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Abstract 

Aims 

The aim of this study was to investigate Core Stability Exercise (CSE) 

induced changes in trunk sagittal acceleration as a measure of performance in 

participants following an acute onset of non-specific low back pain (LBP). 

Methodology 

A Lumbar Motion Monitor (LMM) was used to measure trunk sagittal 

acceleration. The LMM was demonstrated to be reliable [Intra-Class Correlation 

(ICC) for average sagittal acceleration (0.96, 95% CI 0.90-0.98) and peak sagittal 

acceleration (0.89, 95% CI 0.75-0.96) with a 95% limit of agreement for the 

repeated measure of between -100.64 and +59.84 Deg/s2 ].  Pain was measured 

using the Visual Analogue Scale (VAS) and disability was measured with the 

Roland Morris Disability Questionnaire (RMDQ). 

Results 

Differences in mean trunk sagittal acceleration between control and 

experimental groups at time points were assessed using a regression analysis 

(ratio of geometric means [95%CI]) and demonstrated to be not statistically 

significant (3 weeks (20%) 1.2 [0.9 to 1.6], p=0.2; 6 weeks (10%) 1.1 [0.8 to 1.5], 

p=0.7; 3 months (20%) 1.2 [0.8 to 1.9], p=0.9). Similarly, differences in mean pain 

score (3 weeks (30%) 1.3 [0.8-2.2], p= 0.3); 6 weeks (20%) 1.2 [0.7-2.0], p=0.6; 3 

months (0%) 1.0 [0.5-1.9], p=1.0) and difference in mean disability score (6 weeks 

(0%) 1.0 [0.7-1.5], p= 1.0, 3 months (30%) 1.3 [0.8-1.9], p= 0.3) between groups were 

also not statistically significant. 

 



 ix 

Conclusions 

This work does not infer that CSE are definitively effective in reducing pain, 

improving subjective disability and improving trunk performance after an onset 

acute of non-specific LBP. However, there is a suggestion of clinical importance 

and a possible mechanism by which they may work. Further investigation into this 

mechanism may provide future effective management strategies for intervention 

of acute non-specific low back pain with optimistic cost implications for 

healthcare delivery in general and Physiotherapy in particular. 
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Chapter 1  

Introduction 

1.1 Summary 

 This chapter introduces the complexity of LBP as a condition in general and 

acute non-specific low back pain specifically. Acute non-specific low back pain in this 

instance is low back pain with a period of less than 6 weeks duration and not 

attributable to any specific underlying pathology (NICE, 2009). It explores the 

characteristics and behaviour of trunk movement in response to axial loading and 

also explores current diagnostic tools, considering their advantages and 

disadvantages. 

1.2 Study Background 

Low Back Pain (LBP) is a health burden (Koes et al., 2006) and a twentieth 

century health care enigma (Sieben et al., 2005). The incidence and prevalence of 

LBP has been widely documented (Croft et al., 1998; Campbell and Muncer 2005; 

Carragee et al., 2006; Cayea et al., 2006; Carreon et al., 2007; BackCare, 2007) and 

the reality of the impact is demonstrated by musculoskeletal data and the number 

of referrals to both primary and secondary care. A number of studies have 

investigated different aspects of LBP. These include the underlying belief systems 

(Fullen et al., 2008), resultant muscle pain and its affect on muscle activity and 

coordination during an onset of LBP (Graven-Nielson et al., 1997), the effects of 

manipulation as a treatment for LBP (Assendelft et al., 2003; Bronfort et al. 2004; 

Ernst, 2007), the effect of loading on the spine and the mechanism by which it 

precedes an onset of LBP (Callaghan et al., 1998), the effect posture on spinal 
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loading (Cholewicki et al., 2000), the use of stabilisation exercises as treatment 

(Ferriera et al., 2006) and the general management of the onset of LBP (Hagen et 

al., 2002, Hagen et al., 2005; Gullick, 2008). However advances in knowledge have 

not made an impact on its prevalence nor suggested a gold standard of 

intervention.  

Effective treatment is dependent upon the understanding of the 

mechanisms of onset of LBP. An understanding of trunk behaviour during functional 

tasks is therefore important within this process. Chapter 1 explores what is already 

known of the anatomy of the lumbar spine and attempts to put that knowledge 

into a functional context. The chapter also discusses current diagnostic tools and 

their merits highlighting the major flaw within their design; the inability to provide 

definitive causal relationships between what is reported and LBP experienced 

during functional activity. The diagnostic tools are therefore arguably of limited use 

to Physiotherapy because it is change in relative functional movement of the trunk 

structure that effectiveness and efficiency of intervention is measured by. The 

quality and quantity of lumbar movement is therefore and important part of a 

Physiotherapy assessment (Petty, 2006).  

Objective measures of function are less likely to be susceptible to bias and 

trunk higher order kinematics (acceleration and velocity) are the most reliable 

objective measures as outcomes for the quantification of LBP (Kroemer et al., 

1990). Chapter 2 therefore explores the current knowledge of trunk performance in 

this context and discusses the underlying principles by which trunk performance 

may be more beneficial to a clinician. The chapter also discusses the increasing 

popularity of Core stability exercises (CSE) as a method of treatment and explores 
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the possible mechanism by which they may work, especially in the context of 

improving trunk performance following and onset of LBP. Although CSE are 

increasingly being used to improve and provide trunk stability (Willardson, 2007b; 

Willardson, 2007a), the clinical value for this concept remains controversial (May, 

2008). The ambiguity in the effectiveness of CSE is because it is difficult to clinically 

demonstrate (Teyhen et al., 2007) even though the concept of instability (Panjabi, 

2003) has in the main been accepted.   

Finally the chapter describes the 3 hypotheses of this study and the method 

by which they were tested.  

