
Design and Architecture of a

Stochastic Programming

Modelling System

A thesis submitted for the degree of Doctor of Philosophy

by

Christian Valente

Department of Mathematical Sciences, Brunel University

School of Information Systems, Computing and Mathematics

Brunel University

April 2011

ii | P a g e

Abstract

Decision making under uncertainty is an important yet challenging task; a number

of alternative paradigms which address this problem have been proposed. Stochas-

tic Programming (SP) and Robust Optimization (RO) are two such modelling ap-

proaches, which we consider; these are natural extensions of Mathematical Pro-

gramming modelling. The process that goes from the conceptualization of an SP

model to its solution and the use of the optimization results is complex in respect to

its deterministic counterpart. Many factors contribute to this complexity: (i) the

representation of the random behaviour of the model parameters, (ii) the interfac-

ing of the decision model with the model of randomness, (iii) the difficulty in solving

(very) large model instances, (iv) the requirements for result analysis and perfor-

mance evaluation through simulation techniques. An overview of the software tools

which support stochastic programming modelling is given, and a conceptual struc-

ture and the architecture of such tools are presented. This conceptualization is pre-

sented as various interacting modules, namely (i) scenario generators, (ii) model

generators, (iii) solvers and (iv) performance evaluation. Reflecting this research,

we have redesigned and extended an established modelling system to support

modelling under uncertainty. The collective system which integrates these other-

wise disparate set of model formulations within a common framework is innovative

and makes the resulting system a powerful modelling tool. The introduction of sce-

nario generation in the ex-ante decision model and the integration with simulation

and evaluation for the purpose of ex-post analysis by the use of workflows is novel

and makes a contribution to knowledge.

iii | P a g e

Acknowledgements

First of all, I would like to express my gratitude to all my family: my parents Eros

and Cristina, for their support, their encouragement and their endless patience,

that made them endure my stochastic behaviour. And let’s not forget their recent

attempts to perturb my concentration, luckily with no consequences. Patrick - my

brother - for all the discussions, the fun, the hard DIY, the invitations to poorly

cooked dinners and for getting me to live this nice experience here in UK, and of

course for providing me with a new family here: Olatz, Ewan and Maren. Grand-

mothers (Eliana and Marisa) for their endless, unconditional love and for giving me

my beloved roots. Aunts, uncles, cousins, they all were always there. I thank them

all, and I do it in Italian with a "grazie a tutti, di cuore, ora é un po' come aveste un

dottorato anche voi: il secondo".

My supervisors Prof. Gautam Mitra and Dr. Cormac Lucas have been a source of un-

countable advice, inspiration and have kept my interest up for all these years. The

Mathematics department in Brunel and the company OptiRisk Systems have been

thriving environments to work and live in, all the staff always supportive and help-

ful, and I thank them for this. My fellow students (now almost all doctors) Luka

Jalen, Katharina Schwaiger, Bruno Flach, Christina Erlewein, Gareth Clews, Victor

Zviarovich, Carola Kruse (and all the others I did not mention) have been in one way

or the other sharing with me this experience, and I definitely could have not done it

without them.

Last but not least those who have always been around me, giving me stimulus to

cultivate interests in the most diverse fields, sharing surreal experiences, part tak-

ing in music performances which were vital for my wellbeing, and usually triggering

hilarious laughs: my scattered, but nevertheless close, friends. A (necessarily brief)

list would be unfair to the “not fitting” but, as life is often so, I will include it any-

way: Filippo, Michele, Manuel, Svava, Marta, Stefano, Giulia, Fabrizio, J. W.

Mortazza, Marco, Lukas, Francesca, Sara, Elisa, Matteo, Luka, Ana, Katharina,

Christine... and all the others: thanks, you make me what I am, and you bear with

the result.

iv | P a g e

Contents

Abstract ... ii

Acknowledgements .. iii

List of tables ... vi

List of figures ... vii

Nomenclature .. ix

Chapter 1 Introduction and Background ... 1

1.1 Optimum decision making under uncertainty ... 1

1.2 Stochastic Programming Models .. 4

1.3 Deterministic Equivalents for SP, CC, ICC, Robust Optimization models 26

1.4 Applications of Stochastic Programming ... 34

1.5 Scenario Generation ... 36

1.6 An architecture for an SP modelling system .. 39

1.7 Outline of the thesis ... 42

Chapter 2 Software tools for Stochastic Programming .. 44

2.1 An Information Technology framework for SP... 45

2.2 Algebraic Modelling Languages .. 46

2.3 Extensions of Modelling Languages for SP ... 49

2.4 Alternative representations ... 56

2.5 Modelling languages perspective: a tour on AMPL and SAMPL 57

2.6 Conclusions ... 68

Chapter 3 Requirements and characteristics of SP solvers 69

3.1 Instance level formats .. 69

3.2 Deterministic equivalent .. 76

3.3 Decomposition techniques ... 78

v | P a g e

3.4 Model generation ... 82

3.5 Solver architecture and interface ... 84

3.6 Conclusions ... 89

Chapter 4 Requirements for a Scenario Generation library 91

4.1 Scenario Generators: a modelling perspective .. 92

4.2 Overview of SG methods .. 94

4.3 Desirable properties ... 100

4.4 An abstract view of SGs .. 102

4.5 SG Library: an IT perspective .. 106

4.6 Language constructs for the SG library .. 116

4.7 Conclusions ... 118

Chapter 5 A workflow approach to the investigation of SP models 119

5.1 Workflows and workflow management systems ... 120

5.2 Chosen workflow formalisation ... 123

5.3 Atomic operations in an investigation framework ... 126

5.4 Example Cases .. 131

5.5 Conclusions ... 135

Chapter 6 Conclusions.. 136

6.1 Summary ... 136

6.2 Contributions of the thesis ... 137

6.3 Future work .. 139

References .. 140

Appendix A Connect a Scenario Generator developed in MATLAB 159

Appendix B SAMPL syntax for random parameter declaration 166

Appendix C ALM Model ... 167

vi | P a g e

List of tables

Table 1 Personal planning model entities .. 6

Table 2 Personal planning model: deterministic productivity 9

Table 3 Personal planning model: single stage productivity realizations 11

Table 4 Personal planning model: two stage productivity realizations 13

Table 5 Personal planning model: mood forecast realizations 16

Table 6 Bundles for example event tree .. 28

Table 7 Added information for robust optimization problems 33

Table 8 List of SG methods and applications ... 39

Table 9 Language requirements for scenario based recourse problems 54

Table 10 Language requirements for distribution based SP problem 54

Table 11 Performance of various algorithms ... 81

Table 12 SG abstraction steps .. 102

Table 13 Functions used for SG discovery ... 109

Table 14 Scenario generator example ... 117

Table 15 ALM model entities ... 167

vii | P a g e

List of figures

Figure 1 Paradigms for modelling under uncertainty .. 4

Figure 2 Personal planning model: Deviation definition constraint 7

Figure 3 Personal Planning: Single stage data and solution structure 11

Figure 4 Personal planning model: Two stage data and solution structure 14

Figure 5 Personal planning model: multistage data and decision structure 16

Figure 6 Event tree ... 28

Figure 7 High level overview of a SP modelling system ... 41

Figure 8 Research areas vs software components .. 46

Figure 9 Components in an algebraic model ... 48

Figure 10 Combined Paradigm ... 53

Figure 11 Extended constructs for SP .. 56

Figure 12 Personal planning model: Screenshot from SG ... 63

Figure 13 Instance level formats' role in a modelling system 70

Figure 14 Model generation statistics ... 83

Figure 15 Comparison of memory usage in model generation 84

Figure 16 Mapping between model classes and solution methods 86

Figure 17 Interface between SPInE and FortSP ... 87

Figure 18 Link between Scenario Generators and Modelling System 93

Figure 19 Structural compliance between model and SG ... 94

Figure 20 Scenario generation methods .. 96

Figure 21 Scenario generator functional perspective .. 103

Figure 22 Scenario generators as black boxes ... 103

Figure 23 Abstract representation of a scenario generator 104

Figure 24 Abstract representation of a SG library, single random parameter 105

Figure 25 Abstract representation of a SG library, multiple random parameters .. 106

Figure 26 IT view of Scenario Generation .. 107

Figure 27 UML schema of metadata .. 108

Figure 28 SG discovery screenshot .. 110

Figure 29 Scenario Generator Interfaces ... 113

Figure 30 Sequence of interactions MS-SG .. 115

file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636209
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636213
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636214
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636216
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636220
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636223
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636224
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636225
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636226
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636227
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636228
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636229
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636230
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636231
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636232
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636233

viii | P a g e

Figure 31 Petri net model of a task .. 122

Figure 32 Single activity SWM .. 123

Figure 33 Concatenation of SWMs .. 124

Figure 34 SWM with join and split activities .. 124

Figure 35 SWM with loops ... 125

Figure 36 Activity 1: Choose decision model ... 128

Figure 37 Activity 2: Generate Scenarios ... 128

Figure 38 Activity 3: Generate and solve model .. 129

Figure 39 Activity 4: Fix variables ... 129

Figure 40 Activity 5: Collect information ... 130

Figure 41 Activity 6: Result Analysis ... 130

Figure 42 Decision evaluation schema ... 132

Figure 43 SG in sample stability workflow ... 133

Figure 44 SG out of sample stability workflow .. 134

Figure 45 Out of sample and backtesting workflow .. 135

Figure 46 Fund balance constraint ... 168

Figure 47 Event tree for two-stage formulation .. 168

Figure 48 Event tree for multi stage ALM model ... 168

file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636239
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636243
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636244
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636245
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636246
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636247
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636248
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636250
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636251
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636252
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636253
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636254
file:///D:/Desktop/WriteUps/Thesis/Thesis.docx%23_Toc290636255

ix | P a g e

Nomenclature

AML Algebraic Modelling Language

AMPL A Mathematical Programming Language

AR Auto Regressive

ARCH Auto Regressive Conditional Heteroskedasticity

ARMA Auto Regressive Moving Average

CCP Chance Constraint Programming

CSaR Conditional Surplus at Risk

CVaR Conditional Value at Risk

DETEQ Deterministic Equivalent

DSS Decision Support System

EEV Expectation of the Expected Value

EV Expected Value

EVPI Expected Value of Perfect Information

GARCH Generalized Auto Regressive Conditional Heteroskedasticity

GBM Geometric Brownian Motion

HMM Hidden Markov Model

HN Here and Now

ICCP Integrated Chance Constraint Programming

IP Integer Programming

IT Information Technology

LP Linear Programming

MA Moving Average

MIP Mixed Integer Programming

MP Mathematical Programming

MPS Mathematical Programming System

MS Modelling System

NLP Non Linear Programming

OS Optimization Services

OSiL Optimization Services Instance Protocol

OSxL Optimization Services Protocols

QP Quadratic Programming

x | P a g e

RO Robust Optimisation

SAMPL Stochastic AMPL

SG Scenario Generator

SLP Stochastic Linear Programming

SMIP Stochastic Mixed Integer Programming

SNLP Stochastic Non Linear Programming

SOAP Simple Object Access Protocol

SOCP Second Order Cone Programming

SP Stochastic Programming

SSOCP Stochastic Second Order Cone Programming

VSS Value of Stochastic Solution

WF Workflow

WFMS Workflow Management Systems

WS Wait and See

XML eXtensible Markup Language

`

1 | P a g e

Chapter 1 Introduction and Background

“God does not play dice” (Albert Einstein, paraphrased from a letter to Max Born, 4

December 1926)

1.1 Optimum decision making under uncertainty

Optimum decision making is concerned with the general problem of computing an

optimal decision by taking into consideration parameters, their uncertainties and

restrictions relevant to it. A significant aspect of moving from a qualitative approach

to a quantitative approach is the introduction of Mathematical Programming (MP)

paradigm.

Mathematical Programming models enable the modeller to quantify the effects of

the decision in terms of the objectives set by the decision maker and these model

are formulated to ensure that the decision does not violate any of the restrictions.

Such models express the objectives as functions of the decision variables, which are

restricted to take values on certain domains. The objective functions are maximized

or minimized; in case of only one objective function, the problem is called a single

objective problem and the solution consists of a set of values of the decision varia-

bles which represent the optimum decision, in case of more than one objective

function, the problem is referred to as a multi-objective problem, and the product

of the optimization is a Pareto efficient set of values of the decision variables, which

represent trade-offs between the values of all objective functions.

In this thesis, we restrict the scope to single objective optimization problems, how-

ever, most concepts and results are easily extended to a multi-objective context.

A single objective optimization problem is expressed as shown below.

Given a function

 → 1.1

The computational model is to search (for a minimization problem), for an element

 such that for all .

http://en.wikipedia.org/wiki/Uncertainty

`

2 | P a g e

MP models can be further classified by two main criteria: the form of the domain

and the type of the decision variables and the objective function.

Linear Programming (LP) models are characterised by constraints and an objective

function which are linear combination of the decision variables while Quadratic

Programming (QP) models can have quadratic terms in the objective function. De-

pending on the type of decision variables, the optimization models are classified as

Integer Programming (IP) models if all the variables are integer or Mixed Integer

Programming (MIP) models if some of the variables are integers and the remaining

are continuous. Following the criteria regarding the form of we have Second Or-

der Cone Programming (SOCP) models if some constraints are quadratic, see (Lobo

et al., 1998) and generic Conic Optimization models if is a convex cone.

Linear Programming (LP) models were first introduced in the 40’s, by early re-

searchers such as Kantorovich, Dantzig and Von Neumann. LP has found many ap-

plications in diverse fields involving planning and scheduling. Typical examples are

supply chain logistics, financial planning and despatch of energy (electricity or gas).

The enormous growth in computational power, as well the development of new

mathematical techniques and software tools to formulate and solve these classes of

problems has made it possible to apply these models to real world situations in

which the number of variables and constraints can be very large.

It is out of the scope of this thesis to provide a comprehensive history of all MP par-

adigms; what is important is that their success has showed up their limitations. A

fundamental assumption for this class of decision models is that the parameters

which define the models are known with certainty. This assumption of certain

knowledge (deterministic) in many cases does not hold.

Consider for example the future commodity prices or interest rates in a financial

planning model, the hourly energy demand in an energy network problem or the

demand for a particular characteristic in a blending model: assuming these parame-

ters are known with certainty at solution time could lead to solutions that are not

optimal or even not feasible in the real world.

`

3 | P a g e

In the field of optimum decision making under uncertainty, the assumption of a de-

terministic world is relaxed and different procedures and paradigms arise.

A first step in applying MP techniques to a non-deterministic setup is to consider

parameters estimation as central in the modelling process, however, in spite of

much care put into forecasting the outcome of non-deterministic events, the fore-

cast could always be incorrect or not precise. The modeller needs therefore to take

into account the effects introduced by the uncertainty into the underlying optimisa-

tion models and study how the inevitable defects in the forecasting process can af-

fect the quality of the solution obtained.

Sensitivity analysis is therefore introduced to study the effect on the solution ob-

tained for changes in the parameter values used. It is presented in greater detail by

many researchers, among which (Arriola & Hyman, 2009). This approach has draw-

backs and limitations, as discussed in (Higle & Wallace, 2003), (Wallace, 2000) and

(Dupačová, 2002).

Many researchers have postulated MP paradigms such as Stochastic Programming,

Dynamic Programming and Robust Optimisation to consider parameter variations.

In these approaches the modeller can make better use of assumptions he is able to

make about the uncertainty related to the problem. In many cases, it is possible to

model the uncertainty itself by means of probability distributions. Stochastic Pro-

gramming models and Dynamic Programming models make use of this added in-

formation about the uncertainty to provide optimal decisions which hedge against

future uncertainties. Robust Optimisation is an alternative uncertainty aware mod-

elling paradigm in which very few assumptions about the distributions are made,

but nevertheless leading to solutions which are stable in respect to the uncertain

future outcomes. In this thesis we focus mainly on Stochastic Programming, how-

ever, some aspects of Robust Optimisation are also considered and presented, as

the implemented software system provides language features to support the for-

mulation of problem classes with uncertain parameters.

`

4 | P a g e

1.2 Stochastic Programming Models

Stochastic Programming (SP) is now a well-established approach to decision making

under uncertainty; SP requires the explicit inclusion of the uncertainty in the form

of probability distributions of the model parameters which are random. The SP

models can be further categorized by the way in which the uncertainty is expressed

and dealt with in the underlying optimisation model.

The classification of stochastic programming problems shown in Figure 1 is based

on the taxonomy proposed by (Gassmann & Ireland, 1996). It has been extended

with the introduction of the Expected Value models, the problems with Chance

Constraints and the problems with Integrated Chance Constraints. The alternative

paradigms (Dynamic Programming and Robust Optimisation) are shown aside, to

contextualise them in the broad area of modelling under uncertainty.

Figure 1 Paradigms for modelling under uncertainty

`

5 | P a g e

Definition of a personal planning model

A simple example has been devised to illustrate the different classes of models in

this chapter. For each class of SP problems introduced, a subsection titled Example

will contain some considerations in reference to this model, formulated in the con-

sidered class. The first formulation is deterministic, as a linear optimization prob-

lem, and reads as follows.

This model focuses on personal time management. The subject is a person, who has

various duties D to perform (i.e. a study related project and a work related one) and

to finish by the end of the time horizon (the time set is T, and its members are the

days which have to be planned).

The duties require an amount of work units each (; work units are completed

allocating work hours to that task (Wdt).

The subject has different productivity (Pdt) in terms of work units done per hour in

the different tasks (he might be consider better talented for one or the other duty)

and also the productivity changes among the planning horizon.

The aim is to minimize the stress, which is modelled as proportional to the amount

of overwork Ot the subject undertakes each day (the over-deviation on the average

working hours HA) and is diminished by under-work Ut (amount of hours devoted

to other, relaxing activities).

 In each day which is part of the time horizon, the subject has to decide how many

hours to work on each task, taking care not to avoid the maximum allowed working

hours a day H.

Table 1 below shows a possible list of the entities for this model.

`

6 | P a g e

Type Name Nota

ta-

tion

Description Dimen-

sions

Unit of

measure

In
d

ic
e

s

(s
et

s)
 DUTIES D Duties to be done

TIME T Time periods

P
ar

am
et

e
rs

(d
at

a)

Wakin

Hours

H Max work hours per day [hours]

StressFactor S Stress factor of overwork [hours-1]

RelaxFactor R Relax factor of underwork [hours-1]

Work

Required

 Work units required DUTIES [units]

Productivity Pdt Productivity DUTIES,

TIME

[units/hour]

Average

Work

HA Average work hours per

day

 [hours]

V
ar

ia
b

le
s

Work Wdt Amount of work to un-

dertake

DUTIES,

TIME

[hours]

UnderWork Ut Amount of rest TIME [hours]

OverWork Ot Amount of overwork TIME [hours]

Table 1 Personal planning model entities

Objective function

The objective of the model is to minimize the stress level of the person on all the

planning horizon. It is defined as increased, by a factor, by the number of hours of

overwork each day and decreased, by another factor, by the number of hours of

underwork (relax).

 ∑

 1.2

Day Length constraints

Each day in the planning horizon, there is a maximum number of hours the subject

can work. It can be assumed to be determined by the physical length of the day or

by health regulations. The model would try to allocate as many working hours as

`

7 | P a g e

possible on the days in which productivity is high; this constraint serves to make the

solution respect the length of the days, putting a hard limit to the total work under-

taken in each day.

 ∑

 1.3

Deviation Definition constraints

This constraint is what defines the amount of work below and over the average (

and) that the subject undertakes every day. Being the two named variables de-

fined as positive, if there is any variation between the total amount of work allocat-

ed for the day and the average working hours, it will be stored in these variables by

the constraint, as expressed in equation 1.4.

 ∑

 1.4

Figure 2 below illustrates the concept of over and under work.

Task completion constraint

Each task has to be completed at the end of the time horizon, by means of allocat-

ing working hours to them. The amount of work units completed for each hour de-

pends by the productivity , which is here a multiplier of the amount of work

hours allocated. The constraint is expressed as in equation 1.5.

 ∑

 1.5

0 HA

Work

OverWork

UnderWork

Work

Figure 2 Personal planning model: Deviation definition constraint

`

8 | P a g e

Linear programming

These problem classes can be illustrated by first considering the linear program-

ming problem:

subject to

where

1.6

Let P denote a probability distribution, be a sigma field and the triplet

be a probability space where denote the realizations of the uncertain pa-

rameters. Let the realizations of A, b, c for a given event be defined as:

 1.7

The associated probabilities of these realizations are often denoted as

or . For notational convenience these probabilities are denoted simply

as .

For the same reason, let the feasible regions corresponding to the problem stated

in 1.6 and 1.7 be defined as:

 { } for 1.8

Example. Deterministic to stochastic

The personal planning model introduced above can be summarized as follows:

 ∑

 ∑

∑

∑

 ,

1.9

`

9 | P a g e

This is a deterministic linear problem; it can be formulated and solved directly, us-

ing normal LP techniques. It is formulated in Chapter 2 using AMPL and SAMPL; the

focus of this chapter is on the introduction of uncertainty only, therefore suffices to

say that, given appropriate values to the parameters, it is possible to construct the

matrix A and the vectors b and c, then solve the problem via simplex or interior

point methods.

Possible values for the productivity are, supposing that the set T contains items cor-

responding to three time periods, and that the set of duties D contains the items

“work” and “study”:

TimePeriod work study

1 1 0.9

2 0.9 1.2

3 1.3 1.3

Table 2 Personal planning model: deterministic productivity

The different productivity values in the various time periods can be interpreted as

different amount of distractions the person has to cope with each day. A productivi-

ty factor of 1 is “nominal” productivity; a factor lower than 1 means that the person

is not as productive as he normally is, maybe due to distractions or lack of concen-

tration. A factor greater than 1 can be interpreted as an indicator of a “good day”: a

day in which the person is very proficient in the task at hand.

Supposing that the productivity is not known with certainty, as the person

might not know how good he will perform the next days in advance, the Stochastic

Programming approach requires us to model our productivity forecasts for each pe-

riod in the time horizon. Depending on how the forecast is generated (the infor-

mation structure) and how the decision variables are reflecting it, this problem can

be formulated as a single stage, two stage or multistage SP problem, as shown in

the remainder of this section.

In terms of the just introduced theoretical framework, the parameter now de-

pends on the particular forecast we are in it. Since was used in the constraint

matrix , the introduction of its dependency from the forecast causes the feasi-

`

10 | P a g e

ble region to depend on the particular succession of realizations we have. To

optimize the strategy, despite this uncertainty, is the aim of Stochastic Program-

ming.

Distribution based versus Scenario based recourse problems

The problem defined in 1.6, 1.7 and 1.8 is a mathematical programming model with

uncertainty about the values of some of the parameters. If the distribution of

is continuous, the problem is called a distribution based recourse problem

(Gassmann & Ireland, 1996); except from some trivial cases, such problems cannot

be solved. If the distribution is discrete, the cardinality of the support is limited by

the available computing power, therefore in most practical applications the distri-

butions of the stochastic parameters have to be approximated by discrete distribu-

tions with a limited number of outcomes (Kaut & Wallace, 2003).

In the discrete statement of the problem given by 1.6, 1.7 and 1.8, the event pa-

rameter takes the range of values ; there are associated random vec-

tor realisations and probabilities such that:

 ∑ and ⋃ 1.10

The discretization is usually called a set of scenarios, and its representation fol-

lowing the dynamic structure of the problem is a scenario tree. A stochastic prob-

lem whose event outcomes are represented by a scenario tree is called scenario

based recourse problem. In this thesis only this class of models are considered.

Stochastic Programming Problems with Recourse (Here and now)

a. Single stage SP Problems

A simple (single stage) stochastic programming model is formulated as:

 []

where

and ⋂

1.11

`

11 | P a g e

The optimal objective function value denotes the minimum expected costs of

the stochastic optimisation problem. The optimal solution
 hedges against

all possible events that may occur in the future.

Example

In a single stage model, we give scenarios for the productivity parameter; they cor-

respond to different “general moods”, ordered from the least productive to the

most. They have been obtained simply multiplying the base productivity given in

Table 2 by a factor, which was increasing with the mood. The parameter will

then be dependent on the scenario we are in, thus becoming .

 s1 s2 s3

work(1) 0.8 1 1.3

work(2) 0.72 0.9 1.17

work(3) 1.04 1.3 1.69

study(1) 0.72 0.9 1.17

study(2) 0.96 1.2 1.56

study(3) 1.04 1.3 1.69

Table 3 Personal planning model: single stage productivity realizations

This creates productivity scenarios, which can be visualized as in the left part of Fig-

ure 3 below.

Figure 3 Personal Planning: Single stage data and solution structure

An optimal strategy, shown in green in Figure 3, is given by the implementable deci-

sion variables , and it is a strategy to be followed in each time period and for all

1 2 3 days

1 2 3 days

,

Data Solution

`

12 | P a g e

scenarios. It optimizes the model 1.12, in which Sc is the set of all scenarios and Prs

is the parameter which stores their probability.

 ∑

 ∑

∑

∑

1.12

The obtained solution is by formulation feasible in each scenario and it does

not depend on any dynamically available information on the uncertainty. Further-

more, note that the objective function for this model in this formulation does not

consider scenarios at all. This is not generally the case, as the objective function

could have parameters which depend on scenarios.

b. Two-stage SP Problems

The classical two-stage SP model with recourse is formulated as:

 []

subject to

1.13

where:

subject to ,

1.14

The matrix A and the vector b are known with certainty. The function , re-

ferred to as the recourse function, is in turn defined by the linear program set out in

1.14. The recourse matrix , the right-hand side , the technology

trix , and the objective function coefficients of this model may be ran-

dom. If the recourse matrix D is fixed for all realizations then the problem is known

`

13 | P a g e

as SP problem with fixed recourse; if D takes the form , it is known as SP

problem with simple recourse.

Two-stage Stochastic Programming problems with recourse separate the model’s

decision variables into first stage and second stage. The dynamic nature of the

problem can be easily seen: an optimal first-stage decision x is determined such

that it is feasible for all realisations and has the minimum cost, while the se-

cond-stage decision is taken after the outcome is observed, and compen-

sates and adapts to different realisations.

Example

In a two stage model, we allow part of the decision variables (the recourse actions,

or second stage variables) to depend on the scenario we are in, and therefore react

to it. It therefore requires data which distinguish between a first stage in which we

know with certainty our parameters, and a second stage in which we have to make

forecasts.

We can reuse the data generated for the single stage model, taking care of the fact

that at time period 1 all the productivity values should be certain (i.e. equal for all

scenarios). In our case, we decide that the person knows what his mood at day 1 is,

and can therefore assume his productivity for that day as certain. The resulting data

is displayed below.

 s1 s2 s3

work(1) 1 1 1

work(2) 0.72 0.9 1.17

work(3) 1.04 1.3 1.69

study(1) 0.9 0.9 0.9

study(2) 0.96 1.2 1.56

study(3) 1.04 1.3 1.69

Table 4 Personal planning model: two stage productivity realizations

The same kind of decision is taken for the decision variables, we therefore allow for

decisions at day 2 and 3 to depend on scenario. The resulting data structure and

solution structure is displayed in Figure 4 below.

`

14 | P a g e

Figure 4 Personal planning model: Two stage data and solution structure

The corresponding problem is:

 ∑

∑

 ∑

∑

∑

1.15

in which it is clearly shown that the decision variables are now scenario dependant.

This would not be true for the decision variables at the first time period, as we de-

cided to place them in stage one, but it is often written in this way to simplify the

notation. This way of formulating the model is called explicit non-anticipativity, as

shown in Section 1.3. To enforce the expected behaviour, we use constraints forc-

ing the values of the variables to be equal across all scenarios, for all time periods in

which these variables are in stage 1. These constraints are called non-anticipativity

constraints. For this model, they are written below:

 -{1}

 -{1}

 -{1}

1.16

1 2 3 days 1 2 3 days

Data Solution

`

15 | P a g e

c. Multi stage SP Problems

The class of two-stage problems specified by 1.13 and 1.14 can be extended to the

multistage recourse program considering a more complex dynamic setting: instead

of having the two decisions x and , we consider now T sequential decisions

 …, to be taken at the stages t = 1, 2, .., T. The term “stages” can, but need

not, be interpreted as “time periods”; although these concepts coincide in many

applications, a stage can be regarded in general as a step where new information

about the state of nature is provided.

A decision made in stage t should be based on the knowledge of the previous deci-

sions and realisations (and such decision only affects the sub-

sequent decisions (. In Stochastic Programming this concept is

known as non-anticipativity and has to be taken into account when formulating the

problem in a deterministic equivalent setting. The multistage stochastic program-

ming recourse problem has the form (following (Dempster, 1988), (Ermoliev &

Wets, 1988)):

 [
 [

]]

 subject to

 . .

 . .

 with , t = 1,...,T

1.17

`

16 | P a g e

Example

As a simple productivity model, we assume that, each day, the person can be either

in a good (productive) or a non-productive mood, and the mood influences equally

the productivity in all the duties. The mood in each time period is supposed to be

independent from all the others.

The proposed forecasts are therefore easily represented in the following way:

Figure 5 Personal planning model: Multistage data and decision structure

Realizations for the productivity parameter can therefore be represented by the

following table, where productivity is multiplied by a parameter g in case of good

mood and by a parameter b in case of bad mood.

 1 2 3 4

work(1) 1 1 1 1

work(2) 0.9g 0.9g 0.9b 0.9b

work(3) 1.3g 1.3b 1.3g 1.3b

study(1) 0.9 0.9 0.9 0.9

study(2) 1.2g 1.2g 1.2b 1.2b

study(3) 1.3g 1.3b 1.3g 1.3b

Table 5 Personal planning model: mood forecast realizations

The decision variable at each time period can depend on knowing the information

up to that time period; this means that each time period corresponds to a stage.

This staging information must be enforced by mean of non anticipativity con-

straints, which are shown below for the variable .

g = good mood

b= bad mood

1 2 3 days

g

g

g
b

b

b

1 2 3 days

Data Solution

`

17 | P a g e

 -{1}

1.18

d. Chance Constraints

The chance-constrained programming problems (CCP) were first introduced in

(Charnes & Cooper, 1959). This class of problems deals with the fact that, however

in representing a SP problem modellers often use the goal programming approach

(i.e. penalties in the objective for violations in the constraints) to account for con-

straints violations, sometimes it is not possible to quantify the penalty, or penalties

cannot be modelled in any reasonable way. The CCP approach considers a decision

feasible whenever it is feasible with a high probability. A probabilistic or chance

constraint can be expressed as follows:

 1.19

where x and are respectively decisions and random vectors, P is a probability

measure and { } is called the probability or reliability level.

