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Identification of Nonlinear Lateral Flow
Immunoassay State Space Models via Particle

Filter Approach
Nianyin Zeng, Zidong Wang, Yurong Li, Min Du and Xiaohui Liu

Abstract—In this paper, the particle filtering approach is used,
together with the kernel smoothing method, to identify the
state space model for the lateral flow immunoassay through
available but short time-series measurement. The lateral flow
immunoassay model is viewed as a nonlinear dynamic stochastic
model consisting of the equations for the biochemical reaction
system as well as the measurement output. The renowned
extended Kalman filter is chosen as the importance density ofthe
particle filter for the purpose of modeling the nonlinear lateral
flow immunoassay. By using the developed particle filter, both the
states and parameters of the nonlinear state-space model can be
identified simultaneously. The identified model is of fundamental
significance for the development of lateral flow immunoassay
quantification. It is shown that the proposed particle filtering
approach works well for modeling the lateral flow immunoassay.

Index Terms—Lateral flow immunoassay; particle filter; ex-
tended Kalman filter; state estimation; parameter estimation.

I. I NTRODUCTION

T HE lateral flow immunoassay (LFIA), which utilizes the
specific interaction between antigens and antibodies, has

been extensively studied in the general area of biomedical
engineering and widely applied to a variety of point-of-care
fields over the past decades, [3], [9], [11], [12], [14], [34]and
the references therein. The LFIA has been gaining particular
research attention due primarily to its attractive properties such
as short analysis time, ease of use, low cost, high sensitivity,
good specificity and satisfactory stability [28], [33]. Recently,
in addition to the traditional trend of physically improving the
biochemical properties of the strips (see e.g. [1], [3], [9], [12]),
there has been a growing research interest in establishing a
mathematical model of LFIA so as to develop thequantitative
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instruments (see e.g. [4], [6], [8], [11], [14]). It has been
revealed that the mathematical model plays a very important
role when producing strips with high-sensitivity and low con-
stant of variance for the purpose of quantification. Especially,
an adequate mathematical model allows us to predict kinetic
characteristics and test the effects of various design parameters
in a both rapid and inexpensive way. Furthermore, such a
model could also enable us to optimize device performance
[26], [27], [34]. Therefore, it is obvious that the progressin
mathematical modeling is crucial for facilitating the usage of
the lateral flow immunoassay.

Let us now provide a brief review of latest literature on
the modeling issue of the LFIA. In [26], [27], the convection
diffusion reaction equations have been used to model the
lateral flow immunoassay systems and the simulation has
been carried out by using the COMSOL software. Recently,
a nonlinear dynamic stochastic model has been considered
in [34] for sandwich-type lateral flow immunoassay where
the established model is composed of the biochemical re-
action system equations and the observation equation. In
[34], the system state equations describe the dynamics of the
concentration distribution subject to stochastic disturbances,
and the system measurements are determined in terms of
an observation equation containing measurement noises. The
extend Kalman filter (EKF) has been designed in [34] which
serves as a suboptimal filter for identifying both the states
and parameters of the nonlinear state-space model. The EKF
algorithm linearizes the nonlinear model by Taylor expansion
and then uses the traditional Kalman filter for the linearized
model. Because of its versatility and effectiveness, the EKF
algorithm has been proven to perform well under the assump-
tions that the nonlinearity is linearizable and the noise is
Gaussian. Unfortunately, when the models are highly nonlinear
and/or noise disturbances are non-Gaussian distributed, the
EKF algorithm may behave pretty poorly. In the context
of modeling the lateral flow immunoassay, the model to be
established inherently involves high nonlinearities, andthere
is a great need to seek a more appropriate modeling approach
that is capable of handling both the nonlinearities and the non-
Gaussian noises. In search of such a candidate, the particle
filter appears to be an ideal one that can be applied to more
general systems than the traditional Kalman filtering methods
[5], [10].