Because the study is unique, the method needed to be developed. Chapter 3 

sets out how this was done. A pilot study evaluated the primary outcome tool and a 

second study explored trunk behaviour in order that an attempt to interpret the 

results of the study could be made. The Lumbar Motion Monitor (LMM) (Marras 

and Wongsam, 1986; Ferguson et al., 2003; Ferguson and Marras, 2004) was 

identified as the most appropriate equipment to measure trunk performance. This 

was because the LMM is arguably the most practical for use in the clinical 

environment because of its portability with minimal setup/labour time and its ability 

to provide valid and reliable measures for the quantification of LBP (Marras and 

Wongsam, 1986; Marras et al., 1990; Marras, 1996). Previous studies have provided 

evidence of the validity and reliability of the other outcomes of pain (Crossley et al., 

2004) and disability (Roland and Morris 1983). Further reliability and validity tests 

were therefore not considered with respect to this study.  

Chapter 4 describes the method derived from the previous chapter used to 

test the hypotheses of the study and the results are presented in the penultimate 
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chapter 5. The last chapter discusses the results and attempts to make logical 

interpretation of those results and considering the limitations of the study and 

exploring possible future work which would enhance our existing knowledge of the 

effects of CSE on acute LBP. 

 1.3. Aetiology of low back pain 

 The incidence and prevalence of LBP suggests that LBP may be “a twentieth 

century health care enigma” (Sieben et al., 2005). In the United Kingdom 14,754 

occurrences of musculoskeletal were reported during a one year period between 

July 2005 and June 2006 accounting for 23.5% of all reported occurrences of injury 

(Appendix 1). Incidence and prevalence are descriptive epidemiological terms with 

the incident rate described as the total number of events within a population at risk 

of that event over a specified period of time (Guillemin, 2005). Prevalence is 

described as the state of the population as affected by the condition at a given 

specified time (Guillemin, 2005). It is therefore perceivable that both the incidence 

and prevalence of LBP may vary according to the population being studied and the 

period of time for which the data is collected (Guillemin, 2005). It is suggested that 

both the number of episodes recorded and the total population considered being at 

risk should come from the same data source (Guillemin, 2005). 

 The aetiology of Low Back Pain (LBP) is usually referred to in terms of either 

its incidence or prevalence with much variation. More recent informed opinion 

suggests that there is an annual prevalence equating to a third of adults being 

affected by the condition (Macfarlane et al., 2006), however, other previous studies 

suggest 40% (Papageorgiou et al., 1996), 15-20% (Wong and Deyo 2001), 7% (Stanley 

et al., 2000), 60% (Jackson, 2001) and 80% (Haas et al., 2004). 
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1.4 Impact of low back pain 

Lumbar spine disorders have a negative effect on physical health, 

functioning and bodily pain as measured by the SF-36 health survey (Pahl et al., 

2006) and a better understanding of LBP will provide a means of developing 

strategies to manage the condition.  

The total cost of Low Back Pain (LBP) to the United Kingdom is between 1 

and 2% of gross domestic product (GDP) (BackCare, 2007) and it is the second 

largest reason for long term sickness with an estimated 7% of acute episodes of LBP 

becoming chronic (BackCare, 2007). Although it is not possible to suggest that an 

incorrect diagnosis may have an impact on these figures a correct management 

strategy for LBP remains important because there is still ambiguity about the 

mechanism by which LBP develops and what and how intervention works.  

1.5 Causes of low back pain 

Low Back Pain is the most common musculoskeletal condition seen in 

primary care (Wong and Deyo, 2001) and everyone will be affected by it at some 

stage in their lives (Macfarlane et al., 2006). LBP can be caused by mechanical 

dysfunction as a result of strains, sprains, spondylosis, herniated intervertebral discs 

and stenosis of the spine (Jayson, 1996) and by non-mechanical problems 

associated with conditions such as inflammatory disorders, neoplasms, and 

metabolic bone disorders (Jayson, 1996). Sometimes LBP has no apparent cause 

and is termed idiopathic (NHS, 2005; BackCare, 2007). One anecdotal suggestion is 

that LBP is caused by the disruptive forces affecting the spinal column. Core stability 

exercises (CSE) are thought to provide a resistance to these forces (Willardson, 
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2007b). However, it is not clear what effect CSE has on acute LBP. Acute LBP is 

defined as pain within an initial 6 week period following onset (NHS, 2005; 

BackCare, 2007).  

1.6 Historical management of low back pain 

CSE are fast becoming a preferred method of rehabilitation following the 

onset of LBP (Willardson, 2007a). It is thought that they may reduce the effect of 

debilitating force generated within the spine during functional movement (Hodges 

and Richardson, 1996; Hodges and Richardson, 1997; Barr et al., 2005; , Barr et al., 

2007).  

Traditionally LBP has been seen as a medical problem with a medical 

approach to management. However, a biopsychosocial model of management may 

be a more appropriate approach (Waddell et al., 1984).  Effective management 

however, is dependent upon identifying possible ‘red ‘or ‘yellow’ flags which can 

suggest either serious underlying pathological problems or other factors that may 

influence the outcome of treatment, respectively (Samanta et al., 2003). Red flags 

are possible warning signs that the presentation of LBP may be a guise for 

something more sinister (Table 1.1) (Moffett and McLean, 2006). 

Table 1.1: Red flags (Moffett and McLean 2006) 
 Age of onset <20 or >50 years 
 Violent trauma 
 Constant progressive, non-mechanical pain 
 Thoracic pain 
 Past medical history of malignant tumour 
 Prolonged use of corticosteroids 
 Drug abuse, immunosupression, HIV 
 Systematically unwell 
 Unexplained weight loss 
 Widespread neurology, including cauda equine 
 Structural deformity 
 Fever 
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 Yellow flags (Table 1.2) may influence the mechanism by which an acute 

onset of LBP can become chronic (Krismer and van Tulder, 2007; Gullick, 2008) but 

there is no current informed opinion to suggest that these factors may influence an 

initial onset of LBP.  