In a two-stage SP problem with m random constraints and defining { },

we distinguish between individual chance constraints

 1.20

and joint chance constraints

 1.21

Chance constraints are inherently a qualitative risk measure, and have been used in

a wide range of applications (see, among many others, (Schwaiger, 2009) and refer-

ences in (van der Vlerk, 1996-2007)) however there are applications in which quan-

titative risk measures are more appropriate. Another sometimes undesirable char-

acteristic of chance constraints problems is that they are non-convex in general; in

particular, this is true if the underlying random vector follows a discrete distribu-

tion (Dentcheva et al., 2000).

`

18 | P a g e

Example

In the personal production model, we might want to allow for a certain probability

of failure in completing the tasks in the predetermined time horizon. Considering

the Task Completion constraint (see equation 1.5), we can therefore express it as

two individual chance constraints, as in:

 (∑

)

1.22

The individual chance constraints 1.22 above guarantee that the subject will reach

(independently) the end of each duty, with a probability The probability of reach-

ing the end of all the tasks is not constrained.

To control the combined probability of failure among all the tasks, the constraint

can be reformulated as a joint chance constraint, where the decision guarantees

that the subject will reach the end of all duties with probability

 (∑

)

1.23

e. Integrated Chance Constraints

The arguments given in the paragraph above motivated the research of a different

approach; Integrated Chance Constrained Programming has been introduced in

(Haneveld, 1986) as an alternative, quantitative and in general convex approach to

control and measure feasibility in a SP problem. The ICCP approach considers a

problem to be feasible if the expected violation of the constraint is less than a pre-

defined value. Integrated Chance Constraints (ICC) are defined in (Haneveld, 1986)

as the individual integrated chance constraints:

 [] 1.24

and the joint integrated chance constraints:

 [] 1.25

`

19 | P a g e

where represents the under-deviation that occurs in constraint i under

realisation , and is called the shortfall parameter and it limits the (maximum)

expected shortfall in the (set of) ICCs.

Applications of Integrated Chance Constraints are found in many fields, but their

application in finance defines one important class, as it connects to the well-known

Conditional Surplus-at-Risk (CSaR, a variant of Conditional Value at Risk (CVaR)), see

(Fábián & Veszprémi, 2008).

Example

Going back to the same model, we might want to allow for a certain average

“amount” of failure in completing the tasks. The amount of failure could be ex-

pressed as the amount of units still needed to complete them. To do so, we can

express the Task Completion constraint as two individual integrated chance con-

straints, as in:

 [(∑

)

]

1.26

The constraints above guarantee that the subject will, in average, not miss more

than work units of each task at the end of the planning horizon.

 As done for the chance constraints, a Joint Integrated Chance Constraint can be

expressed as follows:

 [

(∑

)

] 1.27

This formulation controls the expected maximum units behind schedule among all

works to be less than

Expected value problem

The Expected Value (EV) model is constructed by replacing the random parameters

by their expected values. Such an EV model is thus a linear program, as the uncer-

tainty is dealt with before it is introduced into the underlying linear optimisation

`

20 | P a g e

model. It is common practice to formulate and solve the EV problem in order to

gain some insight into the decision problem.

Denoting with
 the decision vector resulting from the optimization of the ex-

pected value problem, its evaluation against all possible scenarios:

 ∑

where

takes the name of Expectation of the Expected Value solution. If there are scenarios

s for which
 is not feasible, then is set to be .

Wait and see problems

Wait and See (WS) problems assume that the decision-maker is somehow able to

wait until the uncertainty is resolved before implementing the optimal decisions.

This approach therefore relies upon perfect information about the future; opera-

tively, we solve one separate LP problem for each available scenario, thus obtaining

the optimal strategy in each scenario. Because of its very assumptions such a solu-

tion cannot be implemented and is known as the “passive approach”. Wait and see

models are often used to analyse the probability distribution of the objective value.

We assign to the expectation of the objective values of all the solved Wait and See

models the notation .

 ∑

Stochastic Measures

It can be shown that the three objective function values are con-

nected by the following ordered relationship:

`

21 | P a g e

The inequality:

can be argued in the following way: any feasible solution of the average value ap-

proximation is already considered in the Here and Now model, therefore the opti-

mal Here and Now objective must be better.

The value of the stochastic solution (VSS)

The difference between these two solutions defines the Value of the Stochastic So-

lution (VSS) for a minimisation problem:

This is a measure of how much can be saved by implementing the (computationally

expensive) Here and Now solution as opposed to the deterministic expected value

solution. The practical computation of VSS is strictly related to the approach used in

the computation of ZEEV .

The expected value of perfect information (EVPI)

Another important index is represented by the Expected Value of Perfect Infor-

mation (EVPI):

EVPI

This measure of a stochastic optimisation problem is interpreted as the expected

value of the amount the decision maker is willing to pay to have perfect infor-

mation (i.e. knowledge) about the future scenarios. A relatively small EVPI indicates

that better forecasts will not lead to much improvement; a relatively large EVPI

means that incomplete information about the future may prove costly.

Bounds on EVPI and VSS

Some useful bounds on the EVPI and VSS are presented below:

`

22 | P a g e

These can help in estimating the relative benefit of implementing the computation-

ally costly Stochastic Programming solution, as opposed to approximate solutions

obtained by processing the Expected Value LP problem.

Robust Optimization

Modelling a problem following the Stochastic Programming approach requires the

analyst to make strong assumptions on the nature of the uncertainty, that is, to

supply or postulate probability distributions of the random parameters. There are

cases in which it is impossible, or not practical, to give reasonable estimates of the-

se probability distributions but in which the robustness of the solution obtained is

vital anyway. The first set of studies which addressed these questions was due to

Soyster (Soyster, 1973) and led to a framework which is now established as Robust

Optimization (RO).

There are now three well known formulations of RO problems; these are given by

the above mentioned Soyster, Ben-Tal and Nemirovski (see (Ben-Tal & Nemirovski,

1998), (Ben-Tal & Nemirovski, 1999), (Ben-Tal & Nemirovski, 2000)) and Bertsimas

and Sim (Bertsimas & Sim, 2004). They all share the advantage that minimal as-

sumptions about the nature of the uncertainties have to be made and they differ in

respect of the ways in with which they represent the uncertainty sets. More specifi-

cally, the formulations by Soyster and by Bertsimas and Sim use polyhedral uncer-

tainty sets, while the formulation by Ben-Tal and Nemirovski considers an ellipsoi-

dal uncertainty set, transforming the original LP problem into a Second Order Cone

Programming (SOCP) problem. The solution of these RO problems addresses an im-

portant question as to how much optimality for the nominal problem is given up in

order to ensure robustness and changes the class of the resulting problem.

`

23 | P a g e

Consider the following nominal linear optimisation problem:

 ∑

where

1.28

and assume that data uncertainty only affects elements in matrix A.

The uncertainty model U we consider is the following:

For a particular row i of the matrix A let represent the set of coefficients in row i

that are subject to uncertainty. Each entry is modelled as a symmetric and

bounded random variable ̃ that takes values in [̌ ̌],

where ̌ is the deviation of variable ̃ around its mean value . Associated

with the uncertain data ̃ , we define the random variable ̃ ̌ ,

which obeys an unknown but symmetric distribution, and takes values in [-1,1].

Example Consider two parameters

a. Soyster’s Formulation

In general, Soyster’s formulation considers the linear optimization problem:

 ∑

 {

[̌ ̌]

[̌ ̌]
}

1.29

This is an adaption from the formulation given in (Bertsimas & Sim, 2004), which

was syntactically incorrect.

Soyster shows that the problem in 1.29 is equivalent to

`

24 | P a g e

 ∑

where ̅ ̌

1.30

If the uncertainty sets follow the model U, the robust formulation of 1.28 following

1.30 is as follows:

 ∑

 ∑ ̌

-

1.31

It can be shown (Bertsimas & Sim, 2004) that the solution to the problem above

remains feasible for all realizations ̃ , although concerns have been raised

regarding the fact that it trades too much of the optimality of the nominal problem

to gain this robustness.

b. Ben-Tal and Nemirovski

Considering the problem set out in 1.28, the following robust problem is construct-

ed (Ben-Tal & Nemirovski, 2000):

 ∑

 ∑ ̌

 √∑ ̌

-

1.32

If the uncertainty is represented by the model U, the probability that the i con-

straint is violated is at most
 ; furthermore the model is proven to be less

conservative than 1.31 as every solution of the latter problem is feasible to the

former problem.

`

25 | P a g e

c. Bertsimas and Sim

In this approach, a parameter is introduced, that intuitively controls the trade-off

between robustness and optimality of the solution. The problem, in its equivalent

linear formulation, is set out below (Bertsimas & Sim, 2004):

 ∑

 ∑

 ̌

-

 ,

1.33

Parameter takes values in the interval [] and it has the effect of protecting

the feasibility of the solution against all cases in which up to ⌊ ⌋ coefficients

 will change, and one coefficient changes by ⌊ ⌋ ̌ . More for-

mally, the solution will remain feasible deterministically if the realisations behave as

specified above, and moreover, even if more than ⌊ ⌋ parameters change, then the

robust solution will be feasible with very high probability.

Example (Soyster formulation)

Going back to the personal planning example, the planner might not be able to

know anything about his future productivity rates but the fact that they will range

between around their mean value (which is given by Table 2). We denote the ampli-

tudes of the ranges ̌, which for simplicity is supposed constant in time. This

means that for each t and d, all the productivities are considered as uniformly dis-

tributed in [̌ ̌].

A Soyster’s formulation of this problem would guarantee that, even in the worst

case, all the jobs would be finished on time. That is obtained adding some new vari-

ables , one for each uncertain parameter. The project completion constraints,

one for each task, will then be reformulated as follows:

`

26 | P a g e

 ∑

 ∑ ̌

1.34

A solution to the problem obtained combining 1.9 with the reformulation above will

be feasible for each possible future productivities, if they lie in the defined inter-

vals. The logic behind this constraint is simple enough: the amount of work to the

aim of satisfying the constraint is calculated with the mean value as ∑

This is then diminished by an amount which correspond to the worse case produc-

tivity, calculated using the range ̌ and an additional variable . To ensure that

the whole constraint represents the worst case productivity, this additional variable

is defined to be greater or equal than

1.3 Deterministic Equivalents for SP, CC, ICC, Robust

Optimization models

Stochastic programming problems are in general harder to model and solve than

their deterministic counterparts. In many cases, however, SP models can be trans-

formed into deterministic models, which are investigated using the existing tools

for LP, MIP or SOCP, depending on the kind of model. Although this approach suf-

fers a number of drawbacks (see section 2.3), it is worth discussing it here, because

it can still be considered the "standard" approach to modelling SP recourse prob-

lems, given the current capabilities of the algebraic modelling systems and solution

tools. Chance Constrained and Integrated Change Constrained problems do have

their deterministic equivalent formulations too, and so do Robust Optimization

problems; these models fall outside the classical SP framework, but they support

decision making under uncertainty and are therefore considered.

1) Stochastic Programming Problems with Recourse

The deterministic equivalent formulation of a stochastic linear program with re-

course can be constructed when the distributions of the random parameters are

discrete and are provided either explicitly or in form of scenario data paths, which

define a scenario tree. It can be shown that a scenario tree can always be derived

`

27 | P a g e

from the distributions of individual random parameters, by computing the joint dis-

tribution of all random parameters for each stage. Similarly, the distributions of

random parameters can be determined given a scenario tree. Thus, a distribution-

based recourse problem with discrete and finite probability distributions is trans-

formed into an equivalent scenario-based recourse problem and vice versa.

There are two representations of a stochastic programming problem in determinis-

tic equivalent form, namely the explicit (or split-variable) and implicit (or compact)

representations. The general programming problem with recourse set out in Equa-

tion 1.17 is reported below for ease of reading:

 [
 [

]]

 subject to

 . .

 . . .

 with , t = 1,...,T

and []

1.35

The uncertainty associated with the random vector is represented by a multilevel

event tree, where each level is associated with a stage. Figure 6 shows an example

of event tree. A scenario s is a path from the root of the event tree to any of the

leaves (see scenario 5, highlighted in red in the figure).

`

28 | P a g e

Let denote the number of nodes in stage t, and let []

[] denote the k-th node of the t-th stage of the even tree. A probability

can be associated with each node such that { }. Hence,

arcs in the tree represent the probability distribution of . The set of scenarios

passing through node are identified by . In the example shown in Fig-

ure 6, the number of nodes at each stage is:

 .

The composition of the bundles for each stage is given in Table 6 below:

Stage Bundles

1 { }

2 { } { } { }

3 { } { } { }

4 { } { } { }

Table 6 Bundles for example event tree

Given the regular structure of the tree, the bundles of this example are defined in a

compact form as:

 {

 } 1.36

Figure 6 Event tree

`

29 | P a g e

where is the total number of scenarios. Relation 1.36 is valid for any scenario

tree with a constant number of branches at each node of a given stage. In order to

build the deterministic equivalent formulation, one needs to consider that the deci-

sions at each stage have to be the same for all scenarios which are indistinguishable

up to that stage (that is, the decision are based on the same information, due to the

non-anticipativity, see Section 1.2). The decision variables of the deterministic

equivalent model need to be replicated to reflect the dependency of recourse ac-

tions on the event tree, that is, the structure of the problem should allow multiple

decisions to be taken when they are based on different information, and vice versa.

The choice of the variables replication scheme determines the type of deterministic

equivalent model, and determines how the non-anticipativity is enforced in the

model.

a) Explicit non-anticipativity (split-variable representation)

In the split variable representation, decisions are replicated for each scenario in

each time period. Denoting with the decision at stage t under scenario s, the

deterministic equivalent problem of equation 1.35 is formulated as follows:

 ∑

∑

 subject to

 with , t = 1,...,T

1.37

It is easily seen that the problem defined in 1.37 does not fully capture the struc-

ture of an event tree, as all variables are replicated for all scenarios independently

by the dependencies between them. Due to the concept of non-anticipativity, some

restrictions needs therefore to be added to ensure that if two scenarios and

 , are indistinguishable up to a given time period t, that is, and follow

the same path up to stage t, then the related decisions (solutions), up to that stage,

must also be the same. These restrictions, known as the non-anticipativity con-

`

30 | P a g e

straints, are explicitly added to the model, hence the nomenclature explicit non-

anticipativity. Formally:

 1.38

The non anticipativity constraints for the event tree specified in Figure 6 and Table

6 are therefore:

and similarly for stage 3.

b) Implicit non-anticipativity (compact representation)

The structure given by the scenario tree can be enforced in a different way, defining

a reduced set of decision variables for which the non-anticipativity constraints are

implicitly satisfied. The compact mathematical formulation of the deterministic

equivalent of problem 1.37 is obtained refining the definition of the decision varia-

bles, that is, defining { } , as the decision to be taken at time t un-

der all scenarios . It becomes handy to define the concept of de-

scendants as nodes in the scenario tree which descend from each node We will

refer to these sets as

The mathematical formulation is the following:

 ∑

(∑

)

 subject to

,

, … ,

1.39

`

31 | P a g e

 with [] []

Although formulation 1.39 has a structure which is more compact than formulation

1.37, the explicit definition of non-anticipativity conditions can be exploited for de-

signing specialised algorithms for the efficient solution of the SP problem.

Independently from the chosen formulation, the structure of the event tree must

be captured by the model; this fact adds a class of information that is qualitatively

different from the usual entities defined in Figure 9 (namely sets, parameters, vari-

ables, constraints and objectives) which are used to define a deterministic problem;

even though the event tree structure can be expressed in terms of these entities

through deterministic equivalent formulations, as we have just explored, it makes

sense to preserve the different quality of this information, which gives a strong in-

tellectual rationale for the extension of AMLs to stochastic programming. For fur-

ther reading to the formulation of deterministic equivalent problems, see (Wets,

1974), (Dempster, 1988), (Messina & Mitra, 1997).

2) CC problems deterministic equivalent representation

Considering the two-stage SP problem expressed in equations 1.13 and 1.14, its de-

terministic equivalent formulation can be expressed as:

 ∑

 []

 []

1.40

where is the probability of scenario s and where the random parameters are

supposed to have finite and discrete distributions.

Under these assumptions, an individual chance constraint expressed by equation

1.20 and reported in equation 1.41 below for ease of reading:

 1.41

`

32 | P a g e

can be formulated, assuming the constraint corresponds to the i-th row of matrix

 , as:

 {

 } 1.42

where 0 < is a reliability level,
 and

 denote the i-th elements of vectors

 and ;
 and

 denote i-th rows of matrices and . It can be shown

that the following system of equations is equivalent to 1.42:

 []

 []

 []

 []

 ∑

 { } []

1.43

where M is a suitably chosen large constant, and are additional binary varia-

bles. An individual chance constraint with lower and upper limits can therefore be

represented at the cost of 2|S|+1 additional constraints and 3|S| additional binary

variables (Haneveld & van der Vlerk, 2006).

The deterministic equivalent formulation of chance constraint suffers therefore of

the same drawbacks seen in the DEQ formulations of MSSP, namely unnecessary

replication of entities and an added complexity in the logic of the model, with the

additional penalty of having to deal with binary variables, which can lead to in-

stances that are numerically very difficult to solve.

3) ICC problems deterministic equivalent representation

Considering the deterministic equivalent of a two-stage problem as expressed in

equation 1.40, and the individual ICC expressed in 1.24 and reported in Equation

1.44 below:

 [] 1.44

it can be formulated, considering
 for all the realizations of the random pa-

rameters, as:

`

33 | P a g e

 [(

)

] 1.45

where and { } is the negative part of and represents

the negative violation of the i-th constraint.

The ICC expressed in 1.45 has the following DEQ form:

 []

 ∑

1.46

where are additional continuous variables, see (Haneveld & van der Vlerk, 2006)

and (Ellison et al., 2009) for additional details.

4) Robust deterministic equivalent representation

The Robust Optimization problems, in the formulations of Soyster (1.31), Ben-Tal

and Nemirovski (Ben-Tal & Nemirovski, 2000) and Bertsimas and Sim (Bertsimas &

Sim, 2004) , are already in a format which can be represented respectively by LP,

SOCP and LP models. The robust optimization model includes some additional in-

formation in respect to the deterministic counterpart. This information, which de-

pends on the specific robust formulation of choice, is listed in Table 7 below:

Formulation Added Parameters Meaning

Soyster

 ̌

Uncertainty model U (scope)

Uncertainty model U (intervals)

Ben-Tal and

Nemirovski

 ̌

Uncertainty model U (scope)

Uncertainty model U (intervals)

Robustness: the probability that the i

constraint is violated is at most
 ;

Bertsimas and

Sim

 ̌

Uncertainty model U (scope)

Uncertainty model U (intervals)

Robustness: the solution remains fea-

sible if up to ⌊ ⌋ coefficients

will change, and one coefficient

changes by ⌊ ⌋ ̌ .

Table 7 Added information for robust optimization problems

A modeller that would implement a robust formulation without using a specifically

designed tool would have to manually implement the somewhat complicated struc-

`

34 | P a g e

ture of the robust framework of his choice (that is, the added constraints and varia-

bles expressed by the systems 1.31, 1.32 or 1.33), on the top of the already hard

work which is the construction of the model itself. As the structure of these systems

of equations does not change once a formulation is chosen, it makes little or no

sense - besides eventually for learning purposes - that the problem owner should

personally and manually execute a process that can be fully automated. Hence the

language extensions to AMPL we are proposing to express robust optimisation

problems (see Section 2.4).

1.4 Applications of Stochastic Programming

The adoption of Stochastic Programming as a viable computational modelling para-

digm to obtain hedged decisions when the problem is subject to uncertainty has

faced many barriers to its adaption. These barriers may be listed as (i) computa-

tional complexity and (ii) lack of proper modelling tools to support it. Thirdly (iii) the

scepticism of the decision makers in front of the increased complexity of the model-

ling effort compared to deterministic models combined with estimates of parame-

ters which are uncertain. This is slowly changing and, as the available computation-

al resources increase by the Moore’s law, and as algorithms and software to effi-

ciently solve SP problems are made available, practitioners are making use of grow-

ing amount of data and information, made available by the evolving IT infrastruc-

ture (consider for example the adoption of OLAP cubes instead of relational data-

bases and the ubiquity of data mining techniques). This growing availability of in-

formation calls for efficient computational tools despite the increase in available

computing power.

Areas in which the application of SP is already common are:

Finance: Pioneering works in Asset and Liability Management (ALM) models under

uncertainty were undertaken by (Kallberg et al., 1982) and (Kusy & Ziemba, 1986).

Subsequently a number of substantial applications were developed, for banks,

hedge and mutual funds, insurance companies and wealthy individuals. Quoting a

few applications, it is worth considering the Computer-aided asset/liability man-

agement (CALM) model (Consigli & Dempster, 1998), a multistage stochastic pro-

`

35 | P a g e

gramming model which has been applied with good results to various environ-

ments. An overview of models applied to individual asset and liability management,

as well as hedge funds is given in (Ziemba, 2003). Various paradigms applied to ALM

are compared in (Schwaiger, 2009), which evaluates deterministic, SP, Chance Con-

strained, Integrated Chance Constrained models applied to a pension fund. In port-

folio selection problems, risk measures, and in particular coherent risk measures

(Artzner et al., 1999) have become increasingly widespread, and applications of sto-

chastic dominance (SSD) to portfolio selection is lately being explored (Dentcheva &

Ruszczynski, 2006), (Roman et al., 2006), (Fábián et al., 2009).

Supply chain: Supply chain has been historically a fertile field of application for sto-

chastic programming, as the uncertainty in the products demand, costs and supply

can hinder the quality of solutions obtained through deterministic modelling. Large

scale applications are found in (Escudero et al., 1999), (Koutsoukis et al., 2000),

(Alonso-Ayuso et al., 2003), (MirHassani et al., 2000). A comprehensive literature

review is given in (Stadtler, 2005)

Transportation: Transportation and logistics were some of the earliest applications

of stochastic programming. Fleet management in airline operations was used in

(Dantzig, 1955) to motivate the need of stochastic programming. A stochastic for-

mulation of the empty car distribution problem in the railroad industry is given in

(Jordan & Törnquist, 1983). A review of such models and algorithms is given in

(Törnquist, 2005). Aircraft scheduling is another area of growing application, alt-

hough alternative modelling approaches have been successfully applied (Yu & Li,

2000), (Beasley et al., 2001), stochastic programming has been used too; see (Yen &

Birge, 2006) for a model and a solution algorithm.

Telecommunication: Telecommunications has a long tradition of application of ad-

vanced mathematical modelling methods. While the traditional design approach is

centred on minimization of the network costs under technological and quality of

service constraints, systematic application of stochastic programming techniques

includes incorporation of modern tools like evaluation of real options. Comprehen-

sive models, which include pricing and strategic decisions, provide a motivation for

`

36 | P a g e

further development of this methodology. For examples of use of different kind of

SP models (SLP, SMIP, SSOCP) in network design see (Gaivoronski, 2006), (Ntaimo &

Sen, 2005) and (Maggioni et al., 2009).

Energy: Since most energy investments or operations are faced with uncertainty, a

stochastic programming approach is normally meaningful. Many of the SP models

deal with power generation investments, but also oil and gas applications have a

relevant role in energy optimisation problems; see among others (Maggioni et al.,

2007). (Escudero et al., 1998) propose several models about long-term planning of

electricity and energy generation. Hydro Thermal optimization problems examples

are (Sen & Kothari, 1998), (Nowak et al., 2000), (Escudero & Monge, 2008). With

the liberalization of the energy markets, considering alternative investments and

energy spot prices has become common in scheduling energy production, see

(Fleten et al., 2009), (Konig et al., 2007).

1.5 Scenario Generation

Scenario Generation is the term normally used to describe the process of creating a

tree structure and associated discrete scenarios which are used to describe the un-

certain parameters in SP models. The uncertainty representation by scenarios can

be summarized as a four steps process, of which the first two are required at mod-

elling time, the latter two at run-time:

1. Model the uncertainties with (discrete) random processes (or distributions for

single stage SP)

The modeller is here required to write his assumptions about the uncertainty in

mathematical form; the outcome of this step is a random process or a probabil-

ity distribution. As discussed in section 1.2 and in (Birge & Louveaux, 1997),

these analytic models are not suitable for direct use in SP problems.

2. Approximate (discretize in case of continuous random processes or aggregate

in case of discrete ones) the chosen random processes with a tree of discrete

scenarios

A range of techniques can be used in this step, which approximates the output

of the model defined in step 1 with a scenario tree. There is “both a science and

`

37 | P a g e

an art” (Casey & Sen, 2005) to this process, and a balance between fine dis-

cretization (that lead to numerically unsolvable problems) and coarse discreti-

zation (that could overlook important realizations) has to be obtained. Two re-

lated approaches can be identified, one is based on statistical approximations

(as in (Høyland & Wallace, 2001)) and the other on approximation theory (as in

(Hochreiter & Pflug, 2007), (Pflug, 2001), (Dupačová et al., 2000)).

3. Estimate the parameters for the model of randomness

Given some data about the reality (usually, this data set comprises historical

observations) the modeller then is required to estimate the uncertain parame-

ters for a model of randomness (i.e. for a normal distribution, mean and vari-

ance).

4. Generate the scenario tree

A scenario tree is then generated by applying the model/algorithm crafted in

steps 1 and 2, and the data provided by step 3. This scenario tree is then intro-

duced in the description of the SP programming model which in turn is pro-

cessed by an SP solver.

The role of a scenario generator is very important in describing an SP problem. This

thesis is mainly concerned with modelling aspects of SP and within the scope of this

thesis, the concept of Scenario Generators library is introduced, which is a collec-

tion of models of randomness which have been produced by steps 1 and 2 of the

modus operandi above. In the context of decision making, a scenario generator

captures in a procedural form a domain-specific model of randomness. Operatively,

the problem owner may choose between various methods which are part of the SG

library to model the uncertainty at hand, evaluate its performance with the current

decision model (i.e. stability tests, see paragraph 2.3) and use it to obtain the ex-

ante decision (see (Di Domenica et al., 2009)). The problem owner can then evalu-

ate the decision obtained against real data (back testing, or stress testing) or

against realizations obtained using a different scenario generator (see 0). A short

and not comprehensive list of scenario generators, their applications fields and

some references is summarized in Table 8 below .

`

38 | P a g e

Modelling
Paradigm

SG Method Origin Application Field Reference

Econometric
Models

and
Time Series

AR (p) Autoregressive
Models and Genera-
tion of Data Trajec-

tories.

Finance, Supply
chains, Environ-

ment models

(Box et al., 1976)

MA (q) Moving Average
Models and Genera-
tion of Data Trajec-

tories

Finance, Supply
chains, Environ-

ment models

(Box et al., 1976)

ARMA (p,q) Autoregressive Mov-
ing Average Models
and Generation of
Data Trajectories.

Finance, Supply
chains, Environ-

ment models

(Box et al., 1976)

GARCH Generalised Auto-
regressive Condi-

tional Heteroscedas-
ticity and Generation
of Data Trajectories.

Finance, Supply
chains, Environ-

ment models

(Bollerslev,
1986),

(Engle, 1982)

VAR Vector Auto Regres-
sive Models and

Generation of Data
Trajectories

Finance, Supply
chains, Environ-

ment models

(Fair & Shiller,
1990)

BVAR

Bayesian Vector Au-
to Regressive Mod-
els and Generation

of Data Trajectories.

Finance, Supply
chains, Environ-

ment models

(Ansley & Kohn,
1986)

Reduced Rank
Regression

Generation of Data
Trajectories

Finance, Supply
chains, Environ-

ment models

(Engle &
Granger, 1987)

Modelling
Paradigm

SG Method Origin Application Field Reference

Geometric
Brownian
Motion

Wiener Pro-
cesses

Brownian Motion
and Diffusion Pro-

cesses

Finance and Envi-
ronment models

(Freedman,
1972)

Generalised
Wiener Pro-

cesses

Brownian Motion
with drift and Diffu-

sion Processes

Finance and Envi-
ronment models

(Bollerslev,
1986)

Artificial
Intelligence

Neural Gas

Neural Networks. Supply Chains,
Energy, Environ-

ment models

(Martinetz &
Schulten, 1991)
(Fritzke, 1995)

Statistical
Approaches

Property
Matching

Statistical Approxi-
mation

Supply Chains,
Energy models

(Høyland &
Wallace, 2001)

Moment
Matching

Moment Fitting Supply Chains,
Energy, Environ-

ment models

(Høyland et al.,
2003)

Non Paramet-
ric Methods

Discretisation Finance and Envi-
ronment models

(Høyland &
Wallace, 2001)

`

39 | P a g e

SG Forecast-
ing Methods

Quantile Regression
and Forecasting

Methods

Finance, Supply
chains, Environ-

ment models

(Tomasgard et
al., 1998)

Sampling

Random Sam-
pling

Discrete Sampling Finance and Envi-
ronment models

(Jobst & Zenios,
2003)

(Jobst et al.,
2006)

Stratified
Sampling

Interval Sampling Finance and Envi-
ronment models

(Jobst & Zenios,
2003)

(Jobst et al.,
2006)

Bootstrap

Discrete Sampling Finance models (Efron, 1979)
(Efron &

Tibshirani, 1997)

Monte Carlo

Sampling

Finance models (Jerrum &
Sinclair, 1997)

Markov
Chains

Probability Interval
Sampling

Finance, Energy,
Supply Chains,
Environment

(Jerrum &
Sinclair, 1997)

VECM

Random path and
Vector Error correc-

tion

Finance (Volosov et al.,
2005)

Table 8 List of SG methods and applications

1.6 An architecture for an SP modelling system

The acceptance of a modelling paradigm depends heavily on the availability of ap-

propriate research results and tools that are based on such research and support

modelling functionalities. The field of Stochastic Programming has a very active re-

search activity that comprises various fields (from stochastic processes and models

of randomness to solution algorithms) but the lack of tools that are designed specif-

ically to support it has somewhat slowed down its adoption by analysts and OR

practitioners. There have been efforts in this direction, among which one of the

earliest is the precursor to this work (see (Valente, 2002)), and in recent years there

has been considerable progress.

What is still lacking is a tool that can exploit, through careful categorisation and de-

sign of data structures and classes, concepts that come from the research in the

field like compact instance representation and decomposition methods and that

allows an easy implementation of SP models.

`

40 | P a g e

In this thesis I report on the design of software tools for Stochastic Programming,

and I present and formalize the knowledge that I have acquired in recent years dur-

ing which period the SP software system SPInE (Valente et al., 2001), (Valente et al.,

2002-2011) was completely redesigned and implemented.