Basically, the particle filter is a recursive Bayesian filter
by Monte Carlo simulations. In the past decade, particle
filters have gained much attention with wide applications in
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state estimation problems for nonlinear and/or non-Gaussian
system, see e.g. [5], [7], [10], [13]. It is remarkable that
particle filters represent the posterior densityp(xk|z1:k) by a
set of random samples (also called particles) with associated
weights{(xi

k, ω
i
k), i = 1, ..., N}. Thus, it can effectively and

exactly represent the required posterior density functionas
the number of particles becomes very large. Accordingly, the
particle filter has the great advantage of being able to deal with
any functional nonlinearity and noise distribution. However,
despite its great potential in modeling biomedical systems,
so far, there have been very few results in existing literature
with respect to the application of particle filters in jointly
identifying the system states and parameters of the lateral
flow immunoassay state-space model via short but available
time series data. It is, therefore, our intention in this paper to
fill the gap by investigating the use of particle filters in the
presence of nonlinearities and short time series.

Applying the particle filtering approach in identifying LFIA
state-space model is a non-trivial task. There are several
challenging issues that typically emerge for modelling LFIAs.
Apart from the high nonlinearities, both the states and pa-
rameters of the LFIA should be identified simultaneously.
Furthermore, a LFIA exhibits a distinct feature that there are
only few observations (measurement outputs). That is, the
measurements of a LFIA are in the form of high-resolution
images, and the number of consecutive images (time series)
is usually small because of the physical constraints (e.g. in-
strument limit and experiment cost). To date, much effort
has been devoted to identify the unknown parameters in a
general nonlinear model by using particle filters. One of the
common strategies is to add the parameters as part of the state
space vector which, however, would easily lead to the particle
degeneration and hence inaccurate estimation [5], [15]. In[16],
a dual particle filter has been proposed that use two particle
filters to estimate states and parameters of a nonlinear system,
where such a dual filter can improve the accuracy but suffer
from significant increases of running time and computation
burden. In this paper, the kernel smoothing method developed
in [2], [5] will be employed to avoid the degeneration problem
and also handle both the fixed and time-varying parameters
conveniently by tuning the smoothing factor.

In this paper, we aim to develop a particle filtering algorithm
in combination with the kernel smoothing method in order to
jointly estimate system parameters and states of the lateral
flow immunoassay model through available but short time-
series measurement. The identified lateral flow immunoassay
model is proven to be more accurate than the one obtained
from the traditional EKF algorithm. The main contribution of
this paper is mainly twofold. 1) The particle filter equipped
with the kernel smoothing method is, for the first time, applied
to model the lateral flow immunoassay system. The developed
algorithm represents the first of few ones that are capable of
simultaneously identifying the system parameters and actual
concentration distribution of the lateral flow immunoassay
through an iterative procedure by using a small number
of observations. 2) It is shown that the proposed particle
filtering approach works well for modeling the lateral flow
immunoassay.

The rest of this paper is organized as follows. In Section
II, the nonlinear state-space model for the lateral flow im-
munoassay system is introduced. The particle filters combin-
ing with the kernel smoothing method for jointly estimating
system parameters and states are described in Section III. In
Section IV, our developed algorithm is applied to the lateral
flow immunoassay system and the results of joint parameter
and state estimation by the algorithm are discussed. Finally,
concluding remarks are given in Section V.

II. T HE LATERAL FLOW IMMUNOASSAY MODEL AND

PROBLEM FORMULATION

A typical configuration of lateral flow immunoassay, as
shown in Fig. 1 [24], consists of a variety of materials such
as sample pad, nitrocellulose membrane, conjugate pad and
wicking pad. The primary antibodies are immobilized within
a defined detection zone (test line) on the membrane. The sec-
ondary antibodies are conjugated with reporter particles such
as colloidal gold, carbon black, fluorescent, or paramagnetic
monodisperse latex particle [23].

In this paper, we focus on the sandwich format of gold
immunochromatographic strip where the reporter particle uses
the colloidal gold nanoparticles. With the presence of an
antigen in the sample, a sandwich-type assay is formed be-
tween the secondary antibody-immobilized gold nanoparticle
immunocomplex and the primary antibody immobilized on
the membrane. After the antigen-antibody reaction, the red
color caused by the accumulation of gold nanoparticle at
that location would appear on the membrane [23], [28]. The
color intensity of the red test line (signal intensity), which
relates directly to the concentration of the target proteinin the
standard or spiked samples, is assessed visually or by a reader
system for quantitative analysis [1].

