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SUMMARY

In many environmental epidemiology studies, the locations and/or times of exposure measurements and
health assessments do not match. In such settings, health effects analyses often use the predictions from
an exposure model as a covariate in a regression model. Such exposure predictions contain some measure-
ment error as the predicted values do not equal the true exposures. We provide a framework for spatial
measurement error modeling, showing that smoothing induces a Berkson-type measurement error with
nondiagonal error structure. From this viewpoint, we review the existing approaches to estimation in a
linear regression health model, including direct use of the spatial predictions and exposure simulation,
and explore some modified approaches, including Bayesian models and out-of-sample regression cali-
bration, motivated by measurement error principles. We then extend this work to the generalized linear
model framework for health outcomes. Based on analytical considerations and simulation results, we com-
pare the performance of all these approaches under several spatial models for exposure. Our comparisons
underscore several important points. First, exposure simulation can perform very poorly under certain
realistic scenarios. Second, the relative performance of the different methods depends on the nature of
the underlying exposure surface. Third, traditional measurement error concepts can help to explain the
relative practical performance of the different methods. We apply the methods to data on the association
between levels of particulate matter and birth weight in the greater Boston area.
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1. INTRODUCTION AND SCIENTIFIC MOTIVATION

Exposure assessment studies have shown that there exist important factors, such as traffic conditions,
point sources of pollution, and urban building canyon effects, that induce spatial variability in pollution
levels. With the advent of geographic information system (GIS)-based modeling, researchers have begun
to focus on spatial variability in air pollution and its relationship with human health (Berhane and others,
2004; Zidek and others, 2004; Kunzli and others, 2005; Gryparis and others, 2007). Such spatial analyses
have several advantages over studies that assign exposure readings from a central-site monitor to all study
participants. First, spatial analyses do not assume that exposure is constant over the region of interest,
thereby reducing exposure measurement error that would otherwise lead to a loss of power. Second, in the
case of chronic diseases, analyses rely primarily on exposure heterogeneity induced by spatial variability.
Finally, it is now widely recognized that air particulates are a complex mixture of multiple sources of
pollution, with pollution from each source having a distinct chemical profile and perhaps different toxicity.
Because pollutants from different sources have different spatial distributions, with regional pollutants (e.g.
sulfates from coal-fired power plants) being more homogeneous over space and local sources (e.g. black
carbon [BC] from traffic emissions) demonstrating higher spatial variability, incorporation of the spatial
variability of local pollutants in a health effects analysis may help separate health effects from different
sources.

In many such studies, the locations of the exposure data and those of the health data do not coincide.
Standard regression methods cannot be applied to such misaligned data. To overcome this problem, sev-
eral methods have been proposed. Most approaches involve directly using predictions from statistical
exposure models that incorporate spatial structure (Shaddick and Wakefield, 2002; Kunzli and others,
2005; Gryparis and others, 2007). Higgins and others (1997) used polynomial regression to generate
covariate predictions when outcomes and covariates were misaligned in time. Waller and Gotway (2004)
used kriging to predict exposures and used resampling to account for the uncertainty in using the
predictions in place of the true values. They classified predicted exposures as high, medium, or low
and fitted multiple health regressions using the simulated categorical exposures as covariates. Kunzli
and others (2005) assigned exposure values for subject-specific locations derived from a geostatistical
model and used weighted least squares in the subsequent health effects model, with the weights speci-
fied as the inverse of the standard errors (SEs) from the exposure kriging model. For this same problem,
Madsen and others (2008) considered both a generalized least squares (GLS) estimator with a bootstrap-
type variance estimator and a maximum likelihood approach that jointly fits the exposure and health
models.

In this paper, we evaluate and compare approaches to fitting linear and logistic health models with
predicted exposures, including approaches specifically suggested for this setting as well as several mod-
ified approaches motivated by measurement error principles. We first use a very simple linear model to
illustrate measurement error issues associated with spatially misaligned exposure and health point data.
This simple structure is instructive in demonstrating the relative strengths and weaknesses of the various
methods proposed for dealing with this type of data, which commonly arises in chronic and within–urban
area studies of the health effects of air pollution. We then consider nonlinear models under the generalized
linear model framework, focusing on logistic regression.

The structure of this paper is as follows. In Section 2, we introduce our notation. In Section 3, we
discuss how smoothing converts classical measurement error to Berkson error and the implications of
this. In Sections 4 and 5, we describe and analytically evaluate the multiple approaches to the problem
for continuous and binary outcomes, respectively. In Section 6, we present a simulation study to further
compare the methods. In Section 7, we describe an application of the methods to data on the association
between traffic particle levels and birth weights in the greater Boston area. We conclude with discussion
in Section 8.
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2. MODELING FRAMEWORK

To introduce our notation, let X be the vector of the true exposures and W be the vector of its error-
prone, but not misaligned, measurements. Moreover, let S be the vector of smoothed estimates of X based
on W, U = W − X the vector of measurement errors, V = X − S the vector of the error after the
smoothing procedure, and Y the health response. Let (·)∗ indicate the values at locations without exposure
observations; for example, Y∗ is the vector of health observations at locations without exposure data.

