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Abstract 

Human pharmaceuticals have been shown to be entering the aquatic environment in quantities 

sufficient to produce adverse effects to aquatic organisms, particularly fish. The impacts of 

synthetic oestrogens have been well documented, but other groups of steroidal 

pharmaceuticals have not yet been studied. Hence, the present research was designed to study 

synthetic glucocorticoids (GCs), which are used in large amounts as immunosuppressive and 

anti-inflammatory drugs. This study involved different approaches, including in silico, 

in vitro, in vivo and genomics, to assess the effects of GCs on fish. 

Using reliable data on consumption of GCs in the UK and the LF2000-WQX hydrological 

model, mean concentrations of GCs in the river Thames were predicted to be in the range 

from 30 ng/L to 850 ng/L. Mammalian cell lines were transiently transfected with trout 

corticosteroid receptors (GR1, GR2 and MR) and the transactivation abilities of ten of the 

most prescribed GCs in the UK were measured in vitro. All tested GCs showed significantly 

higher activity with GR2 than with GR1. In order to assess the impact of low concentrations 

of GCs in vivo, two chronic exposure experiments were conducted with adult fathead 

minnows (Pimephales promelas). Both experiments showed potency-related and 

concentration-related impacts on various endpoints. There was a concentration-related 

increase in plasma glucose concentrations and a decrease in blood lymphocyte count. 

Induction of secondary sexual characters in females suggests a concentration-related 

masculinisation of fathead minnows. There was a decreasing trend in plasma vitellogenin 

concentrations in female fish with increasing exposure concentration of GCs. Expression 

profiles of selected genes (PEPCK, GR and Vtg) in liver also demonstrated concentration-

related effects at all three tested concentrations. Hence, it was not possible to define a no 

effect concentration for the tested GCs.  

This study probably provides reliable estimates of the likely range of concentrations of GCs in 

a typical river, impacted by effluent from many sewage treatment plants. The in vitro results 

indicate that all tested GCs bind to fish GR in a similar manner to that reported for 

mammalian receptors. The in vivo results suggest that GCs could cause effects at very low (as 

low as 100 ng/L) concentrations that could be environmentally-relevant. The 

immunosuppresive effects could make fish susceptible to disease and the reproductive effects 

may have population-level impacts. It is very likely that the effects of different GCs will be 

additive, as has been shown for oestrogenic chemicals. Therefore, this study warrants further 

environmental risk assessment of GCs, especially in mixture scenarios.   
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1.1 Anthropogenic impacts on the environment 

The ever increasing human population inevitably increases the production and usage of 

chemicals that have negative impacts in the environment. Ecotoxicology, the study of the 

effects of toxic chemicals on biological organisms, especially at the population, community or 

ecosystem level, has grown rapidly over the past few decades. However, the evidence for 

impacts of man-made chemicals on wildlife came from the industrial and agricultural 

revolution era, and the best known examples were bioaccumulation of organochlorine 

pesticides in birds (thereby causing eggshell thinning that reduced the population of higher 

trophic level birds) and the development of insecticide resistance in insect pest populations. 

Unlike man-made catastrophic incidents, these ecotoxicological impacts are silent but long 

lasting and probably lead to more damage to the environment (Sumpter, 2005). 

The chemicals that affect organisms via mimicking endogenous hormones are called 

endocrine disrupting chemicals (EDCs), and the concept of ‗endocrine disruption‘ was 

introduced to explain the mode of action of such chemicals (Colborn et al., 1993). The 

International Programme for Chemical Safety (IPCS - which involves WHO, UNEP and ILO) 

has, together with Japanese, USA, Canadian, OECD and European Union experts, developed 

a definition for endocrine disrupters that was also adopted as a working definition in the 

European Community Strategy for Endocrine Disrupters: ―An endocrine disrupter is an 

exogenous substance or mixture that alters function(s) of the endocrine system and 

consequently causes adverse health effects in an intact organism, or its progeny, or 

(sub)populations‖ (International Programme on Chemical Safety, 2002). These EDCs have 

many member chemicals, including industrial chemicals such as polychlorinated biphenyls 

(PCB), phthalates, styrene and bisphenol-A, agrochemicals such as dichloro diphenyl 

trichloroethane (DDT) and atrazine, surfactants such as alkylphenols, personal care products 

such as parabens and polycyclic musk, metals and pharmaceuticals. These chemicals in their 
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original forms or in their transformation forms can have activity in the environment (Ternes, 

2001; Sumpter, 2005).  

The impacts of EDCs on wildlife had already been reported before the term EDC was 

introduced. One of the earliest examples was the appearance of a rudimentary penis in female 

molluscs exposed to tributyltin, the active ingredient of antifouling paints used on ships 

(Smith 1981). Another example of endocrine disruption was reported in alligators from 

polluted lakes, which had significantly elevated plasma estradiol concentrations in females 

and significantly reduced plasma testosterone concentrations in males (Guillette et al., 1994).  

In recent years, a large number of man-made chemicals has been shown to be able to mimic 

endogenous hormones, and the abnormal reproductive development in some populations of 

both humans and wildlife has been explained by endocrine disruption. Exposure to PCBs has 

been related to the increased incidence of endometriosis in human females and impaired 

neurobehavioral development in children. Similarly, exposure to PCBs and DDT is thought to 

be the reason for the increased cases of breast cancer and reduced immunity in humans 

(Carpenter, 2006). Global reductions in human semen quality over time are related to 

increasing exposure to oestrogenic and anti-androgenic chemicals (Mocarelli et al., 2007). 

Exposure to organochlorine contaminants has also been related to reproductive malfunction in 

Baltic seals, eggshell thinning in colonial water birds, reproductive failure in Ontario Lake 

trout and limb malformations in North American frogs (Bernanke and Kohler, 2009). 

However, there are critiques against these examples of endocrine disruptions and several other 

reasons have been proposed for these observations. For example, increased facilities for the 

detection and diagnosis of human cancer is said to be the reason for the apparent increased 

incidence of cancer.  
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The best known, evidence based, example of endocrine disruption came from the UK aquatic 

environment, where male rainbow trout (Oncorhynchus mykiss) caged downstream from 

sewage treatment plant (STP) outlets were found to be producing the egg yolk precursor 

protein, vitellogenin (Vtg) (Purdom et al., 1994). Further studies have confirmed a 

widespread feminisation of fish due to exposure to sewage effluent (Jobling et al., 1998). 

Natural and synthetic oestrogens were identified as the cause of this feminisation (Desbrow et 

al., 1998). Later, some xenoestrogens such as alkylphenols were also reported as oestrogenic 

(Sumpter and Johnson, 2008). Recently, anti-androgens in surface waters have been identified 

and they are thought to be enhancing the incidence of intersex in fish (Jobling et al., 2009). 

Masculinization of wild fish has also been observed where pulp mill effluents are discharged 

into the habitats of such fish (Larsson and Forlin, 2002). 

Another prominent example of endocrine disruption came from the Indian subcontinent with 

diclofenac, a non-steroidal anti-inflammatory drug (NSAID), and the decline of the vulture 

population. These predatory birds accumulated diclofenac via their food from diclofenac-

treated cattle. Diclofenac is a cyclooxygenase (COX) inhibiter which in turn inhibits the 

synthesis of prostaglandins. Prostaglandins are the mediators for pain and inflammation and 

the inhibition of the synthesis of prostaglandin causes anti-inflammatory and analgesic effects 

(Vane, 1971).  In the kidney, prostaglandins are involved in maintenance of the equilibrium 

between vasoconstriction and vasodilatation of the blood vessels that are involved in 

glomerular filtration. Lack of prostaglandins causes renal damages and renal failure and death 

of the birds. Thus the residues of diclofenac are the cause of the almost complete loss of the 

populations of three species of vultures in the Indian sub-continent (Oaks et al., 2004).  

These two examples are probably the most cited and clearly demonstrated problem of 

endocrine disruption in the wild. Both of them had a human pharmaceutical as the causative 
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agent. In parallel, there have been lots of analytical chemistry papers reporting detectable 

amounts of human pharmaceuticals in many environmental samples (Appendix-1). These 

findings, and the fact that the targets of almost every human pharmaceuticals (it may be a 

receptor or enzyme) in the human body can be found in many wild organisms, led scientists to 

research the impacts of many other human pharmaceuticals on other organisms.  

1.2 Pharmaceuticals in the environment 

Pharmaceuticals are biologically active compounds, intended to affect the structure or 

function of the body for the purpose of cure, mitigation, treatment or prevention of a disease 

via a specific mode of action in the body (Directive 2004/27/EC of the European Parliament 

and of the Council of 31 March 2004). They are used in human and veterinary medicine, 

agriculture and aquaculture. Kummerer (2009) estimated that about 900 different active 

substances account for 90% of the total consumption of pharmaceuticals in Germany, a 

country that is probably representative of many others (including the UK). It has been 

estimated that over 3000 pharmaceutical substances are licensed for use in the UK, and major 

classes of drugs include NSAIDs, antibiotics, lipid regulators, β-blockers, cytotoxic drugs, 

psychiatric drugs and steroids. The top selling drugs in the UK are probably paracetamol, 

metformin and ibuprofen (Bound and Voulvoulis, 2004). Pharmaceuticals are usually 

lipophilic and often have a low biodegradability and have the potential for bioaccumulation 

and persistence in the environment (Fent et al., 2006). 

Pharmaceuticals are taken orally, by injection, via an inhaler or applied on skin as cream and 

patches. They are absorbed into the blood and may be excreted unchanged, as a glucuronide 

or sulphate conjugate, as a major metabolite or as a complex mixture of many metabolites. 

Most pharmaceuticals undergo hepatic metabolism, which is a two phase reaction. In phase-I, 

oxidation, reduction and/or hydrolysis occur and in phase-II, conjugation such as addition of 
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glucuronic acid, sulphate, acetic acid or amino acid occurs. Through this hepatic metabolism, 

more soluble, less harmful by-products are released into the environment via excretion 

(Cunningham, 2009). Some drugs are resistant to hepatic metabolism and can be excreted in 

their pure, biologically active form (Ternes, 1998). In the case of a topical preparation, a large 

proportion is washed out directly into the drainage. These, together with the drugs disposed of 

directly (unused and expired) into the drainage system, reach the STPs. 

Many of the drugs are removed in STPs by microbes or by adsorption to suspended solid 

sludge particles. STP removal rates vary depending on the nature of the pharmaceutical, 

technology and performance of STPs, temperature and the loading variations due to seasonal 

changes (Kummerer, 2009). STP removal rates have been reported in a range from about 10% 

(e.g. carbamazapine) to about 99% (e.g. most NSAIDs; Heberer, 2002). For some drugs, 

phase-II resulting conjugates are hydrolysed back to the parent drug by the microbes in STPs 

and the amount of active form is increased (Gros et al., 2006). For example, metabolites of 

the lipid regulator, clofibric acid, have been found to be hydrolysed back to their parent 

compound, so that their effluent concentrations were found to be higher than the influent 

concentrations (Daughton and Ternes, 1999). Nevertheless, STPs cannot remove all the 

pharmaceuticals, so their effluents remain the major source of human pharmaceuticals in the 

aquatic environment. Other point sources may be drug manufacturing site effluents (Larsson 

et al., 2007) and hospital waste waters (Kummerer, 2001) that contain high levels of human 

pharmaceuticals that are sufficient to produce adverse effects on biota. Veterinary medicines 

and the drugs used in agriculture enter the aquatic environment through non-point sources 

(Boxall et al., 2003). Livestock manure, which may contain active pharmaceutical 

ingredients, is used as agricultural fertiliser and STP sludge is spread as soil conditioner. 

Therefore there is the potential for pharmaceuticals to enter the aquatic environment via 

leaching and run-off (Ternes, 1998). 
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A variety of pharmaceuticals have been detected in many environmental samples worldwide 

(Jones et al., 2002; Kolpin et al., 2002; Heberer, 2002; Zuccato et al., 2006). They have been 

reported in STP effluents, surface water, seawater, groundwater, soil, sediment and fish. 

Geographically, most studies have been carried out in the USA, Germany, Switzerland, 

Denmark, the Netherlands and France, and for the most part in densely populated areas. 

However, high concentrations of some pharmaceutical have also been reported from waters 

around drug manufacturing sites in India (Larsson et al., 2007), which suggests that some 

drugs already have a global environmental dimension. The effluent concentrations can be 

diluted in surface waters and the concentrations found in the surface waters vary greatly 

depending on the flow rate, distance from STP and season. They also depend on the amount 

of hydrolysis and photolysis of the drugs in surface water (Johnson, 2010).  

As large proportion of human pharmaceuticals can end up in aquatic environments via STPs, 

studies on the impacts of pharmaceuticals have focused mainly on aquatic organisms 

(Halling-Sørenson et al., 1998; Matthiessen, 2003; Khetan and Collins, 2007; Palermo et al., 

2008 and the reviews of Fent et al., 2006; Corcoran et al., 2010; Burkhardt-Holm, 2010). 

Even if biologically active chemicals such as pharmaceuticals are present in the aquatic 

environment, this does not mean that they pose a threat to aquatic organisms. To do so, they 

must first get into those organisms, and then reach (internal) concentrations high enough to 

elicit effects. Recently, a study in the United States assessed the accumulation of 

pharmaceuticals in fish sampled from five effluent-dominated rivers receiving discharge from 

STPs. Sample analyses showed the presence of norfluoxetine, sertraline, diphenhydramine, 

diltiazem, carbamazepine, fluoxetine and gemfibrozil detected at high concentrations 

(Ramirez et al., 2009). 
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Little is known about how readily pharmaceuticals can get into aquatic organisms; only a little 

information on a few of the pharmaceuticals is available. However, some general ‗rules‘ 

(McKim et al., 1985) are available that can be used to predict whether or not a chemical will 

readily cross the gills of a fish. Key characteristics include the hydrophobicity of a chemical, 

its charge, and its size. In general, the more hydrophobic a chemical (which is usually 

expressed as log Kow or log P), the more readily it bioconcentrates in aquatic organisms. As 

far as size is concerned, if the molecular weight is less than 600, the chemical will cross the 

cell membrane unhindered; above this value, and its passage could be hindered to varying 

degrees (the larger the molecule is, the less easily it passes through cell membranes) (Zitko 

and Hutzinger 1976).  

Some differences in the metabolism of drugs between humans and fish have been reported. In 

humans, the main enzymes involved in Phase-I of the hepatic metabolism are cytochrome 

P450 monoxygenase enzymes (P450 cytochromes). There are several forms, including 

CYP2C9, CYP3A4, CYP1A2, CYP2C19 and CYP2D6 (Gagne et al., 2006).  Fish have 

cytochrome P4503A but not any of the CYP2C family. Lack of these forms of cytochrome 

P450s is thought to be a reason for accumulation of drugs in fish (Richardson and Bowron, 

1985). Moreover, it has been shown that steroids in water can be readily taken up by fish 

(Maunder et al., 2007). Therefore plasma concentrations of human pharmaceutical could 

reach the therapeutic concentrations that occur in humans. A recent study (Fick et al., 2010) 

has reported that plasma concentrations of levenogestrel in caged fish maintained in a STP 

effluent can reach the therapeutic levels observed in humans taking that drug. 

Pharmaceuticals are designed to act via specific mechanisms of action (MOA) with a specific 

target in the human body. Examples of such targets are receptors (as in steroidal 

pharmaceuticals; see chapter 3 for their MOA), enzymes (e.g. NSAID), ion channels (e.g. 
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cypermethrin) and transporters (e.g. omeprazole). Recent molecular-biological and 

bioinformatics analyses have revealed that fish are closer to humans among several other 

aquatic organisms studied, with regard to the similarities of these drug targets (Gunnarsson et 

al., 2008). In other words, fish possess most of these drug targets. Huggett et al. (2004) 

indicated that overall receptor and enzyme identities in fish were 31 – 88% similar to 

mammalian targets. Therefore it is theoretically possible that fish (and possibly other aquatic 

organisms) could be affected by the pharmaceuticals present in rivers via the same MOA as 

occurs in humans. 

1.2.1 Non-steroidal pharmaceuticals in the environment 

Appendix-1 presents the amounts of different pharmaceuticals reported very recently in the 

surface waters of different countries. NSAIDs and antibiotics have been frequently reported. 

It should be noted that the same drug has been detected in different concentrations in different 

places. This is because drug use policies differ from country to country, the different 

sensitivity of analytical methods and the differences in the STP technologies (explained in 

detail in chapter 2). Some earlier reports with measured concentrations reported even higher 

concentrations of pharmaceuticals present in the surface water, however the advancement of 

analytical chemistry in recent years has enabled reliable concentrations to be determined, 

which are presented in appendix-1.  

1.2.1.1 Laboratory evidence for impacts of human pharmaceuticals. 

There have been several laboratory studies reporting the effects of different human 

pharmaceuticals known to be present in the environment, most frequently NSAIDs, fibrates, 

β-blockers, selective serotonin reuptake inhibitors (SSRIs), azoles, and antibiotics at low 

concentrations (reviewed by Fent et al., 2006; Corcoran et al., 2010; Burkhardt-Holm, 2010). 

Several fish species have been reported to be affected and most reported biological effects in 
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fish in the laboratory correlate with known effects of pharmaceuticals in mammals (Corcoran 

et al., 2010). NSAIDs, which may have similar effects to those described for Indian vultures, 

have been studied frequently. Brown trout (Salmo trutta) were exposed to 0.5 (probably an 

environmentally-relevant concentration), 5 and 50 μg/L diclofenac for 7, 14 and 21 days to 

show that exposure of brown trout to diclofenac at environmentally relevant concentrations 

can result in adverse effects to various organs and may compromise the health of affected fish 

populations (Hoeger et al., 2005). A recent study demonstrates the uptake and sub-lethal 

tissue damage in trout exposed to environmental concentrations of diclofenac and highlights 

further concern about this pharmaceutical in the aquatic environment (Mehinto et al., 2010). 

Other NSAIDs such as indomethacine (Lister and Van der Kraak, 2008), and ibuprofen 

(Flippin et al., 2007) have also been reported to have adverse effects on fish at low 

concentrations 

Another large group of pharmaceuticals that has been tested on fish is SSRIs, which are used 

in large amounts as antidepressants. Serotonin is a neurotransmitter that appears to have a 

major role in depression. SSRIs inhibit the reuptake of serotonin by the nerve cells, so that 

serotonin stays in the synaptic gap longer than it normally would, and hence may repeatedly 

stimulate the receptors of the recipient cell. Serotonin receptors have been reported in several 

fish (Yamaguchi and Brenner, 1997) and some behavioural and reproductive impacts 

involving SSRI have been reported (Winberg et al., 1997). Western mosquito fish exposed to 

fluoxetine, at environmentally-relevant concentrations, did show some behavioural changes 

(Henry and Black, 2008). Exposing medaka to fluoxitine caused an increase of plasma 

oestrogen (E2) concentrations and growth impairement (Brooks et al., 2003). 

Statin drugs, which are used to control blood cholesterol levels and as preventitive drugs of 

cardiac diseases, also have been tested with fish. These drugs act via the peroxisomal 
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proliferator activated receptor (PPARα) and induce the expression of genes which code for 

the enzymes of lipid metabolism. These enzymes, together with peroxisomes, remove the 

fatty acids and cholesterol from blood (Kota et al., 2005). There is evidence for the presence 

of PPAR in fish (Ruyter et al., 1997). Exposure of goldfish to environmental levels of a lipid 

regulatory drug, gemfibrozil, leads to bioconcentration of the drug in plasma and the potential 

for endocrine disruption (reduction of plasma testosterone over 50%) in fish (Mimeault et al., 

2005). Runnalls et al. (2007), however, did not find any effect on lipid metabolism after 

exposing fathead minnows to 0.01 to 1 mg clofibric acid/L, instead they found reproductive 

impacts in male fish. 

β-blockers are used to treat hypertension, angina, glaucoma and similar conditions and are 

known to act via β-adrenergic receptors (β-AR) to diminish the effect of epinephrine. These 

receptors have been found in fish heart, gills, liver and brain (Nickerson et al., 2001). Fathead 

minnows exposed to the β-blocker propranolol at 1 mg/L concentrations showed decreased 

egg counts (Giltrow et al., 2009). Growth impairment in larval fathead minnows exposed to 

another β-blocker, atenolol, has also been reported, although only at very high concentration 

of 10 mg/L (Winter et al., 2008). Similar effects of propanalol have been found in medaka 

and rainbow trout (Hugget et al., 2002; Owen et al., 2007).  

Although fish are the most studied organisms, invertebrates and microbial populations have 

also been reported to be affected by the pharmaceuticals known to be present in the aquatic 

environment. Effects of three pharmaceuticals, fluoxetine, ibuprofen and carbamazepine, were 

examined on the activity of the benthic invertebrate Gammarus pulex, and the LOEC was 

reported to be as low as 10 ng/L for fluoxetine and ibuprofen. Carbamazepine showed a 

similar response, however, the differences were not significant (De Lange et al., 2006). 

Carbamazepine inhibited growth of Daphnia at 12.7 mg/L and midges at 9.2 mg/L in an acute 
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toxicity test and had sublethal effects at 92 µg/L in a chronic exposure experiment (Thacker, 

2005). Invertebrate LC50 values for metoprolol and propranolol range from 64 to >100 mg/L 

and 0.8 to 29.8 mg/L, respectively, showing that propranolol is most harmful among the 

β-blockers studied so far (Hugget et al., 2002; Cleuvers, 2005). The lipid regulator 

gemfibrozil (Mimeault et al., 2005), abamectin (Tisler and Kozuh Erzen, 2006) and fluoxetine 

(Nentwig, 2007) are some other human drugs reported to have acute and chronic toxicity to 

aquatic invertebrates. For the phytoplankton, the SSRI fluoxetine is the most acutely toxic 

human pharmaceutical reported by far, with an EC50 of 24 µg/L (48 h, alga; Brooks et al., 

2003). Exposure of marine microalgae to the fungicide clotrimazole resulted in a decrease in 

primary productivity which may in turn have adverse effects on community structure 

(Porsbring et al., 2009). In a recent study with a mixture of 13 pharmaceuticals commonly 

found in the aquatic environment, it has been shown that algae are sensitive to these drugs, 

which caused damage to their chloroplast (Vannini et al., 2011).  

Antibiotics are used in high quantities by human and veterinary medicine and considerable 

amounts are released into the aquatic environments. The major concern with this group of 

pharmaceuticals is the development of resistance among microbial populations. Resistance 

has already been identified in aquatic biota (Larsson et al., 2007). However, there is still a 

lack of understanding and knowledge about sources, presence and significance of resistance 

of bacteria against antibiotics in the aquatic environment (Kummerer, 2009) and whether or 

not their resistance has any relevance to human health. 

1.2.1.2 Evidence from field studies 

In a recent study of two STP effluent-impacted streams in the USA, samples of water, bed 

sediment, and brain tissue of white suckers Catostomus commersoni were collected and tested 

for the presence of antidepressants. Downstream water was found to contain fluoxetine, 



 

13 

 

norfluoxetine, sertraline, norsertraline, paroxetine, citalopram, fluvoxamine, duloxetine, 

venlafaxine, and bupropion. Venlafaxine, bupropion, and citalopram were present at the 

highest measured concentrations found. Venlafaxine and fluoxetine in bed sediment were the 

predominant pharmaceuticals observed. Fluoxetine, sertraline and their degradates were the 

principal antidepressants observed in fish brain tissue (Schultz et al., 2010). The sex ratio of 

fish upstream from a wastewater treatment plant was 47% female to 53% male, while the ratio 

downstream from the plant was 83% female to 17% male. Researchers conclude that this 

disturbance could be associated with endocrine-disrupting compounds, including a synthetic 

oestrogen, found in the treatment plant effluent (Woodling et al., 2006).  

1.2.1.3 Potential Human Health Impacts.  

Risks from pharmaceuticals present in the environment to humans has been a vigorous debate 

(Dorne et al., 2007; Sanderson et al., 2007; Jones et al., 2005) and some authors (Sherer, 

2006; Cunningham, 2009) take the view that the amounts detected in the environment are far 

below those likely to produce any adverse impact on humans. Rahman et al. (2009) reviewed 

the data on the pharmaceuticals in drinking water and concluded that the human health risk is 

minimal. However, there is limited information available about the potential long-term health 

effects of consuming low concentrations of pharmaceuticals, such as could occur through 

drinking water containing pharmaceuticals.  

One study found some cause for concern about the exposure of vulnerable sub-populations, 

such as pregnant women and their foetuses, to drinking water containing very small amounts 

of chemotherapy drugs (Johnson et al., 2008). Another study looked at the effect of 

environmentally relevant levels of a mixture of 13 drugs on human cell function. Human 

embryonic cells were exposed to a mixture of atenolol, bezafibrate, carbamazepine, 

cyclophosphamide, ciprofloxacin, furosemide, hydrochlorothiazide, ibuprofen, lincomycin, 
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ofloxacin, ranitidine, salbutamol, and sulfamethoxazole. The drug mixture inhibited the 

growth of human embryonic cells, with the highest effect observed as a 30% decrease in cell 

proliferation compared to controls. Results suggest that a mixture of drugs at ng/L levels can 

inhibit cell proliferation by affecting their physiology and morphology (Pomati et al., 2006).  

1.2.2 Steroid pharmaceuticals in the environment. 

Steroid pharmaceuticals include oestrogens (such as the natural oestrogens, estrone and 17ß-

estradiol, and the synthetic oestrogen, EE2), androgens (such as testosterone), progestins 

(such as levenogestrel and norethindrone) and corticosteroids (glucocorticoids and 

mineralocorticoinds). Steroids can also be hormone antagonists. For example, the drugs 

flutamide and dutasteride are both androgen antagonists. Steroid pharmaceuticals tend to be 

highly effective in vivo as they are designed specifically to elicit an acute response. One of the 

key lessons (Sumpter and Johnson 2005) to come out of all the environmental research on 

EE2 is that very biologically active oestrogens can be present in the environment, and they 

have the capability to cause effects at extremely low concentrations. This seems to be due to a 

combination of factors, which can be applied not only to oestrogens but to any steroidal 

pharmaceuticals, in particular 1) that EE2 is readily taken up by fish from the water (Scott et 

al., 2005; Maunder et al., 2007), 2) that it bioconcentrates to a reasonable degree in fish 

(Lange et al., 2001), 3) that oestrogen receptors to which it binds very avidly exist in fish, just 

as they do in human patients taking the drug as a contraceptive, and 4) that these receptors 

play key roles in regulating reproduction. In a study of rainbow trout exposed to sewage 

effluent from a small Swedish treatment plant, it was found that the concentration of 

oestrogens  in their bile was between one-hundred thousand and one million times higher than 

the surrounding water and increased with time. This showed a very efficient bioconcentration 

of oestrogen (Larsson et al., 1999).  
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1.2.2.1 Oestrogens/anti-estrogens 

Thousands of research papers have been dedicated to the varied aspects – both chemical and 

biological – of the oestrogenic chemicals, especially EE2 (Caldwell et al., 2008), now known 

to be present in the aquatic environment. There are many different oestrogenic chemicals 

present in the aquatic environment, ranging from ‗real‘ oestrogens such as estradiol to 

oestrogen mimics (so-called xenoestrogens), such as the industrial chemicals nonylphenol and 

bisphenol-A. The ‗real‘ oestrogens comprise both natural steroid oestrogens, such as estrone 

and estradiol, and synthetic oestrogens. The latter group is dominated by EE2, one of the 

active ingredients of the contraceptive ‗Pill‘. EE2 is an extremely potent oestrogen; 

concentrations less than 1 ng/litre have adverse effects on reproduction of fish, and only 

slightly higher concentrations prevent fish reproducing (e.g. Lange et a.l, 2001; Nash et a.l, 

2004; Parrott and Blunt 2005), leading to population crashes (Kidd et al., 2007).  

Both natural and synthetic oestrogens are widely used. Oestrogens are prescribed alone or in 

combination with progestogens in hormone replacement therapy and as a treatment for 

oestrogen deficiency symptoms in postmenopausal women. Aromatase inhibitors (which 

inhibit the synthesis of oestrogens) are used principally in the treatment of breast and ovarian 

cancer (BNF 2006). Oestrogen is excreted from the human body in the form of conjugates 

with water-soluble groups such as glucuronides. Steroids in effluent, however, are mainly 

unconjugated (Routledge et al., 1998; Larsson et al., 1999), i.e. in the biologically active and 

fat soluble form, which facilitates their uptake by organisms. Deconjugation probably takes 

place with the help of bacteria (e.g. E.coli), which are abundant in sewage treatment plants. 

EE2 is more resistant to degradation during sewage treatment and in the environment than are 

the natural oestrogens. In Germany, EE2 has been found in drinking water in concentrations 

high enough to affect fish. Natural oestrogen often occurs at levels from a few ng/L to several 
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tens of ng/L in sewage effluent, while levels of EE2 are often between 0.5 and 3 ng/L, 

although levels several times higher have been measured (Heberer, 2002). 

A 7-year, whole lake experiment at the Experimental Lakes Area in northwestern Ontario, 

Canada showed that chronic exposure of fathead minnow to low concentrations (5–6 ng/L) of 

the potent synthetic oestrogen, 17-ethynylestradiol (EE2) led to feminization of males, 

including impacts on gonadal development as evidenced by intersex in males and altered 

oogenesis in females, and, ultimately, a near extinction of this species from the lake. These 

observations demonstrate that the oestrogens and their mimics observed in freshwaters can 

impact the sustainability of wild fish populations (Kidd et al., 2007), depending of course on 

their environmental concentrations.  

The consequences of intersexuality on reproductive performance in fish have been studied 

recently (Harris et al., 2011). In this study, mildly feminised fish were able to reproduce as 

well as unaffected fish. However, the intersex condition in severely feminised males reduced 

their reproductive performance by up to 76%. It should be emphasised that it is important in 

the future to investigate any effects over several generations and in the field at the level of the 

population, including the significance of genetic variations. 

1.2.2.2 Androgens/anti-androgens 

As with oestrogens/anti-oestrogens, this group includes agonists, receptor antagonists, and 

compounds that inhibit the synthesis of androgens. Androgen agonists are prescribed mainly 

as replacement therapy in males with a deficiency or absence of endogenous testosterone 

associated with hypogonadism. Much of the testosterone prescribed is in the form of esters. 

The aim of esterification is to improve the lipophilicity of the molecule, which slows the 

release of testosterone from the site of entry into the body. Two different sub-classes of anti-

androgenic pharmaceuticals are available: androgen receptor antagonists (e.g. Bicalutamide) 
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and inhibitors of the enzyme 5-alpha reductase, which converts testosterone into 

dihydrotestosterone (e.g. Finasteride). The use of large amounts of anti-androgenic 

pharmaceuticals reflects the high incidence of prostatic diseases amongst the male population; 

in fact, prostate cancer is the most common cancer of men in the UK (Westlake and Cooper, 

2008), and it is dependent on endogenous androgen for development, growth and survival 

(Culig and Bartsch 2006). All anti-androgenic pharmaceuticals on the market are synthetic.  

Androgens have been identified in water from municipal treatment plants. Studies show that 

the amounts involved can vary considerably, and concentrations up to several tens of ng/L of 

testosterone and androstenedione, for example, have been reported (Kolodziej et al., 2003). 

The presence of androgens in municipal effluent has also been shown using in vitro tests with 

yeast cells containing the human androgen receptor (Svenson and Allard, 2004). In this way, 

androgens have been detected in concentrations of up to 100 ng/L of dihydrotestosterone 

equivalents. The majority of this is thought to have a natural origin, which is excretion by 

people, since men‘s urine contains significant amounts of androgens. 

Farm animal also excrete substantial amounts of hormones. In the vicinity of stockbreeders 

and stud farms, therefore, one can detect hormonal disruptions in fish which has been 

attributed to natural oestrogens and androgens, although it is also suspected that synthetic 

hormone preparations may be the cause. In an American report, clear masculinisation was 

detected in fathead minnow in the vicinity of large breeders of beef cattle (Orlando et al., 

2004). In some countries the use of hormone supplements is a common practise to stimulate 

growth and increase the transformation of feed into muscle mass. However, researchers have 

not yet been able to decide whether natural hormones or synthetic hormone preparations are 

the cause of masculinisation in fish.  
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Experimental studies of zebrafish show that exposure to methyltestosterone (Orn et al., 2003) 

and to the synthetic anabolic steroid trenbolone results in lower concentrations of Vtg and a 

higher proportion of males. Flutamide inhibits androgen-receptor binding (Ankley et al., 

2004), while dutasteride is a α-reductase inhibitor, interfering with the production of the 

potent androgen dihydrotestosterone from testosterone. There are several ways of measuring 

the effects of androgens. Androgens affect primary (the sex organs) as well as secondary sex 

characteristics in many vertebrates, including fish. In guppies (Lebistes reticulata) and related 

fish species, a number of androgens may cause the anal fin to develop into something which 

resembles the male‘s breeding organ or gonopodium. For over 20 years female mosquito fish 

(Gambusia sp.) close to pulp and paper manufacturers in the south of the USA have been 

known to develop a gonopodium-like structure (Howell et al., 1980). We are still not certain 

what the cause is, but there is evidence which suggests that the wastewater contains wood-

derived steroids which masculinise fish. It can be difficult to establish whether sexual 

development is affected in organisms in the wild. In the vicinity of a large Swedish pulp mill, 

however, a skewed sex ratio in favour of males has been observable for several years in 

eelpout embryos – an effect which can be linked to the degree of exposure to effluent 

(Larsson and Förlin, 2002). There are many indications that this skewed effect is caused by 

androgens, since effluent induces a number of male sex characteristics in female fish in 

laboratory experiments. Examples of this are colouring in guppies and the production of 

spiggin, an androgen-regulated protein, in the three-spined stickleback (Gasterosteus 

aculeatus). A recent study also identified and partly characterized a number of candidate 

androgens in untreated effluent from the Swedish pulp mill, including progesterone (Larsson 

et al., 2006).  



 

19 

 

1.2.2.3  Progestogens 

Progestogens are most commonly and widely used for contraception, either alone or in 

combination with oestrogens. They are also used for treatment of a number of other 

conditions, including hormone replacement therapy, menstrual problems, endometriosis, 

anorexia, cancer, and assisted reproduction. They are administered via a variety of routes, 

including pills, patches, injection, implant, gels, creams, and suppositories. PR antagonists, 

such as mifepristone, are used as abortifacients during the first 2 months of pregnancy. It is 

also used in ‗morning-after treatment‘, to prevent possible pregnancy.  

In a study with caged fish (rainbow trout) exposed for 14 days to undiluted, treated sewage 

effluents from three sites in Sweden, 25 pharmaceuticals were evaluated. The progestin 

pharmaceutical levonorgestrel was detected in fish blood plasma at concentrations exceeding 

the human therapeutic plasma level, with the measured effluent level higher than water levels 

shown in laboratory experiments to reduce the fertility in fish (Zeilinger et al., 2009). In total, 

16 pharmaceuticals were detected in fish plasma at concentrations higher than 1/1000 of the 

human therapeutic plasma concentration. This study shows that rainbow trout exposed to 

sewage effluents have blood plasma levels of pharmaceuticals similar to human therapeutic 

concentrations, suggesting a risk for pharmacological effects in the fish (Fick et al., 2010). 

The recent demonstration that synthetic progestogens can adversely affect fish (mainly egg 

production) at very low concentrations (Zeilinger et al., 2009; Paulos et al., 2010) has 

confirmed the need to closely evaluate the environmental effects of steroidal pharmaceuticals. 

1.2.2.4 Corticosteroids  

Corticosteroids are either glucocorticosteroids (GCs) or mineralocorticosteroids, with 

molecular weights ranging from 360 to 500. The generalised molecular structure of GCs and 

the properties related to the different carbon substitutions are given in Figure 1.1. In most of 
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the synthetic corticosteroids, H in the 9th carbon is substituted by F. In some cases it is 

substituted by Cl. This is to increase the stability of these compounds in the human body, so 

that frequent administration is avoided. Therefore it is anticipated that the corticosteroids with 

F or Cl substitution could resist degradation in STP and hence be found in measurable 

concentrations in environmental water. A detail review of the possible environmental 

concentrations of GCs is presented in Chapter 2. 

In fish, the interrenal cells of the anterior kidney secrete corticosteroid hormones, including 

cortisol and corticosterone, which modulate functions such as glucose metabolism, mineral 

balance, and behaviour (explained in detail in section 1.4). Fish are lacking aldosterone and 

cortisol has been shown to have both gluco and mineralocorticoid activity (Sturm et al., 

2005). Details of their mechanism of action and the differences in the potency of different 

GCs are presented in Chapter 3. Section 1.3 explains the physiology of GCs in human and 

their known side effects. As fish are known to have similar drug targets (Chapter 3), similar 

effects could be predicted in fish (explained in Chapter 4). 
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Figure 1-1. Molecular structure of corticosteroids. A generalised structure and the properties 

related to the different carbon substitutions (Buchwald, 2008) are shown. 
Figure 1-1. Molecular structure of corticosteroids.  

1.2.2.5 Environmental Concentrations of steroid pharmaceuticals 

A representative summary of current knowledge about the environmental concentrations of 

natural and synthetic steroid hormones and their antagonists is provided in Table 1.1. Effluent 

concentrations are reported much more frequently than surface water (river) concentrations. 

In both cases, variability in concentrations would be expected. In the case of effluents, the 

efficiency of the STP will be a major factor in determining effluent concentrations of ―down-

the-drain‖ micropollutants (Johnson et al., 2007). In the case of river water concentrations, the 

degree of dilution of the STP effluent in the river, which can be highly variable, will play a 

major role in determining concentrations.  
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Table 1-1. Representative concentrations of natural and synthetic steroid hormones and their antagonists in the aquatic environment 

 

Steroids Mode of Action Name 
Effluent                       

(ng/L) 

Surface water 

(ng/L) 
Reference 

OESTROGENS 

Agonist 

Ethinyl Estradiol 0.8-2.8  Johnson et al. (2005) 

Ethinyl Estradiol  4.6 max Williams et al. (2003) 

Estradiol <0.4-4.3 ND Williams et al. (2003) 

Estrone <0.4-12.2 0.32-2.12 Williams et al. (2003) 

Conjugated 

Oestrogens 
0.07-2.6 Not measured Tyler et al. (2009) 

Antagonists Tamoxifen 146 27-212 Roberts and Thomas (2006) 

Aromatase Inhibitor  No data No data  

ANDROGENS 

Agonist 
Testosterone 0.3 - 8 Not measured Kolodziej et al. (2003) 

Testosterone Not measured 2.8 - 6.0 Vulliet et al. (2009) 

Antagonists  No data No data  

5αReductase 

Inhibitor 
 No data No data  

PROGESTOGENS 
Agonists 

Norethindrone 5.2-41 Not measured Vulliet et al. (2007) 

Levonorgestrel 0.9-17.9 Not measured Vulliet et al. (2007) 

Antagonists Mifepristone No data No data  

GCs Agonists 

Triamcinolone 
14±1 Not measured Schriks et al. (2010) 

Not measured <0.63 Tölgyesi et al. (2010) 

Cortisone 0.13-0.58 0.06-4.2 Chang et al. (2007) 

Prednisolone 0.47-0.72 0.03-0.64 Chang et al. (2007) 

MINERALO-

CORTICOIDS 

Agonists  No data No data  

Antagonists  No data No data  
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Environmental concentrations of steroid hormone antagonists are currently very poorly 

documented. In most cases (e.g. antagonists of androgens, progestogens and 

mineralocorticoids) no data are available, either for effluents or rivers. A very limited amount 

of data is available for the oestrogen receptor antagonist Tamoxifen (Roberts and Thomas 

2006), which suggests that the environmental concentration is in the low hundreds of ng/L 

range. In summary, aquatic wildlife are probably exposed, albeit continuously, to very low 

ng/L, or even sub-ng/L, concentrations of both natural and synthetic steroid hormones and 

their antagonists: these are the ―environmentally-relevant‖ concentrations that need to be 

assessed for potential effects. 

1.2.2.6 Effect Concentrations for steroid pharmaceuticals  

Summarized in Table 1.2 are current knowledge on the effects of natural and synthetic steroid 

hormones and their antagonists on fish. When data on other groups of organisms are 

available, they seem to be considerably less sensitive to these pharmaceuticals than are fish 

(Caldwell et al., 2008). Effect concentrations of the different steroids and their antagonists 

appear to be reasonably variable, although all are relatively low (in the μg or ng/L ranges). 

Fish are extremely sensitive to EE2, with effects occurring in the very low ng/L range. For 

example, a number of comprehensive, thorough studies have shown that concentrations as 

low as a few ng/L prevent fish reproducing (Lange et al., 2001; Kidd et al., 2007) , and even 

lower concentrations can produce biochemical changes. Similarly, recent data on synthetic 

progestogens (Zeilinger et al., 2009) show that at least some representatives of this class of 

pharmaceutical will inhibit egg laying of fish at extremely low concentrations, possibly less 

than 1 ng/L. Androgens may be somewhat less potent (effect concentrations in the low μg/L 

range), but not enough data are available to judge their potency with any degree of certainty. 

