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Abstract

Context: Software engineering has a problem in that when we empirically
evaluate competing prediction systems we obtain conflicting results.
Objective: To reduce the inconsistency amongst validation study results and
provide a more formal foundation to interpret results with a particular focus on
continuous prediction systems.
Method: A new framework is proposed for evaluating competing prediction
systems based upon (1) an unbiased statistic, Standardised Accuracy, (2) testing
the result likelihood relative to the baseline technique of random ‘predictions’,
that is guessing, and (3) calculation of effect sizes.
Results: Previously published empirical evaluations of prediction systems are
re-examined and the original conclusions shown to be unsafe. Additionally,
even the strongest results are shown to have no more than a medium effect size
relative to random guessing.
Conclusion: Biased accuracy statistics such as MMRE are deprecated. By
contrast this new empirical validation framework leads to meaningful results.
Such steps will assist in performing future meta-analyses and in providing more
robust and usable recommendations to practitioners.

Keywords: software engineering, prediction system, empirical validation,
randomisation techniques.

1. Introduction

Being able to predict is a hallmark of any meaningful engineering discipline and
software engineering is no exception. Researchers have been exploring prediction
systems1 for areas such as cost, schedule and defect-proneness for more than 40

∗Corresponding author
1By a prediction system we mean some f(xi) to estimate the variable yi where xi is an

input vector that describes characteristics of the target i. It need not be formal in the sense of
being defined by explicit rules so estimation by humans might be included in this definition.
Nor need such systems be deterministic, however, it is required that a prediction system
utilises information contained within xi and this distinguishes it from guessing at random. In
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years. And whilst considerable sophistication and ingenuity has been brought
to bear on the construction of such systems, empirical evaluation has not led to
consistent or easy to interpret results. This matters because it is hard to know
what advice to offer practitioners who are — or who ought to be — the major
beneficiaries of software engineering research.

There has been an enormous growth in interest and empirical research into
building prediction systems in software engineering. Many different techniques
have been proposed e.g. statistical methods including regression analysis, instance-
based learners including case-based reasoners, Bayesian classifiers, support vec-
tor machines and ensembles of learners. For an overview see the 2007 mapping
study by Jørgensen and Shepperd [16] which identified more than 300 journal
papers that examined cost or effort prediction (and this number has contin-
ued to grow and, of course, excludes conference publications). Other topics
such as defect prediction have generated as much, if not more, attention. It is
self-evident that there is a large body of research work.

Given that there are many competing prediction techniques many researchers
have set about empirically comparing their performance on different data sets.
Unfortunately, not only does no single prediction technique dominate, but there
are many contradictory results [34]. To help make more sense of these varied re-
sults there has been a recent move to pooling results through systematic reviews
and meta-analyses. However, we still tend to find inconclusive results from sys-
tematic reviews (or meta-analyses) [19]. Three such examples of inconsistent
systematic review findings are:

• Jørgensen [13] reviewed 15 studies comparing model-based to expert-based
estimation. Five of those studies found in favour of expert-based methods,
five found no difference, and five found in favour of model-based estima-
tion.

• Mair and Shepperd [25] compared regression to analogy methods for effort
estimation and similarly found conflicting evidence. From a total of 20
empirical studies, seven favoured regression, four were indifferent and nine
favoured analogy.

• Kitchenham et al. [21] found seven relevant empirical studies for the ques-
tion is it better to predict using local, as opposed to cross-company, data.
Three studies reported it made no significant difference, whilst four found
it was better.

In order to make progress in our research software engineers need to explore the
underlying reasons for these inconsistencies and how this unwelcome situation
might be resolved. This is extremely important as otherwise it is difficult to
make safe recommendations to practitioners. However, I do wish to stress the
purpose of this paper is to consider how best to compare competing prediction
systems, not to argue in favour of any particular prediction technique.

other words prediction systems must, by definition, perform better than random.
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The remainder of this paper is organised as follows. The next section de-
scribes a formal framework to provide a context within which to analyse em-
pirical results. I show how randomisation techniques can provide a baseline for
interpreting individual primary studies. This serves two purposes. First it can
determine the likelihood of a reported level of accuracy not being due to chance.
Second, it can be used as an input to calculate the effect size of any change in
accuracy relative to chance. Section 3 uses three published, refereed studies
[35, 36, 18] as examples to show how the framework enables unsafe conclusions
to be uncovered. These three studies are not intended as a random sample, but
rather they are chosen to illustrate that validation problems exist in empirical
software engineering and how they may be remedied. In the Discussion Section
we conclude that this framework for empirical evaluation of prediction systems
provides a basis for rigorous appraisal of results and their significance plus a
means of visually combining and interpreting multiple results.