In what follows, we assume that Y ∗
i given X∗

i and Z∗
i are independent random variables having a

distribution in the natural exponential family (McCullagh and Nelder, 1989). Let µ∗
i = E(Y ∗

i |X∗
i , Z∗

i ).
We assume the following model holds:

g(µ∗
i ) = β0 + β1 X∗

i + βββzZ∗
i , i = 1, 2, . . . , ny, (2.1)

Wi = Xi + Ui , where Ui ∼ N (0, σ 2
u ), i = 1, 2, . . . , nw, (2.2)

where g(x) is a monotonically increasing link function, β1 and βββz are unknown parameters, and the mea-
surement errors Ui are independent of Y ∗

i given X∗
i and Z∗

i . In the above equation, X∗
i is the exposure (e.g.

air pollutant level) at the residence of the i th subject, over some biologically relevant period of interest,
and Z∗

i is a q × 1 vector of covariates measured without error. In this work, we treat X as correlated in
space although in spatiotemporal settings X could also be serially correlated over time. Wi represents an
exposure measurement, which may or may not differ from Xi , depending on whether or not instrument
error is present. In the misalignment scenario, the variable X = (

X1, X2, . . . , Xnw

)T is measured with er-

ror by W = (
W1, W2, . . . , Wnw

)T at different points in space than the variable Y∗ = (
Y ∗

1 , Y ∗
2 , . . . , Y ∗

ny

)T .

Hence, to estimate exposure, we obtain smoothed predictions S∗ = (
S∗

1 , S∗
2 , . . . , S∗

ny

)T of the unobserved

X∗ = (
X∗

1, X∗
2, . . . , X∗

ny

)T from an exposure model. Scientific interest then focuses on β1, the regression
coefficient relating exposure and health.

An important aspect is the nature of the error in the stochastic exposure process. We decompose the
process as (

X
X∗

)
= g + δδδ,

where g(·) represents a smooth spatial surface and δδδ(·) is an additive uncorrelated error with variance σ 2
δ

that accounts for fine-scale heterogeneity in the exposure. In this case, the measurement error U represents
instrument error. Unless multiple measurements at a given site and time are available, one cannot resolve
the fine-scale heterogeneity δδδ in the presence of U as the model cannot inform both σ 2

u and σ 2
δ (Cressie,

1993, p. 59). In air pollution studies, we believe that most of the unexplained variability is fine-scale
heterogeneity and not instrument error, such that σ 2

u ≈ 0 and Var(δi + Ui ) ≈ σ 2
δ .

3. SMOOTHING-INDUCED BERKSON ERROR

In this section, we argue that the plug-in approach that uses smoothed predicted values of exposure as
covariates in a health effects model is a form of regression calibration that produces a Berkson structure
(Carroll and others, 1995) in the health model. Exposure estimates most often are generated using one of
the many approaches to spatial smoothing, such as kriging and its extensions (Cressie, 1993), Gaussian
process (GP) modeling and Bayesian smoothing (Gaudard and others, 1999; Banerjee and others, 2004),
penalized regression splines (Kammann and Wand, 2003; Ruppert and others, 2003; Gryparis and others,
2007), and kernel smoothing (Hobert and others, 1997), among others. For concreteness, consider a
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Bayesian framework in which we place a GP prior on X(·): X(·) ∼ GP[µµµ(·), R(·)]. Hence,(
X
X∗

)
∼ N

[(
µµµ1
µµµ2

)
,

(
R11 R12
R21 R22

)]
.

The interim posterior (before any health analysis) for the conditional distribution of X∗ given W is

X∗|W ∼ N (µµµ2 + R21(R11 + σ 2
u I)−1(W − µµµ1), R22 − R21(R11 + σ 2

u I)−1R12). (3.1)

In a measurement error framework, the interim posterior mean takes the form of a regression calibrator,
representing the mean of the unobserved covariate given the observations W. As all regression calibrators
do, use of this estimator turns around the conditioning and yields a Berkson framework whereby the
distribution of an unknown value X∗

i is centered around the posterior mean, as shown in (3.1). The term

multiplying W in (3.1) is the spatial analog of σ 2
x

σ 2
u +σ 2

x
, which is the familiar correction factor in the simplest

independent measurement error setting, but the covariance accounts for the spatial covariance structure.
Assuming the covariance structure is known, then as in a standard Berkson model, the ordinary least
squares (OLS) estimator based on a regression model using E(X∗

i |W) as a covariate is unbiased. We can
write

X∗
i = E(X∗

i |W) + V ∗
i , (3.2)

where V∗ = (
V ∗

1 , V ∗
2 , . . . , V ∗

ny

)T has mean zero and variance–covariance matrix ���∗ equal to the posterior
variance given above. For a given degree of smoothing, other smoothers should give a similar decompo-
sition. That is, if the data are really generated from a GP with known variance components and we use
the best linear unbiased predictors (BLUPs) for our exposure predictions, then the Berkson error analogy
holds exactly. However, in reality, the data do not come from a GP with known variance components, and
so this analogy does not hold exactly. Other smoothing techniques will create a structure analogous to
Berkson error in that the smoothed predictions will have a smaller variance than the observed data and
the covariance of V ∗

i and E(X∗
i |W) will be small. Thus, the analytic results obtained in the simple GP

setting for which exact results exist lend insights into the likely performance of predictions obtained by
other smoothers generally. For instance, the kriging estimator is the BLUP of X∗ and is equivalent to (3.1).
Similarly, estimated smooths from regression splines, including spatial smoothing, are also BLUPs within
a mixed model framework (Ruppert and others, 2003). Thus, each approach will approximately produce
a decomposition X∗ = S∗ + V∗, in which V∗ is orthogonal to S∗, as in (3.2). For an empirical example
of such structure, see Paciorek and others (2008). In the case of spatial smoothing, with X∗ = S∗ + V∗,
note that the residual term, V∗, does not have a diagonal covariance structure. The uncertainty in X∗, as
captured by the covariance matrix ���∗ = Var(X∗|W), is spatially correlated and heteroscedastic. Note that
���∗ should include any component σ 2

δ but not σ 2
u .

For the general health model (1), even when the variance components of the spatial exposure
process g(·) are known, standard approaches to estimation do not yield unbiased estimates of β1
(Carroll and others, 1995). However, closed-form expressions for this bias under the most general form
of this model are unavailable, except for certain special cases. We now focus on 2 such special cases in
the following 2 sections.