There are no published effects data for either synthetic GCs or mineralocorticoids at 

environmentally-relevant concentrations. 
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A reasonable amount of information is available on the effects of both oestrogen and 

androgen antagonists on fish. Both types of oestrogen antagonists (receptor blockers and 

aromatase inhibitors) have been studied in well executed studies (e.g. Williams et al., 2007; 

Sun et al., 2007), and in both cases it has been found that μg/L concentrations are required to 

produce measurable responses in fish, with the LOEC being in the low μg/L, but not ng/L, 

range. The AR receptor blocker flutamide has also been reasonably well studied, and appears 

to be relatively inactive in fish, with the LOEC being in the high μg/L range (Table 1.2). In 

contrast, the AR antagonist Cyproterone Acetate appears quite potent, and has anti-androgenic 

effects in the low ng/L range.  

In summary, plenty of high quality data show that μg/L concentrations will always cause 

major effects, ng/L concentrations often will (especially those of the synthetic steroids), and 

even sub-ng/L concentrations of some steroids can cause major adverse effects (for example, 

lack of reproduction). Recent evidence strongly supports the fact that amongst the 

pharmaceuticals in use today, steroid hormones merit particular attention from 

ecotoxicologists. Both Johnson et al. (2008a) and Besse and Garric (2009) have identified 

progestogens as requiring risk assessment for the aquatic environment. Their concerns are 

vindicated, because two very recent, independent studies have now demonstrated that some 

synthetic progestogens can inhibit fish reproduction at very low (ng/L, or even sub-ng/L) 

environmental concentrations (Paulos et al., 2010; Zeilinger et al., 2009). Even the very well 

researched ―oestrogens in the aquatic environment‖ issue continues to produce surprises; for 

example, Tyler et al. (2009) showing that equine oestrogens used in hormone replacement 

therapy are present in the aquatic environment, and very potent in fish. Therefore the present 

study on GCs in the environment tries to fill some gaps in the knowledge of steroidal 

pharmaceuticals in the environment.
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Table 1-2. Representative effect concentrations of natural and synthetic steroid hormones and their antagonists. All reliable data concerns effects on 

freshwater fish. LOEC  = Lowest Observed Effect Concentration 

Steroids MOA Name Effects 
LOEC                

(g/L) 
Species Reference 

OESTROGENS 

Agonist 

Ethinyl Estradiol 
Secondary sexual characteristics / Altered sex ratio / 

feminisation / VTG 
0.004 Pimephales promelas Länge et al. (2001) 

Estradiol Reduction in reproductive output 0.781 Pimephales promelas Thorpe et al. (2003) 

Estrone 
VTG / Sex ratio / Reproduction / secondary sexual 

characteristics 

0.1 

0.005-0.025 

(VTG) 

Danio rerio Brion et al. (2004) 

Antagonist Tamoxifen Inhibition of Reproductive output/ VTG / Gonadal histology 5.6 Pimephales promelas Williams et al. (2007) 

Aromatase 

inhibitor 

Fadrozole GSI / VTG 24.8 Pimephales promelas Panter et al (2004) 

Letrozole Fecundity / fertility / VTG 5 Oryzias latipes Sun et al. 2007 

ANDROGENS 

Agonist 
Testosterone No data    

5α-Dihydrotestosterone Masculinisation of females/ Vtg induction in females 6.0 Pimephales promelas Panter et al. (2004) 

AR Antagonist 

Cyproterone 
Plasma T and 11-KT reduction in males 0.1 

Fundulus heteroclitus Sharpe et al. (2004) 
Plasma T reduction in females 0.01 

Flutamide 

Spiggin inhibition 500  

Gasterosteus 

aculeatus 

 

Sebire et al. (2008) Nest building behaviour / Male courtship behaviour 100 

Testis histopathology/ Ovary histopathology 62.7 

Pimephales promelas Jensen et al. (2004) Plasma E2 increase in males / Vtg induction in males and 

females / T increase in females / fecundity / hatching 
651 

5αReductase 

Inhibitor 
 No data    

5αReductase 

Inhibitor 
 No Data    

PROGESTOGENS Agonist 
Norethindrone 

Inhibition of reproduction/ masculinisation of females / 

steroid levels 

25 

1-10 

Oryzias latipes 

Pimephales promelas 
Paulos et al. (2010) 

Levonorgestrel Inhibition of reproduction/ masculinisation of females 0.0008 Pimephales promelas Zeilinger et al. (2009) 

GLUCO-CORTICOID Agonists  No Data    

MINERALO-CORTICOID 
Agonists  No Data    

Antagonist  No Data    
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1.3 Corticosteroids in humans. 

Corticosteroids are 21-carbon steroidal hormones synthesised from cholesterol (Figure 1.2). 

They have a wide spectrum of effects in almost every organ and in all stages of life. The HPA 

axis controls the synthesis and secretion of GCs from the adrenal cortex and GCs in turn 

regulate their own release through a negative feedback system. Environmental and internal 

stimuli induce the secretion of CRH from the hypothalamus. The portal system carries the 

CRH to the anterior lobe of the pituitary, where it stimulates the secretion of 

adrenocorticotrophic hormone (ACTH). ACTH in turn stimulates the synthesis of GCs in the 

adrenal glands.  Endogenous GCs such as cortisol (primates, guinea pigs, sheep) and 

corticosterone (rodents) play important roles in animal physiology. GCs have effects on 

carbohydrate, lipid and protein metabolism; on body and fat mass and energy expenditure; on 

gastrointestinal, renal, pulmonary and cerebral function. 

Synthetic GCs are used mainly for their anti-inflammatroy and immuno-supressive actions, in 

treating adrenocortical insufficiency, hypersensitivity, asthma, rheumatic disease, 

inflammatory bowl disease, inflammatory skin disorders like eczema, contact dermatitis, 

inflammatory eye and ear conditions, immunosuppression in lymphomas and leukaemia, 

allergic rhinitis, psoriasis, Cushing‘s disease and adrenal replacement therapy. These 

pharmaceuticlas are available in the form of tablets, capsules, inhalers, topical creams, 

ointments, eye/ear drops and injections. GCs can be administered as oral, nasal, topical, 

intramuscular injections, suppositories and ear/eye drops. The average daily dose of 

corticosteroids varies from 100 μg to500 mg, depending on the preparation and the route of 

administrations (BNF, 2006). Synthetic GCs share the same biochemical backbone as 

endogenous cortisol, but have modifications at some carbons in addition to other structural 

changes (added methyl/ hydroxyl groups). Fluorinated synthetics such as betamethasone and 

dexamethasone are structurally similar to natural GCs but fluorination at C9 is believed to 

http://en.wikipedia.org/wiki/Anterior_pituitary
http://en.wikipedia.org/wiki/Pituitary_gland
http://en.wikipedia.org/wiki/Adrenocorticotrophic_hormone
http://en.wikipedia.org/wiki/ACTH
http://en.wikipedia.org/wiki/Glucocorticoids
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prevent oxidative metabolism. Synthetic GCs have been designed to have higher 

glucocorticoid potency, reduced mineralocorticoid effects and a longer duration of action 

(Figure 1.1). The clinical potencies of the different synthetic GCs depend on the rate of 

absorption, the concentration in the target tissues, the affinity for the glucocorticoid receptor 

(GR), and the rate of metabolism and subsequent clearance. The plasma half-life ranges 

between 80 (cortisol) and 270 (dexamethasone) minutes (Sapolsky et al., 2000). 

 

Figure 1-2. Pathways and enzymes involved in steroidogenesis in human. Key parts of the 

different groups of steroids are highlighted. 

(Source:http://en.wikipedia.org/wiki/File:Steroidogenesis.svg). 
Figure 1-2. Pat hways and enzymes invo lved in steroidogenes is in human 
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Pharmacological effects of GCs are mediated via the GRs. The MOA is described in detail in 

Chapter 3. The resulting biological effects can be anti-inflammatory/immunosuppressive, 

metabolic, and toxic. The anti-inflammatory and immunosuppressive effects of GCs include 

changes in the circulation/ migration of leukocytes and alterations in specific cellular 

functions (Sapolsky et al., 2000). The MR was found to be expressed in Leydig and Sertoli 

cells, as well as in spermatozoa, and hence aldosterone is thought to be regulating spermatic 

fluid osmolarity and to play a role in spermatozoa motility. In addition, it appears that it can 

also stimulate testosterone production within the Leydig cells (Ge et al., 2005). 

The metabolism of GCs mainly occurs in the liver and a large proportion of GCs is eliminated 

via urine. Most cortisol is reduced to dihydrocortisol and then to tetrahydrocortisol by the 

enzyme 11β hydroxysteroid dehydrogenase (11βHSD), which is then conjugated to 

glucuronic acid. These derivatives are freely soluble and are rapidly excreted with urine. In 

mammals, at least 2 isoforms of this enzyme exist. The type 1 and type 2 11βHSD isoforms 

share only 14% homology and have distinctly different physiological roles and tissue 

distributions. 11βHSD -1 catalyzes the conversion of inactive 11-keto metabolites 

(cortisone/11-dehydrocorticosterone ) into biologically active 11-hydroxylated corticosteroids 

(cortisol/ corticosterone). It is localized primarily to the liver but it is also present in the brain, 

pituitary, adrenal, lung, ovary and adipose tissue. 11βHSD-1 has also been identified in 

human decidua and fetal membranes, where it may act locally to increase bioactive GC 

concentrations to facilitate the process of parturition. 11βHSD-2 acts as a dehydrogenase, and 

it converts biologically active GCs into inactive metabolites (reviewed by Odermatt and 

Nashev, 2010). 11βHSD2 is present at high levels in the placenta, protecting the foetus from 

maternally derived GCs, but is also found in many other organs, such as the brain, pancreas 

and kidney. Many synthetic GCs are poor substrates for 11βHSD and are not oxidized by 
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these enzymes. Therefore these synthetic GCs can gain direct access to the GR without any 

significant reduction in their circulating or tissue levels (Siebe et al., 1993). 

In humans, a typical undesired side-effect of GCs is drug-induced Cushing's syndrome. Other 

important undesired effects are hyperglycemia and osteoporosis (Table 1.3). Typical 

mineralocorticoid side-effects are hypertension, hypokalemia, without causing peripheral 

edema, metabolic alkalosis and connective tissue weakness. Suppression of hypothalamic 

pituitary secretion by hyper secretion of cortisol is commonly reported and this phenomenon 

has negative impacts on growth (due to the lack of GH) and reproduction (due to the lack of 

gonodotropic hormones).  

Table 1-3. Typical side effects of GCs in human (Schacke et al., 2002). 

 

Organ Undesired side effect 

Skin 

Atrophy, striae rubrae distensae, Delayed wound healing 

Steroid acne, perioral dermatitis, Erythema, teleangiectasia, 

petechia, hypertrichosis 

Skeleton and muscle Muscle atrophy/myopathy, Osteoporosis, Bone necrosis 

Eye Glaucoma, Cataract 

CNS 
Disturbances in mood, behavior, memory, and cognition 

‗Steroid psychoses‘ steroid dependence, Cerebral atrophy 

Electrolytes, 

metabolism, endocrine 

system 

Cushing‘s syndrome, Diabetes mellitus, Adrenal atrophy 

Growth retardation, Hypogonadism, delayed puberty 

Increased Na + retention and K+ excretion 

Cardiovascular system Hypertension, Dyslipidemia, Thrombosis, Vasculitis 

Immune system 
Increased risk of infection (e.g., Candida) 

Re-activation of latent viruses (e.g., CMV) 

Gastrointestinal Peptic ulcer, Gastrointestinal bleeding, Pancreatitis 

GCs inhibit testosterone production within the Leydig cells via a pathway mediated by the 

GR. In addition, GCs may induce spermatogonia and spermatocyte apoptosis and decrease 

sperm yield (Ge et al., 2005). Stress-induced polycystic ovarian disease is thought to be due 

to the hyper secretion of cortisol and HPG suppression. Several animal studies have shown 

that GC excess during pregnancy, either from maternal stress or through exogenous 
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administration to the mother or fetus, reduces birth weight and causes lifelong hypertension, 

hyperglycaemia and behavioural abnormalities in the offspring. These effects are transmitted 

across generations without further exposure to GCs, which suggests an epigenetic mechanism 

(Drake et al., 2007). A series of studies in sheep have focused on the perinatal and life-long 

consequences of GC exposure in pregnancy. These studies in the sheep model have shown 

that maternal injections with GCs, in a manner similar to clinical treatment for women at risk 

of preterm birth, enhance foetal lung maturation, but were also associated with developmental 

and other functional alterations that are of concern. With weekly doses to the mother, there is 

restricted foetal growth, delayed myelination of the central nervous system, altered blood 

pressure soon after birth and increased insulin response to glucose challenge in early 

adulthood. The findings in experimental animals are supported by studies of children in the 

Western Australian preterm infant follow-up study, which indicated that increasing the 

number of GC exposures, for the purpose of enhancing lung maturation prior to preterm birth, 

is associated with reduced birth weight and behavioural disorders at 3 years of age 

(Newnham, 2001). 

1.4 Corticosteroids in fish. 

Cortisol is the principal glucocorticoiod in fish, and one of the most commonly measured 

indicators of environmental stress in fish is the plasma concentration of cortisol (reviewed in 

Mommsen et al., 1999). Aldosterone has not been reported in fishes and cortisol is thought to 

have both GC and mineralocorticoid actions. However, characterisation of the corticoid 

receptor in fish revealed that one MR and two GR forms exist in many species (details in 

Chapter 3) and 11-deoxycortisol acts as the major mineralocorticoid (Sturm et al., 2005). In 

the stressed situation, elevated cortisol is important for activation of the central nervous 

system, increasing blood glucose concentration and elevating blood pressure, by which fish 

can cope with stress. Cortisol is also thought to reduce the stress-induced 
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inflammatory/immune reaction in order to avoid tissue damage due to the inflammation. 

Apart from the stress response, cortisol plays important roles in the metabolism of 

carbohydrates, protein and lipid. It also plays a significant role in osmoregulation, growth and 

reproduction.  

An adrenal gland is not found in fish and instead cortisol synthesis occurs in interrenal cells, 

which are found in the head-kidney region. Cortisol production by fish has been reported from 

very early life stages, for example, 36 h after fertilization in the common carp (Stouthart et 

al., 1998). The Hypothalamus-Pituitary-Interrenal axis (HPI) coordinates the synthesis and 

release of cortisol, in a similar way to how the HPA axis does in mammals (reviewed by 

Mommsen et al., 1999). Adrenocorticotrophic hormone (ACTH) released from the anterior 

pituitary gland induces the secretion of cortisol. ACTH secretion is also controlled by the 

negative feedback mechanism of cortisol itself. In addition, several internal and external 

factors control ACTH secretion. For example, 11-ketotestosterone (11-KT) suppresses 

ACTH-induced cortisol production in rainbow trout in vitro (Young et al., 1996) and in vivo 

(Pottinger et al., 1996). 

Generally, cortisol is hyperglycaemic via hepatic gluconeogenesis (Wendelaar Bonga, 1997; 

Mommsen et al., 1999). Genomic studies revealed up-regulation of genes involved in many 

aspects of hepatic energy metabolism, including glucose and protein metabolism, in response 

to stressor-induced elevation of plasma cortisol concentrations (reviewed by Prunet et al., 

2008). For example, an increase in liver PEPCK mRNA levels was observed both in vivo as 

well as in vitro in trout hepatocytes stimulated with cortisol. This cortisol mediated PEPCK 

gene expression was inhibited in the presence of RU486, a GR antagonist (Sathiyaa and 

Vijayan, 2003; Vijayan et al., 2003; Aluru and Vijayan, 2007; a detailed review is presented 

in Chapter 5). In trout, cortisol elevated some of the genes involved in protein catabolism 
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(Barton and Iwama, 1991). These studies support a direct role for cortisol in the regulation of 

liver metabolism in fish.  

There have been several studies to elucidate the impacts of stress in fish, with the use of 

cortisol or a few of the many synthetic GCs (e.g. dexamethasone, triamcinolone), but the 

concentrations used were very much higher than the expected concentrations of GCs present 

in the aquatic environment (reviewed by Mommsen et al., 1999). GCs have been applied to 

fish via different routes such as single or repeated injection at differing sites (intramuscular, 

subcutaneous), oral application, various oil deposits, implantation of silicon tubes containing 

GCs or osmotic mini-pumps.  Other methods involved in increasing endogenous cortisol, such 

as overcrowding, handling stress, temperature or exposure to air, have also been tested. 

Although the experimental design is likely to strongly influence the outcome of a particular 

experiment and there have been some species specific results, some of the common impacts 

on metabolism have been frequently reported. A clear differentiation has been reported 

between short-term, acute effects and long-term treatment with cortisol. Under acute stress 

situations, there is a plasma cortisol surge within a minute to an hour, followed by a gradual 

decrease to basal levels within a day or two (Pankhurst, 2011). 

Long-term exposure to exogenous cortisol with slow releasing implants usually results in 

chronically elevated plasma cortisol concentrations. Impacts on carbohydrates, protein 

turnover, amino acid dynamics and lipids have been consistently identified. Cortisol treatment 

significantly increases the activities of all key gluconeogenic enzymes, namely glucose 6-

phosphatase, fructose 1,6-bisphosphatase and PEPCK. Increased activities of these 

gluconeogenic enzymes support an increased liver capacity for gluconeogensis in cortisol-

treated fish (Vijayan et al., 2003). Additional support comes from experiments on isolated 

liver systems. Significantly enhanced rates of gluconeogenesis from lactate were noted in 
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isolated carp liver cells maintained in culture (Janssens and Waterman, 1988) and incubated 

with cortisol in vitro, and in hepatocytes isolated from Gulf toadfish (Opsanus beta) 

previously injected with dexamethasone. A strong peripheral and hepatic lipolytic action of 

cortisol has been reported, resulting in increases in plasma fatty acid concentrations. European 

eels showed increased peripheral lipolysis in the presence of elevated cortisol (Sheridan, 

1986). Cortisol induces proteolytic action, especially on fish white muscle and possibly also 

in the liver. Andersen et al. (1991) found increased concentrations of free amino acids in 

plasma of cortisol-implanted fish, suggesting peripheral proteolysis in response to cortisol. In 

many cases both in vivo and in vitro observations have been confirmed with the use of cortisol 

bloking agents (e.g. metyrapone, RU486) where the observed impacts of cortisol were 

reversed (Mommsen et al., 1992). 

Cortisol-treated fish showed more tolerance to sea water and this has been explained by the 

fact that cortisol adapts fish to salinity by cellular differentiation of chloride cells and by 

stimulating branchial Na+/K+-ATPase activity (reviewed by McCormick, 1996). Up-

regulation of GR in seawater-acclimated fish gills has been reported (Weisbart et al., 1987), 

which means seawater tolerance is a receptor-mediated action. Synergy between cortisol and 

other osmoregulatory hormones such as growth hormone (GH) and insulin-like growth factor-

1 (IGF-1) has also been reported in brown trout (Madsen, 1990). 

GCs are known to suppress reproductive functions as an adaptive response to divert metabolic 

building blocks away from biosynthetic pathways (reviewed by Milla et al., 2009). GCs cause 

follicular atresia, advance or delay oocyte maturation and ovulation or affect egg size, 

fertilization success, spawning behaviour and progeny quality (Clearwater and Pankhurst, 

1997). Cortisol has been found to suppress plasma Vtg levels (Carragher et al., 1989; more 
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details are given in Chapter 5), and it brings about a 30% decrease in liver estradiol-binding 

capacity (Pottinger and Pickering, 1990).  

The reported effects of corticosteroids on the production of GnRH and gonadotropins are also 

consistent with interference of the HPG axis by GCs. In brown trout, the levels of both 

pituitary and plasma gonadotropins were reduced by cortisol treatment (Carragher et al., 

1989). In female fish, androgens are involved in the regulation of the final stages of 

GnRH/gonadotropin secretion (Nagahama et al., 1994). The negative effects of cortisol or 

stress on plasma androgen suppression (Carragher et al., 1989; Campbell et al., 1994) also 

support the idea that corticosteroids indirectly disrupt the HPG axis.  

Conversely, sex-steroids regulate corticosteroid production, further supporting their reciprocal 

interaction during the reproductive cycle. Estradiol suppressed cortisol production in 

interrenal cells in vitro (McQuillan et al., 2003), which confirms the reciprocal antagonism 

between both steroids, even if that result was not observed in immature rainbow trout (Barry 

et al., 1997; McQuillan et al., 2003). By contrast, in vivo, oestrogens were reported to 

promote cortisol production in immature trout (Pottinger et al., 1996). Low plasma cortisol 

concentrations were observed during spermatogenesis in male fish (Pickering and Christie, 

1981). This could be a physiological adaptation to protect the testes against the adverse effects 

of cortisol (Pottinger et al., 1995). Indeed, this steroid has numerous deleterious effects on 

male reproduction. When facing stressful situations or cortisol treatment, a delay in testicular 

development was observed, marked by smaller gonads, retardation in spermatogenesis and 

lower sperm quality (Campbell et al., 1992). 

After stressor application or cortisol administration during spermatogenesis, the plasma 

androgen levels were lower in treated fish than in controls (Pickering et al., 1987; Carragher 

et al., 1989; Pottinger, 1999). These observations suggest that the effect of cortisol on 
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spermatogenesis retardation is partly caused by inhibition of androgen production (Consten et 

al., 2002; Pickering et al., 1987). During the spermiation period, cortisol has also negative 

effects on some reproductive parameters, such as testis growth (Carragher et al., 1989). In 

rainbow trout, a direct negative effect of cortisol on the maturation-inducing hormone was 

reported (Milla et al., 2008). Overall, it has been clearly demonstrated that GCs can have 

negative impacts on fish reproduction. However, none of the studies used environmentally-

relevant concentrations of any GC (which might be very low compared to the reported stress-

related plasma cortisol levels) and exposure via water. We do not know if the GCs present in 

the aquatic environment can reach concentrations high enough to cause any adverse effects. 

As explained in stress-related studies with fish, suppression of the HPI axis is possible with 

exposure to synthetic GCs, as GCs could mimic the higher concentrations of endogenous 

cortisol. However, presently there are no data about the possible bioaccumulation of GCs into 

fish, potency differences among the GCs on fish, and the possible effects of environmentally 

relevant concentrations of GCs on fish. Therefore, the present study was designed in order to 

obtain some of these data before conducting any actual exposure studies aimed at assessing 

the impacts of the synthetic GCs present in the environment.  
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1.5 Objectives  

My research was carried out to test the following null hypothesis: 

―The low concentrations of synthetic glucocorticoid drugs present in the aquatic environment 

do not have any adverse impacts on fish‖ 

Experiments were carried out with the following objectives: 

 To predict environmental concentrations of GCs (Chapter 2). 

 To estimate the potency of different GCs in vitro with the fish corticoid receptors 

(Chapter 3). 

 To assess the impacts of low concentrations of synthetic GCs in vivo (Chapter 4). 

 Study the expression profile of selected genes in the liver of fathead minnows exposed 

to synthetic GCs (Chapter 5). 

 To assess the risk of GCs in the aquatic environment (Chapter 6). 
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Figure 1.3. Schematic outline of my research. 

Figure 1.3. Sche matic outline of my research. 
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Prediction Of The Environmental 

Concentrations Of Synthetic 

Glucocorticoids 
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2.1 Introduction 

Pharmaceuticals and personal care products are extensively and increasingly used and hence 

are released continuously into the environment. The fate of pharmaceutical products that are 

used for human and farm animals varies, depending on the route of administration, their 

dosage form and the physicochemical properties of the active pharmaceutical ingredient 

(API). Drugs that are not absorbed (for example, various dosage forms designed to be applied 

to the skin to give a local effect) remain in the actual pharmaceutical product. In these forms 

(e.g. ointments, powders, and dermal patches), the majority of the drug is often not absorbed. 

It is either washed off the skin or remains inside the patch. In the case of oral administration, a 

drug passes through the gastro-intestinal tract and leaves the body via urine and faeces, in 

unchanged form or after it has been metabolised to more water-soluble forms (conjugates or 

breakdown products). Hence, human drugs, once used, or expired and disposed into sewage, 

nearly always end up in the sewage system. It is generally accepted that synthetic steroids are 

relatively poorly removed in sewage treatment plants (STP) (Johnson and Sumpter, 2001), 

and some experimental evidence also supports this fact (Kanda and Churchley, 2008; Ternes 

et al., 1999). Another potential source of drugs in the receiving waters is leakage from landfill 

sites and agricultural land on which sludge from STP has been spread.  

Therefore it is not surprising that a variety of pharmaceuticals have been detected in many 

environmental matrices worldwide. They have been reported to be present in sewage 

treatment plant effluents, surface water, seawater, groundwater, soil, sediment and fish 

(Ternes, 1998; Halling-Sørensen et al., 1998; Heberer, 2002; Jones et al., 2001; Zuccato et 

al., 2006; Gros et al., 2010). It has also been reported that drug manufacturing site effluents 

(Larsson et al., 2007) and hospital waste waters (Kummerer, 2001) can contain high levels of 

human pharmaceuticals. STPs with advanced technologies, such as granular activated carbon, 

membrane technology, ozonation, and ultraviolet radiation have been used to remove 
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pharmaceuticals present in the sewage. However, several pharmaceutical products, for 

example anti-epileptics (carbamazepine), serotonin reuptake inhibitors and lipid regulators 

(clofibric acid, gemfibrozil) are known to be reasonably resistant to such treatments, because 

of their high solubility and/or poor degradability in water. Hence, concentrations of 

pharmaceutical products in receiving water have been shown to reach nanogram/L levels, and 

even microgram/L levels (Gros et al., 2010). 

2.1.1 Need for quantification  

Pharmaceuticals present in the aquatic environment may have adverse effects on living 

organisms (Jobling et al., 1998; Matthiessen, 2003; Corcoran et al., 2010; Burkhardt-Holm, 

2010).   In order to assess the risk posed by pharmaceuticals to aquatic organisms, we need to 

know if they are present in surface waters (and hence aquatic organisms will be exposed), and 

if they are, is the concentration of a particular pharmaceutical in the surface water sufficient to 

produce a potential impact on the aquatic organism, and what organisms are the most 

sensitive? Currently, the environmental risk assessment of pharmaceuticals for human use is 

based on the guidelines of the European Medicines Agency (EMEA, 2006), which is a tiered 

process. The first tier consists of deriving a predicted environmental concentration (PEC) in 

surface waters using the input data on maximum daily dose of active ingredient consumed per 

inhabitant, market penetration of drug, volume of wastewater per person per day (set as 200 

litres) and the dilution factor from STP effluent to surface water (set as 10). In this phase, the 

calculation is based on assumptions such as no metabolism, biodegradation or retention of the 

drug, which leads to worst case estimates of risk. If the PEC is above 10 ng/ L, aquatic fate 

and effect studies using exposure experiments have to be conducted in higher tier risk 

assessment phases. Higher tier phases will determine the lowest observed effect concentration 

(LOEC), no observed effect concentration (NOEC), and the predicted no effect concentration 

(PNEC).  These values are important in predicting the risk of pharmaceuticals to the 
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environment. Hence, PEC values provide important information for the prioritization of 

pharmaceuticals for environmental monitoring strategies. There are two approaches, namely 

analytical chemistry and mathematical modelling, available to derive the PEC of a chemical 

in the aquatic environment. This chapter explains how and why the modelling approach was 

used in this project to estimate the concentrations of GCs in the UK. 

2.1.2 Measurements with analytical chemistry 

Chemical methods such as gas chromatography (GC) or liquid chromatography (LC) coupled 

with mass spectrometry (MS) or tandem mass spectrometry (MS/MS), as well as biological 

methods such as glucocorticoid receptor-chemical activated luciferase gene expression (GR-

CALUX) and enzyme linked immunosorbent assay (ELISA) methods, can be used to measure 

precise concentrations (see table 2.1). These are very useful methods when the chemical is 

present in microgram/L concentrations and when there is an established protocol for 

appropriate extraction from water and subsequent clean-up procedure. These methods are 

very specific to a particular chemical (in the case of GR-CALUX, for a group of chemical) 

and in theory more accurate. But these methods have their own drawbacks (reviewed in 

Johnson et al., 2008). Since the pharmaceuticals are often found in the environmental samples 

in low nanogram per litre concentrations, and they might be present in a mixture of similar 

compounds, extraction and quantification will be expensive and time consuming.  

The occurrence of pharmaceutical residues in rivers and streams can vary at different 

timescales (high flow vs low flow) and at different locations (due to differences of population 

density, available dilution, and distance from STP effluent). The day (for example, weekend 

or working day will influence the use of stress-related drugs), or month (school holidays), or 

the year (any outbreak of disease) the sample is taken could also have a large influence on the 

concentrations present in the environment. They can also vary from country to country, 
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depending on their drug use policy and the available natural flow per person. It would 

probably be impractical, using analytical chemistry, to design a sampling strategy that would 

account for all these factors, and hence provide a range of concentrations representative of 

those that occur in a river of interest.  Moreover, many individual GCs are used in low 

amounts and hence the surface water concentrations could be in the pg/L range (example, 

halcinonide; Figure 2.6 and 2.7), which is under the limit of detection for most analytical 

techniques (though these are decreasing). For a group of pharmaceuticals with many 

individual products (for example, about 30 different GCs are in regular use in the UK), 

analytical measurement has another drawback as it will measure only one at a time; validated 

methods need to be established for each and every single GC. 

Despite these difficulties, there are a number of reports available from different parts of the 

world with measured concentrations of GCs (Table 2.1). These reports provide only a partial 

picture of the concentrations of GCs in the aquatic environment, but they do suggest that the 

measured concentration varies from 0.3 ng/L to up to 1900 ng/L in different environmental 

samples. Therefore, the modelling approach is justified as it is possible to predict the 

environmental concentration throughout a river catchment, and for different seasons. It is also 

possible to predict not only the concentrations of one particular GC of interest, but also the 

overall concentration of all GCs.  
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Table 2-1. Available data on measured concentrations of GCs in environmental samples and the detection methods used to obtain the data. 

 

GC 
Influent                

(ng/L) 

Effluent             

(ng/L) 

Surface water               

(ng/L) 
Method Reference 

Triamcinolone 

14 -41 

- 

31 

- 

- 

30 

- 

0.2-0.5 

- 

LC-high resolution MS 

LC/MS 

LC/MS/MS 

Schriks et al., 2010 

Tölgyesi et al., 2010 

Piram et al., 2008 

Cortisone 

381- 472 

174 

9 - 51 

- 

- 

229 

0.16-0.36 

31.9 

- 

- 

4.2 

- 

LC-high resolution MS 

LC/MS/MS 

LC- ESI- MS/MS 

LC/MS 

Schriks et al., 2010 

Piram et al., 2008 

Chang et al., 2007 

Vulliet et al., 2007 

Prednisolone 

315 -1918 

1.4 - 4.6 

 

- 

0.5 - 0.62 

- 

- 

0.64 

0.04-0.58 

LC-high resolution MS 

LC- ESI- MS/MS 

LC/MS 

Schriks et al., 2010 

Chang et al., 2007 

Tölgyesi et al., 2010 

Cortisol 

275 -301 

53 

13 -65 

0.26-120 

- 

53-63 

0.17–0.83 

- 

- 

- 

3.4 

0.17-2.67 

LC-high resolution MS 

LC/MS/MS 

LC- ESI- MS/MS 

LC/MS 

Schriks et al., 2010 

Piram et al., 2008 

Chang et al., 2007 

Tölgyesi et al., 2010 

Prednisone 
117 – 545 

0.6 -4.5 

- 

- 

- 

0.86 

LC-high resolution MS 

LC- ESI- MS/MS 

Schriks et al., 2010 

Chang et al., 2007 

Dexamethasone 

15 

0.5 – 1.9 

- 

7 

- 

- 

- 

- 

0.01-0.07 

LC/MS/MS 

LC- ESI – MS/MS 

LC/MS 

Piram et al., 2008 

Chang et al., 2007 

Tölgyesi et al., 2010 

Flumethasone - - 0.02-1.43 LC/MS Tölgyesi et al., 2010 

Glucocorticosteroid 

(undefined) 

- 

- 

390 

11 -243 

52 

0.39 – 1.3 

LC- ESI – MS/MS 

GR - CALUX 

Chang et al., 2009 

Van der Linden et al., 2008 
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2.1.3 Modelling the concentrations of GCs 

In the past few decades, several models have been developed and subsequently modified in 

order to predict the fate of point source chemicals in the environment, based on their 

biological and physico-chemical characteristics. The PhATE (Pharmaceutical Assessment and 

Transport Evaluation) in US waters (Anderson et al., 2004), GREAT-ER (Geography-

Referenced Regional Exposure Assessment for European Rivers) in Europe (Feijtel et al., 

1997), and LF2000-WQX in the UK (Keller and Young, 2004; Williams et al., 2009) are 

some examples of models widely used to predict the concentration of chemicals that reach the 

water body via STP. In the present study, predictions were made using the LF2000-WQX 

model, which was developed from the Low Flows 2000 geographic information systems 

(GIS) hydrological model to predict concentrations of chemicals in real catchments. Low 

Flows 2000 (Young et al., 2003) was developed by the Centre for Ecology and Hydrology at 

Wallingford and it has been widely used by the Environment Agency of England and Wales 

and by the Scottish Environment Protection Agency. The LF2000-WQX can predict statistical 

distributions of concentrations of down-the-drain chemicals in river stretches downstream of 

all major STPs in England and Wales. The LF2000-WQX model is also based on GREAT-

ER, which has been applied to a number of rivers across Europe and has been shown to give 

reasonable estimates of measured concentrations of down-the drain chemicals (Feijtel et al., 

1997). GREAT-ER and LF2000 – WQX are similar in many aspects and they use Monte-

Carlo simulation to generate different scenarios from distributions describing the river and 

effluent flow rates, and the final model results (PECs) are expressed as distributions. Thus, 

many decades of flow, or rainfall, data are collected and different values assigned a different 

probability (explained in 2.2.4).  

All the above models require an individual loading input per capita for the pharmaceutical, 

which depends on the total consumption of a particular pharmaceutical of interest in the 
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region of interest (country), the degree of metabolism and excretion from the patients, and the 

population density. The amounts present in the surface water mainly depend on the rate of 

removal at STPs, seasonal flow rate of a river, in stream sorption and biodegradation in river. 

Values for all these parameters are entered into the models. These models use a digitized river 

network incorporating the STP discharge points.  

2.1.4 Objectives 

The main objective of this part of my project was to predict the range of possible 

concentrations of GCs in the aquatic environments of the UK. 

Specific objectives 

1. Calculate the annual consumption of GCs in the UK, in order to obtain the per capita 

load into the sewage system. 

2. Search literature for information on the metabolism and excretion of GC in patients. 

3. Estimate the removal rate in STPs based on the available physicochemical properties 

of GCs. 

4. Predict the concentrations of GCs in the river Thames for different scenarios.  

This chapter presents predictions of environmental concentrations of a total of 28 GCs using 

the LowFlow2000-WQX model (Williams et al., 2009) in the River Thames, estimated from 

data on the prescription of these drugs in the UK. It also presents the concentrations of highest 

and lowest consumed GCs for high flow and low flow conditions of the river. 
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Cortisol Prednisolone Betamethasone Dexamethasone Fluticasone 

     

 

 

 

Beclomethasone 

(dipropionate) 

Mometasone 

(furoate) 

Clobetasone Budesonide Methyl prednisolone 

 
Figure 2-1. Chemical structures of the 10 most prescribed GCs in the UK. Note the fluorine substitution in betamethasone, dexamethasone, fluticasone and 

clobetasone and chlorine substitution in beclomethasone, momethasone and clobetasone. 
Figure 2-1. C hemical structures of the 10 most prescribed GCs in the UK.   
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Table 2-2. Some physico-chemical and biological information on five of the most prescribed GCs in UK. 

 

Name of GC Hydrocortisone Prednisolone Betamethasone Beclomethasone Fluticasone 

Reasons for use 

Adrenocortical 

insufficiency 

Hypersensitivity 

Asthma 

Rheumatic disease 

Inflammatory bowel 

disease 

Eczema 

Rheumatic disease 

Immunosuppression in 

lymphoma/leukaemia 

Asthma 

Inflammatory bowel disease 

Inflammation of eyes /ears 

Eczemas 

Psoriasis 

Eczematous  

Inflammation of    

external ear 

Inflammation of 

eyes 

Prophylaxis of 

asthma 

Acute ulcerative 

colitis 

 

 

Prophylaxis of asthma 

Eczema 

Prophylaxis & 

treatment of allergic 

and perennial rhinitis 

Route and Average 

daily dose 

Oral 30 mg 

Intravenous/ 

Intramuscular 

-500 mg , 6 hourly 

Topical 15-30 mg for 

2weeks 

Oral(95%) 20-40 mg 

(maximum 60 mg/day) 

Rectal enemas/suppositories 

20 mg 

Ophthalmic/Oral drops 2-3 

drops-3hourly 

Topical (30%) 

1-2 times/day 

Oral 2-3drops/day 

Nasal inhalation 

(70%) 

400-1000µg /da  y 

 

Topical (15%) 5 mg 

Nasal inhalation (70%) 

100-500 µg/day 

 

Topical cream or 

ointment 1-2times/day 

100 -200 µg/day 

Molecular formula 

( and molecular 

weight) 

C21H30O5 

(362.4) 

C21H26O5 

(358.4) 

C22H29FO5 

(392.5) 

C22H29ClO5 

(408.9) 

C22H27F3O4S 

(444.5) 

 

Log P 
1.61 1.66 1.93 2.12 3.70 

Water solubility 

(mg/L) at 25
o
C 

219.6 221.4 75.14 49.39 27 

Vapour pressure 

(mmHg at 25°C) 
3.44E-15 2.13E-15 2.81E-15 6.19E-17 2.79E-15 

Henry‘s constant 

(atm m
3
 mol

-1
 at 25°C) 

5.77E-8 2.71E-8 7.15E-8 1.27E-8 3.15E-8 
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2.2 Materials and Methods 

2.2.1 Calculation of annual consumption of GCs in the UK 

The data in this chapter were obtained from a publicly accessible and free database 

(http://www.ic.nhs.uk/) maintained by the National Health Services (NHS) of the UK.  

Prescriptions Cost Analysis (PCA) data for England, Wales, Scotland, and Northern Ireland 

were obtained from the regional NHS websites. All regional data referred to the year 2006, 

except the data from Scotland, which referred to the year ending on 31 March, 2007. 

According to the NHS, the PCA data ‗were based on information obtained from prescriptions 

sent to the Prescription Pricing Division of the Business Services Authority (PPDBSA) for 

payment‘. PCA data covered all prescriptions dispensed to the community; that is, by 

community pharmacists, appliance contractors, dispensing doctors, and items personally 

administered by doctors.  

As the NHS provides healthcare for the vast majority of citizens of the UK, it is generally 

considered that most medicines prescribed in the UK will be prescribed within the NHS.  

Medicines prescribed in hospitals, by private doctors, or purchased via the internet, will not 

feature on the database used here.  Nor will drugs taken illegally (e.g. anabolic steroids taken 

by athletes).  Although it is not possible to know with a high degree of accuracy what 

proportion of pharmaceuticals used in the UK are prescribed or otherwise obtained from 

outside the NHS (and hence are not covered by this database), it is thought that the proportion 

will be relatively low.  Thus, although the information on amounts prescribed in this chapter 

will be under-estimates of actual use, they will probably not compromise the predicted 

concentrations to any significant extent.  

http://www.ic.nhs.uk/
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The PCA data are based on the therapeutic grouping used in the British National Formulary 

(September 2005; edition 50). For each macro-region, the following data were considered (the 

NHS definition is provided for each element);- 

Drug name: The drug was shown by individual preparation name, which may be proprietary 

or generic, followed by form and strength. 

Items dispensed (PXS): A prescription item referred to a single item prescribed by a doctor 

(or dentist/nurse) on a prescription form. 

Quantity (QTY): The quantity of a drug dispensed was measured in units specified on the 

information supplied with the product. 

Standard quantity unit (SQU): The code indicated the form of the drug and the units in which 

quantity is measured: 

Code 1 – a unit (e.g. one tablet, capsule, pack, aerosol, etc.) 

Code 3 – millilitres 

Code 6 – grammes 

Code 0 – individually formulated (unit varies) 

The total amount of API prescribed was calculated for each individual preparation, 

multiplying the value in the quantity column by the amount of API in each unit. For example, 

58140200 tablets of ‗prednisolone Tab 1 mg‘ were prescribed by the NHS in England during 

2006. According to present methodology, 58.14 kg of this formulation was dispensed. 

Similarly, other formulations, such as 2.5 mg, 5 mg, and 25 mg tablets, together with other 

generic formulations such as prednesol and deltacortil, used in England, Wales, Scotland and 

Northern Ireland, resulted in 1488.3 kg of API prednisolone in total being prescribed in 2006.  
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If the API was conjugated with further chemical groups, the parental API only was 

considered. When the drug was dispensed as a gel or topical cream, the percentage of API 

was calculated. For example, the amount of anugesic HC-cream dispensed in England 

was1025.9 kg, but this preparation is of 0.5% hydrocortisone. Therefore the amount of API, 

hydrocortisone, from this preparation was 5.13 kg. In the case of multiphase drugs, containing 

units with different strengths and compositions in each pack, the different compositions were 

taken into account.  When the value in the quantity column referred to a blister or a pack, that 

value was multiplied by the number of tablets or patches contained in each blister or pack, 

according to the British National Formulary, 2006. Similarly, the value was multiplied by the 

number of doses in a single prescription for the inhaler drugs (examples include 

Beclomethasone dipropionate and Fluticasone propionate).  By combining the data obtained 

for each API, the total amount of API prescribed during 2006 was obtained, and expressed in 

kilograms. 