`

41 | P a g e

A high level conceptual outline of a SP modelling system from a computer science

perspective is given in Figure 7 below:

In Figure 7 the three main modules of an SP modelling system (in black) are set out

in the middle; these modules highlight three different aspects of the process of

solving an SP problem. The other modules in this figure, displayed in different col-

ours, correspond to different operative phases of the modelling process; these

phases are described below:

 Modelling Phase (in red): the “strategic” steps the modeller has to follow to

successfully set up the system to solve the problem, namely: formulate the

decision problem, determine and model the randomness (decide what SG to

use) and decide what solution algorithm to invoke

 Runtime Phase (in blue): to ultimately obtain results from all the knowledge

formulated and formalized in the previous step, the consumer of the model

needs then to: fit the models of randomness chosen at the modelling phase

to the problem instance under examination, formulate the decision model in

Scenario

Generator

Modelling

System
Solver

Modelling phase

Which scenario generators? Which decision model? Which solution method?

Model(s) of
randomness

Decision Mod-
el

Solution
algorithm

Data structures

Runtime phase

SG Parameters Algebraic
model

Solver
Controls

Scenario Tree Model
Instance

Figure 7 High level overview of a SP modelling system

`

42 | P a g e

a format which the software can interpret and eventually tune the solver or

solution method for use

1. Data Structures (In green): describes how data instances are captured and

gives an insight into the information that is passed between the modules.

We refer the reader to section 3.1 for a more detailed discussion about the

model instance format, and to 1.2 for an analysis of the scenario tree struc-

ture.

The high level schema reported in Figure 7 is expanded in the following chapters of

this thesis. An important aspect is the control structure that is needed for setting up

a simulation and investigation framework; this aspect is considered in detail in 0.

1.7 Outline of the thesis

In this thesis we provide a general review of the state-of-the-art of software tools

which support stochastic programming modelling. In this introduction, we have giv-

en an overview of the various software components that constitute an integrated

software tool for SP. In following chapters of this thesis we focus on three different

stages of the modelling and solution process. The thesis is structured as follows:

Chapter two provides an overview of the software tools available for SP, examining

in particular the existing modelling languages. A model is then explicitly imple-

mented using the modelling languages AMPL, using the deterministic equivalent

formulations, and SAMPL, exploiting the advanced features of the language. In

Chapter three we focus on the solution stage, illustrating requirements and charac-

teristics for an SP solver. Instance level formats are described, which allow the

communication between the modelling systems and the solvers; sections 3.2 and

3.3 give an overview of the deterministic equivalent and decomposition techniques

used to solve various classes of SP problems, and some benchmarks and considera-

tions on their relative performances are made in section 3.4. Finally, in section 3.5,

the architecture of such solver is introduced, with the novel concept of automated

mapping between model classes and solution techniques that the author believes is

central to the development of a usable and performing SP integrated modelling sys-

tem. Scenario Generation is introduced in Chapter 4. A brief overview of the scenar-

`

43 | P a g e

io generation process and its place in the modelling process is given in section 4.1.

Some common methods and their application areas are given in section 4.2. Some

desirable properties of scenario generators are introduced in section 4.3. The nec-

essary step of abstraction is then described in section 4.4, abstraction that then

leads to the concept of a scenario generation library, which is then described in

both from the programmer’s (0) and the modeller’s (4.6) point of view. Chapter five

introduces the concept of workflows, and a rationale on their use to create an ex-

tensible investigation framework. The activities (or atomic operations) composing

such a workflow are presented in section 5.3 and some sample cases are given in

section 5.4. Finally, summary, conclusions and future works are presented in Chap-

ter six.

`

44 | P a g e

Chapter 2 Software tools for Stochastic

Programming

This chapter introduces the conceptual components of an integrated tool for sto-

chastic programming, and provides a broad overview of the state-of-the-art tech-

nologies and software available nowadays. Section 2.1 decomposes the process of

using Stochastic Programming for Decision Making into various research problems

and links each area to the software tools and components that help in the stages of

the process. Moreover, it sheds some light on the logical entities (interfaces and

data structures) that are used along the process, and links these entities to the ap-

propriate section of this thesis.

Sections 2.2 to 2.4 can be considered literature review: one of the first topics to

face when getting acquainted to software tools for SP is algebraic modelling lan-

guages (AMLs), which are presented in Section 2.2 in general, while section 2.3 fo-

cuses on the current development of SP-focused languages. In section 2.4 we make

the case for alternative ways of representing the problems in a modeller’s perspec-

tive.

In Section 2.5 we present a brief overview and introduction to a modelling language

(AMPL) and its extended version (which we call SAMPL), implementing in both lan-

guages the example given in section 1.2 and showing the benefits of the formula-

tion using SAMPL.

The author contribution lies in the extensive design studies to identify the require-

ments of a stochastic modelling system, and in its implementation. What has been

inherited from his predecessors and collaborators has been almost completely re-

written and is now a working application used by many researchers. In addition, the

language extensions for CCP, ICCP and Robust Optimization have been completely

designed by the author.

`

45 | P a g e

2.1 An Information Technology framework for SP

Progresses in Stochastic Programming involve and require research in various fields,

among which we identify (see Figure 8 below):

 Modelling (applications) which can be further divided in:

o (a) Decision models – the mathematical description of the decision

processes using modelling paradigms as SP, MSP, CCP, ICCP, RO (see

sections 1.2 and 2.2)

o (b) Model of randomness – the mathematical representation of the

uncertainty involved, or Scenario Generation (see section 4.1)

 Model representation formats

o (c) Structural level – how to communicate the decision model struc-

ture to a computer, independently from the particular data on which

the model is instantiated (see sections 2.2 and 2.3)

o (d) Instance level – how to represent the model generated from the

combination of the structure and the data (see sections Determinis-

tic Equivalents for SP, CC, ICC, Robust Optimization models1.3 and

2.4)

 Solution methods

o (e) Deterministic equivalents – traditional LP/QP/QMIP solution

techniques (Simplex, Interior point method, branch and bound) can

be applied to the deterministic equivalent formulation (see sections

1.3 and 3.2)

o (f) Decomposition methods – specialized algorithms can be applied if

the problem structure is maintained and communicated to the solver

(see sections 2.4 and 3.3)

 (g) Results evaluation and interpretation – the results of the optimisation

should be evaluated and tested, to check if the assumptions about uncer-

tainty and decision process were adequate (see 0)

All these fields are intertwined and the outcome of these researches should be tak-

en into consideration when designing an application to support Stochastic Pro-

`

46 | P a g e

gramming. The importance of standardized software tools is obvious from the cur-

rent market, in which the emergence of a standard usually makes the difference

between a successful paradigm and an ignored one.

Another view of Figure 7 is the following, this time highlighting the research areas

involved in the various components of the software system:

Figure 8 Research areas vs software components

The combination of Figure 8 and this section gives an ordered overview of the con-

tents of this thesis in respect to SP modelling paradigm. Exploded versions of some

of the blocks are presented in the corresponding sections, along with a more thor-

ough description of each one of them.

2.2 Algebraic Modelling Languages

When mathematical programming was first introduced, models were generated by

ad-hoc computer code written using procedural languages such as FORTRAN. These

programs were used to generate the matrix related to a given LP/IP model; an ap-

propriate solution algorithm was used to process the matrix and to find and report

the optimal solutions. This approach was neither scalable nor elastic: even minor

changes in the model’s data or structure require major adjustments of the genera-

Scenario

Generator

Modelling

System
Solver

Algebraic
model

Model(s) of
randomness

Decision
Model

Solution
algorithm

SG Parame-
ters

Solver
Parameters

Scenario Tree

Model
Instance

b

b

a

c

d a,b,d

e, f

e, f

g

`

47 | P a g e

tion code. To aid practitioners in the creation of mathematical programming mod-

els, new type of languages appeared during the 1970’s, called matrix generators.

These languages enabled the generation of an LP/IP model’s matrix in a specific

format, which became a standard interface between modelling and solving sys-

tems. The format, namely Mathematical Programming System (MPS), was intro-

duced by IBM (IBM World Trade Corporation, 1976) and, with some minor modifi-

cations, is still used today. Amongst the main matrix generators were OMNI

(Hareveley Systems, 1976), DATAFORM (Ketron, 1975), MRGW (IBM World Trade

Corporation, 1977), GAMMA (Sperry Univac Computer Systems, 1977) and

MGG/RWG (Scicon Computer Services, 1975) . These languages, however, were af-

fected by a number of limitations; in particular, the formulation was data depend-

ent, thus the model could not be easily re-instantiated using different data sets.

Modern modelling systems for mathematical programming are based on algebraic

modelling languages (AMLs), which enable the definition of models via symbolic

algebraic expressions. Algebraic modelling systems (that is, software systems which

support algebraic modelling languages), interpret the algebraic model and use a

given set of data to create model instances in a MPS format or equivalent. The

availability of algebraic modelling languages has contributed to the acceptance of

mathematical techniques in the following ways:

1. Model development and prototyping has become a high productivity pro-

cess. This has led to widespread acceptance of optimisation by the end user

community based on the proof of concept application rapidly developed by

OR/MS analysts

2. Many examples of integration of optimisation techniques into Decision Sup-

port Systems (DSS) can be found used in real world applications

Algebraic modelling languages are traditionally declarative languages; using this

class of languages, the modeller describes what a problem is, without specifying

how the problem is to be solved. The algebraic notation used in the formulation of

MP models and supported by the AMLs plays an important role in the comprehen-

sion and maintenance of the models (Kuip, 1993). One of the most important ad-

`

48 | P a g e

vantages is that the algebraic formulation implies the abstraction of the model from

the specific instance of the problem, thus enabling the separation between data

modelling and modelling of the problem’s structure. See (Fourer, 1997) for a more

thorough discussion of the issues of modelling data in relation to MP models. MPL

(Maxmimal software, 2002), LINGO (Lindo Systems Inc, 2008), CAMS (Lucas &

Mitra, 1988) are some representative algebraic modelling languages which are

purely declarative.

In more recent times, some AMLs have introduced procedural features, such as IF-

THEN-ELSE statements and looping constructs: UIMP (Ellison & Mitra, 1982), LPL

(Hürlimann, 1993), AMPL (Fourer et al., 2002), GAMS (Brooke et al., 2008), OPL

(Van Hentenryck et al., 1999) and AIMMS (Bisschop & Entriken, 2009) belong to this

family of mixed declarative/procedural languages. Procedural constructs enable a

closer coupling of modelling systems and solvers, which can be exploited for tech-

niques such as column generation and the implementation of decomposition algo-

rithms (see section 3.3).

Algebraic modelling languages enable the formulation of mathematical program-

ming models in terms of entities such as sets and indices, parameters, decision vari-

ables, constraints and objective functions. The relationships between these entities

are described in (Dominguez-Ballesteros et al., 2002) and are shown in Figure 9,

adapted to the new developments in the field.

Sets

Parameters

Constraints

Objective function

Variables

 = used in

Figure 9 Components in an algebraic model

`

49 | P a g e

An important feature of algebraic modelling languages is the support of sets and

indexing techniques. Indexing is derived from ordinary algebra and enables mathe-

matical abstraction; indices and sets play an important role in the modelling of large

scale problems, as these facilitate the classification of entities of conceptually simi-

lar nature. Algebraic modelling languages support several types of sets, including

ordered sets, derived sets and hierarchical sets. Most of the ALMs also support fun-

damental sets operations such as union, difference, intersection, Cartesian product,

selection and join.

Some AMLs such as AIMMS and LPL are capable of performing unit consistency

checks. This is a valuable feature since one of the most frequent errors in the for-

mulation of MP models is caused by the use of inconsistent measurement units in

the algebraic expressions (Bisschop, 1986). The ability of expressing logical condi-

tions is another important feature of the AMLs. Williams shows in (Williams, 1987)

how logical conditions can be introduced into a mathematical programming model

by mean of binary variables. In (Mitra et al., 1994), the authors propose an exten-

sion of the MPL modelling language which enables the automatic translation of log-

ical relations such as and, or, and into MIP models. Fourer (Fourer, 1998) also

discusses this issue and suggest the use of logical operators, conditional operators

and variables in subscript in the AMPL language.

2.3 Extensions of Modelling Languages for SP

It is always possible to formulate a SP problem using algebraic modelling languages

which implement the constructs presented in the previous section, however, doing

so, leads the problem owner to difficulties of two kinds:

Modelling issues: the formulation of the SP problem becomes unnatural, as

nonanticipativity constraints as well as the deterministic equivalent formulations of

ICCs and CCs (see Section 1.3) must be explicitly implemented, thus distracting the

modeller from the decision problem at hand. Moreover, the three classes of prob-

lems (Wait and See, Expected Value and Here and Now, see Appendix A) along with

the related stochastic measures (Value of Stochastic Solution ad Expectation of the

`

50 | P a g e

Expected Value, see Appendix A), if of interest, must be separately formulated and

solved, even though they are conceptually part of the same family of models and

constitute the basis for computing stochastic measures.

Computational issues: when formulated as deterministic equivalents, the resulting

matrix dimension increases linearly with the number of scenarios and exponentially

with the number of stages (assuming a tree shape with a constant number of

branches at each stage) and the solution time grows steeply with it. Moreover, the

memory occupied by the matrix could become a problem for very large problems

when formulated as deterministic equivalent, but this could be overcome avoiding

the replication of deterministic data for all scenarios, which is possible if the system

keeps the information regarding which parameters are stochastic and which are

not. This kind of information allows the solution of the problem by means of de-

composition techniques, which are characterized by a much better scale-up proper-

ty in respect to the deterministic equivalent solved by conventional means (see Sec-

tion 3.3).

These modelling and solving issues can be to a large extent alleviated using a mod-

elling system (and therefore a modelling language) which is specialized for stochas-

tic programming problems. There have been a few attempts to do so, and they are

briefly listed in this section.

Gassmann and Ireland in (Gassmann & Ireland, 1995) address the problem of defin-

ing scenario-based recourse problems using existing AMPL constructs. Scenarios are

specified parametrically and the scenario data can either be imported or ideally

computed by the AMPL modelling system. The scenario tree structure is represent-

ed by first defining a base scenario, and additional scenarios sharing at least the

root node with the base scenario are characterised by a parent scenario and the

first stage in which the scenario differs from its parent.

Fourer in (Fourer, 1996) proposes extensions to the AMPL modelling language. The-

se permit the definition of a stochastic programming problem with recourse in

terms of a multistage (deterministic) model, a tree of data scenarios for the model,

and a stochastic framework to specify the stages and optionally the scenarios and

`

51 | P a g e

objective. New language constructs such as scenario and stochastic are intro-

duced to enable the definition of a scenario as a collection of data and to declare

the partition of an underlying time horizon into stages. Scenarios can be solved in-

dividually or as a recourse problem, provided that an appropriate expected value

objective is defined. The author also hints at the possibility of using a new keyword,

random, to assign probability distributions to selected parameters, thus enabling

the definition of distribution-based stochastic programming models.

In (Gassmann & Ireland, 1996) there is a proposal for other extension to the AMPL

modelling language, mainly for the definition of probability distributions of the ran-

dom parameters. Again, a language construct random is introduced in distribution-

based recourse problems to identify the random parameters and the variables that

depend on them.

Entriken, in (Entriken, 2001), presents two additional syntactical items for modelling

languages, a random construct for the definition of random parameters, and a rela-

tional operator that indicates precedence between random events. The main idea

behind this approach is that stochastic programming models may be seen as control

theory problems, where the random events are assumed to be input to the system

along with the control variables, so that at a given t, only the past outcomes are

known, together with the distribution of the future random parameters. The author

uses the syntax of the AMPL language to declare the underlying linear program, and

proposes some new constructs for the uncertainty.

The reference (Buchanan et al., 2001) presents an alternative and innovative ap-

proach to modelling stochastic linear programming problems. They define a lan-

guage called sMAGIC, which permits the recursive definition of models that contain

other (sub) models. Recursive definition is typical of Dynamic Programming and en-

ables the preservation of the underlying Markov structure, which also characterises

many multistage stochastic programming models. The event tree for models with a

Markov structure is compactly represented via a special directed acyclic graph,

which the authors call a Model Link Graph.

`

52 | P a g e

The authors of (Fourer & Lopes, 2009) propose an extension of the AMPL modelling

language whereby stochastic models are formulated using a representation based

on dynamic programming.

AIMMS provides functionalities to express SP programs with recourse, where the

user can define its own routines to generate the values of the random parameters.

The model can then be generated as deterministic equivalent or solved by a Bend-

er’s decomposition based algorithm embedded in the system (Bisschop & Entriken,

2009).

In (Colombo et al., 2009) the authors describe their SML (Structure-Conveying

Modelling Language), which is implemented as language extensions to AMPL. It ex-

tends AMPL with object-oriented features that allow the users to construct models

as a combination of sub-models while preserving the block structure, so that the

structure can be passed to a solver and exploited. It is not specifically designed for

SP, permitting the formulation of any model that exhibit a block structure.

Microsoft Solver Foundation (MSF) offers now the possibility to express stochastic

programming problems in their own modelling language called OML or in any .NET

language but the support for SP is still at an embryonic stage and not much docu-

mentation has been released at the moment of writing (Microsoft Corporation,

2010).

The software system called SPInE (Stochastic Programming Integrated Environ-

ment) has been implemented by the research team in CARISMA of which the au-

thor is a member, it supports and interprets the language SAMPL (Valente et al.,

2009). This is again an extension to the AMPL language specifically designed to sup-

port the formulation, generation and solution of various classes of SP problems. In

this thesis we highlight the author’s contribution to the design and implementation

of such system.

Analysis of modelling issues

The difficulties that arise when using non-specialized modelling languages to formu-

late SP problems are mainly due to the lack of constructs for the definition of the

`

53 | P a g e

randomness of the model coefficients and the scenario tree structure. A stochastic

programming model can be considered as a linear programming model extended

and refined by the introduction of random parameters (see Figure 10). More pre-

cisely, the underlying LP optimisation model is extended by taking into account the

probability distribution of the model’s random parameters. Such distributions are

provided by the models of randomness used in scenario generators (see 0), which

are specific to the particular optimisation problems under investigation.

Figure 10 Combined Paradigm

In general, different categories of stochastic programming problems require differ-

ent language features to express the random nature of the problem. We use the

term stochastic framework to denote the information represented by these con-

structs.

Modelling scenario-based recourse problems

The first requirement for the formulation of a stochastic programming problem us-

ing algebraic modelling languages is the declaration of the random parameters. In

scenario-based recourse problems, the realisations of such parameters are explicit-

ly given in the form of a scenario tree. Each scenario is also associated with a corre-

sponding weight (or probability). In turn, the scenario tree structure is declared in

terms of stages. The stages identify the sequence of decisions in the dynamics of

the underlying core model. If the temporal dimension is introduced into the model

using a specific time set, the stages can be declared as subsets of this set. To sum-

`

54 | P a g e

marise, a stochastic framework for scenario-based recourse problems requires con-

structs for the definition of stages, scenarios and random parameters (see Table 9).

Entities Language Requirements

Stage information assignment of variables and constraints to stages

Scenario information

scenario set

tree structure

scenario probabilities

Random parameters
declaration of the random parameters

in terms of the scenario set

Table 9 Language requirements for scenario based recourse problems

Modelling distribution-based recourse problems

A number of researchers have proposed extensions to algebraic languages for the

formulation of this class of problems (Fourer, 1996), (Gassmann & Ireland, 1996),

(Fourer, 2001), (Gay, 2001). In this work, we focus on the class of scenario-based

recourse problems and only outline the requirements for distribution-based mod-

els. Distribution-based recourse problems rely on the declaration of discrete or con-

tinuous probability distributions for the random parameters. If all random parame-

ters are characterised by discrete distributions, the scenario tree is implied by the

joint realisations of the random parameters. If one or more distributions are con-

tinuous, then there are infinitely many possible outcomes for the random parame-

ters and the tree structure must be sampled from the joint distributions. A stochas-

tic framework for distribution-based problems requires constructs shown in Table

10.

Entities Language Requirements

Stage information assignment of variables and constraints to stages

Random parameters declaration of the probability distributions

associated with the random parameters

Table 10 Language requirements for distribution based SP problem

`

55 | P a g e

Overview of our approach

We present methods of extending algebraic modelling languages based on the con-

cepts of underlying deterministic model and stochastic framework. The underlying

deterministic model is formulated using the standard constructs provided by an

AML. Using several new constructs, the modeller then declares the stochastic

framework, which links the underlying deterministic model to the model of ran-

domness. More specifically, the underlying deterministic model represents a family

of independent (wait-and-see) models, while the stochastic framework imposes the

nonanticipativity implied by the structure of the scenario tree. The resulting model

is the formulation of the stochastic programming recourse problem.

The underlying deterministic model

In the formulation and investigation of a stochastic programming problem, it be-

comes necessary to identify the underlying deterministic model (also called the core

model). This can be the expected value problem or a problem corresponding to any

sample path of the scenario tree. The underlying deterministic model captures the

logical structure of the problem as well as the dynamical relations among decision

variables, their bounds, and the objective function. The Stochastic Programming

research team in CARISMA has, in the design of the language SAMPL and in the im-

plementation of its interpreter SPInE (Valente et al., 2001), (Valente et al., 2009),

(Valente et al., 2002-2011), followed the approach of constructing the core model

to be parametric in the dimension of scenarios. All variables and constraints are in-

dexed over the scenarios, which are the elements of a special set declared in the

stochastic framework, and the objective function is the expected value over all sce-

narios of the individual objectives.

Declaration of the stochastic framework

The stochastic framework depends on the type of stochastic programming model

that is being developed. For instance, scenario-based recourse problems require

the explicit declaration of the scenario tree structure while, in a distribution-based

`

56 | P a g e

recourse problem, the AML should provide a set of constructs for the definition of

probability distributions.

Figure 11 Extended constructs for SP

Figure 11 shows how the basic constructs of a modelling language for linear pro-

gramming are extended to capture the stochastic framework. The definition of the

new constructs is adapted to be consistent with the grammar of the underlying

modelling language. We have successfully applied this approach to the AMPL lan-

guage, but the same ideas can be adapted to virtually any other AML; see for in-

stance (Valente, 2002). The syntax of the extended language constructs for stochas-

tic AMPL (which we call SAMPL) is defined in section 2.4; the modelling system that

interprets SAMPL and generates the instance of the model is called SPInE (Stochas-

tic Programming Integrated Environment).

2.4 Alternative representations

As repeatedly observed in this thesis, the deterministic equivalent formulations of

SP problems suffer of some disadvantages in respect to their “direct” representa-

tions. From the modeller’s point of view, he is forced to change the model in ac-

cordance with the structure (event tree) he wants to enforce through the use of

non-anticipativity constraints, or to add variables and constraints to the problem to

`

57 | P a g e

capture (integrated) chance constraints, and robust optimisation problems; this is

an added complication as shown in section 1.3. The non-preservation of the prob-

lem’s structure and the redundancy of the instance-level representations derived

from the use of DEQs are other important issues which are discussed in section 3.1.

This set of reasons makes a strong case for a language which supports direct repre-

sentation of SP problems, thus maintaining the meta-information which defines the

SP framework and allowing smart interaction with solvers and scenario generators.

The author has contributed to this research by designing, implementing and exten-

sion such a system, which is an integrated software system for the representation,

generation and solution of SP problems. The AMPL modelling language (Fourer et

al., 2002) has been modified with subsequent extensions (Valente, 2002), (Valente

et al., 2009), (Valente et al., 2011) to directly represent an increasingly large class of

problems and features – among which, still unpublished, are the extensions for ro-

bust optimization problems and for scenario generation – and the underlying sys-

tem SPInE (Messina & Mitra, 1997), (Valente et al., 2001) re-implemented and par-

tially redesigned to support seamless (language supported) connection to scenario

generators, parallel model generation and a revised interface with the solvers.

2.5 Modelling languages perspective: a tour on AMPL

and SAMPL

The aim of this section is twofold: firstly, it presents the modelling language con-

structs interpreted by the system developed by the author, secondly, it shows the

difference in syntactic clarity between expressing the various classes of SP model

using these language constructs and without.

It is presented as a tutorial-like description, using the personal planning model pre-

sented in section 1.2; the various model classes are presented in the same order as

in above mentioned section. Each class is formulated both in AMPL and SAMPL

(AMPL including the stochastic extensions), to illustrate the gain in compactness

`

58 | P a g e

and functionalities achieved using the extended syntax, the syntax is interpreted by

the system developed by the author.

1) Personal Planning deterministic model in AMPL

The AMPL code for the model, is set out below. For a more detailed description of

the features and the syntax of the language, the reader is referred to (Fourer et al.,

2002).

set DUTIES;

set TIME;

param WakingHours;

param StressFactor;

param RelaxFactor;

param WorkRequired{DUTIES};

param Productivity{DUTIES, TIME};

param AverageWork >= 0, <=8;

var Work{DUTIES, TIME} >= 0, <= WakingHours;

var UnderWork{TIME} >=0;

var OverWork{TIME} >= 0;

minimize Stress: sum{t in TIME} (OverWork[t] * StressFactor -

UnderWork[t] * RelaxFactor);

subject to

DayLength{t in TIME}: sum{d in DUTIES} Work[d,t] <= WakingHours;

DeviationDefinition{t in TIME}: sum{d in DUTIES} Work[d,t] =

AverageWork + OverWork[t] - UnderWork[t];

TaskCompletion{d in DUTIES}: sum{t in TIME} (Productivity[d,t] *

Work[d,t]) = WorkRequired[d];

The data file, containing all the values needed for the model instance to be gener-

ated, is as follows:

set DUTIES := study work;

set TIME := 1 2 3;

param WakingHours := 12;

param StressFactor := 5;

param RelaxFactor := 4;

param WorkRequired := study 12 work 14;

param Productivity : 1 2 3 :=

study 0.9 1.2 1.3

work 1 0.9 1.3;

`

59 | P a g e

2) Personal Planning SP multi stage

Introducing the scenarios for the productivity, as discussed in section 1.2, makes us

firstly add some information to our data. A set (SCENARIOS) is added to represent

all the scenarios, a parameter (Prob) contains the probability of each scenario and a

parameter (RProductivity) represents the realizations of our scenarios.

param RProductivity

[*, *, 1] : 1 2 3 :=

study 0.9 1.44 1.56

work 1 1.08 1.56

[*, *, 2] : 1 2 3 :=

study 0.9 1.44 1.0504

work 1 1.08 1.0504

[*, *, 3] : 1 2 3 :=

study 0.9 0.96 1.56

work 1 0.72 1.56

[*, *, 4] : 1 2 3 :=

study 0.9 0.96 1.0504

work 1 0.72 1.0504;

AMPL Formulation (via deterministic equivalent)

Following the explicit non-anticipativity representation presented in section 1.3, the

multi stage model is expressed in AMPL as follows, where the lines added in respect

to the deterministic version above are reported and all the changes to existing lines

are highlighted in bold.

set SCENARIOS := 1..4;

param Prob{SCENARIOS} := 1/card(SCENARIOS);

param RProductivity{DUTIES, TIME, SCENARIOS};

var Work{DUTIES, TIME, SCENARIOS} >= 0;

var UnderWork{TIME, SCENARIOS} >=0;

var OverWork{TIME, SCENARIOS} >= 0;

minimize Stress: sum{t in TIME, s in SCENARIOS} Prob[s] *

(OverWork[t,s] * StressFactor - UnderWork[t,s] * RelaxFactor);

subject to

DayLength{t in TIME, s in SCENARIOS}: sum{d in DUTIES} Work[d,t,s]

<= WakingHours;

DeviationDefinition{t in TIME, s in SCENARIOS}: sum{d in DUTIES}

Work[d,t,s] = AverageWork + OverWork[t,s] - UnderWork[t,s];

TaskCompletion{d in DUTIES, s in SCENARIOS}:

`

60 | P a g e

sum{t in TIME} (RProductivity[d,t,s] * Work[d,t,s]) =

WorkRequired[t];

To complete the explicit non-anticipativity representation, a structure must be en-

forced to ensure that only the information available at each decision node influ-

ences the decision itself. We have therefore to add to the model the non-

anticipativity restrictions, which depend on the tree structure of our choice (see

section 1.2 for the mathematical formulation of the constraints below)

NAFIRSTSTAGE{d in DUTIES, s in SCENARIOS}:

Work[d,1,s] = Work[d,1,1];

NASECONDSTAGE1{d in DUTIES }:

Work[d,2,1] = Work[d,2,2];

NASECONDSTAGE2{d in DUTIES}:

Work[d,2,3] = Work[d,2,4];

SAMPL formulation

The extended syntax SAMPL provides enables the modeller to capture the stochas-

ticity in the model in a natural way, using ad-hoc constructs. Most importantly, the

non-anticipativity constraints are not needed, as the generated model enforces the

desired tree shape automatically. The modifications to the deterministic model to

achieve its stochastic SAMPL formulation of the model are reported below; it

should be noted that all Wait and See, Here and Now and Expected Value formula-

tions can be generated automatically by the system starting from SAMPL formula-

tion in SAMPL, and the stochastic measures VSS and EVPI are automatically calcu-

lated.

scenarioset SCENARIOS := 1..4;

probability Prob{SCENARIOS} := 1/card(SCENARIOS);

tree theTree := binary;

random param RProductivity{DUTIES, TIME, SCENARIOS};

var Work{DUTIES, t in TIME, SCENARIOS} >= 0, suffix stage t;

var UnderWork{t in TIME, SCENARIOS} >=0, suffix stage t;

var OverWork{t in TIME, SCENARIOS} >= 0, suffix stage t;

`

61 | P a g e

The compactness of this formulation in respect to the DEQ one is noticeable, and

the shape of the tree is easily defined with the keyword binary, as the forecasted

tree has this structure. For a full language reference, the reader is referred to

(Valente et al., 2002-2011) .

Scenario Generation

Although the random parameters can be generated by the procedure described in

section 1.2, the data has to be explicitly provided to AMPL in order to be able to

instantiate the model. With SAMPL, there is an alternative approach: the modeller

can choose to program a scenario generator module (see Chapter 4) and the system

will take care of generating the values at runtime.

Using the developed libraries, accessible to anyone that wishes to extend the system with a new
scenario generator, which contain the definition of some classes, the author has developed a sce-
nario generator implementing the procedure described in C#. If the module follows the specified

interface, the system is then able to see it.

`

62 | P a g e

Figure 12 shows the application developed by the user discovering the scenario

generator implemented for this model. The top window shows the dynamically

populated list of available scenario generators (just one, in this instance) and its de-

scription and the parameters it needs. All this information is found out at runtime

for compliant scenario generators. The user does not need to specify the realization

explicitly; just the parameters needed to the scenario generator needs to be incor-

porated instead.