4. LINEAR HEALTH EFFECT MODEL

We now consider the special case of (2.1) when Y ∗
i is normally distributed. Interest focuses on the linear

regression model

Y ∗
i = β0 + β1 X∗

i + βββzZ∗
i + εi , where εi ∼ N (0, σ 2

ε ), i = 1, 2, . . . , ny . (4.1)
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We assume the errors, εi , are independent of the measurement errors, Ui . The remainder of this section
describes 2 existing approaches, a plug-in estimator and an exposure simulation, as well as 2 approaches,
regression calibration and Bayesian methods, drawn from the measurement error literature but not yet
applied in the spatial setting. Section 6 compares these approaches in a simulation study. We also con-
sidered 2 other approaches, standard weighted least squares and an iterative GLS method, but relegate
discussion of these to Section A of the supplementary material to this article, available at Biostatistics
online at http://www.biostatistics.oxfordjournals.org.

4.1 Plug-in approach

The plug-in approach fits the exposure model for [X∗|W] and uses the predictions S∗ as a covariate in
the health model, which is fitted using OLS. By using S∗ instead of X∗ in the health model, we induce
correlation: Y∗ = β0 + β1X∗ + εεε = β0 + β1(S∗ + V∗) + εεε = β0 + β1S∗ + ηηη, where ηηη = β1V∗ + εεε. The
new error term ηηη no longer has a diagonal covariance matrix. Thus, although the OLS estimator for β1 is
unbiased, the variance estimator is incorrect since it does not account for the correlated, heteroscedastic
error structure (Carroll and others, 1995, p. 63). To address this, one could use GLS to account for the
induced covariance in the health model. Although it seems intuitive to use the uncertainty estimates from
the exposure model (i.e. the elements of the diagonal in ���∗) as the weights for the health model via
simple weighted least squares, these are not the correct weights under the induced Berkson model. Since
ηηη = β1V∗ + εεε and εεε ∼ N

(
0, σ 2

ε Iny

)
, it follows that the residual variance for the health model is given by

β2
1���∗ + σ 2

ε Iny .
In practice, the variance components or smoothing parameters are not known, and we must estimate

the parameters that govern the degree of smoothing. If we over smooth, the OLS estimator from the health
model may be biased (Wakefield and Shaddick, 2006), with more bias occurring in situations in which it
is difficult to estimate the appropriate amount of smoothing in the exposure model. Such scenarios include
sparse monitoring data in a subregion or exposures that are very heterogeneous in space. Bias can also
occur if the residual, V∗, is correlated with confounders, Z∗, in the health model, such as might result from
correlation of confounders and exposure at small spatial scales.

4.2 Exposure simulation approach

Some have proposed an exposure simulation approach as an attempt to correct the variance of the plug-in
estimator. Under this approach, M samples X∗

(t) = S∗ + V∗
(t), t = 1, 2, . . . , M , are generated from the

estimated distribution of exposure, given the data, and each of these M samples is used as a predictor to fit
the health model. This yields M health effect estimates, β̂1(t), t = 1, 2, . . . , M , which are then averaged
to obtain an overall estimate. The corresponding variance of β̂1 is equal to Var(β̂1) = Var(E(β̂1(t))) +
E(Var(β̂1(t))). Although Waller and Gotway (2004) used quantiles of simulated exposures, we consider
direct use of the simulated exposures in the health model.

A simple analysis based on the Berkson framework we presented in Section 3 (supported by the results
of our simulations in Section 6) indicates that rather than adjusting for the uncertainty induced by using
the predicted exposures, such an approach induces bias in a linear health model. To illustrate, consider
the samples X∗

(t) = S∗ + V∗
(t), t = 1, 2, . . . , M . We have argued that the use of S∗ should result in

nearly unbiased health effect estimators. By adding V∗
(t), one adds error to a variable that, if used on its

own, yields unbiased estimates in the health model. Hence, this approach converts the problem back to
the classical measurement error setting, where instead of using a covariate that yields unbiased results,
measurement error in the covariate produces biased estimates. The size of the bias depends on the size
of ���∗. Therefore, we recommend against this approach. One can also view this problem from a multiple
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imputation perspective, where an appropriate exposure simulation scheme should take into account all
available data and hence resample from the posterior predictive distribution of [X∗|W, Y∗] (Rubin, 1987).
By using the conditional distribution [X∗|W], we discard the information for X∗ in Y∗, resulting in an
incorrect imputation scheme.

4.3 Out-of-sample regression calibration estimator

In many cases, it may be that spatial smoothing results in S∗ being a biased estimate of the unknown ex-
pectation E(X∗|W). Departure from the simple X = S+V measurement error model may occur for several
reasons, including poor estimation of the smoothing parameters and sparse exposure data in regions with
health data.

Let (·)∗∗ indicate the values at locations where exposure is observed but held out of the main model
fitting for assessing model prediction. Hence, X∗∗ is the vector of exposure measures that are held out
from the exposure model, S∗∗ the smoothed estimates that correspond to these locations based on the
remaining exposure data, and Z∗∗ is the matrix of covariates measured without error that correspond to
these locations. We use the held-out data to fit a calibration of X∗∗ to S∗∗ and Z∗∗. We assume a simple
measurement error model, in the spirit of Carroll and others (1995), of the form:

X∗∗
i = γ0 + γ1S∗∗

i + γγγ T
z Z∗∗

i + εx,i , (4.2)

where E(εx,i ) = 0 and Var(εx,i ) = σ 2
x . By fitting model (4.2), we obtain the parameter estimates γ̂γγ =

(̂γ0, γ̂1, γ̂γγ
T
z )T , which we use to calibrate the predicted exposures S∗ at the locations of interest. Hence,

this method is an out-of-sample regression calibration (RC-OOS) approach, which has been described
by Thurston and others (2003) in the context of a study design that corrects for measurement error by
incorporating external validation data. In our case, we use it to correct for possible bias in our predictions.
Define the matrices

γγγ =
⎛⎝ 1 γ0 01×q

0 γ1 01×q

0q×1 γγγ z Iq×q

⎞⎠ with γγγ −1 =
⎛⎝ 1 −γ0/γ1 01×q

0 1/γ1 01×q

0q×1 −γγγ z/γ1 Iq×q

⎞⎠ .