2.2.2 Metabolism and excretion 

Data on the metabolism and excretion of GCs in humans were obtained from the world wide 

web  (www.drugbank.ca; www.drugs.com), and from  medical and veterinary literature (Bahr 

et al., 2000; Boobis, 1998; Edsbacker et al., 1987; Feher et al., 1975; Goyal and Bishnoi 

2009; Harper et al., 2000; Jjemba 2006; Munck et al., 1984; Mostl et al., 1999; Pozo et al., 

2009; Martinelli et al., 1979; Sparagana et al., 1970; Liu et al., 2009 ). The percentage of 

excretion (of original drug or metabolite) of each individual GC was taken into account and 

summarised as a range of percentages for total GCs, in order to predict a maximum and a 

minimum load that might enter the sewerage system from each person (per capita load). 

http://www.drugbank.ca/
http://www.drugs.com/
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2.2.3 Removal in STP 

Direct measurement of removal rates of GCs in STP is available from only two publications 

(Chang et al., 2007; Piram et al., 2008). These reports are contradictory, as Chang et al. 

(2007) report more than 95% removal, while Piram et al. (2008) report below 5% removal 

(Table 2).  Therefore, SimpleTreat was used for estimating the removal rate. This is a 

spreadsheet to predict the distribution and elimination of chemicals by sewage treatment. 

SimpleTreat 3.0 is an improved version compared to the original version, accounting for the 

different modes of operation of sewage treatment plants and for the descriptions of the 

interactions between the chemical and its engineered environment, in particular 

biodegradation (Struijs, 1996).  Most of the input data for SimpleTreat were obtained from 

World Wide Web search (www.chemspider.com; http://pubchem.ncbi.nlm.nih.gov/; table 1). 

Biodegradation constant (per hour) in an activated sludge was either obtained from a web 

search or estimated from BIOWIN (biowin v 4.10). If particular input data were not available, 

the default value was used in the spreadsheet. Removal data for each individual GC were 

taken into account and summarised as a range of percentages for total GCs in order to predict 

a maximum and a minimum per capita load. 

2.2.4 Prediction of environmental concentrations 

The prediction of concentrations of GCs in the River Thames was made using the 

LowFlow2000-WQX model which has previously been used to assess concentrations of 

steroid oestrogens (Williams et al., 2009), triclosan (Price et al., 2010) and cytotoxic drugs 

(Rowney et al., 2009) in the UK. Details of the model are given in these publications and in 

Keller and Young, 2004. Briefly, the LF2000-WQX software (Keller and Young, 2004; 

Williams et al., 2009) is a geographical information-based system that combines hydrological 

models with a range of water-quality models, including a catchment-scale water-quality 

http://www.chemspider.com/
http://pubchem.ncbi.nlm.nih.gov/
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model. This model generates spatially explicit statistical distributions of down-the-drain 

chemicals for both conservative and degradable compounds. It uses a Monte Carlo mixing-

model approach to combine statistical estimates of chemical loads at specific emission points 

(e.g. Sewage Treatment Works) with estimated river flow duration curves for the whole river 

network of interconnected model reaches (a reach is the river stretch between model features 

e.g. major tributaries, sewage treatment works). Thus working from the low order streams at 

the head of the river network to the outlet from the river basin, the model accounts for the 

accumulation of point loads and the accumulation of water in which these loads are diluted. 

Degradable chemicals are removed from the river water by a non-specific dissipation process 

assuming first-order kinetics. 

For this case study, per-capita input loads of GCs for the UK were estimated from the 

prescription data and were adjusted to take account of the removal rate in sewage treatment 

works and the excretion from patients. In order to quantify the uncertainty in these 

calculations, the lowest removal rate together with the highest excretion rate was taken as 

worst case scenario and vice-versa as the best case scenario. In calculating the per-capita 

loads, it was assumed that the GCs are consumed by all age groups of people and that they are 

released to the environment only via urinary and faecal route excretion, that all the sewerage 

is treated before entering the river and that there were no seasonal overflows from the STP. It 

was also assumed that patients are equally distributed all over the UK.  The estimated UK 

population was 60587300 in 2006 (http://www.statistics.gov.uk) and this number was used to 

calculate the per capita consumption of GCs.  

The LF2000-WQX model does not run at a particular flow rate, rather it samples the 

distribution of flows that are likely to occur in each river reach and then calculates a 

distribution of concentrations through a series of mass balance calculations. Therefore the 90
th

 

http://www.statistics.gov.uk/
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percentile concentration can be interpreted as being typical of low flow conditions and the 

10th percentile flow as typical of high flow conditions. In order to show the differences due to 

the flow rate of the river, the 10
th 

and 90
th

 percentile concentrations of hydrocortisone (CAS 

number: 50-23-7) and halcinonide (CAS number: 3093-35-4), which are the highest and 

lowest consumed GCs respectively in the UK, were predicted. 

The river Thames was chosen as a case study because it has previously been identified as a 

river with the highest proportion of its catchment at risk from oestrogenic pharmaceuticals 

(Williams et al., 2009). 

2.3 Results 

A total of 28 different GCs were prescribed in UK in 2006 and the estimated total amount was 

4370 kg, of which hydrocortisone and halcinonide accounted for 1811 kg and 900g, 

respectively (Table 2.3). The percentage composition of individual GCs prescribed in the UK 

and the percentage of total GCs prescribed in different parts of the UK in 2006 are presented 

in Figures 2.2 and 2.3. 

Biodegradation constants in an activated sludge STP for different GCs were in the range of 

0.3 – 1 hr
-1 

means 2.3 hours to 0.69 hour half life (EU Technical Guidance Document). 

Removal rates of different GCs in STPs vary between 11% - 76%. Excretion (either as 

original drug or metabolite) of GCs was in the range of 28% - 54%. Calculated input load for 

hydrocortisone and halcinonide in the LF2000-WQX model were 5.503 microgram/head/day 

and 10.1 ng/head/day, respectively. For the best case scenario the calculated input value for 

total GCs was 13.3 microgram/head/day and for the worst case it was 96.2 

microgram/head/day.  
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Figure 2-2. Percentage composition of individual GCs prescribed in the UK 2006. Other 

Glucocorticoids: Deflazacort, Flumetasone, Fluocinolone, Diflucortolone, Fluocinonide, 

Fluocortolone, Rimexolone, Alclometasone, Fluorometholone, Flunisolide, Fludroxycortide, 

Ciclesonide, Fluprednidene, Desoximetasone and Halcinonide.  

 

 

 

 

 

 

 

Figure 2-3. Percentage of total GCs prescribed in different parts of the UK in 2006. 
Figure 2-2. Percentage composition of individua l GCs prescribe d in the UK 2006  

Figure 2-3. Percentage of total GCs prescribed in different parts of the UK in 2006  
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Table 2-3. Glucocorticoids prescribed in 2006 in the UK for clinical use. 

 

Principal Name CAS Number Log P 
Amount Prescribed 

(kg) 

Hydrocortisone 50-23-7 1.61 1810.91 

Prednisolone 50-24-8 1.62 1488.30 

Betamethasone 378-44-9 1.94 305.33 

Beclometasone 4419-39-0 2.12 273.96 

Fluticasone 90566-53-3 2.69 176.29 

Budesonide 51333-22-3 2.42 89.46 

Mometasone 105102-22-5 2.81 51.81 

Clobetasone 54063-32-0 2.61 44.72 

Methylprednisolone 83-43-2 2.06 28.98 

Dexamethasone 50-02-2 1.83 27.26 

Clobetasol 25122-41-2 2.48 21.60 

Triamcinolone 124-94-7 1.16 16.61 

Cortisone 50-06-5 1.47 15.72 

Others* / / 16.77 

Total   4367.72 

* Others include: Deflazacort, 14484-47-0; Flumetasone, 2135-17-3; Fluocinolone, 807-38-5; 

Diflucortolone, 2607-26-9; Fluocinonide, 356-12-7; Fluocortolone, 152-97-6; Rimexolone, 49697-38-

3; Alclometasone, 66734-13-2; Fluorometholone, 426-13-1; Flunisolide, 3385-03-3; Fludroxycortide, 

1524-88-5; Ciclesonide, 141845-82-1; Fluprednidene, 1255-35-2; Desoximetasone, 382-67-2; 

Halcinonide, 3093-35-4. 

The output of the LF2000-WQX model is in the form of colour-coded river maps, with each 

colour indicating a different predefined concentration range. These maps can be used to 

identify the ‗hot spots‘, those locations where maximum concentrations are predicted. 10th 

and 90th percentile concentrations of hydrocortisone are presented in Figures 2.4 and 2.5, 

respectively, which reveal that due to changes in river flow rate, the concentration of 

hydrocortisone is predicted to reach maximum values up to 8 ng/L (high flow) and 24 ng/L 

(low flow). Similarly, 10th and 90th percentile concentrations of halcinonide (Figures 2.6 and 
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2.7) were very much lower, being up to 20 pg/L in high flow conditions and up to 80 pg/L in 

low flow conditions.  

When the model was run assuming that of all the consumed drugs are excreted and there is no 

removal in STP, mean concentrations of total GCs were predicted to be up to 1732 ng/L. 

However, only a percentage of consumed drugs are excreted and there is likely to be some 

removed in STPs. Therefore more realistic concentrations estimates are presented here. 

Predicted mean concentrations of all GCs combined, assuming the lowest excretion rate and 

the highest removal rate in the STP (best case scenario) are presented in Figure 2.8, where the 

concentrations of total GCs in the river Thames were up to 30 ng/L. This value was increased 

to 854 ng/L at the ‗hot spots‘ of the river Thames, when the highest excretion rate and the 

lowest removal in STP were used in the modelling (worst case: Figure 2.9).  

There are many stretches on the River Thames that do not receive effluent from sewage 

treatment works which are not shown on the maps, and of course all of these  are predicted to 

have zero concentration.  In fact, there are about 7600 km of rivers in the Thames catchment, 

of which only about 1350 km are likely to be contaminated with GCs (stretches below major 

STPs). In the best case scenario, about 99% of the contaminated river length would be 

predicted to have mean concentrations of between 0.1 and 50 ng/L. In the worst case scenario, 

only about 54% of the contaminated river length would be expected to show this lower 

concentration (0.1 to 50 ng/L) range and the rest would be expected to have higher 

concentrations. In this worst case scenario, about 28% of the contaminated river length falls in 

the 50 to100 ng/L range, about 12% within the 100-200 ng/L range, and about 5% was 

predicted with greater than 200ng/L total GCs concentrations. This 5% of the river length 

could be considered as the ‗hotspots‘.  



 

57 

 

 

 

Figure 2-4. Distribution of predicted concentrations (pg/L) of Hydrocortisone (highest 

prescribed GC) during high flow conditions of the river Thames.  
Figure 2-4. Distribution of predicted concentrations of Hydrocortisone during high flow conditions  of the river Thames  
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Figure 2-5. Distribution of predicted concentrations (pg/L) of Hydrocortisone (highest 

prescribed GC) during low flow conditions of the river Thames. 
Figure 2-5. Distribution of predicted concentrations of Hydrocortisone during low flow conditions of t he river Thames 
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Figure 2-6. Distribution of predicted concentrations (pg/L) of Halcinonide (lowest prescribed 

GC) during high flow conditions of the river Thames.  
Figure 2-6. Distribution of predicted concentrations of Halcinonide during high flow conditions of t he river Thames  
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Figure 2-7. Distribution of predicted concentrations (pg/L) of Halcinonide (lowest prescribed 

GC) during low flow conditions of the river Thames. 
Figure 2-7. Distribution of predicted concentrations of Halcinonide during low flow conditions of the river Thames  
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Figure 2-8. Distribution of predicted (50
th

 percentile) concentrations (ng/L) of total GCs along 

the river Thames basin (best case scenario). The predicted concentrations were obtained with 

mean flow conditions of the river, maximum predicted removal rate at STP, and minimum 

excretion from patients. 
Figure 2-8. Distribution of predicted concentrations of total GCs along  the river Thames basin (best case scenario). 
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Figure 2-9. Distribution of predicted (50
th

 percentile) concentrations of total GCs along the river 

Thames basin (worst case scenario). Predicted concentrations were obtained with mean flow 

conditions of the river, minimum predicted removal rate at STP, and maximum excretion from 

patients. 
Figure 2-9. Distribution of predicted concentrations of total GCs along  the river Thames basin (worst case scenario).  

 

 

 

 

 

 

 

2.4 Discussion  

As discussed in chapter 1, many different groups of pharmaceuticals are present in the aquatic 

environments and the concentrations of some non-steroidal anti-inflammatory drugs can reach 

high levels. Studies show that many of the highly consumed pharmaceutical substances, such 

as paracetamol and aspirin, are readily biodegradable. In contrast, the impacts of EE2 in the 

environments have been well documented (reviewed in Caldwell et al., 2008) and the annual 
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usage of EE2 in the UK (about 25 kg) is well below that of most of the GCs used in this 

study. Therefore priority in the research of pharmaceuticals present in the environment should 

be given to steroids and anti-steroids (Runnalls et al., 2010), which are both highly potent 

groups that can be persistent in nature. GCs were not included in a previous study on 

pharmaceuticals used in the UK, involving a similar calculation of annual usage and an 

assessment of the environmental risk posed by human pharmaceuticals (Sebastine and 

Wakeman 2003). They are not in the list of the 25 most-used pharmaceuticals in the UK 

(Jones et al., 2002).  

There are approximately 30 different GCs that are currently licensed for use in the UK (BNF 

2006). Statistics on how much is spent on different pharmaceuticals by the National Health 

Service, via the ‗Prescription Cost Analysis 2006‘, have been produced by the Department of 

Health. Though this database does not cover private hospital prescriptions, it is estimated that 

it accounts for about 80% of use for the whole of the UK. Thus, this database probably 

provides a reliable assessment of the amounts of the different GCs used annually in the UK. 

In order to prioritize those GCs most likely to be present at measurable concentrations in the 

UK environment, and hence those that may present a risk to fish, it is important to establish 

which GCs are used to the greatest extent in the UK. 

 The top most used GC in the UK, hydrocortisone, is reported to be readily degradable (Chang 

et al., 2007). The second most used GC, prednisolone, has been reported by Chang et al. 

(2007) to be  the most frequently detected GC in effluent in China. This in turn was found to 

be a result of its relatively low efficiency of biodegradation. Although other GCs are used in 

comparatively low amounts compared to prednisolone, their structural modifications, 

designed to make them more stable in patients, could mean that they are present in the 

environment at concentrations higher than might otherwise be expected.  
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With no data available on the concentrations of GCs in UK waters, the modelling approach is 

probably the best way to start in order to predict a range of possible concentrations in a river 

catchment and to identify the ‗hot spots‘. In the past, various models have been successful in 

predicting concentrations of oestrogens (Williams et al., 2003; Balaam et al., 2010) and beta-

blockers (Alder et al., 2010) in the environment. Price et al. (2010, 2010a) have reported 

using the LF2000-WOX for predicting triclosan and decamethylcyclopentasiloxane 

concentrations in UK waters. Model predictions of oestrogens tallied well with measured 

concentrations (reviewed in Hannah et al., 2009). The main difference from oestrogens is that 

GCs are available in different routes of administration (not only orally) and the excretion and 

removal rates for individual GCs vary considerably. This is the reason for the wide range of 

concentrations predicted for the GCs in river Thames. 

Unlike oestrogens, considerable amounts of GCs are used as topical creams that may be 

washed off directly into wastewater. Therefore present predictions may be underestimates, 

because a high proportion, or even all, of the topical GCs may reach the aquatic environment. 

Another reason for any underestimation is that GCs used as veterinary medicines were not 

included. Farm animals may also contribute by excreting natural GCs and their metabolites, in 

exactly the same way that they excrete other steroidal hormones (reviewed by Johnson et al., 

2006). It is currently impossible to accurately determine the amount released into the 

environment for the reasons cited above, and also because unused or expired medications may 

be disposed of in a manner that could contribute more (Bound and Voulvoulis, 2005; Tong et 

al., 2010). This underestimation is compensated for in part by the amount of biodegradation in 

the river and in stream sorption to the sediment, two factors not taken into account in the 

present calculations (because no data are available). Nevertheless, results presented will be 

useful to identify the hotspots for further quantification and risk assessment. The range of 

concentrations predicted could be used in laboratory in-vivo experiments. It is also possible to 
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model the effects of mixtures of GCs, in a manner similar to the approach of Sumpter et al. 

(2006) for mixtures of oestrogenic chemicals. 

The concentrations of GCs in the environment seem to exceed those of oestrogens, as 

indicated by pharmaceutical use profiles and the concentrations detected in surface waters. 

For example, the usage profile in Denmark shows that total consumption of GCs and ethinyl 

estradiol were 361 and 0.7 kg/year, respectively (Ingerslev et al., 2003).  The present estimate 

of over 4000 kg/year of GC consumption in UK is justified as the population of UK is slightly 

more than 10 times of the population of Denmark. Using liquid-chromatography tandem mass 

spectrometry, Chang et al. (2009) reported concentrations of GCs and oestrogens as 52 and 

9.8 ng/L, respectively, from surface waters in China. But we don‘t know the usage profile of 

GCs in China, so direct comparison with the situation in the UK is not possible. For a 

comparison of a similarly behaving steroid, we can take ethinyl estradiol, 25 kg of which is 

used annually in the UK, and surface water concentrations are about 0.5 ng/L. This ratio is in 

agreement with the present estimate for hydrocortisone, where the usage is 1810 kg/year and 

the 90
th 

percentile concentration is up to 24 ng/L. It should be noted that excretion and STP 

removal rates are not exactly the same for these two compounds, and that probably accounts 

for their differences. Johnson (2010) has recently described how flow rate can influence the 

concentration of point source chemicals in a catchment, with oestrogen as his example. The 

natural variation in flow from winter to summer typically produced a 20 to 30-fold difference 

in predicted oestrogen concentration over the course of a year. The predictions for halcinonide 

reveal a 10 to 12-fold change on the average concentrations between high flow (10
th 

percentile: Figure 2.6) and low flow (90
th 

percentile: Figure 2.7) conditions. Similarly 

predictions for hydrocortisone reveal a 6 to 8-fold change on the average concentrations 

between high flow (10
th 

percentile: Figure 2.4) and low flow (90
th 

percentile: Figure 2.5) 

conditions. 
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The concentrations of GCs in STP influents and effluents have been measured only in two 

reports (Chang et al., 2007; Piram et al., 2008). The former reports more than 95% removal in 

STP (except for prednisolone: 60%) and the latter reports below 5% removal in STP (see table 

2.1 for details). Sewage treatment plants differ widely in the treatment process technology 

they employ (Johnson and Sumpter 2001). The efficiency of removal depends on the age of 

the activated sludge, the hydraulic retention time, the organic loading, the cultivated 

microorganisms, the number of inhabitants and the season (Johnson et al., 2007). Both Chang 

et al. (2007) and Piram et al. (2008) reports could be right, due to different sampling 

strategies and the technology behind the STPs. However, this uncertainty is the reason I 

choose to use the SimpleTreat 3.0 model (Struijs, 1996), a model widely accepted as a tool to 

predict the fate of a chemical in an STP. Moreover, this model allowed me to predict the 

removal rate for each individual GC and summarise a range of removal rates for the 

prediction of total GC concentrations. 

Several analytical methods have been developed to determine GCs in the environment (Table 

2.1). Liquid/Gas chromatography coupled with mass spectrometry is most commonly used. It 

has been emphasized that the environmental concentrations are often close to the limit of 

detection of these methods (Sumpter & Johnson, 2005), so that it is often difficult to get a 

reliable value of the environmental concentration of a pharmaceutical. It is noted that the 

values presented in Table 2.1 (maximum of 53 ng/L for surface water) are for individual GCs. 

Because a total of 28 individual GCs are in regular use, the maximum value (854 ng/L) is 

much higher. All the individual GCs have been combined as they have a similar mode of 

action and the risk posed to the environment could be additive (Brian et al., 2005).  This 

approach has been reported previously for similarly acting chemotherapy drugs (Johnson et 

al., 2008). Therefore from the present study, it is proposed the dose-response exposure studies 

should be carried out in the range of concentrations between 10 ng to 1000 ng/L for GCs.  
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Present predicted concentrations are specific for the UK situation, as the LF2000-WQX 

models all STPs along the river catchment of interest and examines dilution factors in real 

locations. It does not use the standard dilution factor of 10. Because of the high population 

density of the UK (especially close to the metropolitan cities), many of the rivers that receive 

STP effluent dilute it by a factor less than 10. England has very low natural flow available per 

person compared to, for example, the USA. Britain is a relatively densely populated country: 

it is more than twice as densely populated as France (106 people per sq.km), nine times as 

densely populated as the USA (27 people per sq.km) and 100 times as densely populated as 

Australia (2 people per sq.km).This means that for a particular amount of consumption of 

GCs, other countries may have lower surface water concentrations. This low dilution factor is 

one of the reasons for comparatively higher concentrations of oestrogens predicted for the UK 

compared to the USA (Hannah et al., 2009).  

The elderly population of the UK is increasing (Figure 2.10a). Over the last 25 years the 

percentage of the population aged 65 and over increased from 15 per cent in 1984 to 18 per 

cent in 2009, an increase of 1.7 million people. This trend is projected to continue. By 2034, 

23 per cent of the population is projected to be aged 65 and over. By 2034, the number of 

people aged 85 and over is projected to be 2.5 times larger than in 2009, reaching 3.5 million. 

The number of prescription items dispensed annually per person in England, from 1978 to 

2007 (Figure 2.10b), indicates that older patients (age 65 and over) are being prescribed three 

times more pharmaceuticals than are the average population. Therefore, the above projections 

reveal that the use of pharmaceuticals will most likely increase substantially in the next 50 

years. It has been predicted that in the future, flows in the River Thames will reduce, 

especially in late summer and autumn (Diaz-Nieto and Wilby, 2005). This might be the case 

in many parts of the world (Dai, 2010), and together with an ever-increasing use of 

glucocorticoids, the environmental concentrations could increase.  
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(a) (b) 

Figure 2-10. Prediction of increasing use of pharmaceuticals due to increasing elderly population 

in the UK. (a) Percentage of population by age, UK, 1984, 2009 and estimation for 2034 shows 

that percentage of elderly population (age 65 and over) is increasing. (b) Number of prescription 

items dispensed annually per person in England, from 1978 to 2007, indicates that 

pharmaceuticals have been prescribed to older patients (age 65 and over) three times more 

frequently than that of an average population (Source: Office for National Statistics; 

http://www.statistics.gov.uk/CCI/nscl.asp?ID=5014 ). 
Figure 2-10. Prediction of increasing use of phar maceuticals due to increasing elderly population in t he UK 

 

 

 

 

 

 

 

The European Medicines Agency, which was set up in 1995, is responsible for the risk 

assessment of any drug introduced in Europe, in order to protect and promote public and 

animal health. But it is not clear whether any kind of risk assessment has been conducted for 

the glucocorticoids, which have been in use for the last six decades (David et al., 1970). The 

EMEA (2006) has proposed that a PEC of 10 ng/L for an individual drug should be a trigger 

value for further environmental risk assessment. Currently there are no biological studies 

reported for GCs using environmentally-relevant concentrations. Therefore, having predicted 

the environmental concentrations, the next step in the risk assessment of GCs will be to 

undertake further research, to establish a range of concentration-relationships, thus enabling 

the determination of the LOEC, NOEC, and the PNEC for a range of aquatic species, often 

http://www.statistics.gov.uk/CCI/nscl.asp?ID=5014


 

69 

 

algae, Daphnia and a fish species.  These values are important in predicting the risk of such 

chemicals to the environment.  

Synthetic GCs have been reported to have many side effects in humans, mainly 

hyperglycemia, osteoporosis and muscle wasting (David et al., 1970; Melby 1977; Mahajan 

and Tandon 2005). Therefore environmentally available GCs could cause such effects to 

vertebrates, such as fish. Anti-inflammatory/ immunosuppressive properties of these drugs 

mean that they might make fish more susceptible to disease. Given the fact that the GCs do 

not have the hydroxy group of the oestrogens,  and that side-chain cleavage resulted in C19 

compounds (similar to 11KT of fish), it has been argued that the metabolic transformations of 

GCs may more likely result in the formation of substances with androgenic activities. It has 

also been reported that GCs oppose the action of oestrogens in mammals (Rhen et al., 2003). 

Therefore reproductive endpoints also have to be assessed. Modelled predictions of 

environmental concentrations have been previously reported to correlate with the impacts of 

pharmaceuticals in the environment (Tyler et al., 1998; Jobling et al., 2006), thus field studies 

should be focused on the reported ‗hot spots‘.  

2.5 Conclusions  

The range of concentrations of total GCs along the river Thames, predicted by the LF2000-

WQX model, is between 0 and 850 ng/L. Therefore, it is proposed that laboratory dose-

response exposure studies on fish be conducted in the range of concentrations between 

perhaps 10 ng to 1000 ng/L, which is considered as environmentally relevant. Studies to 

understand the removal rates of GCs in STP will make the present results more precise. If 

field studies to investigate possible effects of GCs on wild fish are conducted, they should be 

focused on the reported ‗hot spots‘.  
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Chapter 3.0                                                 

Estimating The Potency Of Different 

Corticosteroids In vitro 
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3.1 Introduction 

The usage profile and the physicochemical properties of synthetic GCs, together with the river 

flow data, allowed the prediction of concentrations of GCs in the aquatic environment, which 

together with the chemical quantification data available in the literature (reviewed in Chapter 

2), suggest that it is possible that GCs can be present in the aquatic environment in the ng/L 

range. Because of their biological effects in almost every organ, GCs are one of the most 

widely used drug classes and their release into the environment is inevitable. Aquatic 

vertebrates, mainly fish, are known to be the most sensitive species to the pharmaceuticals 

present in the environment (Gunnarsson et al., 2008). However, it is not known whether 

synthetic GCs have any impacts on fish, and if they do, which of them are the most potent 

GCs among the many different GCs presently in use. Before using fish to examine the 

impacts of GCs present in the environment, it is ethical and useful to apply in vitro (use of 

cells or tissues, cultured under controlled conditions in the laboratory, and where possible 

derived from animals of interest) methods to see if the fish receptors are responding to 

synthetic GCs, and to determine the differences in their potencies. A major advantage of the 

in vitro approach is that it can be used to test many different GCs (10 in this case) at a time, so 

that the number of animals in research is reduced.  

3.1.1 Alternative approaches to animal testing 

There is an increasing interest over the past few decades in the use of alternative testing 

methods that reduce the use of animals in regulatory testing.  Several organisations around the 

world currently dedicate large amount of funds to develop alternative methods. A European 

Directive on the protection of laboratory animals for experimental purposes, introduced in 

1986, promotes the development and validation of alternative techniques to animal testing. 

These principles have been introduced in subsequent legislation, such as that advocating a ban 
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on the marketing of cosmetics containing ingredients tested on animals. The European 

Partnership for Alternative Approaches to Animal Testing (EPAA) is collaboration between 

the European Commission, European trade associations, and industry sectors, aiming to 

accelerate the development, validation and acceptance of alternative approaches to further the 

reduction, refinement and replacement of animal use in regulatory testing. The Organization 

for Economic Co-operation and Development (OECD)‘s Test Guideline Programme has 

recently adopted an in vitro method to detect skin and eye irritants in consumer products. 

Beside these, the European Centre for the Validation of Alternative Methods (ECVAM) and 

the European Union regulation concerning the registration, evaluation, authorization and 

restriction of chemicals (REACH) are also working to promote alternatives to the use of 

animals. The UK Government, together with industry and other bodies, is funding a centre to 

promote alternative test (NC3R‘s – National Centre for the Replacement, Refinement and 

Reduction of Animals in Research). 

One major group of animal alternative techniques is cell-based assays, such as the Yeast 

Oestrogen Screen (YES), Yeast Androgen Screen (YAS) and Glucocorticoid Receptor – 

Chemical Activated Luciferase gene expression (GR-CALUX). Yeast screens are widely used 

to detect the oestrogenic or androgenic chemicals present in water samples (Routledge and 

Sumpter, 1996 ) and GR-CALUX is used to detect glucocorticoid activity in water samples 

(Van-der Linden et al., 2008). A similar approach is also available for oestrogenic (Legler et 

al., 2002) and androgenic (Sonneveld et al., 2005) detection. The experimental approach 

described in the present chapter is the basic technique used in the development of the GR-

CALUX.  The present experiment utilizes an alternative technique to animal experimentation 

to determine the potency of different GCs prescribed in the UK, in order to see whether the 

GCs can bind to fish receptors to produce receptor-mediated impacts of GCs on fish, and if 

so, which are the more potent GCs that could pose a threat to wild fish. 
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3.1.2 Corticosteroid receptors of fish 

The effects of corticosteroid hormones are mediated through intracellular receptors that act as 

ligand-dependant transcription factors. Studies on the steroid receptors (Thornton et al., 

2003), which includes corticosteroid receptors (CR: GR and MR), oestrogen receptors (ERα 

and ERβ), progesterone receptor and androgen receptor have been of considerable interest in 

the past decade. The presence of steroid receptors in vertebrates has been known for a long 

time, and more recently steroid receptors resembling vertebrate ERs have been identified in 

cephalopods (Keay et al., 2006) and gastropods (Thornton et al., 2003). The phylogenetic 

analysis of vertebrate steroid receptors indicates that they could arise through serial gene 

duplications in the chordates from this ancestral steroid receptor (Thornton, 2001).  

Earlier evidence for CR in fish was reported from cortisol binding studies and some studies 

using synthetic GCs, such as triamcinolone acetonide and dexamethasone. These studies 

indicated the presence of a single class of high affinity, low capacity, binding sites in the 

cytosol from various tissues, including gill, intestine, liver, brain, hypothalamus, leucocytes, 

and erythrocytes (reviewed in Mommsen et al., 1999). These binding studies also showed that 

CR concentrations and affinity can be altered by experimental manipulations, including 

hormonal treatments and stress induction. Molecular characterization of the fish GR is 

available for many species of teleosts, such as rainbow trout (Ducouret et al., 1995), tilapia 

(Tagawa et al., 1997) and flounder (Tokuda et al., 2005). Later, two isoforms of GR, namely 

GR1 and GR2, have been described in trout (Bury et al., 2003) and cichlids (Greenwood et 

al., 2003). Although fish lack aldosterone, the presence of a MR has been reported, with 

characterization of cDNA encoding a MR in trout (Colombe et al., 2000; Sturm et al., 2005) 

and cichlid (Greenwood et al., 2003). This MR shows (Figure 3.1) high homology with other 

known MRs and it has been shown to have a higher affinity for cortisol than aldosterone. In 

contrast, mammalian MR has equal affinity for both cortisol and aldosterone. Therefore it was 
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concluded that in fish, cortisol has both gluco and mineralocorticoid activities (Sturm et al., 

2005).  

GR and MR share the same basic structure, with the following functional domains: the amino 

terminal A/B domain that modulates the transcriptional activity, the C domain which is 

responsible for DNA binding and receptor dimerization, the D domain which is the hinge 

region and the E domain which is the ligand binding domain. Figures 3.1 and 3.2 show the 

amino acid identities of different domains in selected GRs and MRs, and reveal that the A/B 

domain is variable across species whereas the C domain is highly conserved among species. 
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Figure 3-1. Amino acid identity between selected domains (A/B, C, D and E) of the trout MR 

(rtMR) compared to trout GRs (rtGR1, rtGR2) and human MR (hMR) (Figure modified from 

Prunet et al., 2006). 

 

Figure 3-1. A mino acid identity between selected domains of the trout MR compared to trout GRs and human MR  

 

Figure 3-2. Amino acid identity between selected domains (A/B, C, D and E) of the trout GR2 

(rtGR2) compared to trout GR1 (rtGR1) and human GR (hGR) (Figure modified from Bury et 

al., 2003). 
Figure 3-2. A mino acid identity between selected domains of the trout GR2 compared to trout GR1 and human GR  

 

In the absence of hormone, the glucocorticoid receptor (GR) is present in the cytoplasm, 

complexed with a variety of proteins. The GCs diffuse through the cell membrane into the 

cytoplasm and bind to the GR, resulting in release of the proteins. The resulting activated 

form of the GR has two principal mechanisms of action, transactivation and transrepression, 

as described below (Figure 3.3).  

Transactivation: A direct mechanism of action involves homodimerization of the receptor, 

translocation via active transport into the nucleus, and binding to specific DNA responsive 

elements, thereby activating gene transcription. The biological response depends on the cell 
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type. Transrepression: In the absence of activated GR, other transcription factors, such as NF-

kB or AP1, are able to transactivate target genes. However, activated GR can complex with 

these other transcription factors and prevent them from binding to their target genes, and 

hence repress the expression of genes that are normally up-regulated by NF-kB or AP-1. This 

indirect mechanism of action is referred to as transrepression.  

 

Figure 3-3. Mechanism of corticosteroid action a s an example of anti-inflammatory ge ne transactivation and inflammatory gene transrepression  

Figure 3-3. Mechanism of corticosteroid action as an example of anti-inflammatory gene 

transactivation and inflammatory gene transrepression.Corticosteroids enter the cell, bind to the 

glucocorticoid receptor (GR) in the cytoplasm and translocate to the nucleus, where the 

transcription of target genes is initiated. Many genes contain glucocorticosteroid response 

elements (GREs) in their promoters. Through transactivation, binding of the activated 

glucocorticoid receptor homodimer to a GRE in the promoter region of steroid-sensitive genes 

leads to local unwinding of the DNA Structure, allowing recruitment of large protein complexes, 

including RNA Polymerase II (RNA Pol II), resulting in the transcription of genes encoding anti-

inflammatory mediators such as annexin-1, secretory leukoprotease inhibitor (SLPI), 

interleukin-10 (IL-10) and the inhibitor of nuclear factor- B (I B ). Through transrepression, 

the glucocorticoid receptor–corticosteroid complex interacts with large co-activator molecules 

with intrinsic histone acetyltransferase (HAT) activity (such as cyclic AMP response element 

binding protein, CBP), which are activated by pro-inflammatory transcription factors (such as 

NF- B and AP1), thus switching off expression of the inflammatory genes that are activated by 

these transcription factors. (Figure taken from Holgate and Polosa, 2008). 
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3.1.3 Transactivation assays 

Naturally occurring transactivation of a gene can be induced in vitro by inserting a 

transactivator gene and special promoter regions of DNA into the genome at the appropriate 

position. The transactivator gene expresses a transcription factor that binds to a specific 

promoter region of DNA. By binding to the promoter region of a gene, the transcription factor 

causes that gene to be expressed. If this specific promoter region is also attached to a reporter 

gene, it is possible to determine when the transactivator is being expressed and the expression 

can be measured to assess the potency/efficacy of the ligands of interest. In this study, COS-7 

(CV-1(simian) in Origin and carrying the SV-40 genome) cells, which are derived from the 

African green monkey and lack any endogenous CRs, were transiently transfected with trout 

CRs and GC-responsive luciferase and galactosidase reporter genes, and then exposed to 

synthetic GCs of interest. This exposure results in transactivation of the CR and consequent 

expression of the luciferase gene, which can be measured by lysing the cells and adding 

luciferin substrate and measuring the light output with a luminometer. Similarly, galactosidase 

expression can be measured with the substrate otho-nitrophenyl β-galactopyranoside (ONGP) 

and formation of the yellow colour measured spectrophotometrically. 

 A highly potent drug produces a larger response at low concentrations. Below a certain 

concentration of a ligand, the transactivation is too low to measure, but with increasing 

concentration it rises until at sufficiently high concentrations it can no longer be increased and 

the maximum effect will be reached, and thus a sigmoid curve (dose-response curve) could be 

plotted for the activity and concentration. The concentration of ligand at which activity is 50% 

of maximum activity is termed the half maximal effective concentration (EC50). The lower 

the EC50, the less the concentration of a ligand required to produce 50% of maximum activity 

and hence the higher the potency of that ligand. Potency is a measure of drug activity 

expressed in terms of the amount required to produce an effect of given intensity (Figure 3.4). 

http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/Promoter_region
http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/Reporter_gene
http://en.wikipedia.org/wiki/Reporter_gene
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It is proportional to affinity and efficacy. Affinity is the ability of the ligand to bind to a 

receptor. Efficacy is a measure of the activity for a particular concentration of a ligand. 

 

Figure 3-4. Hypothetical dose-response curves for three different ligands, namely a, b and c. 

Ligand-a is highly potent and it has high efficacy at all concentrations. Ligand-b is of medium 

potent but its efficacy is similar to that of ligand-c in higher concentrations. Thus ligand-a, 

which is more active at low concentrations, could be more unfavorable from the environmental 

perspective. 
Figure 3-4. Hypot hetical dose-response curves for three different ligands  

 

 

 

 

 

 

 

3.1.4 Objectives 

The objective of the part of my project presented in this chapter was to perform in vitro 

transactivation assay with ten of the most prescribed GC in the UK, in order to see if all these 

GCs bind to Fish CRs, and also to estimate their potencies in order to prioritize them in the 

exposure experiments I conducted with adult Fathead minnows. Objectives also included an 

analysis of the GR sequences of selected groups of animals and selected fish species available 

in the open literature, in order to investigate their similarities.  
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3.2 Materials and Methods 

The total amount of synthetic corticosteroids used in the UK was calculated as described in 

Chapter 2. The ten GCs prescribed in the highest amounts were chosen and their potencies/ 

efficacies with fish GR and MR were studied in vitro.  

Hydrocortisone (CAS: 50-23-7), prednisolone (CAS: 50-24-8), dexamethsone (CAS: 50-02-

2), fluticasone propionate (CAS: 90566-53-3) and mometasone furoate (CAS: 105102-22-5) 

were purchased from Sigma (UK). Betametnasone (CAS: 378-44-9), beclomethasone (CAS: 

4419-39-0), clobetasone (CAS: 54063-32-0), budesonide (CAS: 51333-22-3) and methyl 

prednisolone (CAS: 83-43-2) were purchased from Steraloids Inc, USA. Unless otherwise 

stated, all the bench chemicals were purchased from Sigma. All the weight measurements of 

chemicals were done with an electronic balance (CAHN 21 automatic electrobalance), using a 

range from 1 mg to 200 mg. After dissolving the GC in ethanol, all solutions were stored in 

the fridge (4°C). 

3.2.1 Propagation of plasmid DNA 

All the plasmids containing the appropriate cDNA (GR1, GR2, MR, luciferase and β-

galactosidase) were provided by Dr. Nicolas Bury from King‘s College, London. Details 

about the construction of these plasmids are available in their literature (Bury et al., 2003; 

Sturm et al., 2005). Briefly, for GR2, the full clone encoding part of the 5'-untraslated region, 

the entire coding region and part of the 3'-untranslated region was excised from pGEM4Zf 

plasmid by EcoR1 (endonuclease enzyme) and ligated into EcoR1 cut dephosphorilated 

expression vector pCMV5, thus named as pCMrtGR2. Orientation of the insert was confirmed 

by restriction enzyme profile. 

In the present study, receptor expression vector (pCMrtGR2: 50ng) was transformed with 

100μl of chemo-competent E-coli strain (J109 - Promega) by the heat shock method and 
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propagated in super-optimal broth with catobolite repression (SOC medium). Different 

dilutions of the above culture were spread on lysogeny broth (LB) agar plates together with 

ampicillin (as the plasmid contains an ampicillin resistance gene, any bacteria that are not 

transformed with plasmid will be killed). After overnight incubation at 37°C, isolated colonies 

were transferred to 5ml LB (with ampicillin) for shaking incubation overnight. 300μl of this 

culture was added to 150ml LB (with ampicillin) the next day and incubated overnight. 

Receptor plasmid DNA was extracted using Hi speed plasmid purification kits (Qiagen) 

according to the manufacturer‘s instructions. Final elution using the buffer provided was done 

twice and separately, to avoid any loss of plasmid on the column. 

Integrity of the plasmid DNA was confirmed with agarose gel electrophoresis (Figure 3.5) 

and the concentration was measured spetrophotometrically (nanodrop) in ng/µl. A ratio of the 

absorbances at 260nm and 280nm was found to be between 1.9 and 2.0 for all extracted 

plasmids, which excludes the possibility of contamination of solvents or by any proteins. The 

same procedure was repeated for pFC31Luc, which contains the mouse mammary tumor virus 

promoter upstream of the luciferase gene, and pSVβ, which contains the gene coding for the 

β-galactosidase enzyme. All plasmids were kept in a -20°C freezer until used. During all the 

above procedures, standard microbiological techniques, such as sterilizing containers, 

cleaning all the work surfaces with 70% IMS (industrial methylated spirit), transfer of 

materials under flame, opening of lids as little as possible, heating the inoculation loop to red 

hot before and after inoculation and incubation of spread Petri dishes in inverted position, 

were followed. 
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Figure 3-5. Gel electrophoresis for testing the integrity of propagated plasmid DNA. A 1% 

agarose gel with ethidium bromide was prepared and 10µl of elute from plasmid purification 

with loading dye were run for 45 minutes. A 1kb ladder was run for comparison (left hand lane) 

and all three receptor plasmids were observed to be purified and they were found to be of the 

appropriate length. 
Figure 3-5. Gel electrophoresis for testing the integrity of propagated plasmid DNA  

 

 

 

 

 

 

3.2.2 Transfection assay 

Throughout the experiment standard aseptic techniques were followed. The mammalian cell 

line COS-7, which doesn‘t have any CR in the cells, was grown in Dulbecco‘s Modified 

Eagle Medium (DMEM-Invitrogen) supplemented with 100 IU/ml penicillin, 100 μg/ml 

streptomycin (Sigma), 2mM glutamine (Sigma), and 10% denatured fetal calf serum 

(Invitrogen) in a humidified atmosphere with 5% CO2. For recovery from liquid nitrogen 

storage, cells were propagated two times a week for two weeks (4 passages) in 75 cm
3
 flasks 

with 20 ml medium inoculated with 0.5 million cells.  