2. A Validation Framework

In this paper the discussion is restricted to predicting some continuous2 output
that is denoted Y . However, in principle the arguments also apply to classifiers,
that is prediction systems where the output is categorical e.g. the module does
or does not contain defects. The reason for this distinction is that for accu-
racy assessment continuous prediction systems deal with residuals [30] whilst
classifiers deal with confusion matrices [8].

In order to bring some generality to our discussion and to avoid becoming
bogged down with the minutiae of individual studies we propose the following
framework. Researchers validate some prediction system Pi over a data set D
using some accuracy statistic S according to a validation scheme V . Empirical
evaluation can be seen as an attempt to establish an order (or partial order)
from binary preference relations such as P1 ≺ P2 over the set P of candidate
prediction systems. The preference relation may be read as P2 is preferred to
P1 or P1 is less preferable than P2. It is also useful to combine an indifference
relation ∼ with a preference relation so one might re-express the previous rela-
tion as a non-strict order, thus P1 4 P2 denotes that P2 is not worse than P1

(for a more detailed overview see Davey and Priestley [6]).
The validation scheme V , irrespective of the specific choice of accuracy statis-

tic, can be thought of as an estimator3 of S. In other words, Ŝ is the best guess
of the population or true (but generally unknowable) value of S. It is an esti-
mate because, usually it is not practical to try out a prediction system on all
software projects, moreover in practice we are most concerned with predicting
future projects. Therefore researchers need to simulate how the prediction sys-
tem would behave when dealing with new unseen cases by “holding out” some

2Strictly speaking we also include the absolute scalar type i.e. counting.
3An estimator is a statistical procedure for estimating some population parameter from a

sample.
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cases within D to test its ability to predict.
The estimator uses rules such as a leave-one out scheme or an m× n cross-

validation. For a discussion and empirical analysis of cross validation see Kohavi
[22]. Although this might seem rather arcane, a study by Song et al. [37] il-
lustrates how important using an unbiased estimator is. They reveal that a
previous study reported defect prediction system accuracy results that were the
reverse of those obtained when a better validation scheme (one that preserved
the integrity of the hold-out sample) was deployed.

More problematic is how we interpret the meaning of the data set D used
for validation. Although this is not the usual stance of researchers, it must
be seen as a sample drawn from some underlying population over which we
wish to say something about S. Clearly our data sets are not random samples
since this would imply that all projects have an equal chance of being drawn.
Another difficulty is the tendency of researchers to avoid making any explicit
statement about the population under consideration. Does the researcher mean
all software projects? All large projects? All non-student projects? This is an
area that needs urgent attention.

When establishing these preference relations researchers need to be con-
cerned with three fundamental questions. For a given accuracy statistic S and
candidate prediction systems P1 and P2 one must ask:

1. Does the prediction system Pi outperform a baseline of random guessing,
a special case of a prediction system denoted P0, that is does P0 ≺ Pi? If
the answer is not yes then it cannot even be claimed that Pi is predicting
at all since it does worse than random.

2. Is the difference P1 ≺ P2 statistically significant for some pre-determined
value of α? In other words how likely is any observed effect to have
occurred by chance?

3. Is the effect size large enough to justify P1 ≺ P2 in practice? It may be
that any improvement that P2 offers is so inconsequential as to not be
worth the effort hence P1 4 P2 or in other words despite the potential
additional effort and sophistication all that can be asserted is P2 is not
worse than an existing P1.

2.1. Baselines

Generally the notion of some fundamental baseline or benchmark has been ab-
sent from validation studies of prediction systems, which is not to say researchers
have not made comparisons between competing approaches. However, the in-
terpretation depends upon the choice of approaches which is generally ad hoc.