`

63 | P a g e

Figure 12 Personal planning model: Screenshot from SG

`

64 | P a g e

A C# code snippet of the generation procedure is reported below for completeness,

it uses the classes ScenarioTree and ScenarioTreeNode which can be found in

the SG library main module implemented by the author. It recursively populates a

binary tree with arrays obtained multiplying each element of a base array by the

numbers v1 or v2, depending on the branch. This is obviously implementing the

scenario generation procedure intended for this model.

public void GenerateNode(ScenarioTree<double[]>.ScenarioTreeNode

node, double coefficient)

{

 node.Contents = new double[indepNames.Length];

for(int i=0; i<indepNames.Length; i++)

node.Contents[i]= baseValues[node.Stage][i] * coefficient;

if(node.hasChildren)

{

GenerateNode(node.Children[0], v1);

 GenerateNode(node.Children[1], v2);

}

}

At this point, the data can then be eliminated, and the declaration of the random

parameter becomes:

random param RProductivity{DUTIES, TIME, SCENARIOS} sg Bernoul-

li(1.2, 0.8, "{{0.9, 1.2, 1.3}, {1, 0.9, 1.3}}");

Two remarks can be made on this topic:

- Having the model expressed in this way, allows the modeller to increase the

number of items in the set DUTIES, or increase the number of time periods

in the model, without worrying to regenerate the data: it will automatically

be generated by the system at runtime

- One limitation of the current system is apparent on this line: it is not al-

lowed to pass AMPL parameters to the scenario generator. The solution to

this problem is one of the future developments, which can be found in sec-

tion 6.3.

`

65 | P a g e

3) Chance Constraints

AMPL Formulation

The AMPL formulation of the chance constrained version of the model follows once

more the deterministic equivalent formulation. For this formulation, binary varia-

bles have to be added to count the amount of violations in the constraints, and a

counting constraint has to be included. The deterministic equivalent formulation of

the individual chance constraints expressed in 1.22 is the following (see section 1.3

for reference):

 ∑

∑

 { }

2.1

Translating that to AMPL is straight forward and it reads like:

param alpha := 0.6;

var delta{DUTIES, SCENARIOS} binary;

TaskCompletionCC{d in DUTIES, s in SCENARIOS}:

sum{t in TIME} (RProductivity[d,t,s] * Work[d,t,s]) +

delta[t,s]*WorkRequired[t] = WorkRequired[t];

CCCount{d in DUTIES}:

sum{s in SCENARIOS} Prob[s]*delta[d,s] <= alpha;

The artifices introduced in the model due to the deterministic equivalent formula-

tion are highlighted in bold. It is worth noticing that this formulation introduces one

binary variable for each scenario and for each individual constraint.

SAMPL Formulation

The formulation of the chance constraint using SAMPL extended syntax, as in

(Valente et al., 2011) is:

AmountWorkedCC{d in DUTIES} {probability s in SCENARIOS:

sum{t in TIME}RProductivity[d,t,s] * Work[d,t,s] = WorkRequired[d]}

<= alpha;

`

66 | P a g e

Having a specific construct for this allows for a much cleaner formulation, the sys-

tem can then check if a solver has a specific solution algorithm for this class of prob-

lems and eventually exploit it.

4) Integrated Chance Constraints

The deterministic equivalent formulation of the Integrated Chance Constrained

model follows; this formulation limits the expected “units behind schedule” for

each task to . It includes the needed added variables and the added constraint

calculating the expected violation.

 ∑

∑

2.2

The AMPL implementation of the formulation above follows:

param beta := 3;

var mu{DUTIES, SCENARIOS} >= 0;

TaskCompletionICC{d in DUTIES, s in SCENARIOS}:

sum{t in TIME} (RProductivity[d,t,s] * Work[d,t,s]) + mu[d,s] =

WorkRequired[t];

ICCAverage{d in DUTIES}:

sum{s in SCENARIOS} Prob[s]* mu[d,s] <= beta;

It is worth noticing that this formulation introduces one continuous variable for

each scenario and for each individual constraint.

SAMPL Formulation

The formulation of the integrated chance constraint using SAMPL extended syntax,

as in (Valente et al., 2011) is:

ICCP{d in DUTIES}: expectation{s in SCENARIO} {WorkRequired[d] less

sum{t in TIME}RProductivity[d,t,s] * Work[d,t,s]} <= beta;

Once again, this reformulation is much more compact and readable and allows the

system to use a solver that is especially designed to solve ICCPs through specialized

algorithms (see (Haneveld & van der Vlerk, 2006) for an example).

`

67 | P a g e

5) Robust formulations

To avoid being too prolix on a topic – the formulation of robust optimisation prob-

lems – which is not central to this thesis, only the formulation given by Soyster (see

section 1.2) is explicitly given here. Its only assumption is that we know the ranges

in which the non-deterministic parameters can vary.

AMPL Formulation

The deterministic equivalent formulation of the robust optimization problem was

given in 1.34. The added parameters ̌ are the amplitude of the allowed deviation

from the mean value of the productivity values

To formulate the robust optimization problem, we use the deterministic version as

a starting point, then we add the following, which is the AMPL equivalent of 1.34:

var y[DUTIES, TIME] >= 0;

param ProdRange[TIME];

TaskCompletion{d in DUTIES}:

sum{t in TIME} (Productivity[d, t] * Work[d,t])

- sum{t in TIME} (y[d,t] * ProdRange[t])

>= WorkRequired[d];

YConstraint{d in DUTIES, t in TIME}:

-y[d,t] <= Work[d,t] <= y[d,t];

SAMPL Formulation

Expressed using SAMPL extended syntax, the steps above are simplified. The defini-

tion of the random parameter is changed to:

random param RProductivity{d in DUTIES, t in TIME}

 dist symmetric(Productivity[d,t] - ProdRange[t],

 Productivity[d,t] + ProdRange[t]);

option RobustForm Soyster;

AmountWorked{d in DUTIES}:

sum{t in TIME} Productivity[d, t] * Work[d,t] >= WorkRequired[d];

The system takes care of generating the artificial variables and the additional con-

straints automatically, thus allowing the modeller to concentrate on the problem

instead of the formal specification of the uncertainty set. To obtain the other for-

`

68 | P a g e

mulations (Ben Tal and Nemirovsky, or Bertsimas and Sim), the modeller simply us-

es a different value for the RobustForm option. These two formulations require ad-

ditional parameters to specify the desired trade-off between optimality and ro-

bustness. This parameter is specified in the constraint declaration, as:

AmountWorked{d in DUTIES} suffix robustness gamma[d]:

sum{t in TIME} Productivity[d, t] * Work[d,t] >= WorkRequired[d];

where gamma is an AMPL parameter containing the chosen robustness value.

2.6 Conclusions

In this chapter we have presented a literature review to highlight the data and

knowledge flows involved in the definition of a Stochastic Programming problem.

We have focused on modelling languages which support the specification of the op-

timization problem and link with the scenario generation library (see Chapter 4). In

section 2.5 we have illustrated (by means of an example) the language features in-

terpreted by the system implemented by the author. The benefit of using these

language features over the standard LP model formulation is highlighted.

`

69 | P a g e

Chapter 3 Requirements and character-

istics of SP solvers

Following the conceptual division between modelling system and solver introduced

in Chapter 2, which is widely followed in deterministic optimization too, the impli-

cations and the communication requirements of these two systems are hereby dis-

cussed. These requirements can be split in three major categories: instance level

model representation formats, solution methods and auxiliary data communication.

Stochastic Programming models differ from deterministic mathematical program-

ming problems as there are alternative ways to represent them at instance level.

The formats and the methodologies to do so are presented in section 3.1 and 3.2

respectively. The structure inherent to SP models is exploited by various algorithms,

which are briefly presented in section 3.3, together with some comparative bench-

marks. Sections 3.1 to 3.3 are mainly literature review. Section 3.4 shows the model

generation capabilities of the implemented system, as an alternative to normal

modelling tools. In section 3.5 we present the solver architecture chosen to exploit

the availability of such algorithms in an integrated system.

The contribution given by the author is the analysis of possible mappings between

model classes and solution methods, in the design of an interface that makes these

mappings possible and in its implementation. The other main contribution is the

implementation of the model instance generator, which has been used to generate

many SP model and its benchmarks, presented in section 3.4.

3.1 Instance level formats

Algebraic modelling systems are capable of translating the models from a format

which is easily understood and developed by the modeller into a computer reada-

ble form which is acceptable by the solvers. In the previous chapter, it has been

shown that a model expressed in AMPL (or in any other modelling language) can

easily be instantiated over different data sets; a model, at that level, can therefore

be considered a template which describes the model’s structure. The solvers are

programs which implement various algorithms that can be applied only on fully de-

`

70 | P a g e

scribed numerical models; we call such a fully described model an instance of a

model. See Figure 13 for a highlight of the role of model instance formats in the

context of the comprehensive modelling system diagram reported in Figure 7.

The MPS(X) Format

MPS (Mathematical Programming System) and, more precisely, its extended incar-

nation MPSX (IBM World Trade Corporation, 1976) is an instance level format in-

troduced in the 1970s for linear and integer programming problem and it is still to-

day, despite its shortcomings, the de facto standard for LP problems exchange. It

played a major role in the development of solution algorithms and software sys-

tems for handling these types of problems. The existence of a standard format facil-

itates the communication of models between modelling and solving software tools,

hence enabling the solvers to be seen as interchangeable “black boxes”. This in turn

allows the designers of solution algorithms to test their software implementations

against libraries of benchmark models such as NETLIB (Anon., 2010) and MIPLIB

(Bixby et al., 1998).

Stochastic programming models can also be instantiated in MPS format by way of

their deterministic equivalent formulations, however there are two major draw-

backs to this approach: the deterministic data is replicated for each scenario, caus-

ing a unnecessary high data volume and the inherent structure of SP models is

scrambled and lost.

Model Instance: formats as MPSX,
LP, OSiL, SMPS(X), OSiL/SE or

equivalent in-memory descriptions

Modelling

System
Solver

Figure 13 Instance level formats' role in a modelling system

`

71 | P a g e

The SMPS format

The SMPS format (Birge et al., 1987) was introduced in the late 1980s and address-

es the drawbacks listed above, following the general structure and guidelines of the

MPS standard. The fundamental aim of SMPS is to allow the conversion of existing

deterministic linear programs into stochastic linear programs by adding information

about the dynamic structure and the randomness, preserving the structure and

avoiding data redundancy. The standard specifies the use of three separate files, all

organized into fields according to the MPS record layout: the core file, the stoch file

and the time file.

The core file is a normal MPS(X) file containing the formulation of the problem for a

single realization of the random variables, thus a normal LP problem but with a spe-

cific ordering of variables and constraints to create a lower block-triangular matrix,

which we call the core problem. The meaning of core and the resulting matrix shape

can easily be seen considering the deterministic equivalent formulation of a multi-

stage recourse program, given by the system of equations 1.37 and reported below

for ease of reading:

 ∑

∑

 subject to

 with , t = 1,...,T

3.1

The data defining this problem can be arranged in an LP formulation for a single re-

alization of the random variables, which we call core problem:

 subject to

 with , t = 1,...,T

3.2

`

72 | P a g e

All entries in the matrices and vectors: , , can be random, but in prac-

tice all but a few entries will be deterministic. This very last fact illustrates the prob-

lem of non-necessary data redundancy inherent in the deterministic equivalent

formulation, as all the mentioned vectors are entirely specified for each scenario,

even though most parts of them are deterministic and therefore remain the same

among all scenarios.

The time file specifies the dynamic structure of the problem, partitioning the matrix

specified in the core file into different stages.

The stoch file indicates the distributions of the random parameters, in three possi-

ble ways:

Independent: The individual coefficients are supposed to be mutually independent,

and their distribution is algebraically specified, describing its type and some param-

eters which depend on the type of the distribution. Some common distributions are

natively supported by the standard and, for non-standard distributions, the use of a

user defined routine can be specified.

Blocks: Considered as mutually independent random vectors.

Scenarios: In case of a scenario based recourse problem, the probabilities of the

scenarios, their branching stage and the values of the realizations of the random

coefficients are listed in this section.

SMPS, in its extended recent version (Gassmann & Schweitzer, 2001), is the most

common instance level format for stochastic programming problems. I cannot omit

the fact that, even though SMPS is the de facto standard instance level language for

SP problems, its adoption is not nearly as widespread as the one of the MPS format,

slowing down the evolution of specialized solvers for Stochastic Programming.

SMPS inherited many limitations that are intrinsic to the aging tabular nature of

MPS; to address these problems some alternative formats have been developed in

recent years.

`

73 | P a g e

New directions: XML

The new approach, which takes into consideration contemporary technical assump-

tions, is based on eXtended Mark-up Language (XML). The wealth of functionality

and software available for exploiting XML is an important factor in the acceptance

of an XML-based mathematical programming standard. XML vocabularies proposed

for this role have included OptML (Kristjansson, 2001) and LPFML (Fourer et al.,

2005). LPFML has grown into OSiL (Fourer et al., 2006), which can represent linear

programs, quadratic programs and general nonlinear program.

OSiL is the instance level format part of the framework Optimization Services

(Optimization Services, 2008), which is a general design for XML-based service-

oriented, optimization-centred distributed architecture. Optimization Services is

intended to be an open source computational infrastructure for running optimiza-

tion as services on distributed systems and defines some protocols named OSxL

(Optimization Services Languages) to standardize three areas of Operational Re-

search namely Optimization Instance Representation, Optimization Communication

and Optimization Service registration and discovery. OSiL/SE (Fourer et al., 2009) is

an extension to the OSiL schema designed to capture stochastic programming prob-

lems with recourse as well as (integrated) chance-constrained models and other

forms of optimization under uncertainty. It is a very general design, and it is able to

handle continuous as well as discrete distributions, stochastic problem dimensions,

various kinds of stochastic processes, linear and nonlinear objectives and con-

straints and, due to its XML nature, can easily be embedded in SOAP messages

which are the native language of web services communications.

Example: MPS vs SMPS

A small example is presented below, to illustrate the difference between the MPS

and the SMPS formats (other SP-specific instance level representations as OSiL/SE

are different in the grammar used but similar conceptually).

Consider the following two-stage problem instance:

`

74 | P a g e

 ∑

 subject to

 with , ,

3.3

Using the following numeric values:

 { }, =1, {

} , , ,

 { }, { },

The resulting MPS file is:

NAME mps

ROWS

 G R0001

 G R0002

 G R0003

 G R0004

 N R0005

COLUMNS

 X1 R0001 1

 X1 R0005 1

 X2 R0001 -2

 X2 R0002 4

 X2 R0003 4

 X2 R0004 4

 X3 R0002 -8

 X3 R0005 -1.666666667

 X4 R0003 -9

 X4 R0005 -1.833333333

 X5 R0004 -10

 X5 R0005 -2

RHS

BOUNDS

 UP BOUND X3 200

 UP BOUND X4 200

 UP BOUND X5 200

ENDATA

This file represent, with the correct numerical values, the matrix as in equation 3.3.

Five rows have been generated (R0005 is the objective function) and five columns

`

75 | P a g e

(X3, X4 and X5 correspond to the in the mathematical formulation, instantiated

for all three scenarios). To be noticed, in bold, the replicated values for and for

 ; replication is one of the drawbacks of this kind of representation, and its

amount of it increases with the number of scenarios and the size of the model in

general. The information about probability and number of scenarios is lost, the first

being now a multiplier for some coefficients in the objective row and the latter driv-

ing the repetition of rows.

The SMPS version of the file is more compact, and retains the structure of the prob-

lem. The three files which comprise the SMPS standard are listed below.

COR File: (the “core” structure of the problem)

NAME

ROWS

 N OBJ

 G R0001

 G R0002

COLUMNS

 X1 R0001 1

 X1 OBJ 1

 X2 R0001 -2

 X2 R0002 4

 X3 R0002 -8

 X3 OBJ -5

RHS

BOUNDS

 UP BOUND X3 200

ENDATA

This file captures the fact that the columns are logically the same entity, just for

different scenarios, as the last three constraints of formulation 3.2. In total, this

core instance has three rows and three columns.

TIM File: (specifies the separation of time periods)

TIME

PERIODS

 X1 R0001 PERIOD1

 X3 R0002 PERIOD2

ENDATA

The second time period entities start with row R0002 and with column X3.

`

76 | P a g e

STO File: (contains the values of stochastic parameters and information about the

event tree)

STOCH

SCENARIOS DISCRETE

 SC S0000001 ROOT 0.3333333333 PERIOD1

 SC S0000002 S0000001 0.3333333333 PERIOD2

 X3 OBJ -5.5

 X3 R0002 -9

 SC S0000003 S0000001 0.3333333333 PERIOD2

 X3 OBJ -6

 X3 R0002 -10

ENDATA

The file contains the probabilities of each scenario and the values that the stochas-

tic parameters assume in each scenario. Already this simple example shows how an

SMPS like format is more suitable to represent SP problems instances, as no repeti-

tion is created and, equally importantly, the information about the structure of the

problem is kept. The comparison between MPS and SMPS formats is expanded in

section 3.4, where the system developed by the author is used to generate instanc-

es of some problems in both formats.

3.2 Deterministic equivalent

Taking into consideration Section 1.3, which described the deterministic equivalent

formulation for various classes of SP problems and Section 3.1, which illustrated

how the model instances are passed on to a solver, it is reasonable to draw the

conclusion that the formulation, generation and the solution of SP problems could

rely solely on the already existing tools for deterministic optimisation.

This approach is called deterministic equivalent (DEQ) and it is still the standard way

to get a numeric solution of a SP problem. To summarize, the deterministic equiva-

lent formulation is an optimisation problem instance that includes explicit or implic-

it non-anticipativity for two-stage or multistage recourse problems, and various al-

ternative formulations for (I)CCPs and Robust Optimization problems (see section

1.3). These formulations are agnostic of the structure of the problem and, due to

this lack of information, tend to replicate the deterministic data along with the real-

isations of the random parameters. The resulting model is then passed to a non-

specialized solver, which uses an algorithm appropriate to the kind of problem (i.e.

`

77 | P a g e

simplex or interior point/barrier method) to find a solution. Various drawbacks of

this methodology have been mentioned in this thesis, and in this section we high-

light a few other issues.

Spatial difficulty

Due to the replication of the data inherent to the deterministic equivalent formula-

tion, its size tends to grow very sharply with the number of scenarios, soon becom-

ing unmanageable. As an example, if the approximation of the distributions are

modelled using a fixed number of outcomes at each stage (and the filtration is rep-

resented by a tree with an equal number of branches for each node), the number of

columns of the problem grows linearly with the number of scenarios, but exponen-

tially with the number of stages. Further information on this topic can be found in

section 3.4.

Computational difficulty

As the size of the model grows with the increase in the number of scenarios, the

deterministic equivalent model becomes increasingly difficult to solve. The inherent

block structure of the problem – reported below in 3.4 for a two-stage recourse

problem with S scenarios – could be exploited by solution algorithms.

[

]

 3.4

There exist efficient implementations of the two major solution methods for gen-

eral LP problems, namely simplex (SSX) and interior-point (IPM) methods. The im-

plementation of both approaches might exploit the structure of the problem in

many ways, for example using heuristics to detect the presence of certain struc-

tures and taking appropriate actions in case these structures are present. A number

of researchers have proposed structure-exploiting solution algorithms; a non-

exhaustive list includes (Fourer, 1984), (Birge & Qi, 1988), (Choi & Goldfarb, 1993),

(Grigoriadis & Khachiyan, 1996), (Schultz & Meyer, 1991). For some benchmarks of

`

78 | P a g e

direct methods applied to deterministic equivalent, the reader is referred to Table

11 below.

If a structure exploiting method is applied, the illustrated process of modelling and

solving an SP problem seems illogical, because the inherent structure of the model

is firstly scrambled by the generation of the deterministic equivalent, and then

guessed by the heuristics. As all SP problems with recourse present the same struc-

ture, it should be passed from the modelling system to the solver, so that solution

algorithms can take advantage of it.

3.3 Decomposition techniques

The classes of problems included in the taxonomy shown in Figure 1 have all a pe-

culiar structure and researches have been made to use this structure to speed up

the solution process. In general, these methods are called decomposition methods,

as they don’t attempt to solve the whole deterministic equivalent in one go; instead

they solve sub problems by applying solution procedures to sub-structures that are

inherent in the particular class of problem. Decomposition and structure exploita-

tion is not a unique characteristic of SP problems, there has been considerable re-

search effort diverted to speed up solution of particular models (for example port-

folio planning models (Mitra et al., 2007), (Bonami & Lejeune, 2009) and set cover-

ing problems (Beasley, 1987), (Beasley & Jornsten, 1992)), and to allow generic

structure exploitation (see (Makowski, 2005) (Colombo et al., 2009) for a structure

conveying modelling system and (Gondzio & Sarkissian, 2003) (Gondzio & Grothey,

2009) for solution methods based on IPM that can make use of it). The peculiarity

of SP problems is that their structure is defined once the class of model (recourse

problem, chance constrained problem or integrated change constrained problem) is

chosen.

`

79 | P a g e

Two-stage and multi stage recourse problems

Considering the general formulation of a two-stage recourse problem, given in

equations 1.13 and 1.14 and replicated below:

 []

 subject to

 where

 subject to ,

3.5

The basic idea behind decomposition algorithms is the approximation of the re-

course function which is non-linear, obtained applying cuts to the feasible

region of the problem, cuts that are obtained solving many small problems. The L-

shaped method (Van Slyke & Wets, 1969) is a version of Benders decomposition

(Benders, 1962) adapted to stochastic programming problems; it exploits the fact

that the recourse function is convex and polyhedral when it has finite support (i.e.

the random parameters follow discrete probability distributions, which is always

the case in scenario based recourse problems). For a detailed and in depth descrip-

tions of this method, the reader is referred to the previously mentioned papers, or

to (Birge, 1997) which contains a formal descriptions of various solution approach-

es. Benders’ decomposition has also been generalized to multi stage SP problems

(Birge, 1985), and it is usually referred to as nested Benders’ decomposition.

Various improvements of Benders decomposition methods have been developed,

mostly to regularize the “jumps” in the current objective value occurring during the

solution process. Regularization techniques can be found in (Rockafellar, 1976),

(Lemaréchal, 1978), (Kiwiel, 1985), (Rockafellar, 1976); a more recent development

is the level method (Lemaréchal et al., 1995), subsequently extended to inexact da-

ta (Fábián, 2000) and finally applied to solve SP problems (Fábián & Szőke, 2007).

The software system implemented as practical work for this PhD has been designed

in close collaboration with the group implementing FortSP (Zverovich et al., 2009), a

`

80 | P a g e

solver designed specifically for SP problems. The communication of the models to

the solver is achieved through library calls which pass the data in a form that closely

resembles the SMPS format. This makes the use of the decomposition techniques

implemented in the solver possible. A benchmark of the performance of such solver

using Benders’ decomposition and level decomposition and of CPLEX 11 used di-

rectly to solve the deterministic equivalent is reported in Table 11 below. The table

is taken from a study made by our research group (Zverovich et al., 2009) in the de-

velopment of solution methods for SP problems. It reports, among the solution

times for various solution methods, the size of the deterministic equivalent repre-

sentation for a set of test problems, both in terms of matrix size (rows x columns)

and of non-zeroes; some of these problems are taken from standard SP problems

collections available on SMPS format (POST (Holmes, 1995), Slptestset and then

converted to their deterministic equivalent formulation, some have been generated

using SPInE, namely the models SAPHIR (Konig et al., 2007), and WATSON (Consigli

& Dempster, 1998). More on the coupling of SPInE and the FortSP follows in section

3.4.

`

81 | P a g e

Collection Name Scenarios Size Non Zeroes CPLEX (s)

 Simplex

IPM

FortSP (s)

 Benders Level

POSTS pltexpA2 6

16

686x1820

1726x4540

3703

9233

0.15

0.17

0.06

0.13

0.04

0.08

0.03

0.10

Fxm2 6

16

1520x2172

3900x5602

12139

31239

0.24

0.47

0.09

0.20

0.29

0.39

0.35

0.53

stormG2 8

27

125

1000

4409x10193

14441x34114

66185x157496

528185x1259121

27424

90903

418321

3341696

0.32

0.87

7.00

305.81

0.38

3.33

12.33

189.53

0.60

1.93

8.38

80.20

0.83

1.65

4.99

34.46

Slptestset AITL2 25 152x204 604 0.14 0.04 0.08 0.16

LandS 3 23x40 92 0.11 0.04 0.01 0.04

4node 16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

1198x3028

2382x6004

4750x11956

9486x23860

18958x47668

37902x95284

75790x190516

151566x380980

303118x761908

606222x1523764

1212430x3047476

2424846x6094900

7743

15231

30207

60159

120063

239871

479487

958719

1917183

3834111

7667967

15335679

0.20

0.37

0.88

2.48

9.88

41.74

457.53

1262.75

11733.86

*

‡

‡

0.19

0.65

0.70

0.71

1.53

3.38

7.51

17.93

44.95

79.73

‡

‡

1.44

3.60

6.79

10.25

16.17

34.04

69.13

240.25

538.26

1474.48

1850.52

5785.07

1.18

1.87

2.36

3.37

8.75

18.08

36.34

63.28

129.57

229.72

459.27

1029.74

SAPHIR SAPHIR 50

100

200

500

1000

433932x196253

867832x392453

1735632x784853

4339032x1962053

8678032x3924053

1136753

2273403

4546703

11366603

22733103

255.03

916.04

7579.14

‡

‡

‡

‡

‡

‡

‡

465.18

701.14

†

2556.06

4294.47

369.59

533.06

2555.47

2339.76

4650.19

WATSON WATSON 128

256

1024

41483x75151

82955x150287

331787x601103

188828

377628

1510428

1.44

3.66

14.44

1.71

3.89

20.27

0.92

1.58

5.12

0.92

1.59

5.31

Table 11 Performance of various algorithms

* Failed to solve due to timeout † Failed to solve due to numerical difficulties

‡ Failed to solve due to insufficient memory

`

82 | P a g e

 (Integrated) Chance Constrained Problems

Chance Constrained Problems have a deterministic equivalent formulation (see sec-

tion 1.3), which follows immediately from the general formulation. The formulation

requires the introduction of binary variables for each scenario to indicate the occur-

rences of violations in the constraints and the creation of an extra constraint to

count and relate them to probability. These stratagems are mechanical, once the

description of the chance constraint has been given, and the formulation highly re-

dundant; a solver could thus generate all these structures internally, without the

need of over sizing the communicated model.

An equivalent formulation for ICCPs is available (see section 1.3) however for this

class of problems cutting plane approaches are available (Haneveld & van der Vlerk,

2006). The proposed cutting plane algorithm speeds up the solution process and, as

for recourse problems, offer a greater scalability than direct methods.

3.4 Model generation

The implemented system ran through a long series of QA models, to prove the cor-

rectness of the generated model instances and to benchmark how the generation

ability scales up with the number of scenarios. It is easily seen that the model size

increases rapidly with the number of scenarios; in fact the dependence is linear,

with a coefficient that depends on the relative size of the first and second stage ma-

trix.

All the models have been written in AMPL as deterministic equivalents and in

SAMPL; the two representations have been instantiated using respectively AMPL

and SPInE. Finally, MPS or SMPS files have been generated as appropriate. The fol-

lowing table shows some statistics, obtained using an Intel Core 2 Duo 2.8 Ghz, 4

GB RAM, Windows 7 64 bits.

`

83 | P a g e

Model Core Size Deterministic Eq. Size SMPS – SPInE MPS -AMPL

 Cols Rows Scen Columns Rows Size (Bytes) Memory

Diff. [kB]

Size (Bytes) Memory

Diff. [kB]

Dakota 9 10 3 27 48 1620 1280 4129 704

ICCPDakota 9 13 3 39 40 2104 1280 4313 1216

ICCPDakota10 9 13 10 123 124 3660 1280 13428 912

Power 12 9 4 39 27 1742 1280 4024 1024

ALMsmall 14 8 2 28 30 1482 1280 2490 92364

ALMTwoStage 280 103 360 100800 62280 2667463 60736 9075248 111860

Prod2Stage 156 108 8 1248 1176 20938 1280 147639 848

prodMStage 156 108 8 1248 1440 21034 1280 157968 0

prodCCP 120 108 8 1248 1212 20134 2560 158524 720

prodICCP 120 108 8 1536 1212 20244 1280 157199 784

Informer 3 2 10 42 11 1350 1280 2045 1024

saphir2 3971 8704 2 3974 8704 872168 2048 831538 5440

saphir10 3971 8704 10 39236 86788 1136119 89984 8347386 22384

saphir20 3971 8704 20 78416 173548 1468465 136768 16773657 49860

saphir50 3971 8704 50 195956 433828 2460251 153024 42091503 122232

saphir100 3971 8704 100 391856 867628 4118397 185728 84287526 241548

saphir200 3971 8704 200 783656 1735228 7580814 185728 1.7E+08 461324

saphir500 3971 8704 500 1959056 4338028 17813339 229056 4.26E+08 1188332

saphir1000 3971 8704 1000 NA NA 36059441 320128 NA NA

saphir2000 3971 8704 2000 NA NA 72195561 571008 NA NA

saphir5000 3971 8704 5000 NA NA 1.8E+08 870231.3 NA NA

Figure 14 Model generation statistics

The shaded columns show data from the deterministic equivalent formulation,

generated using AMPL while the white columns contain statistics on the SAMPL

version of the same model, generated using SPInE. It is worth noticing that the last

three models couldn’t be generated using AMPL 32 bits, as the requested memory

hit 2GB, limit for 32 bit processes in windows.

The column Size shows the size in bytes of the generated MPS or SMPS model, the

column Memory diff. shows the memory allocated above the normal runtime envi-

ronment of AMPL or SPInE in kB. I have chosen to show the peak memory variation

which occurs while generating the model over the “empty” runtime environment

instead of the peak memory allocation because the two applications are coded us-

ing completely different systems (C in case of AMPL, C# under .NET framework 3.5

`

84 | P a g e

in case of SPInE). For completeness, the initialization of AMPL takes 59 MB, while

for SPInE the figure runs up to 166 MB.

It is clear however that, as the number of scenario increases, the generation of the

model using SPInE and its representation using SMPS become increasingly advanta-

geous over the deterministic counterparts. The graph in Figure 15 below shows the

memory usage differential for the model Saphir, as the number of scenario increas-

es.

Figure 15 Comparison of memory usage in model generation

It can be seen that generating the deterministic equivalent version is advantageous

at the beginning of the graph, due to the efficiency of AMPL and its runtime envi-

ronment but, as the number of scenarios increases, the generation of the SAMPL

model using SPInE becomes clearly more efficient.

3.5 Solver architecture and interface

The previous sections of this chapter explain that there are well defined classes of

model that could benefit by the application of specific solution approaches. An ef-

fective software tool for stochastic programming therefore identifies the class of

model which is being implemented and takes the appropriate steps to ensure its

fast and efficient solution.