For the transfection assay, 20000 cells were inoculated in 1ml medium in each well of 12-well 

plates. Four hours before transfection and throughout the rest of the experiment, cells were 

maintained in DMEM nutrient mixture F-12 Ham (no phenol red, Sigma) supplemented with 

100 IU/ml penicillin, 100 μg/ml streptomycin, 2 mM glutamine, 3.7 g/liter NaHCO3, and 
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2.5% desteroided denatured fetal calf serum (Sigma). Cells were transiently transfected by the 

Gene juice transfection reagent (Novagen). The transfection mixture, prepared for a 12-well 

plate, contained 2 μg of the receptor expression vector (pCMrtGR2), 4 μg pFC31Luc and 1 μg 

pSVβ. Twelve hours after transfection, the medium was renewed and the GCs (Sigma) were 

added from 1000-fold concentrated stock solutions in ethanol. After 36h incubation, cells 

were harvested with lysis buffer (Promega) and extracts were analyzed for luciferase 

(Promega) and β-galactosidase activities. Solvent-controls (receiving ethanol instead of 

hormone), with triplicate cell cultures per treatment, were included in each assay. 

For the luciferase assay, 10 μl of cell extract were placed in a well of a 96-well plate and read 

by the luminometer (Glo max – Promega) with setting of 10 second reading and 2 seconds 

delay time using single injector for addition of 50 μl reagent buffer to each well, so that the 

luminometer can perform readings immediately after the addition of reagent. This ensures loss 

of activity is prevented.  

For the β-Galactosidase assay, KP buffer at pH 7.3 was prepared with K2HPO4.3H2O and 

KH2PO4 (Fisher, UK). ONGP and 2-mercaptoethanol were purchased from Sigma. For a 96-

well plate, 13.7 ml KP buffer, 240 μl MgCl2/ 2-mercaptoethanol and 5.3 ml ONGP stock were 

mixed. 200 μl of this mixture was added to 50 μl of cell extract in clear 96-well plates and 

incubated at 37°C. After yellow colour formation, reaction time was noted and the plate was 

read by the spectrophotometer (Spectramax 340PC) at 420 nm. 

Luciferase activity was corrected for well-specific transfection efficiency (as determined by β-

galactosidase activity) and transcriptional activity was expressed as the percentage of the 

luciferase activity, considering the activity observed in cells treated with 10
-6

 M 

hydrocortisone as 100% activity. Third order polynomial curves were obtained with Excel and 

were optimised with data-fit software (version 9: oakdale engineering-
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www.oakdaleengr.com) in order to calculate the EC50 (concentration of hormone to produce 

half maximal activity) values. Each assay was repeated three times with freshly prepared 

ingredients. 

3.2.3 Optimization of assay 

Transfection efficiency depends on the amount of each different plasmid present in the 

transfection mixture. Therefore preliminary assays in triplicates were performed with different 

ratios of receptor plasmids, luciferase reporter plasmid and β-galactosidase reporter plasmid 

with hydrocortisone and solvent control. The ratio that produced maximum transcriptional 

activity was chosen for the assays described above.  

3.3 Results  

Figure 3.6 reveals the relative potencies of the top 10 most used corticosteroids with trout 

GR2. Dexamethasone was found to be most potent and had high efficacy for most of the 

concentrations tested, followed by beclomentasone and betamenthasone. EC50s for the above 

three GCs were not significantly different from each other, but were significantly different 

from the rest of the tested GCs. Similarly, clobetasone had significantly lower potency and 

efficacy than any of the other GCs. Fluticasone, momethasone, budesonide, prednisolone, 

methyl prednisolone and hydrocortisone were in that order of potency with the GR. However, 

their EC50 values did not differ significantly.  
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Figure 3-6. Percentage transactivation activity (as luciferase activity normalised against β-

galactosidase activity for the transfection efficiency) of COS-7 cells co-transfected with trout 

GR2 expression vector plasmid as well as with luciferase reporter plasmid and β-galactosidase 

expression plasmid. After transfection, cells were treated with different GCs over a range of 

concentrations. Luciferase activity of 10
-6

 M Hydrocortisone was considered as 100% activity. 

Values are the average of three replicates. 
Figure 3-6. Percentage transactivation activ ity of COS-7 cells co-transfected with trout GR2 expression vector pla smid, luciferase reporter plasmid and β-galactosidase expression plasmid 

 

 

 

 

 

 

 

The EC50 values of the binding of each of the ten GCs to both GR1 and GR2 were 

determined, and are given in Table 3.1. The 10 GCs showed no activity to the MR, and hence 
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no EC50 values could be calculated. Therefore, as is the case in mammals (BNF 2006), these 

ten GCs could be classified as low, medium and high potency for GR2. Trout GR1 also 

responded to all the corticosteroids, but with lower transcriptional activity. Potencies with 

GR1 and GR2 are in a similar, although not identical, order.  

Table 3-1. EC50 values of tested GCs with trout GR2 and GR1. Values are the mean and 

standard deviation of three independent experiments performed in duplicate 

 

Corticosteroid EC50 with trout GR2 (nM) EC50 with trout GR1 (nM) 

Dexamethasone 0.386 ± 0.02 40.98 ± 2.43 

Beclomethasone 0.737 ± 0.07 44.78 ± 1.98 

Betamethasone 0.771 ± 0.09 42.34 ± 2.78 

Fluticosone 0.805 ± 0.02 45.09 ± 4.56 

Mometasone 0.816 ± 0.01 47.24 ± 3.90 

Budisonide 0.856 ± 0.11 52.64 ± 6.32 

Prednisolone 1.12 ± 0.03 52.09 ± 7.98 

Methyl prednisolone 1.15 ± 0.12 52.13 ± 4.41 

Hydrocortisone 1.22 ± 0.12 50.21 ± 2.54 

Clobetasone 1.86 ± 0.91 61.09 ± 9.02 

 

The average of the maximal level of transcription of each of the GCs with all three CR was 

calculated from three replicates. None of the GCs produce significant activity with MR 

(Figure 3.7) although cortisol, prednisolone and methyl prednisolone had slightly higher 

activity with MR than that of the solvent control. Transcription activity of GR2 was higher 

than that of GR1 with all tested GC.
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Figure 3-7. Transcriptional activities (as measured by luciferase activity normalised to β-galactosidase activity and presented as fold of activity of the solvent 

control) of the ten most highly consumed GCs in the UK, measured at 1µM concentrations, in COS-7 cells co-transfected with trout GR2, GR1 or MR 

expression vector plasmid as well as with luciferase reporter plasmid and β-galactosidase expression plasmid. Values are the mean of three replicates and the 

standard deviation.  
Figure 3-7. Transcriptional activ ities of the ten most highly  consumed GCs in t he UK
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3.4 Discussion 

The present study is the first to report the comparison of the potencies of a significant number 

of the synthetic GCs used in the UK. Dexamethasone, as in human (in vivo; BNF 2006), was 

found to be a high potency GC. Although beclomethasone dipropionate is second in the list, 

the amount (274 kg/year compared to 28 kg/year for dexamethasone) used in the UK makes it 

environmentally significant. Another GC that falls into the high potency group was 

betamethasone, which is also environmentally significant as the usage calculated as 

305 kg/year. In the medium potency group, prednisolone is an important GC, with 1880 kg 

calculated as the annual usage. Human GR transfected in COS-7 cells showed higher 

transcriptional activity for betamethasone esters compared to dexamethasone and 

prednisolone (Spika et al., 2003). However, physico-chemical properties of individual 

chemical and their behavior in STPs vary and it is difficult to conclude which chemical is of 

the greatest threat to aquatic organisms. Nevertheless, the relative potencies of different GCs 

obtained from this experiment can be used to predict the effect of a mixture of GCs, as might 

occur in the environment, in a similar way that the effects of mixtures of oestrogens have been 

predicted (Thorpe et al., 2003a; Brian et al., 2005). This is because all GCs have a similar 

GR-mediated mode of action.  

The results described in previous transfection studies with trout GR and cortisol are consistent 

with the results of the present study. Bury et al. (2003) have also reported higher luciferase 

activity for trout GR2 than for GR1, as occurred in this study. The differences in the 

transcriptional sensitivities were explained by the differences in the amino acid sequences in 

the regions of DNA binding and transactivation between GR1 and GR2 (Bury et al., 2003). 

EC50 values of hydrocortisone for GR2 and GR1 fell within the range previously reported 

(Prunet et al., 2006; Sturm et al., 2005) employing similar assays using COS-7 cells. 
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Another recent detailed study on trout GRs provide more evidence for the higher sensitivity of 

GR2 (Sturm et al., 2011). In this study, GR mutants were constructed with different 

combinations of domains from GR1 and GR2 and it was found that the presence of the E 

domain of GR2 reduced the EC50 values of tested corticosteroids compared to constructs 

containing the E domain of GR1(Figure 3.8). Further cloning of subsequences of E domain 

was also carried out and all results with these confirmed that GR2 is more sensitive to GCs. 

 

 

Figure 3-8. Transactivation properties of domain-swap chimeras between rtGR1 and rtGR2. 

Transactivation assays were carried out in COS-7 cells. (A) Graphical representation of the 

domain composition of recombinant domain-swap mutants. Percentages indicate amino acid 

identities between rtGR1 and rtGR2 for the main receptor domains. (B) and (C) Median 

effective concentrations (EC50s) and 95% confidence limits of the stimulation of transactivation 

activity by cortisol (B) and dexamethasone (C). Numbers at bars denote the EC50 in nM. EC50s 

are considered significantly different if confidence limits do not overlap (Sturm et al., 2011). 
Figure 3-8. Transactivation properties of domain-swap chimeras between rtGR1 and rtGR2  

 

 

 

 

 

 

Trout GR and MR were used in the present study despite the fact that fathead minnows were 

used in the in vivo exposure experiments (Chapter 4). This is because the trout CR plasmids 
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were available at the time of this study, whereas those for the fathead minnow were not. There 

have been small differences in susceptibility to oestrogenic chemicals reported between small 

fish species, such as medeka, zebrafish and fathead minnow, in vivo (Seki et al., 2006). 

However, in the same study there were no differences in the response to androgenic 

compounds. It has been reported that there were no significant differences in the affinity of 4-

nonylphenol and p-octylphenol for oestrogen receptors (ERβ) among human, quail and 

medaka in vitro (Nishizuka et al., 2004). Therefore, it is assumed that the differences in 

sensitivity between different species of fish are very small and hence, the potency of different 

drugs for a particular receptor can probably be assessed using any species of fish. However, 

recent results on the midshipman GR and sensitivity to GCs, as explained above, need some 

verification, and if repeatable, could change the current view that different species of fish 

show very similar responses to the same chemical. 

Another interesting finding from the present study is the fact that none of the tested GCs 

produced significant activity with trout MR. Although there were slightly higher activities 

found for hydrocortisone, prednisolone and methyl prednisolone compared to the solvent 

control, none of them were significant. In vitro ligand binding and transactivation of the 

human GR and MR were found to be similar (Rupprecht et al., 1993), and mammalian MR 

has been found to bind cortisol (a glucocorticoid) and aldosterone (a mineralocorticoid) with 

equal affinity (Funder et al., 1988). But in fish the situation is different. Fish tissues are 

unable to produce aldosterone and instead cortisol regulates both glucocorticoid and 

mineralocorticoid activities (reviewed in Bury et al., 2003). But the in vitro sensitivity of MR 

for different corticoids (both mineralocorticoid and glucocorticoid) has been a debate for a 

long time, and it has not been sorted out yet. For example, Colombe et al. (2000) reported that 

fish MR binds cortisol or corticosterone rather than aldosterone, in vitro. Sturm et al. (2005) 

suggested 11-deoxycorticosterone but not cortisol or aldosterone is the major agonist for fish 
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MR. Recent results on midshipman MR (Arterbery et al., 2011) suggests that Aldosterone and 

cortisol bind well to fish MR. Interestingly, midshipman MR too did not bind to cortisone. 

Sturm et al. (2005) also found that the affinity of dexamethasone with trout MR was weaker 

than the affinities of cortisol and aldosterone. There was no evidence for other synthetic GCs 

with fish MR. This inability of synthetic GC to induce MR in vitro could be an interesting 

factor when the fish are exposed to GCs. Whether GCs have an impact on osmoregulation and 

other MR-mediated physiology has to be studied in vivo. 

In vivo potencies for many different GCs in human volunteers have been assessed by several 

methods. They greatly vary with the method of administration and the type of assay 

performed. After topically administrated, budesonide was 2-3 times more potent than 

beclomethasone dipropionate in inducing vasoconstriction, whereas after oral administration 

budesonide was 2-4 times less potent than beclomenthasone in depressing plasma cortisol and 

reducing the total WBC (Johansson et al., 1982). A medium potent GC, hydrocortisone, was 

found to have similar neurotoxic side-effects as that of the highly potent dexamethasone in a 

recent investigation (Aden et al., 2008). Although there is no comparable in vitro study 

involving all these 10 GCs, a combination of several studies using various methods to 

estimate the potencies of GCs (such as vasoconstrictor assay/ skin blanching assay) with 

mammalian and human GR (BNF, 2006) indicates that the potencies of these GCs in 

mammals/humans are in a similar order as is reported in the present study for the fish GR.  

Recombinant yeast screen assays have a number of advantages, such as the absence of other 

endogenous receptors, comparatively easy to establish, and no cell lysis is needed (Routledge 

and Sumpter, 1996). However, the transfection assay in the form of ER-CALUX has been 

shown to be 20 times more sensitive than the yeast oestrogen screen, possibly due to the fact 

that the yeast cell membrane permeability is low compared to mammalian cell membrane 
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permeability (Legler et al., 2002). Therefore, this transfection assay, based on mammalian 

cells rather than yeasts, should be a useful tool to compare the activity of different synthetic 

corticosteroids in fish. Mammalian cell lines (CHO, COS-7) transiently transfected with fish 

GR and MR have been shown to respond to natural and some synthetic corticosteroids (Prunet 

et al., 2006; Sturm et al., 2005). Specifically, cortisol binds to and induces the transcriptional 

activity of both GR and MR. The very low rate of GC metabolism in COS-7 cells (Spika et 

al., 2003) makes COS-7 cells an ideal model for transfection studies. 

The results presented here are specific for this cell line and for the assay conditions specified. 

In a similar transfection study with human CRs, relative transactivation was found to vary 

among three different cell lines tested (Lim-Tio et al., 1997). However, the order of potency, 

whether high, medium or low, of different ligands was consistent between cell lines (i.e. 

whole sets of dose-response curves were shifted to the left or right, changing the EC50 

values). Therefore, results on the order of potency in the present experiment are probably 

repeatable in any cell line.  

There are two basic requirements for a chemical to have the potential to induce adverse 

effects in fish; specifically regarding GCs, they should be:  

1) Released to the environment, and resistant enough to degradation to be present in rivers. 

 2) Highly potent, with the ability to bind strongly to fish GR, and produce GR-mediated 

effects, at the low concentrations present in the aquatic environment.   

Bearing this in mind, ten of the most prescribed GCs were chosen for the in vitro study.  It 

was assumed that even though GCs of lesser usage volumes might be of higher potency than 

any of these ten, they may not be available to fish because environmental concentrations 

would be extremely low. It should be noted, though, that from a concentration addition (Brian 
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et al., 2005) point of view, all the 28 GC presently in use in the UK could contribute to the 

total concentration of GCs present in the aquatic environment. However, it is difficult to 

correlate differing in vitro sensitivities with the situation in vivo. A first line hypothesis would 

be that, at low environmental concentrations of GCs, GR2 will bind and transcribe a set of 

genes to produce GR-mediated impacts, while as environmental concentrations increase, GR1 

will also participate to enhance the impacts. Given the fact that the presence of GR1, GR2 and 

MR is organ-specific (for example, Stolte et al., 2008, report higher levels of GR1 in fish 

brain, while higher GR2 levels exist in the pituitary), it will be interesting to study the in vivo 

effects on fish exposed to different concentrations of GCs.  

3.5 Conclusions 

The present study reveals that fish GRs respond to synthetic GCs and transcribe GR-

responsive genes that can produce significant effects in fish. Fish GR2 is more sensitive to all 

the tested GCs compared to GR1. Close similarities of the amino acid sequences of the GRs 

of many different species of fish suggest that the potencies of GCs will be similar in any fish 

of interest. Although these results, with the support of the read-across hypothesis, confirm that 

synthetic GCs can affect fish, some complicating issues arise due to the sensitivity differences 

among receptors and the organ-specific presence of receptor variants. Therefore in vivo 

experiments with different concentrations of GC should be conducted in order to provide the 

data needed for robust environmental risk assessment. 
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Chapter 4.0                                                       

The Potential Impacts Of 

Glucocorticoids On Adult Fathead 

Minnows (Pimephalas Promelas) 

 

 

  



 

94 

 

4.1 Introduction  

Pharmaceuticals and personal care products are extensively and increasingly used and hence 

are released continuously into the environment. A variety of pharmaceuticals have been 

detected in many environmental samples worldwide (Chapter 1). They have been reported to 

be present in sewage treatment plant effluents, surface water, seawater, groundwater, drinking 

water, soil, sediment and fish (Ternes, 1998; Jones et al., 2001; Heberer, 2002; Zuccato et al., 

2006; Lopez-Serna et al., 2010). It has also been reported that drug manufacturing site 

effluents (Larsson et al., 2007) and hospital waste waters (Kummerer, 2001) can contain high 

concentrations of human pharmaceuticals that are sufficient to produce adverse effects on 

biota. Pharmaceuticals, their metabolites and transformation products in the environment may 

have adverse effects on living organisms (Khetan and Collins, 2007; Corcoran et al., 2010; 

Burkhardt-Holm, 2010). For example, the classic non-steroidal anti-inflammatory drugs 

ibuprofen (De Lange et al., 2006) and diclofenac (Triebskorn et al., 2004) have been reported 

to have acute toxicity to algae and invertebrates and to fish at environmentally-relevant 

concentrations, and residues of diclofenac are the cause of the almost complete loss of the 

populations of three species of vultures in the Indian sub-continent (Oaks et al., 2004).  

Pharmaceuticals present in the environment may or may not adversely affect the aquatic 

organisms. It depends on many different physico-chemical properties of drugs, such as water 

solubility, partition coefficient, bioavailability, bioconcentration factor, receptor binding 

affinity and interaction with other co-factors. It is important to emphasize that currently it is 

not possible to know whether or not the concentrations of the human pharmaceuticals present 

in the aquatic environment are adversely affecting aquatic organisms. This is because reliable 

measurements of concentrations of pharmaceuticals in rivers (where fish live) are very sparse 

and because few of the reported effects of pharmaceuticals on various species of aquatic 

organisms have been independently verified. 
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For more than a decade, the issue of oestrogenic chemicals in the aquatic environment, and 

their possible effects on fish and other wildlife, has been a topic of very considerable interest.  

EE2 is an extremely potent oestrogen; concentrations below 1ng/litre have adverse effects on 

reproduction of fish, and only slightly higher concentrations prevent fish reproducing (e.g. 

Länge et al., 2001; Nash et al., 2004; Parrott and Blunt, 2005), leading to population crashes 

(Kidd et al., 2007). Thousands of research papers have been dedicated to the various aspects - 

both chemical and biological – of the oestrogenic chemicals in the aquatic environment issue 

(reviewed by Caldwell et al., 2008). However, none of the other classes of steroidal 

pharmaceuticals have received much attention. Given the ease with which steroids can enter 

fish from the environment (Maunder et al., 2007), this represents a significant knowledge gap. 

The recent demonstration that synthetic progestogens can adversely affect fish at very low 

concentrations (Zeilinger et al., 2009; Paulos et al., 2010) has confirmed the need to closely 

evaluate the environmental effects of steroidal pharmaceuticals. GCs are also a group of 

steroidal chemicals with a similar mode of action to EE2. Currently nothing is known about 

the impacts of synthetic GCs in the environment. Previous chapters have described that 

amount of GCs present in the aquatic environment could be many-fold higher than that of 

EE2. Further, GCs can bind to fish GRs as they do with human GR. These conclusions 

together form the basis for a scientific hypothesis that GCs present in the environment may 

have adverse impacts on fish. The present chapter describes the experiments conducted to test 

the null hypothesis that environmentally relevant concentrations of GCs do not have adverse 

impacts on fish. 

4.1.1 Test Species 

Chemical toxicity results obtained with one species are often used to extrapolate to other 

species. In ecological risk assessments this is a challenging task because toxicity tests with 
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one species need to be predictive of possible effects on thousands of untested species. 

Therefore it is wise to use a species that is very sensitive to toxicity and can act as 

representative of many other aquatic species. Fish have been reported to be the most sensitive 

organisms for many aquatic pollutants (Gunnarsson et al., 2008), and many of the toxicity 

pathways in fish which are comparable to those in humans have been well studied. Fish have 

been used in toxicological studies over the past century. In year 2009, a total of 438000 

toxicology procedures, including those for safety and efficacy evaluation, were conducted in 

the UK, of which 20% used fish as experimental animal (statistics on animal research 

published by Home Office: http://www.homeoffice.gov.uk ). In the early days of 

ecotoxicology, the most common species involved in such tests were trout, salmon, bluegill 

and goldfish. But using large fish, with long life spans, make the full life cycle tests tedious 

and expensive. Being larger, they also may be able to withstand the negative impacts of 

environmentally-relevant concentrations of chemicals that could harm other smaller species 

and their susceptible early life stages. Therefore it became reasonable to use the early 

developmental stages (embryo studies) and smaller species with relatively shorter life cycles 

in order to assess the impacts of chemicals that are present in the environment at trace 

amounts.  

Small fish, commonly used to accurately assess potential chronic risks of chemicals via life 

cycle tests or embryo tests incorporating sub-lethal endpoints, are largely freshwater species, 

such as the fathead minnow (Pimephales promelas), Japanese medaka (Oryzias latipes) and 

zebrafish (Danio rerio) ( Ankley and Johnson, 2004). Recently, the three-spined stickleback 

(Gasterosteus aculeatus) has been reported to be a successful fish model for testing 

androgenic endocrine disruptors, as it has a quantifiable in vivo androgen and anti-androgen 

endpoint, the production of the glue protein, spiggin (Katsiadaki et al., 2002).  

http://www.homeoffice.gov.uk/
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The fathead minnow is classified phylogenetically under Actinopterygii, Cypriniformes, and 

is in the Family Cyprinidae. Wild fathead minnows inhabit muddy pools, small rivers and 

ponds. The species is an opportunistic omnivore that feeds on detritus and algae, and spawns 

in still water habitats along the banks. These fish can tolerate a wide range of poor water 

quality characteristics, including pH, turbidity, hypoxia and temperature 

(www.fishbase.org). The adult fish clearly show sexual dimorphism with pronounced 

secondary sexual characteristics (SSC; Figure 4.1). The male fathead minnow is larger than 

the female (3–5 g versus 2–3 g, respectively) and, when reproductively active, exhibits dark 

banding over the entire body, a dorsal fat pad, a black spot on the dorsal fin, and nuptial 

tubercles, all of which are not normally seen in females. Females have slightly protruding 

ovipositors. These SSC can be qualitatively and quantitatively characterised in order to see 

the feminisation or masculinisation effect of a chemical. In the fathead minnows SSC are 

under endocrine control. Body colour (light or dark), coloration patterns (presence of vertical 

bands), body shape (head and pectoral region), and SSC (size of dorsal pad, number of nuptial 

tubercles in male fathead minnow, ovipositor length in females) are all reported to be affected 

by EDCs. For example, androgen receptor agonists, such as methyltestosterone and 

dihydrotestosterone, can cause female fathead minnows to develop pronounced nuptial 

tubercles (Smith, 1974; Ankley et al., 2001; Panter et al., 2004). It has been reported that 

oestrogen receptor agonists and androgen receptor antagonists can decrease nuptial tubercle 

number and size of the dorsal fat pad in adult males (Miles-Richardson et al., 1999).  

http://www.fishbase.org/
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Figure 4-1. External morphology of male (upper) and female (lower) Fathead minnows showing 

secondary sexual characters. a-nuptial tubercle, b-dorsal fat pad, c-dark dorsal fin spot, d-dark 

banding, e-ovipositor. (http://aquaticpath.umd.edu/fhm/intro.html) 
Figure 4-1. External mor pho logy of ma le and female  Fathead minnows showing secondary sexua l characters 

 

 

 

 

 

 

Courtship behaviour in the fathead minnow is elaborate and relatively well-defined. 

Following spawning, males are highly territorial, chasing other males and actively guarding 

nest sites where the adhesive eggs have been deposited by the females. In the laboratory by 

providing an artificial nest with an egg-depositing surface, daily egg counts can be made in a 

reproductive performance assay. The fathead minnow short term reproductive assay was one 

of the three assays recommended for initial screening of EDCs (the other two are rodent and 

amphibian assays) by the USEPA. 

Fathead minnows were chosen for the present study because they have a short life cycle 

(maturity in 4-5 month post-hatch), their basic reproductive and endocrine physiology are 

well reported (Jensen et al., 2001; Leino et al., 2005), many toxicity endpoints have been well 

defined (example: vitellogenin (Vtg), a biomarker for oestrogenic chemicals; Sumpter and 

Jobling, 1995) and still being scrutinised (Watanabe et al., 2007; Dang et al., 2011), and they 

are relatively easy to culture and the reproductive cycle can be controlled by altering 

temperature and photoperiod (reviewed in Ankley and Villeneuve, 2006). Compared to other 
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small fish species, fathead minnows provide enough blood to enable one to measure the 

plasma concentrations of glucose, cortisol and Vtg. The only shortcoming of the fathead 

minnow compared to the zebrafish is that the molecular biomarkers are not well defined, 

whereas in the zebrafish the whole genome has been reported. However, fathead minnows 

have been used very successfully in the past for assessing the impacts of various endocrine 

disrupters (Panter et al., 2002; Lange et al., 2001; Brian et al., 2005; Williams et al., 2007; 

Giltrow et al., 2009; Paulos et al., 2010).  

4.1.2 Fish Toxicity Tests 

Many different types of toxicity tests with fish are performed for different purposes. For 

example, the European commission has set requirements for any chemical of which marketing 

quantity exceeds one ton per year per manufacturer. These requirements include acute toxicity 

for freshwater fish (96h, LC50), acute toxicity for daphnids (48h, EC50) and growth 

inhibition test on freshwater algae (growth rate: 72h, ErC50 and/or biomass: 72h, EbC50). 

Similar requirements have been in place in USA with fish, amphibian and rodent toxicity 

assays. The data obtained are used for deciding on the classification of the chemical and for 

hazard and risk assessment (calculation of PNEC) of the substance. These short term toxicity 

tests are also used as preliminary test for finding the range of concentrations for the chronic 

exposure experiments. Fish toxicity testing is also an important element of Whole Effluent 

Toxicity (in USA) testing and Whole Effluent Assessment or Direct Toxicity Assessment (in 

Europe; Chapman, 2000). These assessments recommend short-term toxicity testing with fish. 

However, some European countries are now moving towards alternative test methods, such as 

the fish embryo test (reviewed by Nagel, 2002).  

The OECD has established test guidelines using fish as test organisms for the testing of acute 

toxicity (OECD 203), prolonged toxicity test (OECD 204), early life-stage toxicity (OECD 
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210), short term toxicity test on embryo and sac-fry stages (OECD 212), and juvenile growth 

test (OECD 215). There is increasing concern about water quality in developed countries, 

particularly in North America and in Europe, not only concerned with acute toxicity of single 

compounds but also with the sub-lethal effects of complex mixtures of compounds at much 

lower concentrations. With respect to potentially adverse effects following long-term 

exposure to sub-lethal concentration of chemicals (chemical mixtures), more emphasis has 

been given to the development of methodologies to identify more specific modes of toxic 

action, e.g. endocrine disruption. Thus, OECD expert groups are currently developing 

modified test guidelines, which incorporate more sophisticated endpoints. 

One of the very successful tests for assessing the impacts of EDCs is the partial life cycle 

reproduction test, the so-called pair breeding test (Harries et al., 2000), which is usually a 21-

day assessment of egg production and terminal comparison of metabolic, morphological and 

histological endpoints. In this test, each pair of fish is assigned a separate tank, so that the egg 

production endpoint per pair of fish is accurately measured. This is extremely labour-intensive 

and expensive, hence it is only suitable if the EDC being tested is expected to affect 

reproduction, preferably egg production. 

The other test method involves a chronic exposure of adults in groups placed in separated 

tanks, each tank receiving a different concentration of chemical, together with a control tank 

(OECD 230). This test guideline describes an in vivo screening assay for certain endocrine 

active substances where sexually mature male and spawning female fish are held together and 

exposed to a chemical during a limited part of their life-cycle (in this experiment at least 3 

weeks exposure is considered as chronic). This assay covers the screening of oestrogenic and 

androgenic activity, and also aromatase inhibition. The assay was validated by the OECD on 

the fathead minnow, the Japanese medaka and the zebrafish; however, androgenic activity is 
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not tested in zebrafish. At the end of the 21-day exposure period, depending on the species 

used, one or two biomarker endpoint(s) are measured as indicators of oestrogenic, aromatase 

inhibition or androgenic activity of the test chemical; these endpoints could be Vtg (fathead 

minnow, Japanese medaka and zebrafish) and SSCs (fathead minnow and Japanese medaka 

only). Another test method is the full life cycle test (Lange et al., 2001), which is tedious and 

expensive, but the results can be more convincing. Therefore before any regulatory decisions 

are made, all or most of the tests discussed above could be conducted with a range of 

concentrations of a chemical of interest. 

Although the group exposure (OECD 230) protocol is often criticised for its ‗pseudo-

replicate‘ nature (unless repeated results are obtained, their validity is in question), the 

advantage of this test is that large number of fish can be exposed and an endpoint that has a 

relatively narrow range of variability between different concentrations assessed. The 

experiments described in this chapter have adopted this group exposure scenario, mainly 

because the main endpoint expected, plasma glucose concentration, would probably not vary 

more than 2 to 3-fold between different tested exposure concentrations. Another endpoint is 

related to immune-suppression, and the reproductive endpoint had least priority. 

4.1.3 Possible Endpoints 

Predicting the potential impacts of pharmaceuticals present in the environment that have not 

been tested previously with fish is challenging. Because most pharmaceuticals are designed to 

affect biological receptors/enzymes that are mostly conserved across vertebrate families, the 

read-across hypothesis has been suggested as a promising approach (Huggett et al., 2004; 

Owen et al., 2009). This involves an efficient use of mammalian data to better understand and 

predict the potential for a given pharmaceutical to impact the environment. For most 

pharmaceuticals, mode of action, therapeutic target, plasma concentrations, metabolism, 
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excretion and therapeutic dosage data for humans are available from the literature and/or 

manufacturer. Across-species extrapolation of these data suggests there is potential for 

impacting amphibian and fish in the aquatic environment, depending, of course, on the level 

of contamination of the environment.  

The impacts of GCs on fish could be predicted from their therapeutic target, their side effects 

in humans after long term treatment, the effects of natural GCs (cortisol and corticosterone) 

on human physiology on human physiology and from the responses of fish to stress. GCs are 

mainly used as anti-inflammatory and immunosuppressive drugs. Their target receptors are 

present in almost all parts of the body. A major biochemical effect of GCs is increasing 

hepatic glucose output by stimulating hepatic gluconeogenesis, while depressing protein 

synthesis or stimulating protein catabolism in muscle. A number of hepatic enzymes 

concerned with gluconeogenesis exhibit marked increases in activity after the administration 

of GCs. Among these enzymes are glucose-6-phosphatase, fructose-6-diphosphatase, and 

phosphoenolpyruvate carboxy kinase (Mommsen et al., 1999).  

Suppression of the inflammatory response by corticosteroids has long been investigated. This 

usually results in reduction of the number of circulating lymphocytes. Suppression of the 

hypothalamic-pituitary-adrenal system is another frequently reported impact induced by 

corticosteroids in human. Regulation of ACTH-dependent steroidogenesis is accomplished by 

long or external loop negative feedback. Corticotropin-releasing factor from the hypothalamus 

activates ACTH release by the anterior pituitary, and ACTH stimulates the conversion of 

cholesterol to cortisol in the adrenal cortex. As cortisol concentrations rise in the blood, 

binding sites in the hypothalamus are occupied, and corticotropin-releasing factor is no longer 

synthesized and released, until concentrations of cortisol in the extracellular fluid decline. In 

fact, the standard procedure to evaluate the effects of GCs or to compare their in vivo 
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potencies is the measurement of the reduction in GC production via urinary cortisol 

concentrations or salaivary cortisol concentrations. Significant reduction in adrenal weight 

within 5 to 10 days after the beginning of corticosteroid therapy has been reported from 

earlier studies on the side effects of GCs in human and it is generally acknowledged that 

adrenal atrophy is apparent in nearly all species tested after 10 days of high dose 

corticosteroid therapy (Salassa et al., 1953).  

Other side effects of GCs often reported are Cushing‘s syndrome, myopathy, osteoporosis-

vertebral compression, fractures, aseptic necrosis of bone, peptic ulceration gastric 

haemorrhage, intestinal perforation, pancreatitis, psychiatric disorders (often called steroid 

psychosis), pseudo cerebral tumour, glaucoma, hypertension, thrombosis, vasculitis, sodium 

and water retention-oedema, hypokalemic alkalosis, ketoacidosis, diabetes mellitus, 

hyperlipidemia, obesity, growth failure, secondary amenorrhea, inhibition of fibroplasias, 

impaired wound healing, subcutaneous tissue atrophy, suppression of the immune response, 

superimposition of a variety of bacterial, fungal, viral, and parasitic infections, hypogonadism 

and hirsutism ( reviewed in Melby, 1977;  Schacke et al., 2002). 

Physiological impacts of endogenous cortisol are similar to the reported stress responses, 

since it is well-known that stressed animals have elevated cortisol concentrations. Stress 

responses have been classified as primary response (increased cortisol, catecholamines), 

secondary response (metabolic changes: increased glucose, lactate, and decreased tissue 

glycogen; cellular changes: increased heat shock proteins; osmoregulatory disturbances: Na, 

K, water; haematology: leucocrit, haemoglobin, lysozyme activity) and tertiary response (on 

growth, swimming performance, feeding and reproduction:  reviewed in Sapolsky et al., 

2000). Elevated cortisol as a consequence of stress has been reported to affect the HPG axis 
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via a negative feedback loop and inhibit the synthesis of gonodal steroids (Pickering et al., 

1987; Campbell et al., 1992). 

In vivo studies on GCs and fish are very rare. Most studies reported so far have applied 

treatments via implanted capsules or food, and involved high concentrations of GC compared 

to the expected environmentally-relevant concentrations (Pickering et al., 1987; Carragher et 

al., 1989). No studies have been reported using the environmentally-relevant exposure route, 

via the water, so there is no established endpoint corresponding to Vtg for oestrogen or egg 

production for progestins. Therefore several endpoints should be studied before adopting a 

reliable endpoint. The present study is the first report on the effects of chronic exposure of 

fish to low concentration of synthetic GCs.  

4.1.4 Objectives 

The main objective of the experiments present in this chapter was to assess the impacts of 

environmentally-relevant concentrations of GCs on Fathead minnows. 

Specific objectives were  

 To assess the potential impacts of two different GCs (prednisolone and 

beclomethasone dipropionate) at the same concentration on fathead minnows, in order 

to see if the potency differences observed in vitro could be verified in vivo, and also to 

determine the range of variations in the endpoints analyzed. 

 To assess the potential impacts of beclomethasone dipropionate in a range of different 

concentrations, in order to see if the responses of fish are concentration-related. 

 To suggest a LOEC for beclomethasone dipropionate on fathead minnows. 
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4.2 Materials and Methods 

4.2.1 Experiment-1: Mixed Sex Adult Fathead Minnows Exposed to Two Different 

GCs  

In order to assess the impact of low concentrations of GCs in vivo, a 21-day exposure 

experiment was conducted with adult fathead minnows, in 30 L glass tanks, using a 

continuous flow-though system. Fish (12 months old) were selected from a breeding stock 

maintained at Brunel University and were fed three times per day, once with adult brine 

shrimp (Tropical Marine Centre, Gamma irradiated) and twice with flake food (King British 

Tropical flake food, Lillicos, Surrey). One group of 10 fish was exposed to 1µg 

prednisolone/L, another group was exposed to 1µg beclomethasone dipropionate/L and the 

third group served as control. Although egg production was not assessed, fish were provided 

with plastic tiles (3 in each tank) as a spawning surface, in order to reduce the competition 

and stress level. Aerators with air stones were used to maintain sufficient dissolved oxygen 

concentrations. 

Prednisolone (CAS no: 50-24-8, 99% purity, Sigma-Aldrich, UK) and Beclomethasone 

dipropionate (CAS no: 5534-09-8, 99% purity, Sigma-Aldrich, UK) were dissolved in ethanol 

and stock solutions (1mg/L) were freshly prepared in 2.5 L amber bottles every 4
th

 day, by 

dissolving the GC in double-distilled water and stirring vigorously overnight. Stock solutions 

were dosed at 18 ml/h, using a Watson Marlow (Cornwall, UK) multi-channel peristaltic 

pump, into glass mixing vessels (aspirator bottles), where  they mixed with dechlorinated tap 

water (at 18 L/h) before delivery to each fish tank to produce the desired concentrations. Flow 

rates and dosing efficiency were monitored daily to ensure that GC entered the fish tanks at 

the expected rates. All tubing within the system was medical grade silicon. Dosing of the 

tanks with GCs was carried out for a week prior to fish being put into the tanks, to allow the 
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system to equilibrate. During this equilibration period, fish were acclimatised in similar 

experimental conditions. Temperature (25.2 ± 1.02°C) and dissolved oxygen 

(7.12± 0.92 mg/L) were monitored daily throughout the experiment. Water samples (500ml) 

were taken 3 times on the days when the stock solutions were changed and kept frozen for 

analysis. 

4.2.1.1 Terminal Sampling of Fish 

After 21 days of exposure, fish were terminally anaesthetised using 200 mg Tricaine Methane 

sulphonate/ L (MS-222; Sigma, Poole, UK) that was buffered with sodium bicarbonate (1:1). 

Netting to blood sampling was completed as quickly as possible, to avoid elevation of the 

plasma cortisol concentration. During the procedure, fish were treated humanely with minimal 

suffering. Weight in grams and fork length in mm were measured. The tail was then removed 

from each fish and blood was withdrawn using 75μl capillary tubes, then decanted into 

eppendorf tubes (on ice) which contained an enzyme inhibitor, aprotinin (Sigma). The cut 

edge of the tail was used to make a blood film on a microscopic slide for staining and 

differential cell counting. 25μl fresh blood was transferred into 1975μl Natt-Herrick‘s stain 

solution (NaCl, 1.94 g; Na2SO4, 1.25 g; Na2HPO4, 0.87 g; KH2PO4, 0.125 g;  37% formalin, 

7.5 mL; and methyl violet 0.05 g made up to 500 mL in distilled water and filtered) in an 

eppendorf tube for total cell count using a haemocytometer. Blood samples were kept on ice 

until plasma was separated by centrifugation for 4 min at 14,000 × g, and this was then stored 

at −20°C for glucose, cortisol and Vtg measurements. 

Fish were dissected to obtain the liver and gonads.  Weights of these organs were measured 

and livers were snap-frozen in liquid nitrogen and then placed in a -80°C freezer. Gonads 

were fixed in 5 ml Bouin‘s solution (Sigma) for histological analysis. It was noted that 3 to 4 

minutes were taken to complete each fish sampling (from netting to dissection). 
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Condition factor, K, was calculated from the equation K = 100×W/L
3
 , where W is the weight 

in grams and L is fork length in cm. Liver-somatic index (LSI), which expresses the size of 

the liver in relation to the body weight, was calculated by using the equation LSI = (liver 

weight in gram/body weight in gram) × 100. Gonadosomatic index (GSI) expresses the size of 

the gonad in relation to the body weight, and was calculated by using the equation GSI = 

(gonad weight in gram/body weight in gram) × 100.  

4.2.1.2 Plasma Glucose Measurement.  

Blood glucose concentration was determined using a quantichrome kit (Universal Biological, 

UK). This method uses as little as 5 μL sample volume, which is an advantage for fathead 

minnow as this species provides only gives small volumes of blood sample. It has a linear 

detection range from 0.7 mg/dL (39 μM) to 300 mg/dL (16.6 mM) and is conducted in 96-

well plates. All the procedures were carried out under a chemical fume hood. Standards were 

prepared in distilled water as shown in Table 4.1. 