Examples of studies that have employed a baseline are Jørgensen [12] who
used sample mean productivity multiplied by estimated size as a fairly simple
benchmark to compare the performance of ten other software maintenance effort
prediction systems. Interestingly this baseline approach did not always perform
worst. However, it still makes some assumptions about measuring size and
productivity so it’s more a competing prediction system than a fundamental
baseline. Another example is, Mendes and Kitchenham [29] who use the sample
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median as a benchmark for their analysis. Likewise Bi and Bennett [1] suggest
the use of the sample mean as the baseline for their proposed anologue of the
ROC curve, namely a Regression Error Characteristic curve.

A more näıve and general approach is simply to randomly assign the y value
of another case to the target case. This is a form of permutation and has the
advantage of not requiring any parameter estimates. We refer to this as ran-
dom guessing. Any prediction system should outperform random guessing over
time; to do otherwise calls into question the systematic nature of the prediction
system. An inability to predict better than random implies the ‘predictor’ is
not using, or not meaningfully, any target case information.

Next we consider what types of statistic S have been used in empirical
validation studies. A wide range of different statistics have been proposed over
the years. For example Lo and Gao [24] review more than 10 different accuracy
statistics and then introduce two new statistics of their own (weighted mean
of quartiles of relative errors and the standard deviation of the ratios of the
predicted to true value). They classify accuracy statistics as either (i) difference
measures based on the difference between the ‘true’ and predicted value, or (ii)
ratio measures where the difference is normalised in some way, for instance mean
relative error. Although the ratio accuracy statistics clearly have undesirable
properties such as asymmetry, choices will most likely depend upon the goals
of the users who might for instance be risk averse or alternatively seeking to
minimise total error.

2.2. Significance testing

Some researchers have focused on the second question, that of statistical sig-
nificance by sometimes, but not always, testing for the difference in means or
medians for the particular S being used in the empirical validation. Typically
statistics such as MMRE have been used as the accuracy statistic S for contin-
uous prediction systems4, where MMRE is given as:∑n

1 |(yi − ŷi)|/yi
n

(1)

yi is the ith value of the variable being predicted, ŷi its estimate, yi − ŷi the
ith residual and n the number of cases in D. Unfortunately it has been shown
that this popular prediction accuracy statistic is flawed in that it is a biased
estimator of central tendency of the residuals of a prediction system because it
is an asymmetric measure. This was pointed out more than ten years ago by
Kitchenham et al. [20] and subsequently by [9, 32]. Table 1 gives an example of
two projects where the first project is an over-estimate and the second project
is an under-estimate. Both estimates have identical absolute residuals yet the
MMRE values differ by an order of magnitude. One consequence is MMRE will

4Classifiers require different accuracy statistics derived from the associated confusion ma-
trix e.g. such as the F -measure [23, 8].
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be biased towards prediction systems that under-estimate. Ironically this is ex-
actly what researchers observe in real-world predictions, namely over-optimism
[15].

Table 1: MMRE Example

yi ŷi residual absolute residual MRE %

yi − ŷi |yi − ŷi| |yi−ŷi|
yi
× 100

Project 1 10 100 -90 90 900%
Project 2 100 10 90 90 90%

The fundamental variable of interest is the residual or prediction error, yi−
ŷi. Accuracy statistics are based upon residuals, whether they be percentage
errors, sum of the squared residuals, ratios or whatever. There are potentially
a number properties of the residuals, however, for the present the focus is upon
central tendency rather than, say, bias or spread. As prediction system bias
is not a concern for the present discussion (although it might be important
if one were dealing with a portfolio of projects), researchers can use absolute
residuals (which implies indifference to the direction of the error) and for a set
of predictions, mean absolute residual (MAR):∑n

1 |(yi − ŷi)|
n

(2)

This measure of centre is unbiased since it is not based on ratios, unlike MMRE,
which leads to the asymmetry illustrated by Table 1. However, MAR does have
the disadvantage that it is hard to interpret and comparisons cannot be made
across data sets since the residuals are not standardised. Therefore we propose
to measure accuracy as the MAR relative to random guessing P0 hence we
suggest a standardised accuracy measure SA for prediction technique Pi:

SAPi =

(
1− MARPi

MARP0

)
× 100 (3)

where MARP0
is the mean value of a large number, typically 1000, runs of

random guessing. This is defined as, predict a ŷ for the target case t by randomly
sampling (with equal probability) over all the remaining n − 1 cases and take
ŷt = yr where r is drawn randomly from 1...n ∧ r 6= t. This is the most näıve
approach possible without being perverse. It is in many senses equivalent to the
random walk which is a näıve means of forecasting for time series [27, 11]. It
also provides a relevant baseline irrespective of the exact form of Pi. Over many
runs the MARP0 will converge on simply using the sample mean. Analogous
approaches have been used for classifiers where the y = x line on a ROC chart
represents random performance and can serve as some visual benchmark [8].
The advantage of using a randomisation technique [28], and not simply using
the sample mean is one can estimate the distribution of MARs for determining
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likelihood of any observed MAR value along with the variance of MAR. The
cumulative distribution of the accuracy statistic, S (for example see Figure 1)
from a large number of random predictions can then be used to estimate the
likelihood of non-random prediction. This is achieved by comparing the observed
S(P ) with the ith quantile from the cumulative distribution of random prediction
P0 errors. Note that whilst SA, like MMRE is a ratio, this is not problematic
since we are only interested in one direction i.e. better than random.

The interpretation of SA is that the ratio represents how much better Pi

is than random guessing. Clearly a value close to zero is discouraging and a
negative value would be worrisome!

2.3. Effect size

To judge the effect size we use a standardised measure due to Glass [33] which
is:

∆ =
MARPi

−MARP0

sP0

(4)

where sP0
is the sample standard deviation of the random guessing strategy.

Note we do not use a pooled measure as in Cohen’s d since (i) we cannot
assume the variances of Pi and P0 are homogenous and (ii) the comparison
is with respect to the control i.e. random guessing. One note of caution is
that Glass’s ∆ is known to be a biased estimator for small sample sizes or if
there are large discrepancies in sample sizes, in which case Hedges’s g might be
preferred (for a more detailed discussion see [7]). Even if comparing between
two prediction systems the rationale still tends to be P1 represents the status
quo with which P2 is to be contrasted and hence P1 is effectively a control and
one wishes to assert P1 ≺ P2.

Glass’s ∆ does two things, it standardises the difference between the two
treatments, in this case prediction systems and it also contextualises the differ-
ence in terms of amount of variation in the two measures of S. Informally we
can appreciate that a difference in accuracy statistic has less impact if it is in a
situation of huge variability whereas if there is almost no variation in accuracy
even a small improvement would attract attention.

We interpret the effect size which is standardised i.e. scale-free, in terms of
the categories proposed by Cohen [5] of small (≈ 0.2), medium (≈ 0.5) and large
(≈ 0.8). It is an interesting question as to what the operational meanings might
be and there has been much discussion of the limitations of a rigid interpretation
[10, 4]. The ∆ has a unit of a standard deviation so the effect is a reduction in
the mean absolute residual of n person hours or whatever is the unit for Y .

Having defined a standardised accuracy measure SA and an effect size mea-
sure ∆ we are now in a position to revisit some typical empirical validation
studies of project effort prediction systems and pose our three questions, in
order to identify potential pitfalls and solutions.
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3. Three Examples

In the previous section we identified three fundamental questions any empirical
validation study proposing or validating a prediction system should address.
Now we consider how this might work in practice. In each case we use real
results from rigorously reviewed research articles to which MJS has contributed.
The reason for this is simply to show that I [MJS] believe myself to be as
‘culpable’ as any other member of the empirical software engineering research
community. To reiterate, the three primary studies used in the following analysis
(and summarised by Table 2) are not a random sample and so cannot be used
to judge the extent of problems. They can be used, however, to show problems
exist and can be used to show how such problems may be fixed. We return to
the question of generalisation in the Discussion Section.
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3.1. Q1: Is the prediction system better than guessing?

Here we examine an example [35] of an empirical result that is no better (actually
worse) than guessing. The problem is the failure to use a fundamental baseline
so whilst there was a difference in performance between the two prediction
systems, neither was actually predicting in any meaningful sense!

The validation used a small data set of telecoms projects (known as the
Atkinson data set and included as an appendix in [35]) that collected real-time
function points as a size estimator. It was one of two data sets employed by
the replication study (Study 1) of a proposed regression to the mean (R2M)
prediction method [14]. The details are not important, suffice to say that the
aim of the validation was to empirically compare the accuracy of R2M with a
variant of estimation-by-analogy (EBA′) prediction system as a baseline to see if
the results reported by Jørgensen that PEBA ≺ PR2M could be replicated using
different data sets (samples)5. The reported accuracy statistics were MAR (and
MMRE for interpretation but not inference purposes).