Then, using (4.2), we have that E(X∗
i ) = γ0 + γ1S∗

i + γγγ T
z Z∗

i . We replace (γ0, γ1, γγγ z) by (̂γ0, γ̂1, γ̂̂γ̂γ z) and
then calculate new estimated exposures, X̂∗

i = γ̂0 + γ̂1S∗
i + γ̂̂γ̂γ zZ∗

i , which we plug into the health model.
This is equivalent to estimating β̂̂β̂β = γ̂̂γ̂γ−1β̂̂β̂βplug-in, where βββ = (β0β1βββ

T
z )T and β̂̂β̂βplug-in is the estimate from

the plug-in model. It can be shown (Thurston and others, 2003) that the corrected βββ estimate is equal to

β̂̂β̂β = γ̂̂γ̂γ−1(D∗T D∗)−1D∗Y, (4.3)

where D∗ = [1|S∗|Z∗] and 1 is a vector of 1s. The variance of β̂̂β̂β can be derived using either the sandwich
method or a Taylor series expansion (Thurston and others, 2003). Both methods result in

Var(β̂̂β̂β) = γγγ −1[β2
1σ 2

x (D∗∗T D∗∗)−1 + σ 2
ε (D∗T D∗)−1](γγγ −1)T . (4.4)

In practice, especially if the number of exposure locations is not large enough to support holding out a
sizable subset of locations, one could consider cross-validation to estimate the predicted exposures S∗∗

i ,
although simulation studies we conducted (results not shown) indicate that this approach does not perform
as well as out-of-sample validation.
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4.4 Bayesian approaches

In the fully Bayesian approach, one fits a joint model for the health and the exposure data. A fully Bayesian
measurement error model adjusts in a natural way for the extra uncertainty associated with using the
predicted exposure values in the health model and provides us with a correct variance estimate (Berry and
others, 2002). Also, heteroscedasticity and correlation among exposure values are naturally incorporated
in a Bayesian model through the uncertainty in X∗. The fully Bayesian model samples from the distribution
[X∗, βββ|Y∗, W, Z∗]. Thus, in this model, when we update the unobserved exposure X∗, we use information
from the health data Y∗ along with that from the proxy W, which results in a proper multiple imputation
scheme (Little, 1992).

In practice, we expect the number of exposure monitoring locations to be relatively small compared
to the locations from which we have health data. In such cases, the health data could be very influen-
tial in determining the exposure predictions (Shaddick and Wakefield, 2002; Wakefield and Shaddick,
2006). If there are outliers in the health outcomes, especially if they correspond to locations for which we
do not have adequate exposure information, then they could strongly affect the exposure surface. Other
forms of model misspecification in either the exposure or the health model could also result in the expo-
sure surface being overly influenced by the health observations, a situation similar to that in Yucel and
Zaslavsky (2005) and for which the approach of “cutting feedback” has been suggested (Rougier, 2008).
Poor estimation of the exposure surface could in turn affect estimates of the health effects.

An alternative to the fully Bayesian approach is a 2-stage Bayesian approach. In this approach, the
first-stage model is the exposure model [X∗|W] ∝ [W|X∗][X∗] and the second-stage model is the health
model [X∗, βββ|W, Y∗, Z∗] ∝ [Y∗|X∗, W, Z∗, βββ][X∗|W][βββ], where we use the interim posterior from the ex-
posure model [X∗|W] as a prior distribution for X∗ in the health model. The main difference between the 2
Bayesian approaches is that in the 2-stage Bayesian approach, we use a normal distribution for the interim
posterior of X∗ and numerically estimate its covariance matrix, whereas the fully Bayesian approach uses
the exact version of this distribution by virtue of fitting the models jointly. The difference between this
approach and the plug-in model is that the prior for X∗ in the health model, which is the posterior for X∗
from the exposure model, accounts for the uncertainty in X∗, including correlation and heteroscedasticity.
We note that this 2-stage approach does not cut feedback between the health observations and the expo-
sure estimates since the prior distribution for the exposure values is updated in the second stage. When
the exposure model is complicated or when one is interested in running multiple epidemiological models,
with different sets of covariates either for a single outcome or multiple outcomes, this 2-stage approach
has the advantage that one does not have to refit the exposure model when running multiple health effect
analyses.

5. GENERALIZED LINEAR MODELS FOR BINARY HEALTH OUTCOMES

Interest may also focus on the use of exposure predictions from spatially misaligned exposure data in
generalized linear models for discrete outcomes (e.g. a binary or a count variable). Again, consider the
Berkson error structure X∗

i = E(X∗
i |W) + V ∗

i . Unlike the linear regression case, even under the correct
amount of smoothing (e.g. if the variance components of the spatial exposure process are known), model
fitting under this Berkson error structure does not yield unbiased estimates of β1 (Carroll and others,
1995). Although it is difficult to obtain analytical expressions for the bias, closed-form expressions are
available for certain special cases.

