where        , with             , and with: 

 
  

     ∑      
 

 

   

 4.9 

where      and         . 

Generalized Autoregressive Conditional Heteroskedasticity models: GARCH(p,q) 

A GARCH(p,q) model assumes an ARMA(p,q) model for the error variance, therefore 

the error term for the model process is given by: 

 
  

     ∑      
  

 

   

 ∑      
 

 

   

                     4.10 

4.3 Desirable properties 

The quality of the decision resulting from the stochastic programming problem is, 

as can be inferred from section 4.1, dependent on both the decision model and the 

scenario generation process. Some desirable properties for scenario generators are 

described in (Kaut & Wallace, 2003) and (Zenios, 2006); these can be summarized 

as: 

1. Correctness: The generated scenario sets should be correct representations of 

our random parameters’ distributions; not knowing the distribution leads us to dif-

ferent descriptive models which give alternative representations of our parameters’ 

dynamics. It is important to choose the model that best captures the aspects of the 

dynamics of the random parameters that are important in the context of the deci-

sion problem. 
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 2. Consistency: In case of multiple related random parameters, the values of these, 

under any particular scenario, should be consistent with each other. This issue aris-

es when there are domain specific rules which apply to two or more of the generat-

ed random parameters: the generated scenarios, which include values for both the 

parameters, should be consistent with the domain rules (i.e. in finance, generated 

prices for different type of assets might have to satisfy the arbitrage free condition, 

or other logical inconsistencies between parameters’ values). 

3. Stability: Stability for a scenario generation method is considered in respect of a 

particular decision model. A scenario generator is stable in respect to a decision 

problem if the decisions which are outcome of the decision problem do not vary 

significantly across multiple runs. Defining the decision model as a simple single 

stage model as: 

    
   

 (    ̃) 4.11 

where  ̃ is a stochastic variable, and using a notation where {  ̃} is a stochastic pro-

cess,  ̆ is a discrete stochastic variable and {  ̆} a discrete stochastic process (thus a 

scenario tree), Kaut and Wallace (2003) define, over K generated scenario trees    ̆ 

and the same number of obtained solutions of the problem   
 , k=1…K 

in-sample stability: 

  (  
     ̆)   (  

     ̆)                         {     }       4.12 

and out-of-sample stability: 

  (  
     ̃)   (  

     ̃)                         {     } 4.13 

The in-sample stability tells us therefore how stable the scenario generator is when 

used with the considered decision model or, in other words, how much the objec-

tive function value changes when solving the decision model using different trees 

generated with the same scenario generator and the same parameters. 

The out-of-sample stability evaluates the solutions obtained through the scenario 

generator against the real distribution; in the (very realistic) case that the real dis-
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tribution is not known, the solutions can be evaluated against another scenario 

generator that has proven to be reliable with the current decision model or back-

tested against historical data. 

4.4 An abstract view of SGs 

Starting from the basic points given in section 4.1, a second step of abstraction 

seems necessary to achieve a compact yet extensible architecture to seamlessly 

connect scenario generators to a modelling system. The interested reader would 

probably have noticed that just one of the connections in Figure 19 has been de-

scribed in that section. The second one needs a more thorough formalization of the 

abstraction already presented to represent scenario generators. It has to be noted 

that the structural compliance condition is enough to guarantee that a decision 

model can work together with a predefined scenario generator; the second connec-

tion is mandatory when the functionalities of a scenario generator library are intro-

duced. A scenario generator library is an extensible collection of scenario genera-

tors among which the modeller can choose for generating the random data.  

The problem of creating an abstraction and some functionality requirements to en-

close a scenario generation library and its linking to a decision model is hereby dis-

cussed. The new formalism is introduced through subsequent extensions in the 

multiplicities of the entities involved: 

Number of scenario generators Number of random parameters 

Single scenario generator Single random parameter 

Multiple scenario generators Single random parameter 

Multiple scenario generators Multiple random parameters 

Table 12 SG abstraction steps 

Please note that in this section, the mentioned models of randomness (AR, ARMA) 

are not intended to completely characterize the scenario generator, as these mod-

els generate time series data. This output will then have to be sampled to obtain 

the scenario tree (see Figure 20 and its comment). The word “based”, as in “AR(2) 

based scenario generator” serve to further stress this fundamental distinction. 
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Single scenario generator – Single random parameter 

From a functional perspective, a scenario generator (if not internal sampling based) 

is an independent module that has a few inputs and outputs a data structure con-

taining random parameter values in the form of a scenario tree, as in Figure 21. 

 

 

 

 

To characterize a scenario generator, we therefore should proceed by identify in-

puts, outputs and the actions it can perform. Examining a first example, a simple 

AR(2) based scenario generator, the needed parameters (see equation 4.5) are: 

    ,   ,   and    where   describes the scenario tree shape. If the above scenario 

generator is able to estimate its parameters from historical data, then the input is 

simply    H (denoting the historical data). For an ARMA(1,1), the needed parame-

ters would be      ,   ,   and    or again simply    H. For all these models, the 

output is the scenario tree ξ. A model able to generate multivariate vectors, will 

need the dimension κ of the vector to be generated as well as the parameters spe-

cific to the stochastic process used, that we summarize with  . These can be sche-

matized as in Figure 22 below. 
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Figure 21 Scenario generator functional perspective 

Figure 22 Scenario generators as black boxes 
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The procedure of using a scenario generator can be expressed as: 

            4.14 

where   is the tree structure shape, H is the historical data,   is a set of parameters 

specific to the scenario generator,   is the set of generated scenarios. From now 

on, we will consider among the set of possible parameters  , the recurring ones as 

the historical data H and the dimension of the random vector κ, which are often 

present in scenario generation procedures and, most importantly, that could be 

specified as part of the data of the model. The procedure can then be written as 

         

Introducing notation that is used in the next section, we can therefore fully define a 

scenario generator using: 

    identifies a scenario generator procedure 

   {       } identifies the set of n parameters needed by     

   is the scenario set generated by     

 

Multiple scenario generators – Single random parameter 

This first extension extends the structure to support multiple scenario generators, 

that we call a scenario generators library. They could all possibly need different in-

puts and, whatever scenario generator is chosen, the output is going to be a tree of 

random data, which the modelling system will then bind to the defined random pa-

rameter. To describe this case we therefore need: 

  {       } set of all S available scenario generators  

   shorthand notation to identify the choice of a scenario generator,       

Figure 23 Abstract representation of a scenario generator 
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   number of parameters needed by scenario generator i 

   {        
} parameters needed by scenario generator i 

 

 

The dashed arrow at the bottom means that, in case the chosen scenario generator 

   needs one of the parameters that are well known (dimension of the random pa-

rameter, historical data and tree structure), these can be communicated from the 

model. 

Multiple scenario generators – Multiple random parameters 

To face this case, we have to introduce some more notation, which relates to the 

fact that the random vector previously defined as      can, in an algebraic per-

spective, be decomposed in various random parameters     , grouped by their 

meaning in the model (i.e. for a financial model: asset prices, interest rates, mortali-

ty rate, cash incomes, …).  

 

  ⋃     

 

   

 4.15 

These random parameters’ uncertainties might be appropriately modelled with dif-

ferent stochastic processes, therefore, in our perspective, the parameters values 

are generated via different scenario generators. We need therefore to assign a 

mapping between each random parameter and the scenario generator to be used 

for it. In case of scenario generators that can generate multivariate distributions 

that span for more than one of the defined random parameters, this mapping 

needs to be n-to-1. We denote with the letter    the map between random parame-

  

 

     
Decision Model 

   

      

Figure 24 Abstract representation of a SG library, single random parameter 
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ters and scenario generators:    →  . Note that this map is not injective nor sur-

jective: all random parameters have to be assigned, not all the available scenario 

generators need to be used and more than one random parameter can be assigned 

to one scenario generator. 

To shorten the notation, the accent denote in       the fact that they are respec-

tively: the set of sets of all parameters needed by the scenario generators chosen in 

 , the set of historical data sets for all random parameters in the model and the set 

of dimensions for all random parameters in the model. See Figure 25 for a graphical 

representation of this abstraction.  

 

 

 

4.5 SG Library: an IT perspective 

The abstraction framework provided in the previous section proved to be essential 

in the design of a software system to support stochastic programming problems. 

Most of the identified entities translate directly into classes, the building blocks of a 

program following the object oriented paradigm however the design of a software 

system based on the defined abstraction model requires more information; more 

specifically, meta-information about various entities has to be exchanged. This sec-

  

 

   

  ⋃     

 

   

 

Decision Model 

  

     ̂ 

 ̂ 

 

  random parameters in the decision model 

  map random parameters-scenario generators 

   generated scenario trees 

 ̂ set of all parameters needed by all scenario 
generators in   

 

 

 

 

  set of all scenarios generators 

  scenario tree shape 

 ̂ historical data 

 ̂ dimensions of random vectors 

 

 

 

 

Figure 25 Abstract representation of a SG library, multiple random parameters 
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tion presents the steps and the choices available in this respect, focusing on the 

ones that have been implemented in the current software system. 

Overlaying Figure 25 on the software tools building blocks, the flow of information 

between the two systems appears to be not uni-directional (see Figure 26 below): 

 

 

The first problem arises already with  , the mapping between random parameters 

and scenario generators: being defined as    →  , it involves two entities that are 

known to two separate systems. P, the list of random parameters are known to the 

modelling system once it parses the decision model, while  , the set of available 

scenario generators, is known to the scenario generation library at runtime. The 

functionality we wanted was to allow the modeller to define the mapping in the 

model itself, as he would do with a normal data source, hence the choice to com-

municate   to the modelling system.  

Metadata 

 , in this perspective, is not a set of functions, but a set of function descriptions; 

these descriptions must include the list of parameters the scenario generator 

needs, together with their descriptions. To summarize, indicating with the box the 

Figure 26 IT view of Scenario Generation 

  

 

  ⋃     
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 ̂ 

 

Scenario 

Generator 

Modelling 
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fact that we are referring to meta-information, the entities that need to be known 

for the modelling system to be able to allow the definition of   is   {        } 

and    {         
}         . 