Fig. 1. Lateral flow immunoassay architecture.

In this paper, for simplicity, we only consider a single target
analyte in the sample. Thus, the biochemical reactions of the
lateral flow immunoassay signal pathway without considera-
tion of the control line can be generally summarized as follows
[26]:
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1) Assume that the sample contains a target analyteA.
When the sample migrates through the conjugate pad,
the analyte interacts with the particulate color particle
conjugateP to form particle-analyte complexesPA,

A+ P
k1−⇀↽−
k2

PA (1)

2) The free analyte in the sample and the particle-analyte
complexes both migrate into the membrane by the
capillary action. Free analyte of typei(A) and particle-
analyte complexesPA interact with the immobilized
ligands of typei(R) to form the complexes,

A+R
k3−⇀↽−
k4

RA (2)

PA+R
k5−⇀↽−
k6

RPA (3)

3) Additionally, unbound particulate conjugateP may bind
to the complexRA to form the complexRPA,

P +RA
k7−⇀↽−
k8

RPA (4)

Let x1, x2, x3, x4, x5 and x6 be the concentration of
A,P, PA,R,RA and RPA, respectively. For demonstration
purpose, it is assumed that there is no time-delay between the
biochemical reactions (1)-(4). The rates of the reactions are
defined as follows:

v1 = k1x1x2 − k2x3 (5)

v2 = k3x1x4 − k4x5 (6)

v3 = k5x3x4 − k6x6 (7)

v4 = k7x2x5 − k8x6 (8)

wherek1, k3, k5, k7 andk2, k4, k6, k8 are the association and
dissociation rate constants, respectively. The stoichiometrix for
the biochemical reaction of the lateral flow immunoassay is
given by

S =

















−1 −1 0 0
−1 0 0 −1
1 0 −1 0
0 −1 −1 0
0 1 0 −1
0 0 1 1

















.

Let x = [x1, x2, ..., x6]
T , V = [v1, v2, ..., v4]

T , and θ =
[k1, k2, ..., k9]

T to denote the parameters to be estimated,
which are the association and dissociation rate constants in
the vectorV (x(k)). The nonlinear state-space model of the
lateral flow immunoassay can be given as follows [34]:

x(k + 1) = f(x(k), θ) + w(k) (9)

z(k) = g(x(k), θ) + v(k) (10)

where x(k) is the vector of state variables which are con-
centrations of antibodies, antigens or complex material;z(k)
is the measurement data from experiments at the time point
k; f(x(k), θ) = SV (x(k)) with S being a stoichiometric
matrix that describes the biochemical transformation in a
biochemical network andV (x(k)) being the vector of reaction

rates (usually the vector of nonlinear function of the state) [30],
g(x(k), θ) = k9(x3 + x6) is the measurement model function
with θ being a parameter vector to be identified;w(k) and
v(k) denote the zero-mean uncorrelated Gaussian noises with
covariance matricesQk andRk, respectively.

The main purpose of this paper is to jointly estimate the
parameters and states of the model (9)-(10) via the particle
filter combining with kernel smoothing method from the
possibly small number of the measured data.

III. K ERNEL-SMOOTHING-BASED PARTICLE FILTERING

FOR STATES AND PARAMETERS ESTIMATION

In this section, we introduce the particle filters theory as
well as the kernel smoothing method for estimating system
states and parameters. For more details we refer the readers
to [5], [10], [18] and the reference therein.

A. Particle Filters

The particle filter is essentially a recursive Bayesian filter
based on Monte Carlo simulations. Particle filters are capable
of dealing with nonlinear and/or non-Gaussian systems in a
convenient yet efficient way. Consider the following nonlinear
state space system described by state transition and measure-
ment equations:

xk = f(xk−1, wk−1) (11)

zk = h(xk, vk) (12)

where k is a non-negative integer,xk ∈ R
n is the system

state vector,zk ∈ R
r is the observation vector (measurement

output), andwk andvk are independently and identically dis-
tributed noises for the process and measurements, respectively.
Here,f : Rn → R

n is a nonlinear state transition function and
h: R

n → R
r is a nonlinear measurement function.