0

200

400

600

800

1000

1200

1400

2 10 20 50 100 200 500 1000 2000 5000

P
e

ak
 m

e
m

o
ry

 d
if

fe
re

n
ti

al
 (

kB
)

Number of scenarios

SAMPL

AMPL

`

85 | P a g e

FortSP, the solver mentioned in various section on this thesis, has been developed

in parallel with the development of SPInE, by the SP team in CARISMA. The latest

additions and their recent redesign followed the same pattern, resulting in a great

interoperability of the two systems. The software system FortSP (Ellison et al.,

2009; Zverovich et al., 2009) offers a choice of algorithms, which have different per-

formance and that can be used on different classes of models:

 Benders decomposition (L shaped method)

 Variant of level decomposition

 Nested Benders decomposition

 Cutting plane algorithm for ICCPs

 Deterministic Equivalents generation and solution

The first two are applicable to two-stage SP problems with recourse, the third one

to multi stage SP problems, the fourth one to ICCPs and the fifth to all the classes of

models. All these methods share the need of an external solver to solve the sub

problems or the whole problem (in case of deterministic equivalent). The classes of

these problems (Linear Programs, Quadratic Programs, Mixed Integer Programs,

Quadratic Mixed Integer Programs, and Second Order Cone Programs) depend on

the considered class of starting (SP) model and on the solution method chosen;

FortSP has a plug-in system to connect to various external solvers, each of them can

have different capabilities in terms of solvable models. The process of chosen the

solution method could be at least partially automated, as the requirements in terms

of solvers will be known by the modelling system, if the meta-information regarding

the model is retained.

A mapping between various methods is possible, and it is reported in Figure 16 for

the methods currently implemented in FortSP. Retaining the information about the

starting class of the model is possible in a modelling system using specialized syn-

tactic constructs like the ones available in SAMPL (see section 2.5). Aware of this

information, the implemented system SPInE can easily exclude some combinations

of solution methods and sub solvers. The mapping is currently stored in an external

XML file; as new solution methods and solvers are made available, it can be extend-

`

86 | P a g e

ed to include the new possibilities. Another, more elegant, approach would be to

define a simple service discovery API, which would enable solution methods and

sub solvers to be self-descriptive. In this way, the update of the mapping could be

automated; the system has not been developed in this way because, due to the lim-

ited amount of entities and rules, it is easy enough to manually update the XML file.

Two stage SP

Multi stage SP

Chance

Constrained

Integrated

CCPs

ROBUST

Soyster’s

ROBUST

Bertsimas

Benders

Nested
Benders

Level

ICCP cut-
ting plane

Deterministic
Equivalent

LP

subject to

MIP

subject to

 ,

‖ ‖

SOCP

subject to

LP + QP

subject to

ROBUST

Ben-Tal

Model Class Solution Method

Figure 16 Mapping between model classes and solution methods

Sub Solver

Requirements

`

87 | P a g e

The interface that SPInE uses to communicate with FortSP is shown, as displayed by

Visual Studio, in Figure 17 below.

Figure 17 Interface between SPInE and FortSP

`

88 | P a g e

Once generated, the procedure to pass the model to the solver is quite simple.

SPInE has the Model class in memory, which contains all the needed information

about the model instance. An instance of the solver is created, then the core prob-

lem is passed row-wise, in a sparse row representation. The stochastic information

(the parameters which distinguish the scenarios) is then passed in a separate data

structure, and finally the objective sense and the eventual type of chance con-

straints or integrated chance constraints are passed with separate library calls.

The code snippet below, taken from the actual SPInE C# codebase shows this part

of the program. It can be noted that, although the interface has been designed

closely interacting with the developers of FortSP, there are some differences be-

tween the data structures of the solver and of SPInE. This can be noticed in the

code at the moment of passing the stochastic elements: a local function

(createStochElementsArray) is called to convert the stochastic elements from

SPInE’s internal representation to FortSP’s.

// Create an instance of the solver

result = FortSPDLL.FortSP_Open(ref FortSP);

// Create a pointer to the solver rep of the problem

result = FortSPDLL.FortSP_CreateProblem(FortSP, ref FortSPProblem);

// Add the columns with their lower bounds, upper bounds and costs,

but no A matrix

result = FortSPDLL.FortSP_AddCols(FortSPProblem, model.nc, null,

null, null, model.lob, model.upb, model.cost);

// Get the sparse row representation from the SPInE model class

int [] rowstarts;

int [] colins;

double []values;

model.getSparseRowRepresentation(out rowstarts, out colins, out

values);

// Pass the obtained A matrixs to the solver

result = FortSPDLL.FortSP_AddRows(FortSPProblem, model.nr,

rowstarts, colins, values, model.lhs, model.rhs);

// Add the stages information

result = FortSPDLL.FortSP_AddStages(FortSPProblem, model.nt - 1,

 model.rowstart, model.colstart[);

// Create the array of stochastic elements in the format FortSP

expects it

`

89 | P a g e

FortSPDLL.FortSPStochElem[] stochElements =

createStochElementsArray(model);

int[] newstoinds = new int[model.ns + 1];

model.stoind.CopyTo(newstoinds, 0);

newstoinds[model.ns] = model.nd;

// Pass the stochastic elements to the solver

result = FortSPDLL.FortSP_AddScenarios(FortSPProblem, model.ns,

model.prob, model.basescen, model.stage, model.stoind,

stochElements);

// Set objective sense

FortSPDLL.FortSP_SetObjSense(FortSPProblem, (int)

model.objectiveSense);

// If present, set the types of chance constraints or integrated

change constraints

if (model.CCnumberOfCCs > 0)

{

result=FortSPDLL.FortSP_SetRowTypes(FortSPProblem,

model.CCnumberOfCCs , model.CCrowindices, model.CCrowTypes,

model.CCrowDirection, model.CCrhsValue);

}

This kind of interface is easy yet functional enough, and it has proven to be solid

across many months of testing.

3.6 Conclusions

In this chapter we have highlighted the differences between deterministic and SP

problems in terms of model instance generation, representation and solution. We

have shown that the developed system has the means to automatically generate

efficient SP model instances, and the benefits of such technique are shown in the

benchmarks set out in section 3.4. Solution speed and memory usage can greatly

benefit by the use of decomposition methods, and the interface devised to auto-

matically select and use a method depending on the problem at hand is shown in

section 3.5.

`

90 | P a g e

`

91 | P a g e

Chapter 4 Requirements for a Scenario

Generation library

The computational solution of SP problems, except for some trivial cases, cannot be

obtained with continuous distributions of the random model parameters. Therefore

in almost all cases discrete distributions are used, leading to scenario based sto-

chastic programming problems, and indeed the discrete scenario based models are

supported by most solution methods. Moreover, the number of scenarios of the

discrete distributions is limited by the available computing power, and therefore

these distributions have to be approximated by a limited number of outcomes. The

approximation is usually in the form of a scenario tree, and the mathemati-

cal/software tools used to generate them are referred to as scenario generators. In

this chapter we present the requirement analysis for a scenario generator library.

Our aim in defining a scenario generator library and capturing alternative SG meth-

ods are as follows: through the many procedures listed in the library, we capture

well established knowledge of leading methods, and we connect them to a decision

model in a user friendly way; this system has been implemented in SPInE. The chap-

ter starts with a formalization of scenario generators, given in section 4.1. Two sec-

tions of literature review then cover respectively the classification of scenario gen-

eration methods (section 4.2) and their desirable properties (section 4.3). Finally

the scenario generation library is presented and described in two sections 4.4 and

0. These sections respectively set out successive formalizations of the concept of

scenario generator, define the software requirements and present some excerpts

of the implementation of the library itself. Section 4.6 gives then a formal introduc-

tion to the new syntax introduced in SAMPL to integrate scenario generation into

the decision model.

The author’s contributions in respect to this chapter are the analysis, design and

implementation of the scenario generation library, as reported in sections 4.4 and 0

and the specification of the language extensions to support it at a modelling level

(4.6).

`

92 | P a g e

4.1 Scenario Generators: a modelling perspective

The creation of the scenario tree used in scenario based stochastic programming is

usually performed by specialized applications called scenario generators. The pro-

cess of capturing the computational SP models involves therefore two distinct

modelling steps, which are:

(i) Expressing the logic of the application’s domain into a (SP) decision model

(ii) Representing the randomness properties of the application’s domain with

stochastic processes and create scenario trees

Depending on the domain of application, the domain experts typically apply well

established models to specify the random model parameters, finely tuned and

matching the problem at hand. For instance in financial applications CAPM, GARCH,

Geometric Brownian Motion, Regime Switching Markov models have been exten-

sively used. For a more comprehensive description of scenario generators for finan-

cial models, the readers are referred to some recent research reports and publica-

tions of CARISMA (Roman et al., 2009), (Mitra, 2009). Other domains have other

typical models; a short list of such domains and common techniques is given in Ta-

ble 8.

The next necessary step is to connect the chosen scenario generator to the decision

model; this is usually performed by importing the generated scenario tree in the

form of data structured typically as a multidimensional table into the modelling sys-

tem. This procedure is often time consuming and error prone; creating an integrat-

ed software tool for SP should avoid this manual step, thus a further analysis of the

connection between SGs and decision model is required. Figure 18 below illustrates

the two conditions that are vital for the implementation of such a connection: a

structural compliance between the SGs parameters and the algebraic model and

the communication of controls between modelling system and scenario generator.

The first condition (Compliance) is related to modelling, and is expanded in the rest

of this section, while the second (Control) is related to the software infrastructure,

and is discussed in sections 4.4 and 4.5.

`

93 | P a g e

A scenario generator f captures in a procedural form a domain-specific model of

randomness. In particular it very often uses (i) historical information, (ii) an event

tree structure and (iii) some other specific parameters needed by the model of ran-

domness. We therefore separate the three groups of parameters as:

(i) H History

(ii) τ Event Tree shape

(iii) Remaining Parameters, needed by the model of randomness

Using this notation, the set of scenarios Ξ can be seen as the output of the genera-

tion procedure, as:

 4.1

The event tree structure is specified in the decision model too; it is actually en-

forced through non-anticipativity constraints or by appropriate variable definitions

in normal modelling languages, or defined as a stand-alone entity in languages with

specific constructs for SP (see section 2.5 for examples). We define the tree struc-

ture expressed to the decision model as τ’.

The two trees need to be congruent; in other words, the tree structure τ assumed

by the scenario generator has to be the same as the tree structure τ’ specified in

the optimization model (see Figure 19).

Scenario

Generator

Modelling

System

SG Parameters Algebraic
model

Scenario Tree

Structural

Compliance

Control

Figure 18 Link between Scenario Generators and Modelling System

`

94 | P a g e

Logic dictates that there are two ways to ensure this consistency: the first is to

check whether the two definitions of τ and τ’ coincide; the second is to define the

tree structure just once, thus eliminating any possibility of inconsistencies. In the

current version of SPInE, the tree structure is defined using the SAMPL construct

tree in the decision model and it is automatically communicated to the scenario

generators used. This might not be the best possible choice, as scenario generators

with integrated scenario reduction techniques or with internal sampling methods

(see the next section), might be able to provide a tree structure automatically given

a desired level of precision in the representation of the underlying stochastic pro-

cess. The approach of getting τ from the scenario generators is currently under re-

search.

4.2 Overview of SG methods

Scenario generation is possible following various general approaches; on top of the-

se techniques there are methods to then reduce the number of scenarios to a trac-

table case. The common aim of all methods and techniques is to be able to approx-

imate a distribution with a treatable scenario tree; the following categorization is

largely taken from (Kaut & Wallace, 2003).

1. Generating scenarios

o Conditional sampling

At every node of the scenario tree, realizations of the stochastic pro-

cess { ̃ } are sampled, either by sampling directly from the distribu-

tion of { ̃ } or by evolving the process discretely, according to a for-

mula of the type ̃ ̃ where is the current random vec-

Scenario Generator

Scenarios Decision model

(contains τ’)

Condition τ= τ’

Figure 19 Structural compliance between model and SG

`

95 | P a g e

tor. Traditional sampling methods have a limitation: when sampling

from more than a random variable, there is the need to sample eve-

ry marginal separately and combine them afterwards, generating a

tree whose size grows exponentially with the dimensions of the ran-

dom vector.

o Sampling from specified marginals and correlations

To overcome the difficulties in generating multivariate vectors, espe-

cially if correlated, these methods require the specification of the

marginal distributions and the correlation matrix. Copulas are often

used in these methods to bind together the various marginals.

o Moment matching

If the distributions are not known, they can be described using their

moments (mean, variance, skewness etc.), the correlation matrix in

case of multivariate vectors and possibly other statistical properties.

A discrete distribution can then be constructed that matches the giv-

en statistical properties (Hochreiter & Pflug, 2007), (Smith, 1993).

Bootstrapping can be seen as a moment matching technique, in

which the desired distribution is created by mean of values sampled

directly from the original distribution’s values.

o Path-based methods

In these methods, whole paths (or fans) are generated evolving the

stochastic process over time, one for each scenario. These scenarios

have then to be clustered into a scenario tree of the desired shape.

2. Related techniques

o Clustering

Clustering is the technique used to convert a set of scenarios in form

of fans to a scenario tree. See (Dupačová et al., 2000) or (Heitsch &

Römisch, 2009) for a combined clustering/reduction approach.

`

96 | P a g e

o Internal sampling methods

These methods differ from the others, as the sampling of scenarios is

performed during the solution procedure. Most important methods

of this kind are stochastic decomposition (Higle et al., 2009), im-

portance sampling in Benders decomposition and stochastic quasi-

gradient methods.

o Scenario reduction

Scenario reduction is a method to decrease the size of an already

generated scenario tree, trying to find a scenario subset of pre-

scribed size that is closest to the initial distribution in terms of de-

fined probability metrics (Dupačová et al., 2003), (Henrion et al.,

2008), (Heitsch & Römisch, 2009).

In general, all these methods can be divided into Statistical models or other models,

depending whether the underlying random process is describing the real world

based on scientific/mathematical theories of the given field, or just based on statis-

tical properties (i.e. moments) of observed historical data.

Theories of the given

field/application

Scenario Sets

Discrete

time models

Continuous

time models

Statistical models

 Discrete

time models

Continuous

time models

Other models

Sampling

Historical data

Bootstrapping / sam-

pling with replacement

Figure 20 Scenario generation methods

`

97 | P a g e

There are some common models of randomness, whose use spreads across various

application fields and are therefore listed below. They are not direct scenario gen-

eration techniques, as they generate time series, but continuous time models from

which a scenario tree can be derived using sampling or clustering methods.

Diffusion processes

Diffusion processes are widely used in finance to model the future evolution of

stock prices, interest rates and mortality ratio. They are continuous time models,

and include:

Wiener Processes (Brownian motion)

Brownian motion is one of the simplest stochastic processes, and it is described in a

mathematically convenient form. It is traditionally regarded as discovered by Rob-

ert Brown in 1828 (Brown, 1828) applied to the movement of pollen particles,

mathematically formalized in 1880 by Thorvald N. Theile (Thiele, 1880), but its first

well known application is due to Albert Einstein in 1905 as a description of the

movement of small particles in a stationary fluid (Einstein, 1906).

A Wiener process is a stochastic process which is defined as:

 √ 4.2

and dz is the drift of the value of the process in dt. The process has the following

important properties:

1. It is a Markov process, so future probability distributions depend only on the

current value of the process and not on past values or other information

2. The increments over two defined time intervals are independent

3. Changes in the process over any finite time interval are normally distributed

with a variance which increases linearly over time

`

98 | P a g e

Generalized Wiener Processes (Brownian motion with drift)

A generalized Wiener process is defined as follows:

 4.3

where dz is the increment of a standard Wiener process, is the drift parameter

and is the standard deviation. Over any time interval ∆t, the corresponding ∆x is

normally distributed with mean and variance .

Ito Processes

The Ito process is a generalization of Brownian motion with drift and can be ex-

pressed as:

 4.4

where dz is the increment of a standard Wiener process, and are the

drift and the standard deviation expressed as functions of the current state and

time. A particular case of the Ito process is the Geometric Brownian Motion (GBM),

where and .

The use or one or the other models depends on the assumptions made on the de-

scribed reality: in case of modelling share prices, if we assume that the expected

percentage return and the variance of the return are independent from the current

price, the price can be modelled by a GBM, otherwise not.

Time series

Time series are commonly used to estimate parameters which explain the behav-

iour of a random variable based on past observations. Three broad category of

models of practical importance are the autoregressive (AR) models, the integrated

models (I) and the moving average (MA) models, which can be combined and which

all assume linear dependence between the current data point and the previous

one(s). Non-linear dependency is possible, like in the conditional heteroskedasticity

models, in which the variance varies over time.

`

99 | P a g e

Autoregressive models: AR(p)

AR model of order p assume that the current value of a random variable depends

solely on the past p observations of the same variable. The general form of an AR(p)

process is:

 ∑

 4.5

where is the value of the process at time t, are the parameters of the model, c

is a constant and is white noise. The AR(1) model is known as random walk.

Moving Average models: MA(q)

The moving average model is conceptually a linear regression of the current value

of the random variable against previous (unobserved) white noise terms. A moving

average model of order q is expressed as:

 ∑

4.6

where is the value of the series at time t, are the parameters of the model, μ is

the mean of the series and are white noise error terms.

Autoregressive Moving Average models: ARMA(p,q)

Autoregressive moving average models are defined as a combination of AR and MA

models. An ARMA(p,q) model is therefore expressed as:

 ∑ ∑

 4.7

where all the symbols have the meaning defined for the AR and the MA formula-

tions.

Autoregressive Conditional Heteroskedasticity models: ARCH(q)

`

100 | P a g e

This class of AR models assume that the random variable is characterized by non-

constant variance over time, that is: the variance of the current error is considered

to be a function of the values of the previous time periods’ errors. The process is

then modelled with an AR(q) model, as:

 ∑

 4.8

where , with , and with:

 ∑

 4.9

where and .

Generalized Autoregressive Conditional Heteroskedasticity models: GARCH(p,q)

A GARCH(p,q) model assumes an ARMA(p,q) model for the error variance, therefore

the error term for the model process is given by:

 ∑

 ∑

 4.10

4.3 Desirable properties

The quality of the decision resulting from the stochastic programming problem is,

as can be inferred from section 4.1, dependent on both the decision model and the

scenario generation process. Some desirable properties for scenario generators are

described in (Kaut & Wallace, 2003) and (Zenios, 2006); these can be summarized

as:

1. Correctness: The generated scenario sets should be correct representations of

our random parameters’ distributions; not knowing the distribution leads us to dif-

ferent descriptive models which give alternative representations of our parameters’

dynamics. It is important to choose the model that best captures the aspects of the

dynamics of the random parameters that are important in the context of the deci-

sion problem.

`

101 | P a g e

 2. Consistency: In case of multiple related random parameters, the values of these,

under any particular scenario, should be consistent with each other. This issue aris-

es when there are domain specific rules which apply to two or more of the generat-

ed random parameters: the generated scenarios, which include values for both the

parameters, should be consistent with the domain rules (i.e. in finance, generated

prices for different type of assets might have to satisfy the arbitrage free condition,

or other logical inconsistencies between parameters’ values).

3. Stability: Stability for a scenario generation method is considered in respect of a

particular decision model. A scenario generator is stable in respect to a decision

problem if the decisions which are outcome of the decision problem do not vary

significantly across multiple runs. Defining the decision model as a simple single

stage model as:

 (̃) 4.11

where ̃ is a stochastic variable, and using a notation where { ̃} is a stochastic pro-

cess, ̆ is a discrete stochastic variable and { ̆} a discrete stochastic process (thus a

scenario tree), Kaut and Wallace (2003) define, over K generated scenario trees ̆

and the same number of obtained solutions of the problem
 , k=1…K

in-sample stability:

 (
 ̆) (

 ̆) { } 4.12

and out-of-sample stability:

 (
 ̃) (

 ̃) { } 4.13

The in-sample stability tells us therefore how stable the scenario generator is when

used with the considered decision model or, in other words, how much the objec-

tive function value changes when solving the decision model using different trees

generated with the same scenario generator and the same parameters.

The out-of-sample stability evaluates the solutions obtained through the scenario

generator against the real distribution; in the (very realistic) case that the real dis-

`

102 | P a g e

tribution is not known, the solutions can be evaluated against another scenario

generator that has proven to be reliable with the current decision model or back-

tested against historical data.

4.4 An abstract view of SGs

Starting from the basic points given in section 4.1, a second step of abstraction

seems necessary to achieve a compact yet extensible architecture to seamlessly

connect scenario generators to a modelling system. The interested reader would

probably have noticed that just one of the connections in Figure 19 has been de-

scribed in that section. The second one needs a more thorough formalization of the

abstraction already presented to represent scenario generators. It has to be noted

that the structural compliance condition is enough to guarantee that a decision

model can work together with a predefined scenario generator; the second connec-

tion is mandatory when the functionalities of a scenario generator library are intro-

duced. A scenario generator library is an extensible collection of scenario genera-

tors among which the modeller can choose for generating the random data.

The problem of creating an abstraction and some functionality requirements to en-

close a scenario generation library and its linking to a decision model is hereby dis-

cussed. The new formalism is introduced through subsequent extensions in the

multiplicities of the entities involved:

Number of scenario generators Number of random parameters

Single scenario generator Single random parameter

Multiple scenario generators Single random parameter

Multiple scenario generators Multiple random parameters

Table 12 SG abstraction steps

Please note that in this section, the mentioned models of randomness (AR, ARMA)

are not intended to completely characterize the scenario generator, as these mod-

els generate time series data. This output will then have to be sampled to obtain

the scenario tree (see Figure 20 and its comment). The word “based”, as in “AR(2)

based scenario generator” serve to further stress this fundamental distinction.

`

103 | P a g e

Single scenario generator – Single random parameter

From a functional perspective, a scenario generator (if not internal sampling based)

is an independent module that has a few inputs and outputs a data structure con-

taining random parameter values in the form of a scenario tree, as in Figure 21.

To characterize a scenario generator, we therefore should proceed by identify in-

puts, outputs and the actions it can perform. Examining a first example, a simple

AR(2) based scenario generator, the needed parameters (see equation 4.5) are:

 , , and where describes the scenario tree shape. If the above scenario

generator is able to estimate its parameters from historical data, then the input is

simply H (denoting the historical data). For an ARMA(1,1), the needed parame-

ters would be , , and or again simply H. For all these models, the

output is the scenario tree ξ. A model able to generate multivariate vectors, will

need the dimension κ of the vector to be generated as well as the parameters spe-

cific to the stochastic process used, that we summarize with . These can be sche-

matized as in Figure 22 below.

ARMA (1,1) , ,

Multivariate

SG

SG
Input Parameters

i.e. Historical Data, tree

structure, moments, …

Output

Random vectors

realizations

Figure 21 Scenario generator functional perspective

Figure 22 Scenario generators as black boxes

AR (2) AR(2)

with estimator

ARMA(1,1)

with estimator

 , ,

`

104 | P a g e

The procedure of using a scenario generator can be expressed as:

 4.14

where is the tree structure shape, H is the historical data, is a set of parameters

specific to the scenario generator, is the set of generated scenarios. From now

on, we will consider among the set of possible parameters , the recurring ones as

the historical data H and the dimension of the random vector κ, which are often

present in scenario generation procedures and, most importantly, that could be

specified as part of the data of the model. The procedure can then be written as

Introducing notation that is used in the next section, we can therefore fully define a

scenario generator using:

 identifies a scenario generator procedure

 { } identifies the set of n parameters needed by

 is the scenario set generated by

Multiple scenario generators – Single random parameter

This first extension extends the structure to support multiple scenario generators,

that we call a scenario generators library. They could all possibly need different in-

puts and, whatever scenario generator is chosen, the output is going to be a tree of

random data, which the modelling system will then bind to the defined random pa-

rameter. To describe this case we therefore need:

 { } set of all S available scenario generators

 shorthand notation to identify the choice of a scenario generator,

Figure 23 Abstract representation of a scenario generator

`

105 | P a g e

 number of parameters needed by scenario generator i

 {
} parameters needed by scenario generator i

The dashed arrow at the bottom means that, in case the chosen scenario generator

 needs one of the parameters that are well known (dimension of the random pa-

rameter, historical data and tree structure), these can be communicated from the

model.

Multiple scenario generators – Multiple random parameters

To face this case, we have to introduce some more notation, which relates to the

fact that the random vector previously defined as can, in an algebraic per-

spective, be decomposed in various random parameters , grouped by their

meaning in the model (i.e. for a financial model: asset prices, interest rates, mortali-

ty rate, cash incomes, …).

 ⋃

 4.15

These random parameters’ uncertainties might be appropriately modelled with dif-

ferent stochastic processes, therefore, in our perspective, the parameters values

are generated via different scenario generators. We need therefore to assign a

mapping between each random parameter and the scenario generator to be used

for it. In case of scenario generators that can generate multivariate distributions

that span for more than one of the defined random parameters, this mapping

needs to be n-to-1. We denote with the letter the map between random parame-

Decision Model

Figure 24 Abstract representation of a SG library, single random parameter

`

106 | P a g e

ters and scenario generators: → . Note that this map is not injective nor sur-

jective: all random parameters have to be assigned, not all the available scenario

generators need to be used and more than one random parameter can be assigned

to one scenario generator.

To shorten the notation, the accent denote in the fact that they are respec-

tively: the set of sets of all parameters needed by the scenario generators chosen in

 , the set of historical data sets for all random parameters in the model and the set

of dimensions for all random parameters in the model. See Figure 25 for a graphical

representation of this abstraction.

4.5 SG Library: an IT perspective

The abstraction framework provided in the previous section proved to be essential

in the design of a software system to support stochastic programming problems.

Most of the identified entities translate directly into classes, the building blocks of a

program following the object oriented paradigm however the design of a software

system based on the defined abstraction model requires more information; more

specifically, meta-information about various entities has to be exchanged. This sec-

 ⋃

Decision Model

 ̂

 ̂

 random parameters in the decision model

 map random parameters-scenario generators

 generated scenario trees

 ̂ set of all parameters needed by all scenario
generators in

 set of all scenarios generators

 scenario tree shape

 ̂ historical data

 ̂ dimensions of random vectors

Figure 25 Abstract representation of a SG library, multiple random parameters

`

107 | P a g e

tion presents the steps and the choices available in this respect, focusing on the

ones that have been implemented in the current software system.

Overlaying Figure 25 on the software tools building blocks, the flow of information

between the two systems appears to be not uni-directional (see Figure 26 below):

The first problem arises already with , the mapping between random parameters

and scenario generators: being defined as → , it involves two entities that are

known to two separate systems. P, the list of random parameters are known to the

modelling system once it parses the decision model, while , the set of available

scenario generators, is known to the scenario generation library at runtime. The

functionality we wanted was to allow the modeller to define the mapping in the

model itself, as he would do with a normal data source, hence the choice to com-

municate to the modelling system.

Metadata

 , in this perspective, is not a set of functions, but a set of function descriptions;

these descriptions must include the list of parameters the scenario generator

needs, together with their descriptions. To summarize, indicating with the box the

Figure 26 IT view of Scenario Generation

 ⋃

Decision Model

 ̂

 ̂

Scenario

Generator

Modelling

System

`

108 | P a g e

fact that we are referring to meta-information, the entities that need to be known

for the modelling system to be able to allow the definition of is { }

and {
} .

The correspondence between entities and classes is the following:

 array of SGInformation array of Parameter

 SGInformation Parameter

Obviously, the list of parameters for a particular scenario generator is logically part

of its meta-information; the class SGInformation therefore contains a name, a

description and an array of objects of class Parameter, together with other useful

information. Each parameter, in turn, is represented by a name, data type, descrip-

tion and a number identifying its position on the command line (see next section for

this last item); a UML class diagram is presented in Figure 27 below.

Figure 27 UML schema of metadata

Functional view

Generating the scenarios for an SP problem using the system presented, can be

seen as a three phases process, which imply some functionalities in the entities in-

volved (modelling system or scenario generator). This (somewhat simplified) analy-

sis leads to the definition of an interface between the modelling system and scenar-

io generators, which is now implemented and fully working.

`

109 | P a g e

1) Discovery / Self-description

Discovery is the process by means of which the system becomes aware of the avail-

able scenario generators; it requires the scenario generators to be self-descriptive,

functionality that makes use of the data structures defined previously in this sec-

tion.

Scenario Generator Modelling System

getName returns the name of the scenario

generator

obtainSGList gets the list of scenario

generators in a specified folder. Internally,

besides the obtained SGInformation,

stores the location of the file where the SG

is implemented

getDescription returns the description

of the scenario generator

getParameters returns the list of parame-

ters needed by the scenario generator

Table 13 Functions used for SG discovery

This functionality can be seen at work in Figure 28 below. The data displayed in the

window is generated automatically at application start-up, which is when the dis-

covery process is executed. To the left, the list of scenario generators; the names

are obtained calling the function getName of the libraries which implement the in-

terface. Once one is selected, the right side of the window is then populated: the

Description textbox displays the text returned by calling the function getDescrip-

tion while the Parameters section displays the information regarding all the enti-

ties received by calling the function getParameters.

`

110 | P a g e

Figure 28 SG discovery screenshot

2) Mapping / Interpreting

The second step is to create the map between random parameters and scenario

generators. At this point, all the information needed is in the modelling system; the

decision model defines the scenario generators assigned to the random parameters

through specific syntactic constructs, and specifies their parameters. The syntax is

briefly introduced in Section 4.6; here it is important to notice that, due to the run-

time availability of , the modelling system can check if a scenario generator with

the name specified in the decision model actually exists, and if the parameters that

are passed to it correspond to its expectations.

Once the parsing is done successfully, storing the mapping is trivial and the model-

ling system can switch to the next phase, which is the model generation part.

3) Generation of the scenario trees

For each mapping , the system has to call the specified scenario generator

with the indicated parameters. The usage of scenario generators that are unknown

to the modelling system has two issues: firstly it is impossible for the system to per-

form a validation of the parameters passed to the specific SG and secondly the

amount of data passed might be large (typically, a high volume of historical data

can be required). These two issues make unadvisable the use of function calls of the

`

111 | P a g e

form generate(): if an error in the parameters is present (i.e. type mismatch),

the function would just terminate with errors, and the scenario generator has to

include complicated error handling code. Thus a different approach has been cho-

sen: the scenario generators modules are required to expose the four functions:

bool setParameter(string name, object value);

bool Generate();

string getMessage();

ScenarioTree<double[]> getScenarioTree();

The behaviour is then the following:

1) For each parameter , the modelling system calls the function setPa-

rameter in the SG module, with the values available to the modelling sys-

tem.

a. If the returned value is true, then go to 1

b. If it is false, break and call the function getMessage, that will re-

turn an error message

2) The modelling system calls Generate

a. If the returned value is true, go to 3

b. If it is false, break and call the function getMessage, that will re-

turn an error message

3) Call the function getScenarioTree, which returns the generated data

in an appropriate data structure

4) Enumeration

One aspect remains to be covered, and has not been fully developed in the imple-

mentation yet: a scenario tree is generated by each scenario generator in the map-

ping , each corresponding to one or more random parameters’ realization along

the dynamic structure of the decision model. Considering that the scenario tree

structure is specified in the decision model, this implies that all these event trees

inherit the shape defined by it; the final decision problem is therefore a cross prod-

uct of all event trees, and the user has no direct control over it.