The correspondence between entities and classes is the following: 

   array of SGInformation    array of Parameter 

   SGInformation    Parameter 

Obviously, the list of parameters for a particular scenario generator is logically part 

of its meta-information; the class SGInformation therefore contains a name, a 

description and an array of objects of class Parameter, together with other useful 

information. Each parameter, in turn, is represented by a name, data type, descrip-

tion and a number identifying its position on the command line (see next section for 

this last item); a UML class diagram is presented in Figure 27 below. 

 

Figure 27 UML schema of metadata 

Functional view 

Generating the scenarios for an SP problem using the system presented, can be 

seen as a three phases process, which imply some functionalities in the entities in-

volved (modelling system or scenario generator). This (somewhat simplified) analy-

sis leads to the definition of an interface between the modelling system and scenar-

io generators, which is now implemented and fully working. 
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1) Discovery / Self-description 

Discovery is the process by means of which the system becomes aware of the avail-

able scenario generators; it requires the scenario generators to be self-descriptive, 

functionality that makes use of the data structures defined previously in this sec-

tion.  

Scenario Generator Modelling System 

getName returns the name of the scenario 

generator 

obtainSGList gets the list of scenario 

generators in a specified folder. Internally, 

besides the obtained SGInformation, 

stores the location of the file where the SG 

is implemented 

getDescription returns the description 

of the scenario generator 

getParameters returns the list of parame-

ters needed by the scenario generator 

Table 13 Functions used for SG discovery 

This functionality can be seen at work in Figure 28 below. The data displayed in the 

window is generated automatically at application start-up, which is when the dis-

covery process is executed. To the left, the list of scenario generators; the names 

are obtained calling the function getName of the libraries which implement the in-

terface. Once one is selected, the right side of the window is then populated: the 

Description textbox displays the text returned by calling the function getDescrip-

tion while the Parameters section displays the information regarding all the enti-

ties received by calling the function getParameters. 
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Figure 28 SG discovery screenshot 

2) Mapping / Interpreting 

The second step is to create the map between random parameters and scenario 

generators. At this point, all the information needed is in the modelling system; the 

decision model defines the scenario generators assigned to the random parameters 

through specific syntactic constructs, and specifies their parameters. The syntax is 

briefly introduced in Section 4.6; here it is important to notice that, due to the run-

time availability of  , the modelling system can check if a scenario generator with 

the name specified in the decision model actually exists, and if the parameters that 

are passed to it correspond to its expectations. 

Once the parsing is done successfully, storing the mapping is trivial and the model-

ling system can switch to the next phase, which is the model generation part. 

3) Generation of the scenario trees 

For each mapping    , the system has to call the specified scenario generator 

with the indicated parameters. The usage of scenario generators that are unknown 

to the modelling system has two issues: firstly it is impossible for the system to per-

form a validation of the parameters passed to the specific SG and secondly the 

amount of data passed might be large (typically, a high volume of historical data 

can be required). These two issues make unadvisable the use of function calls of the 
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form generate( ): if an error in the parameters is present (i.e. type mismatch), 

the function would just terminate with errors, and the scenario generator has to 

include complicated error handling code. Thus a different approach has been cho-

sen: the scenario generators modules are required to expose the four functions: 

bool setParameter(string name, object value); 

bool Generate(); 

string getMessage(); 

ScenarioTree<double[]> getScenarioTree(); 

The behaviour is then the following: 

1) For each parameter     , the modelling system calls the function setPa-

rameter in the SG module, with the values available to the modelling sys-

tem.  

a. If the returned value is true, then go to 1 

b. If it is false, break and call the function getMessage, that will re-

turn an error message 

2) The modelling system calls Generate 

a. If the returned value is true, go to 3 

b. If it is false, break and call the function getMessage, that will re-

turn an error message 

3)  Call the function getScenarioTree, which returns the generated data 

in an appropriate data structure 

4) Enumeration 

One aspect remains to be covered, and has not been fully developed in the imple-

mentation yet: a scenario tree is generated by each scenario generator in the map-

ping  , each corresponding to one or more random parameters’ realization along 

the dynamic structure of the decision model. Considering that the scenario tree 

structure   is specified in the decision model, this implies that all these event trees 

inherit the shape defined by it; the final decision problem is therefore a cross prod-

uct of all event trees, and the user has no direct control over it. 
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One possible approach is to allow the scenario generation library, which will have 

then to become more than just a collection of interfaces and data types, to include 

specific tree enumeration routines, possibly scenario reduction routines. This will 

allow the library to pass back to the system a single tree   which has the structure   

specified by the model.  

Another possible approach is similar to the previous one, except that the shape of 

the returned tree is determined by the tree recombination or scenario reduction 

routines of the SG Library. The tree needs not to be defined in the decision model; 

this approach has the advantage that scenario reduction routines, or the scenario 

generator itself, could decide how complex the tree should be to represent the un-

derlying distribution with a certain precision. 

A third approach, which is the one at the moment implemented, is that all the gen-

erated trees    are communicated back to the modelling system that creates the 

recombined tree doing a simple cross product of the generated trees   , thus . This 

has the advantage of simplicity, but the sizes of the created trees increase very rap-

idly with the number of random parameters. 

Implementation 

This section presents some details of the implementation work done by the author, 

taking into account all what examined so far.  

The system is written using a .NET compliant language; therefore all the data struc-

tures and the interface have to be of that same kind. The scenario generators need 

to implement the interface SGModule, which allows the system to recognize 

them, get the meta-information and finally exploit their functionalities. The follow-

ing figure shows the interface, as implemented in a working system by the author 

thesis. 
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Figure 29 Scenario Generator Interfaces 

ISGModule 

The interface that has to be implemented by any scenario generator to be usable by 

SPInE is specified as follows: 

string getName(); 
 

Return the name of the scenario generation module, to be displayed by the system 

at runtime. Note that it is the identifier that the user will have to use to identify the 

scenario generator in his models, so it has to be unique. 

string getDescription(); 
 

Return a short text describing the SG, displayed by the system to guide the user. 

Parameter[] getParameterList(); 
 

Return the list of the Parameters needed to the scenario generator. The list is in 

form of an array of Parameter, where the class parameter is specified in Figure 27. 

bool setParameter(string name, object value); 
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Set the parameter corresponding to name to the specified value. If the value is of 

wrong type, throws TypeException. 

 
string getMessage(); 
 

Return the internal error message, if any. It is called by the system after a failed 

generation attempt to display the details of the error to the user. 

bool Generate(); 
 

Generate the scenarios, returns true if successful, false otherwise. It can fail for a 

number of reasons, the most common of which is the parameters being not well 

set. 

double[,] getScenario(int scenarioNumber); 
 

Get a single scenario. Parameter scenarioNumber is the 0-based index of the de-

sired scenario. The returned array is to have the following dimensions [time, indi-

pendentvariables]. Optional. 

double[, ,] getAllScenarios(); 
 

Get all the scenarios. The returned array is to have the dimensions [time, scenario, 

index]. It is used if getScenarioTree() is not present or returns null. 

General.ScenarioTree<double[]> getScenarioTree(); 
 

Get all scenarios in the ad hoc datastructure provided in SGHelper.dll. Preferred 

method of comunicating scenario data. 

ISGBridge 

The second interface in the figure, which inherits from ISGenerator, has the 

name ISGBridge. This is an extension to the system, which allows users to use 

scenario generators that for various reasons cannot implement ISGModule (i.e. 

they are not written in a .NET compliant language). This is achieved simply defining 

a bridge (which implements ISGBridge) that has the ability to link to the non-

conform sub modules. An example of such a technology has been implemented, 

that allows the system to connect to scenario generators built in MATLAB (see Ap-

pendix B). A description of functions defined in this interface follow: 
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bool BindToSG(string dllName); 
 

Bind the bridge to a module. After a call to this function, with as a parameter the 

name of a scenario generator module which is accessible by the bridge, the bridge 

forwards all the ISGModule calls which inherits to that specific SG. 

string[] getSubModulesList(); 
 

Return the names of the modules that can be parsed by the bridge. SPInE will try to 

parse those libraries through the bridge in successive calls. 

Figure 30, below, shows the sequence diagram of a typical session of scenario gen-

eration guided by the modelling system, supposing that the decision model con-

tains a random parameter that is mapped to an SG module which is called ARSce-

narioGenerator and that the correct parameters are passed to it.  

 

Modelling System

GetSGList

AR Scenario Generator

Create

GetName

"ARScenarioGenerator"

GetParameters

Parameter[] List

SetParameter(tree, TreeStructure)

ok

SetParameter(p, 1)

ok

Generate

ok

GetScenarioTree()

generated ScenarioTree

 

Figure 30 Sequence of interactions MS-SG 

Parameters List 

Name Type Description 

p Int Order of the desired 

model 

History String Name of file of his-

torical data 

Tree TreeStructure Shape of the tree to 

be generated 
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The table to the right of the figure shows the parameters list that is communicated 

back from the scenario generator, meaning that these are the parameters that the 

chosen SG will need before it can successfully start the generation procedure. After 

the execution of the shown functions, the modelling system can generate the in-

stance of the chosen model. It is just an example of a successful execution of the 

system; many possible errors have to be taken into account, and the real data 

structures are here not fully specified.  

4.6 Language constructs for the SG library 

Language extensions to SAMPL language specifications to support the SG library 

have been developed; they regard the declaration of random parameter that now 

includes a string specifying the scenario generator to be used and its parameters. 

