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|dentification of Nonlinear Lateral Flow
Immunoassay State Space Models via Particle
Filter Approach

Nianyin Zeng, Zidong Wang, Yurong Li, Min Du and Xiaohui Liu

Abstract—In this paper, the particle filtering approach is used,
together with the kernel smoothing method, to identify the
state space model for the lateral flow immunoassay through
available but short time-series measurement. The lateral dw
immunoassay model is viewed as a nonlinear dynamic stochést
model consisting of the equations for the biochemical reain

instruments (see e.g. [4], [6], [8], [11], [14]). It has been
revealed that the mathematical model plays a very important
role when producing strips with high-sensitivity and lowneo
stant of variance for the purpose of quantification. Esplgcia
an adequate mathematical model allows us to predict kinetic

system as well as the measurement output. The renownedcharacteristics and test the effects of various desigmpeters

extended Kalman filter is chosen as the importance density dhe
particle filter for the purpose of modeling the nonlinear lateral
flow immunoassay. By using the developed patrticle filter, bdi the
states and parameters of the nonlinear state-space modelrche
identified simultaneously. The identified model is of fundarental
significance for the development of lateral flow immunoassay
quantification. It is shown that the proposed particle filtering
approach works well for modeling the lateral flow immunoassa.

Index Terms—Lateral flow immunoassay; particle filter; ex-
tended Kalman filter; state estimation; parameter estimaton.

|. INTRODUCTION

HE lateral flow immunoassay (LFIA), which utilizes th
specific interaction between antigens and antibodies,

been extensively studied in the general area of biomedi %I
engineering and widely applied to a variety of point-ofecar

fields over the past decades, [3], [9], [11], [12], [14], [241d

the references therein. The LFIA has been gaining particu

research attention due primarily to its attractive prapsrsuch

as short analysis time, ease of use, low cost, high semgitiv

good specificity and satisfactory stability [28], [33]. Ratly,
in addition to the traditional trend of physically improgithe

mathematical model of LFIA so as to develop theantitative
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in a both rapid and inexpensive way. Furthermore, such a
model could also enable us to optimize device performance
[26], [27], [34]. Therefore, it is obvious that the progress
mathematical modeling is crucial for facilitating the usagf

the lateral flow immunoassay.

Let us now provide a brief review of latest literature on
the modeling issue of the LFIA. In [26], [27], the convection
diffusion reaction equations have been used to model the
lateral flow immunoassay systems and the simulation has
been carried out by using the COMSOL software. Recently,
a nonlinear dynamic stochastic model has been considered
in [34] for sandwich-type lateral flow immunoassay where
the established model is composed of the biochemical re-
action system equations and the observation equation. In
], the system state equations describe the dynamicseof th
ncentration distribution subject to stochastic distimdes,
and the system measurements are determined in terms of
Fm observation equation containing measurement noises. Th
&tend Kalman filter (EKF) has been designed in [34] which
serves as a suboptimal filter for identifying both the states
and parameters of the nonlinear state-space model. The EKF
algorithm linearizes the nonlinear model by Taylor expansi
and then uses the traditional Kalman filter for the lineatize

._model. Because of its versatility and effectiveness, thd-EK

%l&orithm has been proven to perform well under the assump-
tions that the nonlinearity is linearizable and the noise is
Gaussian. Unfortunately, when the models are highly nealin
and/or noise disturbances are non-Gaussian distribulted, t
EKF algorithm may behave pretty poorly. In the context
of modeling the lateral flow immunoassay, the model to be
established inherently involves high nonlinearities, dnere
is a great need to seek a more appropriate modeling approach
that is capable of handling both the nonlinearities and thre n
Gaussian noises. In search of such a candidate, the particle
filter appears to be an ideal one that can be applied to more
general systems than the traditional Kalman filtering mesho
[5], [10].