First, for simplicity, suppose the V ∗
i are uncorrelated and homoscedastic. For a probit model for binary

responses, the model based on the mean of the estimated exposure given the observed data is

pr(Y ∗
i = 1|W, Z∗

i ) = �

[
β0 + β1 E(X∗

i |W) + βββzZ∗
i

(1 + β2
1σ 2

v )1/2

]
, (5.1)
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where σ 2
v is the variance of V ∗

i . Therefore, the plug-in estimator obtained by fitting pr(Y ∗
i = 1|W, Z∗

i ) =
�[β0 + β1 E(X∗

i |W) + βββzZ
∗
i ] can yield bias, although the denominator on the right-hand side of (5.1)

suggests that this bias will be small unless both σ 2
v and β1 are relatively large. Bias expressions in the anal-

ogous logistic model are typically approximated using the approximate relationship between the logistic
and probit links (Carroll and others, 1995, (7.16)). When the V ∗

i are heteroscedastic and correlated (as is
the case for spatially misaligned data), even in the probit case, the marginal distribution of [Y∗|W, Z∗]
involves an intractable multivariate probit integral. See Ochi and Prentice (1984) for a discussion of this
issue for an equicorrelated multivariate probit model and Chib and Greenberg (1998) and De Iorio and
Verzilli (2007) for Bayesian approaches to this problem.

6. SIMULATIONS

To compare the different methods, we performed a simulation study. For each scenario, we used N = 500
simulated data sets. For each data set, we used the geocodes of the nw = 82 monitoring stations used
in a recent Boston study (Gryparis and others, 2007) as the fixed exposure locations. We generated our
exposure measurements, W, with no instrument error U, using W = X = g+δδδ, with g ∼ N (µ1, R(ρ, ν)),
where for R we used the Matérn correlation function. Specific parameter values depended on the exposure
scenario, which we describe shortly. For the local heterogeneity δδδ, we assumed a mean-zero normal distri-
bution with i.i.d. errors, σ 2

δ Inw . We considered both continuous and binary outcomes, discussed separately
in Sections 6.1 and 6.2.

6.1 Continuous outcomes

As noted in Section 4.4, the number of subjects on which health outcomes are measured is typically
larger than the number of the exposure locations. Hence, for the linear model, we set ny = 200. For the
distribution of the health data, Y∗, we assume Y∗ ∼ N

(
β0 + β1X∗, σ 2

ε Iny

)
. We set β0 = 0 and β1 = 1

for all scenarios except the last, in which we set β0 = β1 = 0 in order to check the type-I error of
each approach. We also ran simulations assuming incrementally smaller values of β1, but the relative
performances of the various approaches remained the same as that reported below and the relative bias
changed little with different effect sizes (not shown). The assumption of independent health errors implies
that the only component responsible for spatial autocorrelation of the health outcome is the exposure.

We considered 4 exposure scenarios. Scenario A corresponds to a very smooth surface, Scenario B
a moderately smooth surface, while Scenario C (the roughest surface) is much more heterogeneous and
therefore quite challenging to estimate. Figure 1 shows one realization of the true exposure surface, X,
obtained from each of the above scenarios. Scenario D is the same as Scenario C, except exposure is
not causally related to health (β1 = 0). More details on the simulations are given in Section B of the
supplementary material available at Biostatistics online.

We used the methods described in Section 4 to fit the data sets generated under the above scenarios.
First, we applied the plug-in approach, estimating the smooth exposure surface using the spm function
in the SemiPar package (Wand, 2008) in R. This function uses a mixed model representation of penali-
zed regression splines, described in more detail in Section C of the supplementary material available at
Biostatistics online. The degrees of freedom for the spatial component was chosen by the default method,
restricted maximum likelihood. Second, we considered the exposure simulation approach, we fitted the
exposure model using a Bayesian framework, and then we sampled 100 realizations from the posterior
distribution of the exposure. We then fitted 100 health models and used as the health effect estimate the
mean of the parameter of interest, β̂1 = ∑100

t=1 β̂1(t). For each data set, we used the normal approximation,

β̂1 ± 1.96
√

Var(β̂1), to calculate the confidence interval (CI), with Var(β̂1) defined in Section 4.2. Next,
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Fig. 1. Realizations of the true smooth exposure surface g(·) for simulation scenarios A, B, and C, on the [0, 1] × [0, 1]
grid.

we fitted the fully Bayesian and the 2-stage Bayesian approaches, integrating the unobserved exposure
(X, X∗) out of both models to improve mixing. For all Bayesian approaches, we report the results for the
most common choice for prior distributions, which are vague but proper inverse-gamma(0.01,0.01) pri-
ors for all variance components and N (0, 1000) priors for all regression coefficients. Because the vague
inverse gamma prior has some undesirable characteristics (Gelman, 2006), we also ran the simulations
using Unif(0,1000) priors for the variance components. This change produced a negligible effect on the
results, and so we do not report them here. We examined convergence of the algorithms using both graph-
ical and formal approaches (Cowles and Carlin, 1996) for a random subsample of the 500 data sets. We
also applied the RC-OOS approaches. For the latter, we used a simulated external data set with 40 obser-
vations to estimate γγγ . For each simulated data set and for each approach, we calculated estimates of β1
and the model-based SE. We report the estimated bias, average model-based SE, the Monte Carlo standard
deviation, the mean square error (MSE), and the coverage of the 95% CIs or credible intervals.

Table 1 shows the results from the 500 simulations. These results show that when the exposure is
relatively smooth (Scenario A), all methods perform reasonably well. The bias of the plug-in estimator
increases as the exposure surface becomes more heterogeneous, and the resulting CIs do not provide
satisfactory coverage due to the fact that this estimator does not account for the uncertainty associated with
exposure estimation. In the more challenging scenarios, the exposure simulation approach performs very
poorly. The resulting estimator is highly biased, and its MSE is large. The RC-OOS approach performs
relatively well under all scenarios considered. This estimator incurs small bias, and the resulting CIs yield
good coverage probabilities for the true parameter. We note that for this scenario, we excluded one data
set from the results, for which we had an extremely low estimate for β1.