The formal language specification is as follows: random parameter declarations 

have a list of optional attributes, optionally separated by commas.  

random param name aliasopt indexingopt  , attributesopt  , sgspecificationopt; 

In our implementation we have introduced the last optional attribute, namely 

sgspecification; the formal definition of a random parameter in SAMPL is reported 

just for that part, the interested reader can refer to Appendix C for a full definition. 

sgspecification: 

sg name (parameterlistopt) 

name: a string identifying a scenario generator in the library 

parameterlist: comma separated list of parameters, the interpretation of 
which is up to the external sg module specified by name 

This specification differs from any existing AMPL construct as the correctness of the 

model can be resolved just at runtime; the names of the available scenario genera-

tors, as well as their parameters, are indeed discovered by the system at each exe-

cution. If the random parameter specifies in the name part of the sgspecification 

construct a scenario generator that is not available to the modelling system, the 

error will be detected while parsing and reported. Where the required SG is availa-

ble, an inconsistency of type or number of its parameters is detected by the model-
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ling system itself, that is at that point aware of the data requirements of each plug-

in in the SG library. Incongruent or wrong meaning of the data is conversely detect-

ed by the scenario generator itself and (hopefully) communicated back to the mod-

elling system which will report it to the user.  

To further describe the behaviour of the system, the reader is put in the hypothet-

ical situation of the system correctly recognizing a scenario generator that returns 

BrownianMotion as a name and the following to the system meta-information re-

lated queries: 

 Parameter 1 Parameter 2 Parameter 3 

Name TreeStructure NI HistDataFile 

Type ScenarioTree int string 

Description Shape of the tree to 
be generated 

Number of inde-
pendent variables 

File containing the 
historical data, CSV 

IndexInLine -1 -1 -1 

Table 14 Scenario generator example 

A formally correct SAMPL declaration that makes use of the above scenario genera-

tor is: 

random parameter price{product, time, s} sg BrownianMotion    

(“..\Prices_FTSE100_first80.csv”); 

It is worth noticing that out of the three parameters required by the scenario gen-

erator, the statement provides just one, namely “..\Prices_FTSE100_first80.csv”. 

This is possible because some parameters are well known by the modelling system 

and therefore can be omitted by the modeller. These are the tree structure, the 

dimension of the current random vector, the members of its indexing set and so on; 

the scenario generator can refer to these known parameters specifying pre-

determined names, which list is available in the scenario generator programmer’s 

manual (Valente, 2010). These parameters are therefore not needed in the sgspeci-

fication string, and this can be noticed by the fact that the IndexInLine property of 

those parameters, which identifies their position in the SAMPL sgspecification 

string, has the value minus one. 
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4.7 Conclusions 

Devising the procedures to generate forecasts of random parameters is a funda-

mental step in the process of implementing an SP model; this is known as Scenario 

Generation. There are many methodologies to do so but every problem to be mod-

elled can have its unique procedure for generating random parameters; it seemed 

therefore a logical necessity to have the means to integrate the scenario generators 

into the decision model. In this chapter we have described various methodologies 

used for scenario generation and have illustrated the techniques to seamlessly in-

corporate scenario generators into the modelling system (Sections 4.4 and 4.5). 
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Chapter 5 A workflow approach to the 

investigation of SP models 

Decision making under uncertainty by applying the stochastic programming ap-

proach is inherently a complex task. The problem owner must come up with an ap-

propriate decision model, a task which is difficult as such; furthermore, he has to 

specify estimates of the distributions of the random parameters and discretize 

them, balancing the fineness of the discretization with the resulting computational 

difficulty. Due to these modelling and computational challenges, making all these 

modelling choices is not obvious, leading therefore to a strong need of evaluating 

the performance of the chosen models/techniques in respect to the real world 

problem. This we call performance evaluation/investigation, and involves the use of 

different techniques depending on the application domain, the entity under test 

and the available data. Most of these testing procedures can be schematized via an 

appropriate organization of a few kinds of actions, applied to different entities. Tak-

ing into account this consideration, the representation of these procedures can 

make use of workflows and the implementation can follow the same paradigm. In 

this chapter we focus on the definition and application of workflows for investiga-

tion of SP problems. A brief introduction to workflows is given in section 5.1, which 

is literature review aimed to introduce the concepts needed to formalize the work-

flows as used in this thesis; a bottom-up description of the activities which compose 

an investigation workflow follows in section 5.3. Section 5.4 gives examples of the 

use of workflows to represent real life investigation and decision evaluation prob-

lems. 

The author’s contributions are the idea of applying the workflow formalism to the 

SP modelling process, in particular to the simulation/validation stage, and the archi-

tecture and choice of the atomic operations. Moreover, the development (not yet 

finished) of the modules and of the controlling GUI, together with the collection, 

understanding and categorization of simulation techniques/procedures are part of 

the present efforts of the author. 
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5.1 Workflows and workflow management systems 

Workflow is a word that has different meanings, depending on the context in which 

it is used. The first use of it can be traced to the beginning of the last century, 

where it represented a study to achieve rational organization of work in manufac-

turing processes. The flows under study at these early times were mainly flows of 

mass and energy (physical resources), although conceptual models of queuing sys-

tems and even information flows were already starting to be developed. Nowadays, 

a workflow is a pattern of activity enabled by systematic organization of resources, 

roles and flows into a work process that can be documented, learned and partially 

quantified. This is achieved representing the process through a series of activities, 

or atomic operations, interconnected by resource or information flows and whose 

sequence and coordination is determined by control flows. To support these efforts 

in rationalization, a formalism has to be introduced, which could capture the pro-

cess structure in the real world and translate it, with minimum ambiguities, into IT 

system requirements. Despite the interest in the area, there is still little consensus 

about its conceptual and formal foundations: each WFMS implement its own lan-

guage and features, with various syntactic restrictions, and studies have been made 

to understand to what extent these differences are fundamental in nature. A possi-

ble formalization is given below (van der Aalst et al., 1994). 

Definitions 

Task Piece of work to be done by one or more resources in a  time interval. It is con-

sidered atomic (not divisible in smaller tasks). The requirements are given in terms 

of resource classes. 

Resource Any asset able to carry a work unit (or task). A resource doing a task is oc-

cupied for the time interval needed to perform it, but may be assigned to two or 

more tasks at the same time. 

Resource class A set of resources. 

Document The input or output of a task, as far as it is relevant to the workflow 

management system. 
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Resource Manager Entity which controls the allocation of resources to tasks. 

Procedure Partially ordered set of control activities, tasks, resource classes and 

(sub)procedures. The ordering models the order in which the composing entities 

have to be performed. 

Control activity Specifies the routing of the work within a procedure, and  the syn-

chronisation of tasks. 

Job A process modelling the execution of an amount of work according to a given 

procedure. It is basically an “instance” of a procedure. It is characterized by a se-

quence of states. 

Job state Contains all the relevant information of the history of the job at that mo-

ment, a job identification and some job attributes 

Job attributes Are used to determine the routing of a job 

Workflow is a partially ordered set of jobs 

Workflow management system: a software that manages workflows. It provides 

the following functions: (i) definition of tasks, procedures and jobs (ii) processing of 

the information that is needed to perform the tasks which compose the jobs (iii) the 

management of resources (iv) routing of job information between procedures and 

resources. 

A common approach in the literature to formalize these concepts and to model 

workflows and workflow management systems is through Petri nets, in particular 

Petri nets extended with ‘colour’ and ‘time’. For an introduction to Petri nets, see 

(Petri & Reisig, 2008), cured by Carl Adam Petri himself. These extensions to Petri 

nets allow to assign a ‘colour’ to a token, which can be used to identify it, and ‘time’ 

constraints to transitions (Van Hee, 1994). Control activities will be modelled by 

transitions, jobs are represented by tokens. 

A task can be modelled as shown in Figure 31 below: 
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i p1

S1

p2 p3 p4 p5 o

S2 S3 S4

o i o i o

RequestResource
ResourceAssigned

ExecuteTask
FinishTask

ReleaseResource

BeginTask TerminateTask

 

Figure 31 Petri net model of a task 

where the empty circles represent places  (or states), the greyed circles are con-

nectors which allow inter-system communication (the letters i and o represent the 

direction) and the rectangles represent transitions (or procedures). A task com-

municates to a procedure (via the connectors BeginTask and TerminateTask), to 

the resource manager (via RequestResource, ResourceAssigned and Re-

leaseResource) and to a resource (via ExecuteTask and FinishTask). Every task can 

be modelled in this way, which captures the mechanism by which a task is included 

in a procedure and by which it can acquire the resources it needs to execute its 

work item and make it available to the system when it doesn’t need it anymore. In 

the same way, it is possible to model the procedures, the resource manager and the 

whole WFMS (WorkFlow Management System). Going in further details on these 

steps is well beyond the scope of this thesis, in which another, less descriptive but 

easier formalization is used to describe the workflows. The formalization is shown 

in section 5.2. 

In their broad and general scope, workflows are used to represent business pro-

cesses, which are supported by the WFMS. The IT structure to represent and con-

trol the actual processes is often organized in a similar way, so that a modification 

of the business process leads to changes in the IT system which can be inferred di-

rectly from the changes in the process itself. In recent times, considerable devel-

opments have taken place in IT based MFMS. These developments are well de-

scribed in (Khoshafian & Buckiewicz, 1995), and lead to substantial formalization 

and implementation work and significant applications in the management sciences.  
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5.2 Chosen workflow formalisation 

The kind of processes that the implemented system captures are not very complex 

at this stage, and a somewhat simple definition of the workflows suffices to de-

scribe them. I have chosen the following syntax, which ignores the allocation of the 

resources altogether, as given in (Kiepuszewski et al., 2000): 

Definition 1 A workflow   consists of a set of process elements  , and a transition 

relation           between process elements. The set of process elements can 

be further divided into a set of or-joins   , a set of or-splits   , a set of and-joins   , 

a set of and-splits   , and a set of activities  .  