Table1.2: Yellow flags (Krismer and van Tulder, 2007; Gullick, 2008) 
 Belief that pain and activity are harmful 
 Exhibits sickness behaviour 
 Negative moods 
 Effective treatment does not meet best practice 
 Claims and compensation 
 Recurrent claims of low back pain and associated time off work 
 Work issues such as low morale and poor work satisfaction 
 Unsociable working hours and heavy work 
 Overprotective family or lack of support 

 

 These factors are not considered within this thesis because they will be part 

of the routine physical assessment used by Physiotherapists as part of the normal 

treatment process and were part of the exclusion criteria used for recruitment to 

this study. The red flags indicate that physiotherapy is a contraindication without 

further investigation and yellow flags indicate caution in treatment.  

Most episodes of LBP resolve within 3months in 90% of cases (Croft et al., 

1998) but persistent back pain will resolve by the 6th week following onset (Jayson, 

1996; BackCare, 2007) suggesting that although patients are not in distress from the 

pain for very long periods the effects may never the less be debilitating. 

Furthermore, it may be that the advice to ‘keep mobile’ (NICE, 2009) plays an 

important role in restoring trunk function.  It also suggests that any study designed 

to investigate the effects of an acute onset of non-specific LBP may be difficult 

because of rapid changes in any intended outcome measure. However, early 

exercise intervention may not be beneficial because specific back exercises have 

been demonstrated to increase symptoms in the acute phase of LBP (Atlas and 
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Deyo, 2001). However, the definition of ‘specific exercise’ as used by Atlas (2001) is 

ambiguous and the term ‘specific core stability exercise’ may be an anomaly 

because any exercise affecting the ‘core’ is a core stability exercise (McGill et al., 

2003). The ‘core’ is described as the lumbopelvic region (Willardson, 2007a; 

Willardson, 2007b). 

1.7 Historical beliefs about low back pain 

 The historical belief is that LBP is caused predominately by structural failure 

of the spinal column caused by the loading of the spinal column (MacNab and 

McCulloch, 1990). Spinal stability is important for the prevention and reduction in 

episodes of acute mechanical LBP (Morgan and King, 1957; Pope and Panjabi, 1985; 

Panjabi, 1994). The stability mechanism described by Reeves et al. (2007) (section 

2.10) may offer an explanation of how the trunk compensates for the effects of 

axial loading of the spine during functional movement (Reeves et al., 2007).  There 

is increasing inquiry into the efficiency and effectiveness of stability exercises to 

prevent instability (Koumantakis et al., 2005) in addition to the effects of instability 

on the changes in kinematics of the spine (Marras and Wongsam, 1986; Kroemer et 

al., 1990; Marras et al., 1990; Marras, 1996). Unambiguous consensus for the effect 

of LBP on trunk kinematics is scarce within the current literature. 

1.8 Diagnostic imaging  

 Diagnostic applications may be of use when they can compliment an 

objective history. There are different diagnostic tools for LBP (Table 1.3) (Patel, 

2004). Each tool has its advantages and disadvantages.  
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Table 1.3: Diagnostic tools for low back pain (from Patel, 2004) 
Test Advantages Disadvantages Indications for Use 

X-Rays 

 Simple 
 Economical 
 Fast 
 Efficient 

 Outcome measures less 
reliable 

 One dimensional 
 Definitive diagnosis 

elusive 

 Spodylolisthesis 
 Compression fractures 
 Spinal alignment and 

curvature analysis 

Computerised 
Tomography Scan 
(CT scan) 

 Can perform Soft 
tissue analysis 

 Can perform Fluid 
analysis (e.g Blood) 

 Poor value for the 
evaluation of post-
operative complications 

 Differentiation of soft 
tissue planes not clear 

 Poor evaluation of early 
degenerative changes 

 Spinal canal deficiencies 
 Neuroforaminal stenosis 
 Lumbar disc protrusions, 

extrusions and 
sequestration 

 Arthropathies (e.g facet 
joint dysfunction) 

Magnetic 
Resonance 
Imaging (MRI) 

• It provides Clear 
definition of 
structures 

• Very low levels of 
radiation 

 

• Intimidating 
environment 

 

• Lumbar Intervertebral Disc 
deficiencies 

• Evaluation of neural tissue 
• Soft tissue differentiation 

(e.g epidural scar Vs 
recurrent or residual disc 
herniation) 

• Spinal cord compression 

Single-Photon 
Emission 
Computed 
Tomography 
(SPECT) 

• Can be used 
effectively when 
bone abnormality is 
suspected 

• High levels of 
accuracy 

• Role within diagnostic 
imaging still 
controversial 

• Spondylodiscitis 
• Metastic lesion 
• Fractures involving the 

Vertebrae 
• Degenerative disease 
• Spodylolysis 
• Facet joint osteoarthritis 

Discography 
• Localised  
• Can provide accurate 

diagnosis 

• Procedure is provocative 
• Only skilled Physicians 

can perform test 
• Can have side effects 

(Discitis) 

• Intervertebral disc 
dysfunction 

 
X-RAY 

 Historically the first tool of choice for investigating an onset of LBP is the X-

Ray, which can identify problems associated with changes in bone density such as 

osteoporosis (Fig. 1.1) (Yu, 2001).  

 
Fig. 1.1: Osteoporosis (from Yu, 2001) 
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 Changes in structural positional relationships may also be investigated (Yu, 

2001), for example spondylolithesis when a vertebral body has migrated forwards in 

relation to an adjacent vertebral body (Fig. 1.2).  

  
Fig. 1.2: Spondylolithesis (from Yu, 2001)  

 
 The usefulness of this diagnostic tool is unclear because of the relationship 

between the subjective psychological wellbeing of the patient and any subsequent 

request for imaging (Lurie, 2005); the greater the discomfort the greater the 

possibility for an X-ray request. But although there is evidence to suggest high levels 

of satisfaction within this group of patients there is prolonged care and greater 

reported disability three months after the initial onset (Lurie, 2005). Inappropriate 

X-ray requests may also result in increased risk radiation induced side effects (van 

den Bosch et al., 2004). 66% of the over 55 year olds will demonstrate degenerative 

change, the use of X-rays is therefore often unjustified (van den Bosch et al., 2004). 