Basically, the particle filter is a recursive Bayesian filter
by Monte Carlo simulations. In the past decade, particle
filters have gained much attention with wide applications in
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state estimation problems for nonlinear and/or non-Gaussi The rest of this paper is organized as follows. In Section
system, see e.g. [5], [7], [10], [13]. It is remarkable that, the nonlinear state-space model for the lateral flow im-
particle filters represent the posterior dengify;|z1.x) by a munoassay system is introduced. The particle filters combin
set of random samples (also called particles) with asstiaing with the kernel smoothing method for jointly estimating
weights{(z%,wi),i = 1,..., N}. Thus, it can effectively and system parameters and states are described in Sectiom IlI. |
exactly represent the required posterior density funciien Section IV, our developed algorithm is applied to the ldtera
the number of particles becomes very large. Accordingly, tlilow immunoassay system and the results of joint parameter
particle filter has the great advantage of being able to dighl wand state estimation by the algorithm are discussed. Fjnall
any functional nonlinearity and noise distribution. Howgv concluding remarks are given in Section V.
despite its great potential in modeling biomedical systems
so far, there have been very few results in existing litegatu
with respect to the application of particle filters in jointl
identifying the system states and parameters of the lateraP typical configuration of lateral flow immunoassay, as
flow immunoassay state-space model via short but availa§zown in Fig. 1 [24], consists of a variety of materials such
time series data. It is, therefore, our intention in thiserage @S sample pad, nitrocellulose membrane, conjugate pad and
fill the gap by investigating the use of particle filters in th&vicking pad. The primary antibodies are immobilized within
presence of nonlinearities and short time series. a defined detection zone (test line) on the membrane. The sec-
Applying the particle filtering approach in identifying L&kl ondary antibodies are conjugated with reporter particleh s
state-space model is a non-trivial task. There are seveddl colloidal gold, carbon black, fluorescent, or paramagnet
challenging issues that typically emerge for modellingAg&| Monodisperse latex particle [23]. _
Apart from the high nonlinearities, both the states and pa-'N this paper, we focus on the sandwich format of gold
rameters of the LFIA should be identified simultaneouslPMunochromatographic strip where the reporter partiskesu
Furthermore, a LFIA exhibits a distinct feature that there athe colloidal gold nanoparticles. With the presence of an
only few observations (measurement outputs). That is, tABfigen in the sample, a sandwich-type assay is formed be-
measurements of a LFIA are in the form of high-resolutiofveen the secondary antibody-immobilized gold nanodartic
images, and the number of consecutive images (time serig@jnunocomplex and the primary antibody immobilized on
is usually small because of the physical constraints (a.g. 1€ membrane. After the antigen-antibody reaction, the red
strument limit and experiment cost). To date, much effofPlor caused by the accumulation of gold nanoparticle at
has been devoted to identify the unknown parameters inthgt location would appear on the membrane [23], [28]. The
general nonlinear model by using particle filters. One of tHgolor intensity of the red test line (signal intensity), whni
common strategies is to add the parameters as part of tiee sigfates directly to the concentration of the target proieitne
space vector which, however, would easily lead to the partiStandard or spiked samples, is assessed visually or by arread
degeneration and hence inaccurate estimation [5), [1518h System for quantitative analysis [1].
a dual particle filter has been proposed that use two parti
filters to estimate states and parameters of a nonlinearayst| Lateral Flow Assay Architecture
where such a dual filter can improve the accuracy but su
from significant increases of running time and computatiggElis @Tﬂ’fﬁfgﬁ?ﬂﬁ?ﬂgﬁjeziy (J.i?ééé“ésumgé"iﬂééﬁ?es)
burden. In this paper, the kernel smoothing method develof -
in [2], [5] will be employed to avoid the degeneration prahle
and also handle both the fixed and time-varying paramets
conveniently by tuning the smoothing factor. Sample Conjugate  Nitrocellulose Wicking
In this paper, we aim to develop a particle filtering algarith P ko Meomrene Fad
in combination with the kernel smoothing method in order { ' ! 1 : :
jointly estimate system parameters and states of the latdg
flow immunoassay model through available but short tim
series measurement. The identified lateral flow immunoass
model is proven to be more accurate than the one obtai
from the traditional EKF algorithm. The main contributioh o
this paper is mainly twofold. 1) The particle filter equippe Toitlhe Contlie
with the kernel smoothing method is, for the first time, apgli {Positive) (Valid Test)
to model the lateral flow immunoassay system. The developed
algorithm represents the first of few ones that are capableféf 1. Lateral flow immunoassay architecture.
simultaneously identifying the system parameters anda&ctu
concentration distribution of the lateral flow immunoassay In this paper, for simplicity, we only consider a single t&trg
through an iterative procedure by using a small numbanalyte in the sample. Thus, the biochemical reactions ef th
of observations. 2) It is shown that the proposed particlateral flow immunoassay signal pathway without considera-
filtering approach works well for modeling the lateral flowtion of the control line can be generally summarized as ¥ailo
immunoassay. [26]:

Il. THE LATERAL FLOW IMMUNOASSAY MODEL AND
PROBLEM FORMULATION

I~

/C illary F
i e
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1) Assume that the sample contains a target analyte rates (usually the vector of nonlinear function of the 9tgge],
When the sample migrates through the conjugate padi(k),0) = ko(zs + x¢) is the measurement model function
the analyte interacts with the particulate color particleith 6 being a parameter vector to be identifiad(k) and

conjugateP to form particle-analyte complexd3A, v(k) denote the zero-mean uncorrelated Gaussian noises with
ko covariance matrice®; and Ry, respectively.
A+ P — PA (1)  The main purpose of this paper is to jointly estimate the
2

_ _ parameters and states of the model (9)-(10) via the particle
2) The free analyte in the sample and the particle-analfiger combining with kernel smoothing method from the

complexes both migrate into the membrane by thﬁossibly small number of the measured data.
capillary action. Free analyte of typéA) and particle-

analyte complexes® A interact with the immobilized m

A - . KERNEL-SMOOTHING-BASED PARTICLE FILTERING
ligands of typei(R) to form the complexes,

FOR STATES AND PARAMETERS ESTIMATION

A+R ’“:3 RA (2) In this section, we introduce the particle filters theory as
ka well as the kernel smoothing method for estimating system
ks states and parameters. For more details we refer the readers

PA+R k:e RPA ®) 1o [5], [10], [18] and the reference therein.
3) Additionally, unbound particulate conjugafemay bind
to the complexRA to form the complexRPA, A. Particle Filters
Ky The particle filter is essentially a recursive Bayesianffilte
P+ RA k:s RPA (4) based on Monte Carlo simulations. Particle filters are ciapab

) of dealing with nonlinear and/or non-Gaussian systems in a
Let w1, 22,23, 74,25 and x be the concentration of oonyenient yet efficient way. Consider the following nogtin
A, P,PA, R, RA and RPA, respectively. For demonstrationgiate space system described by state transition and reeasur
purpose, it is assumed that there is no time-delay between thao equations:
biochemical reactions (1)-(4). The rates of the reactioms a

defined as follows: rp = f(Tr—1,wr-1) (11)
v = klafle — kQIg (5) k - h(xk7vk) (12)
vy = ka4 — kazs (6) where k is a non-negative integer;, € R" is the system
. state vectorz, € R” is the observation vector (measurement
v3 = k52374 — k6Te (7

output), andw;, andwvy are independently and identically dis-
tributed noises for the process and measurements, resggcti
whereky, ks, ks, k; andks, ks, ke, ks are the association andHere, f: R — R™ is a nonlinear state transition function and
dissociation rate constants, respectively. The stoicktamfor 7: R™ — R” is a nonlinear measurement function.

the biochemical reaction of the lateral flow immunoassay is From a Bayesian perspective, the aim of the state esti-
given by mation is to infer the probability functiop(zy|z1.,) of the

state 2, given the sequence of all available measurements
-1 -1 o0 0 . . L o
z1.6 = {z1,22,...,2}. Assuming that the initial condition
-1 0 0 -1 p(xolz0) = p(xo) and p(zk_1|21.6.—1) at time k — 1 are
S = 1 0 -10 ) available, the Bayesian estimation infers the posterioisitg

V4 = k7x2T5 — kgxe 8)