Table 4-1. Glucose standards for plasma glucose assay 

 

No Standard (provided from kit) + Water 
Total volume 

(µL) 

Glucose concentration 

(mg/dL) 

1 150 µL + 0 µL 150 300 

2 100 µL + 50 µL 150 200 

3 50 µL + 100 µL 150 100 

4 25 µL + 125 µL 150 50 

5 0 µL + 150 µL 150 0 

 

5 μL diluted standards and samples were transferred into appropriately labelled 1.5-mL 

eppendorf tubes. 500 μL reagent was added to each tube. Tubes were closed tightly and the 

contents were mixed well. Tubes were placed in a boiling water bath for 8 minutes and then 

cooled in a cold water bath for 4 minutes. 200 μL of the resultant solution was transferred in 

duplicate into a clear bottom 96-well plate.  Optical density at 650 nm was recorded using a 
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spectrophotometer (Spectramax 340PC). Plasma glucose concentrations were obtained 

directly from the linear plot equation and are presented here as mean ± SD for control and 

treatment groups of fish. 

4.2.1.3 Leukocyte Counts 

Total blood cell count and leukocytes counts were performed based on the method described 

by Morgan et al. (1993). For total cell counts, a thin film of Natt-Herrick‘s stained blood was 

made on a haemocytometer and an average of 5 square counts was taken to calculate total cell 

numbers. A micropipette was used to load the counting chamber of the haemocytometer. 

Air-dried blood smears were fixed in methanol for 5 minutes and stained with acid 

haematoxylin and eosin for differential cell counts. Due to the difficulties in differentiating 

sub-populations of leukocytes under a light microscope, it was decided to differentiate RBCs 

from WBCs and the proportion of WBCs was estimated from a count of a total of 200 cells. 

From this proportion, total WBCs were extrapolated from the haemocytometer counts and are 

presented as the number of WBCs (in thousands) / μL blood. 

4.2.1.4 Plasma Cortisol Measurement 

Plasma cortisol concentrations were measured with an Enzyme Immunoassay Kit (Cambridge 

Bioscience: Cat. No. 900-071), according to the manufacturer‘s instructions. Frozen plasma 

samples and the kit contents were allowed to reach room temperature while preparing the 

ELISA bench and automated plate washer. Cortisol standard solution (100,000 pg/mL) from 

the kit was serially diluted with assay buffer, and the standard solutions (10,000, 5,000, 2,500, 

1,250, 625, 313 and 156 pg/mL, respectively) for the assay were prepared immediately before 

every assay. Wash Buffer was prepared by diluting 5 mL of the supplied concentrate with 95 

mL of deionized water and it was then placed into the appropriate bottle in the automated 

plate washer. From the preliminary assay with different dilutions of samples, it was decided to 
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dilute the control group fish plasma 30-fold and the treated group fish plasma 20-fold, using 

10 µL plasma and appropriate amount of assay buffer in order to keep the OD values within 

the working range of the ELISA. 

All standards and samples were run in duplicate. For each plate, non-specific binding (NSB), 

total activity (TA) and blank were included. 100 µL of standards and diluted samples were 

pipetted into appropriate wells (except for TA, blank and NSB). 100 µL of assay buffer was 

pipetted into NSB wells. 50 µL of blue Conjugate was pipetted into each well, except the TA 

and Blank wells. 50 µL of antibody was pipetted into each well, except the Blank, TA and 

NSB wells. The plate was then sealed and incubated at room temperature on a plate shaker for 

2 hours at ~500 rpm. After 2 hours, the contents of the wells were emptied and the plate was 

washed three times by adding 400 µL of wash solution to every well. After the final wash, the 

wells were emptied, and the plate was firmly tapped on a lint-free paper towel to remove any 

remaining wash buffer. 5 µL of the blue Conjugate was added to the TA wells. 200 µL of the 

substrate solution was added to every well using a multichannel pipette and the plate was 

incubated at room temperature for 1 hour without shaking. After the incubation, 50 µL of stop 

solution was added to every well using a multichannel pipette and the plate was read 

immediately for optical density at 405 nm using a spectrophotometer (Spectramax 340PC).  

The mean OD value of both blank wells was subtracted from the mean OD values of each 

duplicate of samples and standards. The average net OD bound for each standard and sample 

was calculated by subtracting the average NSB OD from the average OD bound. For each pair 

of standard wells and sample wells, the percentage of the maximum binding was calculated. 

Using a Logit-Log paper plot, percent bound versus concentration of cortisol for the standards 

was plotted. A straight line through the points was approximated, and the unknowns were 



 

110 

 

determined by interpolation. The few samples which fell outside the working range of the 

assay were repeated in a similar assay with appropriate dilutions of sample. 

The above kit had cross-reactivity for the following compounds: Cortisol (100%), 

Corticosterone (27.68%), 11-deoxycortisol (4.0%), Progesterone (3.64%), Prednisone 

(0.85%), Testosterone (0.12%), Androstenedione (<0.1%), Cortisone (<0.1%) and Estradiol 

(<0.1%).  

4.2.1.5 Measuring Concentrations of GC in Experimental Tanks 

Prednisolone concentrations in tank water samples were measured with a specific Enzyme 

Immunoassay Kit (Cambridge Bioscience: Cat. No. 900-071), according to the manufacturer‘s 

instructions.  This kit was developed for cortisol, but prednisolone was reported to have 122% 

cross-reaction.  

Prednisolone from water was extracted using diethyl ether. In a fume hood, 10 mL of Diethyl 

Ether was added to 10 mL of sample and then shaken well for 5 minutes. Layers were allowed 

to separate for 5 minutes. By placing the test tube into liquid nitrogen, the water phase was 

frozen solid, allowing the ether phase to be transferred into a clean test tube. The ether was 

evaporated to dryness under nitrogen stream. Extracted prednisolone was dissolved in 1 mL 

assay buffer and vortexed well. This was diluted 1:5 with assay buffer during the assay. The 

ELISA procedure was similar to that of cortisol, as described in section 4.2.1.4. 

Beclomethasone dipropionate did not have any cross-reaction with the antibody in the kit 

described above, so no measured concentrations for beclomethasone dipropionate are 

presented for this experiment. 
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4.2.2 Experiment 2: Concentration-Related Exposure to Beclomethasone Dipropionate 

 In order to assess the concentration-related impacts of a highly potent GC, beclomethasone 

dipropionate, a 21-day exposure experiment was conducted with adult fathead minnows, in 

30 L glass tanks, using a continuous flow-though system. A diagrammatic representation of 

the experimental set-up is presented in Figure 4.2. Briefly, three different concentrations (10 

µg/L, 1 µg/L and 100 ng/L) and a control tank with no chemical added were run in duplicate. 

10 males and 10 females were grouped into each tank. Fish (14 months old) were selected 

from a breeding stock maintained at Brunel University and were fed three times per day, once 

with adult brine shrimp (Tropical Marine Centre, Gamma irradiated) and twice with flake 

food (King British Tropical flake food, Lillicos, Surrey).   

 

Figure 4-2. The experimental set-up used for the concentration-response exposure of fathead 

minnows to beclomethasone dipropionate for 21 days.  
Figure 4-2. The experimenta l set-up use d for the dose response exposure of fathead minnow  to beclomethasone dipropionate for 21 days  
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Beclomethasone dipropionate (CAS no: 5534-09-8, 99% purity, Sigma-Aldrich, UK) was 

dissolved in ethanol and stock solutions (10 mg/L, 1mg/L and 0.1 mg/L) were freshly 

prepared in 2.5 L amber bottles every 4
th

 day, by dissolving the master stock in double-

distilled water and stirring vigorously overnight. Stock solutions were dosed at 18 ml/h, using 

a Watson Marlow (Cornwall, UK) multi-channel peristaltic pump, into glass mixing vessels 

(aspirator bottles), where  they mixed with dechlorinated tap water (at 18 L/h) before delivery 

to each fish tank to produce the desired concentrations. Flow rates and dosing efficiency were 

monitored daily to ensure that GC entered the fish tanks at the expected rates. All tubing 

within the system was medical grade silicon. Dosing of the tanks with GCs was carried out for 

a week prior to fish being put into the tanks, to allow the system to equilibrate. During this 

equilibration period, fish were acclimatised in similar experimental conditions. Temperature 

(25.1 ± 1.21°C) and dissolved oxygen (7.02 ± 0.47 mg/L) were monitored daily throughout 

the experiment. Water samples (500 ml) were taken 3 times on the days when the stock 

solutions were changed and kept frozen for analysis. 

4.2.2.1 Sampling 

The sampling protocol was similar to that described in section 4.2.1.1. It was noted that 3 to 4 

minutes were taken to complete each fish sampling (from netting to dissection).Sampling was 

started from control tanks and moved towards the higher concentration tanks on day one and 

vice-versa on day two inorder to avoid the diurnal variations in the endogenous steroids 

levels. Especially in this experiment, any RNA contamination across samples was excluded 

by wiping the dissection tools and table with RNAse away (Fisher) before and after every 

dissection. This is because the liver samples from this experiment were analysed for gene 

expression (Chapter 5). Immediately after the plasma separation, blood cells were sorted by 

percoll separation as described in Section 4.2.2.4.  
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4.2.2.2 Assessing Secondary Sexual Characters 

After blood sampling, length and weight measurements, sex was recorded and SSC was 

qualitatively and quantitatively assessed by adopting the procedures of Smith (1974) and 

USEPA (2002). In males, nuptial tubercles were counted (the head was immersed into liquid 

nitrogen to make tubercles clearly visible) under a magnifying glass and they were graded 

from 1 to 3, where 1 = present, 2 = enlarged, 3 = pronounced. Fat pad height was measured in 

mm and then it was removed with a scalpel, taking care not to remove any underlying muscle 

tissue. The weight of each fat pad was measured and fat pad index (FPI = fat pad weight (mg)/ 

body weight (mg) × 100) was calculated using fat pad weight and body weight of each fish. 

For females, ovipositor length was measured in mm with vernier callipers.  The dorsal fin was 

examined for the presence of a black spot or band. Fat pad appearance was recorded and 

graded as follows: 

 1: No fat pad visible  

2: Small fat pad evident  

3: Fat pad is clearly visible and is just above body surface  

4: Fat pad is prominent, and is clearly above the body surface, but not 'overhanging'  

5: Fat pad is very prominent and is starting to 'overhang' the body surface 

4.2.2.3 Plasma Glucose Measurement.  

Blood glucose was determined using a quantichrome kit (Universal biological, UK) as 

described in Section 4.2.1.2.  
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4.2.2.4 Leukocyte Counts 

Blood cell sorting and counting were carried out by percoll separation and flow cytometry 

according to the methods described by Inoue et al. (2002) and Morgan et al. (1993). These 

methods were slightly modified because of the low blood volume of the fathead minnow. 

Instead of using whole blood, blood cells after plasma separation (as described in section 

4.2.1.1) were reconstituted with 200 µL Hank‘s balanced salt solution (HBSS; Sigma). This 

cell suspension was carefully overlaid onto 200 µL of 1.085 g/ml Percoll (Sigma) in 0.85% 

NaCl and centrifuged at 1400 g for 15 minutes. Under these conditions, erythrocytes and 

basophils form a pellet at the bottom of the tube, while the neutrophils, monocytes, 

lymphocytes and thrombocytes remained at the saline-Percoll interface. The interface layer 

was collected with a Pasteur pipette and reconstituted in HBSS. A stock solution of 3,3-

dihexyloxacarbocyanine (DiOC6(3) dye; Sigma) was prepared in ethanol at 500 µg/ml. Ten 

times diluted stock solution in HBSS was prepared just before staining. 25µL of reconstituted 

leukocytes, 50µL of dye solution and 1925µL HBSS were mixed in a flow cytometer tube and 

left at room temperature for 10 minutes.  

After staining with DiOC6(3), blood cells were analyzed using flow cytometry. From each 

sample, 40000 cells were sorted. Forward scatter (FS), side scatter (SS) and green 

fluorescence (FL) of each cell was measured. As an example (shown in Figure 4.3), FS vs SS 

plots were obtained for each sample and gates for different sub-populations of leukocytes 

were set as J, D and H. As lymphocytes and thrombocytes cannot be differentiated by flow 

cytometry, they were considered as single group (J). D and H correspond to neutrophils and 

monocytes. For each sample, the percentage of lymphocyte plus thrombocyte of the total 

number of blood cells was calculated.  
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Figure 4-3. Flow cytometer generated dot plot of leukocyte cells stained with DiOC6(3). On the 

left: Forward light scatter vs side scatter plot where three sub-populations are gated as J 

(Lymphocytes and Thrombcytes), D (Neutrophils) and H (Monocytes). On the right: Florescence 

intensity (in logarithmic scale) vs frequency plot where florescence of three sub-populations are 

differentiated as TF1(Lymphocytes and Thrombcytes), L (Neutrophils) and M (Monocytes). 
Figure 4-3. Flow cytometer generated dot plot of leukocyte cells 

 

 

 

 

 

 

4.2.2.5 Plasma Cortisol Measurement 

Plasma cortisol concentrations were measured with an Enzyme Immunoassay Kit (Cambridge 

Bioscience: Cat. No. 900-071), according to the manufacturer‘s instructions as described in 

section 4.2.1.4. Since most female fish provided very small volumes of blood, not all fish 

were included in this assay. The number of samples measured in each treatment is presented 

in the results. 
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4.2.2.6 Plasma Vtg Measurement 

For all female fish, plasma Vtg concentration was measured by fathead minnow sandwich 

ELISA kit (Biosense, Norway). This ELISA utilises specific binding between antibodies and 

Vtg to quantify Vtg concentrations in samples from fathead minnow. The wells of the 

microplates have been pre-coated with a specific capture antibody that binds to Vtg present in 

standard and sample added to the wells. A different Vtg-specific detecting antibody, labelled 

with the enzyme horseradish peroxidase (HRP), is added to create a sandwich of Vtg and 

antibody. The enzyme activity is determined by adding a substrate that gives a coloured 

product, and the colour intensity is directly proportional to the amount of Vtg present. This 

ELISA has been validated and used by many laboratories for measurement of fathead minnow 

Vtg concentrations (Eidem et al., 2006). 

Throughout the assay, careful and precise pipetting at every step in the assay was maintained. 

Whenever a multichannel pipette was used, reverse pipetting was done to avoid the air bubble 

effect. In all dilutions a vortexer was used instead of shaking the sample to avoid foaming.  

Since doing the dilutions of samples and preparation of standards needs time, part of the 

procedure was done the day before actual assay. Dilution buffer (5× concentrate) was made 

up into 1x concentrate with distilled water and stored in a 4°C fridge. A washing buffer (PBS, 

0.05% Tween-20) tablet was dissolved in 1 L distilled water on a magnetic stirrer and placed 

into the appropriate bottle in the automated plate washer. The required amount of TMB 

substrate solution was measured out in a 15-mL falcon tube and kept in the dark at room 

temperature. The remaining TMB was placed in a fridge ar 4°C. 0.3M H2SO4 was prepared 

from the stock. All the eppendorf tubes were labelled for standards and sample dilution and 

arranged ready for use the next day. 
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Detecting antibody (vial E) was diluted 1:500 by adding 24 μl to 12 ml Dilution buffer for 

each plate immediately before running the assay. As Vtg is an unstable molecule, all standard 

and sample dilutions were done on ice. Frozen samples were thawed on ice. Using the fathead 

minnow Vtg standard (vial G) from the kit and cold dilution buffer, two-fold serial dilution of 

11 Vtg standards were prepared from 50 ng/mL to 0.05 ng/mL.  

As Vtg concentrations have been found to be highly variable in the past, each sample was 

diluted to 1:5000, 1:50000 and 1:500000 (Per Com: Nicola Beresford) in order that one 

dilution was on the linear part of the standard curve. Each standard and sample was run in 

duplicate, and NSB wells were included for each plate. These wells are used to determine 

Non-Specific Binding (unspecific background signal). 100 μl of each fathead minnow Vtg 

standard and sample dilution were added to appropriate wells and the plate was incubated at 

room temperature (20-25°C) for 1.5 hour. 

The plate was then washed three times with 300 μl washing buffer per well. 100 μl of the 

diluted detecting antibody was then added to all wells. The plate was sealed and incubated at 

room temperature (20-25°C) for 30 minutes. The plate was then washed five times with 300 

μl Washing buffer per well. 100 μl TMB substrate solution was then added to all wells. The 

plate was covered with aluminium foil and incubated at room temperature (20-25°C) for 20 

minutes. The reaction was stopped by adding 100 μl 0.3M H2SO4 to all wells. At that satge 

absorbance at 450 nm was read with a spectrophotometer (Spectramax 340PC). 

The mean of the absorbance values of the two NSB wells was calculated and this value was 

sustracted from the absorbance values of all other wells on the same plate. This gives the 

NSB-corrected absorbance values for standard and sample dilutions. 

The mean of the NSB-corrected absorbance values for each set of standard duplicates was 

calculated and the standard curve was constructed using linear curve fit. A working range was 
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selected and the unknowns were interpolated from this and the concentration of Vtg in each 

sample was calculated according to the dilution of the sample. 

4.2.2.7 Gonadal Histology 

Histological procedures involved tissue fixation, dehydration, paraffin embedding, microtome 

sectioning, staining and finally differentiating cells under the microscope. Sections of ovary 

were stained first with haematoxylin, which stains nuclear material dark blue or purple, and 

then with eosin, which counter-stains cytoplasm and erythrocytes a pink colour. 

On the sampling day, ovaries were dissected in a caudal-to-cranial direction while applying 

gentle traction to the oviduct in order to minimise trauma. The ovaries were fixed in 5 mL 

Bouin‘s solution (Sigma), which was replaced by 70% industrial methylated spirits (IMS) 

after 24 hours, and again after 48 hours. Each ovary was sliced into 3 transverse sections with 

a microtome blade and the sections were placed into a plastic tissue cassette submerged in 

70% IMS for histological processing. Tissues were maintained in the following solutions for 

the period of time mentioned, using the automatic tissue processor (TP 1020, Leica Inc.). 

70% IMS  3 hours 

90% IMS  2.5 hours 

  95% IMS  1.5 hours  

100 % IMS  6 hours 

  Histoclear  4.5 hours 

  Paraffin Wax 2.5 hours  

Histomount and histoclear were purchased from National Diagnostics, USA. Paraffin wax and 

eosin were purchased from RA Lamb Inc. Haematoxylin was purchased from VWR Inc. and 

Li2CO3 was from Sigma-Aldrich, UK. Acid Alcohol was prepared from 70% HCl and IMS as 

1:99. 
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After the tissue processing as described above, ovary slices were embedded into wax blocks. 

Tissues were sectioned to 4 μm thickness using the RM 2235 microtome (Leica Inc.), and 

placed onto microscope slides coated with Histobond (RA Lamb, UK). They were dried for 

~48 h before staining with Eosin and Haematoxylin on an automated staining machine 

according to the following protocol.  

Histoclear  15 minutes (Dissolves wax) 

100% IMS   2 minutes 

90% IMS   2 minutes 

70% IMS   2 minutes 

Water    2 minutes (Rehydration) 

Haematoxylin  15 minutes (Stains nuclear material) 

Water    15 minutes (Wash) 

Acid Alcohol  5-30 seconds (Resolves stain) 

Water    20 seconds (Wash) 

Saturated Li2CO3  20 seconds (Raises pH and removes any Bouin‘s residue) 

Eosin    5-20 seconds (Counter-stains) 

Water    5 minutes (Wash) 

70% IMS   2 minutes 

90% IMS   2 minutes 

100% IMS   5 minutes (Tissue dehydration) 

Histoclear   5 minutes (Helps mount cover slip) 

Finally, the stained sections were mounted using histomount and covered with cover slips. 

The slides were examined under an Olympus BX51 compound light microscope and 

photographs were taken using a digital camera and the Q-Capture Pro v. 5.1.1.14 program 

(Media Cybernetics Inc.).  



 

120 

 

Examination of all histological samples was conducted blindly, without any knowledge of the 

sample identity or its treatment. The ovaries were examined for the presence of oocyte atresia, 

a process in which oocytes (at any point in development) degrade and are resorbed. Atretic 

oocytes are characterized by clumping and perforation of the chorion, fragmentation of the 

nucleus, and disorganization of the ooplasm (EPA, 2009).  

For each female fish, 6 cross sections of ovary were analysed. Cells were categorised as 

vitellogenic stage, cortical alveoli stage, bulbiani body stage and perinucleolar stage (Figure 

4.4), and in each cross section, the number of cells falling into each category was counted on 

a Gateway 2000 computer using the free UTHSCSA ImageTool program (developed at the 

University of Texas Health Science Center at San Antonio, Texas and available from the 

Internet by anonymous FTP from ftp://maxrad6.uthscsa.edu). Reference pictures to support 

the classification of follicle types in fathead minnow were obtained from Jensen et al. (2001) 

and Wolf et al. (2004). The percentage of each cell type in every cross section examined was 

calculated and compared.  
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Figure 4-4. A light micrograph showing the four different stages oocytes. a: vitellogenic stage, b: 

cortical alveolar follicle, c: balbiani body stage and d: perinucleolar stage, counted with image 

tool software. 
Figure 4-4. A l ight micrograph showing the four different stages oocytes  

4.2.3 Statistical Analyses 

Experimental results are presented as means ± standard deviations. All statistical analyses 

were carried out using SigmaStat 3.5. As appropriate, normality tests and equal variance tests 

were performed and statistical significances were tested with a t-test or ANOVA. If datasets 

passed the equal variance test, one way ANOVA followed by a pair-wise comparison (with 

Holm-Sidak test or Tukey test) was done. If the data failed an equal variance test, then non-

parametric one way ANOVA on ranks (Kruskal-Wallis) followed by a Tukey test was done. 

In this case, median values are indicated in addition to means.  p < 0.05 was considered to be 

significant.  
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For some dose-response effect in the second experiment, in addition to ANOVA, trend 

analysis (using SPSS: Jonckheere-Terpstra (JT) test) was done. JT test is a non-parametric test 

for ordered differences among classes. It tests the null hypothesis that the distribution of the 

response variable does not differ among classes. It is designed to detect alternatives of ordered 

class differences. For such ordered alternatives, the JT test can be preferable to tests of more 

general class difference alternatives, such as the Kruskal-Wallis test. 

4.3 Results 

Endpoints measured in both experiments (example, plasma glucose and cortisol) are presented 

together. In experiment-2, the group of fish exposed from day 0 to day 21 is named as set-1 

and the duplicate set exposed from day 1 to day 22 is named as set-2. In experiment-2, data 

from set-1 and set-2 were analysed separately, and the results compared by student t-test. If 

there were no differences between set-1 and set-2, data were pooled (unless otherwise stated; 

as an example, Vtg concentrations were analysed only in females, so n = 20) to give n= 40 for 

each treatment. This approach provided more power in the statistical tests. 

4.3.1 General Condition of Fish 

There was no mortality observed due to exposure to GCs. None of the treatments significantly 

affected the whole body condition or organ indices, except for LSI (Table 4.2). There was a 

decreasing trend in the LSI with increasing concentrations of Beclomethasone dipropionate 

experiment (Figure 4.5, green bars). But it was not significant by non-parametric test. Male 

(Figure 4.5, blue bars) and female (Figure 4.5, pink bars) populations were analysed 

separately and this revealed that female LSI had a significant decreasing trend (p < 0.001), 

whereas the LSI of males was not affected by the GC. Since gonad weights are different from 

female and male, GSI data were analysed separately, but there were no significant differences 

due to the treatment. 
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Table 4-2. General body measurements from both experiments 

 

Experiment 
Treatment  and number of 

fish 

Condition 

factor 
GSI LSI 

1 
Control (5 male + 5 female) 

1.55±0.17 

 

M: 1.63±0.14 

F: 13.42±1.83 

M:1.53± 0.51 

F: 3.24±0.90 

1 µg Prednisolone/L   

(5 male + 5 female) 
1.62±0.17 

M: 1.88±0.42 

F: 13.02±2.84 

M: 2.10±0.56 

F: 3.11±0.60 

1 µg Beclomethasone 

dipropionate/L 

(5 male + 5 female) 

1.53±0.26 
M: 1.33±0.34 

F: 12.22±4.89 

M: 1.60±0.38 

F: 3.63±3.43 

2 

 

(set-1+set-2) 

Control (20 male + 20 

female) 
1.46±0.18 

M: 2.03±0.81 

F: 12.95±5.09 

M:1.89± 0.37 

F: 3.19±0.56 

100 ng beclomethasone 

dipropionate/L  

(20 male + 20 female) 

1.47±0.27 
M: 1.53±0.29 

F: 11.63±3.53 

M: 1.88±0.31 

F: 2.68±0.45 

1 µg beclomethasone 

dipropionate /L  

(20 male + 20 female) 

1.50±0.22 
M: 1.57±0.56 

F: 12.02±5.81 

M: 1.88±0.38 

F: 2.42±0.41 

10 µg beclomethasone 

dipropionate /L  

(20 male + 20 female) 

1.48±0.17 
M: 1.57±0.43 

F: 13.23±5.04 

M: 1.87±0.29 

F: 2.23±0.57 
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Figure 4-5. The liver-somatic index (LSI) of fish from experiment-2. Trend analysis revealed 

that the LSI of female fish had a significant decreasing trend with increasing concentration of 

Beclomethasone dipropionate (JT test; p < 0.001). 
Figure 4-5. The l iver-somat ic index of fish from experiment-2  

4.3.2 Plasma Glucose Concentrations 

In experiment-1, plasma glucose concentrations were significantly (one way ANOVA; p < 

0.001) increased in GC - exposed groups of fish compared to the control group. The effect of 

beclomethasone dipropionate was higher than that of prednisolone, but the difference was not 

significant (Figure 4.6, Table 4.3).  
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Figure 4-6. Plasma glucose concentrations (mean ± standard deviation) in control and treated 

(either 1µg prednisolone/L or 1µg Beclomethasone dipropionate/L) groups of fish. (n=10, mixed 

sex in each group).  Indicates a significant difference (one way ANOVA, Tukey test; p<0.001) 

from the control.  
Figure 4-6. Plasma glucose conce ntrations in control and treated (either 1µg prednisolone/L or 1µg Beclomethasone dipropionate/L) groups  of fish 

 

 

 

 

Plasma glucose concentrations from experiment-2 are summarised in Table 4.3. There was a 

dose-related increase (JT test; p < 0.001) of the plasma glucose concentrations in 

beclomethasone dipropionate-treated fish. The plasma concentrations in set-1 are presented in 

Figure 4.7. In set-1, glucose concentrations in fish exposed to 1µg/L and 10 µg/L were 

significantly higher than that of control fish, but the concentration in fish exposed to 100 ng/L 

was not significantly different (although weakly significant by Holm-Sidak test; p=0.035) 

from control (Tukey test; p=0.149). Similar statistical results were obtained when set-2 data 

were analysed (Figure 4.8). When data from set-1 and set-2 were pooled and analysed, both 

Holm-Sidak (p=0.001) and Tukey (p=0.006) tests revealed that the exposure to 100 ng/L had 

also elevated the plasma glucose concentration significantly (Figure 4.9).  
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Table 4-3. Plasma glucose concentrations of fish exposed to different GCs at various 

concentrations 

 

Experiment 
Treatment  and number 

of fish 

Mean glucose 

concentrations 

(mg/dL) 

±SD 

Significant 

difference 

from 

control 

1 

Control (n=10) 
1 µg Prednisolone/L 
(n=10) 
1 µg Beclomethasone 

dipropionate/L (n=10) 

54.42 

79.56 

 

87.39 

8.07 

10.39 

 

11.39 

- 

Yes 

 

Yes 

2  

(Beclo-methasone 

dipropionate) 

 

Set-1 

Control (n=20)  

100 ng/L (n=20) 

1 µg/L (n=20)  

10 µg/L (n=20) 

54.146 

63.667 

92.178 

111.297 

10.382 

9.033 

13.628 

13.817 

- 

No 

Yes 

Yes 

Set-2 

Control (n=20)  

100 ng/L (n=20) 

1 µg/L (n=20)  

10 µg/L (n=20) 

58.926 

65.303 

86.140 

107.028 

8.952 

7.285 

12.295 

8.334 

- 

No 

Yes 

Yes 

Poole

d 

Control (n=40)  

100 ng/L (n=40) 

1 µg/L (n=40)  

10 µg/L (n=40) 

56.536 

64.485 

89.159 

109.163 

9.870 

8.142 

13.171 

11.468 

- 

Yes 

Yes 

Yes 
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Figure 4-7. Plasma glucose concentrations 

of fish (n = 20) exposed to different 

concentrations of beclomethasone 

dipropionate (set-1). The box indicates the 

mid 50% of values. The straight line inside 

the box corresponds to the median and the 

dashed line corresponds to the mean. 

Whiskers indicate the 10
th

 and 90
th

 

percentile values and circles indicate the 

outliers.  Indicates a significant difference 

from control (ANOVA followed by Tukey 

test; p < 0.05). 
Figure 4-7. Plasma glucose conce ntrations of fish expose d to different concentrations of beclomethasone dipropionate  

 

Figure 4-8. Plasma glucose concentrations 

of fish (n = 20) exposed to different 

concentrations of beclomethasone 

dipropionate (set-2). The box indicates the 

mid 50% of values. The straight line inside 

the box corresponds to the median and the 

dashed line corresponds to the mean.  

Whiskers indicate the 10
th

 and 90
th

 

percentile values and circles indicate the 

outliers.  Indicates a significant difference 

from control (ANOVA followed by Tukey 

test; p < 0.05). 
Figure 4-8. Plasma glucose conce ntrations of fish expose d to different concentrations of beclomethasone dipropionate
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Figure 4-9. Plasma glucose concentrations of fish (n = 40 per treatment) exposed to different 

concentrations of beclomethasone dipropionate. Values from the same concentrations of each set 

were pooled for analysis. The box indicates the mid 50% of values. The straight line inside the 

box corresponds to the median and the dashed line corresponds to the mean. Whiskers indicate 

the 10
th

 and 90
th

 percentile values and circles indicate the outliers.  Indicates a significant 

difference from control (ANOVA followed by Tukey test; p < 0.05).  
Figure 4-9. Plasma glucose conce ntrations of fish  expose d to different concentrations of beclomethasone dipropionate  
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4.3.3 Leukocyte Counts 

In experiment-1, the total leukocyte count was reduced significantly in both prednisolone and 

beclomethasone-treated groups (Figure 4.10). Total leukocytes were reduced significantly(one 

way ANOVA followed by Holm-Sidak pair wise comparison; p < 0.001) in GC exposed 

groups (126.1± 8.99 × 10
3 

 mm
-3

 and 119.1± 7.21 × 10
3
 mm

-3
 for prednisolone and 

beclomethasone, respectively) compared to the control group (144.7±10.83 × 10
3
 mm

-3
).  

 

Figure 4-10. Blood leukocyte counts (mean ± standard deviation) in control and treated (either 

1µg prednisolone/L or 1µg Beclomethasone dipropionate/L) groups of fish (n=10, mixed sex in 

each group).  Indicates a significant difference (one way ANOVA followed by Holm-Sidak 

pairwise comparision; p < 0.001) from control. 
Figure 4-10. Blood le ukocyte counts in control and treated groups of fish 

 

 

 

 

 

 

In experiment-2, although set-1, set-2 and the pooled data provided similar results, their 

statistical analyses differed slightly. In all cases, the combined lymphocyte and thrombocyte 

population expressed as a percentage of the total number of leukocytes had a decreasing trend. 

Set-1 passed the normality test and there were statistically significant differeneces between 

controls (90.71±4.71 %) and the fish treated with 1 µg/L (71.71±5.77 %) and 10 µg/L 
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(58.75±4.90%) concentrations (Figure 4.11). Fish treated with 100 ng/L (88.30±4.58 %) were 

not statistically different from control (one way ANOVA followed by Holm-Sidak pair wise 

comparison; p < 0.001).    

 

Figure 4-11. Combined lymphocyte and thrombocyte population expressed as a percentage of 

the total leukocytes (set-1, n = 20) in fish exposed to different concentrations of beclomethasone 

dipropionate. The box indicates the mid 50% of values. The straight line inside the box 

corresponds to the median and the dashed line corresponds to the mean. Whiskers indicate the 

10
th

 and 90
th

 percentile values and circles indicate the outliers.  Indicates a significant 

difference from the control (one way ANOVA followed by Holm-Sidak pair wise comparison; p 

< 0.001). 
Figure 4-11. Combined lymphocyte and thrombocyte population expressed as a percentage  

 

 

 

 

 

 

 

of the total leukocytes (set-1) in fish exposed to different concentrations of beclomethasone dipropionate 

Set-2 data failed the normality test, even after log transformation. However, one way 

ANOVA on ranks (Kruskal-Wallis non-parametric test followed by Tukey test; p < 0.001) 
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revealed similar results (Figure 4.12). There were statistically significant differeneces 

between controls (median, 90.415 %) and the fish treated with 1 µg/L (median 70.79 %) and 

10 µg/L ( median 59.44 %) concentrations (Figure 4.11). The difference between the fish 

treated with 1 µg/L and 10 µg/L concentrations was not statistically sinificant. Fish treated 

with 100 ng/L (median 84.95 %) were not statistically different from the control. 

 

Figure 4-12. Combined lymphocyte and thrombocyte population expressed as a percentage of 

total leukocytes (set-2, n = 20) in fish exposed to different concentrations of beclomethasone 

dipropionate. The box indicates the mid 50% of values. The straight line inside the box 

corresponds to the median and the dashed line corresponds to the mean. Whiskers indicate the 

10
th

 and 90
th

 percentile values and circles indicate the outliers. Indicates a significant difference 

from control (one way ANOVA on ranks followed by Tukey pair wise comparison; p < 0.001). 
Figure 4-12. Combined lymphocyte and thrombocyte population expressed as a percentage of total le ukocytes (set-2) in fish expose d to different concentrations of beclomethasone dipropionate  

 

 

 

 

 

 

 

When the data from set-1 and set-2 were pooled, they failed the normality test, even after log 

transformation. Similar to set-2, one way ANOVA on ranks (Kruskal-Wallis non-parametric 

test followed by Tukey test; p < 0.001) revealed (Figure 4.12) the statistically significant 
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differeneces between controls (median, 91.195 %) and the fish treated with 1 µg/L (median 

70.65 %) and 10 µg/L ( median 58.645 %) concentrations (Figure 4.11). In this case, the 

difference between the fish treated with 1 µg/L and 10 µg/L concentrations was also not 

statistically significant. Fish treated with 100 ng/L (median 84.275 %) were not statistically 

different from control. 

 

Figure 4-13. Combined lymphocyte and thrombocyte population expressed as a percentage of 

total leukocytes (set1 and set-2,n = 40) in fish exposed to different concentrations of 

beclomethasone dipropionate. The box indicates the mid 50% of values. The straight line inside 

the box corresponds to the median and the dashed line corresponds to the mean. Whiskers 

indicate the 10
th

 and 90
th

 percentile values and circles indicate the outliers. Indicates a 

significant difference from control (one way ANOVA on ranks followed by Tukey pair wise 

comparison; p < 0.001). 
Figure 4-13. Combined lymphocyte and thrombocyte population expressed as a percentage of total le ukocytes (set1 and set-2) in fish exposed to different concentrations of beclomethasone dipropionate  

 

 

 

 

4.3.4 Plasma Cortisol Concentrations 

Although there was a drop in the mean plasma concentration in GC-treated groups, there was 

no significant difference in mean plasma cortisol concentrations in control (53.108±13.63), 
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prednisolone-treated (45.02±12.85) and beclomethasone-treated (39.55±15.66) groups  in 

experiment-1 (Figure 4.14).  

 

Figure 4-14. Plasma cortisol concentrations in experiment-1 (mean ± SD). There were no 

significant differences between either of the treatment groups and the control group (n=10, one 

way ANOVA; p = 0.178). 
Figure 4-14. P lasma cortiso l concentrations in experime nt-1 

Plasma cortisol concentrations in experiment-2 did not change in a dose-response manner. In 

both set-1 and set-2, fish exposed to 100 ng/L had slightly higher cortisol concentrations than 

the controls (although not significantly so), while fish exposed to 1 µg/L and 10 µg/L had 

lower cortisol concentrations (Figure 4.15). Set-1 data failed the normality test, even after log 

transformation. However, one way ANOVA on ranks (Kruskal-Wallis non-parametric test 

followed by Tukey test; p < 0.001) revealed (Figure 4.15a) that there were statistically 

significant differeneces between controls (mean: 41.28±8.67 ng/mL; median: 40.65 ng/mL) 

and the fish treated with 1 µg/L (mean: 29.36±9.69 ng/mL; median: 32.60 ng/mL) and 10 

µg/L (mean: 21.34±4.49 ng/mL; median: 20.38 ng/mL) beclomethasone dipropionate. The 

difference between fish treated with 1 µg/L and 10 µg/L concentrations was not statistically 
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significant. Fish treated with 100 ng/L (mean: 40.89±10.50 ng/mL; median: 40.26 ng/mL) 

were not statistically different from the control. 

Set-2 data were found to be normally distributed, but they failed the equal variance test. 

Therefore ANOVA on ranks was performed and it revealed that neither fish exposed to 100 

ng/L (mean: 37.68±11.34 ng/mL; median 38.26 ng/mL) nor 1 µg/L (mean: 27.66±8.58 

ng/mL; median: 24.95 ng/mL) concentrations were statistically different from control(Figure 

4.15b). However, fish exposed to 10 µg/L had a significant reduction of plasma cortisol 

concentration (mean: 22.21±5.08 ng/mL; median:20.98 ng/mL) compared to the control 

(mean: 34.97±5.61 ng/mL; median: 34.95 ng/mL).  

  
(a) (b) 

Figure 4-15. Plasma cortisol concentrations of fish (n = 15) exposed to different concentrations of 

beclomethasone dipropionate and controls in (a) set-1 and (b) set-2 of experiment-2. The box 

indicates the mid 50% of values. The straight line inside the box corresponds to the median and 

the dashed line corresponds to the mean. Whiskers indicate the 10
th

 and 90
th

 percentile values 

and circles indicate the outliers.  Indicates a significant difference from control (one way 

ANOVA on ranks followed by Tukey pair wise comparison; p < 0.001). 
Figure 4-15. P lasma cortiso l concentrations of fish exposed to different concentrations of beclomet hasone dipropionate and controls in experiment-2  
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When set-1 and set-2 data were pooled together, again the data failed the normality test even 

after log transformation. However, one way ANOVA on ranks (Kruskal-Wallis non-

parametric test followed by Tukey test; p < 0.001) revealed (Figure 4.16) that there were 

statistically significant reductions of plasma cortisol concentrations in fish exposed to 1 µg/L 

(mean: 28.51±9.04 ng/mL; median: 24.96 ng/mL) and 10 µg/L (mean: 21.77±4.73 ng/mL; 

median: 20.63 ng/mL) concentrations of beclomethasone dipropionate compared to controls 

(mean: 38.12±7.86 ng/mL; median: 36.69 ng/mL). The difference between the fish treated 

with 1 µg/L and 10 µg/L concentrations was also statistically significant. Fish treated with 

100 ng/L (mean: 39.29±10.86 ng/mL; median: 40.06 ng/mL) were not statistically different 

from the control.  
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Figure 4-16. Plasma cortisol concentrations of fish (n = 30) exposed to different concentrations of 

beclomethasone dipropionate and control, in duplicate. The box indicates the mid 50% of values. 

The straight line inside the box corresponds to the median and the dashed line corresponds to 

the mean. Whiskers indicate the 10
th

 and 90
th

 percentile values and circles indicate the outliers.

 Indicates a significant difference from control (one way ANOVA on ranks followed by Tukey 

test; p < 0.001. 
Figure 4-16. P lasma cortiso l concentrations of fish exposed to different concentrations of beclomet hasone dipropionate and control  

 

4.3.5 Plasma Vtg Concentrations in Females 

Set-1, set-2 and pooled plasma Vtg concentrations were found to be normally distributed with 

equal variance. One way ANOVA did not show any significant differences between control 

(14.15±5.24 mg/mL) and any of the treatments: 100 ng/L (11.97±4.80 mg/mL), 1 µg/L 

(11.98±4.69 mg/mL) and 10 µg/L (9.15±4.71 mg/mL) in set-1 (Figure 4.17a). In set-2, there 
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was a weakly significant reduction in plasma Vtg concentration in the 10 µg/L group 

(12.26±3.83 mg/mL) compared to the control (17.46±3.39 mg/mL; ANOVA followed by 

Holm-Sidak test; p < 0.05). Fish treated with 100 ng/L (17.22±4.84 mg/mL) and 1 µg/L 

(15.01±4.38 mg/mL) did not show any significant difference from control (Figure 4.17b). 