The use of X-ray imaging for acute non-specific LBP as described later in section 1.9 

may therefore be debatable. 

Computerised Tomography Scan (CT scan) 

 CT scans provide much more detail than X-rays by analysing soft tissue as 

well as bone mass (Semelka et al., 2007). It is however the largest contributor of 

man-made radiation doses (Semelka et al., 2007) but its use to identify the 
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effectiveness of posterolateral fusion of the spine demonstrated its effectiveness in 

predicting the presence of any non-union of this aspect of the spine (Carreon et al., 

2007). The CT scan can therefore be advantageous when an episode of LBP may be 

suspected to involve an inflammatory process. 

Magnetic Resonance Imaging (MRI) 

The MRI is considered to be the gold standard diagnostic tool because of the low 

levels of radiation emitted and the ability to distinguish both soft tissue and bone 

mass (Patel, 2004). However the MRI has limitations (Carragee et al., 2006). The 

MRI cannot provide evidence to suggest that observed changes are responsible for 

reported symptoms and a scan before 12 weeks post onset is unreliable because no 

structural changes can be observed before that time frame (Carragee et al., 2006). 

1.9 Differential diagnosis 

 Effective clinical diagnosis is dependent upon an understanding of the 24 

hour pattern of pain as part 0f the assessment process (Petty, 2006). Different 

underlying problems may generate similar symptoms (Lurie, 2005). The common 

various differential diagnoses are illustrated below (Table 1.4),  
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Table1.4: Low back pain differential diagnosis (from Lurie, 2005) 
 

Regional Mechanical LBP 

Non- Specific (Sprain, strain etc) 
Degenerative changes (Intervertabral discs, facet joints) 
Fractures (Osteoporosis, trauma) 
Deformity (Scoliosis, Kyphosis) 
Symptomatic Spondylolisthesis 

Mechanical LBP with 
neurogenic leg pain 

Prolapsed Intervertebral disc 
Spinal stenosis 
Spinal stenosis resulting from spondylolisthesis 

Non-mechanical LBP 

Neoplasia (Metastases, lymphoid tumours, spinal cord tumours 
Infection (Infective spondylitis, epidural abcess, endocarditis, herpes zoster, 
Lyme disease) 
Seronegative spondyloarthritides (Ankylosing Spondylitis, psoariatic arthritis, 
reactive arthritis, Reiter's Syndrome, inflammatory bowel disease) 

Visceral disease 
Pelvic problems (Prostatitis, endometriosis, pelvic inflammatory disease) 
Renal problems (Nephrolistiasis, pyelonephritis, renal papillary necrosis) 
Aortic aneurysm 
Gastrointestinal problems (Pancreatitis, cholecystitis, peptic ulcer disease) 

Miscellaneous Parathyroid disease 
Hemoglobinopathies 

 
 
1.10 Non-specific low back pain  

 Response to LBP differs according to ethnicity (Campbell and Muncer, 2005) 

and patients who are unyielding for the need to ‘cure’ their pain present with 

numerous secondary issues associated with acute LBP (Campbell and Muncer, 

2005). Similarly anecdotal evidence suggests that this subgroup along with 

colleagues in the medical professions with an episode of LBP make the worst 

patients as they appear to be sceptical of intervention and the outcome. 

 Low Back Pain can be classified in terms of its association with a specific 

disorder or not, that is, whether it is organic or inorganic (Waddell et al., 1984; 

Waddell, 1987). In the absence of underlying organic abnormality LBP is referred to 

as being non-specific (Waddell et al., 1984; Waddell, 1987). 

1.11 Factors influencing the onset of non-specific low back pain 

 Non-specific LBP is the most common type of LBP seen in primary care, 

accounting for almost 95% of all reported cases (Gullick, 2008). 
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 The prognosis for non-specific LBP is poor because of a lack of consistent 

outcome measures for its treatment (Gullick, 2008). Previous work evaluating trunk 

movement suggests that this problem may be overcome by using trunk kinematics 

rather than strength as an outcome measure (Koumantakis et al., 2005; Marras and 

Wongsam, 1986).  

 Logic suggests that there is a causal relationship between trunk structural 

failure and the onset of pain. The direct relationship between movement and force 

production (Ogrodnik, 1997c) suggests that specific exercises designed to improve 

the integrity of trunk movement will reduce the effects of the force produced. 

Furthermore reoccurrence may be due to a failure to restore this capability 

following an episode of LBP. This is relevant because it is not possible to predict the 

reoccurrence of onset of LBP from an earlier prognosis (Kent and Keating, 2004). 

1.12 Assessment of non-specific low back pain 

 Management of LBP requires a good clinical assessment however this 

process may vary according to the experience of the clinician (Doody and McAteer, 

2002). The reliability of some of the tests used for objective assessment, for 

example, the straight leg raise (SLR) in testing nerve root compromise is not reliable 

(Gullick, 2008). However both the subjective and objective history as part of the 

assessment is inextricably linked (van den Hoogen et al. 1995; Gullick, 2008; van 

Tulder et al., 2008). But it is suggested that tests that do not provide reproducible 

diagnostic value ought to be abandoned (Lurie, 2005). Poor outcome measures for 

intervention however may be a net result of poor definition of subgroups for LBP 

(Borkan et al., 1998).   
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1.13 Functional anatomy of the lumbar spine 

 The smallest functional part of the spine is the movement segment (Alam, 

2002).  Each movement segment consists of two adjacent vertebra connected by 

two facet joints posteriorly and the intervertebral discs (IVD) anteriorly (Alam, 

2002). The body of the vertebra is designed to carry load and in adults has an 

epiphysial ring (a layer of cortical bone) that acts as a growth zone in the young but 

becomes a point of attachment for the intervertebral disc in adulthood (MacNab 

and McCulloch, 1990). A layer of hyaline cartilage lies within this epiphysial ring and 

together these two structures form the end plate (MacNab and McCulloch, 1990). 