The outgoing transitions of or-splits may have predicates assigned to them through 

a function           ⋂      →     . Activities may have a name assigned to 

them through the partial function            . Activities without names are 

referred to as null activities. And-joins and or-joins should have an outdegree of at 

most one, and-splits and or-splits should have an indegree of at most one, and all 

activities have an indegree and outdegree of at most one. Finally, we call process 

elements with an indegree of zero initial items       and conversely, process ele-

ments with an outdegree of zero – final items      . 

Giving a full semantic to this syntax is out of the scope of this thesis. In this thesis 

we focus on some elementary workflow facilities, and giving a semantic to these 

facilities can be done mapping the introduced lexical entities to elementary Petri-

nets as shown in  (Van Der Aalst & Ter Hofstede, 2000), (Salimifard & Wright, 2001). 

The formalization introduces the concept of structured workflow, which is restricted 

in a number of ways, but is satisfies all our modelling needs: 

Definition 2 A structured workflow model (SWM) is inductively defined as follows. 

1. A workflow consisting of a single activity is a SWM. This activity is both initial 

and final. 

 

  

A
I(X)
F(X)

Figure 32 Single activity SWM 



` 

124 | P a g e  
 

2. Let X and Y be SWMs. The concatenation of these workflows, where the final 

activity of X has a transition to the initial activity of Y, then also is a SWM. 

The initial activity of this SWM is the initial activity of X and its final activity 

is the final activity of Y. 

F(X)

I(X)
I(SWM)

F(Y)
F(SWM)

I(Y)

 

Figure 33 Concatenation of SWMs 

 

3. Let         be SWMs and let j be an or-join and s be an or-split. The work-

flow with as initial activity s and final activity j and transitions between s and 

the initial activities of    and between the final activities of    and j, is then 

also a SWM. Predicates can be assigned to the outgoing transitions of s. The 

initial activity of this SWM is s and its final activity is j. 

j
F(SWM)

S
I(SWM)

F(X1)

I(X1)

F(Xn)

I(Xn)

 

Figure 34 SWM with join and split activities 
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4. Let         be SWMs and let j be an and-join and s an and-split. The work-

flow with as initial activity s and final activity j and transitions between s and 

the initial activities of   , and between the final activities of    and j,, is then 

also a SWM. The initial activity of this SWM is s and its final activity is j (see 

Figure 34). 

5. Let X and Y be SWMs and let j be an or-join and s an or-split. The workflow 

with as initial activity j and as final activity s and with transitions between j 

and the initial activity of X, between the final activity of X and s, between s 

and the initial activity of Y, and between the final activity of Y and j, is then 

also a SWM. The initial activity of this SWM is j and its final activity is s. 

F(X)

I(X)

I(Y)

F(Y)

j
I(SWM)

s
F(SWM)

 

Figure 35 SWM with loops 

This syntax is proven to be equipotent to many WFMS languages, and it allow the 

expression of control flow patterns like sequences, parallel splits, synchronization in 

a formally easy, if not concise, fashion. Lists of control flow patterns are given in 

(Wohed et al., 2005) and once again, for the scope of this thesis, a comprehensive 

definition seems verbose and unnecessary.  

Because of their peculiar explicative nature, workflows are often represented in a 

graphical way, assigning different shapes to different conceptual entities. This is the 

approach that has been chosen to describe the simulation framework design which 
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is the topic of this chapter; the diagrams are simplified, ignoring pure computer sci-

ence components to better highlight the entities which are related to the stochastic 

programming area. 

Workflow application is a software application with automates a process; they can 

be developed in any programming language but specialized workflow languages do 

exist. These language include the XML based XPDL (Workflow Management 

Coalition, 2010), YAWL (YAWL Foundation, 2010) and BPEL (Organization for the 

Advancement of Structured Information Standards, 2010) with his various imple-

mentations. An alternative approach is to use specialized libraries, like Windows 

Workflow Foundation, which provide functionalities to control the execution of the 

activities coded in any .NET language. The choice of this last method to develop the 

software framework is due to the availability of a re-hostable workflow designer, 

which can be personalized and embedded in the application, giving the user the 

ability to graphically create his workflows and relying on the software framework 

for their execution. 

5.3 Atomic operations in an investigation framework 

Investigation, or decision evaluation, of the parts of an SP model (decision model 

and its related scenario generators) can be often modelled via a series of intercon-

nected activities (atomic operations). This is due to the repetitive nature, in an ab-

stract point of view, of the procedures involved. The author’s method to approach 

the problem of creating a tool to support investigation was to analyse some meth-

odologies in an operational perspective, identifying their common constituents and 

recurring types of data that must be handled. The next step was to translate these 

components into workflow activities that the user of the system can interconnect 

to create his own simulation/investigation framework. This is an extension to the 

approach of this work’s predecessors (Di Domenica, 2005), which examined the 

need of the tools (scenario generators and decision model) to perform these analy-

sis, but not a user accessible way to organize them to automate the process. A bot-

tom-up view of the results of this analysis is set out below, and their application fol-

lows in the next sections.  
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General considerations 

Normally, the exploitation of a workflow is a two-stage process: firstly the user de-

signs the workflow, in the same way a user would write a script file, then the user 

starts the execution of the workflow that has been defined. Due to the particular 

domain of this workflow meta-model, a three stage procedure has been devised: 

design, optimization model parsing and execution. The added phase, namely opti-

mization model parsing is not explicitly done by the user; it is instead performed 

“under the hood” by the system to assist the user during the design phase. More 

precisely: 

Design is responsibility of the user, who places the blocks corresponding to the ac-

tivities into a drawing surface, connects them and specifies the parameters which 

are needed to the specific activity. 

Optimisation model parsing is an operation done by the system at design time, and 

occurs automatically when the user places some activities on the drawing surface, 

or when the user specifies some parameters. It provides the system with some in-

formation about the model used which can help the user in filling the properties of 

the remaining activities. It is not related to workflow parsing or validation in any 

way, as these functionalities are provided by the framework (Microsoft Workflow 

Foundation) which hosts the execution at runtime; indeed, this functionality is exe-

cuted by SPInE (the system), which reads the specified model file and returns these 

quantities to the workflow designer. 

Execution is initiated by the user, and corresponds to the sequential execution of all 

the activities specified in the workflow. 

In the following figures, the dotted lines identifies data passed at design time, the 

normal lines data which is passed at execution time and the man shaped icon iden-

tifies input which is required from the modeller. I follow, whereas possible, the no-

tation introduced in Chapter 4. 
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1) Choose decision model 

At design time, it allows the choice of the decision model file to be used in the next 

blocks. It automatically parses the model, getting       ̂,   and the vector of deci-

sion variables   grouped by algebraic declaration and by stage. This information is 

communicated, still at design time, to the next connected blocks. At execution time, 

this block simply passes the algebraic model m to the next modules. 

 

 

2) Generate Scenarios 

At design time, it allows the definition of the mapping    →   between random 

parameters and scenario generators, and of  ̂, the set of sets of parameters needed 

by the chosen scenario generators. In the execution phase, the block generates the 

set of scenarios needed by the model, accordingly to the mapping defined.  

 

 

 

 

 

 

  

Decision Model 

Decision Model    ,   ̂,   

m 

 ̂ historical data 

 ̂ dimensions of random vectors 

 

 

 

 

  random parameters in the decision model 

  scenario tree shape 

m algebraic decision model 

 

 

 

 

Figure 36 Activity 1: Choose decision model 

Generate Scenarios 

   ̂ 

   ,   ̂ 

m,    

 
   generated scenario trees 

 

 

 

 

 

  mapping between random parameters 
and scenario generators 

 ̂ set of parameters required by the chosen 
scenario generators 

 

 

 

m 

 

Figure 37 Activity 2: Generate Scenarios 
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3) Solve 

At design time, it allows the selection of a solution algorithm and its controlling pa-

rameters; at execution time, it generates an instance of the stochastic model m on 

the sets of scenarios    that are provided as an input, solves it and gives the ob-

jective function value Z and the solution vector   . The optional input   , if present, 

fixes the specified variables to the specified values. 

 

 

 

 

 

4) Fix Variables 

At design time, this activity receives the two vectors of decision variables  

      (input and output respectively) from two Decision Model activities, and the 

user inputs a injective partial mapping     →    that defines which variables in 

   must be fixed, and to the value of which   . During the execution phase, it re-

ceives the solution vector   
  and outputs a vector of variables   

  that can be used 

into a Solve activity. 

 

 

 

 

 

 

Solve 

                

Z,    

 
    solution vector 

 

 

 

 

Z objective function value 

 

 

      m,    

 

Figure 38 Activity 3: Generate and solve model 

Fix 

  

      

  
  

  
  vector of input variables with their values 

  
  vector of output variables with their values 

 

 

 

 

  mapping between variables 

      variable vectors, algebraic 

 

 

 

  
  

Figure 39 Activity 4: Fix variables 
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5) Collect Information 

At execution time, this activity stores the information it receives as input. If in a 

loop, it accumulates all the values being passed to it, to then release them to the 

next activity at the end of the loop. The outputs are therefore the collections  ̂ and 

 ̂  of objective function values and solution vectors. 

 

 

 

 

 

 

6) Execute Analysis 

The result of an investigation is usually an analysis of the distribution of the solu-

tions of a model problem over different runs, or a comparison of solutions obtained 

using various decision models. This is performed by this activity, where the user 

chooses at design time which kinds of analysis are to be undertaken and displayed. 

 

 

 

 

 

 

 

Collect 

   solution vector 

 ̂  collection of solution vectors 

 

 

 

 

 

Z objective function value 

 ̂collection of objective values 

 

 

 

 

Z,    

 

 ̂  ̂  

 

Figure 40 Activity 5: Collect information 

Analyze and Display 

 ̂  collection of solution vectors 

 

 

 

 

 

 ̂collection of objective values 

 

 

 

 

 ̂  ̂  

 

 

Figure 41 Activity 6: Result Analysis 
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5.4 Example Cases 

The evaluation of a decision model, a randomness model or a decision is a crucial 

step to decide their applicability to real life problems. There are various types of 

decision evaluation techniques; not all of them are expressible using the proposed 

workflow formalism, and some of them overlap, but they are here reported for 

completeness. 