The fully Bayesian approach performed very well. This is the only approach presented where the
exposure model and the health model are fitted simultaneously, and hence there is feedback between
the health and the exposure data. Since we have sparse exposure data, ny > nw and σ 2

ε > σ 2
u , some

influential health observations could produce anomalies in which the estimate of the spatial surface is
spurious, driven solely by the health model, as discussed in Section 4.4. In our simulations though, we did
not observe any such distortion and the fully Bayesian model performed very well, even for the roughest
exposure surface. In addition, the 2-stage Bayesian fits approximated the full Bayes results very well for
all scenarios.

6.2 Binary outcomes

Due to the lack of closed-form results for generalized linear models for discrete responses, we extended
the simulation study to this setting. Because georeferenced binary outcomes (e.g. mortality, low birth
weight) are more common than georeferenced count data in the particulate matter epidemiology settings
we encounter, we set up the simulation study to examine the methods in a logistic regression model for
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Table 1. Results of simulation study for β̂1: bias, average model-based SE, Monte Carlo standard
deviation, MSE, and coverage of 95% CIs or credible intervals, over 500 simulations, for Scenarios A–D

Scenario Method Bias E(SE(β1)) SD(β̂1) MSE Coverage (%)

A True exposure −0.000 0.093 0.096 0.009 94.8
Plug-in 0.004 0.105 0.122 0.015 91.6
Exposure simulation −0.068 0.118 0.119 0.019 91.2
RC-OOS 0.006 0.122 0.122 0.015 96.4
Fully Bayesian 0.002 0.109 0.122 0.015 92.8
2-stage Bayes 0.000 0.108 0.123 0.015 93.2

B True exposure 0.002 0.059 0.059 0.003 95.2
Plug-in −0.085 0.091 0.149 0.029 69.8
Exposure simulation −0.254 0.116 0.126 0.080 42.2
RC-OOS 0.036 0.197 0.251 0.064 95.6
Fully Bayesian 0.011 0.107 0.151 0.023 86.4
2-stage Bayes 0.004 0.105 0.150 0.023 83.8

C True exposure 0.004 0.058 0.058 0.003 95.2
Plug-in −0.140 0.130 0.211 0.064 63.4
Exposure simulation −0.591 0.141 0.146 0.371 0.4
RC-OOS† 0.039 0.340 0.367 0.136 92.6
Fully Bayesian 0.029 0.155 0.177 0.032 93.0
2-stage Bayes 0.039 0.1646 0.239 0.059 90.8

D True exposure 0.003 0.059 0.062 0.004 93.4
Plug-in 0.001 0.090 0.095 0.009 94.2
Exposure simulation 0.000 0.068 0.054 0.003 98.8
RC-OOS 0.001 0.111 0.115 0.013 95.6
Fully Bayesian 0.000 0.159 0.140 0.019 94.0
2-stage Bayes 0.000 0.148 0.135 0.018 94.4

†One simulation with anomalous estimate omitted.

binary health outcomes. The overall simulation strategy is the same as that used for the linear model with
the actual simulations differing in several ways. First, the health effects model is logit(πi ) = β0 + β1 Xi ,
where πi = pr(Y ∗

i = 1), with β0 = 0 and β1 = 0.30. Second, we assume that there are 7000 study
subjects, rather than 200, since there is inherently less information contained in a single binary outcome
as compared to a continuous outcome. We note that, although 7000 subjects may seem large, this number
of subjects is typically much less than that encountered in applications involving Boston area binary
outcomes (e.g. Maynard and others, 2007). Third, we considered only the plug-in, exposure simulation,
and regression calibration approaches in the logistic setting. We expect that the Bayesian approach would
perform well in the nonlinear setting as well, but Monte Carlo Markov chain (MCMC) sampling in this
setting, in which the spatial term cannot be marginalized out of the model, can be difficult to implement
effectively (Christensen and others, 2006; Paciorek, 2007). Our initial efforts to implement the Bayesian
logistic model in a straightforward MCMC scheme showed poor mixing, and because the development of
a carefully tailored sampling strategy is beyond the scope of this paper, we do not pursue the approach
further here. Fourth, because the linear regression simulations provided insight on the degradation of the
estimators as a function of spatial heterogeneity, we ran the simulations only for Scenarios A and C,
representing a smooth and spatially heterogeneous exposure surface, respectively. In this setting, for the
RC-OOS estimator, we used formulas for the standard regression calibration estimator and associated SE
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Table 2. Results of logistic regression simulation study for β̂1: bias, average model-based SE, Monte
Carlo standard deviation, MSE, and coverage of 95% CIs or credible intervals, over 500 simulations, for

Scenarios A and C

Scenario Method Bias E(SE(β1)) SD(β̂1) MSE Coverage (%)

A True exposure −1.24 0.070 0.073 0.0054 95.0
Plug-in −0.55 0.094 0.102 0.0103 95.6
Exposure simulation −0.91 0.101 0.101 0.0102 95.6
RC-OOS −0.35 0.098 0.107 0.0114 100.0

C True exposure −1.23 0.030 0.029 0.0009 95.8
Plug-in −6.72 0.036 0.048 0.0027 81.8
Exposure simulation −13.2 0.042 0.043 0.0035 78.4
RC-OOS −1.22 0.046 0.050 0.0025 100.0

provided in Thurston and others (2003), who derived these estimators for the broad class of generalized
linear models. The variance formula is the generalized analog to (4.4) incorporating the weight matrix
W = Diag[πi (1 − πi )] associated with binary responses.

Table 2 presents the results of this simulation study. The patterns in this table are similar to those
exhibited by the linear regression results. While simple regression calibration is known to give biased
estimates in nonlinear model settings, the magnitude of this bias is relatively small in the scenarios con-
sidered, which agrees with closed-form results (5.1) and recent investigations of regression calibration in
the standard logistic regression measurement error setting (Thoresen and Laake, 2000).