The spine of each vertebra provides a location for the attachment of the 

interspinous ligament and the articulating surfaces of each vertebra are found at 

the end of the articular pillar, the end of which forms the facet joints. Transverse 

processes protrude from the articular pillar to provide a location for muscular 

attachment (Fig 1.3) (Martini et al., 1995). 

Each end plate (Upper or lower) has a characteristic curvature which is 

concave in humans and has an important role in load distribution (Langrana et al., 

2006).  The location for the maximum warp of the curvature is dependent upon the 

stress distribution on the vertebrae (Langrana et al., 2006).   

The Transversus Abdominis and Multifidus muscles play an active role in 

maintaining with trunk stability (Hodges and Richardson 1996; Hodges and 

Richardson, 1997) (Figs. 1.4 and 1.5) 
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Fig. 1.3: Description of the lumbar spine (from Martini et al., 1995) 

   

 

Fig. 1.4: Transversus Abdominis ( From Basmajian, 1976) 
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Fig. 1.5 Multifidus muscles (From Basmajian, 1976) 

A study of vertebral segment movement demonstrated that posterior-

anterior pressure (PA), the ‘Maitland’ concept (Grieve, 1984; Petty, 2006), on the 

spine of vertebrae in the lumbar region produces most movement at L1/2 in 

asymptomatic individuals in contrast with symptomatic individuals who 

demonstrated most movement at L2/3 (Kulig et al., 2007). The least amount of 

movement occurred in both asymptomatic and symptomatic subjects at L4/5 (Kulig 

et al., 2007).  Active repetitive movements designed to produce centralisation of 

pain based upon the ‘McKenzie’ concept (Moffett and McLean, 2006) produces 

most movement at L5/S1 and L4/5 in the asymptomatic and symptomatic subjects 

respectively with the least movement occurring at L1/2 in both groups of subjects 

(Kulig et al., 2007). The ‘McKenzie’ concept may therefore be more relevant and 

effective when dealing with LBP associated with hypo-mobility involving L5/S1, 

however, the overall success of the technique may be limited by symptoms (Kulig et 
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al., 2007). There is paucity of literature to adequately demonstrate vertebral 

segment movement during trunk flexion activity. 

1.14 Facet joints 

Facet joints are part of the stabilising structures during flexion movements 

of the spine (Alam, 2002). This stability is achieved by using a ‘hook’ mechanism 

derived from the angle at which the adjacent surfaces of the joint lie (Alam, 2002). 

Each joint within the trunk inclines at 90 degrees above the horizontal plane and 

deviates 45 degrees behind the frontal plane (Whiting and Zernicke, 1998b). The 

joint surface allows a gliding/sliding movement with the outermost fibres of the 

annulus fibrosus of the intervertebral discs playing a part in the overall control of 

the amount of movement produced (Whiting and Zernicke, 1998b). Faults within 

this mechanism predispose the lumbar spine to instability during functional 

movement (MacNab and McCulloch 1990). The distinct orientation of the surfaces 

of the facet joints limit rotation about a vertical axis (Watkins, 1999) and an 

understanding of the implications of this alignment is useful when evaluating 

episodes of LBP associated with facet joint dysfunction. However, the relationship 

between objective findings suggesting facet joint dysfunction and reported 

symptoms remains unclear (Atlas and Deyo 2001). 

 The intervertebral discs (IVD) are protected from strain by reducing 

excessive functional rotation through the ability of the upper lumbar facet joints to 

cope with axial displacements (Boyling and Jull, 2004). However, the lower down 

the spine the facet joint is located within the lumbar spine, its orientation alters 

making those lower facets more susceptible to damage compared to the facet 
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joints located higher up (Fig 1.6) (Boyling and Jull, 2004).  This change in orientation 

may follow the change in the natural curvatures of the spine in an erect posture. 

 
Fig. 1.6: Facet joint orientation comparing Thoracic and Lumbar spine (from Boyling and Jull, 2004) 

 

Rotational movements of the lumbar spine (Fig. 1.6 B) produce less facet 

joint displacement compared to the thoracic spine (Fig. 1.6 A). The upper regions of 

the lumbar vertebrae (L1-4), (Fig 1.6 C) demonstrate less compression and 

separation when compared to L4/5 segment (Fig 1.6 D). The variation in joint 

orientation may therefore influence effectiveness of physiotherapy treatment when 

objective signs suggest a problem in either the upper or lower parts of the lumbar 

spine.  

Flexion and extension can either reduce or increase compression forces on 

the facet joints, respectively, with corresponding reduction or increases in the load 

on the articular pillar (Watkins, 1999). Long periods of standing can produce low 

back pain because of trunk lordotic position with L4 and L5 making an angle of 15 

and 25 degrees respectively, to the horizontal (Watkins, 1999).  

Repeated micro trauma such as an impingement associated with excessive 

loading and consequential stress on the articular pillar can result in spondylosis (Yu, 
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2001). Spondylosis increases with age and commonly affects L4 and L5 in 5% of the 

general population (Yu, 2001). Anecdotal evidence suggests that this is the main 

cause of LBP of insidious onset in an age group within which natural degenerative 

change is occurring.  

During trunk flexion movements in a cadaveric spine caudal facet joints 

experience the most moment force and horizontal strain caused by displacement 

and this strain is more than the vertical strain at the same levels (Ianuzzi et al., 

2004). During extension however, there is more vertical strain (mainly at L5/S1) than 

horizontal strain (Ianuzzi et al., 2004). The intervertebral angle (IVA) is greatest at 

L5/S1 during flexion/extension but it is greatest at L3/4 during side bending (Ianuzzi 

et al., 2004). Such research evidence is informative, but limited, as it has been 

obtained from experiments on cadavers. These movement characteristics however 

differ from the left to the right side (Ianuzzi et al., 2004). There is paucity of 

literature demonstrating similar trunk movement characteristics in vivo. However, it 

has been demonstrated that during flexion, deformation of the lower intervertebral 

discs occurs before that of the upper discs but during extension from flexion there 

is little evidence to suggest that deformation occurs at all (Kanayama et al., 1995). 