 In-sample testing the most obvious kind of testing, it evaluates how the 

model/decision under test performs within the original input data 

 Out-of-sample conceptually similar to the in-sample testing, but it evaluates 

the behaviour against new data, that is, information that was not used to 

make the decision under test 

 Back testing the model/decision is evaluated against past historical data, 

not used to obtain it, to evaluate how it would have performed in that past 

scenario 

 Stress testing the model/decision is tested under “extreme” circumstances 

(i.e. very low interest rates in financial models, extreme weather events for 

energy models, multiple breakdowns for fleet allocation problems), prefera-

bly not fully captured by the data used to calculate the decision. 

 Scenario analysis multiple decisions, taken using different scenarios, are 

evaluated against each other’s input data. If used in a stochastic framework, 

it gives a hint on how much the combination scenario generator/decision 

model is stable, and whether its performance is dependent on the particular 

run 

 What-if analysis evaluation scenarios are explicitly constructed to represent 

some hypothesis on the future, and the decision is evaluated against them 

In general, decision evaluation is a procedure that can be described as a two step 

process (Di Domenica, 2005), see Figure 42: 

Decision making (ex ante) 

 Select the scenario generators for the decision model 
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 Solve the decision model and obtain the solution vector 

Decision evaluation (ex post) 

 Select the scenario generators for the decision model 

 Fix a subset of the decision variables (usually the first stage ones) to the 

values obtained in the ex ante execution 

 Solve the resulting decision model  

 Calculate statistical, stochastic and risk measures 

 

Figure 42 Decision evaluation schema 

Various refinements and applications of these general guidelines can be devised; 

some are introduced as use cases below, illustrating how they can be implemented 

through the workflow based investigation framework the author is proposing. 

1) SG stability test – In sample (see equation 4.12) 

As mentioned in Section 4.3, there are desirable properties that a scenario genera-

tor should present, to be practically useful (Kaut & Wallace, 2003). The first one is in 

sample stability, which is an indicator of how the performance of the combination 

of scenario generator and decision model varies over different runs. It can be cap-

tured in a run time workflow as in Figure 43 below.  
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The user experience while designing the workflow follows; while placing the various 

blocks, the user is asked to choose: 

1. The decision model to be used (a model expressed in SAMPL) 

2. The scenario generator to be used, and which parameter in the model is it 

bound to (a scenario generator part of the library and a random parameter 

specified in the algebraic model of point 1) 

3. The solution method to be used 

4. The data to collect (objective function value only or objective function and 

decision vector) 

5. Which kind of analysis to perform (in this case, the distribution of the objec-

tive function values) 

Information that can be obtained automatically, like the list of random parameters 

in the model, the list of scenario generators and the list of solvers are obtained by 

the system at parsing time (part of the design phase), therefore are presented to 

the user to ease the choice. 

2) SG stability test – out of sample 

A second desired property of a scenario generator is the out of sample stability, 

which evaluates the performance of the combination scenario generator/decision 

model over real world scenarios, which are historical data or a large scenario set 

which is believed to accurately capture the underlying uncertainty. 

 

Choose       

Decision Model 

Generate  

Scenarios 

Solve Collect 

Analyze 

repeat n times 

1 

2 3 4 

5 

Figure 43 SG in sample stability workflow 
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In this case the user experience is: 

1. The decision model to be used (a model expressed in SAMPL) 

2. The scenario generator to be evaluated, and which parameter in the model 

is it bound to (a scenario generator part of the library and a random param-

eter specified in the algebraic model of point 1) 

3. The solution method to be used 

4. The decision variables to be fixed, often just the first stage variables 

5. The scenario generator which is believed to be a good representation of real 

world – can be historical data as a special case 

6. The solution method to be used 

7. The data to be collected (just the objective function values) 

8. Which kind of analysis to perform (in this case, the distribution of the objec-

tive function values) 

3) Out of sample testing / Backtesting 

To evaluate a decision model by these paradigms, we evaluate the behaviour of the 

solutions obtained on data sets which were not used in the original decision making 

(in case of out of sample testing) or on pure historical data (in case of backtesting). 

The resulting workflow is drawn in Figure 45, the only difference between the two 

methods is in that in case of backtesting, the second scenario generator is forced to 

be historical data. 

 

 

Choose      

Decision Model 

Generate  

Scenarios 

Solve 

Analyze Fix 

Generate  

Scenarios 

Solve Collect 

1 2 

3 

4 

5 6 7 

8 

Figure 44 SG out of sample stability workflow 
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In this case the user has to choose: 

1. The decision model to be used (a model expressed in SAMPL) 

2. The scenario generators and their binding to the random parameters in the 

model 

3. The solution method to be used 

4. The decision variables to be fixed, often just the first stage variables 

5. Scenarios generated with different parameters, or historical data 

6. The solution method to be used 

7. The data to be collected (often a subset of decision variables) 

8. Which kind of analysis to perform  

5.5 Conclusions 

Evaluating the performance of models becomes of paramount importance if the 

assumptions underlying them are not certain. In Stochastic Programming, this is by 

definition the case, hence the strong need of simulation and testing. In this chapter 

we have shown a formalisation of simulation procedures using structured work-

flows. This formalisation forms the backbone of the further work items recom-

mended to extend the modelling system with graphical facilities to easily represent 

and efficiently execute model investigation procedures. 
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Scenarios 

Solve 
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Fix 
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Scenarios 

Solve Collect 

1 2 

3 

4 

5 6 7 

8 

repeat 

Figure 45 Out of sample and backtesting workflow 
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Chapter 6 Conclusions 

6.1 Summary 

In this thesis, we investigated the problem of decision making under uncertainty; a 

number of alternative paradigms are available for such problems, and we set the 

focus on Stochastic Programming (SP) and Robust Optimization (RO). We reported 

the mathematical formulation of these modelling approaches, and listed their ap-

plications, which comprise many different areas. In SP modelling, the modelling of 

the uncertain parameters is called scenario generation, and an overview of the 

most common methods has been given. SP and RO are computational methods and 

they need to be supported by appropriate software applications. We have there-

fore proposed a possible architecture of a software tool supporting SP and RO, set-

ting the scope for the rest of the thesis, and linking the modules which are part of 

the architecture to the steps of SP modelling and solving. The steps we have con-

sidered are: decision modelling, scenario generation, solution, and performance 

evaluation/investigation. 

An overview of the currently available software tools for modelling SP has been giv-

en in chapter two, and their peculiarities and shortcomings have been identified. 

Although it is possible to express and solve SP decision models using software for 

deterministic optimization by exploiting the deterministic equivalent formulations, 

it is shown to be unpractical from the modeller’s perspective. We have highlighted 

this fact presenting the same decision model using the syntaxes of AMPL (general 

purpose algebraic modelling language) and SAMPL (specialized for SP). 

In chapter three, we have shown that representing an instance of an SP problem 

using conventional means is very inefficient memory-wise, due to the extensive da-

ta replication that this approach implies. A second drawback of this approach in 

model instance representation is that it becomes impossible to automatically match 

and apply existing decomposition algorithms that exploit the peculiar structure of 

SP problems. The performance gain of such algorithms has been reported in a se-

ries of benchmark problems, which have been solved using the decomposition 
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based solver that has been developed by the research team in CARISMA. The link 

between model types, solution algorithms and the sub-solvers these algorithms re-

quire is presented, and the implementation of the automated functionality to 

choose the best available solution method for the model currently at hand has been 

briefly presented. 

The process of generating the values for the uncertain parameters typical of an SP 

problem, or scenario generation, has been analysed in chapter four. Some desirable 

properties, like correctness and stabilities are introduced, that make it possible to 

evaluate the quality of the scenario generator method for a given decision model. 

Aiming towards the definition of requirements for the scenario generation module 

of an integrated SP software system, we then presented a series of abstractions of 

the process of generating scenarios, and of the connections between those models 

of randomness and the decision model. The result of this analysis has been the ba-

sis for our implementation of a scenario generators library, and the consequent 

language extensions to support it. 

In the penultimate chapter, we have introduced the concept of workflow, and some 

of its applications in various fields. Workflows are organized flows of activities; we 

have defined a small set of activities that can be used to define investiga-

tive/decision evaluation processes. Finally, we have presented some typical investi-

gation frameworks and represented them in our formalism, therefore validating our 

workflow-based approach.  

6.2 Contributions of the thesis 

In this thesis we have considered a number of important research problems in the 

domain of decision making under uncertainty. We have also collected very recent 

research results addressing such problems. An important contribution reported in 

this thesis is the innovative way these research results have been brought together 

to design and construct a system which becomes a powerful tool for the OR ana-

lysts. 
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The research problems which have been considered and how we have addressed 

these in our integrated modelling system are listed below. 

(i) the modelling of the random behaviour of the model parameters 

This step is inherent to the chosen modelling paradigm, and cannot be 

avoided. However, the problem owner can benefit by the introduction of 

the scenario generators library, which collects reusable scenario generation 

methods, that can be extended due to its modular design 

(ii) the interfacing of the decision model with the model of randomness 

This problem is analysed in depth in this thesis through formalization of a 

scenario generator module and its link to the decision model. Operatively, 

the proposed scenario generators library interface tackles most of the prob-

lems arising in this respect 

(iii) the difficulty in formulating and processing SP model instances 

We have identified a number of recently proposed solution algorithms 

which can process different families of SP models. The combination of the 

proposed language constructs and the designed software tool can make use 

of these algorithms using compact instance representation formats, facili-

tating the formulation and solution procedure  

(iv) the requirements for result analysis and performance evaluation through 

simulation techniques 

The workflow approach proposed in this thesis captures most of the com-

mon simulation frameworks. This approach has a well-structured and natu-

ral computational structure and avoids the need of programming compli-

cated procedures. It is modular in design and can encapsulate new tools 

and algorithms, making the most of the information that is available to the 

system at each stage of the process 

 

  



` 

139 | P a g e  
 

6.3 Future work 

Although the experience with the system developed by the author has been posi-

tive so far,  there are still a number of open problems and chances to develop fur-

ther. They are listed below, categorized by area of research. 