`

112 | P a g e

One possible approach is to allow the scenario generation library, which will have

then to become more than just a collection of interfaces and data types, to include

specific tree enumeration routines, possibly scenario reduction routines. This will

allow the library to pass back to the system a single tree which has the structure

specified by the model.

Another possible approach is similar to the previous one, except that the shape of

the returned tree is determined by the tree recombination or scenario reduction

routines of the SG Library. The tree needs not to be defined in the decision model;

this approach has the advantage that scenario reduction routines, or the scenario

generator itself, could decide how complex the tree should be to represent the un-

derlying distribution with a certain precision.

A third approach, which is the one at the moment implemented, is that all the gen-

erated trees are communicated back to the modelling system that creates the

recombined tree doing a simple cross product of the generated trees , thus . This

has the advantage of simplicity, but the sizes of the created trees increase very rap-

idly with the number of random parameters.

Implementation

This section presents some details of the implementation work done by the author,

taking into account all what examined so far.

The system is written using a .NET compliant language; therefore all the data struc-

tures and the interface have to be of that same kind. The scenario generators need

to implement the interface SGModule, which allows the system to recognize

them, get the meta-information and finally exploit their functionalities. The follow-

ing figure shows the interface, as implemented in a working system by the author

thesis.

`

113 | P a g e

Figure 29 Scenario Generator Interfaces

ISGModule

The interface that has to be implemented by any scenario generator to be usable by

SPInE is specified as follows:

string getName();

Return the name of the scenario generation module, to be displayed by the system

at runtime. Note that it is the identifier that the user will have to use to identify the

scenario generator in his models, so it has to be unique.

string getDescription();

Return a short text describing the SG, displayed by the system to guide the user.

Parameter[] getParameterList();

Return the list of the Parameters needed to the scenario generator. The list is in

form of an array of Parameter, where the class parameter is specified in Figure 27.

bool setParameter(string name, object value);

`

114 | P a g e

Set the parameter corresponding to name to the specified value. If the value is of

wrong type, throws TypeException.

string getMessage();

Return the internal error message, if any. It is called by the system after a failed

generation attempt to display the details of the error to the user.

bool Generate();

Generate the scenarios, returns true if successful, false otherwise. It can fail for a

number of reasons, the most common of which is the parameters being not well

set.

double[,] getScenario(int scenarioNumber);

Get a single scenario. Parameter scenarioNumber is the 0-based index of the de-

sired scenario. The returned array is to have the following dimensions [time, indi-

pendentvariables]. Optional.

double[, ,] getAllScenarios();

Get all the scenarios. The returned array is to have the dimensions [time, scenario,

index]. It is used if getScenarioTree() is not present or returns null.

General.ScenarioTree<double[]> getScenarioTree();

Get all scenarios in the ad hoc datastructure provided in SGHelper.dll. Preferred

method of comunicating scenario data.

ISGBridge

The second interface in the figure, which inherits from ISGenerator, has the

name ISGBridge. This is an extension to the system, which allows users to use

scenario generators that for various reasons cannot implement ISGModule (i.e.

they are not written in a .NET compliant language). This is achieved simply defining

a bridge (which implements ISGBridge) that has the ability to link to the non-

conform sub modules. An example of such a technology has been implemented,

that allows the system to connect to scenario generators built in MATLAB (see Ap-

pendix B). A description of functions defined in this interface follow:

`

115 | P a g e

bool BindToSG(string dllName);

Bind the bridge to a module. After a call to this function, with as a parameter the

name of a scenario generator module which is accessible by the bridge, the bridge

forwards all the ISGModule calls which inherits to that specific SG.

string[] getSubModulesList();

Return the names of the modules that can be parsed by the bridge. SPInE will try to

parse those libraries through the bridge in successive calls.

Figure 30, below, shows the sequence diagram of a typical session of scenario gen-

eration guided by the modelling system, supposing that the decision model con-

tains a random parameter that is mapped to an SG module which is called ARSce-

narioGenerator and that the correct parameters are passed to it.

Modelling System

GetSGList

AR Scenario Generator

Create

GetName

"ARScenarioGenerator"

GetParameters

Parameter[] List

SetParameter(tree, TreeStructure)

ok

SetParameter(p, 1)

ok

Generate

ok

GetScenarioTree()

generated ScenarioTree

Figure 30 Sequence of interactions MS-SG

Parameters List

Name Type Description

p Int Order of the desired

model

History String Name of file of his-

torical data

Tree TreeStructure Shape of the tree to

be generated

`

116 | P a g e

The table to the right of the figure shows the parameters list that is communicated

back from the scenario generator, meaning that these are the parameters that the

chosen SG will need before it can successfully start the generation procedure. After

the execution of the shown functions, the modelling system can generate the in-

stance of the chosen model. It is just an example of a successful execution of the

system; many possible errors have to be taken into account, and the real data

structures are here not fully specified.

4.6 Language constructs for the SG library

Language extensions to SAMPL language specifications to support the SG library

have been developed; they regard the declaration of random parameter that now

includes a string specifying the scenario generator to be used and its parameters.

The formal language specification is as follows: random parameter declarations

have a list of optional attributes, optionally separated by commas.

random param name aliasopt indexingopt , attributesopt , sgspecificationopt;

In our implementation we have introduced the last optional attribute, namely

sgspecification; the formal definition of a random parameter in SAMPL is reported

just for that part, the interested reader can refer to Appendix C for a full definition.

sgspecification:

sg name (parameterlistopt)

name: a string identifying a scenario generator in the library

parameterlist: comma separated list of parameters, the interpretation of
which is up to the external sg module specified by name

This specification differs from any existing AMPL construct as the correctness of the

model can be resolved just at runtime; the names of the available scenario genera-

tors, as well as their parameters, are indeed discovered by the system at each exe-

cution. If the random parameter specifies in the name part of the sgspecification

construct a scenario generator that is not available to the modelling system, the

error will be detected while parsing and reported. Where the required SG is availa-

ble, an inconsistency of type or number of its parameters is detected by the model-

`

117 | P a g e

ling system itself, that is at that point aware of the data requirements of each plug-

in in the SG library. Incongruent or wrong meaning of the data is conversely detect-

ed by the scenario generator itself and (hopefully) communicated back to the mod-

elling system which will report it to the user.

To further describe the behaviour of the system, the reader is put in the hypothet-

ical situation of the system correctly recognizing a scenario generator that returns

BrownianMotion as a name and the following to the system meta-information re-

lated queries:

 Parameter 1 Parameter 2 Parameter 3

Name TreeStructure NI HistDataFile

Type ScenarioTree int string

Description Shape of the tree to
be generated

Number of inde-
pendent variables

File containing the
historical data, CSV

IndexInLine -1 -1 -1

Table 14 Scenario generator example

A formally correct SAMPL declaration that makes use of the above scenario genera-

tor is:

random parameter price{product, time, s} sg BrownianMotion

(“..\Prices_FTSE100_first80.csv”);

It is worth noticing that out of the three parameters required by the scenario gen-

erator, the statement provides just one, namely “..\Prices_FTSE100_first80.csv”.

This is possible because some parameters are well known by the modelling system

and therefore can be omitted by the modeller. These are the tree structure, the

dimension of the current random vector, the members of its indexing set and so on;

the scenario generator can refer to these known parameters specifying pre-

determined names, which list is available in the scenario generator programmer’s

manual (Valente, 2010). These parameters are therefore not needed in the sgspeci-

fication string, and this can be noticed by the fact that the IndexInLine property of

those parameters, which identifies their position in the SAMPL sgspecification

string, has the value minus one.

`

118 | P a g e

4.7 Conclusions

Devising the procedures to generate forecasts of random parameters is a funda-

mental step in the process of implementing an SP model; this is known as Scenario

Generation. There are many methodologies to do so but every problem to be mod-

elled can have its unique procedure for generating random parameters; it seemed

therefore a logical necessity to have the means to integrate the scenario generators

into the decision model. In this chapter we have described various methodologies

used for scenario generation and have illustrated the techniques to seamlessly in-

corporate scenario generators into the modelling system (Sections 4.4 and 4.5).

`

119 | P a g e

Chapter 5 A workflow approach to the

investigation of SP models

Decision making under uncertainty by applying the stochastic programming ap-

proach is inherently a complex task. The problem owner must come up with an ap-

propriate decision model, a task which is difficult as such; furthermore, he has to

specify estimates of the distributions of the random parameters and discretize

them, balancing the fineness of the discretization with the resulting computational

difficulty. Due to these modelling and computational challenges, making all these

modelling choices is not obvious, leading therefore to a strong need of evaluating

the performance of the chosen models/techniques in respect to the real world

problem. This we call performance evaluation/investigation, and involves the use of

different techniques depending on the application domain, the entity under test

and the available data. Most of these testing procedures can be schematized via an

appropriate organization of a few kinds of actions, applied to different entities. Tak-

ing into account this consideration, the representation of these procedures can

make use of workflows and the implementation can follow the same paradigm. In

this chapter we focus on the definition and application of workflows for investiga-

tion of SP problems. A brief introduction to workflows is given in section 5.1, which

is literature review aimed to introduce the concepts needed to formalize the work-

flows as used in this thesis; a bottom-up description of the activities which compose

an investigation workflow follows in section 5.3. Section 5.4 gives examples of the

use of workflows to represent real life investigation and decision evaluation prob-

lems.

The author’s contributions are the idea of applying the workflow formalism to the

SP modelling process, in particular to the simulation/validation stage, and the archi-

tecture and choice of the atomic operations. Moreover, the development (not yet

finished) of the modules and of the controlling GUI, together with the collection,

understanding and categorization of simulation techniques/procedures are part of

the present efforts of the author.

`

120 | P a g e

5.1 Workflows and workflow management systems

Workflow is a word that has different meanings, depending on the context in which

it is used. The first use of it can be traced to the beginning of the last century,

where it represented a study to achieve rational organization of work in manufac-

turing processes. The flows under study at these early times were mainly flows of

mass and energy (physical resources), although conceptual models of queuing sys-

tems and even information flows were already starting to be developed. Nowadays,

a workflow is a pattern of activity enabled by systematic organization of resources,

roles and flows into a work process that can be documented, learned and partially

quantified. This is achieved representing the process through a series of activities,

or atomic operations, interconnected by resource or information flows and whose

sequence and coordination is determined by control flows. To support these efforts

in rationalization, a formalism has to be introduced, which could capture the pro-

cess structure in the real world and translate it, with minimum ambiguities, into IT

system requirements. Despite the interest in the area, there is still little consensus

about its conceptual and formal foundations: each WFMS implement its own lan-

guage and features, with various syntactic restrictions, and studies have been made

to understand to what extent these differences are fundamental in nature. A possi-

ble formalization is given below (van der Aalst et al., 1994).

Definitions

Task Piece of work to be done by one or more resources in a time interval. It is con-

sidered atomic (not divisible in smaller tasks). The requirements are given in terms

of resource classes.

Resource Any asset able to carry a work unit (or task). A resource doing a task is oc-

cupied for the time interval needed to perform it, but may be assigned to two or

more tasks at the same time.

Resource class A set of resources.

Document The input or output of a task, as far as it is relevant to the workflow

management system.

`

121 | P a g e

Resource Manager Entity which controls the allocation of resources to tasks.

Procedure Partially ordered set of control activities, tasks, resource classes and

(sub)procedures. The ordering models the order in which the composing entities

have to be performed.

Control activity Specifies the routing of the work within a procedure, and the syn-

chronisation of tasks.

Job A process modelling the execution of an amount of work according to a given

procedure. It is basically an “instance” of a procedure. It is characterized by a se-

quence of states.

Job state Contains all the relevant information of the history of the job at that mo-

ment, a job identification and some job attributes

Job attributes Are used to determine the routing of a job

Workflow is a partially ordered set of jobs

Workflow management system: a software that manages workflows. It provides

the following functions: (i) definition of tasks, procedures and jobs (ii) processing of

the information that is needed to perform the tasks which compose the jobs (iii) the

management of resources (iv) routing of job information between procedures and

resources.

A common approach in the literature to formalize these concepts and to model

workflows and workflow management systems is through Petri nets, in particular

Petri nets extended with ‘colour’ and ‘time’. For an introduction to Petri nets, see

(Petri & Reisig, 2008), cured by Carl Adam Petri himself. These extensions to Petri

nets allow to assign a ‘colour’ to a token, which can be used to identify it, and ‘time’

constraints to transitions (Van Hee, 1994). Control activities will be modelled by

transitions, jobs are represented by tokens.

A task can be modelled as shown in Figure 31 below:

`

122 | P a g e

i p1

S1

p2 p3 p4 p5 o

S2 S3 S4

o i o i o

RequestResource
ResourceAssigned

ExecuteTask
FinishTask

ReleaseResource

BeginTask TerminateTask

Figure 31 Petri net model of a task

where the empty circles represent places (or states), the greyed circles are con-

nectors which allow inter-system communication (the letters i and o represent the

direction) and the rectangles represent transitions (or procedures). A task com-

municates to a procedure (via the connectors BeginTask and TerminateTask), to

the resource manager (via RequestResource, ResourceAssigned and Re-

leaseResource) and to a resource (via ExecuteTask and FinishTask). Every task can

be modelled in this way, which captures the mechanism by which a task is included

in a procedure and by which it can acquire the resources it needs to execute its

work item and make it available to the system when it doesn’t need it anymore. In

the same way, it is possible to model the procedures, the resource manager and the

whole WFMS (WorkFlow Management System). Going in further details on these

steps is well beyond the scope of this thesis, in which another, less descriptive but

easier formalization is used to describe the workflows. The formalization is shown

in section 5.2.

In their broad and general scope, workflows are used to represent business pro-

cesses, which are supported by the WFMS. The IT structure to represent and con-

trol the actual processes is often organized in a similar way, so that a modification

of the business process leads to changes in the IT system which can be inferred di-

rectly from the changes in the process itself. In recent times, considerable devel-

opments have taken place in IT based MFMS. These developments are well de-

scribed in (Khoshafian & Buckiewicz, 1995), and lead to substantial formalization

and implementation work and significant applications in the management sciences.

`

123 | P a g e

5.2 Chosen workflow formalisation

The kind of processes that the implemented system captures are not very complex

at this stage, and a somewhat simple definition of the workflows suffices to de-

scribe them. I have chosen the following syntax, which ignores the allocation of the

resources altogether, as given in (Kiepuszewski et al., 2000):

Definition 1 A workflow consists of a set of process elements , and a transition

relation between process elements. The set of process elements can

be further divided into a set of or-joins , a set of or-splits , a set of and-joins ,

a set of and-splits , and a set of activities .

The outgoing transitions of or-splits may have predicates assigned to them through

a function ⋂ → . Activities may have a name assigned to

them through the partial function . Activities without names are

referred to as null activities. And-joins and or-joins should have an outdegree of at

most one, and-splits and or-splits should have an indegree of at most one, and all

activities have an indegree and outdegree of at most one. Finally, we call process

elements with an indegree of zero initial items and conversely, process ele-

ments with an outdegree of zero – final items .

Giving a full semantic to this syntax is out of the scope of this thesis. In this thesis

we focus on some elementary workflow facilities, and giving a semantic to these

facilities can be done mapping the introduced lexical entities to elementary Petri-

nets as shown in (Van Der Aalst & Ter Hofstede, 2000), (Salimifard & Wright, 2001).

The formalization introduces the concept of structured workflow, which is restricted

in a number of ways, but is satisfies all our modelling needs:

Definition 2 A structured workflow model (SWM) is inductively defined as follows.

1. A workflow consisting of a single activity is a SWM. This activity is both initial

and final.

A
I(X)
F(X)

Figure 32 Single activity SWM

`

124 | P a g e

2. Let X and Y be SWMs. The concatenation of these workflows, where the final

activity of X has a transition to the initial activity of Y, then also is a SWM.

The initial activity of this SWM is the initial activity of X and its final activity

is the final activity of Y.

F(X)

I(X)
I(SWM)

F(Y)
F(SWM)

I(Y)

Figure 33 Concatenation of SWMs

3. Let be SWMs and let j be an or-join and s be an or-split. The work-

flow with as initial activity s and final activity j and transitions between s and

the initial activities of and between the final activities of and j, is then

also a SWM. Predicates can be assigned to the outgoing transitions of s. The

initial activity of this SWM is s and its final activity is j.

j
F(SWM)

S
I(SWM)

F(X1)

I(X1)

F(Xn)

I(Xn)

Figure 34 SWM with join and split activities

`

125 | P a g e

4. Let be SWMs and let j be an and-join and s an and-split. The work-

flow with as initial activity s and final activity j and transitions between s and

the initial activities of , and between the final activities of and j,, is then

also a SWM. The initial activity of this SWM is s and its final activity is j (see

Figure 34).

5. Let X and Y be SWMs and let j be an or-join and s an or-split. The workflow

with as initial activity j and as final activity s and with transitions between j

and the initial activity of X, between the final activity of X and s, between s

and the initial activity of Y, and between the final activity of Y and j, is then

also a SWM. The initial activity of this SWM is j and its final activity is s.

F(X)

I(X)

I(Y)

F(Y)

j
I(SWM)

s
F(SWM)

Figure 35 SWM with loops

This syntax is proven to be equipotent to many WFMS languages, and it allow the

expression of control flow patterns like sequences, parallel splits, synchronization in

a formally easy, if not concise, fashion. Lists of control flow patterns are given in

(Wohed et al., 2005) and once again, for the scope of this thesis, a comprehensive

definition seems verbose and unnecessary.

Because of their peculiar explicative nature, workflows are often represented in a

graphical way, assigning different shapes to different conceptual entities. This is the

approach that has been chosen to describe the simulation framework design which

`

126 | P a g e

is the topic of this chapter; the diagrams are simplified, ignoring pure computer sci-

ence components to better highlight the entities which are related to the stochastic

programming area.

Workflow application is a software application with automates a process; they can

be developed in any programming language but specialized workflow languages do

exist. These language include the XML based XPDL (Workflow Management

Coalition, 2010), YAWL (YAWL Foundation, 2010) and BPEL (Organization for the

Advancement of Structured Information Standards, 2010) with his various imple-

mentations. An alternative approach is to use specialized libraries, like Windows

Workflow Foundation, which provide functionalities to control the execution of the

activities coded in any .NET language. The choice of this last method to develop the

software framework is due to the availability of a re-hostable workflow designer,

which can be personalized and embedded in the application, giving the user the

ability to graphically create his workflows and relying on the software framework

for their execution.

5.3 Atomic operations in an investigation framework

Investigation, or decision evaluation, of the parts of an SP model (decision model

and its related scenario generators) can be often modelled via a series of intercon-

nected activities (atomic operations). This is due to the repetitive nature, in an ab-

stract point of view, of the procedures involved. The author’s method to approach

the problem of creating a tool to support investigation was to analyse some meth-

odologies in an operational perspective, identifying their common constituents and

recurring types of data that must be handled. The next step was to translate these

components into workflow activities that the user of the system can interconnect

to create his own simulation/investigation framework. This is an extension to the

approach of this work’s predecessors (Di Domenica, 2005), which examined the

need of the tools (scenario generators and decision model) to perform these analy-

sis, but not a user accessible way to organize them to automate the process. A bot-

tom-up view of the results of this analysis is set out below, and their application fol-

lows in the next sections.

`

127 | P a g e

General considerations

Normally, the exploitation of a workflow is a two-stage process: firstly the user de-

signs the workflow, in the same way a user would write a script file, then the user

starts the execution of the workflow that has been defined. Due to the particular

domain of this workflow meta-model, a three stage procedure has been devised:

design, optimization model parsing and execution. The added phase, namely opti-

mization model parsing is not explicitly done by the user; it is instead performed

“under the hood” by the system to assist the user during the design phase. More

precisely:

Design is responsibility of the user, who places the blocks corresponding to the ac-

tivities into a drawing surface, connects them and specifies the parameters which

are needed to the specific activity.

Optimisation model parsing is an operation done by the system at design time, and

occurs automatically when the user places some activities on the drawing surface,

or when the user specifies some parameters. It provides the system with some in-

formation about the model used which can help the user in filling the properties of

the remaining activities. It is not related to workflow parsing or validation in any

way, as these functionalities are provided by the framework (Microsoft Workflow

Foundation) which hosts the execution at runtime; indeed, this functionality is exe-

cuted by SPInE (the system), which reads the specified model file and returns these

quantities to the workflow designer.

Execution is initiated by the user, and corresponds to the sequential execution of all

the activities specified in the workflow.

In the following figures, the dotted lines identifies data passed at design time, the

normal lines data which is passed at execution time and the man shaped icon iden-

tifies input which is required from the modeller. I follow, whereas possible, the no-

tation introduced in Chapter 4.

`

128 | P a g e

1) Choose decision model

At design time, it allows the choice of the decision model file to be used in the next

blocks. It automatically parses the model, getting ̂, and the vector of deci-

sion variables grouped by algebraic declaration and by stage. This information is

communicated, still at design time, to the next connected blocks. At execution time,

this block simply passes the algebraic model m to the next modules.

2) Generate Scenarios

At design time, it allows the definition of the mapping → between random

parameters and scenario generators, and of ̂, the set of sets of parameters needed

by the chosen scenario generators. In the execution phase, the block generates the

set of scenarios needed by the model, accordingly to the mapping defined.

Decision Model

Decision Model , ̂,

m

 ̂ historical data

 ̂ dimensions of random vectors

 random parameters in the decision model

 scenario tree shape

m algebraic decision model

Figure 36 Activity 1: Choose decision model

Generate Scenarios

 ̂

 , ̂

m,

 generated scenario trees

 mapping between random parameters
and scenario generators

 ̂ set of parameters required by the chosen
scenario generators

m

Figure 37 Activity 2: Generate Scenarios

`

129 | P a g e

3) Solve

At design time, it allows the selection of a solution algorithm and its controlling pa-

rameters; at execution time, it generates an instance of the stochastic model m on

the sets of scenarios that are provided as an input, solves it and gives the ob-

jective function value Z and the solution vector . The optional input , if present,

fixes the specified variables to the specified values.

4) Fix Variables

At design time, this activity receives the two vectors of decision variables

 (input and output respectively) from two Decision Model activities, and the

user inputs a injective partial mapping → that defines which variables in

 must be fixed, and to the value of which . During the execution phase, it re-

ceives the solution vector
 and outputs a vector of variables

 that can be used

into a Solve activity.

Solve

Z,

 solution vector

Z objective function value

 m,

Figure 38 Activity 3: Generate and solve model

Fix

 vector of input variables with their values

 vector of output variables with their values

 mapping between variables

 variable vectors, algebraic

Figure 39 Activity 4: Fix variables

`

130 | P a g e

5) Collect Information

At execution time, this activity stores the information it receives as input. If in a

loop, it accumulates all the values being passed to it, to then release them to the

next activity at the end of the loop. The outputs are therefore the collections ̂ and

 ̂ of objective function values and solution vectors.

6) Execute Analysis

The result of an investigation is usually an analysis of the distribution of the solu-

tions of a model problem over different runs, or a comparison of solutions obtained

using various decision models. This is performed by this activity, where the user

chooses at design time which kinds of analysis are to be undertaken and displayed.

Collect

 solution vector

 ̂ collection of solution vectors

Z objective function value

 ̂collection of objective values

Z,

 ̂ ̂

Figure 40 Activity 5: Collect information

Analyze and Display

 ̂ collection of solution vectors

 ̂collection of objective values

 ̂ ̂

Figure 41 Activity 6: Result Analysis

`

131 | P a g e

5.4 Example Cases

The evaluation of a decision model, a randomness model or a decision is a crucial

step to decide their applicability to real life problems. There are various types of

decision evaluation techniques; not all of them are expressible using the proposed

workflow formalism, and some of them overlap, but they are here reported for

completeness.

 In-sample testing the most obvious kind of testing, it evaluates how the

model/decision under test performs within the original input data

 Out-of-sample conceptually similar to the in-sample testing, but it evaluates

the behaviour against new data, that is, information that was not used to

make the decision under test

 Back testing the model/decision is evaluated against past historical data,

not used to obtain it, to evaluate how it would have performed in that past

scenario

 Stress testing the model/decision is tested under “extreme” circumstances

(i.e. very low interest rates in financial models, extreme weather events for

energy models, multiple breakdowns for fleet allocation problems), prefera-

bly not fully captured by the data used to calculate the decision.

 Scenario analysis multiple decisions, taken using different scenarios, are

evaluated against each other’s input data. If used in a stochastic framework,

it gives a hint on how much the combination scenario generator/decision

model is stable, and whether its performance is dependent on the particular

run

 What-if analysis evaluation scenarios are explicitly constructed to represent

some hypothesis on the future, and the decision is evaluated against them

In general, decision evaluation is a procedure that can be described as a two step

process (Di Domenica, 2005), see Figure 42:

Decision making (ex ante)

 Select the scenario generators for the decision model

`

132 | P a g e

 Solve the decision model and obtain the solution vector

Decision evaluation (ex post)

 Select the scenario generators for the decision model

 Fix a subset of the decision variables (usually the first stage ones) to the

values obtained in the ex ante execution

 Solve the resulting decision model

 Calculate statistical, stochastic and risk measures

Figure 42 Decision evaluation schema

Various refinements and applications of these general guidelines can be devised;

some are introduced as use cases below, illustrating how they can be implemented

through the workflow based investigation framework the author is proposing.

1) SG stability test – In sample (see equation 4.12)

As mentioned in Section 4.3, there are desirable properties that a scenario genera-

tor should present, to be practically useful (Kaut & Wallace, 2003). The first one is in

sample stability, which is an indicator of how the performance of the combination

of scenario generator and decision model varies over different runs. It can be cap-

tured in a run time workflow as in Figure 43 below.

`

133 | P a g e

The user experience while designing the workflow follows; while placing the various

blocks, the user is asked to choose:

1. The decision model to be used (a model expressed in SAMPL)

2. The scenario generator to be used, and which parameter in the model is it

bound to (a scenario generator part of the library and a random parameter

specified in the algebraic model of point 1)

3. The solution method to be used

4. The data to collect (objective function value only or objective function and

decision vector)

5. Which kind of analysis to perform (in this case, the distribution of the objec-

tive function values)

Information that can be obtained automatically, like the list of random parameters

in the model, the list of scenario generators and the list of solvers are obtained by

the system at parsing time (part of the design phase), therefore are presented to

the user to ease the choice.

2) SG stability test – out of sample

A second desired property of a scenario generator is the out of sample stability,

which evaluates the performance of the combination scenario generator/decision

model over real world scenarios, which are historical data or a large scenario set

which is believed to accurately capture the underlying uncertainty.

Choose

Decision Model

Generate

Scenarios

Solve Collect

Analyze

repeat n times

1

2 3 4

5

Figure 43 SG in sample stability workflow

`

134 | P a g e

In this case the user experience is:

1. The decision model to be used (a model expressed in SAMPL)

2. The scenario generator to be evaluated, and which parameter in the model

is it bound to (a scenario generator part of the library and a random param-

eter specified in the algebraic model of point 1)

3. The solution method to be used

4. The decision variables to be fixed, often just the first stage variables

5. The scenario generator which is believed to be a good representation of real

world – can be historical data as a special case

6. The solution method to be used

7. The data to be collected (just the objective function values)

8. Which kind of analysis to perform (in this case, the distribution of the objec-

tive function values)

3) Out of sample testing / Backtesting

To evaluate a decision model by these paradigms, we evaluate the behaviour of the

solutions obtained on data sets which were not used in the original decision making

(in case of out of sample testing) or on pure historical data (in case of backtesting).

The resulting workflow is drawn in Figure 45, the only difference between the two

methods is in that in case of backtesting, the second scenario generator is forced to

be historical data.

Choose

Decision Model

Generate

Scenarios

Solve

Analyze Fix

Generate

Scenarios

Solve Collect

1 2

3

4

5 6 7

8

Figure 44 SG out of sample stability workflow

`

135 | P a g e

In this case the user has to choose:

1. The decision model to be used (a model expressed in SAMPL)

2. The scenario generators and their binding to the random parameters in the

model

3. The solution method to be used

4. The decision variables to be fixed, often just the first stage variables

5. Scenarios generated with different parameters, or historical data

6. The solution method to be used

7. The data to be collected (often a subset of decision variables)

8. Which kind of analysis to perform

5.5 Conclusions

Evaluating the performance of models becomes of paramount importance if the

assumptions underlying them are not certain. In Stochastic Programming, this is by

definition the case, hence the strong need of simulation and testing. In this chapter

we have shown a formalisation of simulation procedures using structured work-

flows. This formalisation forms the backbone of the further work items recom-

mended to extend the modelling system with graphical facilities to easily represent

and efficiently execute model investigation procedures.

Choose

Decision Model

Generate

Scenarios

Solve

Analyze

Fix

Generate

Scenarios

Solve Collect

1 2

3

4

5 6 7

8

repeat

Figure 45 Out of sample and backtesting workflow

`

136 | P a g e

Chapter 6 Conclusions

6.1 Summary

In this thesis, we investigated the problem of decision making under uncertainty; a

number of alternative paradigms are available for such problems, and we set the

focus on Stochastic Programming (SP) and Robust Optimization (RO). We reported

the mathematical formulation of these modelling approaches, and listed their ap-

plications, which comprise many different areas. In SP modelling, the modelling of

the uncertain parameters is called scenario generation, and an overview of the

most common methods has been given. SP and RO are computational methods and

they need to be supported by appropriate software applications. We have there-

fore proposed a possible architecture of a software tool supporting SP and RO, set-

ting the scope for the rest of the thesis, and linking the modules which are part of

the architecture to the steps of SP modelling and solving. The steps we have con-

sidered are: decision modelling, scenario generation, solution, and performance

evaluation/investigation.

An overview of the currently available software tools for modelling SP has been giv-

en in chapter two, and their peculiarities and shortcomings have been identified.

Although it is possible to express and solve SP decision models using software for

deterministic optimization by exploiting the deterministic equivalent formulations,

it is shown to be unpractical from the modeller’s perspective. We have highlighted

this fact presenting the same decision model using the syntaxes of AMPL (general

purpose algebraic modelling language) and SAMPL (specialized for SP).

In chapter three, we have shown that representing an instance of an SP problem

using conventional means is very inefficient memory-wise, due to the extensive da-

ta replication that this approach implies. A second drawback of this approach in

model instance representation is that it becomes impossible to automatically match

and apply existing decomposition algorithms that exploit the peculiar structure of

SP problems. The performance gain of such algorithms has been reported in a se-

ries of benchmark problems, which have been solved using the decomposition

`

137 | P a g e

based solver that has been developed by the research team in CARISMA. The link

between model types, solution algorithms and the sub-solvers these algorithms re-

quire is presented, and the implementation of the automated functionality to

choose the best available solution method for the model currently at hand has been

briefly presented.