  
(a) (b) 

Figure 4-17. Plasma Vtg concentrations of female fish (n = 10) exposed to different 

concentrations of beclomethasone dipropionate and controls in (a) set-1 and (b) set-2 of 

experiment-2. The box indicates the mid 50% of values. The straight line inside the box 

corresponds to the median and the dashed line corresponds to the mean. Whiskers indicate the 

10
th

 and 90
th

 percentile values and circles indicate the outliers. Indicates a significant difference 

from the control (one way ANOVA followed by Holm-Sidak pair wise comparison; p < 0.05). 
Figure 4-17. P lasma Vtg concentrations  of female fish expose d to different concentrations of beclomethasone dipropionate and controls in experime nt-2 

 

 

 

 

 

 

 

When set-1 and set-2 data were pooled, mean plasma concentrations of Vtg in control, 100 

ng/L, 1 µg/L and 10 µg/L treatment groups were 15.80±4.62 mg/mL, 14.59±5.41 mg/mL, 

13.49±4.69 mg/mL and 10.70±4.47 mg/mL, respectively (Figure 4.18). The difference 

between controls and the 10 µg/L group was significant (ANOVA followed by Holm-Sidak 

test; p < 0.05). 
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Figure 4-18. Plasma Vtg concentrations of female fish (n = 20) exposed to different 

concentrations of beclomethasone dipropionate and control, in duplicate. The box indicates the 

mid 50% of values. The straight line inside the box corresponds to the median and the dashed 

line corresponds to the mean. Whiskers indicate the 10
th

 and 90
th

 percentile values and circles 

indicate the outliers.  Indicates a significant difference from the control (one way ANOVA 

followed by Holm-Sidak test; p < 0.05).  
Figure 4-18. P lasma Vtg concentrations  of female fish expose d to different concentrations of beclomethasone dipropionate and control, in duplicate  

4.3.6 Secondary Sexual Characters 

Set-1 and set-2 datasets for male and females in experiment-2 were pooled separately for the 

analysis of secondary sexual characters. There was a significant increase in the mean number 

of nuptial tubercles of male fish in the 10 µg/L group (19.95±3.30) compared to the control 

group (15.1±3.99; ANOVA followed by Tukey test; p < 0.05), while fish treated with 100 

ng/L (14.60±2.34) and 1 µg/L (17.45±3.08) did not show any significant difference from the 

control group (Figure 4.19). 
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Figure 4-19. The number of nuptial tubercles in males (n = 20) exposed to different 

concentrations of beclomethasone dipropionate and control. The box indicates the mid 50% of 

values. The straight line inside the box corresponds to the median and the dashed line 

corresponds to the mean. Whiskers indicate the 10
th

 and 90
th

 percentile values and circles 

indicate the outliers.  Indicates a significant difference from control (one way ANOVA 

followed by Tukey test; p < 0.05). 
Figure 4-19. The number of nuptial tubercle in ma les exposed to different concentrations of beclomethasone dipropionate and control  

 

 

 

 

 

 

Figure 4.20 shows that prominence of tubercles as measured by tubercle grade increases with 

increasing exposure concentrations, as the number of fish with grade-3 tubercles was highest 

in the 10 µg/L group. 
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Figure 4-20. Prominence of tubercles in males (n=20) as measured by tubercle grade (scored 

from 1 to 3) in controls and fish exposed to different concentrations of beclomethasone 

dipropionate. The number of fish observed with each grade is illustrated. 
Figure 4-20. Prominence of tubercles in ma les in controls and fish exposed to different concentrations of beclomethasone dipropionate 

 

 

 

 

Differences in mean fat pad height between the treatment groups and the control group were 

not significant (Figure 4.21a). Mean fat pad height in control, 100 ng/L, 1 µg/L and 10 µg/L 

treatments were 2.36±0.83 mm, 2.26±0.89 mm, 2.84±1.28 mm and 2.73±0.97 mm, 

respectively. Similarly, fat pad index, measured from the relationship between the fat pad 

weight and body weight, did not show any significant differences between any of the 

treatment groups and the control group (Figure 4.21b). Mean fat pad indices of control, 100 

ng/L, 1 µg/L and 10 µg/L groups were 2.62±0.52, 2.75±0.59, 2.72±0.51 and 2.83±0.67, 

respectively. 
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(a) (b) 

Figure 4-21. Fat pad height (a) and fat pad index (b) of male fish (n=20) in treatment and control 

groups. The box indicates the mid 50% of values. The straight line inside the box corresponds to 

the median and the dashed line corresponds to the mean. Whiskers indicate the 10
th

 and 90
th

 

percentile values and circles indicate the outliers. 
Figure 4-21. Fat pad height and fat pad index of fish in treatment and control groups  

 

 

 

 

Many females in treatment groups exhibited male SSCs (Figure 4.22). None of the control 

fish (n=20) showed a fat pad and they were all given a fat pad score of 1. Fish from the 

treatment groups exhibited various degree of fat pad development and the mean fat pad scores 

indicate a significant masculinisation due to exposure to beclomethasone dipropionate 

(Table 4.4). There was also an increasing number of fish with a black spot on their dorsal fin 

(another male SSC) with an increasing concentration of beclomethasone dipropionate 

(Figure 4.23).  

Quantitative measures of female SSC also showed an impact of the exposure to 

beclomethsone dipropionate. Data for the ovipositor length of females (n=20) failed the 

normality test. However, Kruskal-Wallis one way ANOVA on ranks followed by a Tukey test 

indicated that there was a significant reduction in ovipositor length in the groups exposed to 1 

µg/L and 10 µg/L compared to the control group (Table 4.4; Figure 4.24). 
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(A)  

(B)  

Figure 4-22. (A) A female fish exposed to 10 µg beclomethsone dipropionate/L, identified as a 

female by its ovipositor (b) and slender body, exhibiting a male SSC, a fat pad (a). (B) Two 

females exposed to 10 µg beclomethsone dipropionate/L, one of them showing a black spot on its 

dorsal fin (which is a male secondary sex character). 
Figure 4-22. A fe male fish exposed to 10 µg beclomethsone dipropionate/L showing male secondary sexual characterisitics  
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Figure 4-23. The percentage of female fish (n=20) in control and treatment groups exhibiting a 

black spot on their dorsal fin.  
Figure 4-23. The percentage of female fish in control and treatment groups, exhibiting a blac k spot o n t heir dorsa l fin 

 

Table 4-4. Secondary sexual characteristics of female Fish (n = 20) of Experiment-2 

 

 Number of fish 

Mean fat pad 

score for the 

group 

Number of 

fish with 

dorsal fin 

spot 

Mean 

ovipositor 

length (mm) 

Fat pad 

score 
1 2 3 4 5 

   

Control 20 0 0 0 0 1 0 1.775±0.53 

100 ng/mL 18 2 0 0 0 1.1 2 1.605±0.60 

1 µg/L 11 6 2 1 0 1.65 5 1.185±0.48 

10 µg/L 7 5 6 2 0 2.15 9 0.965±0.36 

 

1µg/L 10µg/L 
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Figure 4-24. Ovipositor length of female fish (n = 20) exposed to different concentrations of 

beclomethasone dipropionate. The box indicates the mid 50% of values. The straight line inside 

the box corresponds to the median and the dashed line corresponds to the mean. Whiskers 

indicate the 10
th

 and 90
th

 percentile values and circles indicate the outliers.  Indicates a 

significant difference from control (one way ANOVA on ranks followed by Tukey pair wise 

comparison; p < 0.001). 
Figure 4-24. Ovipositor le ngth of female fish exposed to different concentrations of beclomethasone dipropionate  

 

 

 

 

4.3.7 Gonadal Histology 

Two fish in exposed to beclomethasone dipropionate were found to be egg-bound and their 

ovaries were atretic. Apart from this, there were no signs of intersex characters in the ovarian 

cross sections (Figure 4.25).  
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(A) 

   

(B) (C) (D) 

Figure 4-25. Photomicrographs of cross-sections of control (A) and treated ovaries (B - 100 ng/L, 

C - 1 µg/L and D - 10 µg/L beclomethasone dipropionate exposed) showing reduction in the 

number of perinucleolar follicles and follicles with balbiani bodies due to the treatment. 
Figure 4-25. P hotomicrographs of cross-sections of control and treated ovaries  

 

 

 

 

 

 

Overall there was a reduction in number of early developmental stages and an increased 

proportion of maturing follicles observed. The percentages of perinucleolar follicles in 1 µg/L 

(29.78±9.69 %) and 10 µg/L (21.40±9.10 %) treatments were significantly lower than that of 

the control (42.22±7.09%). Difference between control and 100 ng/L treatment (38.11±6.23 

%) was not significant. (Figure 4.26a).  
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(a): Perinucleolar follicles (b): Follicles with Balbiani bodies 

           

(c): Cortical alveolar follicles (d): Vitellogenic follicles 

Figure 4-26. Numbers of the different stages of oogenesis in a cross section of an ovary as a 

percentage of the total number of cells. X axis represents the different concentrations of 

beclomethasone dipropionate.The box indicates the mid 50% of values. The straight line inside 

the box corresponds to the median and the dashed line corresponds to the mean. Whiskers 

indicate the 10
th

 and 90
th

 percentile values and circles indicate the outliers.  Indicates a 

significant difference from control (one way ANOVA on ranks followed by Tukey pair wise 

comparison; p < 0.001) 
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Figure 4-26. N umbers of t he different stages of ooge nesis in a  cross section of an ovary as a percentage of the total number of cells 

Similarly, the percentages of follicles containing balbiani bodies in 1 µg/L (18.95±4.6 %) and 

10 µg/L (14.62±4.53 %) treatments were significantly lower than that of the control 

(25.39±3.83 %). The difference between control and 100 ng/L treatment (24.35±5.1 %) was 

not significant (Figure 4.26b). JT test (p<0.001) indicated that the decreasing trends in the 

number of both cell types were significant. 

Cortical alveolar follicles and vitellogenic follicles showed a significant increasing trend (JT 

test; p<0.001) with treatment. Percentages of cortical alveolar follicles in 1 µg/L (23.96±5.99 

%) and 10 µg/L (28.05±6.30 %) treatments were significantly higher than that of the control 

(14.12±3.00 %). The difference between control and 100 ng/L treatment (19.49±5.98 %) was 

not significant (Figure 4.26c). Similarly, the percentages of vitellogenic follicles in 1 µg/L 

(26.41±9.81 %) and 10 µg/L (35.52±10.45 %) treatments were significantly higher than that 

of the control (18.01±7.83 %). The difference between control and 100 ng/L treatment 

(19.06±5.36 %) was not significant (Figure 4.26d). 

4.3.8 Water Chemistry 

In experiment-1, measured prednisolone concentrations in tank water were not significantly 

different between sampling days (Figure 4.27). The average concentration of all 15 samples 

was 902.5 ± 124.6 ng/L, compared to the nominal concentration of 1000 ng/L. Prednisolone 

concentrations in the control tanks were below detection limit (less than 56 pg/mL). 
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Figure 4-27. Concentrations of prednisolone in tank water of experiment 1, sampled on days 0, 

5, 10, 15 and 21. Fish were transferred into experimental tank on day 0, but dosing of the tanks 

was started one week before day 0. Values are the average and standard deviation of triplicate 

samples per day. 
Figure 4-27. Concentrations of prednisolone in tank water of experiment 1  

4.4 Discussion  

In this study, a range of endpoints, some of them are not routinely used in ecotoxicology 

experiments using fathead minnows, were used in order to assess the impacts of GCs as well 

as to suggest a reliable biomarker for risk assessment of GCs present in the environment. 

Baseline values of these endpoints are compared with previously reported measurements for 

fathead minnows (Ankley et al., 2001; Jensen et al., 2001; Leino et al., 2005; Watanabe et al., 

2007; Dang et al., 2011) and the responses of fathead minnow to GCs are discussed based on 

their known mode of action.  

Since the exposure concentrations were very low and there was no reported lethal toxicity in 

this concentration range, the present results showing no mortality were expected. Similarly, 

there were no impacts on length, weight and other organ indices due to the treatments, as 

would be expected. The decreasing trend in LSI of females exposed to GCs needs further 

verification. This effect may relate to Vtg production, as male and female fish vary on this 
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aspect of normal physiology. However, knowing that Vtg is not stored in the liver, the 

explanation for the LSI reduction in females due to the exposure is not clear. 

It is well established that GCs induce a significant tendency to hyperglycaemia in humans. 

Gluconeogenesis, a major effect of GCs on glucose metabolism, has been well documented 

(David et al., 1970; Rutkowski, 2001). More recently, some clinical trials report the increased 

risk of diabetes onset in patients with chronic use of topical corticosteroids (Van der Linden et 

al., 2009). This effect of GCs also occurs in fish. Cortisol administration to fish elevated the 

plasma glucose concentration two to five-fold, depending on the concentration (reviewed by 

Martinez-Porchas, 2009; Table 4.5). The timing of peak plasma glucose concentrations 

following stress coincided with the timing of elevated cortisol concentrations, indicating a 

role for cortisol in mobilising glucose during stress in teleosts (Mommsen et al., 1999). Both 

synthetic GCs tested caused an increase in the plasma glucose concentrations of about 50% in 

experiment-1. Higher dose in experiment-2 elevated it about 2-fold. This is a considerable 

impact as plasma glucose concentration of an animal is not a measurement that can change 

10‘s or 100‘s of fold. In human a 2 to 3-fold increase is a sign of disease and a 4 to 5-fold 

increase could be fatal.  

In fish, it is evident that the change in plasma glucose concentration due to up-regulation of 

cortisol depends on the species (Table 4.5). Since the previous studies induced stress effects 

by either implantation of cortisol, handling and confinement, or cortisol administration via 

food, it is not possible to compare them directly with the present study.  It may also be 

relevant that cortisol is a natural GC in fish and its concentration is elevated in response to 

stress, but it is less potent than the GCs used in the present exposure study.  

Plasma glucose measurement seems to be a reliable endpoint in GC exposure studies, at least 

those using fathead minnows, as they responded to concentrations as low as 100 ng 
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beclomethasone dipropionate per litre. However, when assessed individually, set-1 and set-2 

did not produce significant results for the lowest concentration tested. Therefore, the number 

of replicates used may be important for this endpoint; the higher the number, the greater the 

chance of detecting a significant increase. 

Table 4-5. Previously reported plasma glucose changes due to stressors (Table taken from 

Martine-Porchas et al., 2009). These data shows that a 2 to 5-fold increase of plasma glucose 

concentrations is typical, and that the change probably varies from species to species. 
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GCs are mainly used clinically for their anti-inflammatory and immuno-suppressive 

properties. A number of human trials have revealed the reduction of leukocyte counts after 

treatment with synthetic GCs. Similarly, dexamethasone treatment in fish significantly 

reduced the leukocyte count (Pickering et al., 1987). Lymphocytopenia is a consequence of 

acute and chronic stress in trout (Pickering 1984; Pickering and Pottinger 1989; Morgan et al., 

1993), and is a direct effect of the elevation of plasma cortisol concentrations. However in 

another study, Pickering and Pottinger (1985) found that cortisol can increase the 

susceptibility of brown trout to disease without affecting the white blood cell count. In the 

present study, both traditional leukocyte counts as well as more precise differential counts 

were employed. Since GCs have a tendency to induce lymphocytopenia in human, differential 

counting targeting the lymphocytes is a more useful endpoint. However, it was not possible to 

differentiate lymphocytes and thrombocytes. Therefore they were grouped together. The 

leukocyte number in the controls fell within the reported range for fathead minnows (Thomas 

et al., 1999). Lymphocytopenia in fish is associated with increased susceptibility to disease 

(Pickering and Pottinger, 1989), and hence fish chronically exposed to synthetic GCs in their 

environment may be more susceptible to disease.  

Another endpoint tested, plasma cortisol level, seems an inconsistent one. Plasma cortisol was 

targeted as it is a standard measure of GC potency in human. Due to the negative feedback 

mechanism via the hypothalamus-pituitary-adrenal axis, plasma cortisol concentration in 

human is down regulated by GC treatment, and it is usually measured in morning salivary or 

urinary samples. It can be an accurate measure in humans, as it is measured after rest and 

sleep, so that a reduction of plasma cortisol in response to GC can be measured. But in fish, 

obtaining a blood sample without stressing the fish is challenging. Stress immediately elevates 

the plasma cortisol concentration and this rise could mask any reduction due to the GC‘s 

impact. This may be the reason for the wide variation in plasma cortisol concentrations in the 
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present result. However, in the high dose treatment group, the reduction in plasma cortisol 

concentration was significant. Plasma cortisol concentrations also appear to vary depending 

on species (reviewed by Pankhurst, 2011) and the concentration measured in laboratory fish 

(even without any treatment or stressors) is often higher than that of wild fish. Several stress-

related studies have reported plasma concentrations of cortisol (reviewed in Martine-Porchas 

et al., 2009) in fish, pre-stress concentrations of which varies from 2-315nmol/L (~ 0.8 – 120 

ng/mL).  These baseline levels tend to increase over 100-fold due to handling stress 

(Table 4.6). Cortisol concentrations in control fish of the present study was about 40 ng/mL. 

There are not many reports of measured cortisol concentrations for fathead minnows. One 

laboratory study with fathead minnows (control fish average) reports 147 -153 ng/mL 

(Richards et al., 2007). Although there was a significant impact revealed in the present study, 

due to the varied nature of the results, plasma cortisol concentrations is probably not a 

promising endpoint in GC-related studies. However, any reduction in cortisol means that 

hypothalamic controlled endocrine activities such as gonodal sex steroids and growth may 

also be impacted in GC-exposed fish. Therefore, reproductive endpoints come into the 

picture. 

Results from previous studies investigating the effect of cortisol on reproduction are of 

considerable interest (reviewed in Letherland and Barkataki, 2010). A reduction in the 

number of perinucleolar follicles in ovaries could mean that GCs arrest development of 

primary oocytes. This could be explained via the HPG negative feedback loop, leading to 

reduced concentrations of gonodotophins in plasma and hence reduced stimulation of 

oogenesis. 
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Table 4-6. Basal plasma cortisol concentrations and their changes due to stressors in different 

species of fish (Table taken from Martine-Porchas, 2009) 

 

Plasma Vtg concentrations were found to be lowered in sexually maturing trout implanted 

with cortisol (Carragher et al., 1989). A similar reduction was also found (with elevated 

cortisol concentrations) in trout following 2 weeks confinement stress (Campbell et al., 1994). 

Female brook trout subjected to acid stress had lower Vtg concentrations (Roy et al., 1990).  

In contrast, cortisol implants in juvenile arctic charr elevated plasma Vtg concentrations (Berg 

et al., 2004). However, in that study, Vtg elevation was not associated with Vtg gene 

expression and it was concluded that cortisol acts on post-translational aspects of 

vitellogenesis. In another study, there was no effect on Vtg concentrations by cortisol alone, 

but a dose-dependent stimulation effect of cortisol on oestrogen-induced plasma Vtg 

concentrations was found (Brodeur et al., 2005). Several studies report that cortisol directly 
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inhibited the production of oestrogen in fish (Carragher and Sumpter, 1990; Foo and Lam, 

1993; Reddy et al., 1999; Pankhurst and Van Der Kraak, 2000). These observations are 

supported by a recent report showing in vitro suppression of estradiol synthesis by ACTH in 

ovarian follicles (Alsop et al., 2009). It is well known that vitellogenesis is oestrogen-

dependent. Collectively, these works suggest that GCs may exert inhibitory effects on 

vitellogenesis. In the present study, a reduction in the Vtg concentrations was only evident at 

the highest exposure concentration. Plasma Vtg concentrations in the control fish were in 

agreement with the reported range of Vtg concentrations for unexposed, sexually mature, 

female fathead minnow (17.4±8.4 mg/mL; Watanabe et al., 2007). 

In the fathead minnow, SSCs are under endocrine control. Nuptial tubercles are located on the 

head (dorsal pad) of reproductively active male fathead minnows, and are usually arranged in 

a bilaterally symmetric pattern. Normal mature females and juveniles of both sexes exhibit no 

tubercle development (Jensen et al., 2001). An increasing number of nuptial tubercles in the 

treatment groups suggest masculinisation effects of GCs. But fat pad index or fat pad height 

of treated males did not change towards any increased masculinisation. In contrast, females 

did show more masculinisation characters. Although no female fish exhibited a fat pad with 

score of 5 (which is usually given to sexually active large males with well developed fat 

pads), overall an average fad pad score of 2.15 for GC exposed females means a considerable 

number of female fish had male characteristics. This was also indicated by the presence of a 

black spot on the dorsal fin and a significant decrease in ovipositor length. 

 Control of sexual determination and differentiation varies greatly among teleost fish. There 

are two main types, genetic sex determination and temperature-dependant sex determination, 

and in both groups, sex reversal has been reported. Environmental factors such as 

temperature, pH, stocking density, and social interactions have been found to determine the 
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proportion of male and female fish (Nakamura et al., 1998; Baroiller et al., 2009). In teleosts, 

sex steroids affect the development of germ cells and organs involved in sexual differentiation 

(Devlin and Nagahama 2002). The sex steroid 17β-estradiol is considered to be responsible 

for the development of the ovaries and female SSCs, and its concentration is considerably 

higher in females than in males. Testis development and male SSCs are mainly regulated by 

the androgen 11-ketotestosterone (11KT), not by testosterone as in mammals. Testosterone 

acts as precursor of 11-KT and 17β-estradiol (Nakamura et al., 1998; Baroiller et al., 1999). 

According to Bogart (1987), sexual differentiation depends on the balance between 11KT and 

17β-estradiol; in this way excess 11KT induces masculine differentiation, while excess 17β-

estradiol induces feminine differentiation. A similar hypothesis has been applied to sex 

reversal of mature fish, as in the case of feminisation with exogenous estradiol.  

Elevated concentrations of cortisol due to stress has been shown to induce masculinisation in 

fish, but the mechanism by which cortisol masculinises fish has not been reported 

(Yamaguchi et al., 2010; Hayashi et al., 2010). It is not clear if the synthetic GCs used in the 

present study bio-concentrated in fish and mimicked the situation of elevated cortisol 

concentrations of fish, nor is it known if the synthetic GCs bind more tightly to the fish GR 

and thus have a greater half-life. Evidence from rodents and humans has shown that GCs 

oppose the action of oestrogens (Sahlin, 1995; Rhen et al., 2003). A recent study has 

demonstrated that activation of GR by dexamethasone induced the expression and activity of 

oestrogen sulfotransferase, an enzyme important for the metabolic deactivation of oestrogens, 

because sulfonated oestrogens fail to activate the oestrogen receptor. Treatment with 

dexamathasone lowered circulating oestrogens, compromised uterine oestrogen responses, 

and inhibited oestrogen-dependent breast cancer growth in vitro (Gong et al., 2008). This 

study also confirmed that the mouse and human oestrogen sulfotransferase gene is the 

transcriptional targets of GR and deletion of this gene in mice abolished the dexamethasone 
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effect on oestrogen responses. A similar mechanism in fish could reduce the concentration of 

active estradiol and may affect the balance of 11KT and estradiol in fish to alter the SSCs. 

In human, GCs are used to treat androgen-dependant prostate cancer and it is known that GCs 

reduce the plasma testosterone levels in males via a negative feedback loop of the HPG axis. 

This contradicts the present finding in males, where the number of nuptial tubercles was 

increased with GC treatment. This needs further verification. 

It has also been questioned whether GCs act as ligands for androgen receptors (AR) and 

induce the masculinisation. In fish, two ARs, called AR1 and AR2, have been characterised. 

AR1 has a high affinity for testosterone. AR2, which is equivalent to human AR, has affinity 

for a variety of natural and synthetic androgens, including DHT. AR2 has been found to be 

expressed in ovaries (Sperry and Thomas, 1999). SSC are thought to be controlled via AR2, 

and possibly cross activation of AR2 by GCs could masculinise the fish. It has been shown 

that some corticosteroids are also able to bind to gonadal progestogen receptors. 11-

deoxycorticosterone (DOC), the teleost mineralocorticoid, and to a lesser extent 11-

deoxycortisol, bound to a membrane progestogen receptor (receptor for 17α-20β-

dihydroxyprogesterone, which is known as maturation inducing hormone, MIH) in spotted sea 

trout Cynoscion nebulosus. But, cortisol did not bind to these receptors (Pinter and Thomas, 

1995). In male Japanese eel, DOC did show high affinity for MIH receptor in the testis but 

cortisol did not bind to it (Todo et al., 2000). In yellowtail (Seriola quinqueradiata), 11-

deoxycortisol bound to the MIH receptor (Rahman et al., 2002). Interestingly, Fathead 

minnows exposed to low concentrations of progestins have been shown to be masculinised, in 

research conducted in the same lab as the present study (per.com: Dr Tamsin Runnalls). This 

strongly suggests the possible cross activation of different steroid receptors by GCs. 

 



 

157 

 

Overall, the effects on the reproductive endpoints assessed in the present study suggest that 

low concentrations of GCs have impacts on every endpoint studied. What is not known is 

whether the effects are reversible or not. However, reproductive impacts could pose a threat to 

wild populations. Sex reversal towards masculinisation has a more severe impact than vice- 

versa. Therefore the next logical step in the environmental risk assessment of GCs would be 

to establish concentration-response relationships in a reproductive performance assay, and to 

compare these with reported environmental concentrations of GCs, in order to ascertain 

whether or not environmental concentrations of GCs are high enough to challenge 

reproduction in wild fish.  

All the endpoints studied in experiment-2 did show a concentration-related impact of GC on 

fathead minnows. If not, there was a concentration-related trend or no effect. There were no 

signs of ‗U‘ shaped dose-response curves, or any other unusual shaped curves.  This make the 

results look reasonable and strongly suggest that they will be repeatable. Measured tank water 

concentrations of the exposure chemical are only presented for prednisolone in experiment-1. 

Results are presented with nominal concentrations for experiment-2. However, the 

concentration-related effects in Experiment-2 confirm the presence of beclomethasone 

dipropionate at the expected concentrations.  

It was not possible to suggest a NOEC for beclomethasone dipropionate from the present 

study, as it produced one or more effects at all tested concentrations. The LOEC was 100 

ng/L, which may not be environmentally-relevant. However, it should be noted that the 

present experiments involved relatively short exposure periods. Perhaps longer exposure 

would lead to more pronounced effects, and/or effects at lower concentrations. Whole lifetime 

exposure studies with EE2 have shown that extremely low concentrations (less than 1 ng/L) 

cause dramatic effects (Lange et al., 2001). The same concentrations do little, or nothing, in 
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short term tests. Therefore, in the case of GCs, the NOEC must be below 100 ng/L and may 

well be in the low ng/L range, which could be environmentally-relevant. 

Because many different GCs are in widespread clinical use, it seems likely that, concurrently, 

many different GCs will be present in the aquatic environment. As our binding studies 

demonstrate, all of the GCs tested here can bind to the fish GR (as expected), and therefore it 

can be argued that the total concentration of GC in the environment, rather than the 

concentration of each individual GC, is of most relevance to the risk assessment of GCs on 

aquatic organisms. Nevertheless, it is very likely that the effects of different GCs will be 

additive, as has been shown for oestrogenic chemicals (Brian et al., 2005). Interestingly, the 

present study reveals a masculinising tendency of GCs in fish, which is in the opposite 

direction of the effects of oestrogenic chemicals in the environment. Therefore, assessment of 

the impacts of mixtures of these steroids (for example, a GC plus an oestrogen) on fish 

reproduction is needed before a complete picture of their potential to affect wild population of 

fish is obtained. 

4.5 Conclusions  

The present chapter describes experiments conducted to test the null hypothesis, which was 

that environmentally-relevant concentrations of GCs do not have adverse impacts on fish. 

Results from the experiments indicate that the null hypothesis cannot be accepted, because 

low concentrations of GCs via water exposure had significant impacts on fathead minnows. 

Increased plasma glucose concentration may affect their normal physiology and immuno-

suppression could make them more susceptible to disease. Adverse impacts on reproduction 

could result in population-level changes in wild fish. Reproductive impacts, which are in the 

opposite direction to the reported effect of oestrogens in wild, suggest a need for the studies of 

mixtures of synthetic steroids on reproduction and other physiological processes of fish.   
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5.1 Introduction 

‗Omic‘ technologies, including metabolomics, genomics and proteomics, have advanced 

considerably in recent years and have many applications in environmental toxicology. 

Although a significant amount of basic research and validation is needed before ‗omic‘ 

endpoints are incorporated in routine environmental risk assessments, these tools and 

associated endpoints are already significantly improving our understanding of how individual 

chemicals and mixtures affect organisms and are influencing risk assessment (Snape et al., 

2004; Van Aggelen et al., 2010). It has already proved possible to identify signatures of 

oestrogen exposure (Larkin et al., 2007; Santos et al., 2007), the stress response (Aluru and 

Vijayan, 2009), stress and reproduction (Alsop et al., 2009) and metal signalling pathways 

(Zheng et al., 2008). The high cost of ‗omic‘ techniques, however, imposes restrictions on the 

number of doses, replicates, and time points assessed after chemical exposure in vivo and in 

vitro. Therefore ‗omics‘ technologies can be viewed as complementary testing procedures that 

can improve understanding of mechanisms of toxicity, differential species sensitivity, and 

classification of chemical-specific biological responses. This approach also provides leads for 

identification of novel biomarkers of exposure and can lead to the development of simpler 

individual assays with defined end points. This chapter investigates the expression of selected 

genes in the fathead minnow in response to GC exposure and aims to identify a possible 

signature gene. Along with this, the aim is to understand the mechanism of action of GCs in 

fathead minnows. 

5.1.1 Gene Expression and Real-Time PCR  

In molecular biological terminology, gene expression is the transcription of DNA into 

messenger RNA (mRNA) by RNA polymerase. mRNA is the template from which proteins 

are synthesized. Briefly, an mRNA strand is specific for a certain protein/enzyme, and each 
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one is transcribed directly from a specific DNA-sequence, or gene. Therefore, in gene 

expression analysis, the expression level is directly proportional to the amount of mRNA 

detected in a sample. Polymerase Chain Reaction (PCR) is the amplification of a single or few 

copies of a specific region of DNA of interest using thermal cycling. After amplification, the 

product can be verified by visualising it on agarose gel. Absolute quantification of this 

product is not possible. It is more suited for determining the presence/ absence of a gene.  

Use of a one step quantitative real-time PCR (qRT-PCR) kit enables the reverse transcription 

of mRNA into complementary DNA (cDNA) and subsequent PCR in the same tube. The use 

of these kits in modern thermo-cyclers enables the measurement of PCR product in real time 

and subsequent quantification of mRNA in the sample. qRT-PCR is a very sensitive technique 

that requires good quality RNA. It is the most accurate, advanced and partially automated 

method for the quantification (as the reaction progresses) of gene expression. Although 

initially there were some problems caused by variability of RNA templates, assay designs and 

protocols, as well as inappropriate data normalization and inconsistent data analysis reported, 

qRT-PCR is now widely accepted as the method of choice for the quantification of mRNA in 

molecular medicine, biotechnology, microbiology and diagnostics fields (Nolan et al., 2006).  

The qRT-PCR consists of a fluorescence-based assay, which detects, amplifies and 

simultaneously quantifies the amount of messenger RNA in a sample. This real-time detection 

of PCR products is achieved by the presence of a fluorescent molecule (SYBR Green in this 

study) in the reaction that binds to double-stranded DNA fragments, and hence as the amount 

of DNA increases, there is a proportional increase in the fluorescent signal. Specific primers 

target the specific cDNA fragments which are derived from the gene of interest. These 

fragments are copied using an enzyme (Taq polymerase) which enzymatically assembles a 

new strand of DNA from a single strand of DNA (template) and primers, which are needed 
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for initiation of DNA synthesis. The number of target fragments increases exponentially 

during every amplification cycle. Therefore the amount of fluorescence in a sample is relative 

to the amount of the cDNA fragments produced in each amplification cycle. By comparing 

the number of cycles needed to produce a certain amount of fluorescence in control and 

treated samples (Figure 5.1), gene expression can be assessed and quantified (Bustin, 2004).  

 

Figure 5-1. Typical amplification plots of two samples a and b. Threshold line is set above the 

noise and CT value corresponds to the number of cycles required for the particular 

amplification. If sample-a is control and sample-b is treated fish, then this particular gene is said 

to be down regulated by the treatment. But the quantitative differences needs normalisation 

with another reference gene or with a standard curve, as explained in 5.2.1. 
Figure 5-1. Typical amplification plots of two samples a and b 

 

 

 

 

 

The qRT-PCR technique can be used for both relative and absolute quantification of a gene. 

Both strategies involve gene expression quantification using a small amount of RNA template 

and are equally sensitive. Usually absolute quantification, which derives the copy number 

with the help of a standard curve of known mRNA concentration, is used in medical 

diagnostic purposes. In order to compare the level of gene expression between control and 

treated fish, relative quantification was used in this study (See Section 5.2.1). Relative 
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quantification determines the changes in RNA level of a gene and expresses it relative to the 

level of an internal control ―housekeeping‖ gene. A gene that is transcribed at a relatively 

constant level across many or all known conditions is called a housekeeping gene. The 

housekeeping gene's products are typically needed for maintenance of the cell. It is generally 

assumed that their expression is unaffected by experimental conditions. Examples include 

beta-actin (β-actin), GAPDH and ubiquitin. It is possible to directly compare the level of 

expression of the gene in question from different treatment groups with the internal 

housekeeping gene. Some of the known housekeeping genes have recently been reported to be 

unsuitable in endocrine disrupting studies. For example, Runnalls et al. (2005) found that 

expression of the β-actin gene of fathead minnows was affected by the lipid lowering drug 

clofibric acid. Similarly, Vtg levels were over estimated in an oestrogen exposure experiment 

using β-actin as the internal control (Filby and Tyler, 2007). Therefore two housekeeping 

genes were selected (β-actin, 18sRNA) and were tested for their suitability in the present 

study (see Section 5.2.1).  

5.1.2 Gene Expression and Ecotoxicology. 

Gene expression endpoints are frequently used in mammalian toxicology, where the human 

and mouse genomes are fully available. Microarray techniques can study the expression 

profile of a large number of genes at one time. However, its application in aquatic toxicology 

is considerably limited because full genome sequencing for ecologically relevant species is 

still in the early stages. Completed genomes are available for green spotted puffer fish 

(Tetraodon nigroviridis), the Japanese puffer fish (Takifugu rubripes) and the zebrafish 

(Danio rerio), and commercial microarrays are available for zebrafish. Several studies have 

used these arrays to understand physiological responses, to determine mechanisms of action 

for toxicants and other natural stressors, and to define modes of action for new chemicals 

(reviewed by Denslow et al., 2007). 

http://en.wikipedia.org/wiki/Actin
http://en.wikipedia.org/wiki/Ubiquitin
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Although whole genome data are often not available, lots of individual genes have been 

identified and sequenced from many fish and other aquatic species. Using these data, changes 

in gene expression profiles, in response to aquatic pollutants and climatic factors, have been 

studied (reviewed in Scholz and Mayer, 2008). For example, the up-regulation of P450 

aromatase mRNA expression in the liver and brain in response to environmental EDCs has 

been reported in the Atlantic salmon (Lyssimachou et al., 2006). Lange et al. (2008) exposed 

roach to various concentrations of EE2 and observed that effects on gonadal development 

were associated with alterations in expression of the oestrogen receptor and aromatase genes. 

Werner et al. (2010) studied the expression of six genes responsive to endocrine-disrupting 

compounds, stress and metals after exposing fathead minnows to kraft and paper mill 

effluents, and found sex-specific changes in gene expression, suggesting that the effluent had 

androgenic activity.  Several studies used the metallothionin gene as a biomarker for metal 

exposure and hypoxia-related stress (reviewed by Zheng et al., 2008). Gene expression 

profiling (using microarrays) of fish exposed to sewage effluent showed that significant 

changes occurred in the gonads of fish held below, compared to above, the treatment plant 

(and to laboratory control fish). Among the biological processes affected were the innate 

immune response, tthe stress response, control of homeostasis, control of transcription, 

metabolism, and cell communication. This work suggested that fish are impacted by exposure 

to sewage treatment effluents and showed that effects can be detected rapidly by gene 

expression profiling (Garcia-Reyero et al., 2008). All over the world, molecular biology 

techniques are increasingly used and hence more reports are appearing in the literature 

containing gene sequences and microarray details, which could mean that gene expression 

may be a useful endpoint in regulatory ecotoxicology in the future. 
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5.1.3 Genes of Interest. 

There have been several studies published which are relevant to the present study, involving 

measuring gene expression in fish in response to acute stress and exogenous cortisol 

exposure. Some of these genes are summarised in Table 5.1. GCs play several roles in the 

animal‘s physiology and they are known to act on almost every organ (Chapter 1). Thousands 

of genes could therefore be affected by GC exposure. As in vivo exposure had an impact on 

glucose levels (Chapter 4), it was decided that it would be important to investigate a gene that 

is involved in glucose metabolism. It is also known that GCs increase the plasma glucose 

concentration by inducing gluconeogenesis, which is the process of synthesising glucose from 

non-carbohydrate sources such as lactate, glycerol and glucogenic amino acids (Figure 5.2). 

Phosphoenolpyruvate carboxykinase (PEPCK; EC: 4.1.1.32) is an enzyme that controls the 

rate limiting step in this process (Matte et al., 1997). PEPCK has been reported in several 

species and it has been shown that two forms (mitochondrial and cytosolic) exist. The gene 

sequence for PEPCK is not available for the fathead minnow. However, it is available for 

other fish species, including rainbow trout (see Section 5.2.4), which makes constructing 

primers possible. The trout PEPCK sequence has been shown to have 67% similarity with the 

human PEPCK sequence (Matte et al., 1997). 

The second gene investigated in this study was the glucocorticoid receptor (GR). The negative 

feedback loop of the HPI axis has been reported to be controlled via GR down-regulation in 

stressed fish. Two GR genes have been found in rainbow trout (Bury et al., 2003), 

Haplochromis burtoni (Greenwood et al., 2003), European sea bass (D. labrax; GR1-Terova 

et al. (2005), GR2- Vizzini et al. (2007)), T. rubripes and T. nigroviridis (Stolte et al., 2006), 

and O. latipes and G. aculeatus (Alsop and Vijayan, 2008). In contrast, only a single GR was 

identified in zebrafish, which is homologous to GR2 in other teleosts (Alsop and Vijayan, 

2008). Stolte et al. (2008) also identified two GRs in carp. Recently, the sequence of the GR 
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in fathead minnow (Gene Bank: AY533141) has been reported (Filby and Tyler (2007) which 

is also homologous to GR2 in other teleosts. The present study used this sequence for GR-

primer construction. 

The third gene investigated in this study was the Vtg gene. Vtg is a well known biomarker for 

oestrogenic chemical exposure and it has been characterised and sequenced in several fish 

species, including the fathead minnow (Gene bank: AF130354; Korte et al., 2000). The 

expression of the Vtg gene in fish liver (up-regulation due to oestrogenic chemicals) has been 

reported in several studies (reviewed in Rotchell and Ostrander, 2003; Larkin et al., 2003). 

Vtg gene expression has been shown to be down-regulated by exposure to androgenic 

substances in the environment (Dorts et al., 2009; Ekman et al., 2011). Cortisol has been 

shown to inhibit vitellogenesis by down-regulation of ER and Vtg expression in salmonids 

(Lethimonier et al., 2000). Vitelline envelope protein subunits, regulated by ER signalling, 

were also down-regulated with cortisol treatment and acute handling stressors (Aluru and 

Vijayan, 2007), which confirms a role for cortisol in affecting oestrogen-responsive gene 

expression in the liver. It was also noted that exposure to GC resulted in the development of 

male SSCs in female fathead minnows (Chapter 4). Thesrfore, it was decided to measure Vtg 

gene expression in females. 

Filby and Tyler (2007) have identified several genes that are appropriate as housekeeping 

genes for use in oestrogenic endocrine disruption studies. β-actin has been used as a 

housekeeping gene in several studies. However, β-actin was reported to be affected by a 

pharmaceutical, clofibric acid (Runnalls, 2005), and also by thermal exposure (Brian et al., 

2008). As none of the housekeeping genes have previously been reported to be suitable in 

studies involving beclomethasone dipropionate exposure (the present study), it was decided to 

test the suitability of both β-actin and 18s ribosomal RNA (18s rRNA) as housekeeping genes 
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in this study. For the fathead minnow, a partial sequence of the 18s rRNA gene (Gene Bank: 

AY855359) has been reported (Filby and Tyler, 2005). A partial sequence of the fathead 

minnow β-actin gene (Gene Bank: EU195887) is also available online via the NCBI web site. 

 

 

Table 5-1. Fish genes known to respond to acute stressors and exogenous cortisol treatment. 

 

Function Gene name Treatment Reference 

Metabolism- 

related genes  

PEPCK, Pyruvate kinase, Glucokinase, Arginase, 

Ubiquitin, Cathepsin D, GR, Glutamine synthetase-

2 (GS-2). Matrix metalloproteinase-2, Glucose 

transporter-2, Lipoprotein lipase, Glucose-6-

phosphatase 

Acute 

stressor 

Wiseman et al., 

(2007) 

Glucose-6-phosphatase Acute 

stressor 

Momoda et al., 

(2007) 

Glyceraldehyde-3-phosphate dehydrogenase  

Fructose-bisphosphate aldolase A Serine pyruvate 

aminotransferase 

Glutamate carboxy peptidase like protein, 

Transaldolase 

Acute 

stressor 

Krasnov et al., 

(2005) 

PEPCK, GS-1, GS-2, GS-4, Arginase, Cathepsin 

D, GR,  

Glutamate decarboxylase 65, Lipoprotein receptor 

Cortisol in 

vitro 

Aluru and Vijayan,               

(2007) 

Fructose-1,6-bisphoshatase, Ornithine 

decarboxylase, Sodium–potassium ATPase 

Cortisol in 

vivo 

Sarropoulou et al., 

(2005) 

PEPCK, heat shock protein-90 (hsp-90), hsp-70 Cortisol in 

vivo 

Vijayan et al., 

(2003) 

Immunity- 

related 

genes 

Major histocompatibility complex-2 (MHC-2), 

Tumor necrosis factor-α, Interleukin-1b 

Natural resistance associated macrophage-a, 

Transcription facor Nupr1. 