However, during extension from the neutral position deformation is mainly at L5/S1 

(Kanayama et al., 1995).   

Facet joints are important for both the quality and quantity of trunk 

movement because removal of the posterior elements of a movement segment 

decreases the resistance to rotation by 40-60% (Boyling and Jull, 2004).  

15-40% of chronic LBP is associated with facet joint pathology but the routine 

method of extension-rotation to test facet joint integrity has only 12% specificity 
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even though it does have a 100% sensitivity rating (Laslett et al., 2006). The reliability 

of the traditional method of palpation is also poor because the reliability between 

examiners of locating facet joints is low (Najm et al., 2003). 

Each facet joint derives its nerve innervation from the medial branches the 

dorsal ramus of the adjacent spinal nerve (Boyling and Jull 2004). Some localised 

acute back pain may originate because the intra-articular synovial folds and joint 

capsule share the same innervation and may offer an explanation as to why these 

types of back pain respond to manipulation (Boyling and Jull, 2004). 

1.15 Intervertebral discs (IVD)  

Lumbar intervertebral discs (IVD) (Fig. 1.7) are between 7-10mm thick with an 

anterior –posterior diameter of approximately 4cm (Urban and Roberts, 2003). Each 

IVD has an outer annulus fibrosus (AF) and an inner nucleus pulposus (NP); the 

boundaries of which are distinct in the young but degeneration occurs specifically 

compared with other soft tissue of the musculoskeletal system (Urban and Roberts, 

2003). Although the degenerative process can be asymptomatic, it is linked to the 

onset of LBP (Urban and Roberts, 2003). 

 
Fig.1.7: The Intervertebral disc (IVD) (from Holm, 1996) 

 

The nucleus pulposus is a proteoglycan matrix with high water content (Giles 

and Singer, 1997; Boyling and Jull, 2004) but collagen content increases with 
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maturity (Giles and Singer, 1997). The NP occupies approximately 75% of the disc 

space and is surrounded by the AF consisting of collagen fibres or lamellae, 

arranged at an angle of approximately 650 to the vertical and arranged in alternate 

directions (Boyling and Jull, 2004). This arrangement provides an ideal mechanism 

to resist rotational forces (Boyling and Jull, 2004). The thickness of the lamellae vary 

depending upon their position with the thicker fibres found in the anterior and 

lateral aspects (Boyling and Jull, 2004). Posterior fibres are more closely packed 

together than other areas of the disc with 50% in the posterolateral aspect 

appearing as incomplete rings (Boyling and Jull 2004).  

There are two layers of lamellae, each with a specific role in the overall 

biomechanics of the IVD; an outer layer links adjacent vertebrae, limiting movement 

between them and an inner layer that links adjacent end-plates, providing a capsule 

for the NP (Boyling and Jull, 2004). 

The integrity of the IVD can become compromised by either of two ways 

(Fig. 1.8). 



 22 
 

 

Fig. 1.8: Loss of IVD integrity (from Watkins, 1999) 

The IVD can be compromised because of the relationship between loss of 

structural integrity of the IVD and crystal deposits found within the disc (Gruber et 

al., 2007). The resulting loss of disc height may alter trunk movement characteristics 

and influence an onset of symptoms of LBP. This is because as the disc loses height, 

the articular surfaces experience greater compression and stress as discussed 

earlier within this chapter (Gruber et al., 2007).  

1.16 Finite-element modelling 

Finite-element modelling developed by and for engineers in the mid 1950’s as 

a method of simulating structural behaviour allows the investigation of tissue 

response to external forces (Whiting and Zernicke, 1998a).  Complex mathematical 

AP-Annulus Fibrosus 
NP- Nucleus Pulposus 
IVD- Intervertebral 
Disc 
IVF-Intervertebral 
Foramen 
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calculations can be used to predict structural deformation caused by stress and 

strains as a result of loading on the spine but finite element modelling can also 

provide volumetric representation of the spine under stress/strain (Liebschner et 

al., 2003). The technique has been used to demonstrate the response of facet joints 

and the behaviour of the motion segment to compression forces (Gardner-Morse 

and Stokes, 2004). It was shown that the load-displacement behaviour of facet 

joints depends upon the axial compressive pre-load to maintain movement segment 

stiffness during antero-posterior shear (Gardner-Morse and Stokes, 2004). The 

behaviour of the movement segment to compression does not change when the 

posterior articulating parts (including the facet joints) were removed suggesting 

that the response is solely due to the intervertebral disc (Gardner-Morse and 

Stokes, 2004).  

Finite-element modelling has been used to provide evidence for how facet 

joints play a role in the stability of the spine (Panjabi, 1994) demonstrating that the 

centre of rotation of these joints migrate in response to forces applied to the 

segment (Schmidt et al., 2008). The centre of rotation migrates outside the 

intervertebral disc when the force is at its maximum (Schmidt et al., 2008). 

During axial loading of the spine a vertebral body is damaged before an 

intervertebral disc will be damaged (MacNab and McCulloch, 1990). Finite-element 

modelling has been used to demonstrate this response in a healthy spine (Tabor et 

al., 2005) (Fig 1.8). The resilience of the spine during activities such as lifting or 

carrying a heavy load is demonstrated below with the accompanying scale 

suggesting that the greatest loading occurs at the lower region of the spine (L5) 

(Fig 1.9) (Tabor et al., 2005).    
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Fig. 1.9: Finite-element imaging of the loaded spine (from Tabor et al., 2005) 

1.17 Skeletal muscle physiology 

 Actin and myosin are the main two proteins responsible for the contractile 

properties of skeletal muscle and is approximately 80% of all protein found within it 

(Jones and Round, 1990). A longitudinal section of the smallest contractile unit (the 

myofibril) demonstrates an arrangement of light and dark bands (Fig 1.10). 