7. TRAFFIC PARTICLES AND BIRTH WEIGHT IN THE GREATER BOSTON AREA

In this section, we illustrate the relative performance of the various methods considered in this article
by analyzing the association between traffic-related particulate matter generated by motor vehicles and
birth weight in the greater Boston area. Because BC and elemental carbon (EC) particles are well-known
markers of traffic pollution, we use output from a previously developed exposure model for BC and EC
particles (Gryparis and others, 2007) and assess the association between these predictions and all birth
weights in the greater Boston area over the period of January 1, 1996–December 31, 2002.

Briefly, the exposure predictions are derived from a validated spatiotemporal model for 24-h measures
of traffic exposure based on individual exposure data and ambient monitoring sites from over 82 loca-
tions in the Boston area. Predictions are based on meteorological conditions and other characteristics (e.g.
weekday/weekend) of a particular day as well as measures of the amount of traffic activity (e.g. GIS-based
measures of cumulative traffic density within 100 m, population density, distance to nearest major road-
way, percent urbanization) at a given location. The model allowed these factors to affect exposure levels
in a potentially nonlinear way via nonparametric regression terms. It also used the mixed model represen-
tation of thin plate splines, described in Section C of the supplementary material available at Biostatistics
online, to capture additional spatial variation unaccounted for after including all relevant spatial predictors
in the model. The model was fitted using a Bayesian MCMC approach. Results of this analysis suggest
that there exists a significant spatial variability in these concentrations in the Boston area. For instance,
the spatial variability in exposure varies by a factor of approximately 3, and the concentrations are highest
in the downtown Boston area and along the I-95 and I-90 interstates.

Our health data come from a study population that initially included all live births in eastern
Massachusetts for the counties of Bristol, Essex, Middlesex, Norfolk, Plymouth, Suffolk, and Worcester.
The data were obtained from the Massachusetts birth registry for the period between January 1, 1996, and
December 31, 2002. The population of the selected counties covered about 83% of the state’s population
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and 53% of the state’s area. From a total number of births of 477 495, we restricted our study to singleton
births (95.8% of all births), born between 20 and 45 weeks of gestation and with birth weight between 200
and 5500 g. Of these births, we excluded those that could not be correctly assigned an address (4.9%) and
those that were not within the Interstate 495 beltway, which corresponded to the study region for which
we had exposure predictions (51%). In total, we analyze data on 219 060 births. The address of the mother
at the time of birth was geocoded by a private firm and reassessed by us for accuracy and completeness.
Figure 2 shows the locations of the residences of the study subjects and their positioning relative to the 82
exposure monitors. The study and the use of birth data were approved by the Massachusetts Department
of Public Health and the Human Subjects Committee of the Harvard School of Public Health.

In this analysis, we first fitted linear regression models for birth weight in grams. In this huge–sample
size setting, Bayesian approaches are computationally demanding and thus infeasible to apply in a rea-
sonable amount of time. Accordingly, we use the naive plug-in, exposure simulation, and the RC-OOS
approaches to analyze the data. We also applied standard weighted least squares, but relegate reporting of
this result to Section B of the supplementary material available at Biostatistics online. Because our health
outcome is a pregnancy outcome, we used as our exposure metric 9-month averages of 24-h predicted BC
levels corresponding to the gestational period for each birth. We note that, although the timescales of our
prediction model (daily) and our exposure covariate (9 months) do not coincide, the use of the estimate
γ̂̂γ̂γ to correct the naive plug-in estimator is still valid due to the linear assumption in the validation rela-
tionship (4.2). To account for well-known confounding factors of birth weight, we included the following
covariates on biologic grounds: maternal age, maternal race, gestational age, amount of cigarette smoking
during pregnancy, chronic conditions of the mother or pregnancy, mother having previous preterm birth,
mother having previous infant weighing >4000 g, gender, year of birth, maternal education, Kotelchuck
index of adequacy of prenatal care, and census tract (CT) median income. We include education and CT
median income to account for both individual as well as contextual effects of socioeconomic status, a
well-known important predictor of birth weight, on the outcome.

Table 3 presents the estimated coefficients and estimated 95% CIs for all terms included in the model
based on the RC-OOS fit. This approach yields moderate evidence of an association between birth weight
and predicted BC concentrations. To put the magnitude of this estimate into perspective, we compare it to
the estimated coefficients for other factors well known to affect birth weight. We estimate an interquartile
range change in BC (IQR = 0.20 µg/m3) is associated with a decrement in birth weight roughly equivalent
to a 10th of the difference between high school and college educated women.

Table 4 presents the results from the 3 different analyses, showing that the relative performance of the
various methods follows the patterns suggested by both the analytical results and the simulation studies
presented in Sections 5 and 6, respectively. Compared to the naive plug-in approach, exposure simulation
grossly attenuates the estimated health effect. Based on the held-out data, our proposed regression cali-
bration correction approach yields γ̂0 = 0.20 (SE = 0.04) and γ̂1 = 0.84 (SE = 0.07). Although RC-OOS
detects an association between birth weight and estimated BC particle levels at the 95% confidence level
whereas the naive approach does not, the magnitudes of these estimates are relatively close in this case,
suggesting that the performance of the plug-in approach that simply uses the exposure estimates is not too
bad. However, one would not have known this before performing this measurement error correction.

Because we controlled for a host of well-known confounding factors that explain a large amount of
the spatial pattern in birth weights, the regression model assumes independent errors. We checked the
appropriateness of this assumption by constructing a semivariogram plot (Waller and Gotway, 2004, Sec-
tion 8.2) based on the model residuals. This plot (not shown) showed that the semivariance of differences
between pairs of residuals is approximately a constant function of distance between each pair, suggesting
that the independence assumption is valid for these data.