Acute 

stressor 

Wiseman et al., 

(2007) 

Protooncogene JunB, MHC-1, Complement 

receptor, Complement factor H, 

Class I helical cytokine receptor number 21, 

Interferon inducible proteins 

Tumor necrosis decoy factor receptor 

Acute 

stressor 

Momoda et al., 

(2007) 

Immunoglobulin epsilon receptor alpha Lysozyme 

C precursor, Transposon like protein, 

ATP-dependent CLP protease, Nuclear factor-kB) 

inhibitor, Stress activated protein kinase-4 

Acute 

stressor 

Krasnov et al., 

(2005) 

Complement factor H, Anti-trypsin, b-Fibrinogen Acute 

stressor 

Cairns et al.,        

(2008) 



 

168 

 

Function Gene name Treatment Reference 

Transferrin receptor, Ferritin heavy and light 

subunits  

Cortisol in 

vivo 

Sarropoulou et al., 

(2005) 

Reproduction- 

related genes  

Vitellogenin envelope protein-b (VEP-b), 

Oestrogen receptor, 

Cortisol in 

vitro 

Aluru and Vijayan,              

(2007) 

 VEP-c, VEP-b, Androgen receptor Acute 

stressor 

Wiseman et al., 

(2007) 
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Figure 5-2. The metabolic pathway of gluconeogenesis, where glucose is synthesised from non-

carbohydrate sources, in which PEPCK has a rate limiting role.  
Figure 5-2. The metabo lic pathway of gluconeogenes is    
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5.1.4 Objectives 

The objective of the study reported in this chapter was to assess the effects of beclomethasone 

dipropionate on the expression of selected genes in fathead minnows. 

Specific objectives were 

 Assess the suitability of β-actin and 18s rRNA as housekeeping genes. 

 Quantify PEPCK and GR gene expression in the liver of both sexes and Vtg gene 

expression in female fathead minnows exposed to different concentrations of 

beclomethasone dipropionate. 

5.2 Materials and Methods 

5.2.1 Exposure and Sampling 

Exposure conditions and the experimental set up are described in Chapter 4.2. Liver samples 

were taken from beclomethasone-exposed fish of experiment-1(n=10), set-2 of experiment-2 

(n=60) and their respective control fish (n=30). For Vtg expression, only females were used. 

All the work surfaces and dissection tools were prepared for molecular work – they were 

previously autoclaved and wiped with 100% ethanol and RNase away solution between 

samples, to avoid cross-contamination. Liver samples were placed in RNA-free tubes, snap-

frozen and stored in a -80° C freezer until RNA extraction. 

5.2.2 Total RNA Extraction 

Total RNA from each liver sample was extracted using RNeasy midi kit (Qiagen, UK) 

according to the manufacturer‘s instructions. Although DNase treatment (to exclude any DNA 

contamination) was not necessary according to the protocol, extraction of spare samples with 

and without DNase treatment (Figure 5.3) revealed the need for DNAse treatment. Therefore 

all the samples were treated with RNase-free DNase (Qiagen, UK). Any cross-contamination 
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was avoided by using trigene surface disinfectant and RNase away. Before starting the 

procedure, 10 µL of β-mercaptoethanol (Sigma) was added to each mL of buffer RLT 

(supplied with the kit). Buffer RPE (supplied with the kit) was diluted with four volume of 

ethanol. 70% ethanol was prepared using milliQ water. 

 

 

Figure 5.3. An example of RNA bands on agarose gel, under UV illumination. RNA samples 

extracted with and without DNase treatment were run in 1.2% agarose gel with ethidium 

bromide for 45 minutes. Band inside yellow circle indicates DNA contamination in non-treated 

samples. 
Figure 5-3. A n example of RNA bands on agarose gel , under UV illumination 

 

 

 

 

Liver samples were taken from the freezer on dry ice and 200 µL buffer RLT was added 

before the samples were immediately homogenised using a rotor-stator homogenizer (Fisher 

Scientific Ltd). The homogenised sample was then transferred into a 15mL falcon tube 

(Fisher) and another 1800 µL of buffer RLT was added. This was centrifuged at 25 °C at 4000 

g for 10 minutes. The supernatant was collected (avoiding the fatty layer and the sediment) 

and transferred into another 15mL tube and 2 mL of 70% ethanol was added and the tube was 

immediately shaken. This mixture was transferred into a midi column which was placed in a 

15mL tube and was centrifuged for 5 minutes at 4000 g. The flow-through was discarded and 

4 mL buffer RW1 (supplied with the kit) was added to the column and centrifuged at 4000 g 
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for 5 minutes. Again the flow-through was discarded and 2.5 mL RPE buffer was added and 

centrifuged at 4000 g for 3 minutes. This step was repeated with another 2.5 mL RPE buffer 

for 5 minutes. Then the column was transferred into a clean RNA-free tube and the RNA was 

eluted using 150 µL RNAse-free water. Elution was repeated into another tube with 150 µL 

RNAse-free water. 

Extracted RNA was quantified using a Nanodrop N-1000 spectrophotometer (Fisher 

Scientific, Loughborough) in ng/µL and the quality (integrity) of each sample was assessed by 

the 260/280 ratio of OD values. All the 260/280 ratios were between 1.90 and 2.10, and most 

of them were close to 2.00. 

5.2.3 Gel Electrophoresis 

All the extracted RNA was checked for possible DNA contamination and for integrity using 

gel electrophoresis. Gel electrophoresis is a technique for separating molecules based on their 

charge. RNA is negatively charged. When added to an agarose gel matrix and exposed to an 

electrical current, RNA products migrate towards the positive anode; smaller products will 

move further and faster than large products, thereby separating RNA according to product 

size in a series of bands. A DNA ladder, which indicates the size of bands, is used to estimate 

the size of the products. Ethidium bromide is a florescent tag and visualisation is achieved by 

subsequent ultraviolet (UV) illumination of the gel (Figure 5.3). 

Tris borate EDTA buffer (TBE) of ten times concentrate was prepared with 109 g Tris base, 

7.3 g EDTA and 55 g boric acid dissolved and make up to 1 litre in distilled water. This buffer 

was autoclaved and diluted ten times (1×TBE) for bench use. 1.2 g agarose (Biorad, 

molecular grade) was dissolved in 100 mL 1×TBE and warmed in a microwave oven for 2 

minutes. Once the temperature of the solution was lowered to about 50 °C, 1µL of ethidium 

bromide (Sigma) was added and swirled to mix it before it was poured into the prefixed cavity 



 

173 

 

with comb and allowed to set. Once the gel was set, the comb was carefully removed and 

1×TBE was poured in to fill the wells. Then the gel was placed in the reservoir filled with 

1×TBE and connected to an electric source. 

1 µg RNA was made up in 10 µL solution and 2 µL loading dye was added before it was 

loaded into a well. 8 µL of 1 kb DNA ladder was also run in parallel for 45 minutes. After 45 

minutes, the gel was viewed under UV illumination and photographed (Figure 5.4). 

All the RNA samples were found to be without DNA contamination. RNA samples were 

placed in a -80 °C freezer until analysed by qRT-PCR. 

 
Figure 5-4. Gel electrophoresis image under UV illumination. RNA samples were run in 1.2% 

agarose gel with ethidium bromide for 45 minutes and show no sign of DNA contamination. 1 kb 

DNA ladder was run on the lane 1. Lane 2 through 10 were different RNA samples 
Figure 5-4. Gel electrophoresis image under UV illumination 

 

 

 

5.2.4 Primer Construction  

For every gene of interest, two sets (for Vtg and β-actin-3 sets) of forward and reverse primers 

were tested. When designing primers, the following criteria were considered. 

 Design primers with a G, C content of 50 - 60%. 

 Maintain a melting temperature (Tm) between 50 °C and 65 °C. 

1 

 

Lane 2 through 10 
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 Avoid secondary structure. 

 Avoid repeat of G or C longer than three bases. 

 Place G or C on the end of primer. 

 Check forward and reverse primers to ensure no 3' complementarity (to avoid primer-dimer 

formation). 

 Try and design primers between 16 and 24 bp length. 

 Try overlapping an intron-exon boundary. 

 Design a primer set for an amplicon size of 75 to 200 bp lengths. 

 

Primers were designed according to one of the following methods: 

1. Sequence taken from previously published studies (see Table 5.2). 

2. If the gene sequence for fathead minnow was available, then the software Primer 3 was 

used to design the primer sequence (http://www.ncbi.nlm.nih.gov/tools/primer-

blast/index.cgi). The chosen primer sequence was then checked for specificity for the gene 

by running the NCBI Basic Local Alignment Search Tool (BLAST). 

3. In the case of PEPCK, there was no gene sequence available for the fathead minnow. 

Therefore, a search was carried out using entries on the NCBI website. PEPCK sequences 

of three fish species were found; Danio rerio (Gene Bank: GI31418741), Cyprinus carpio 

(partial sequence; Gene Bank: GI24637091) and Oncorhynchus mykiss (Gene Bank: 

GI13506885) and were aligned by using the alignment tool ClutalW (Appendix 2). Two 

sets of primers were designed taking into account the criteria specified above, from the 

most similar regions within the alignment. 

Table 5.2 summarises information about the primers designed for use in this study. All of the 

primers were purchased from Sigma (UK), and diluted to 100 µM according to the 

manufacturer‘s instructions. Two aliquots of 10 µM primers were also made up by adding 10 

µL of above primer solution into 90 µL RNAse-free water, clearly labelled and stored in a -

20°C freezer. 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi
http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi
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Table 5-2. Primer sequence information, annealing temperature, G,C perentage, product length and the sources of the sequences used to design the primers  

Primer name 

Position in its 

sequence and 

length (bp) 

Primer sequence: 5' -3' 
Exon/intron 

boundary 
Tm GC% 

Secondary 

structure 

Product 

length 
Source 

Cβ-actin F 336-353 (18) GAATCCCAAAGCCAACAG NO 60.7 50 None 
148 

Filby and Tyler, 2007 

Gene Bank:BC165331 Cβ-actin R 483-466(18) AACACCATCACCAGAGTC NO 55.5 50 None 

Tβ-actin F 247-265(19) GATATGGAGAAGATCTGGC NO 56.1 47.3 V week 
105 

Runnalls, 2005 

Gene Bank: AF025305 Tβ-actinR 351-331(21) GTTGGCCTTGGGGTTCAGGGG NO 74.4 66.6 Week 
‡Sβ-actinDF 824-842(19) CCTTCCTTCCTGGGTATGG 836,838 63.2 57.8 None 

158 
Manual 

Gene Bank:BC165331 ‡Sβ-actinR 981-962(20) TCCTTCTGCATACGGTCAGC NO 65.3 55 Week 
‡JVTGF 1278-1298(21) TGGCCTCTGCAGCAATATCAT NO 70.9 57.1 Week 

128 
Brian et al., 2008 

Gene Bank: AF130354 ‡JVTGR 1405-1385(21) TGGCCTCTGCAGCAATATCAT NO 66.7 47.6 None 

DVTGF 1393-1414(22) GCTGCAGAGGCCATTTCTAAGA NO 66.6 50 V week 
69 

Dorts et al., 2008 

Gene Bank: AF130354 DVTGR 1461-1441(21) AGCATTGCCCAGAACTTTCAG NO 65.4 47.6 None 

3VTGF 1677-1696(20) CGAGGCCAAGCCCTCAGTGG NO 73.5 70 Strong 
147 

Primer 3 software 

Gene Bank: AF130354 3VTGR 1823-1804(20) GCACCCGCAACAGGTGCCAT 1809,14 74.4 65 Strong 

PEPCKAF *827-847(21) CTGCTGGGGAAGAAGTGCTTC NO 67.3 57.1 Mode 
89 

Danio rerio (Gene Bank: 

GI31418741), Cyprinus carpio (partial 

sequence; Gene Bank: GI24637091) 

and Oncorhynchus mykiss (Gene Bank: 

GI13506885) 

PEPCKAR *915-896(20) CCCAGAATCAGCATGTGTTC NO 63.2 50 V week 
‡PEPCKBF *1508-1529(22) GCTGCTGAACACAAAGGTAAAGTG 1522,26 65.7 45.8 Week 

153 ‡PEPCKBR *1660-1640(21) GAACCAGTTGACGTGGAAGAT NO 62.9 47.6 Week 

FGRF 2164-2184 (21) GAAAGTCCTTCTGCTCCTGAG NO 62.1 52.3 V week 
125 

Filby and Tyler, 2007 

Gene Bank: AY533141 FGRR 2288-2267(22) AGTTCTCCTCTCTCTTCACAATG NO 60.5 43.4 None 
‡3GRF 1737-1756(20) CCATGCCTCAGCTGGTGCCC NO 74.6 70 Week 

134 
Primer 3 software 

Gene Bank: AY533141 ‡3GRR 1870-1851(20) GCCGCCCAGCCTGTTCAGAG NO 73.6 70 None 
‡C18SF 19-40(22) AATGTCTGCCCTATCAACTTTC NO 60.9 40.9 None 

117 
Filby and Tyler, 2007 

GenBank: AY855349) ‡C18SR 135-117(19) TGGATGTGGTAGCCGTTTC NO 63.6 52.6 None 

318SF 513-532(20) CGTCGCCGCTGAATACCGCA NO 75.4 65 None 
160 

Primer 3 software 

GenBank: AY855349 318SR 672-653(20) CTCTCGTCCGTCTTGCGCCG 662 74.7 70 none 
‡ 
Primers used in qRT-PCR after validation as described in 5.2.5.                              * Position in the Danio rerio PEPCK sequence (Gene Bank: GI31418741) 
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5.2.5 Primer Validation with Taq PCR 

A single RNA sample (highly concentrated and showing clear banding and no degradation or 

DNA contamination from the gel electrophorosis) was chosen to check the best primers to 

use. RNA was converted to cDNA using the Omniscript reverse transcription Kit (Qiagen Cat. 

No: 205110). Total reaction volume was 20 µL, using the components from the kit as shown 

in Table 5.3. Reaction time was one hour at 37°C.  This cDNA was diluted 5 times (by adding 

80 µL RNase free water from the Omniscript kit) and stored in a -20 °C freezer. 

Table 5-3. Reverse transcription reaction components 

 

Component 
Volume (µL) / 

reaction 
Final concentration 

10× buffer RT 2 1× 

dNTP mix (5 mM each dNTP) 2 0.5 mM each dNTP 

Oligo dT primer: random hexamer (25µM) 0.8 1µM 

RNase inhibitor (40 units/µL) 0.25 10 units 

Omniscript reverse transcriptase 1 4 units 

RNase free water 12.45  

Template RNA 1.5 Up to 2 µg 

 

All designed primers were validated using the above cDNA in a Taq PCR reaction on the 

iCycler PCR instrument (Bio-Rad Laboratories Inc). The Taq PCR master mix kit was 

purchased from Qiagen (Cat NO: 201443) and the PCR method followed according to the 

instructions supplied with the kit. Instead of a 100 µL reaction volume as suggested in the kit, 

20 µL reactions were set up (Table 5.3). Each sample was set up in a sterile, thin-walled PCR 

tube on ice, according to the information in Table 5.4. 
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Table 5-4. Composition of Taq PCR reactions. 

 

Component Volume (µL) / reaction Final concentration 

Taq PCR master mix 10 

2.5 units Taq DNA polymerase 

1× Qiagen PCR buffer 

200 µM of dNTP 

Forward primer 0.5 0.1 – 0.5 µM 

Reverse primer 0.5 0.1 – 0.5 µM 

RNase free water 7  

Template DNA 2 < 1 µg/reaction 

 

DNA amplification was conducted on the iCycler using the following thermal program:  

Initial denaturation: 94°C for 3 minutes 

Denaturation: 94°C for 30 seconds 

Annealing: Temperature gradient from 50°C to 65°C for 30 seconds (35 cycles) 

Extension: 72°C for 1 minute 

Final extension: 72°C for 10 minutes. 

For each primer pair, amplification of DNA was carried out over a temperature gradient to 

determine the best temperature for each pair. Following amplification, a 1.2 % agarose gel 

was prepared as described in section 5.2.3. The PCR products were then mixed with 2 µl 

loading buffer, and 12 µl of each sample was pipetted into the appropriate well of the gel 

alongside a 1 kb ladder, and run in an electrophoresis chamber at 80V. After 45 minutes, the 

gel was analyzed under UV light to check that the products of the bands were the right length, 

as indicted in Table 5.2. Figure 5.5 shows a photograph of a gel with different bands for the 

PCR products corresponding to different temperatures (difference in intensity) and different 

primers (difference in sizes). Primer pairs that produced a clear band at the right product 

length for all four temperatures were chosen for the qRT-PCR study. 
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Figure 5-5. Photograph of an agarose gel under UV light, loaded with PCR products from 

different primer pairs at 4 different temperatures. Each circle corresponds to a different primer 

pair used in the PCR and each band inside the circle corresponds to four different annealing 

temperatures (except for the small circles with 2 bands; both from same primer pair, half was  

loaded on to one gel and hald on to the other gel). Primer pairs that produced a clear band of the 

right product length for all four temperatures were chosen for the qRT-PCR study.  

 
Figure 5-5. P hotograph of an agarose gel under UV light, loaded w ith PCR products from different primer pairs at 4 different temperatures  

 

 

 

5.2.6 Real-Time RT-PCR: Optimization 

All the assays were conducted using the QuantiFast SYBR Green qRT-PCR kit (Qiagen cat 

no: 214154). This is a fast, single-step procedure that uses RNA as starting material (because 

it comes with the RT step in one tube) and a reaction volume as low as 10 µL.  

Each kit contains:  

1. QuantiFast SYBR Green qRT-PCR Master Mix (a mixture of HotStarTaq DNA 

Polymerase, QuantiFast SYBR Green qRT-PCR Buffer, dNTP mix (dATP, dCTP, dGTP, 

dTTP) and ROX passive reference dye). 
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 2. QuantiFast RT Mix (a mixture of Omniscript Reverse Transcriptase and Sensiscript 

Reverse Transcriptase). 

 3. RNase-Free Water.  

96-well plates (MicroAmp Optical 96-well Reaction Plate, Applied Biosystems Inc.) were 

also purchased, as they were compatible with the ABI prism. 

Although a standard curve is not mandatory for quantification of relative gene expression, in 

order to determine the efficiency of qRT-PCR, standard curves were included on every plate. 

This was done so that the expression of the different genes could be compared directly 

between samples using the Pfaffl method of quantification (Pfaffl, 2001). Efficiency curves 

were determined by running serially diluted RNA (50, 25, 12.5, 6.25, 3.125, 1.56 ng/µL) with 

each primer set in the qRT-PCR reaction (in duplicate). This plate was run also to optimise 

the PCR, for example the amount of RNA in the reaction 

The qRT-PCR was run as follows:  

10 µL reactions were carried out in each case, using the following protocol. 

Table 5-5. qRT-PCR reaction composition in 10 µL reaction 

 

Component Volume (µL) / reaction Final concentration 

SYBR green qRT-PCR master mix 5 1× 

Forward primer 1 1 µM 

Reverse primer 1 1 µM 

RNase free water 1.9  

Template RNA 1 < 100 ng/reaction 

QuantiFast RT mix 0.1  

 

Diluted primers, SYBR green qRT-PCR master mix and RNase-free water were thawed on 

ice. RT mix was taken out of the freezer just prior to use. Each RNA sample was thawed on 

ice and serially diluted from 50 to 1.56 ng/µL concentrations. Master Mixes were prepared for 
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each primer sets by adding SYBR green qRT-PCR master mix, forward and reverse primer, 

Quantifast RT mix and RNase-free water (according to Table 5.5). This master mix was 

mixed by reverse pipeting and brief spining and was then pipetted into the appropriate wells 

of 96-well plate in duplicate for each concentration of template RNA. Wells without RT mix 

(-RT) were also included in all cases. Template RNA was added to each well except for the 

non-template controls (NTC). The plate was sealed and briefly centrifuged (13000 g at 4 °C) 

and loaded into a qRT-PCR machine (ABI Prism, 7900HT fast real-time PCR system; 

Applied Biosystems). The specific cycling conditions are given in Figure 5.6.  

 

Figure 5-6. qRT-PCR cycling conditions and thermal profile. Stage 1 is reverse transcription, 

stage 2 is PCR initial activation, stage 3 is 2-step cycling of denaturation, annealing and 

extension, and stage 4 is dissociation/melting curve. Red stars indicate the florescence data 

collection points.  
Figure 5-6. qRT-PCR cycling conditions and t hermal profi le 

 

 

 

 

 

 

The Ct values are the cycle numbers at which the fluorescence (Rn) meets a threshold, a value 

arbitrarily set by the computer program (SDS 2.3). Each Ct value is inversely correlated to the 

amount of DNA. As stated previously, the amount of fluorescence of the SYBR Green, which 

is dependent on the amount of double-stranded DNA, increased with each cycle. ΔRn is 

calculated by subtracting the signal baseline from the real time data and it represents the 

magnitude of the signal. When the ∆Rn is plotted against the Ct, the results of a qRT-PCR, 

called an amplification plot, appear as in Figure 5.7.  
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The software itself produces the standard curve plot for Ct values corresponding to the 

nominal concentrations of template RNA. An example of a standard curve is presented in 

Figure 5.8. This is a straight line; R
2
 equals 1 is ideal, but above 0.95 is acceptable. The slope 

of this curve is used to calculate the efficiency of the qRT-PCR amplification (as described in 

5.2.8). Ideally, the efficiency of qRT-PCR should be 2, so that every time a double-stranded 

cDNA fragment is replicated, two double-stranded copies result. However, in reality primers 

are not 100% efficient, and thus the number of copies is often less than 2. 

 

 

Figure 5-7. An example of amplification plot. The green horizontal line is the automatically 

generated Ct threshold line. ΔRn is calculated from subtracting the signal baseline from the 

initial stages of PCR from the real time data and it represents the magnitude of the signal. Plots 

indicated by long red arrow are from NTC and –RT wells. Plot indicated by short red arrow is 

one of the samples which did not fit into the standard curve and so this was repeated at a 

different dilution.  
Figure 5-7. A n example of amplification plot  

 

 

 

 

As part of the qRT-PCR run, a dissociation (or melting) curve was conducted. This involved 

heating the plate to 95°C for 15 seconds at a 100% ramp rate, then to 60°C (15 seconds at a 

100% ramp rate), and again to 95°C (15 seconds at a 2% ramp rate). The dissociation curve 

measures the fluorescence of each well (by a first-order derivative) as the temperature is 
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slowly increased. When the temperature reaches the specific melting temperature of a 

product, the product is indicated by a peak. If several peaks which melt at different 

temperatures are present, this indicates the presence of other products in the sample, such as 

primer-dimers and contamination products (eg. amplified bacterial DNA). An example of the 

results of an acceptable dissociation curves are shown in the Figure 5.9.  

 

Figure 5-8. An example standard curve obtained with Vtg gene amplification. Efficiency was 

calculated from the slope as explained in 5.2.8. 
Figure 5-8. A n example standard c urve obtained with Vtg gene amplification 

5.2.7 Experiment 1 

RNA extracted from liver samples from control and beclomethasone dipropionate-treated fish 

of Experiment-1 (Chapter 4) were used. There were 5 males and 5 females in the control and 

treatment groups. For the Vtg gene, only female samples were used, as male fish do not 

produce Vtg normally. For each gene, a separate 96-well plate containing controls, treatment 

samples, NTC and –RT samples was prepared, and qRT-PCR was carried out as described in 

Section 5.2.6. 
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From this experiment, both β-actin and 18s rRNA were found not to be affected by treatment. 

However, 18s rRNA was found to be highly abundant (mean Ct value is lower than that of β-

actin). Therefore 18s rRNA was chosen as the housekeeping gene for subsequent analyses. 

 

Figure 5-9. An example of the SDS 2.3 program’s dissociation curve of GR gene amplification 

using Primer 3 software designed primers, plotting temperature against the fluorescence. All 

sample peaks are shown at a single melting temperature, and thus, a single PCR product was 

present (long red arrow). Inset is the same dissociation curve, but NTC and –RT wells also 

included. Primer dimmers are indicated by the short red arrow. 
Figure 5-9. A n example of the SD S 2.3  program’s dissociation curve of GR gene amplification using Primer 3 software designe d primers  
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5.2.8 Experiment 2 

RNA extracted from liver samples of fish from set-2 of experiment-2 (Chapter 4) were used. 

There were 20 fish (mixed sex) in control, 100 ng/L, 1 µg/L and 10 µg/L beclomethasone 

dipropionate treatment groups. For Vtg expression, only female fish were used. 18srRNA was 

used as the housekeeping gene. The primer pairs used for the qRT-PCR are shown (‡) in 

Table 5.2. 

5.2.9 Interpretation of Results  

The efficiency of the PCR(E) was calculated using the following equation:  

 

Efficiency in percentage (%) was calculated from the following equation. 

 

To enable us to compare gene expression levels between control and treated groups, the 

relative quantification using 18s rRNA as the housekeeping gene was calculated. The Pfaffl 

method was employed to analyse the results by comparing the mean Ct value of the control 

group with that of each individual sample, using the following equation: 

 

  

Where ‗E target gene‘ is the efficiency of the target gene (PEPCK, GR or Vtg) primers and 

E18s rRNA is the efficiency of the housekeeping gene primers and ‗average control‘ is the 
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average Ct value of all of the samples from the control group for that gene (target or 

reference) (Pfaffl 2001).   

5.2.10 Statistical Analysis  

All experimental results are presented as means ± standard deviations. All statistical analyses 

were carried out using SigmaStat 3.5. As appropriate, normality tests and equal variance tests 

were performed and statistical significances were tested with a t-test or ANOVA. If datasets 

passed the equal variance test, one way ANOVA followed by a pair wise comparison (with 

Holm-Sidak test or Tukey test) was carried out. If the data failed the equal variance test, then 

non-parametric one way ANOVA on ranks (Kruskal-Wallis) followed by a Tukey test was 

carried out. In this case, median values are indicated in addition to means.  p < 0.05 was 

considered to be significant.  

For some dose-response effects in the second experiment, in addition to ANOVA, trend 

analysis (using SPSS: Jonckheere-Terpstra (JT) test) was carried out. JT test is a non-

parametric test for ordered differences among classes. It tests the null hypothesis that the 

distribution of the response variable does not differ among classes. It is designed to detect 

alternatives of ordered class differences. For such ordered alternatives, the Jonckheere-

Terpstra test can be preferable to tests of more general class difference alternatives, such as 

the Kruskal-Wallis test. 

  



 

186 

 

5.3 Results  

5.3.1 PEPCK and GR  

The results indicate that both PEPCK and GR genes were up-regulated by treatment with 

beclomethasone dipropionate. In Experiment-1, both PEPCK and GR mRNA were 

significantly upregulated (slightly more than 2-fold; Figure 5.10). Mean PEPCK mRNA 

expression (normalised to 18srRNA) in liver of control (n=10) fish was 1.22±0.44 and that of 

the treated group (n=10) was 2.78±1.69. Means of GR mRNA expression levels in control and 

treatment groups were 1.1±0.68 and 2.7±1.1, respectively. 

 

Figure 5-10. Mean relative levels of PEPCK and GR mRNA (normalised to 18srRNA) in the 

livers of control fish (n=10) and 1µg beclomethasone/L-treated fish (n=10). Both genes were 

significantly up-regulated over two fold due to the treatment (student t-test p< 0.05). 
Figure 5-10. Mean relative levels of P EPCK and GR mRNA  in the livers of control fish and 1µg beclomethasone/L-treated fish 

 

 

 

 

 

There was a concentration-related increase in the level of mRNA expression in both PEPCK 

and GR in Experiment-2. Figure 5.11 shows the dose-dependent increase in the PEPCK 
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mRNA expression normalised to 18s rRNA. Mean PEPCK mRNA expression ratios in 

controls, 100 ng/L, 1µg/L and 10 µg/L treated fish were 1.06±0.35, 2.54±0.78, 3.56±1.63 and 

5.25±2.6, respectively. This indicates about a 4-fold increase in PEPCK mRNA expression in 

the high dose group.  Each treatment group was significantly different from the control group 

(one way ANOVA on ranks followed by Tukey pair wise comparison; p < 0.001). Although 

values within the treatment groups were statistically not significant from each other, JT test 

revealed that there is a significant increasing trend(p<0.001) in gene expression due to the 

treatment. 

 

Figure 5-11. PEPCK mRNA expression normalised to 18s rRNA from the livers of control 

(n=20, mixed sex) and three different concentrations of beclomethasone dipropionate treated 

fish (n=20, mixed sex). The box indicates the mid 50% of values. The straight line inside the box 

corresponds to the median and the dashed line corresponds to the mean. Whiskers indicate the 

10
th

 and 90
th

 percentile values and the circles indicate the outliers.  Indicates significant 

difference from control (one way ANOVA on ranks followed by Tukey pair wise comparison; p 

< 0.001). 
Figure 5-11. P EPCK mRNA  expression from the l ivers of control and three different conce 
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There was a similar dose-related increase in the GR mRNA expression level normalised to 

18s rRNA (Figure 5.12). The mean GR mRNA expression level from livers of control, 100 

ng/L, 1µg/L and 10 µg/L treated-fish were 1.10±0.52, 3.1±1.32, 4.2±2.5 and 5.08±1.5, 

respectively. This shows about a 4-fold increase in GR mRNA expression level in the high 

dose group.  Each treatment group was significantly different from control group (one way 

ANOVA on ranks followed by Tukey pair wise comparison; p < 0.001). Although values 

within the treatment groups were statistically not significant from each other, JT test 

(p<0.001) revealed that there is a significant increasing trend in gene expression due to the 

treatment. 

 

 

Figure 5-12. GR mRNA expression relative to 18s rRNA in livers from control (n=20, mixed sex) 

and three different concentrations of beclomethasone dipropionate treated fish (n=20, mixed 

sex). The box indicates the mid 50% of values. The straight line inside the box corresponds to 

the median and the dashed line corresponds to the mean. Whiskers indicate the 10
th

 and 90
th

 

percentile values and the circles indicate the outliers.  Indicates significant difference from 

control (one way ANOVA on ranks followed by Tukey pair wise comparison; p < 0.001). 
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Figure 5-12. GR mRNA expression in livers from control and three different concentrations of beclomethasone dipropionate treated fish  

 

 

 

 

 

 

Figure 5.13 shows relative fold increase in PEPCK and GR mRNA expression compared to 

the controls in experiment-2. 

 

 

Figure 5-13. Relative fold changes of PEPCK (light coloured bars) and GR (dark coloured bars) 

mRNA expression level in Experiment-2. Mean values are plotted relative to the control group. 
Figure 5-13. Relative fold c hanges of PEPC K and GR mRNA expressions in dose-related exposure experiment  

5.3.2 Vtg Gene Expression 

Vtg mRNA levels appeared to be down-regulated by beclomethasone dipropionate treatment. 

In Experiment-1, the Vtg mRNA level was significantly (p< 0.05) reduced by slightly less 

than 2-fold (Figure 5.14). Mean Vtg mRNA expression level normalised to 18srRNA, relative 

to control fish, was 1.04±0.15 and that of treated fish was 0.66±0.10.  
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Figure 5-14. Vtg mRNA expression level normalised to 18s rRNA from livers of control fish (n=5 

females) and 1µg beclomethasone/L-treated fish (n=5 females). Vtg mRNA expression was 

significantly down-regulated (slightly less than two fold) with treatment (student t-test p< 0.05). 
Figure 5-14. Vtg mRNA expression from livers of control fish and 1µg beclomethasone/L-treated fish 

 

 

 

 

 

There was a concentration-related decrease in the level of Vtg mRNA expression in 

Experiment-2. Figure 5.15 shows the concentration-related down-regulation in Vtg mRNA 

expression level normalised to 18s rRNA. Mean Vtg mRNA expression from livers of control, 

100 ng/L, 1µg/L and 10 µg/L treated fish (n=10 females in each case) were 1.00±0.17, 

0.70±0.17, 0.67±0.11 and 0.31±0.24, respectively. This indicates a decrease of about 3-fold 

occurred in the level of Vtg mRNA expression in the high dose group.  Mean Vtg expression 

levels in the 1µg/L and 10 µg/L-treated fish were significantly different from control group, 

as was also found in Experiment-1 (one way ANOVA on ranks followed by Tukey pair wise 

comparison; p < 0.001). Although the treatment groups were statistically not significantly 

different from each other, JT test (p<0.001) revealed a statistically significant decreasing 

trend in the level of Vtg mRNA expression due to the treatment. 
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Figure 5-15. Vtg mRNA expression normalised to 18s rRNA from livers of control (n=10, 

females) and three different concentrations of beclomethasone dipropionate-treated fish (n=10, 

females). The box indicates the mid 50% of values. The straight line inside the box corresponds 

to the median and the dashed line corresponds to the mean. Whiskers indicate the 10
th

 and 90
th

 

percentile values and the circles indicate the outliers.  Indicates significant difference from 

control (one way ANOVA on ranks followed by Tukey pair wise comparison; p < 0.001) 
Figure 5-15. Vtg mRNA expression from livers of control and t hree different concentration of beclomet hasone dipropionate treated fish 

 

 

 

 

 

 

 

Figure 5.16 shows the relative fold changes compared to the controls in Vtg mRNA 

expression levels in the dose-response experiment. It shows a concentration related down –

regulation (3-fold in the highest dose) in gene expression level. 
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Figure 5-16. Relative fold change of Vtg mRNA expressions in beclomethasone dipropionate 

dose-related experiment. Mean values are plotted for comparison relative to the control group. 
Figure 5-16. Relative fold c hange of Vtg mRN A expressions in beclomethasone dipropionate dose-related experiment  

 

 

 

 

 

 

5.4 Discussion  

The most important finding from this study was that concentrations of beclomethasone 

dipropionate as low as 100 ng/L can have significant effects on the expression of selected 

genes in the liver of fathead minnows. These genes control the proteins that play important 

roles in metabolism as well as reproduction in fish. Therefore possible negative consequences 

of chronic exposure on individual fish, as well as on a population of fish, cannot be exluded. 

A well established metabolic response to stress is the elevation of plasma glucose 

concentration (both in mammals and in fish). Glucose is an important fuel that is oxidized to 

meet the increased energy demand during stress in fish. The liver has the ability to synthesise 

glucose from non-carbohydrate sources, in order to provide glucose for essential organs, 

including the brain, gills and the heart during periods of stress (Mommsen et al., 1999). 

Several genes that are responsible for proteins involved in glycolysis and gluconeogenesis 

were elevated after an acute stress in fish (Table 5.1). This is in agreement with studies that 
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have reported higher activities of glycolytic enzymes after exposure of fish to an acute 

stressor, which need more energy to re-establish homeostasis (Mommsen et al., 1999). 

Several studies support the process of up-regulation of enzymes involved in gluconeogenesis 

as a key aspect of stress recovery (reviewed in Iwama, 1998). Plasma glucose levels and 

PEPCK gene expression levels were found to increase with increasing salinity (Singer et al., 

2007). Some other molecular biological studies also support PEPCK up-regulation, as we 

found. For example, an increase in liver PEPCK mRNA levels was observed both in vivo as 

well as in vitro in trout hepatocytes when stimulated with cortisol (Sathiyaa and Vijayan, 

2003; Vijayan et al., 2003; Aluru and Vijayan, 2007).  

The observed up-regulation of PEPCK gene expression in the liver explains the increase in 

the plasma glucose levels observed in vivo (Chapter 4). However, plasma glucose levels in the 

100 ng beclomethasone/L exposed fish were not statistically higher than those in the controls, 

whereas the PEPCK gene expression level in these two groups were statistically different. 

There are several possible reasons for these differences. Concentrations of a pollutant that 

affect the expression of a gene do not necessarily affect the levels of the protein controlled by 

that gene. In some cases the exposure period can cause this difference. Plasma glucose 

clearance rate is also another factor that could contribute to this difference. Nevertheless, 

PEPCK gene expression and plasma glucose levels show an increasing trend (JT test) which 

was found to be significant at all concentrations tested. This finding might be of significant 

interest, as a recent study involving exposure to a mixture of pollutants resulted in obesity in 

female zebrafish (Lyche et al., 2010). In mammals, particularly humans, obesity is also 

associated with up-regulation of PEPCK gene expression. Therefore the sensitivity of PEPCK 

of the fathead minnow to low concentrations of beclomethasone, as observed in the present 

study, could help to explain obesity in zebrafish. 
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GR mRNA levels have been shown to be lowered in sea bass (Dicentrarchus labrax) liver in 

response to chronic crowding stress (Terova et al., 2005). Some of the previous stress-related 

studies also reported GR down-regulation in response to endogenous cortisol, which is 

contradictory to the present finding. In the present study, GR up-regulation in response to 

synthetic GC has been reproduced in both experiments, and is also present in a concentration-

dependent manner. In a recent study (Arterbery et al., 2010), high cortisol levels corresponded 

to up-regulation of the GR gene in plainfin midshipman fish (Porichthys notatus). This 

species has actively reproducing type-1 males and more reproductively less active type-2 

males. Absolute quantitative real-time PCR subsequently revealed higher levels of GR in the 

central nervous system (CNS) of type-2 males than type-1 males and plasma levels of cortisol 

were 2 to 3-fold higher in type-2 males compared to type-1 males.  

Vijayan et al. (2003) have also reported an up-regulation of GR mRNA and a down-

regulation of GR protein in cortisol-treated fish. In an in vitro study, Aluru and Vijayan 

(2007) reported an up-regulation of GR gene expression in hepatocytes of trout in response to 

exogenous cortisol treatment. However, in the same study they also found GR protein down-

regulation. Therefore, there is still uncertainty about GR gene expression in response to GC 

exposure and it has been suggested that the stress effect on GR gene expression may be either 

species-specific and/or dependent on the type, intensity and duration of the stressor (Wiseman 

et al., 2007). A reasonable explanation for these results has been proposed by Sathiyaa and 

Vijayan (2003) with the hypotheis of GR autoregulation. In this hypothesis, increasing 

cortisol levels tend to decrease the levels of GR proteins via a negative feedback loop and in 

order to compensate, GR mRNA levels are up-regulated. This could explain the present 

results; up-regulation of the GR gene in response to exposure to synthetic GCs. GR gene 

expression in response to external stimuli has been reported to be tissue specific. For example, 

rainbow trout exposed to high salinity showed a significant increase of GR gene expression in 
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the gill but not in liver. In that study, also GR gene expression did not correspond to GR 

protein expression (Singer et al., 2007).  

Any impact on the level of GR gene expression can have many consequences downstream, as 

all the GR-mediated physiology could be affected. This is particularly important in 

osmoregulation, which is an important physiological process completely under the control of 

the GR. Confounding factors such as environmental stress and disease outbreak could also be 

affected, and this may also have a population-level impact. 

It is well established that stress affects all aspects of an animal‘s performance, including 

reproduction. Several studies have shown that stress-induced elevation in cortisol levels 

reduces the plasma concentrations of sex steroids in a variety of fish species (Pickering et al., 

1987; Schreck et al., 2001). Deleterious effects of stress on vitellogenesis have also been 

reported (Teitsma et al., 1998), and stressor-mediated cortisol elevation has been reported to 

affect reproductive performance (Carragher et al., 1989; Campbell et al., 1994; Schreck et al., 

2001). However, the molecular mechanisms of cortisol and/or stress-mediated reproductive 

dysfunction are not clear.  

In teleosts, cortisol has been shown to mimic the effects of stress on reproduction by delaying 

gonadal development, reducing pituitary gonadotrophin production and lowering plasma 

steroid and vitellogenin levels, leading to a lower gamete quality (Teitsma et al., 1998; 

Pankhurst and Van der Kraak, 2000; Consten et al., 2001). Cortisol has been shown to inhibit 

vitellogenesis by down-regulation of ER and Vtg expression in salmonids (Lethimonier et al., 

2000). Vitelline envelope protein subunits, regulated by ER signalling, were also down-

regulated with cortisol treatment and acute handling stressors (Aluru and Vijayan, 2007), 

which confirms a role for cortisol in affecting oestrogen-responsive gene expression in the 

liver. My present results on Vtg gene expression are in agreement with previous results. It 
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should be noted that there have not been any studies where synthetic GCs have been reported 

to affect vitellogenesis in the past. The cortisol levels reported in previous studies are not 

easily comparable to the present study, as these did not report Vtg levels as a consequence of 

water exposure. The Vtg gene down-regulation observed in this study can be compard to the 

plasma vitellogenin levels also measured in this in vivo experiment (chapter 4). The down-

regulation of Vtg gene expression may have negative consequences at the population level, as 

female fish may be adversely affected. Low vitellogenin levels could also severely affect the 

hatching and survival rates. 

The present study investigated only three selected genes that are important in metabolism and 

reproduction. There are, however, thousands of genes that could be affected if a fish is 

exposed to synthetic GCs. However, the fact that gene expression in fish is affected at such 

low concentrations will hopefully stimulate further studies. Studying more of the genome at 

different time points during exposure using microarrays could give a clearer picture of 

impacts. There have been some microarray assays already developed for use with the fathead 

minnow (reviewed by Denslow et al., 2007). For example, Marger et al., 2008 have 

developed a fathead array and have assessed the consequences of lead exposure. The first 

genomic studies in the field of ecotoxicology were used to identify a limited number of genes 

related to environmental stress or exposure to pollutants. These were then analyzed using 

array technology. Thus, using 110 fragments of stress-related genes from flounder 

(Platichthys flesus), Williams et al. (2003) compared the hepatic expression of these genes in 

fish reared in polluted and relatively non-polluted estuaries. In another study, in the context of 

endocrine disruptive chemicals in the aquatic environment, identification of oestrogen-

responsive genes in zebrafish and sheepshead minnow (Cyprinodon variegatus) was carried 

out and they confirmed that oestrogenic effects of various compounds can be observed even at 

low concentrations (Larkin et al., 2002; Hoyt et al., 2003). Based on their first study, Larkin 
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et al. (2003) created a gene array containing 30 genes from sheepshead minnow that were 

previously identified as oestrogen-responsive, and used this system to screen endocrine-

disrupting compounds that mimic oestrogens. Functional genomic technology has been used 

to both (a) identify novel genes to serve as biomarkers and (b) to understand the molecular 

mechanisms corresponding to toxicity.  Similar studies targeting GC-responsive elements 

could be useful in order to determine the environmental impacts of GCs. 