Table 3: Comparing PEBA′ and PR2M Accuracy Results

Prediction Method MAR MMRE SA
PEBA′ 331.6 99% -17%
PR2M 291.6 84% -3%
P0 50% quantile, i.e. median 283.0 86.2% 0%
P0 5% quantile 210.8 56.8% 26%

Table 3 gives the accuracy results for the two prediction systems evaluated
in Study 1 and in addition, a baseline of random guessing (P0) and the 5%
quantile from the cumulative distribution of MAR values from 1000 runs of P0

(the histogram of the permutation distribution is shown in Fig. 1 and, as to
be expected, it is approximately symmetrical). The interpretation of the 5%
quantile for P0 is similar to the use of α for conventional statistical inference,
that is any accuracy value that is better than this threshold has a less than one
in twenty chance of being a random occurrence. Therefore to have reasonable
confidence that our Pi is actually predicting and not guessing we expect an
accuracy statistic S value of better (generally this will mean lower than, though
for some statistics such as pred(n) this will be in the opposite direction since
a higher value is to be preferred) than this threshold value. Note that this
randomisation procedure is robust since it makes no assumptions and requires
no knowledge concerning population parameters.

Observe that three accuracy statistics are reported in Table 3, namely MAR

5Note that both techniques used the productivity level of the donor project and thus
implicitly assume a linear relationship between size and effort which is a non-standard inter-
pretation of EBA. Thus these results should not be interpreted to suggest that R2M or EBA
are necessarily poor prediction techniques.
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Figure 1: Histogram of MAR Values from Naıve Guessing for the Atkinson Data Set

and MMRE from the original study and, in addition, the unbiased statistic SA.
First, note that whilst PR2M offers some improvement over PEBA′ — and all
three statistics agree on this — the main point is both techniques are worse
than guessing! In fact not only are they worse than the 5% quantile, they are
actually worse than the median value. So it is clear that neither approach is
predicting in any meaningful sense and therefore any ‘improvement’ offered by
PR2M is irrelevant since one could still do better by guessing. One of the reasons
this was not apparent in the original study is that there is no particular sense
of what is a ‘reasonable’ value for either MMRE or MAR. Clearly researchers
need a baseline and the most fundamental baseline is guessing, moreover this is
something with which all prediction systems can be compared.

The accuracy statistic SA indicates the relative improvement or otherwise
from merely guessing and thus it is immediately clear that PR2M and PEBA′ are
not generating meaningful predictions in this particular study.

3.2. Q2: Is the difference due to chance?

Having addressed the first question of whether the prediction system is even
predicting, the next question is how likely is the observed difference due to
chance. Unlike Q1 this has been increasingly addressed by researchers, typically
by using an inferential test such as the t-test to compare means of accuracy
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statistics derived from competing prediction systems. One of the first examples
of such a validation procedure is from Myrtveit and Stensrud [31] where they
tested whether the difference in treatment mean accuracies from EBA, regression
analysis and expert judgement were significant. However, such statistical testing
has only recently become the norm so there are many studies where no such test
has been performed.

To illustrate the issues and how this can dramatically change the inter-
pretation of empirical results consider the following example (Study 2). In a
paper MJS co-authored [36] we compared the prediction technique EBA (using
a case-based reasoning tool we had developed called ANGEL) with a bench-
mark based on stepwise regression (SWR) analysis. We compared the accuracy
of both techniques for nine different data sets and used two accuracy statistics
including what is now known to be an unsafe measure, namely MMRE.

Table 4: Comparing PSWR and PEBA Accuracy Results

Prediction Method MAR MMRE SA
P0 269.2 237.1% 0%
P0 5% quantile 201.2 122.8% 25.3%
PEBA 136.0 38.8% 49.5%
PSWR 124.7 85.6% 53.7%

Table 4 shows in detail the results for one particular data set known as Tele-
com1 and reproduced in full in the appendix of [36]. The third column gives
the MMRE values and shows on the face of it — since 38.8% is substantially
better than 85.6% — that there are good grounds for believing PSWR ≺ PEBA.
And indeed that is what Study 2 concluded. However, when one looks at an
unbiased statistic such as MAR (the second column of Table 4) there is a differ-
ent story. The mean absolute residual is actually slightly smaller for SWR (the
benchmark) than for EBA. However observe from the final column displaying
the Standardised Accuracy that both represent about a 50% improvement over
random guessing (P0) and fall comfortably beyond the 5% quantile suggesting
that such results are highly unlikely to have arisen by chance.