1. Model generation / Language features 

a. Rewrite the application as independent column generator (so far it 

depends on AMPL for generating the scenario sub problems). This 

would greatly improve the speed of generation, together with sys-

tem stability; 

b. Add language support for constraints which sums across scenarios 

(i.e. to allow CVaR-like measures to be assigned to variables with 

constraints). 

2. Scenario Generation 

a. Introduce language features to allow AMPL parameters to be used in 

SG specification statements (depends on 1.a); 

b. Allow multiple scenario generators to be used in multistage models. 

This is a hard problem, as the combination of scenarios is very prob-

lem dependent and so far the author was unable to find a common 

methodology; 

c.  Research into the possibility of introducing  already made sampling 

or clustering blocks in the scenario generator library functionalities, 

to allow automatic sampling from time series. 

3. Workflow investigation framework 

a. Complete the development of the described functionalities; 

b. Extend functionalities (by adding other atomic operations) to be able 

to represent increasingly complicated investigation techniques. 
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Appendix A Connect a Scenario Genera-

tor developed in MATLAB 

MATLAB is often the language of choice to prototype and implement mathematical 

models; in the area of stochastic programming, it is frequently used to implement 

models of randomness, which we call scenario generators. A direct connection to 

scenario generators is present in SPInE, but connecting a scenario generator re-

quires the implementation of a .NET interface, which is not achievable in MATLAB. 

This fact sets the scope to the extension to the interface iSGenerator which we 

named iSGBridge, that allows the definitions of a bridge between the interface 

required by SPInE (iSGenerator) and the one implementable by the scenario 

generator. As first example, the scenario generator library is distributed with a pre-

built bridge that allows developers to easily connect to scenario generators written 

in MATLAB.  

Programmer ’s  perspective 

The programmer of a scenario generator in MATLAB is provided with a simplified 

version of the SG interface, and, to further accelerate the development process, a 

MATLAB template is provided, which contains all the functions with the correct sig-

natures for the usage with SPInE. It consists of four m files, each representing one 

function, which have to be implemented by the SG programmer: 

getParameters.m, getName.m, getDescription.m, generate.m. 

The templates are self-descriptive (see inline comments for further reference) and 

provided below. In the form provided, they implement a scenario generator called 

“TestMATLABNET”, which generates a random numbers populated event tree. The 

input required from the user is just a floating point number which represents the 

seed for the random number generator. 
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getName 

% Template function getName.  

%  The function returns a string which is the name of the  

%  scenario generator implemented in the module. 

%  Note that in MATLAB strings are enclosed in '  

 

function name = getName() 

name = 'TestMATLABNET'; 

 

getDescription 

% Template function getDescription.  

%  The function returns a string which describes the sce-

nario  

%  generator implemented in the module. 

%  Note that in MATLAB strings are enclosed in '  

 

function description = getDescription() 

description = 'Description of the scenario generator to be 

passed back to SPInE'; 
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getParameters 

% Template function getParameters 

%    This function returns the parameter list for the SG, in a 

%    matrix of the form:    

%    nameparam1 type1 description1 mandatory1 index1 

%    ... 

%    nameparamn typen descriptionn mandatoryn indexn 

% 

%    where type can be any of the following: 

%    int, int[], int[,], int[,,] 

%    double, double[], double[,], double[,,] 

%    bool, bool[], bool[,], bool[,,] 

%    string, string[], string[,], string[,,] 

 

%  System defined parameters are specified by their name, 

all the  

%  other values defined about them are ignored. 

%  As quick reference, the system defined parameters are: 

%  NI  (int) 

%  NS   (int) 

%  NT   (int) 

%  TreeStructure (int[]) 

%  IndepNames   (string[]) 

 

function a = getParameters() 

% Define parameters 

param1 = {'NI', 'int', 'doesnt matter', true, -1}; 

param2 = {'TreeStructure', 'int', 'doesnt matter', true, -1}; 

param3 = {'Seed', 'double', ‘Seed of the random number genera-

tion’, true, 1}; 

param4 = {'NT', 'double', 'doesnt matter', true, -1}; 

param5 = {'NS', 'double', 'doesnt matter', true, -1}; 

param6 = {'IndepNames', 'double', 'doesnt matter', true, -1}; 

% Pack them into the returned array 

a = [param1; param2; param3; param4; param5; param6]; 
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generate 

% Template function for scenario generator 

% Input parameter must be a varargin, the length of the cell  

% array being passed will be consistent with what is specified  

% in "getParameters" 

% To extract the input parameters from the varargin cell  

% array, the  notation varargin{index}, note the use of curly  

% brackets to specify the index. 

 

% The returned array should be a 3d array, whose dimensions  

% are: [scenario, timeindex, otherindexingsets] 

% The system defined parameter "TreeStructure" is used here,  

% see documentation for further details. If for example the  

% specified treestructure is [0 3 2 1], we have 4 scenarios,  

% that branch at 3 different timeperiods. The total number of  

% timeperiods is herby 4 (branching periods +1).  

% Number of Scenarios and Number of timeperiods can be  

% inferred from the treestructure as:  

% NS=length(tree)   and   NT=max(tree)+1 

 

function s=generate(varargin) 

 % Check for the correct number of input arguments 

if(length(varargin) ~= 6) 

  s = 0; 

  return; 

end 

 

%Extract parameters from packed input cell array 

NI = varargin{1}; 

tree = varargin{2}; 

seed = varargin{3}; 

 

%Preallocates the matrix, size of s is [NS, NT,NI] 

s = zeros(length(tree), max(tree)+1, NI); 

%Fills it with random vectors of size scenarios, timeperiods 

for x=1:NI 

   s(:,:,x) = repmat(seed+x, length(tree), max(tree)+1); 

end   
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To make the developed scenario generator available to SPInE, the next step is to 

compile and pack the implemented m files into a library, using the .NET Builder 

toolbox. Step by step instructions are provided below: 

Navigate to the template folder with MATLAB explorer: 

  

Create a new deployment project from MATLAB main menu, choosing  MATLAB 

Builder NE as type of project and .NET Component as subproject. Name the project 

with the prefix “sgmatlab” as shown in the figure below: 
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Drag and drop the functions which are part of the scenario generator into the de-

ployment tool window, to make them part of the created library, as shown in the 

figure below, then click the icon Build (in the red circle in the figure).  

 

After the compilation process has been completed, a new folder structure can be 

found in the project folder. In the subdirectory /distrib, the only file needed is the 

DLL that has the projectname as name, as shown in the figure below. That DKK 

must be copied in the folder specified in SPInE’s option file as the scenario genera-

tors folder. 
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Modeller ’s perspective 

The use of MATLAB developed scenario generators follows the same syntax as the 

use of other SGs. The choice of the SG to be used and of its parameters is done in 

the declaration of the random parameter. As an example, to associate the SAMPL 

random parameter testSG, declared as: 

scenarioset scenario; 

set time; 

set otherindex; 

random param testSG{scenario, time, otherindex}; 

 

to the scenario generator TestMATLABNET defined in the previous part of this ap-

pendix, that wants from the user just the parameter seed of type double (see dec-

laration of the function getParameters), the modeller should change the declara-

tion line of testSG to the following: 

random param testSG{scenario, time, otherindex} sg TestMATLAB-

NET(2.55); 

 

where 2.55 is the seed for the random number generator inside the SG. 
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Appendix B SAMPL syntax for random 

parameter declaration 

Random parameter declarations have a list of optional attributes, optionally sepa-

rated by commas, to accommodate the specification of the source scenario genera-

tor, the syntax has been extended to the following: 

random param name aliasopt indexingopt  , attributesopt  , sgspecificationopt 

Where  attributes may be any of the following: 

attribute:  

binary 

integer 

symbolic 

relop expr 

in expr 

= expr 

default expr 

relop:  

< <= = == != <> > >= 

sgspecification: 

sg name (parameterlistopt) 

name: a string identifying a scenario generator in the library 

parameterlist: comma separated list of parameters, the interpretation of 

which is up to the external SG specified by name 

  



` 

167 | P a g e  
 

Appendix C ALM Model  

Model formulation 

The asset/liability management model can be stated as follows: an investor faces 

the problem of creating a portfolio allocating a set of assets belonging to a universe 

I; each assets class is characterised by a price P.  The goal of the investor is to max-

imise the portfolio wealth at the end of a predefined time horizon T.  He needs to 

take into account future obligations (liabilities) L, and the fact that each trade has 

an associated transaction cost expressed by the fraction g. In each time period of 

the time horizon, and for each asset considered, the investor needs to decide the 

amount of assets to buy, to sell and to hold. Table 1 above shows a possible defini-

tion of the entities for such a model. 

Type Name Notation Description Range//Dimensions 

Indices 

(sets) 

ASSETS I Assets classes i = 1 ... I;  I=10 

TIME T Time periods t = 1 ... T; T=4 

Parameters 

(data) 

price Pi t  Price of asset i at time period t ASSETS,TIME 

liabilities Lt Liability at time period t TIME 

Initialholdings Hi0 Initial portfolio composition  ASSETS 

income Ft Funding in time period t TIME 

Tcost G Transaction cost as % of trade 

value 

 

Variables hold Hit  Quantity of assets i to hold in 

time period t 

ASSETS,TIME 

sell Sit Quantity of assets i to sell in 

time period t 

ASSETS,TIME 

buy Bit Quantity of assets i to buy in 

time period t 

ASSETS,TIME 

Table 15 ALM model entities 

Asset holding constraints 

During the planning horizon the portfolio is re-balanced at discrete points in time 

(beginning of each time period). The model tends to buy the assets with the highest 

return expectation and sells the ones with poor performance. The asset holding 
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constraint enforces the evolution of the portfolio composition over time; it is ex-

pressed using two constraints, one that takes into consideration the initial holdings, 

one that doesn’t. At time-periods t>1 the amount of each individual asset held in 

the portfolio is associated with the holding amount for each asset during the previ-

ous time-period. 