The process of generating the values for the uncertain parameters typical of an SP

problem, or scenario generation, has been analysed in chapter four. Some desirable

properties, like correctness and stabilities are introduced, that make it possible to

evaluate the quality of the scenario generator method for a given decision model.

Aiming towards the definition of requirements for the scenario generation module

of an integrated SP software system, we then presented a series of abstractions of

the process of generating scenarios, and of the connections between those models

of randomness and the decision model. The result of this analysis has been the ba-

sis for our implementation of a scenario generators library, and the consequent

language extensions to support it.

In the penultimate chapter, we have introduced the concept of workflow, and some

of its applications in various fields. Workflows are organized flows of activities; we

have defined a small set of activities that can be used to define investiga-

tive/decision evaluation processes. Finally, we have presented some typical investi-

gation frameworks and represented them in our formalism, therefore validating our

workflow-based approach.

6.2 Contributions of the thesis

In this thesis we have considered a number of important research problems in the

domain of decision making under uncertainty. We have also collected very recent

research results addressing such problems. An important contribution reported in

this thesis is the innovative way these research results have been brought together

to design and construct a system which becomes a powerful tool for the OR ana-

lysts.

`

138 | P a g e

The research problems which have been considered and how we have addressed

these in our integrated modelling system are listed below.

(i) the modelling of the random behaviour of the model parameters

This step is inherent to the chosen modelling paradigm, and cannot be

avoided. However, the problem owner can benefit by the introduction of

the scenario generators library, which collects reusable scenario generation

methods, that can be extended due to its modular design

(ii) the interfacing of the decision model with the model of randomness

This problem is analysed in depth in this thesis through formalization of a

scenario generator module and its link to the decision model. Operatively,

the proposed scenario generators library interface tackles most of the prob-

lems arising in this respect

(iii) the difficulty in formulating and processing SP model instances

We have identified a number of recently proposed solution algorithms

which can process different families of SP models. The combination of the

proposed language constructs and the designed software tool can make use

of these algorithms using compact instance representation formats, facili-

tating the formulation and solution procedure

(iv) the requirements for result analysis and performance evaluation through

simulation techniques

The workflow approach proposed in this thesis captures most of the com-

mon simulation frameworks. This approach has a well-structured and natu-

ral computational structure and avoids the need of programming compli-

cated procedures. It is modular in design and can encapsulate new tools

and algorithms, making the most of the information that is available to the

system at each stage of the process

`

139 | P a g e

6.3 Future work

Although the experience with the system developed by the author has been posi-

tive so far, there are still a number of open problems and chances to develop fur-

ther. They are listed below, categorized by area of research.

1. Model generation / Language features

a. Rewrite the application as independent column generator (so far it

depends on AMPL for generating the scenario sub problems). This

would greatly improve the speed of generation, together with sys-

tem stability;

b. Add language support for constraints which sums across scenarios

(i.e. to allow CVaR-like measures to be assigned to variables with

constraints).

2. Scenario Generation

a. Introduce language features to allow AMPL parameters to be used in

SG specification statements (depends on 1.a);

b. Allow multiple scenario generators to be used in multistage models.

This is a hard problem, as the combination of scenarios is very prob-

lem dependent and so far the author was unable to find a common

methodology;

c. Research into the possibility of introducing already made sampling

or clustering blocks in the scenario generator library functionalities,

to allow automatic sampling from time series.

3. Workflow investigation framework

a. Complete the development of the described functionalities;

b. Extend functionalities (by adding other atomic operations) to be able

to represent increasingly complicated investigation techniques.

`

140 | P a g e

References

[1] Alonso-Ayuso, A., Escudero, L., Garín, A., Ortuno, M. & Pérez, G., 2003.

An approach for strategic supply chain planning under uncertainty based

on stochastic 0-1 programming. Journal of Global Optimization, 26,

pp.97--124.

[2] Anon., 2010. NETLIB library. [Online] Available at:

http://www.netlib.org/lp/index.html.

[3] Ansley, C.F. & Kohn, R., 1986. A note on reparameterizing a vector

autoregressive moving average model to enforce stationarity. Journal of

Statistical Computation and Simulation, 24, pp.99--106.

[4] Ariyawansa, K. & Felt, A.J., 2004. On a new collection of stochastic linear

programming test problems. INFORMS Journal on Computing, 16, pp.291-

-299.

[5] Arriola, L. & Hyman, J.M., 2009. Sensitivity Analysis for Uncertainty

Quantification in Mathematical Models. In Mathematical and Statistical

Estimation Approaches in Epidemiology. Springer Netherlands. pp.195--

247.

[6] Artzner, P., Delbaen, F., Eber, J.M. & Heath, D., 1999. Coherent measures

of risk. Mathematical Finance, 9, pp.203--228.

[7] Bai, D., Carpenter, T. & Mulvey, J., 1997. Making a case for robust

optimization models. Management Science, 43, pp.895--907.

[8] Beasley, J., 1987. An algorithm for set covering problem. European

Journal of Operational Research, 31, pp.85--93.

[9] Beasley, J. & Jornsten, K., 1992. Enhancing an algorithm for set covering

problems. European Journal of Operational Research, 58, pp.293--300.

http://www.netlib.org/lp/index.html

`

141 | P a g e

[10] Beasley, J., Sonander, J. & Havelock, P., 2001. Scheduling aircraft landings

at London Heathrow using a population heuristic. Journal of the

Operational Research Society, 52, pp.483--493.

[11] Benders, J., 1962. Partitioning procedures for solving mixed-variables

programming problems. Numerische Mathematik, 4, pp.238--252.

[12] Ben-Tal, A. & Nemirovski, A., 1998. Robust convex optimization.

Mathematics of Operations Research, pp.769--805.

[13] Ben-Tal, A. & Nemirovski, A., 1999. Robust solutions of uncertain linear

programs. Operations Research Letters, 25, pp.1--14.

[14] Ben-Tal, A. & Nemirovski, A., 2000. Robust solutions of linear

programming problems contaminated with uncertain data. Mathematical

Programming, 88, pp.411--424.

[15] Bertsimas, D. & Sim, M., 2004. The price of robustness. Operations

Research, 52, pp.35--53.

[16] Birge, J.R., 1985. Decomposition and partitioning methods for multistage

stochastic linear programs. Operations Research, 33, pp.989--1007.

[17] Birge, J.R., 1997. Stochastic programming computation and applications.

INFORMS Journal on Computing, 9, pp.111--133.

[18] Birge, J.R., Dempster, M.A., Gassmann, H.I., Gunn, E.A., King, A.J. &

Wallace, S.W., 1987. A standard input format for multiperiod stochastic

linear programs. COAL newsletter, 17, pp.1--19.

[19] Birge, J.R. & Louveaux, F., 1997. Introduction to stochastic programming.

Springer Verlag.

[20] Birge, J.R. & Qi, L., 1988. Computing block-angular Karmarkar projections

with applications to stochastic programming. Management Science, 34,

pp.1472--1479.

`

142 | P a g e

[21] Bisschop, J.J., 1986. A priori Model Reduction and Error Checking in

Large-Scale Linear Programming Applications. IMA Journal of

Management Mathematics, 1, pp.211--224.

[22] Bisschop, J.J. & Entriken, R., 2009. AIMMS: The modeling system, version

3.9. Manual. Haarlem, The Netherlands: Paragon Decision Technology.

[23] Bixby, R.E., Ceria, S., McZeal, C.M. & Savelsbergh, M.W., 1998. An

updated mixed integer programming library: MIPLIB 3.0. Optima, 58,

pp.12--15.

[24] Bollerslev, T., 1986. Generalized autoregressive conditional

heteroskedasticity. Journal of econometrics, 31(3), pp.307--327.

[25] Bonami, P. & Lejeune, M., 2009. An exact solution approach for portfolio

optimization problems under stochastic and integer constraints.

Operations Research, 57, pp.650--670.

[26] Box, G.E., Jenkins, G.M. & Reinsel, G.C., 1976. Time series analysis:

forecasting and control. Holden-day San Francisco.

[27] Brooke, G., Kenderick, D., Meeraus, A. & Rosenthal, R., 2008. GAMSL a

user's guide. Manual. Washington, DC, USA: GAMS Development

Corporation.

[28] Brown, R., 1828. XVII. A brief account of microscopical observations made

in the months of June, July and August 1827, on the particles contained in

the pollen of plants; and on the general existence of active molecules in

organic and inorganic bodies. Philosophical Magazine Series 2, 4(21),

pp.161-73.

[29] Buchanan, C., McKinnon, K. & Skondras, G., 2001. The recursive definition

of stochastic linear programming problems within an algebraic modeling

language. Annals of operations research, 104, pp.15--32.

`

143 | P a g e

[30] Casey, M.S. & Sen, S., 2005. The scenario generation algorithm for

multistage stochastic linear programming. Mathematics of Operations

Research, 30, pp.615--631.

[31] Charnes, A. & Cooper, W., 1959. Chance-constrained programming.

Management Science, 6, pp.73--79.

[32] Choi, I.C. & Goldfarb, D., 1993. Exploiting special structure in a

primalâ€”dual path-following algorithm. Mathematical Programming, 58,

pp.33--52.

[33] Colombo, M., Grothey, A., Hogg, J., Woodsend, K., Gondzio, J. &

Edinburgh, S., 2009. A Structure-Conveying Modelling Language for

Mathematical and Stochastic Programming. Technical Report. Edinburgh,

Scotland: University of Edinburgh.

[34] Consigli, G. & Dempster, M.A., 1998. Dynamic stochastic programmingfor

asset-liability management. Annals of Operations Research, 81, pp.131--

162.

[35] Dantzig, G.B., 1955. Linear programming under uncertainty. Management

Science, 1, pp.197--206.

[36] Dempster, M., 1988. On stochastic programming. II: Dynamic problems

under risk. Stochastics, 25, pp.15--42.

[37] Dentcheva, D., Prékopa, A. & Ruszczynski, A., 2000. Concavity and

efficient points of discrete distributions in probabilistic programming.,

2000. Springer.

[38] Dentcheva, D. & Ruszczynski, A., 2006. Portfolio optimization with

stochastic dominance constraints. Journal of Banking & Finance, 30,

pp.433--451.

`

144 | P a g e

[39] Di Domenica, N., 2005. Stochastic Programming and scenario generation:

decision modelling simulation and information systems perspective. PhD

Thesis. London: Brunel University.

[40] Di Domenica, N., Lucas, C., Mitra, G. & Valente, P., 2009. Scenario

generation for stochastic programming and simulation: a modelling

perspective. IMA Journal of Management Mathematics, 20(1), pp.1--38.

[41] Dominguez-Ballesteros, B., Mitra, G., Lucas, C. & Koutsoukis, N., 2002.

Modelling and solving environments for mathematical programming

(MP): a status review and new directions. The Journal of the Operational

Research Society, 53, pp.1072--1092.

[42] Dupačová, J., 2002. Applications of stochastic programming:

Achievements and questions. European Journal of Operational Research,

140, pp.281--290.

[43] Dupačová, J., Consigli, G. & Wallace, S.W., 2000. Scenarios for multistage

stochastic programs. Annals of Operations Research, 100, pp.25--53.

[44] Dupačová, J., Consigli, G. & Wallace, S.W., 2000. Scenarios for multistage

stochastic programs. Annals of Operations Research, 100, pp.25--53.

[45] Dupačová, J., Gröwe-Kuska, N. & Römisch, W., 2003. Scenario reduction

in stochastic programming. Mathematical Programming, 95, pp.493--511.

[46] Efron, B., 1979. Bootstrap methods: another look at the jackknife. The

Annals of Statistics, 7, pp.1--26.

[47] Efron, B. & Tibshirani, R.J., 1997. An introduction to the bootstrap.

Chapman & Hall.

[48] Einstein, A., 1906. Über die von der molekularkinetischen Theorie der

Wärme geforderte Bewegung von in ruhenden Flüssigkeiten

suspendierten Teilch. Annalen der Physik, 8, pp.549-60.

`

145 | P a g e

[49] Ellison, E. & Mitra, G., 1982. UIMP: user interface for mathematical

programming. ACM Transactions on Mathematical Software (TOMS), 8,

pp.229--255.

[50] Ellison, F., Mitra, G.P.C. & Zverovich, V., 2009. FortSP: A Stochastic

Programming Solver. Manual. London: OptiRisk Systems OptiRisk

Systems.

[51] Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with

estimates of the variance of United Kingdom inflation. Econometrica:

Journal of the Econometric Society, pp.987--1007.

[52] Engle, R.F. & Granger, C., 1987. Co-integration and error correction:

representation, estimation, and testing. Econometrica, 55, pp.251--276.

[53] Entriken, R., 2001. Language constructs for modeling stochastic linear

programs. Annals of Operations Research, 104, pp.49--66.

[54] Ermoliev, Y. & Wets, R.J., 1988. Stochastic programming, an introduction.

Numerical Techniques for Stochastic Optimization, pp.1--32.

[55] Escudero, L., Galindo, E., Garcia, G., Gomez, E. & Sabau, V., 1999.

Schumann, a modeling framework for supply chain management under

uncertainty. European Journal of Operational Research, 119, pp.14--34.

[56] Escudero, L.F. & Monge, J.F., 2008. A model for risk minimisation on

water resource usage failure. International Journal of Risk Assessment

and Management, 10, pp.386--403.

[57] Escudero, L., Salmeron, J., Paradinas, I. & Sanchez, M., 1998. SEGEM: A

simulation approach for electric generation management. IEEE

transactions on Power Systems, 13, pp.738--748.

[58] Fábián, C.I., 2000. Bundle-type methods for inexact data. Central

European Journal of Operations Research, 8, pp.35--55.

`

146 | P a g e

[59] Fábián, C.I., Mitra, G. & Roman, D., 2009. Processing Second-Order

Stochastic Dominance models using cutting-plane representations.

Mathematical Programming, pp.1--25.

[60] Fábián, C.I. & Szőke, Z., 2007. Solving two-stage stochastic programming

problems with level decomposition. Computational Management Science,

4, pp.313--353.

[61] Fábián, C. & Veszprémi, A., 2008. Algorithms for handling CVaR

constraints in dynamic stochastic programming models with applications

to finance. Journal of Risk, 10(3), pp.111--131.

[62] Fair, R.C. & Shiller, R.J., 1990. Comparing information in forecasts from

econometric models. The American Economic Review, 80, pp.375--389.

[63] Fleten, S.E., Keppo, J., Weiss, V.K. & Lumb, H.K., 2009. Derivative Price

Information Use in Hydroelectric Scheduling. [Online] Available at:

http://ssrn.com/abstract=1344725 [Accessed 06 July 2011].

[64] Fourer, R., 1984. Staircase matrices and systems. SIAM Review, 26(1),

pp.1--70.

[65] Fourer, R., 1996. Proposed new AMPL features - stochastic programming

extensions. [Online] AMPL LLC Available at:

http://www.ampl.com/NEW/FUTURE/stoch.html.

[66] Fourer, R., 1997. Database structures for mathematical programming

models. Decision Support Systems, 20, pp.317--344.

[67] Fourer, R., 1998. Extending a general-purpose algebraic modeling

language to combinatorial optimization: A logic programming approach.

Advances in Computational and Stochastic Optimization, Logic

Programming, and Heuristic Search: Interfaces in Computer Science and

Operations Research, pp.31--74.

http://ssrn.com/abstract=1344725
http://www.ampl.com/NEW/FUTURE/stoch.html

`

147 | P a g e

[68] Fourer, R., 2001. Model level directives for generating alternative

formulations of stochastic programs. In IX International Conference on

Stochastic Programming. Berlin, Germany, 2001.

[69] Fourer, R., Gassmann, H.I., Ma, J. & Martin, R.K., 2009. An XML-based

schema for stochastic programs. Annals of Operations Research, 166,

pp.313--337.

[70] Fourer, R., Gay, D. & Kernighan, B., 2002. The AMPL Book. Duxbury Press,

Pacific Grove.

[71] Fourer, R. & Lopes, L., 2009. StAMPL: A Filtration-Oriented Modeling Tool

for Multistage Stochastic Recourse Problems. INFORMS Journal on

Computing, 21, pp.242--256.

[72] Fourer, R., Lopes, L. & Martin, K., 2005. LPFML: A W3C XML schema for

linear and integer programming. INFORMS Journal on Computing, 17,

pp.139--158.

[73] Fourer, R., Ma, J. & Martin, K., 2006. OSiL: An instance language for

optimization. Technical Report. Evanston, IL: Department of Industrial

Engineering and Management Sciences, Northwestern University.

[74] Freedman, D., 1972. Approximating countable Markov chains. Holden-

Day.

[75] Fritzke, B., 1995. A growing neural gas network learns topologies.

Advances in Neural Information Processing Systems, 7, pp.625-32.

[76] Gaivoronski, A.A., 2006. Stochastic optimization in telecommunications.

In M. Resende & P. Pardalos, eds. Handbook of optimization in

telecommunications. Birkháuser. pp.761--799.

[77] Gassmann, H.I. & Ireland, A.M., 1995. Scenario formulation in an

algebraic modelling language. Annals of Operations Research, 59, pp.45--

75.

`

148 | P a g e

[78] Gassmann, H.I. & Ireland, A.M., 1996. On the formulation of stochastic

linear programs using algebraic modelling languages. Annals of

Operations Research, 64, pp.83--112.

[79] Gassmann, H. & Schweitzer, E., 2001. A comprehensive input format for

stochastic linear programs. Annals of Operations Research, 104, pp.89--

125.

[80] Gay, D., 2001. Random parameters - a step toward conveniently

expressing some stochastic programming problems. In IX International

Conference on Stochastic Programming. Berlin, Germany, 2001.

[81] Gondzio, J. & Grothey, A., 2009. Exploiting structure in parallel

implementation of interior point methods for optimization.

Computational Management Science, 6, pp.135--160.

[82] Gondzio, J. & Sarkissian, R., 2003. Parallel interior-point solver for

structured linear programs. Mathematical Programming, 96, pp.561--

584.

[83] Grigoriadis, M.D. & Khachiyan, L.G., 1996. An interior point method for

bordered block-diagonal linear programs. SIAM Journal on Optimization,

6, pp.913--932.

[84] Haneveld, W.K.K., 1986. Duality in stochastic linear and dynamic

programming. Lecture notes in economics and mathematical systems,

274.

[85] Haneveld, W.K.K. & van der Vlerk, M.H., 2006. Integrated chance

constraints: reduced forms and an algorithm. Computational

Management Science, 3, pp.245--269.

[86] Hareveley Systems, 1976. OMNI Linear Programming System: User and

Operating manual. Manual. Denville, N.J., USA: Hareveley Systems

Hareveley Systems.

`

149 | P a g e

[87] Heitsch, H. & Römisch, W., 2009. Scenario tree modeling for multistage

stochastic programs. Mathematical Programming, 118, pp.371--406.

[88] Henrion, R., Küchler, C. & Römisch, W., 2008. Discrepancy distances and

scenario reduction in two-stage stochastic mixed-integer programming.

MANAGEMENT, 4, pp.363--384.

[89] Higle, J.L., Rayco, B. & Sen, S., 2009. Stochastic scenario decomposition

for multistage stochastic programs. IMA Journal of Management

Mathematics.

[90] Higle, J.L. & Wallace, S.W., 2003. Sensitivity analysis and uncertainty in

linear programming. Interfaces, 33, pp.53--60.

[91] Hochreiter, R. & Pflug, G.C., 2007. Financial scenario generation for

stochastic multi-stage decision processes as facility location problems.

Annals of Operations Research, 152, pp.257--272.

[92] Holmes, D., 1995. A (PO)rtable (S)tochastic programming (T)est (S)et

(POSTS). [Online] Available at:

http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html

[Accessed 26 February 2010].

[93] Høyland, K., Kaut, M. & Wallace, S.W., 2003. A heuristic for moment-

matching scenario generation. Computational Optimization and

Applications, 24, pp.169--185.

[94] Høyland, K. & Wallace, S.W., 2001. Generating scenario trees for

multistage decision problems. Management Science, 47, pp.295--307.

[95] Hürlimann, T., 1993. Reference manual for the LPL modeling language.

Institute of Informatics University of Fribourg.

[96] IBM World Trade Corporation, 1976. SH19-1094 IBM Mathematical

Programming System Extended (MPSX/270) Program Reference Manual.

Manual. New York: IBM IBM.

http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html

`

150 | P a g e

[97] IBM World Trade Corporation, 1977. SH19-5014 MGRW Program

Reference Manual. Manual. New York: IBM World Trade Corporation IBM

World Trade Corporation.

[98] Jerrum, M. & Sinclair, A., 1997. The Markov chain Monte Carlo method:

an approach to approximate counting and integration. Approximation

algorithms for NP-hard problems, pp.482--520.

[99] Jobst, N.J., Mitra, G. & Zenios, S.A., 2006. Integrating market and credit

risk: A simulation and optimisation perspective. Journal of Banking and

Finance, 30, pp.717--742.

[100] Jobst, N.J. & Zenios, S.A., 2003. Tracking bond indices in an integrated

market and credit risk environment. Quantitative Finance, 3, pp.117--135.

[101] Jordan, W.C. & Törnquist, M.A., 1983. A stochastic, dynamic network

model for railroad car distribution. Transportation Science, 17, pp.123--

145.

[102] Kall, P., 1979. Computational methods for solving two-stage stochastic

linear programming problems. Zeitschrift f\Ã¼r Angewandte Mathematik

und Physik (ZAMP), 30, pp.261--271.

[103] Kallberg, J., White, R. & Ziemba, W., 1982. Short term financial planning

under uncertainty. Management Science, 28, pp.670--682.

[104] Kall, P. & Mayer, J., 1998. On testing SLP codes with SLP-IOR. New Trends

in Mathematical Programming: Homage to Steven Vajda, pp.115--135.

[105] Kaut, M. & Wallace, S.W., 2003. Evaluation of scenario-generation

methods for stochastic programming. Stochastic Programming E-Print

Series, 14.

[106] Ketron, 1975. MPS III DATAFORM: User manual. Manual. Arlington, USA:

Ketron Inc. Ketron Inc.

`

151 | P a g e

[107] Khoshafian, S. & Buckiewicz, M., 1995. Introduction to groupware,

workflow, and workgroup computing. John Wiley & Sons, Inc. New York,

NY, USA.

[108] Kiepuszewski, B., ter Hofstede, A. & Bussler, C., 2000. On structured

workflow modelling. In Bergman, B.W.a.L., ed. Twelfth International

Conference on Advanced Information Systems Engineering. Stockholm,

2000. Springer Verlag.

[109] Kiwiel, K.C., 1985. Methods of descent for nondifferentiable optimization.

Springer-Verlag.

[110] Konig, D., Suhl, L. & Koberstein, A., 2007. Optimierung des Gasbezugs im

liberalisierten Gasmarkt unter Berucksichtigung von Rohren-und

Untertagespeichern. VDI BERICHTE, 2018, p.83.

[111] Koutsoukis, N.S., Dominguez-Ballesteros, B., Lucas, C.A. & Mitra, G., 2000.

A prototype decision support system for strategic planning under

uncertainty. International Journal of Physical Distribution and Logistics

Management, 30, pp.640--660.

[112] Kristjansson, B., 2001. Optimization Modeling in Distributed Applications:

How New Technologies such as XML and SOAP allow OR to provide web-

based Services. INFORMS Roundtable, Savannah, Georgia.

[113] Kuip, C., 1993. Algebraic languages for mathematical programming.

European Journal of Operational Research, 67, pp.25--51.

[114] Kusy, M. & Ziemba, W., 1986. A bank asset and liability management

model. Operations Research, 34, pp.356--376.

[115] Lemaréchal, C., 1978. Nonsmooth optimization and descent methods.

International Institute for Applied Systems Analysis Laxenburg, Austria.

[116] Lemaréchal, C., Nemirovskii, A. & Nesterov, Y., 1995. New variants of

bundle methods. Mathematical Programming, 69, pp.111--147.

`

152 | P a g e

[117] Lindo Systems Inc, 2008. LINGO Modelling System Version 12.0. Manual.

Chicago IL, USA: Lindo Systems Inc Lindo Systems Inc.

[118] Lobo, M.S., Vandenberghe, L., Boyd, S. & Lebret, H., 1998. Applications of

second-order cone programming. Linear Algebra and its Applications,

284, pp.193--228.

[119] Lucas, C. & Mitra, G., 1988. Computer-assisted mathematical

programming (modelling) system: CAMPS. The Computer Journal, 31,

pp.364--375.

[120] Maggioni, F., Potra, F.A., Bertocchi, M.I. & Allevi, E., 2009. Stochastic

Second-Order Cone Programming in Mobile Ad Hoc Networks. Journal of

Optimization Theory and Applications, 143, pp.309--328.

[121] Maggioni, F., Vespucci, M., Allevi, E., Bertocchi, M. & Innorta, M., 2007. A

gas retail stochastic optimization model by mean reverting temperature

scenarios. In Communications to SIMAI Congress., 2007.

[122] Makowski, M., 2005. A structured modeling technology. European

Journal of Operational Research, 166, pp.615--648.

[123] Martinetz, T. & Schulten, K., 1991. A neural-gas network learns

topologies. Artificial neural networks, 1, pp.397--402.

[124] Maxmimal software, 2002. MPL Modelling System, release 4.2. Manudl.

Washington DC, USA: Maximal Software.

[125] Messina, E. & Mitra, G., 1997. Modelling and analysis of multistage

stochastic programming problems: A software environment. European

Journal of Operational Research, 101, pp.343--359.

[126] Microsoft Corporation, 2010. Microsoft Solver Foundation. [Online]

Available at: http://code.msdn.microsoft.com/solverfoundation

[Accessed 5 February 2010].

http://code.msdn.microsoft.com/solverfoundation

`

153 | P a g e

[127] MirHassani, S., Lucas, C., Mitra, G., Messina, E. & Poojari, C., 2000.

Computational solution of capacity planning models under uncertainty.

Parallel Computing, 26, pp.511--538.

[128] Mitra, L., 2009. Scenario generation for asset allocation models. PhD

Thesis. London: Brunel University.

[129] Mitra, G., Ellison, F. & Scowcroft, A., 2007. Quadratic programming for

portfolio planning: Insights into algorithmic and computational issues

Part II Processing of portfolio planning models with discrete constraints.

Journal of Asset Management, 8, pp.249--258.

[130] Mitra, G., Lucas, C., Moody, S. & Hadjiconstantinou, E., 1994. Tools for

reformulating logical forms into zero-one mixed integer programs:

Software tools for mathematical programming. European Journal of

Operational Research, 72, pp.262--276.

[131] Mulvey, J.M., Vanderbei, R.J. & Zenios, S.A., 1995. Robust optimization of

large-scale systems. Operations Research, pp.264--281.

[132] Nowak, M.P., Romisch, W. & Wegner, I., 2000. Power management in a

hydro-thermal system under uncertainty by Lagrangian relaxation. Annals

of Operational Research, 100, pp.251-70.

[133] Ntaimo, L. & Sen, S., 2005. The million-variable â€œmarchâ€• for

stochastic combinatorial optimization. Journal of Global Optimization, 32,

pp.385--400.

[134] Optimization Services, 2008. Optimization Services (OS). [Online]

Available at: http://www.optimizationservices.org/ [Accessed 26

February 2010].

[135] Organization for the Advancement of Structured Information Standards,

2010. Web Services Business Process Execution Language Version 2.0.

[Online] Organization for the Advancement of Structured Information

http://www.optimizationservices.org/

`

154 | P a g e

Standards Available at: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-

v2.0.pdf [Accessed 12 March 2010].

[136] Petri, C.A. & Reisig, W., 2008. Petri net. [Online] Available at:

http://www.scholarpedia.org/article/Petri_net [Accessed 04 April 2011].

[137] Pflug, G.C., 2001. Scenario tree generation for multiperiod financial

optimization by optimal discretization. Mathematical Programming, 89,

pp.251--271.

[138] Rockafellar, R.T., 1976. Monotone operators and the proximal point

algorithm. SIAM Journal on Control and Optimization, 14, pp.877-98.

[139] Roman, D., Darby-Dowman, K. & Mitra, G., 2006. Portfolio construction

based on stochastic dominance and target return distributions.

Mathematical Programming, 108, pp.541--569.

[140] Roman, D., Mitra, G. & Spagnolo, N., 2009. Hidden Markov models for

financial optimization problems. IMA Journal of Management

Mathematics, 21(2), pp.111-29.

[141] Ruszczynski, A., 1986. A regularized decomposition method for

minimizing a sum of polyhedral functions. Mathematical programming,

35, pp.309--333.

[142] Salimifard, K. & Wright, M., 2001. Petri net-based modelling of workflow

systems: An overview. European journal of operational research, 134,

pp.664--676.

[143] Schultz, G.L. & Meyer, R.R., 1991. An interior point method for block

angular optimization. SIAM Journal on Optimization, 1(4), pp.583-602.

[144] Schwaiger, K., 2009. Asset and Liability Management under Uncertainty:

Models for Decision Making and Evaluation. PhD Thesis. London: Brunel

University.

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.scholarpedia.org/article/Petri_net

`

155 | P a g e

[145] Scicon Computer Services, 1975. MGG User guide. Manual. Scicon

Computer Services.

[146] Sen, S. & Kothari, D., 1998. Optimal thermal generating unit commitment:

a review. International Journal of Electrical Power & Energy Systems, 20,

pp.443--451.

[147] Smith, J.E., 1993. Moment methods for decision analysis. Management

science, 39, pp.340--358.

[148] Soyster, A., 1973. Convex programming with set-inclusive constraints and

applications to inexact linear programming. Operations Research,

pp.1154--1157.

[149] Sperry Univac Computer Systems, 1977. GAMMA 3.4 Programming

Reference. Manual. Sperry Univac Computer Systems.

[150] Stadtler, H., 2005. Supply chain management and advanced planning--

basics, overview and challenges. European journal of operational

research, 163, pp.575--588.

[151] Thiele, T., 1880. Om anvendelse af mindste Kvadraters Metode i nogle

Tilfaelde, hvor en Komplikation af visse Slags uensartede tilfrldige

Fejlkilder giver Fejlene en systematisk Karakter. Vidsk. Selsk. Skr, 5,

pp.381-408.

[152] Tomasgard, A., Audestad, J.A., Dye, S., Stougie, L., van der Vlerk, M.H. &

Wallace, S.W., 1998. Modelling aspects of distributed processingin

telecommunication networks. Annals of Operations Research, 82, pp.161-

-185.

[153] Törnquist, J., 2005. Computer-based decision support for railway traffic

scheduling and dispatching: A review of models and algorithms. In 5th

Workshop on Algorithmic Methods and Models for Optimization of

Railways., 2005. Dagstuhl Research Online Publication Server.