Although something of a formality since we can see that the mean absolute
residual from PSWR is less than that for EBA, using a Mann-Whitney U-test
yields p=0.714 making it highly likely that there is no difference in the size of the
residuals from the two samples, in other words, we cannot reliably differentiate
between the two techniques, i.e. PSWR ∼ PEBA.

There are two reasons why the MMRE accuracy statistic is so misleading.
First, as the histogram in Fig. 2 shows the distribution of residuals is skewed,
however, the large residual from the 7th project ŷ7 contributes little to the value
of MMRE due to the prediction being a large under-estimate which leads only
to an MRE value of 89% due to the fact that the divisor is much larger than
the predicted value (ŷ7 = 123; y7 = 992). Second, since SWR seeks to minimise
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Figure 2: Histogram of EBA Residuals for Telecom1 Data Set

the sum of the squares of the residuals it is inappropriate to assess it in terms
of a very different accuracy statistic.

Some researchers, for example Jørgensen [12] and Briand et al. [2], have en-
deavoured to overcome these difficulties with the MMRE statistic by using its
more robust form MdMRE. Whilst this offers some improvement we still have
SWR MdMRE=36.2% and EBA MdMRE=30.4%. The underlying problem re-
mains that it is an asymmetric measure. The clear message is that inappropriate
accuracy statistics can lead researchers to misinterpret their results.

3.3. Q3: Does the effect size have any practical significance?

The third question looks at small effects that are statistically significant but not
worth bothering about. Typically empirical software engineering studies adopt
a null-hypothesis testing perspective [39] where the focus is upon refuting the
null hypothesis and finding support for the alternate and hypothesis of interest.
The strength of the finding is often interpreted in terms of p values so a low
value, below some threshold α is viewed as statistically significant and therefore
important.

In other fields this approach to null hypothesis testing has been criticised for
some time [3, 5, 4]. More recently, researchers from software engineering have
likewise argued that attention should also be given to the effect size and not just
the likelihood of it not occurring by chance [17]. One reason why p values by
themselves may not be informative is that if the sample size is large then even
very small or inconsequential differences may be detected and reported as being
significant. Another reason may be that if many months of research effort have
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been spent in fine tuning a prediction system to achieve a modest improvement
in accuracy, this might be considered a good investment in a university setting.
It might be considered less so in industry. Consequently, statistically significant
differences may not necessarily mean useful differences.

We explore the issue of effect size in prediction systems as our third question
using as an example another study (Study 3) in which MJS participated [18].
In this paper we report the results of an empirical comparison of using standard
EBA (as per Study 2) and EBA enhanced through the use of meta-heuristic
search to find better feature subsets (FSS) since using all features (variables) is
seldom the optimal strategy for building prediction systems. We refer to this
as EBA+. By the same reasoning one can also search for better case subsets
(CSS) to try to eliminate noisy or unhelpful donors e.g. where a project is highly
atypical or perhaps data were recorded erroneously. We refer to this as EBA++.
In all cases k = 2 and inverse distance weighting employed. The new algorithms
were tested against a baseline of using standard EBA using the sum of absolute
residuals6 as the accuracy statistic for two different data sets.

For this example, we use the smaller of the two data sets, that was provided
by Desharnais and is available from the Promise Repository [38]. The other
dataset used was the ‘Finnish’ dataset which has continued to grow over time.
Unfortunately we’re not confident that this part of the study could be accurately
replicated after ten years which is of course unsatisfactory and suggests that raw
data should be properly archived.

Table 5: Results Using the Desharnais Data Set to Compare PEBA, PEBA+ and PEBA++

Prediction Method MAR MMRE SA
P0 4149 142% 0%
P0 5% quantile 3556 110% 13.9%
PEBA, k = 2 2265 52% 45.4%
PEBA+, k = 2 1794 46% 56.8%
PEBA++, k = 2 1346 31% 67.6%

The results, and also for random guessing (P0) and the 5% quantile are given
in Table 5. Although not given in the original study Kirsopp and Shepperd [18]
we also provide the corresponding MMRE values. In this case MMRE does
preserve the correct rank ordering but this is not a reason to recommend this
accuracy statistic.