                   ,  i=1...I 6.1 

                     ,  t=2…T, i=1…I 6.2 

Fund balance constraints  

Throughout the planning period cash inflows and cash outflows occur. The former is 

due to the assets selling or to profitable performance of the assets along with addi-

tional funding, which the investor’s company might obtain. The latter is due to the 

company’s payments and other liabilities which have to be fulfilled as well as to the 

purchase of assets and the transaction costs associated with their trading (buying 

and selling). In other words, this constraint reflects the evolution of the fund bal-

ance of the investor over time. 

 
     ∑      

 

   

            ∑      

 

   

 6.3 

Figure 46 below illustrates the concept of fund balance. 

 

 

Enforcing this constraint has the effect of linking outflows and inflows of cash, ef-

fectively creating a cash flow, where cash cannot be created nor destroyed. 

  

   
     ∑      

 

   

 

   
     ∑      

 

   

 

Wealth 

Figure 46 Fund balance constraint 
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Objective function 

The goal of the investor is to maximise the terminal wealth of the portfolio. This can 

be expressed as in equation 6.4. 

 
∑      

 

   

 6.4 

The expression above can be used to calculate the market value of the portfolio for 

each time-period by substituting T with t=1...T. 

ALM deterministic model in AMPL 

The AMPL code for the model, excluding the definition of the data tables is set out 

below. The comments in the code itself should provide enough guidance for a shal-

low understanding of the sections of the models, which follow the same order in 

which they have been presented. For a more detailed description of the features 

and the syntax of the language, the reader is referred to (Fourer et al., 2002). 

#Parameters for indices 

param NT:=4; 

param NA:=23; 

#Sets 

set ASSETS := 1..NA; 

set TIME :=1..NT; 

#Parameters 

param Tcost := 0.025; 

param liabilities{TIME}; 

param initialholdings{ASSETS} := 0; 

param income{TIME}; 

param price{TIME, ASSETS}; 

#Variables  

var hold{TIME, ASSETS} >=0; 

var buy{TIME, ASSETS} >=0; 

var sell{TIME, ASSETS} >=0; 
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#Objective function 

maximize wealth: sum{a in ASSETS} price[NT,a]*hold[NT,a]; 

#Constraints 

subject to 

stockbalance1{a in ASSETS}: 

 hold[1,a]=initialholdings[a]+buy[1,a]-sell[1,a];  

stockbalance2{a in ASSETS,t in 2..NT}:  

 hold[t,a]=hold[t-1,a]+buy[t,a]-sell[t,a]; 

fundbalance{t in TIME}: 

 (1-Tcost)*(sum{a in ASSETS} price[t,a]*sell[t,a]) 

 - liabilities[t] + income[t] = 

     (1+Tcost)*(sum{a in ASSETS} price[t,a]*buy[t,a]); 

The data for the model (asset prices, incomes and liabilities) is specified in a sepa-

rate file that is not reported here. 

Stochastic ALM  as deterministic equivalent in AMPL 

We introduce uncertainty in this model considering the future asset prices non de-

terministic; we therefore add another dimension to the model, which is called sce-

nario, to include the realizations of the uncertain parameters in the form of scenar-

io trees, as discussed in section 1.2.  

Following the explicit non-anticipativity representation, some changes in the index-

ation of variables, parameters and constraints are needed, to take into considera-

tion the fact that all decisions are now dependent on the scenario, and so is the pa-

rameter price.  Moreover, the parameter prob[SCENARIO] is added to represent 

the probability of each scenario and the objective is now to minimize the expected 

final wealth. The changes are highlighted in bold in the model code below.  

#Parameters for indices 

param NT:=4; 

param NA:=23; 

param NS:=64; 

#Sets 
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set ASSETS := 1..NA; 

set TIME :=1..NT; 

set SCENARIO := 1..NS; 

#Parameters 

param Tcost := 0.025; 

param liabilities{TIME}; 

param initialholdings{ASSETS} := 0; 

param income{TIME}; 

#Stochastic related parameters 

param prob{SCENARIO} := 1/NS; 

param price{TIME, ASSETS, SCENARIO}; 

#Variables  

var hold{TIME, ASSETS, SCENARIO} >=0; 

var buy{TIME, ASSETS, SCENARIO} >=0; 

var sell{TIME, ASSETS, SCENARIO} >=0; 

#Objective function 

maximize wealth: sum{s in SCENARIO} prob[s] * (sum{a in ASSETS} 

price[NT,a,s]*hold[NT,a,s]); 

#Constraints 

subject to 

stockbalance1{a in ASSETS, s in SCENARIO}: 

 hold[1,a,s]=initialholdings[a]+buy[1,a,s]-sell[1,a,s];  

stockbalance2{a in ASSETS,t in 2..NT, s in SCENARIO}:  

 hold[t,a,s]=hold[t-1,a,s]+buy[t,a,s]-sell[t,a,s]; 

fundbalance{t in TIME, s in SCENARIO}: 

 (1-Tcost)*(sum{a in ASSETS} price[t,a,s]*sell[t,a,s]) 

 - liabilities[t] + income[t] = 

     (1+Tcost)*(sum{a in ASSETS} price[t,a,s]*buy[t,a,s]); 

To complete the explicit non-anticipativity representation, a structure must be en-

forced to ensure that only the information available at each decision node influ-

ences the decision itself. We have therefore to add to the model the non-

anticipativity constraints, which depend on the tree structure of our choice. 
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We consider two different tree shapes and, aside the graphical representation of 

the tree, the non-anticipativity constraint(s) for the variable hold are listed; to en-

sure a correct representation of the problem, similar constraints must be defined 

for all the decision variables.  

Two stage tree, 64 scenarios 

The model is two stage, with stage 1 including all decisions taken for t=1 and stage 

2 including all the others. One non-anticipativity constraint is needed for each vari-

able to ensure that, for t=1, the values of the variables remain constant for all sce-

narios. 

 

 

Four stages tree, 64 scenarios, 4 branches at each stage 

To ensure this kind of structure, in which the time index is equal to the stage num-

ber, one constraint template is needed for stage 1, four for stage 2 and sixteen for 

stage 3, for each variable. 

  

          

   

    

 

 

   

    

 

 

   

    

 

 

   

    

 

 

    

    

 

 

# Stage1 

na1{a in ASSETS, s in 2..NS}: 

hold[1,a,1]=hold[1,a,s]; 

 

Figure 47 Event tree for two-stage formulation 
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Stochastic ALM formulated in SAMPL 

The SAMPL formulation of the model is reported below; besides the non-

anticipativity constraints, which are not part of it, objective and constraints are 

identical to the DEQ formulation and therefore are not reported. 

# Parameters for set ranges 

param NT:=4; param NS:=64; param NA:=23; 

# Sets 

set ASSETS := 1..NA; set TIME :=1..NT; 

# Stochastic information 

scenarioset SCENARIO:=1..NS; 

random param price{TIME, ASSETS, SCENARIO}; 

probability Prob{SCENARIO}:=1/NS;  

#PARAMETERS : VECTORS (read from database!) 

param liabilities{TIME}; param initialholdings{ASSETS} := 0; 

param income{TIME}; param target{TIME}; param Tcost:=0.025; 

# Stage1 

na1{a in ASSETS, s in 2..NS}: 

hold[1,a,1]=hold[1,a,s]; 

#Stage 2 

na1_s2_1{ a in ASSETS,s in 2..16}: 

hold[2,a,s]=hold[2,a,1];  

… 

na1_s2_4{ a in ASSETS,s in 50..64}: 

hold[2,a,s]=hold[2,a,49];  

#Stage 3 

na1_s3_1{a in ASSETS,s in 2..4}:  

hold[3,a,s]= hold[3,a,1];  

na1_s3_2{ a in ASSETS,s in 6..8}: 

hold[3,a,s]= hold[3,a,5]; 

… 

na1_s3_16{a in ASSETS,s in 62..64}: 

hold[3,a,s]= hold[3,a,61]; 

 

 

 

Figure 48 Event tree for multi stage ALM 
model 
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#VARIABLES  

var hold{t in TIME,a in ASSETS, s in SCENARIO} >=0; 

var buy{t in TIME,a in ASSETS, s in SCENARIO} >=0; 

var sell{t in TIME,a in ASSETS, s in SCENARIO} >=0; 

Now, depending on the desired event tree, the definition of the tree shape and the 

partition of decision variables into stages is, for the two-stage problem: 

#Tree shape and staging for two stage ALM problem 

tree thetree := twostage; #Specify a two-stage tree 

let {t in TIME, a in ASSETS, s in SCENARIO} hold[t,a,s].stage := if 

t=1 then 1 else 2; 

let {t in TIME, a in ASSETS, s in SCENARIO} buy[t,a,s].stage := if 

t=1 then 1 else 2; 

let {t in TIME, a in ASSETS, s in SCENARIO} sell[t,a,s].stage := if 

t=1 then 1 else 2; 

or, for the multi stage problem: 

#Tree shape and staging for multistage ALM problem 

tree thetree := nway{4}; #Specify a tree with 4 branches at each 

stage 

let {t in TIME, a in ASSETS, s in SCENARIO} hold[t,a,s].stage := t; 

let {t in TIME, a in ASSETS, s in SCENARIO} buy[t,a,s].stage := t; 

let {t in TIME, a in ASSETS, s in SCENARIO} sell[t,a,s].stage := t; 

The compactness of this formulation in respect to the DEQ one is noticeable; it 

should be noted that by generating the problem in this way, the system can auto-

matically generate the Wait and See and the Expected Value problems, and calcu-

late the VSS and EVPI. 