`

156 | P a g e

[154] Valente, P., 2002. Software tools for the investigation of stochastic

programming problems. PhD Thesis. London: Brunel University.

[155] Valente, C., 2010. SPInE - Scenario generation manual. Manual. London:

OptiRisk Systems.

[156] Valente, P., Mitra, G., Poojari, C. & Kyriakis, T., 2001. Software tools for

stochastic programming: a stochastic programming integrated

environment (SPInE). Department of Mathematical Sciences, Brunel

University.

[157] Valente, C., Mitra, G., Sadki, M. & Fourer, R., 2009. Extending algebraic

modelling languages for Stochastic Programming. INFORMS Journal on

Computing, 21, pp.107--122.

[158] Valente, C., Mitra, G., Valente, P., Zviarovich, V., Poojari, C., Ellison, F. &

Di Domenica, N., 2002-2011. SAMPL/SPInE User Manual. [Online]

Available at: http://www.optirisk-

systems.com/manuals/SpineAmplManual.pdf.

[159] Valente, C., Mitra, G. & Zviarovich, V., 2011. Extendend SAMPL syntax to

capture various classes of non-deterministic problems. Working paper.

London: CARISMA Brunel University.

[160] Van Der Aalst, W.M. & Ter Hofstede, A.H., 2000. Verification of workflow

task structures: A petri-net-baset approach. Information systems, 25,

pp.43--69.

[161] van der Aalst, W.M., Van Hee, K. & Houben, G., 1994. Modelling and

analysing workflow using a Petri-net based approach., 1994.

[162] van der Vlerk, M.H., 1996-2007. Stochastic Programming Bibliography.

[Online] Available at: http://mally.eco.rug.nl/spbib.html [Accessed 2010].

[163] Van Hee, K.M., 1994. Information systems engineering: a formal

approach. Cambridge Univ Pr.

http://www.optirisk-systems.com/manuals/SpineAmplManual.pdf
http://www.optirisk-systems.com/manuals/SpineAmplManual.pdf
http://mally.eco.rug.nl/spbib.html

`

157 | P a g e

[164] Van Hentenryck, P., Lustig, I., Michel, L. & Puget, J., 1999. The OPL

optimization programming language. Mit Press Cambridge, MA.

[165] Van Slyke, R. & Wets, R., 1969. L-shaped linear programs with

applications to optimal control and stochastic programming. SIAM

Journal on Applied Mathematics, pp.638--663.

[166] Volosov, K., Mitra, G., Spagnolo, F. & Lucas, C., 2005. Treasury

management model with foreign exchange exposure. Computational

Optimization and Applications, 32, pp.179--207.

[167] Wallace, S.W., 2000. Decision making under uncertainty: Is sensitivity

analysis of any use? Operations Research, pp.20--25.

[168] Wets, R.J., 1974. Stochastic programs with fixed recourse: The equivalent

deterministic program. SIAM review, 16, pp.309--339.

[169] Williams, H., 1987. Linear and integer programming applied to the

propositional calculus. International Journal of Systems Research and

Information Science, 2, pp.81--100.

[170] Wohed, P., der Aalst, W., Dumas, M., Hofstede, A. & Russell, N., 2005.

Pattern-based analysis of the control-flow perspective of UML activity

diagrams. Conceptual Modeling--ER 2005, pp.63--78.

[171] Workflow Management Coalition, 2010. XPDL Support and resources.

[Online] Available at: http://www.wfmc.org/xpdl.html [Accessed 15

March 2010].

[172] YAWL Foundation, 2010. YAWL: Yet Another Workflow Language.

[Online] Available at: http://yawlfoundation.org/ [Accessed 10 March

2010].

[173] Yen, J.W. & Birge, J.R., 2006. A stochastic programming approach to the

airline crew scheduling problem. Transportation Science, 40, pp.3--14.

http://www.wfmc.org/xpdl.html
http://yawlfoundation.org/

`

158 | P a g e

[174] Yu, C.S. & Li, H.L., 2000. A robust optimization model for stochastic

logistic problems. International Journal of Production Economics, 64,

pp.385--397.

[175] Zenios, S., 2006. Practical Financial Optimization. Blackwell Publishers,

Ox-ford.

[176] Ziemba, W.T., 2003. The Stochastic Programming Approach to Asset,

Liability, and Wealth Management. The Research Foundation of the

Association for Investment Management and Research.

[177] Zverovich, V., Fábián, C.I., Ellison, F. & Mitra, G., 2009. A computational

study of a solver system for processing two-stage stochastic linear

programming problems. Working paper, CARISMA, Brunel University.

`

159 | P a g e

Appendix A Connect a Scenario Genera-

tor developed in MATLAB

MATLAB is often the language of choice to prototype and implement mathematical

models; in the area of stochastic programming, it is frequently used to implement

models of randomness, which we call scenario generators. A direct connection to

scenario generators is present in SPInE, but connecting a scenario generator re-

quires the implementation of a .NET interface, which is not achievable in MATLAB.

This fact sets the scope to the extension to the interface iSGenerator which we

named iSGBridge, that allows the definitions of a bridge between the interface

required by SPInE (iSGenerator) and the one implementable by the scenario

generator. As first example, the scenario generator library is distributed with a pre-

built bridge that allows developers to easily connect to scenario generators written

in MATLAB.

Programmer ’s perspective

The programmer of a scenario generator in MATLAB is provided with a simplified

version of the SG interface, and, to further accelerate the development process, a

MATLAB template is provided, which contains all the functions with the correct sig-

natures for the usage with SPInE. It consists of four m files, each representing one

function, which have to be implemented by the SG programmer:

getParameters.m, getName.m, getDescription.m, generate.m.

The templates are self-descriptive (see inline comments for further reference) and

provided below. In the form provided, they implement a scenario generator called

“TestMATLABNET”, which generates a random numbers populated event tree. The

input required from the user is just a floating point number which represents the

seed for the random number generator.

`

160 | P a g e

getName

% Template function getName.

% The function returns a string which is the name of the

% scenario generator implemented in the module.

% Note that in MATLAB strings are enclosed in '

function name = getName()

name = 'TestMATLABNET';

getDescription

% Template function getDescription.

% The function returns a string which describes the sce-

nario

% generator implemented in the module.

% Note that in MATLAB strings are enclosed in '

function description = getDescription()

description = 'Description of the scenario generator to be

passed back to SPInE';

`

161 | P a g e

getParameters

% Template function getParameters

% This function returns the parameter list for the SG, in a

% matrix of the form:

% nameparam1 type1 description1 mandatory1 index1

% ...

% nameparamn typen descriptionn mandatoryn indexn

%

% where type can be any of the following:

% int, int[], int[,], int[,,]

% double, double[], double[,], double[,,]

% bool, bool[], bool[,], bool[,,]

% string, string[], string[,], string[,,]

% System defined parameters are specified by their name,

all the

% other values defined about them are ignored.

% As quick reference, the system defined parameters are:

% NI (int)

% NS (int)

% NT (int)

% TreeStructure (int[])

% IndepNames (string[])

function a = getParameters()

% Define parameters

param1 = {'NI', 'int', 'doesnt matter', true, -1};

param2 = {'TreeStructure', 'int', 'doesnt matter', true, -1};

param3 = {'Seed', 'double', ‘Seed of the random number genera-

tion’, true, 1};

param4 = {'NT', 'double', 'doesnt matter', true, -1};

param5 = {'NS', 'double', 'doesnt matter', true, -1};

param6 = {'IndepNames', 'double', 'doesnt matter', true, -1};

% Pack them into the returned array

a = [param1; param2; param3; param4; param5; param6];

`

162 | P a g e

generate

% Template function for scenario generator

% Input parameter must be a varargin, the length of the cell

% array being passed will be consistent with what is specified

% in "getParameters"

% To extract the input parameters from the varargin cell

% array, the notation varargin{index}, note the use of curly

% brackets to specify the index.

% The returned array should be a 3d array, whose dimensions

% are: [scenario, timeindex, otherindexingsets]

% The system defined parameter "TreeStructure" is used here,

% see documentation for further details. If for example the

% specified treestructure is [0 3 2 1], we have 4 scenarios,

% that branch at 3 different timeperiods. The total number of

% timeperiods is herby 4 (branching periods +1).

% Number of Scenarios and Number of timeperiods can be

% inferred from the treestructure as:

% NS=length(tree) and NT=max(tree)+1

function s=generate(varargin)

 % Check for the correct number of input arguments

if(length(varargin) ~= 6)

 s = 0;

 return;

end

%Extract parameters from packed input cell array

NI = varargin{1};

tree = varargin{2};

seed = varargin{3};

%Preallocates the matrix, size of s is [NS, NT,NI]

s = zeros(length(tree), max(tree)+1, NI);

%Fills it with random vectors of size scenarios, timeperiods

for x=1:NI

 s(:,:,x) = repmat(seed+x, length(tree), max(tree)+1);

end

`

163 | P a g e

To make the developed scenario generator available to SPInE, the next step is to

compile and pack the implemented m files into a library, using the .NET Builder

toolbox. Step by step instructions are provided below:

Navigate to the template folder with MATLAB explorer:

Create a new deployment project from MATLAB main menu, choosing MATLAB

Builder NE as type of project and .NET Component as subproject. Name the project

with the prefix “sgmatlab” as shown in the figure below:

`

164 | P a g e

Drag and drop the functions which are part of the scenario generator into the de-

ployment tool window, to make them part of the created library, as shown in the

figure below, then click the icon Build (in the red circle in the figure).

After the compilation process has been completed, a new folder structure can be

found in the project folder. In the subdirectory /distrib, the only file needed is the

DLL that has the projectname as name, as shown in the figure below. That DKK

must be copied in the folder specified in SPInE’s option file as the scenario genera-

tors folder.

`

165 | P a g e

Modeller ’s perspective

The use of MATLAB developed scenario generators follows the same syntax as the

use of other SGs. The choice of the SG to be used and of its parameters is done in

the declaration of the random parameter. As an example, to associate the SAMPL

random parameter testSG, declared as:

scenarioset scenario;

set time;

set otherindex;

random param testSG{scenario, time, otherindex};

to the scenario generator TestMATLABNET defined in the previous part of this ap-

pendix, that wants from the user just the parameter seed of type double (see dec-

laration of the function getParameters), the modeller should change the declara-

tion line of testSG to the following:

random param testSG{scenario, time, otherindex} sg TestMATLAB-

NET(2.55);

where 2.55 is the seed for the random number generator inside the SG.

`

166 | P a g e

Appendix B SAMPL syntax for random

parameter declaration

Random parameter declarations have a list of optional attributes, optionally sepa-

rated by commas, to accommodate the specification of the source scenario genera-

tor, the syntax has been extended to the following:

random param name aliasopt indexingopt , attributesopt , sgspecificationopt

Where attributes may be any of the following:

attribute:

binary

integer

symbolic

relop expr

in expr

= expr

default expr

relop:

< <= = == != <> > >=

sgspecification:

sg name (parameterlistopt)

name: a string identifying a scenario generator in the library

parameterlist: comma separated list of parameters, the interpretation of

which is up to the external SG specified by name

`

167 | P a g e

Appendix C ALM Model

Model formulation

The asset/liability management model can be stated as follows: an investor faces

the problem of creating a portfolio allocating a set of assets belonging to a universe

I; each assets class is characterised by a price P. The goal of the investor is to max-

imise the portfolio wealth at the end of a predefined time horizon T. He needs to

take into account future obligations (liabilities) L, and the fact that each trade has

an associated transaction cost expressed by the fraction g. In each time period of

the time horizon, and for each asset considered, the investor needs to decide the

amount of assets to buy, to sell and to hold. Table 1 above shows a possible defini-

tion of the entities for such a model.

Type Name Notation Description Range//Dimensions

Indices

(sets)

ASSETS I Assets classes i = 1 ... I; I=10

TIME T Time periods t = 1 ... T; T=4

Parameters

(data)

price Pi t Price of asset i at time period t ASSETS,TIME

liabilities Lt Liability at time period t TIME

Initialholdings Hi0 Initial portfolio composition ASSETS

income Ft Funding in time period t TIME

Tcost G Transaction cost as % of trade

value

Variables hold Hit Quantity of assets i to hold in

time period t

ASSETS,TIME

sell Sit Quantity of assets i to sell in

time period t

ASSETS,TIME

buy Bit Quantity of assets i to buy in

time period t

ASSETS,TIME

Table 15 ALM model entities

Asset holding constraints

During the planning horizon the portfolio is re-balanced at discrete points in time

(beginning of each time period). The model tends to buy the assets with the highest

return expectation and sells the ones with poor performance. The asset holding

`

168 | P a g e

constraint enforces the evolution of the portfolio composition over time; it is ex-

pressed using two constraints, one that takes into consideration the initial holdings,

one that doesn’t. At time-periods t>1 the amount of each individual asset held in

the portfolio is associated with the holding amount for each asset during the previ-

ous time-period.

 , i=1...I 6.1

 , t=2…T, i=1…I 6.2

Fund balance constraints

Throughout the planning period cash inflows and cash outflows occur. The former is

due to the assets selling or to profitable performance of the assets along with addi-

tional funding, which the investor’s company might obtain. The latter is due to the

company’s payments and other liabilities which have to be fulfilled as well as to the

purchase of assets and the transaction costs associated with their trading (buying

and selling). In other words, this constraint reflects the evolution of the fund bal-

ance of the investor over time.

 ∑

 ∑

 6.3

Figure 46 below illustrates the concept of fund balance.

Enforcing this constraint has the effect of linking outflows and inflows of cash, ef-

fectively creating a cash flow, where cash cannot be created nor destroyed.

 ∑

 ∑

Wealth

Figure 46 Fund balance constraint

`

169 | P a g e

Objective function

The goal of the investor is to maximise the terminal wealth of the portfolio. This can

be expressed as in equation 6.4.

∑

 6.4

The expression above can be used to calculate the market value of the portfolio for

each time-period by substituting T with t=1...T.

ALM deterministic model in AMPL

The AMPL code for the model, excluding the definition of the data tables is set out

below. The comments in the code itself should provide enough guidance for a shal-

low understanding of the sections of the models, which follow the same order in

which they have been presented. For a more detailed description of the features

and the syntax of the language, the reader is referred to (Fourer et al., 2002).

#Parameters for indices

param NT:=4;

param NA:=23;

#Sets

set ASSETS := 1..NA;

set TIME :=1..NT;

#Parameters

param Tcost := 0.025;

param liabilities{TIME};

param initialholdings{ASSETS} := 0;

param income{TIME};

param price{TIME, ASSETS};

#Variables

var hold{TIME, ASSETS} >=0;

var buy{TIME, ASSETS} >=0;

var sell{TIME, ASSETS} >=0;

`

170 | P a g e

#Objective function

maximize wealth: sum{a in ASSETS} price[NT,a]*hold[NT,a];

#Constraints

subject to

stockbalance1{a in ASSETS}:

 hold[1,a]=initialholdings[a]+buy[1,a]-sell[1,a];

stockbalance2{a in ASSETS,t in 2..NT}:

 hold[t,a]=hold[t-1,a]+buy[t,a]-sell[t,a];

fundbalance{t in TIME}:

 (1-Tcost)*(sum{a in ASSETS} price[t,a]*sell[t,a])

 - liabilities[t] + income[t] =

 (1+Tcost)*(sum{a in ASSETS} price[t,a]*buy[t,a]);

The data for the model (asset prices, incomes and liabilities) is specified in a sepa-

rate file that is not reported here.

Stochastic ALM as deterministic equivalent in AMPL

We introduce uncertainty in this model considering the future asset prices non de-

terministic; we therefore add another dimension to the model, which is called sce-

nario, to include the realizations of the uncertain parameters in the form of scenar-

io trees, as discussed in section 1.2.

Following the explicit non-anticipativity representation, some changes in the index-

ation of variables, parameters and constraints are needed, to take into considera-

tion the fact that all decisions are now dependent on the scenario, and so is the pa-

rameter price. Moreover, the parameter prob[SCENARIO] is added to represent

the probability of each scenario and the objective is now to minimize the expected

final wealth. The changes are highlighted in bold in the model code below.

#Parameters for indices

param NT:=4;

param NA:=23;

param NS:=64;

#Sets

`

171 | P a g e

set ASSETS := 1..NA;

set TIME :=1..NT;

set SCENARIO := 1..NS;

#Parameters

param Tcost := 0.025;

param liabilities{TIME};

param initialholdings{ASSETS} := 0;

param income{TIME};

#Stochastic related parameters

param prob{SCENARIO} := 1/NS;

param price{TIME, ASSETS, SCENARIO};

#Variables

var hold{TIME, ASSETS, SCENARIO} >=0;

var buy{TIME, ASSETS, SCENARIO} >=0;

var sell{TIME, ASSETS, SCENARIO} >=0;

#Objective function

maximize wealth: sum{s in SCENARIO} prob[s] * (sum{a in ASSETS}

price[NT,a,s]*hold[NT,a,s]);

#Constraints

subject to

stockbalance1{a in ASSETS, s in SCENARIO}:

 hold[1,a,s]=initialholdings[a]+buy[1,a,s]-sell[1,a,s];

stockbalance2{a in ASSETS,t in 2..NT, s in SCENARIO}:

 hold[t,a,s]=hold[t-1,a,s]+buy[t,a,s]-sell[t,a,s];

fundbalance{t in TIME, s in SCENARIO}:

 (1-Tcost)*(sum{a in ASSETS} price[t,a,s]*sell[t,a,s])

 - liabilities[t] + income[t] =

 (1+Tcost)*(sum{a in ASSETS} price[t,a,s]*buy[t,a,s]);

To complete the explicit non-anticipativity representation, a structure must be en-

forced to ensure that only the information available at each decision node influ-

ences the decision itself. We have therefore to add to the model the non-

anticipativity constraints, which depend on the tree structure of our choice.

`

172 | P a g e

We consider two different tree shapes and, aside the graphical representation of

the tree, the non-anticipativity constraint(s) for the variable hold are listed; to en-

sure a correct representation of the problem, similar constraints must be defined

for all the decision variables.

Two stage tree, 64 scenarios

The model is two stage, with stage 1 including all decisions taken for t=1 and stage

2 including all the others. One non-anticipativity constraint is needed for each vari-

able to ensure that, for t=1, the values of the variables remain constant for all sce-

narios.

Four stages tree, 64 scenarios, 4 branches at each stage

To ensure this kind of structure, in which the time index is equal to the stage num-

ber, one constraint template is needed for stage 1, four for stage 2 and sixteen for

stage 3, for each variable.

Stage1

na1{a in ASSETS, s in 2..NS}:

hold[1,a,1]=hold[1,a,s];

Figure 47 Event tree for two-stage formulation

`

173 | P a g e

Stochastic ALM formulated in SAMPL

The SAMPL formulation of the model is reported below; besides the non-

anticipativity constraints, which are not part of it, objective and constraints are

identical to the DEQ formulation and therefore are not reported.

Parameters for set ranges

param NT:=4; param NS:=64; param NA:=23;

Sets

set ASSETS := 1..NA; set TIME :=1..NT;

Stochastic information

scenarioset SCENARIO:=1..NS;

random param price{TIME, ASSETS, SCENARIO};

probability Prob{SCENARIO}:=1/NS;

#PARAMETERS : VECTORS (read from database!)

param liabilities{TIME}; param initialholdings{ASSETS} := 0;

param income{TIME}; param target{TIME}; param Tcost:=0.025;

Stage1

na1{a in ASSETS, s in 2..NS}:

hold[1,a,1]=hold[1,a,s];

#Stage 2

na1_s2_1{ a in ASSETS,s in 2..16}:

hold[2,a,s]=hold[2,a,1];

…

na1_s2_4{ a in ASSETS,s in 50..64}:

hold[2,a,s]=hold[2,a,49];

#Stage 3

na1_s3_1{a in ASSETS,s in 2..4}:

hold[3,a,s]= hold[3,a,1];

na1_s3_2{ a in ASSETS,s in 6..8}:

hold[3,a,s]= hold[3,a,5];

…

na1_s3_16{a in ASSETS,s in 62..64}:

hold[3,a,s]= hold[3,a,61];

Figure 48 Event tree for multi stage ALM
model

`

174 | P a g e

#VARIABLES

var hold{t in TIME,a in ASSETS, s in SCENARIO} >=0;

var buy{t in TIME,a in ASSETS, s in SCENARIO} >=0;

var sell{t in TIME,a in ASSETS, s in SCENARIO} >=0;

Now, depending on the desired event tree, the definition of the tree shape and the

partition of decision variables into stages is, for the two-stage problem:

#Tree shape and staging for two stage ALM problem

tree thetree := twostage; #Specify a two-stage tree

let {t in TIME, a in ASSETS, s in SCENARIO} hold[t,a,s].stage := if

t=1 then 1 else 2;

let {t in TIME, a in ASSETS, s in SCENARIO} buy[t,a,s].stage := if

t=1 then 1 else 2;

let {t in TIME, a in ASSETS, s in SCENARIO} sell[t,a,s].stage := if

t=1 then 1 else 2;

or, for the multi stage problem:

#Tree shape and staging for multistage ALM problem

tree thetree := nway{4}; #Specify a tree with 4 branches at each

stage

let {t in TIME, a in ASSETS, s in SCENARIO} hold[t,a,s].stage := t;

let {t in TIME, a in ASSETS, s in SCENARIO} buy[t,a,s].stage := t;

let {t in TIME, a in ASSETS, s in SCENARIO} sell[t,a,s].stage := t;

The compactness of this formulation in respect to the DEQ one is noticeable; it

should be noted that by generating the problem in this way, the system can auto-

matically generate the Wait and See and the Expected Value problems, and calcu-

late the VSS and EVPI.

CCP and ICCP formulations (as DEQs) in AMPL

The incorporation of chance constraints and integrated chance constraints into this

model allows the planned strategy to have some degree of underfunding, that is, at

some point in time, the liquidity incomes don’t match the liabilities; in our model

this can be implemented allowing the fund balance to be negative.

A reformulation of the fund balance constraint of equation 6.3 is given in equation

6.5. The formulation has been furthermore refined with the introduction of scenar-

`

175 | P a g e

ios, to reflect the fact that we are now examining the stochastic version of the

model.

 ∑

 ∑

6.5

 To allow underfunding, one approach is to transform the constraint above to a

chance constraint; this allows a violation to that constraint with a certain probabil-

ity among all scenarios.

The first step is to define the underfunding for each scenario;

 ∑

 ∑

where

and finally

 ̅ ∑

6.6

where and are variables defined for all time periods and all scenarios.

Allowing underfunding in this model has a side effect: the investor can re-invest the

amount of money that “appears” from the underfunding. This is not coherent with

proper cash balancing; therefore another constraint must be added, to bind the in-

vestor to invest just the cash coming from the liquidation of assets and the income

at that time period. We call this the cash balance constraint, and the formulation is

as follows:

 ∑

 ∑

6.7

 The chance constraint can be written as:

 { ̅ } 6.8

`

176 | P a g e

where R is a reliability level, that is the probability with which we want to satisfy the

constraint. As seen in section 1.3, there is a deterministic equivalent formulation

(see the system of equations 1.43) for CCP problem. The changes to the determinis-

tic equivalent AMPL formulation follows:

param M := 50000;

param Reliability:=0.8; #do not underfund with probability 80%

var count{SCENARIO} binary;

var over{TIME, SCENARIO} >= 0;

var under{TIME,SCENARIO} >= 0;

var underDeviation{SCENARIO} >=0;

fundbalance{t in TIME, s in SCENARIO}:

 (1-Tcost)*(sum{a in ASSETS} price[t,a,s]*sell[t,a,s])

 - (1+Tcost)*(sum{a in ASSETS} price[t,a,s]*buy[t,a,s])

 + income[t] - over[t,s] + under[t,s] = liabilities[t];

cashbalance{t in TIME, s in SCENARIO}:

 (1-Tcost)*(sum{a in ASSETS} price[t,a,s]*sell[t,a,s]) + income[t]>=

 (1+Tcost)*(sum{a in ASSETS} price[t,a,s]*buy[t,a,s]);

underDevDef{s in SCENARIO}: sum{t in TIME} under[t,s] = underDevia-

tion[s];

CC{s in SCENARIO}: underDeviation[s] <= M * count[s];

cardCC: sum{s in SCENARIO} prob[s]*count[s] <= 1-Reliability;

The artifices introduced in the model due to the DEQ formulation are highlighted in

bold. It is worth noticing that this formulation introduces one binary variable for

each scenario.

This model easily spots one weakness of the chance constraints problems, which is

the fact that they represent a qualitative risk measure. The scenarios that are al-

lowed to underfund in the problem above, do indeed underfund, and they can do

so by up to M; one scenario with very little underfunding is considered equally to

one which underfunds by the maximum allowed. This does not take into considera-

tion that the amount of underfunding has an important role too. For this reason, in

`

177 | P a g e

this case the integrated chance constraint approach might be preferable; the ICC

takes the amount of underfunding into consideration, limiting the expected under-

funding.

The formulation is:

 [̅] 6.9

which can be implemented in AMPL adding:

param G := 50000;

ICCP: sum{s in SCENARIO} prob[s]*underDeviation[s] <= G;

The additional variables mentioned in section 1.3 have not been added; normally

the deterministic equivalent formulation of an integrated chance constraint re-

quires the creation of an additional variable for each scenario.

CCP and ICCP formulations in SAMPL

The formulation of the chance constraint using SAMPL extended syntax is:

CC: {probability s in SCENARIO: underDeviation[s] > 0} <= Reliabil-

ity;

Similarly the integrated change constraint reads:

ICCP: expectation{s in SCENARIO} {underDeviation[s]} <= G;

It can be easily seen that the formulation using the extended syntax is much more

compact and readable. Moreover, this reformulation allows the modelling system

to use a solver that is especially designed to solve CCPs or ICCPs through specialized

algorithms (see (Haneveld & van der Vlerk, 2006) for an example), whenever such a

solver is available.

Robust formulations in AMPL

In case more precise assumptions about the distribution of the random parameters

cannot be made, reformulating the model as a robust optimization problem can

help maintaining feasibility of the solution in the face of an uncertain future. Only a

few and light assumptions in respect of the random parameters are made in the

model of uncertainty U presented in section 1.2. We therefore model the future

`

178 | P a g e

assets prices as ̃ with values in [̌ ̌], where and ̌ are respec-

tively the mean value and the half extension of the uniform distribution of asset i at

time t and. It has to be noted that the prices are the only non-deterministic param-

eters of this model, and that they appear as elements in the matrix with a multipli-

er, as coefficients of the variables S and B:

 ∑

 ∑

6.10

To avoid being too prolix on a topic – the formulation of robust optimisation prob-

lems – which is not central to this thesis, only the formulation given by Soyster (see

section 1.2) is explicitly given here. The linear program that can be inferred from

Soyster’s formulation, as in 1.31, is reported below:

 ∑

 ∑ ̌

-

6.11

The formulation requires the knowledge of the sets of coefficients in each row i

that are subject to uncertainty, because an artificial variable must be created for

each one of them. In the algebraic perspective, the procedure translates into rec-

ognizing the parameters that are defined as part of the model U (in this model, the

prices) and add an artificial variable for each time they appear in each constraint. In

our case, the only constraint involved is shown in equation 6.6, and the random pa-

rameter ̃ appears twice in it. We therefore proceed by creating two artificial vari-

ables and for each constraint, which obtains the final form:

 ∑

 ∑

 ∑ ̌

 ∑ ̌

6.12

`

179 | P a g e

To complete the formulation, the constraints which link the artificial variables and

the natural one have to be added, together with the bounds on the variables,

namely:

 -

6.13

Expressed in AMPL, the steps above are:

1) Declare the artificial variables and the parameters of the uniform distribu-

tion (as mean value I used the expected value of the realizations utilized

for the SP problem, so just the additional parameter amplitude was need-

ed)

param amplitude{TIME, ASSETS} := 10;

var artificialBuy{TIME, ASSETS} >= 0;

var artificialSell{TIME, ASSETS} >= 0;

2) Reformulate the fundbalance constraint to implement 6.12:

fundbalance{t in TIME}:

 (1+Tcost)*(sum{a in ASSETS} price[t,a]*buy[t,a]) -

 (1-Tcost)*(sum{a in ASSETS} price[t,a]*sell[t,a])+

 sum{a in ASSETS} (1+Tcost)*artificialBuy[t,a]*amplitude[t,a] -

 sum{a in ASSETS} (1-Tcost)*artificialSell[t,a]*amplitude[t,a]

 <= income[t] - liabilities[t];

3) Implement the other constraints:

robustBuy{t in TIME, a in ASSETS}: -artificialBuy[t,a] <= buy[t,a];

robustBuy2{t in TIME, a in ASSETS}: buy[t,a] <= artificialBuy[t,a];

robustSell{t in TIME,a in ASSETS}:-artificialSell[t,a] <= sell[t,a];

robustSell2{t in TIME, a in ASSETS}: sell[t,a]<=artificialSell[t,a];

It is now apparent that, even for this simple problem, the reformulation as deter-

ministic equivalent takes the focus of the modeller away from the problem itself, to

`

180 | P a g e

concentrate with the definition of artificial variables and the reformulation of con-

straints.

Robust formulations in SAMPL

Expressed using SAMPL extended syntax, the steps above are simplified. The defini-

tion of the random parameter is changed to:

random param randomPrice{t in TIME, a in ASSETS}

dist symmetric(price[t,a] - amplitude[t,a], price[t,a] + amplitude[t,a]);

This formal definition of the price gives all the needed information the modelling

system regarding the uncertainty model U. The next step is to choose the form of

the robust formulation, which is obtained via the following statement:

option RobustForm Soyster;

Finally, the constraint are expressed identically to the deterministic version, as:

fundbalance{t in TIME}:

 (1-Tcost)*(sum{a in ASSETS} randomPrice[t,a]*sell[t,a])

 - liabilities[t] + income[t] =

 (1+Tcost)*(sum{a in ASSETS} randomPrice [t,a]*buy[t,a]);

The system takes care of generating the artificial variables and the additional con-

straints automatically, thus allowing the modeller to concentrate on the problem

instead of the formal specification of the uncertainty set.

To obtain the other formulations (Ben Tal and Nemirovsky, or Bertsimas and Sim),

the modeller simply uses a different value for the RobustForm option. These two

formulations require additional parameters to specify the desired trade-off be-

tween optimality and robustness. This parameter is specified in the constraint dec-

laration, as:

fundbalance{t in TIME} suffix robustness gamma[t]:

 (1-Tcost)*(sum{a in ASSETS} randomPrice[t,a]*sell[t,a])

 - liabilities[t] + income[t] =

 (1+Tcost)*(sum{a in ASSETS} randomPrice [t,a]*buy[t,a]);

where gamma is an AMPL parameter containing the chosen robustness value.