5.5 Conclusions 

A 21-day exposure to beclomethasone dipropionate at low concentrations (as low as 100 

ng/L) had impacts on the expression of some selected genes in fathead minnows. The results 

are reproducible and concentration-related. More studies involving GC transcriptomics are 

recommended in order to investigate the whole gemone impact of exposure to GCs and the 

mechanisms behind activity of synthetic GCs in fish. 
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6.1 General Discussions 

In order to satisfy the therapeutic needs of the human population, the increasing production of 

pharmaceuticals and the subsequent presence of pharmaceuticals in the environment are 

unavoidable. However, many pharmaceuticals are probably present in the environment at 

concentrations too low to cause any effects to fauna and flora (Sumpter, 2007). The presence 

of pharmaceuticals in the environment mainly depends on their metabolism and excretion 

from the human body, STP removal and then degradation in the environment. Possible effects 

on fauna and flora probably depend on the environmental concentrations of pharmaceuticals 

and the availability of drug targets (e.g. receptors and enzymes) in the organism of interest. 

There will possibly be some pharmaceuticals that pose a greater potential threat to aquatic 

organisms than others, because some are heavily used, some could be more potent, and some 

could be poorly degraded and have the ability to bioaccumulate in aquatic organisms.  The 

ultimate aim of the risk assessment of pharmaceuticals in the environment is to identify those 

potential drug groups and to advise the regulatory authorities on the likely consequences of 

their impacts in the environment. 

A total of about 4000 kg of GCs are used annually in the UK, which based on the present 

study indicate possible environmental concentrations in the ng/L range. However, the issue of 

oestrogens and feminisation of fish shows that those drugs of environmental concern are not 

necessarily those in high production, but can also be those with a high environmental 

persistence, that have a high potency, or have effects on key biological functions such as 

reproduction (Fent et al., 2006). As a steroid pharmaceutical, GCs share many common 

features with oestrogens that have a proven record of causing endocrine disruption 

(Table 6.1). Therefore, the results reported in the present study are probably not surprising.  
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In humans, GCs are normally applied discontinuously to avoid any serious side effects. As an 

example, beclomethasone dipropionate is an inhaler drug intended to have local anti-

inflammatory effects. It aims to reduce inflammation in the upper respiratory system and the 

plasma concentrations are very minimal. Therefore the side effects when the drug is used for 

longer periods or the side effects of very high plasma concentrations are not well known in 

humans. But in the present study fish were chronically exposed to GCs via water for 21 days, 

so that some effects that are not seen in humans could occur. 

Table 6-1. Comparison of EE2 and beclomethasone dipropionate with regard to some important 

parameters used in environment risk assessment. 

 

Properties Ethinylestradiol (EE2) Beclomethasone dipropionate 

Molecular structure 

  

Log P 4.52 4.59 

BCF 1601 1808 

Transport SHBG, albumen Transcortin, albumen 

Receptors ERα , ERβ GR1, GR2, MR 

Metabolism Liver – CYP enzymes Liver – 11β-HSD2 

Excretion As conjugates of glucuronide and sulfate 

Detected in rivers Yes (0.5 -1 ng/L) Not yet (other GCs 1-50 ng/L) 

Usage in the UK 

(2006) 
About 25 kg 275 kg (total GC 4000 kg) 

 

 

There is a lack of knowledge about the possible long term risks that the presence of a large 

variety of drugs may pose for non-target organisms, even though they may be found at low 

concentrations (Gros et al., 2006). However, many pharmaceuticals do not enter aquatic 

organisms easily, and even though a drug may be very potent, for the drug to cause any effect, 

it must first get into the organism (e.g. through gills of a fish), and reach the site of action 
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without being metabolized. Recent research has shown that other factors besides degree of 

hydrophobicity and size affect the rate of uptake of chemicals, especially steroids, from the 

water into fish. Scott et al. (2005) were the first to show that the rate of uptake of sex steroids 

(oestrogens and androgens) from the water into fish was dramatically affected by their affinity 

for sex steroid binding protein (SHBG). The rate of uptake of sex steroids can be extremely 

fast (Maunder et al. 2007). The mechanism responsible for this very rapid uptake of sex 

steroids was recently elucidated: fish gills contain very high amounts of SHBG (Miguel-

Queralt and Hammond, 2008). That latter study also demonstrated that fish SHBG also has a 

high affinity for synthetic sex steroids, such as EE2 and some progestogens. Collectively, the 

results in these papers probably explain why sex steroids, including synthetic ones, are so 

potent, and affect fish physiology at extremely low environmental concentrations (Länge et 

al. 2001; Purdom et al. 1994; Paulos et al. 2010; Zeilinger et al. 2009). Endogenous 

glucocorticoids and some synthetic corticoids have high affinity to the protein transcortin 

(also called CBG, corticosteroid-binding globulin), whereas all of them bind albumin. This 

means that GCs present in the water will be effectively taken up into fish and the plasma 

concentrations may become high enough to cause effects. 

Once the drug is inside an organism, its distribution and consequently its effects will be 

dependent on factors such the octanol-water partition (known from log P) of the drug. For 

example, if a drug is lipid soluble it would accumulate in the fat portion of an animal, and 

unless metabolized in times of extra energy demand, it could be assumed that the drug would 

remain in the fat as an inactive compound. However, if the drug becomes partitioned into the 

blood and circulation, the plasma concentration could increase in the organism and come 

close to, or even exceed, the human therapeutic level (Huggett et al., 2004). Since 

beclomethasone dipropionate has a log P of 4.59 with a calculated BCF of 1808, plasma 

http://en.wikipedia.org/wiki/Transcortin
http://en.wikipedia.org/wiki/Serum_albumin
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concentrations of exposed fish could reach therapeutic concentrations even if the 

concentrations in the surrounding water are relatively low. 

It is likely that some unique effects that do not occur in people taking the drug will manifest 

in aquatic organisms: vitellogenin synthesis in response to oestrogens is an example. Others 

will undoubtedly occur. Many pharmaceuticals have multiple modes of action: for example, 

some synthetic progestogens are also androgenic, and hence may induce androgenic effects as 

well as progestogenic effects (Paulos et al., 2010). Drugs can reach non-target animals 

through unexpected routes (as diclofenac does in Indian vulture), and once inside an animal 

may act unexpectedly based on what is known for the drug, leading sometimes to unexpected 

outcomes. In the present study, plasma glucose concentrations, cortisol concentrations and 

Lymphocyte counts were changed in GC-exposed fish in agreement with the known 

mechanism of action of GCs, namely hyperglycaemic, HPI suppressive and 

immunosuppressive, respectively. However, the androgenic tendency observed in both males 

and females cannot be explained by the known main mechanisms of action of GCs. However, 

GC treatment in human females results in facial hair growth (hirsutism), which is linked with 

high plasma androgen concentrations, obesity and high insulin concentrations. There are no 

reports of androgenic activity of GCs in human males. In the present study, GCs did show 

some degree of androgenic activity in both males and female fish, at least at the higher 

exposure concentrations tested. 

The results reported here demonstrate that relatively low concentration of synthetic GC 

(100 ng/L to 10 µg/L) can cause effects on fish. These effects are potentially important. For 

example, lymphocytopenia in fish is associated with increased susceptibility to disease 

(Pickering and Pottinger, 1989). If immunosuppression occurred in wild fish, then they would 

likely be more susceptible to disease. Different groups of steroids and steroid antagonists will 
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produce different effects. Some of these effects might be more serious than others. For 

example, preventing reproduction would undoubtedly be considered a catastrophic effect, 

whereas reducing inflammation would probably not be considered a serious, adverse effect. 

Thus it is possible to argue that pharmaceuticals such as oestrogens and progestogens, which 

can prevent fish reproducing at low environmental concentrations, are of more concern, and 

merit greater attention from environmental scientists, especially ecotoxicologists, than do 

GCs, which primarily target the immune system. However, the results reported in this thesis 

also suggest possible impacts on reproduction, as the androgenic tendency of GCs in fish has 

shown. These reproductive impacts may have population-level consequences. 

It is very likely that pharmaceuticals with similar MOA will act in an additive manner, as has 

already been demonstrated for a mixture of oestrogenic chemicals (Brian et al., 2005). 

However, it is much more difficult to predict whether or not antagonists might attenuate the 

effects of agonists when both groups are present simultaneously, or whether androgen 

agonists might neutralise the effects of oestrogen agonists. Because many different GCs are in 

widespread clinical use, it seems likely that, concurrently, many different GCs will be present 

in the aquatic environment. As Chapter 3 demonstrates, all of the GCs tested here can bind to 

the fish GR (as expected), and therefore it can be argued that the total concentration of GC in 

the environment, rather than the concentration of each individual GC, is of most relevance to 

the risk assessment of GCs on aquatic organisms. However, currently not enough is known to 

provide a full picture of GCs in the aquatic environment. Nevertheless, it is very likely that 

the effects of different GCs will be additive. 

The EMEA guidelines for the risk assessment of pharmaceuticals in the environment is a 

tiered process. The first phase estimates the PEC in surface water. If the PEC value is equal or 

above 0.01µg/L, phase 2 Tier A is carried out. In some cases, if the drug substances may 
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affect reproduction of vertebrates or lower animals at concentrations lower than 0.01 μg/L, 

then a tailored risk assessment strategy is followed that addresses the specific mode of action 

of the drug, regardless of the PEC value obtained. Phase 2 Tier A assesses the fate and effects 

of a pharmaceutical in the environment, using OECD protocols on three aquatic species, one 

plant (algal growth inhibition test), one invertebrate (Daphnia reproduction test), and one 

vertebrate (fish early life stage test) (Sumpter, 2007). If a potential risk is detected in Phase II 

Tier A, then Phase II Tier B is conducted into extended effects analysis.  

A general indicator of the degree of risk is the risk characterisation ratio, which is the ratio 

between the PEC in surface waters and the predicted no effect concentrations (PNEC) derived 

from the toxicological tests. The PEC is derived from the data on usage, and the physical and 

chemical properties of the drug, STW effluent flows and surface water flows. The PNEC is 

the predicted highest concentration considered unlikely to cause an effect, and is an estimate 

of the concentration at which no potential effects on aquatic organisms and ecosystems might 

occur.  It is usually obtained using ecotoxicology data from the open literature and 

quantitative structure-activity relationships (QSAR). Substances with a PEC : PNEC ratio 

greater than 1 need more attention and further risk assessment steps will be involved. 

However, these ratios depend heavily on the data available for the estimation of PEC and the 

accuracy of the toxicological tests that derive the PNEC. 

There have been some criticisms of the EMEA guidelines. They only consider one 

pharmaceutical at a time, and ignore the fact that some compounds can cause additive or even 

synergistic toxic effects when in the presence of other compounds. For example, a number of 

different representatives of the same class of pharmaceutical may be present in the 

environment at the same time. For instance, a number of different oestrogens and 

xenoestrogens are undoubtedly present in the aquatic environment simultaneously, and these 
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might have an additive effect. Then there is the issue of the simultaneous presence of quite 

different drugs, such as an oestrogen and a progesterone, and the question here would be 

whether these would act synergistically or independently of each other. The situation becomes 

even more complicated when the mixure of pharmaceuticals present in water is together with 

other pollutants, such as metals and industrial wastes. 

Information on GCs currently available in the open literature is clearly not sufficient for the 

risk assessment of GCs present in the aquatic environment. A variety of GCs, some far more 

potent than endogenous cortisol, have been created for therapeutic use, for different age 

groups of patients and to treat different diseases. They differ in their pharmacokinetics 

(absorption factor, half-life, volume of distribution, clearance) and in their pharmacodynamics 

(for example, retention of sodium and water). More than 90 percent of them bind to a number 

of different plasma proteins, however with different binding specificities. In the liver, they are 

quickly metabolised by conjugation with a sulfate or glucuronic acid, and are secreted in the 

urine. 

As discussed in Chapter 2, reported surface water concentrations for a few GCs are in the 

range between 1 and 50 ng/L. These reports are for individual GCs (prednisolone, 

triamcinolone, cortisone, etc). Therefore concentrations of total GCs could be more than this. 

The present study has not found the PNEC because significant effects occurred at all 

concentrations tested. However, the LOEC from this study was 100 ng/L, which is not very 

much higher than the reported surface water concentrations. Moreover, effects from different 

individual GCs reaching the surface water could be additive. Therefore, PEC calculations are 

more relevant when combining all the individual GCs in the market. The availability of about 

30 different GCs in the market and their unknown STP removal rates and wide range of the 

percentage excreted make the predicted surface water concentrations cover a wider range, up 

http://en.wikipedia.org/wiki/Pharmacokinetics
http://en.wikipedia.org/wiki/Pharmacodynamics
http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Water_(molecule)
http://en.wikipedia.org/wiki/Plasma_proteins
http://en.wikipedia.org/wiki/Sulfate
http://en.wikipedia.org/wiki/Glucuronic_acid
http://en.wikipedia.org/wiki/Urine
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to a maximum of about 800 ng/L. This is higher than the LOEC of the present study. 

Therefore, GCs in the environment could pose a potential threat to aquatic organisms.  

Further studies are recommended to improve the calculation of the PEC, especially 

determining the STP removal rate, which is not clear for many GCs, and the few reported 

removal rates are contradictory. Dose-response exposure studies that include the 

concentration range below 100 ng/L should be carried out to obtain the PNEC for GCs. If 

field studies to investigate possible effects of GCs on wild fish are conducted, they should be 

focused on the reported ‗hot spots‘, where the highest concentrations of GCs are predicted to 

occur. More studies related to GC transcriptomics are recommended in order to investigate 

the whole gemone impact and the mechanism behind the activity of GCs in fish. Reproductive 

impacts, which are the opposite of those reported for oestrogens, suggest a need for studies of 

mixtures of synthetic steroids on reproduction and other physiological processes of fish. 

6.2 Conclusions 

The range of concentrations of total GCs along the river Thames, predicted by the LF2000-

WQX model, is likely to be between 0 and 850 ng/L. The present study reveals that fish GRs 

respond to synthetic GCs and transcribe GR responsive genes that can produce significant 

effects in fish. Fish GR2 is more sensitive to all the tested GCs compared to GR1. A 21-day 

exposure of fish to beclomethasone dipropionate at low concentrations (as low as 100 ng/L) 

impacted on the plasma glucose concentration, cortisol concentration, blood lymphocyte 

count, vitellogenin concentration and the expression of some selected genes in fathead 

minnows. The results are reproducible and dose-related. Experiments were conducted to test 

the null hypothesis, which was that environmentally-relevant concentrations of GCs do not 

have adverse impacts on fish. Results from the experiments indicate that the null hypothesis 

cannot be accepted, because low concentrations of GCs via water exposure had significant 
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impacts on fathead minnows. An increased plasma glucose concentration may affect their 

normal physiology, and immunosuppression could make them more susceptible to disease. 

Adverse impacts on reproduction could result in population-level changes in wild fish. It is 

very likely that the effects of different GCs will be additive, as has been shown for 

oestrogenic chemicals. Therefore, this study warrants further environmental risk assessment 

of GCs, especially in mixture scenarios. 
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Appendix 1 

 Concentrations of human pharmaceuticals in surface waters from different countries. 

 

Pharmaceutical 

group 

Active principal 

ingredient 

Concentration 

range/ 

maximum(ng/L) 

Country Reference 

Analgesics and 

non-steroidal anti-

inflammatories 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diclofenac 

150-1200 
8-195 
60 
42-359 
10-568 
1-7 
10-120 
1-30 
219 
176 

Germany 
UK 
Croatia  
Canada 
UK 
S.Korea 
Sweden 
S.Korea 
Spain 
Spain 

Ternes, 1998 
Hilton and Thomas, 2003 
Gros et al., 2006 
Metcalfe et al., 2003 
Ashton et al., 2004 
Kim et al., 2007 
Bendz et al., 2005 
Yoon et al., 2010 
Gros et al., 2009 
Lopez-Serna et al., 2010 

Ibuprofen 

70-530 
8-5044 
150 
8-755 
170-2324 
4-78 
11-38 
80-220 
93-1885 
61-84 
129 
1-51 
134 

Germany 
UK 
Croatia 
UK 
UK 
Italy 
S.Korea 
Sweden 
Canada 
Romania 
Spain 
S.Korea 
Spain 

Ternes, 1998 
Ashton et al., 2004 
Gros et al., 2006 
Thomas and Hilton, 2004 
Roberts and Thomas, 2006 
Calamari et al., 2003 
Kim et al., 2007 
Bendz et al., 2005 
Metcalfe et al., 2003 
Moldovan, 2006 
Gros et al., 2009 
Yoon et al., 2010 
Lopez-Serna et al., 2010 

Mefenamic acid 

3 
20-196 
50-366 
6 

Croatia 
UK 
UK 
Spain 

Gros et al., 2006 
Thomas and Hilton, 2004 
Ashton et al., 2004 
Lopez-Serna et al., 2010 

Dextropropoxyphene 
8-682 
8-80 

UK 
UK 

Ashton et al., 2004 
Thomas and Hilton, 2004 

Naproxen 

70-390 
94-551 
50 
68 
1-18 
90-250 
90 
5-100 
67 

Germany 
Canada 
Croatia 
USA 
S.Korea 
Sweden 
Spain 
S.Korea 
Spain 

Terns, 1998 
Metcalfe et al., 2003 
Gros et al., 2006 
Boyd et al., 2003 
Kim et al., 2003 
Bendz et al., 2005 
Gros et al., 2009 
Yoon et al., 2010 
Lopez-Serna et al., 2010 

Indomethacine 
10 
30 
37 

Croatia 
Spain 

Gros et al., 2006 
Lopez-Serna et al., 2010 

Ketoprofen 
17-50 
0-120 
3.18 

Canada 
Germany 
Spain 

Metcalfe et al., 2003 
Ternes, 1998 
Lopez-Serna et al., 2010 
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Pharmaceutical 

group 

Active principal 

ingredient 

Concentration 

range/ 

maximum(ng/L) 

Country Reference 

 

 

 

 

 

 

 

 

 

 

 

Acetaminophen 
250 
4-73 
146 

Croatia 
S.Korea 
Spain 

Gros et al., 2006 
Kim et al., 2007 
Lopez-Serna et al., 2010 

Aspirin (Salicylic 

acid) 

17000 
25-4100 
28-37 
333 

Canada 
Germany 
Romania 
Spain 

Brun et al., 2006 
Ternes. 1998 
Moldovan, 2006 
Lopez-Serna et al., 2010 

Hydrocodeine 1-3 S.Korea Kim et al., 2007 

Phenazone 
24-950 
40 

Germany 
Spain 

Ternes, 1998 
Lopez-Serna et al., 2010 

Codeine 109 Spain Lopez-Serna et al., 2010 

Antibiotics 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Erythromycin 

1000 
4-70 
30 
24-1842 
10-1022 
1-16 
4 
174 

UK 
UK 
Croatia 
UK 
UK 
Italy 
S.Korea 
Spain 

Hilton and Thomas, 2003 
Roberts and Thomas, 2006 
Gros et al., 2006 
Senta et al., 2005 
Aston et al, 2004 
Calamari et al., 2003 
Kim et al., 2007 
Lopez-Serna et al., 2010 

Trimethoprim 

9-194 
4-569 
4-19 
20 
10-42 
3-5 
10-20 
1-17 
33 

Canada 
UK 
UK 
Croatia 
UK 
S.Korea 
Sweden 
S.Korea 
Spain 

Metcalfe et al., 2003 
Thomas and Hilton, 2004 
Roberts and Thomas, 2006 
Gros et al., 2006 
Ashton et al., 2004 
Kim et al., 2007 
Bendz et al., 2005 
Yoon et al., 2010 
Lopez-Serna et al., 2010 

Sulphamethoxazole 

50-132 
1-36 
1-61 
78 

UK 
S.Korea 
Germany 
Spain 

Ashton et al., 2004 
Yoon et al., 2010 
Ternes, 1998 
Lopez-Serna et al., 2010 

Sulphadiazene 13 Spain Lopez-Serna et al., 2010 

Sulphamethazine 112 Spain Lopez-Serna et al., 2010 

Lincomycin 
80 
3-248 

Italy 
Italy 

Castiglioni et al., 2004 
Calamari et al., 2003 

Azythromycin 
20 
71 

Croatia 
Spain 

Gros et al., 2006 
Lopez-Serna et al., 2010 

Ciprofloxacin 

14-26 
1-25 
109 
13 

Italy 
Finland 
Spain 
Spain 

Calamari et al., 2003 
Vieno et al., 2006 
Gros et al., 2009 
Lopez-Serna et al., 2010 

Ofloxacin 75 Spain Lopez-Serna et al., 2010 

Enrofloxacin 40 Spain Lopez-Serna et al., 2010 

Norfloxacine 15 Spain Lopez-Serna et al., 2010 

Clarithromycin 
1-21 
88 

Italy 
Spain 

Calamari et al., 2003 
Lopez-Serna et al., 2010 
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Pharmaceutical 

group 

Active principal 

ingredient 

Concentration 

range/ 

maximum(ng/L) 

Country Reference 

 

 

 

 

 

 

Spiramycin 
43-74 
68 

Italy 
Spain 

Calamari et al., 2003 
Lopez-Serna et al., 2010 

Oxyteracycline 14-19 Italy Calamari et al., 2003 

Clotrimazole 6-34 UK Roberts and Thomas, 2006 

Tetracycline 29 Spain Lopez-Serna et al., 2010 

Metronidazole 44 Spain Lopez-Serna et al., 2010 

β-blockers 

Atenolol 

27 
250 
3-241 
10-60 
2-150 
11-25 
38 

Spain 
Croatia 
Italy 
Sweden 
S.Korea 
Finland 
Spain 

Gros et al., 2009 
Gros et al., 2006 
Calamari et al., 2003 
Bendz et al., 2005 
Yoon et al., 2010 
Vieno et al., 2006 
Lopez-Serna et al., 2010 

Metroprolol 

45-2200 
3-116 
60-70 
327 

Germany 
Finland 
Sweden 
Spain 

Ternes, 1998 
Vieno et al., 2007 
Bendz et al., 2005 
Lopez-Serna et al., 2010 

Sotalol 
70 
3-52 
44 

Croatia 
Finland 
Spain 

Gros et al., 2006 
Vieno et al., 2006 
Lopez-Serna et al., 2010 

Acebutolol 1-8 Finland Vieno et al., 2006 

Propranolol 

12-590 
10-215 
4-56 
10 
35-107 
14 

Germany 
UK 
UK 
Sweden 
UK 
Spain 

Ternes, 1998 
Ashton et al., 2004 
Thomas and Hilton, 2004 
Bendz et al., 2005 
Roberts and Thomas, 2006 
Lopez-Serna et al., 2010 

Lipid regulators 

Bezafibrate 

350-3100 
10 
1-57 
65-259 
67 

Germany 
Croatia 
Italy 
Canada 
Spain 

Ternes, 1998 
Gros et al., 2006 
Calamari t al., 2003 
Metcalfe et al., 2003 
Lopez-Serna et al., 2010 

Gemfibrozil 

52-510 
60 
67-1493 
1-9 
1-170 
1-17 
2.14 

Germany 
Croatia 
Canada 
S.Korea 
Sweden 
S.Korea 
Sapin 

Ternes, 1998 
Gros et al., 2006 
Metcalfe et al., 2003 
Kim et al., 2007 
Bendz et al., 2005 
Yoon et al., 2010 
Lopez-Serna et al., 2010 

Astrovastatin 
19-44 
1-5 
2.39 

Canada 
S.Korea 
Sapin 

Metcalfe et al., 2003 
Yoon et al., 2010 
Lopez-Serna et al., 2010 

Fenofibrate 
45-280 
82 

Germany 
Spain 

Ternes, 1998 
Lopez-Serna et al., 2010 
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Pharmaceutical 

group 

Active principal 

ingredient 

Concentration 

range/ 

maximum(ng/L) 

Country Reference 

Clofibric acid 

66-550 
20 
20-111 
1-6 
15-177 
24 

Germany 
Croatia 
UK 
Italy 
Canada 
Spain 

Ternes, 1998 
Gros et al., 2006 
Thomas and Hilton, 2004 
Calamari et al., 2003 
Metclafe et al., 2003 
Lopez-Serna et al., 2010 

Psychiatric drugs 
 

 

 

 

Fluoxetine 
0.5-1.5 
50-99 

S.Korea 
Canada 

Yoon et al., 2010 
Metcalfe et al., 2003 

Carbamazepine 
 

 

250-1100 
110 
4-61 
100-500 
1-66 
20-650 
65-75 
8-68 
58 

Germany 
Croatia 
S.Korea 
Sweden 
Finland 
Canada 
Romania 
S.Korea 
Spain 

Ternes, 1998 
Gros et al., 2006 
Kim et al., 2007 
Bendz et al., 2005 
Vieno et al., 2006 
Metcalfe et al., 2003 
Moldovan, 2006 
Yoon et al., 2010 
Lopez-Serna et al., 2010 

Diazepam 
27-33 
6.5 

Romania 
Spain 

Moldovan, 2006 
Lopez-Serna et al., 2010 

Lorazepam 41 Spain Lopez-Serna et al., 2010 

Anti-histamine 

Loratidine 
20 
3 

Croatia 
Spain 

Gros et al., 2006 
Lopez-Serna et al., 2010 

Ranitidine 
10 
1-38 
61 

Croatia 
Italy 
Spain 

Gros et al., 2006 
Calamari et al., 2003 
Lopez-Serna et al., 2010 

Cetirizine 9 Finland Kosonen & Kronberg, 2009 

Fexofenadine 11 Finland Kosonen & Kronberg, 2009 

Anti-cancer drug 

Tamoxifen 
10 
4-71 
27-212 

UK 
UK 
UK 

Ashton., 2004 
Thomas and Hilton., 2004 
Roberts and Thomas, 2006 

Bleomycin 5-17 UK Aherne et al., 1990 

Cyclophosphamide 
0.05-0.17 
2-10 

Switzerland 
Italy 

Buerge et al., 2006 
Zuccato et al., 2000 

Diuretic 
Furosemide 

2-255 
168 

Italy 
Spain 

Calamari et al., 2003 
Gros et al., 2009 

Hydrochlorothiazide 
4-255 
106 

Italy 
Spain 

Calamari et al., 2003 
Gros et al., 2009 

X-ray contrast 

media 

Iopromide 
20-361 
33-1800 
100-220 

S.Korea 
S.Korea 
Germany 

Kim et al., 2007 
Yoon et al., 2010 
Seitz et al., 2006 

Diatrizoic acid 155-580 Germany Seitz et al., 2006 

Iomeprol 100-480 Germany Seitz et al., 2006 

Iohexol 86-360 Germany Seitz et al., 2006 

Iopamidol 210-500 Germany Seitz et al., 2006 
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Appendix 2.  

Alignment of PEPCK gene sequences of three fish species using ClustalW software 

 

Green highlight area indicates areas of similarity. Red and blue highlights indicate the primer 

sequence designed by eye. 

---------------------------------------------------------------------------------------------------------------- 

Danio sp  1 --------ca--tcatcatcatc-accacagactgatgaagagc------tgctaaaccttcactc-aaggctc 

Onchorhynchus sp    1 gaaagcagttcttcctcatagaccaatcagatatgagttgtagttggtgctaaagggcacacgacgctc 

 

Danio sp                  57 tctccctctctctctctctcggtcagcatctctccatccctccgctcatcatgcctcctcagctgcagtc 

Onchorhynchus sp  70 ttattctctctctctctatatatattt---atttttttcagacttttat---tttcattaccccatttt—agtattt 

 

Danio sp                 127 tcaggaccggtcatgcccgc--------------------------gggtcctgcagggcgatctg----gcgtc 

Onchorhynchus sp140 ttacaagatgtcgtgccttttgcttggacttatcagaagacggggtggagtggggacatccgtgggcgtc 

 

Danio sp                172 t-----ctgagc-----------------------gccagcg-tgcgggagttcatcgacagcagtgtgagtctgt 

Onchorhynchus sp  210  cgctccttagcctcgatcccctccctgc  cgccagcggtggctgactttgtgaagagggccgtggatgagt 

 

Danio sp                  219 gccagccggacgctctgcacatctgtgacggctc-cgagcaggagaacagcaccatcctcagcctgc-tg 

Onchorhynchus sp  280 gcaagcctgccaatgtgcatgt-ggtgacggggagcgcggaggagtccgctcacatcct-agctggcctg 

 

Danio sp                 287gaggagcagggcgccatcaagaggctgcgcaagtacagcaactgctggctggcgcgcactgacccacgtg 

Cyprinus sp            1 -----------------------------------tatgataactgctggctggcacgtactgaccccaaag 

Onchorhynchus sp 348 gagaaagacggcatggtgaagaggctacccaagtatgagaactgctggctggcacgtacagaccccaagg 

 

Danio sp                 357 atgtggcccgtgtggagagtaaaacggtgatcgtgacggcggagcagcgggacacggttcccacaccgac 

Cyprinus sp            38   atgtggctcgtgtggagagtaaaactgtgattgtcactaaggaccaaagagacactattcccattcccac 

Onchorhynchus sp418  acgtggctcgggtggagagtaagactgtgatcgtcaccaagaaccagagggacaccatccctatccccga 

 

Danio sp                427  tggaggaggagtcagtcagctgggccgctggatgtgtcctgaggagtgggacaaagccatgaacctgcgc 

Cyprinus sp           108 cggaggtgccaagtcccagctgggcagctggatgagtgaggaaccctttcagaaagccagagaggaccgc 

Onchorhynchus sp 488 tgggggggctaagagccagctgggcagctggatgagtgagggtgacttccagaaggccagaaggaccgc 

 

Danio sp                497 ttccctggctgcatgaaagggcgtgtgatgtacgtgatccccttcagcatggggccggtgggctctccgc 

Cyprinus sp           178 tttcctggctgcatggcgggacgcactatgtatgtgatccccttcagtatgggccctgtgaactcttctc 

Onchorhynchus sp 558 ttcccaggctgcatgtcaggtcgaaccatgtatgtgatccccttcagcatgggcccggtgggctctccgc 

 

Danio sp                567 tctccaagataggggtggagctgacggactcgccgtatgtggtggccagcatgcggatcatgacgcggat 

Cyprinus sp           248 ttgctaagtttggtgttcaggtgacagattctccatatgtggtggctagcatgggcatcatgacacgcat 

Onchorhynchus sp628 tgtctaagtttggcgtgcaggtgacagactcaccctacgtggtggccagtatgggcattatgacgcgcat 
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Danio sp                637 ggggaaaactgtgctgagcgcgctgggaaacgg---agagttcgtccggtgtctgcactcagtcggctgc 

Cyprinus sp           318 ggggactcctgtgctggaaaaactagccgagggtgcggagtttgtgcgctgccagcactctttgggcaga 

Onchorhynchus sp698 gggcacccccgtcatggacaaactggcacagggggcagagtttgtacgctgccagcactccctcggtcgg 

 

Danio sp                704 cctctgccactcaagaagccgctggtcaacaactggccctgtaacccggagctgacgctggtggcccaca 

Cyprinus sp           388 cctttaccactcaaagctcctttagtagacagctggccttgtaacccggacaaggtgttgatctcacatc 

Onchorhynchus sp 768 cccctcccactgaaagctcccctggtcaactcgtggccgtgtaacccagagaaggtgctgatctcccacc 

 

Danio sp                774 tcccggatcagaggaagatcgtgtcgttcggcagcggatacggaggaaactcactgctggggaagaagtg 

Cyprinus sp           458 ttcctgacaccaga-cagatcctgtccttcggcagcgg-ttacggtggaaactcgctccttggaaagaaatg 

Onchorhynchus sp838 tgccagacaccaggcagatcctgtcgttcggcagtggctacggaggcaactccctgctggggaagaagtg 

 

Danio sp                844 cttcgctctgcgcatcgcatcacgcatcgctaaagag-gagggctggctggcagaacacatgctgattctg 

Cyprinus sp           528 ttttgctcttcgtatcgcctcacgcattgccaaagacgaa-----ggctggttggctgaacacatgctgattctg 

Onchorhynchus sp908 cttcgccctgaggatcgcctcgcgcatcgccaaggacgagggctggctggccgaacacatgctgatcctg 

 

Danio sp                914 ggcatcaccaacccggcgggacagaagaagtatttcgcagcggcgttccccagcgcctgcgggaagacca 

Cyprinus sp           598 ggaatcacaaatcctcagggtgtaaaacggtacattgcagcagcgttcccgagcgcttgtgggaaaacta 

Onchorhynchus sp978 ggcatcaccaatcctcagggagtgaagcgctacgtggcggcggcgtttcccagtgcctgtgggaaaacta 

 

Danio sp                984  acctggccatgctgaagccgtcgctgcccggctggaaggtggagtgtgtgggagacgacatcgcatggat 

Cyprinus sp           668  acctggccatgatgaaaccatcactgccaggctggacggttgagtgtgtgggcgatgacatcgcctggat 

Onchorhynchussp1048 acctggccatgatgaagccagcgctgcctggctggactgtggagtgtgtaggagacgacatcgcctggat 

 

Danio sp              1054  gaagttcgacaaagaagggaatctgagagccatcaacccagagaacggcttcttcggtgtggctccggga 

Cyprinus sp           738  gaaatttgacagtcagggtaaactcagagccattaatccagagaatgggttttttggagtcgcccccggg 

Onchorhynchus sp1118 gaagttcgacagtcagggtaaactcagggcaatcaacccagagaacggctttttcggtgtggctcccggc 

 

Danio sp              1124  acctccagcaaaaccaaccccaacgccatgagcaccatcagctgcaacacactcttcaccaacgtggcgg 

Cyprinus sp           808  acatccctaaagacaaaccctcatgccatggcaaccatctccaggaacacagtgttcactaacgtgggag 

Onchorhynchus sp1188 acgtccctgaagaccaaccctcatgccatggcgaccatcgccaaaaacactgtgttcaccaatgtgggtg 

 

Danio sp              1194  agagcagtgacggaggggtgttctgggagggcatggatgaggatctgcctgaaggagtgacgctgacgtc 

Cyprinus sp           878  agaccagcgatggtggagtttggtgggagggtctgga--accacctg-cacctggaatcaaactcacaga 

Onchorhynchus sp1258 agaccagtgacggaggggtgtggtgggagggactgga--cccccctg-ccgcaggggtctccctgaccga 

 

Danio sp              1264  ctggaagaaccagccctggacaccagaggacggtgaaccgtgtgctcacccgaactcccgcttctgtacg 

Cyprinus sp           945  ctggcatggaaaatcctggaagtatggtgattctacactgtgtgctcacccgaactccaggttttgtgcc 

Onchorhynchus sp1325 ctggcacggcaaatcctggaaagcaggagactctggcccgtgtgctcatcccaactccaggttctgtacc 

 

Danio sp               1334  ccggccgctcagtgtcccatcatcgacccgcagtgggagtctcctgaaggcgtccccatcgaggccatca 

Cyprinus sp          1015  ccagctggccagtgccccatcatagacccactctgggaaagtgatgagggcgtccccattgatgccattg 

Onchorhynchus sp 1395 ccggcggcccagtgccccatcatcgacccccagtgggagagtgacgagggtgtgcccatcgatgccatca 

 

Danio sp              1404  tcttcggcgggcggcgtccgcagggcgtcccgctggtgtacgaggccttcgactgggcgcacggagtgtt 

Cyprinus sp         1085  tatttggtggaagaagaccagaaggtgtgcctttggtgtacgagtcatttaactggcgtcacggtgtgtt 

Onchorhynchus sp1465 tcttcgggggcaggaggccagagggagtccctctggtgtacgagtcgtttaactggcgccacggtgtgtt 

 

Danio sp               1474  tgtaggggcgtccatgaggtcagaggccacgcgctgctgaacacaaaggtaaagtgatcatgcatgac 

Cyprinus sp          1155 tgtgggtgcagccatgagatctgaatccacagctgctgctgaacataagggtaaagtaatcatgcatgac 

Onchorhynchus sp1535 tgtaggagcctcaatgaggtctgaggccacagcgctgctgagtacaaaggcaaggttatcatgcacgac 

 

Danio sp               1544  ccgttcgccatgcgtccgttcttcggctataacttcggtcagtatctctcccactggctgagcatggagc 

Cyprinus sp          1225  cccttcgccatgcgtcctttctttggctacaacttcgg-------------------------------- 
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Onchorhynchus sp1605 cccttcgccatgcgccccttcttcggctacaacttcggtgactacctagcccactggctgagcatggaga 

 

Danio sp                1614   agcggcccggcgcta----agctgcccaaaatcttccacgtcaactggttcggcaggagctcctcggggcg 

Onchorhynchus sp  1675 cccgcaagggcgccacccacctgcccaagatcttccacgtcaactggttccggaaggaccccacgtcggg 

 

Danio sp                1681   ct---tcctgtggccgggctttggggagaacatccgcgtactggagtggatgttcg-------gcaggctg 

Onchorhynchus sp  1745 ctctttcctctggccgggtttcggtgacaacgcccgcgttctggagtggatcttcaagcgctgcagccgc 

 

Danio sp              1742 agcggaggggccgaggcg---aggaccactgcggtggggctggtgcctgcagacggtgccctgaacctgc 

Onchorhynchus sp 815gagagggaggacgaggcggccaagaagagcatggtgggctgggtgccactggagggagccatcaacctgc 

 

Danio sp               1809 acgggct---cccggatgtggagccgctggagctcttcagggtctcgcaggagttctggatgcaggagct 

Onchorhynchus sp 885 agggactgggcagcaaggtggacatgggtgccctcttcgacctgcccaaggccttctgggagaaggagac 

 

Danio sp               1876 gcaggagatcagagagtatttcagccgtgaactgaaccgagacctgccgcaggagatgcagagacagctg 

Onchorhynchus sp1955 ccaggagctgagggcgtactttacccagcaggtgggagccgacctcccccaacaggtggagggagagctg 

 

Danio sp               1946 gagctgctggagcacaggctcacacacacacacgtgagcagtaaacacggctgaagacacgcaacacaca 

Onchorhynchus sp2025 aaggctctggaggacaggatc---------------aggaattgaga--ggtggagggac--------ca 

 

Danio sp               2016 cgttaatctgcattacgcacacttaaagggacggtgcactcgaatattaaaatatgtcatcgtttgctct 

Onchorhynchus sp2070 gatgattcag--------------agagagaaagt---attgactattggacattatactacgstg---- 

 

Danio sp                2086 caagtgcttcaaaaccgttctttagtttccttctgctgaacacagaagaagatattttgaaaaatgctga 

Onchorhynchus sp 2119 ---atgctgctaaatgatatggtagt--------------actgacaaaaaattact----aacaagctma 

 

Danio sp                 2156 agattgttcacttccacagtatttaattttccctctttttgtttactttttattttgtgttttttctttt 

Onchorhynchus sp  2169 ----------------------------------------------tttcaattttgtggaagctgcttt 

 

Danio sp               2226 gtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtttactgagaaaactcatttaaa----gagacaga 

Onchorhynchus sp2193 gcctatatgtgggtagatgtaaaccaaagtttctaaattgtaagaaaatacaatgagatgatgtgactgc 

 

Danio sp                2292 acacacacaataatcagcatttatgcacagttaaagggacggtgctctctaaaatgaaaaatatgtcact 

Onchorhynchus sp2263 at-cactgaagaat---------------gcagttca------------tgctatc---------acacactgtcagt 

 

Danio sp               2362 atttgtttta--accctgaacacaaaagaagatatttagagaaatgctgatgatcattggcgtcttcagg 

Onchorhynchus sp2304 ggctatatcagtaggttgtaggtgatggagcagaatcggtgtttagcagtaccttactgacatctt--gc 

 

Danio sp                 2430 aaggactgttt---gttatttaaccttataaattattgatgcgcacatttattttctgctggagatgtta 

Onchorhynchus sp 2372 aaaga-agtataaaggtattggatgtt-tacaagcttta---gcccaaataatct---------aatcta 

 

Danio sp                2497 tggcggaaacctttaaacaaccctct-catttttaaatgtggtaatttatttttctatgtatttctatgt 

Onchorhynchus sp2428 atcaggacaagcttaaatatccatattcatttaaacatttttaaacagcattttttttgtcacttttgta 

 

Danio sp                2566 cagtcttccatgatattaataa--agtta---tttaaatataaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

Onchorhynchus sp2498 ttgtttccaataaaaatgattatgagctaatgtttacacatgagatatgtaacatgttggaccaataaaa 

 

Danio sp                 2631 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa-- 

Onchorhynchus sp 2568 atgatttaatgtcaaggtttttattacagtgcaattaataaacaacctcaaattcaaaaaaaaaaaaaaa 
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