CCP and ICCP formulations (as DEQs) in AMPL  

The incorporation of chance constraints and integrated chance constraints into this 

model allows the planned strategy to have some degree of underfunding, that is, at 

some point in time, the liquidity incomes don’t match the liabilities; in our model 

this can be implemented allowing the fund balance to be negative.  

A reformulation of the fund balance constraint of equation 6.3 is given in equation 

6.5. The formulation has been furthermore refined with the introduction of scenar-
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ios, to reflect the fact that we are now examining the stochastic version of the 

model. 

 
     ∑        

 

   

      ∑        

 

   

       

                         

6.5 

 To allow underfunding, one approach is to transform the constraint above to a 

chance constraint; this allows a violation to that constraint with a certain probabil-

ity among all scenarios.  

The first step is to define the underfunding for each scenario;  

 
     ∑        

 

   

      ∑        

 

   

               

                         

where                                      

and finally 

 ̅  ∑   

 

   

 

6.6 

where     and     are variables defined for all time periods and all scenarios. 

Allowing underfunding in this model has a side effect: the investor can re-invest the 

amount of money that “appears” from the underfunding. This is not coherent with 

proper cash balancing; therefore another constraint must be added, to bind the in-

vestor to invest just the cash coming from the liquidation of assets and the income 

at that time period. We call this the cash balance constraint, and the formulation is 

as follows: 

 
     ∑        

 

   

         ∑        

 

   

 

                         

6.7 

 The chance constraint can be written as: 

            { ̅    }      6.8 
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where R is a reliability level, that is the probability with which we want to satisfy the 

constraint. As seen in section 1.3, there is a deterministic equivalent formulation 

(see the system of equations 1.43) for CCP problem. The changes to the determinis-

tic equivalent AMPL formulation follows: 

param M := 50000; 

param Reliability:=0.8; #do not underfund with probability 80%  

var count{SCENARIO} binary; 

var over{TIME, SCENARIO} >= 0; 

var under{TIME,SCENARIO} >= 0; 

var underDeviation{SCENARIO} >=0; 

fundbalance{t in TIME, s in SCENARIO}: 

  (1-Tcost)*(sum{a in ASSETS} price[t,a,s]*sell[t,a,s]) 

  - (1+Tcost)*(sum{a in ASSETS} price[t,a,s]*buy[t,a,s]) 

  + income[t] - over[t,s] + under[t,s] = liabilities[t]; 

cashbalance{t in TIME, s in SCENARIO}: 

 (1-Tcost)*(sum{a in ASSETS} price[t,a,s]*sell[t,a,s]) + income[t]>=  

 (1+Tcost)*(sum{a in ASSETS} price[t,a,s]*buy[t,a,s]); 

underDevDef{s in SCENARIO}: sum{t in TIME} under[t,s] = underDevia-

tion[s]; 

CC{s in SCENARIO}: underDeviation[s] <= M * count[s]; 

cardCC: sum{s in SCENARIO} prob[s]*count[s] <= 1-Reliability; 

The artifices introduced in the model due to the DEQ formulation are highlighted in 

bold. It is worth noticing that this formulation introduces one binary variable for 

each scenario. 

This model easily spots one weakness of the chance constraints problems, which is 

the fact that they represent a qualitative risk measure. The scenarios that are al-

lowed to underfund in the problem above, do indeed underfund, and they can do 

so by up to M; one scenario with very little underfunding is considered equally to 

one which underfunds by the maximum allowed. This does not take into considera-

tion that the amount of underfunding has an important role too. For this reason, in 
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this case the integrated chance constraint approach might be preferable; the ICC 

takes the amount of underfunding into consideration, limiting the expected under-

funding. 

The formulation is: 

            [ ̅ ]    6.9 

which can be implemented in AMPL adding: 

param G := 50000; 

ICCP: sum{s in SCENARIO} prob[s]*underDeviation[s] <= G; 

The additional variables mentioned in section 1.3 have not been added; normally 

the deterministic equivalent formulation of an integrated chance constraint re-

quires the creation of an additional variable for each scenario. 

CCP and ICCP formulations in SAMPL 

The formulation of the chance constraint using SAMPL extended syntax is: 

CC: {probability s in SCENARIO: underDeviation[s] > 0} <= Reliabil-

ity; 

Similarly the integrated change constraint reads: 

ICCP: expectation{s in SCENARIO} {underDeviation[s]} <= G; 

It can be easily seen that the formulation using the extended syntax is much more 

compact and readable. Moreover, this reformulation allows the modelling system 

to use a solver that is especially designed to solve CCPs or ICCPs through specialized 

algorithms (see (Haneveld & van der Vlerk, 2006) for an example), whenever such a 

solver is available. 

Robust formulations in AMPL 

In case more precise assumptions about the distribution of the random parameters 

cannot be made, reformulating the model as a robust optimization problem can 

help maintaining feasibility of the solution in the face of an uncertain future. Only a 

few and light assumptions in respect of the random parameters are made in the 

model of uncertainty U presented in section 1.2. We therefore model the future 
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assets prices as  ̃   with values in [     ̌        ̌  ], where     and  ̌   are respec-

tively the mean value and the half extension of the uniform distribution of asset i at 

time t and. It has to be noted that the prices are the only non-deterministic param-

eters of this model, and that they appear as elements in the matrix with a multipli-

er, as coefficients of the variables S and B: 

 
     ∑      

 

   

      ∑      

 

   

       
6.10 

To avoid being too prolix on a topic – the formulation of robust optimisation prob-

lems – which is not central to this thesis, only the formulation given by Soyster (see 

section 1.2) is explicitly given here. The linear program that can be inferred from 

Soyster’s formulation, as in 1.31, is reported below: 

         

 

           ∑     
 

 ∑  ̌    
    

            

-               

      

     

6.11 

The formulation requires the knowledge of the sets    of coefficients in each row i 

that are subject to uncertainty, because an artificial variable    must be created for 

each one of them. In the algebraic perspective, the procedure translates into rec-

ognizing the parameters that are defined as part of the model U (in this model, the 

prices) and add an artificial variable for each time they appear in each constraint. In 

our case, the only constraint involved is shown in equation 6.6, and the random pa-

rameter  ̃   appears twice in it. We therefore proceed by creating two artificial vari-

ables      and      for each constraint, which obtains the final form: 

 
     ∑      

 

   

      ∑      

 

   

       ∑ ̌      

 

   

      ∑ ̌      

 

   

              

6.12 
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To complete the formulation, the constraints which link the artificial variables and 

the natural one have to be added, together with the bounds on the variables, 

namely: 

 - 
   

      
   

              

 
   

      
   

              

                            

6.13 

Expressed in AMPL, the steps above are: 

1) Declare the artificial variables and the parameters of the uniform distribu-

tion (as mean value     I used the expected value of the realizations utilized 

for the SP problem, so just the additional parameter amplitude was need-

ed) 

param amplitude{TIME, ASSETS} := 10; 

var artificialBuy{TIME, ASSETS} >= 0;  

var artificialSell{TIME, ASSETS} >= 0; 

2) Reformulate the fundbalance constraint to implement 6.12: 

fundbalance{t in TIME}:  

   (1+Tcost)*(sum{a in ASSETS} price[t,a]*buy[t,a]) - 

   (1-Tcost)*(sum{a in ASSETS} price[t,a]*sell[t,a])+     

     sum{a in ASSETS} (1+Tcost)*artificialBuy[t,a]*amplitude[t,a] -        

     sum{a in ASSETS} (1-Tcost)*artificialSell[t,a]*amplitude[t,a] 

  <= income[t] - liabilities[t]; 

3) Implement the other constraints: 

robustBuy{t in TIME, a in ASSETS}: -artificialBuy[t,a] <= buy[t,a]; 

robustBuy2{t in TIME, a in ASSETS}: buy[t,a] <= artificialBuy[t,a]; 

robustSell{t in TIME,a in ASSETS}:-artificialSell[t,a] <= sell[t,a]; 

robustSell2{t in TIME, a in ASSETS}: sell[t,a]<=artificialSell[t,a]; 

It is now apparent that, even for this simple problem, the reformulation as deter-

ministic equivalent takes the focus of the modeller away from the problem itself, to 
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concentrate with the definition of artificial variables and the reformulation of con-

straints. 

Robust formulations in SAMPL 

Expressed using SAMPL extended syntax, the steps above are simplified. The defini-

tion of the random parameter is changed to: 

random param randomPrice{t in TIME, a in ASSETS} 

dist symmetric(price[t,a] - amplitude[t,a], price[t,a] + amplitude[t,a]); 

This formal definition of the price gives all the needed information the modelling 

system regarding the uncertainty model U. The next step is to choose the form of 

the robust formulation, which is obtained via the following statement: 

option RobustForm Soyster; 

Finally, the constraint are expressed identically to the deterministic version, as: 

fundbalance{t in TIME}: 

 (1-Tcost)*(sum{a in ASSETS} randomPrice[t,a]*sell[t,a]) 

 - liabilities[t] + income[t] = 

     (1+Tcost)*(sum{a in ASSETS} randomPrice [t,a]*buy[t,a]); 

The system takes care of generating the artificial variables and the additional con-

straints automatically, thus allowing the modeller to concentrate on the problem 

instead of the formal specification of the uncertainty set.  

To obtain the other formulations (Ben Tal and Nemirovsky, or Bertsimas and Sim), 

the modeller simply uses a different value for the RobustForm option. These two 

formulations require additional parameters to specify the desired trade-off be-

tween optimality and robustness. This parameter is specified in the constraint dec-

laration, as: 

fundbalance{t in TIME} suffix robustness gamma[t]: 

 (1-Tcost)*(sum{a in ASSETS} randomPrice[t,a]*sell[t,a]) 

 - liabilities[t] + income[t] = 

     (1+Tcost)*(sum{a in ASSETS} randomPrice [t,a]*buy[t,a]); 

where gamma is an AMPL parameter containing the chosen robustness value. 