 
Fig. 1.10: Section of skeletal muscle (from Jones and Round, 1990) 

 

 During muscle contraction polymerisation of the actin gives it a double helix 

appearance. During polymerisation adenosine tri-phospahate (ATP) splits and 

binding with adenosine bi-phosphate (ADP) occurs (Jones and Round, 1990).  

High loading 

Low loading 
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Tropomysin which is also a double helix structure is found across every 7 

subunits of actin and has a main function of preventing contact between the actin 

and myosin until movement brings them into close proximity when calcium binds 

with troponin C a constituent of three smaller proteins (troponin I, C and T) also 

found within muscle (Jones and Round, 1990).  

Actin filaments join together to form the z- line and the distance between z-

lines is the sarcomere, the length of which changes during muscle contraction 

(Jones and Round, 1990). The process of actin and myosin binding involves the actin 

filaments sliding between the myosin filaments. This mechanism is known as the 

‘sliding theory’ of muscle contraction (Jones and Round, 1990). 

 The functional unit of skeletal muscle is the motor unit (Jones and Round, 

1990; Watkins, 1999). Each motor unit is made up of a motor neurone, its axon and 

all its branches and the muscle fibres that are attached to them (Fig 1.11). The 

branches may be from either an Aα or an Aβ motor neuron. A contraction is 

precipitated when an action potential (AP) elicited by the motor neuron is 

transmitted along the axon and its branches to reach the neuromuscular junction or 

end plate to produce a muscle response (Jones and Round, 1990; Watkins 1999).  

 
Fig. 1.11: The motor unit (from Watkins, 1999) 

Motor Neuron 

Axon 
Muscle fibres 
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 If the AP is large enough and/or prolonged enough individual twitches 

combine to form a contraction (Watkins, 1999). There are three types of motor 

units each with unique properties that can be activated by stimuli (Table 1.5) 

(Watkins, 1999). 

Table 1.5: Motor unit characteristics adapted from Watkins (1999) 
 Slow twitch Fast twitch 

(Fatigue Resistant) 
Fast twitch 
(Fatigable) 

Activation threshold Low Moderate High 

Contraction time (ms) 100-120 40-45 40-45 

Innervation ratio of motor units Low Moderate High 

Type of muscle fibres 1 2a 2b 

Type of Axon Aβ Aα Aα 

Speed (m/s) 40-80 65-120 65-120 

Duration and size of force Prolonged 
Low force 

Prolonged 
Relatively high force 

Intermittent 
High force 

 

 There are equal proportions of both slow and fast twitch motor units in each 

muscle however the ratio may vary according to the action of the muscle (Jones 

and Round, 1990; Watkins, 1999). Muscles used for fast responses possess a greater 

number of fast twitch than slow twitch motor units and in muscles responsible for 

posture and prolonged activity there are greater number of slow twitch motor units 

(Jones and Round, 1990; Watkins, 1999). 

 The innervation ratio of motor units is the ratio between the numbers of 

muscle fibres per axon and the greater the ratio the greater the force produced by 

its activation (Watkins, 1999). Trunk muscle group activation and the sequence of 

activation is ambiguous (Barr et al., 2007). It is suggested that the Transversus 

Abdominis (TA) and Multifidus (MF) are activated first to maintain stability of the 

spine during movement of the extremities but the TA is activated before the MF 

(Barr et al., 2005). However, trunk stability is achieved through a tripartite 

arrangement involving three sub-systems; the passive (bones, IVD and ligaments), 
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the active (muscles) and the neural (sensory receptors, cortical and sub-cortical 

controls) (Panjabi, 1994). A 20lb load is sufficient to cause the collapse of the spine 

if the muscles are removed (Crisco, 1989). Muscle response to pain is by either a 

‘pain-spasm-pain’ or ‘pain adaptation’ model (van Dieen et al., 2003). 

1.18 The pain-spasm-pain model 

 Pain causes a muscular response which creates further pain and discomfort 

(van Dieen et al., 2003). This model is elicited by either of two ways (Fig. 1.12). 

 
Fig. 1.12: The pain-spasm-pain model (from van Dieen et al., 2003) 

 

 Nociceptor activity (N) via the posterior horn influences the brain through 

the neural pathway simultaneously increasing muscle activity by causing excitation 

(E) of the α-neurons at the level of the segment of the spine which they supply 

(Johansson and Sojka, 1991). Alternatively the nociceptors (N) increase muscle 

spindle (S) activity via γ- afferents. This hyperactivity proceeds to excite the α-

neurons (Johansson and Sojka, 1991).  

1.19 The pain-adaptation model 

 The excitation of both inhibitory (I) and excitatory (E) interneurons results in 

a process where pain reduces agonist muscle group activity simultaneously 

increasing antagonist muscle group activity (van Dieen et al., 2003). This process is 

controlled by the central nervous system through motor command (Fig. 1.13) (van 

Dieen et al., 2003). 
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Fig. 1.13: The Pain adaptation model (from van Dieen et al., 2003) 

 

 It is not clear as to how this model may fit in with the complex nature of the 

synergy demonstrated by trunk muscles because studies suggesting this model 

have only used large muscles such as the gastrocnemius (Graven-Nielson et al., 

1997). However this model may result in a reduction in movement velocity in the 

spine (van Tulder et al., 2000).  

1.20 Biomechanical properties of the lumbar spine 

 The restoration of trunk stability using core stability exercises (CSE) is 

increasing in popularity (Willardson, 2007a; Willardson, 2007b). The effectiveness of 

CSE is uncertain (Standaert and Herring, 2007; Standaert et al., 2008). However 

trunk biomechanical characteristics are influenced by non-specific LBP (Barr et al. 