0 -1 -1 0 functionp(x|z1.x) in a recursive manner by two steps. Using
8 (1) (1) _11 the transition density one can perform the prediction step:
Let x = [21,79,...,76]%, V = [v1,v2,...,04]T, @and § = p(zx|21-1) = /p<xk|xk_1)p(xk_1|Zl:k_1)d$’“_1 (13)

[k1, ks, ..., ko]T to denote the parameters to be estimated

! e : o ahd update step uses the measuremgntto update the
which are the association and dissociation rate constants Ledicted density:
the vectorV(z(k)). The nonlinear state-space model of th8 Y

lateral flow immunoassay can be given as follows [34]: p(zklzk)p(Tr]21:0-1)

e(k+1) = fla(k),0) +wk) ) _ P(elz1-1)
2k) = gla(k),6) + v(k) (10) \é\gteerzp(zﬂzl:k,l) is a normalizing factor independent of the
I’
where z(k) is the vector of state variables which are con- In theory, the optimal solution to the state estimation
centrations of antibodies, antigens or complex matetigh) problem can be derived by Bayesian filter via the recur-
is the measurement data from experiments at the time paoiahce relations (13)-(14) for the dynamic system. However,
k; f(x(k),0) = SV(xz(k)) with S being a stoichiometric analytical solutions only exist in a restrictive set of case
matrix that describes the biochemical transformation in v@hen the noises are Gaussian distributed and the model is
biochemical network an¥f («(k)) being the vector of reaction linear via the Kalman filtering or grid-based filtering metiso

p(zkl21:k) = (14)
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When these assumptions do not hold, it is almost impossilgesterior distributionp(zo.x|20.x) would be the best option,

to determine the solutions analytically. As such, altduweat but the calculations involved would be extremely difficult

approximate filters such as patrticle filters have been pexpoutside of a linear and Gaussian environment as mentioned

in the literature to approximate the optimal Bayesian sotut above. Another approach is to use the prior distribution
The key idea of particle filtering is to represent the posterip(x|z,—1) with easy implementation, but it does not carry

density p(xk|z1.x) by a set of random samples (also calledny information from new observations which would make the

particles) with associated weighféz},wi),i =1,..., N} : filter degenerates rapidly. Thus, to avoid these problemswh
N using the posterior distribution and the prior distribatias
Pz 210) ~ sz(;(xk — i) (15) the importance density, the suboptimal approximation$éo t
= optimal importance density by using extended Kalman filter

are used in this paper as done in [18]. For this purpose, there

N i irac? i . . .
where}_;_, w;. = 1, and4(x) is Dirac’s delta function that js 5 need to state the Extended Kalman Filter (EKF) algorithm
is equal to infinity ifx = 0 and otherwise zero. Thus, particlezg fol10ws [31]:

filters convert the integral operation into the sum formatio

to compute estimates based on the generated random sampl@sijization
from p(x|21.,) and weights. However, direct sampling from Fork — 0. set
the posterior densityp(x|z1.x) is complex outside of a ’

linear and Gaussian environment. The particle filter adopts #(0]0) = E[z(0)] = =0,

a technique named importance sampling [17] to generate the P(0[0) = E[(2(0) — z0)(z(0) — 20)"] = Py, .
random samples. The main idea of the importance sampling is

to introduce a known probability density functiafizy|z1.x), Fork =1,2,3,... compute

which is called importance density, from which sampiés Time update (‘Predict’)
can be drawn. As such, the importance weights are defined aState estimate time update(k|k — 1) = f(&(k — 1]k —1))

Error covariance time updat®(k|k—1) = A(k—1)P(k—

wh o w (16) 1)k — 1Ak —1)T + Qr_
AN |#1:k Measurement update (‘Correct’)
Letting the importance density be chosen to factorize suchCompute the Kalman gain matrixi, = P(klk —
that DOK)T[C(k)P(kk —1)C (k)T + Ry~