It is immediately clear that all three variants of EBA are predicting since
they yield considerably better (45-67%) accuracy levels than P0 and lie beyond
the 5% quantile. However, the main research question for Study 3 is how much
better are the improvements EBA+ and EBA++ over standard EBA (which
serves as a benchmark)? It is clear that the EBA++ method is more accurate

6MAR can be simply computed by dividing by n which in this case was 77.
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than standard EBA by both accuracy statistics but we need to consider how
likely could these differences be due to chance. A one-tailed Wilcoxon Signed
Ranks test of the absolute residual rejects both null hypotheses (p = 0.035 and
p < 0.0001) so one can be confident that PEBA ≺ PEBA+ ≺ PEBA++ is not a
chance outcome.

Table 6: EBA Effect Sizes Using the Desharnais Data Set

Prediction MAR MAR ∆ wrt ∆ wrt
Method SD P0 EBA
P0 4149 4220 n.a. n.a.
EBA, k=2 2265 2664 0.446 n.a.
EBA+, k=2 1794 2435 0.558 0.177
EBA++, k=2 1346 2097 0.664 0.345

The third, and final, question is of what practical import are these differ-
ences? To answer this it is necessary to examine the effect sizes (defined in
Eqn. 4). These are calculated with respect to P0 and to PEBA and are given
in Table 6. It is perhaps sobering to observe that even the most sophisticated
technique based on a mixture of meta-heuristic search and case-based reasoning
(EBA++) only has a medium effect size improvement over guessing. This alone
should suggest some of the limitations of current approaches and the need to
restrain the expectations of users of such prediction systems.

Next, and pertinent to Study 3, we consider the effect sizes of optimising
EBA. The ∆(EBA, EBA+) does not even reach a small effect size (∆ = 0.177)
so this is an example of a result that is significant (recall p = 0.035) but not
interesting. In terms of preference relations, we would most likely conclude
PEBA 4 PEBA+. A contributory factor is the high variance observed in indi-
vidual prediction accuracy which to a large extent masks any underlying effect.
However, one can find a ∆ of 0.345 for PEBA ≺ PEBA++ which might be re-
garded as a small effect, in other words, worthwhile at the margin but not
transformational and this is the strongest effect that Study 3 was able to dis-
cover.

3.4. Hasse Diagrams

Having explored the above three questions our refined understanding of the
empirical results can now be combined as a set of preference relations over P .

Fig. 3 shows a Hasse diagram [6] of the revised empirical results from Study
3. The interpretation is that an edge represents an empirical preference relation
and the nodes represent prediction systems. The vertical axis conveys that the
upper node covers (is the supremum or the least upper bound) of the lower node
so, for example, EBA++ covers EBA but it does not necessarily cover EBA+.
More formally P2 covers P1 whenever P1 ≺ P2 and there is no Pi such that
P1 ≺ Pi ≺ P2.
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Figure 3: Hasse Diagram of Preference Relations From Study 3 (with acknowledgements to
the lattice drawing applet of Ralph Freese)

In terms of preference relations one is indifferent between EBA++ and
EBA+. This is because although EBA++ has been found (for the Deshar-
nais data set) to be significantly more accurate than EBA+ the practical effect
size is too small (∆ < 0.2) to lead to any preference. Of course one might choose
to interpret preference less rigorously, but it should be appreciated that the ob-
served small differences of central tendency are in the context of high variance
(in other words, there are small differences between treatments and large differ-
ences within the samples). However, these simple examples show that multiple
primary studies of empirical validations of prediction systems can be integrated
in a visual fashion to promote easy understanding of results.