From a Bayesian perspective, the aim of the state esti-
mation is to infer the probability functionp(xk|z1:k) of the
state xk given the sequence of all available measurements
z1:k = {z1, z2, ..., zk}. Assuming that the initial condition
p(x0|z0) ≡ p(x0) and p(xk−1|z1:k−1) at time k − 1 are
available, the Bayesian estimation infers the posterior density
functionp(xk|z1:k) in a recursive manner by two steps. Using
the transition density one can perform the prediction step:

p(xk|z1:k−1) =

∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (13)

and update step uses the measurementzk to update the
predicted density:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(14)

wherep(zk|z1:k−1) is a normalizing factor independent of the
statexk.

In theory, the optimal solution to the state estimation
problem can be derived by Bayesian filter via the recur-
rence relations (13)-(14) for the dynamic system. However,
analytical solutions only exist in a restrictive set of cases
when the noises are Gaussian distributed and the model is
linear via the Kalman filtering or grid-based filtering methods.
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When these assumptions do not hold, it is almost impossible
to determine the solutions analytically. As such, alternative
approximate filters such as particle filters have been proposed
in the literature to approximate the optimal Bayesian solution.

The key idea of particle filtering is to represent the posterior
density p(xk|z1:k) by a set of random samples (also called
particles) with associated weights{(xi

k, ω
i
k), i = 1, ..., N} :

p(xk|z1:k) ≈

N
∑

i=1

ωi
kδ(xk − xi

k) (15)

where
∑N

i=1 ω
i
k = 1, and δ(x) is Dirac’s delta function that

is equal to infinity ifx = 0 and otherwise zero. Thus, particle
filters convert the integral operation into the sum formation
to compute estimates based on the generated random samples
from p(xk|z1:k) and weights. However, direct sampling from
the posterior densityp(xk|z1:k) is complex outside of a
linear and Gaussian environment. The particle filter adopts
a technique named importance sampling [17] to generate the
random samples. The main idea of the importance sampling is
to introduce a known probability density functionq(xk|z1:k),
which is called importance density, from which samplesxi

k

can be drawn. As such, the importance weights are defined as

ωi
k ∝

p(xi
k|z1:k)

q(xi
k|z1:k)

(16)

Letting the importance density be chosen to factorize such
that

q(xk|z1:k) = q(x0:k−1|z1:k−1)q(xk|x0:k−1, z1:k), (17)

the recursive formula for the importance weights is obtained
as follows

ωi
k ∝ ωi

k−1

p(zk|x
i
k)p(x

i
k|x

i
k−1)

q(xi
k|x

i
k−1, zk)

. (18)

Therefore, one can obtain particlesxi
0:k = {xi

0:k−1, x
i
k}

by augmenting each of the existing samplesxi
0:k−1 ∼

q(x0:k−1|z1:k−1) with the new statesxi
k ∼ q(xk|x0:k−1, z1:k).

With these particles and associated importance weights calcu-
lated by Eqn.(18), the estimated state vector,x̂k, is the mean
of p(xk|z1:k) and is calculated as

x̂k =

N
∑

i=1

ωi
kx

i
k. (19)

B. Degeneracy Problem of Particle Filters

The algorithm of particle filter described above has a degen-
eracy problem where, after a few iterations, the weight is only
concentrated on a few particles (most particles have negligible
weight). Thus, a large computational effort is devoted to
updating particles whose contribution to the approximation to
p(xk|z1:k) is almost zero. Therefore, it is necessary to modify
the algorithm to assure that degeneration of the particles will
not take place. In this case, two additional practical techniques
have been introduced: a) good choice of importance density
and b) resampling method [10].