17) Update the estimate with measuremeytk): &(k|k) =

q(xk|z1:) = @(@o:k—1121:0—1)0(Tk|T0:k—1, 21:1), Skl — 1) + K y(K) — gkl — 1)

the recursive formula for the importance weights is obtdine Error covariance measurement updafe(k|k) = (I —
as follows Ky C(k))P(k|k — 1).
Wi X W1 (18) The second method for reducing the degeneration phe-

q(} w1, 2k) . . . .
_ _ _ nomenon is to use the idea of resampling. The resampling
Therefore, one can obtain particleg,, = {z,_;,2;.} approach has been used in [19] to eliminate particles with lo
by augmenting each of the existing sampleg, ; ~ weights and choose more particles in more probable regions.
q(zo:x-1]21:6-1) With the new states), ~ g(zx|zo:k-1,21:6)- A new set{#],j = 1,.., N} is generated by sampling with
With these particles and associated importance weightsicalreplacement from an approximate discrete representafion o
lated by Eqn.(18), the estimated state veciqr, is the mean p(wo.t|y1.¢) with probability Pr(#] = xi) = w;i- Although

of p(zx|z1.1) and is calculated as there are variants of the resampling algorithm, we use multi
N mial resampling [21] in this paper because of its simplieity
B = Zwiﬂi (19) effectiveness. Therefore, on condition that the total neind$

=1 particles remains taV, particles with high weights will be

duplicated several times and are assigned with equal weight
B. Degeneracy Problem of Particle Filters 1/N.

The algorithm of particle filter described above has a degen-The resampling step does reduce the effects of the degen-
eracy problem where, after a few iterations, the weight ly on€racy problem, but it also has a drawback: the particles with
concentrated on a few particles (most particles have ribigig high weights are duplicated several times after resampling
weight). Thus, a large computational effort is devoted tand this would result in a loss of diversity. To overcome such
updating particles whose contribution to the approxinratm & drawback, an additional step has been introduced, called
p(zx|z1.1) is almost zero. Therefore, it is necessary to modifyletropolis-Hastings (MH) algorithm [10], [20], which is a
the algorithm to assure that degeneration of the particiés wMarkov chain Monte Carlo procedure for generating a se-
not take place. In this case, two additional practical tegpines duence of samples from probability distribution. By chogsi
have been introduced: a) good choice of importance dendii¢ Probability distributionr(x), the algorithm is implemented
and b) resampling method [10]. by the following steps:

A good choice of importance density is critical to the 1) Generate the rand data from uniform distribut{oni],
performance of the particle filter method. Theoreticalhg t v~ UJ0,1]
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2) Sampler; from the proposal density;; ~ q(a:;;|x§j)) IV. EXPERIMENTAL RESULTS AND DISCUSSION

3) Ifv < Inin{l %f‘”ﬁ(kf , acceptz’; else reject  Inthis section, the particle filtering algorithm combineitiw
(@ awglzy”) the kernel smoothing method is applied to jointly estimate p

rameters and state variables via the short time series dath u
in the Ref. [34] and shown in Fig. 2. The upper part of Fig. 2
shows the gold immunochromatographic strip’s nitrocetel
membrane pixel intensity inverse the sample flow direction.

In this paper, the Kernel smoothing method is used fthe images are acquired when the sample passes through the
estimate the unknown parameters of the system. As discussétpcellulose membrane that consists of 45 equally spaced
in [2], [5], [22], by using the Kernel smoothing method, thdime points (from 0 to 11 minutes), 45 images as a time series.
problems of covariance increase and performance deg@rerayVe choosez = [maxpixe1(255 — Ipixel) = Poase]/10 as the
could be avoided when using the strategy of adding tiedserved value shown in the lower part of Fig. 2, whfg.
parameters as part of the state space vector. Furthermigéhe pixel intensity and,... equals tanaxpixel (255 — Ipixel)
this method can deal with both the fixed and time-varyingf the first out of the 45 images.
parameters conveniently by tuning the smoothing factor. Fo
this method, the true posterior distribution is represeg