4. Discussion

The motivation for this paper has been the difficulties in forming a consistent
picture of the relative performance of competing software engineering predic-
tion systems. Not only does no one technique dominate, but also different
researchers’ validation studies have often produced inconsistent results as high-
lighted by systematic reviews such as [13, 25, 21]. Until researchers gain a
better understanding of the underlying reasons for this state of affairs, it is
unclear that devising new prediction systems and conducting more and more
primary validation studies will be particularly illuminating.
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In response, we have proposed a formal and abstract manner of understand-
ing validation study results and, how from this have emerged, three questions
that should be posed about the performance of any prediction system. First,
does it do better than guessing, in other words, is it actually predicting? Second,
how likely is it that any ‘improvement’ in performance is merely the consequence
of chance? Third, how meaningful is the ‘improvement’ in terms of effect size
or how important, practically, are the results? These question have then been
applied to three published and refereed empirical validation studies of project
effort prediction systems. This has revealed that all three studies contain em-
pirical conclusions that are unsafe. In particular, ignoring effect size can mean
that researchers are overlooking the practical implications of their work which
results in a dissonance between empirical software engineering researchers and
practitioners. For example, we might be enthusiastic to demonstrate that our
new algorithm shows some small improvement on the current state of the art.
However, from the point of view of practitioners in a volatile and uncertain busi-
ness environment, small improvements might not be easily attainable and when
discounted against the cost and risk of change might inspire little enthusiasm.
Ignoring effect size may also lead to excessive research effort being invested in
areas that are only marginally fruitful.

In terms of the current state of progress in developing effective prediction
systems, effect size is again instructive. The largest effect we observe (in Study
3) is between guessing and EBA++, but interestingly even here the ∆ is only
0.664 which means that the improvement obtained by using the best predic-
tion technique in this analysis compared with guessing is medium. That is,
the largest effect we could uncover relative to guessing is about two thirds of
one standard deviation of the accuracy statistic S. This is quite sobering and
goes some way to explain why the research community have such problems of
conclusion instability [34]. The situation is exacerbated if researchers persist in
using biased accuracy statistics as they generate high levels of variance so the
effects, such as they are, are even more difficult to detect.

There are a number of limitations to the above analysis. First, we have
focused on continuous prediction systems and particularly upon project effort
or cost prediction. However, we see no reason why other forms of prediction
system, specifically classifiers, are fundamentally different.

Second, the analysis has not been exhaustive; instead it has merely been
illustrative. We have chosen three studies (each conducted using different data
sets) mainly on the basis of convenience and on the grounds that MJS was a
co-author. These three studies demonstrate that difficulties exist with current
approaches to empirical validation of prediction systems and that the proposed
framework offers some solutions. They were not selected specifically to make
particular points — indeed it was depressingly easy to find problems with pub-
lished conclusions — however, there is no basis to argue that they are of necessity
representative. A thorough audit of empirical results would be invaluable and
might also form a basis for meta-analysis [10].

Third, we have adopted a narrow view of prediction system preference based
merely upon accuracy. Other factors such as bias, explanatory value and ease of
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use are often also relevant. Another factor in Study 3 was computability since
some of the search techniques combined with wrappers are computationally
very challenging. Exchanging a very small positive effect for a great loss in
computational tractability is not necessarily a very practical proposition.

In addition, the idea that formal prediction systems, unaided by human in-
tervention, are a desirable goal has been challenged from several quarters for
some time. For example, Myrtveit and Stensrud [31] found that a combination
of expert and formal prediction system led to the most accurate predictions.
Jørgensen [13] has consistently argued that there is need to understand the hu-
man element of software engineering predictions in practice. Mair and Shepperd
[26] suggest that in order to unlock real improvement in predictive practice (i.e.
obtain large effects) we need to focus upon the meta-cognitive needs of software
professionals.

So in conclusion, we believe these ideas on how to view and conduct empirical
evaluation contribute towards the goal of rationalising the present undesirable
situation of conclusion instability. There remain, however, a number of open
issues:

validation schemes: specifically whether some schemes are better, that is
less biased, estimators of whatever population statistic S, the researchers
utilise.

choice of data set and definition of population: presently a largely ad hoc
approach is adopted for the choice of data set. Whilst it is appreciated
that pragmatic concerns will dominate as there are still all too few data
sets in the public domain, researchers do need to articulate more clearly
the reasons for particular choices and the extent to which they believe it
constitutes a representative sample of the target population.

reporting protocols: secondary analysis is hindered when the fine grained de-
tails of a validation study are unavailable since results can be surprisingly
sensitive to small changes in parameter settings and pre-processing of the
data. Devising better ways of communicating this information would be a
useful contribution to progress in this field. Properly archiving data (and
particular versions of datasets) is also essential as revealed by Study 2 of
this paper.

Finally, although not the main message of this article, we would make a plea
to fellow researchers not to use MMRE as an accuracy indicator. It is unsafe
and there is simply no good reason to do so.
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