A good choice of importance density is critical to the
performance of the particle filter method. Theoretically, the

posterior distributionp(x0:k|z0:k) would be the best option,
but the calculations involved would be extremely difficult
outside of a linear and Gaussian environment as mentioned
above. Another approach is to use the prior distribution
p(xk|xk−1) with easy implementation, but it does not carry
any information from new observations which would make the
filter degenerates rapidly. Thus, to avoid these problems when
using the posterior distribution and the prior distribution as
the importance density, the suboptimal approximations to the
optimal importance density by using extended Kalman filter
are used in this paper as done in [18]. For this purpose, there
is a need to state the Extended Kalman Filter (EKF) algorithm
as follows [31]:

Initialization
For k = 0, set

x̂(0|0) = E[x(0)] = x0,

P (0|0) = E[(x(0)− x0)(x(0)− x0)
T ] = Px0 .

For k = 1, 2, 3, ... compute
Time update (‘Predict’)

State estimate time update:x̂(k|k− 1) = f(x̂(k− 1|k− 1))
Error covariance time update:P (k|k−1) = Â(k−1)P (k−

1|k − 1)Â(k − 1)T +Qk−1

Measurement update (‘Correct’)
Compute the Kalman gain matrix:Kk = P (k|k −

1)Ĉ(k)T [Ĉ(k)P (k|k − 1)Ĉ(k)T +Rk]
−1

Update the estimate with measurementy(k): x̂(k|k) =
x̂(k|k − 1) +Kk[y(k)− g(x̂(k|k − 1))]

Error covariance measurement update:P (k|k) = (I −
KkĈ(k))P (k|k − 1).

The second method for reducing the degeneration phe-
nomenon is to use the idea of resampling. The resampling
approach has been used in [19] to eliminate particles with low
weights and choose more particles in more probable regions.
A new set{x̂j

k, j = 1, ..., N} is generated by sampling with
replacement from an approximate discrete representation of
p(x0:t|y1:t) with probability Pr(x̂j

k = xi
k) = ωi

k. Although
there are variants of the resampling algorithm, we use multino-
mial resampling [21] in this paper because of its simplicityand
effectiveness. Therefore, on condition that the total number of
particles remains toN , particles with high weights will be
duplicated several times and are assigned with equal weights
1/N .

The resampling step does reduce the effects of the degen-
eracy problem, but it also has a drawback: the particles with
high weights are duplicated several times after resampling,
and this would result in a loss of diversity. To overcome such
a drawback, an additional step has been introduced, called
Metropolis-Hastings (MH) algorithm [10], [20], which is a
Markov chain Monte Carlo procedure for generating a se-
quence of samples from probability distribution. By choosing
the probability distributionπ(x), the algorithm is implemented
by the following steps:

1) Generate the rand data from uniform distribution[0, 1],
ν ∼ U [0, 1]
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2) Samplex∗
k from the proposal density,x∗

k ∼ q(x∗
k|x

(i)
k )

3) If ν ≤ min

{

1,
π(x∗

k
)q(x

(i)
k

|x∗

k
)

π(x
(i)
k

)q(x∗

k
|x

(i)
k

)

}

, acceptx∗
k; else reject

x∗
k.

C. Kernel Smoothing for Parameters Estimation

In this paper, the Kernel smoothing method is used to
estimate the unknown parameters of the system. As discussed
in [2], [5], [22], by using the Kernel smoothing method, the
problems of covariance increase and performance degeneration
could be avoided when using the strategy of adding the
parameters as part of the state space vector. Furthermore,
this method can deal with both the fixed and time-varying
parameters conveniently by tuning the smoothing factor. For
this method, the true posterior distribution is represented by

p(θk|z1:k−1) ≈

N
∑

i=1

ωi
k−1κ(θk|m

i
k−1, σ

2
θ,k−1) (20)

wheremi
k−1 andσ2

θ,k−1 are the mean and covariance of the
kernel distributionκ(θk|mi

k−1, σ
2
θ,k−1), respectively. Further-

more, to ensure that the sampling points at timek andk − 1
have the same mean and variance, a shrinkage method is
applied as follows:

mi
k−1 = (

√

1− h2)θik−1 + (1−
√

1− h2)θ̂k−1 (21)

σ2
θ,k−1 = h2

N
∑

i=1

(θit−1 − θ̂k−1)
2ωi

k−1 (22)

whereθ̂k−1 =
N
∑

i=1

θit−1ω
i
k−1 is the mean of parameters at time

k − 1 andh is the smoothing factor. If the parameters to be
estimated are known a prior to be time-invariant,h should
be set to a small positive value (e.g.0 < h < 0.2). On the
other hand, if the parameters are expected to be time-varying,
h should take a value close to1.