*
Ty

C. Kernel Smoothing for Parameters Estimation

200

N

POklz1:6-1) = Y wi 1k (BkImi_1,05 1) (20)
=1

100

Pixel intensity

o
=)

wherem!_, ando2,_, are the mean and covariance of thi ‘ ‘ ‘ ‘ ‘

.k 1 . 9,]6 1 . 2 . 0D 50 100 150 200 250 300

kernel distributionx (6, |mt_,,o05, ), respectively. Further- Location
k—1>70,k—1

more, to ensure that the sampling points at timandk — 1

have the same mean and variance, a shrinkage methoc

applied as follows:

i (V1—h2)6 |+ (1 —+/1—h2)b_,(21)

N

h? Z( 1= Ok1) wi (22) il

12

10F

E
T
I

Observed value

9
pw
x>
|
N
Il

. 0 Il Il Il Il Il Il Il Il
=1 0 5 10 15 20 25 30 35 40 45
No. of timepoints, k

wheref,_, = Z 0i_,wt | is the mean of parameters at timerig. 2. Upper part: The strip's nitrocellulose membrane pixel

intensity inverse the sample flow direction; Lower part: Dhserved
k—1andh is the smoothing factor. If the parameters to b@alue of lateral flow immunoassay biochemical reaction align

estimated are known a prior to be time-invariahtshould
be set to a small positive value (e@.< h < 0.2). On the
other hand, if the parameters are expected to be time-\@ryin Take
h should take a value close fo zo =[5,6.5,0,13,0,0]7,

To summarize the above discussion, the pseudo codekof [0.03,0.0001, 0.01, 0.0001, 0.04, 0.0001, 0.04, 0.0001, 2.2]”
particle filter algorithm incorporating kernel smoothingr f
state and parameter estimation in this paper is describedagsthe initial values of the state variables and parameters,

follows: respectively. Furthermore, the positivity constraints the
system states are considered in this paper to ensure that the
1) For i=1:N results are more practical in the real world. Both the idesti
Draw 6i from Gaussian distribution parameters and state variables are shown in Fig. 3 and Fig. 4,
k(Bkmi_ 02, ) which are depicted in the form of time series. o
Dr aw fromi nport ance density based Furthermpre, to evaluate the_mode] qgallty ina quantmgtlv
ext ended Kal man filter way, let us introduce the following criterion for the moahi
Assi gn wei ght ! errors (error ratio in percentage) between the actual aad th
End model predicted data [25], [32]:
2) Calculate total weight:t=SUM[{w:}}¥ 2
3) For i=1:N , Heh= Error ratio = 100 x —Z l Driz Yok — Do) 1% (23)
Nor mal i ze: “%W&}m 2 e (Yer)?
End . where! is the number of observations (dimension) involved
4) Resanpl e procedure in the modeling (=1 in this paper),s is the number of
5) Metropolis-Hastings al gorithm observations (length), ang.; is the actual value forcth

observation at théth time point. It is calculated that the error
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Fig. 3. The estimated time series of parameters k2, ks, k4, ks,
ke, k7, ks, k9. [7]

(8]

[9]
g [10]
£ [11]
£ N
8 ° )
é \\g\ A AADAADELELAE P
af Xy ottt [12]
) Tt L
Al = ”\‘E—é—ﬁ»ﬁfﬁ»j‘;,% S——
B [13]
Ob 5 10 15 2‘0 2‘5 3‘0 3*5“ ;109 = 4."":
No. of timepoints, k [14]
Fig. 4. The estimated time series of statésP, PA, R, RA, RPA. (1]
ratio of the proposed algorithm is14% through only 45 time [16]
points (images), which indicates that the identified model i
generally satisfactory. [17]
[18]

V. CONCLUSIONS

In this paper, we have presented a patrticle filtering algorit
) : ! . 19]

by incorporating the kernel smoothing method in order t[o
model the lateral flow immunoassay state space model through
available but short time-series measurement. The extend®d
Kalman filter has been chosen as the importance density of
the particle filter and the Metropolis-Hastings algorith@ssh [21]
been introduced after the resampling step to keep the |e'tic
diversity. Then, the proposed algorithm has been sucdlgssfqzz]
applied to identify the parameters and states of the samdwic
type lateral flow immunoassay model simultaneously. The
simulation results has demonstrated the effectivenes$ief [23]
proposed method.
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