We reran the above analyses 2 additional times using estimated location-specific BC concentrations
during the time periods corresponding to the first trimester and the third trimester of each pregnancy.
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Fig. 2. Map of the locations of the residences of the birth weight study subjects and their positioning relative to the
82 exposure monitors.
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Table 3. RC-OOS estimates for greater Boston birth weight data

Method Estimate SE 95% CI

Predicted BC −9.46 4.38 (−18.05, −0.88)
Mother’s age 6.36 0.20 (5.97, 6.75)
Gestational age 551.45 6.16 (539.37, 563.52)
Gestational age squared −5.72 0.08 (−5.88, −5.55)
Number of cigarettes −28.91 0.84 (−30.56, −27.26)
Number of cigarettes squared 0.69 0.04 (0.61, 0.78)
Previous infant weighing >4000 480.10 11.56 (457.43, 502.77)
Previous preterm −242.10 12.82 (−267.23, −216.97)
Maternal condition −29.89 3.40 (−36.56, −23.23)
CT median income (1000 K) 0.15 0.04 (0.07, 0.24)
Maternal education (<12 years) 8.57 6.74 (−4.63, 21.77)
Maternal education (12–16 years) 1.00 (ref) — (—,—)
Maternal education (>16 years) 16.63 2.52 (11.70, 21.57)
Race (Caucasian) 1.00 (ref) — (—,—)
Race (African American) −131.01 3.64 (−138.15, −123.87)
Race (Asian) −192.72 3.99 (−200.54, −184.90)
Race (other) −93.15 3.85 (−100.69, −85.61)
Sex (male) 132.62 2.06 (128.58, 136.66)
Sex (female) 1.00 (ref) — (—,—)
1996 19.37 3.96 (11.61, 27.14)
1997 16.52 4.36 (7.97, 25.06)
1998 23.73 3.85 (16.18, 31.27)
1999 17.02 3.78 (9.61, 24.43)
2000 10.49 3.77 (3.09, 17.89)
2001 3.36 3.75 (−3.98, 10.70)
2002 1.00 (ref) — (—,—)
Kotelchuck index (inadequate) −70.39 4.31 (−78.85, −61.94)
Kotelchuck index (intermediate) −51.16 4.36 (−59.71, −42.61)
Kotelchuck index (appropriate) 1.00 (ref) — (—,—)
Kotelchuck index (appropriate +) −16.17 2.43 (−20.92, −11.41)

Table 4. Results for greater Boston birth weight data

Method Estimate SE 95% CI
(in g)

Plug-in −7.27 3.78 (−14.68, 0.14)
Exposure simulation −0.48 3.40 (−7.13, 6.18)
RC-OOS −9.46 4.38 (−18.05, −0.88)

Interestingly, the effect estimates from the third trimester model were similar in magnitude to those in
Table 4, whereas the effect estimates from the first trimester model were all approximately half of those
in Table 4. This may occur because the third trimester is the more important period for weight gain of a
developing fetus.

Finally, we also ran logistic regression models relating the probability of an infant having a low birth
weight for their gestational age to the same exposure predictions used in the linear models for birth weight.
As suggested by our simulations in this setting, the differences between the estimates from the different
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approaches were smaller than those observed in the linear setting, and none of the analyses showed strong
evidence of an association between this binary outcome and estimated BC levels (results not shown).

8. DISCUSSION

Taken together, the simulation results suggest that several approaches to analyzing spatially misaligned
point data may be appropriate, depending on the amount of spatial heterogeneity in the exposure surface
and the amount of data. For moderate sample sizes, a Bayesian approach to estimation is computationally
feasible and seems to possess relatively good frequentist properties. The 2-stage Bayesian approach allows
one to break the joint model down into its 2 components. Simulation results suggested that this approach
approximates the fully Bayesian results quite well. Thus, this 2-stage estimator is attractive whenever
either the exposure or health model is complicated, in which case designing well-mixing MCMC algo-
rithms for the full model may be difficult, or when one is interested in running multiple epidemiological
models but wants to avoid fitting the exposure model multiple times. Alternatively, one could consider the
RC-OOS approach. It is much easier to implement computationally, but is less statistically efficient, than
the Bayesian approaches. These 2 features make it more attractive than the Bayesian approaches in large
sample settings since the Bayesian approaches can be computationally expensive and the inefficiency of
the calibration estimators is not as much of a concern in this setting. The calibration parameters can be
precisely estimated, which should improve the MSE compared to that seen in our simulations. Thus, the
2 approaches that work well in all of our simulation settings, the Bayesian and calibration approaches, are
complementary in terms of data settings for which each might be preferred.

Our results provide insight regarding existing findings in covariate-response misalignment problems.
In a setting where the response and a covariate were misaligned over time, Higgins and others (1997)
noted that the plug-in estimator incurred little bias. The unknown smooth trends in the covariate over
time were relatively smooth, so these results are the temporal analog of our results based on a spatially
smooth surface. Zhu and others (2003) considered Bayesian approaches for spatial data that involve both
misalignment and change of support, with interest focusing on relating monitoring data to zip code level
disease counts. They noted that a fully Bayesian approach performed well in this setting. Interestingly,
these authors also showed via simulation that the exposure simulation approach performed similarly to
the fully Bayesian approach, with the estimates of the exposure simulation approach being only slightly
biased. Due to the differences between this problem and the one we consider here, there could be multiple
reasons for this difference in findings. One possibility is that calculating exposure at the zip code level
of aggregation yields relatively smooth exposure surfaces, for which any approach seems to perform
adequately.

In short, we used a simple linear model setting to illustrate measurement error issues associated with
point-level, spatially misaligned exposure and health data and ran simulations for linear and logistic mod-
els. Of course, in practice, more complicated models may be necessary, and future research will focus on
extending the methods considered here to such settings. Examples include settings involving health out-
comes in complex spatiotemporal models, health effects models exhibiting spatially correlated residuals,
and heavy-tailed prediction errors likely to arise for some exposures. One might also consider the impact
of different spatial configurations and numbers of exposure monitors and health observations as well as
strategies for optimal monitoring design in such settings.
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