To summarize the above discussion, the pseudo code of
particle filter algorithm incorporating kernel smoothing for
state and parameter estimation in this paper is described as
follows:

1) For i = 1 : N
Draw θik from Gaussian distribution
κ(θk|m

i
k−1, σ

2
θ,k−1)

Draw xi
k from importance density based

extended Kalman filter
Assign weight ω̂i

k

End
2) Calculate total weight:t = SUM[{ω̂i

k}
N
i=1]

3) For i = 1 : N

Normalize:ωi
k =

ω̂i

k

SUM[{ω̂i

k
}N

i=1]
End

4) Resample procedure
5) Metropolis-Hastings algorithm

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the particle filtering algorithm combined with
the kernel smoothing method is applied to jointly estimate pa-
rameters and state variables via the short time series data used
in the Ref. [34] and shown in Fig. 2. The upper part of Fig. 2
shows the gold immunochromatographic strip’s nitrocellulose
membrane pixel intensity inverse the sample flow direction.
The images are acquired when the sample passes through the
nitrocellulose membrane that consists of 45 equally spaced
time points (from 0 to 11 minutes), 45 images as a time series.
We choosez = [maxpixel(255 − Ipixel) − Pbase]/10 as the
observed value shown in the lower part of Fig. 2, whereIpixel
is the pixel intensity andPbase equals tomaxpixel(255−Ipixel)
of the first out of the 45 images.
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Fig. 2. Upper part: The strip’s nitrocellulose membrane pixel
intensity inverse the sample flow direction; Lower part: Theobserved
value of lateral flow immunoassay biochemical reaction signal

Take

x0 =[5, 6.5, 0, 13, 0, 0]T ,

k0 =[0.03, 0.0001, 0.01, 0.0001, 0.04, 0.0001, 0.04, 0.0001, 2.2]T

as the initial values of the state variables and parameters,
respectively. Furthermore, the positivity constraints onthe
system states are considered in this paper to ensure that the
results are more practical in the real world. Both the identified
parameters and state variables are shown in Fig. 3 and Fig. 4,
which are depicted in the form of time series.

Furthermore, to evaluate the model quality in a quantitative
way, let us introduce the following criterion for the modeling
errors (error ratio in percentage) between the actual and the
model predicted data [25], [32]:

Error ratio = 100×
1

l

l
∑

c=1

[
√

∑s

k=1(yck − ŷck)2
∑s

k=1(yck)
2

]

% (23)

where l is the number of observations (dimension) involved
in the modeling (l=1 in this paper),s is the number of
observations (length), andyck is the actual value forcth
observation at thekth time point. It is calculated that the error
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Fig. 3. The estimated time series of parametersk1, k2, k3, k4, k5,
k6, k7, k8, k9.
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Fig. 4. The estimated time series of statesA, P , PA, R, RA, RPA.

ratio of the proposed algorithm is1.14% through only 45 time
points (images), which indicates that the identified model is
generally satisfactory.

V. CONCLUSIONS

In this paper, we have presented a particle filtering algorithm
by incorporating the kernel smoothing method in order to
model the lateral flow immunoassay state space model through
available but short time-series measurement. The extended
Kalman filter has been chosen as the importance density of
the particle filter and the Metropolis-Hastings algorithm has
been introduced after the resampling step to keep the particles’
diversity. Then, the proposed algorithm has been successfully
applied to identify the parameters and states of the sandwich-
type lateral flow immunoassay model simultaneously. The
simulation results has demonstrated the effectiveness of the
proposed method.
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