2005; Barr et al., 2007).  

1.21 Trunk stability 

 There is no definitive definition of trunk stability. However several studies 

have described ‘Instability’ as being a phenomenon resulting from applied loads 

causing abnormal movement of the movement segment (Panjabi, 1994; Fritz et al.,  

1998; O'Sullivan, 2000; Alam, 2002). Mechanisms for stability have also been 
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suggested as the tripartite arrangement described earlier (section 1.15) (Panjabi, 

1994; Barr et al., 2005; Barr et al., 2007). 

 Radiological tests demonstrate that traction spurs, IVD space narrowing, 

asymmetric collapse of the IVD, mal-alignment of associated vertebrae and 

abnormal glide and rotational movements of the spine during flexion and extension 

can be evidence of instability (Alam, 2002).  It has been proposed that specific 

stabilisation exercises were not effective in reducing pain and disability in acute LBP 

but may be effective in reducing reoccurrence after an episode (Ferriera et al., 

2006) however they are more effective than other forms of active intervention for 

the management of chronic LBP (May and Johnson, 2008). 

 Trunk stability is dependent upon 3 sub-systems- passive, active and neural 

control systems (Panjabi, 1994; Fritz et al., 1998) (Fig 1.14). 

 The passive subsystem consists of the IVD, ligaments and facets (Fig 1.14). 

The annulus fibrosus of the IVD portrays a unique arrangement of fibres, an 

orientation of +30 to -30 degrees in adjacent laminae which provides stability to 

counter axial torque and excessive lateral flexion (Panjabi, 1994). Injuries to the 

annulus may cause pain and discomfort in a single direction whereas the injury to 

the nucleus pulposus may be identified by pain and discomfort during 

multidirectional movements (Panjabi, 1994). 
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Fig. 1.14: Trunk stability sub-systems  

  
Ligaments provide trunk stability but their efficiency is dependent upon the 

size of the ligament in terms of its length and cross sectional area, its location from 

the centre of movement of the segment and the direction of movement it is 

supposed to regulate (Panjabi, 1994). Facet joint hypertrophy as the spine 

degenerates through a natural ageing process is also considered to be a cause of 

LBP (Panjabi, 1994) and it has been demonstrated that the removal of just one facet 

joint within a segment exposes the segment to significant to multidirectional 

instability (Abumi et al., 1990). 

 Muscles are important for trunk stability (Fig 1.15) (Panjabi, 1994). The ratio 

of tolerable physiological load to critical load that will result in the spinal column 

collapse is approximately 17:1 when in the flexed position of 20 degrees 

(Nachemson and Morris, 1964; Crisco, 1989). This is prevented by muscles exhibiting 

similar characteristics to guy wires (Panjabi, 1994). These characteristics are assisted 

by the large cross sectional area of the muscles around the low back region and 

their large lever arms (Panjabi, 1994). Trunk muscles either produce movement or 

inhibit it, a process that provides spinal control (Norris, 1995). Muscles are grouped 

as either global muscles responsible for gross movement of the spine or deep local 

Instability 
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T d  

The Neural Control Subsystem 
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muscles responsible for segmental adjustments required to maintain local stability 

(Barr et al., 2005). However, specific exercise is not beneficial as a treatment for LBP 

in the absence of any clinical signs suggesting instability (Koumantakis et al., 2005; 

Ferriera et al., 2006).  

 Exercise for the management of LBP using the large muscles with large lever 

arms, such as back extension exercises in the prone position can cause an 

exacerbation of symptoms in some patients (Callaghan et al., 1998). They may 

therefore not be appropriate if the source of the LBP involves a nucleus pulposus 

which does not tolerate multidirectional movement (Kanayama et al., 1995). The 

aforementioned exercise also increases the stress on the facet joints (Callaghan et 

al., 1998).  

Tendons are an integral part of the muscle system operating across the 

lumbar spine and are inaccessible by non-invasive techniques. They contain similar 

structural composition as other soft tissue and as such exhibit similar viscoelastic 

properties of stress, strain and fatigue etc. (Watkins, 1999). 

 The neural control subsystem is responsible for the control and regulation of 

the other two sub-systems (Fritz et al., 1998). Neural input is provided by both the 

lower centre of the spinal cord through reflex loops and from the brain that has the 

capacity to override instruction from the spinal cord (Fritz et al., 1998). Poor 

neuromuscular control can result in recurrent episodes of LBP but there is no 

current evidence to suggest that poor neuromuscular control pre-empts a first 

episode of LBP (Fritz et al., 1998). However, it is suggested that inadequacies in this 

subsystem can reduce the ability of the spine to anticipate the effect of applied load 

as demonstrated by Multifidus and Transversus Abdominis activity preceding active 
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limb movements in the absence of LBP (Hodges and Richardson, 1996; Hodges and  

Richardson, 1997) but alterations to this sequence of events are evident in chronic 

LBP (Barr et al., 2007). It is therefore possible to differentiate pain and disability 

associated with either psychosomatic pain or somatopsychic pain because the latter 

will demonstrate alterations in activation of either or both the Transversus 

Abdominis and Multifidus muscle groups (Hodges and Richardson, 1996; Hodges 

and Richardson, 1997). 

 A load-displacement curve for trunk flexion-extension movements (Fig 1.15) 

demonstrates trunk biomechanical characteristics in response to load.  

 
Fig. 1.15: Load-displacement curve (from Panjabi, 1994)  

 
 The spine is flexible enough to low loads but stiffens to high load (Panjabi, 

1994). This is demonstrated by a non-linear curve which suggests two distinct areas 

of a neutral zone where the segment is providing very little resistance and an actual 

range of movement zone (Fig. 1.15). If the neutral zone is greater than the actual 

range of movement zone instability results with the likelihood of accompanying 

pain (Panjabi, 1994).  

1.22 Effects of force on the spine 

 When the spine is subjected to loading the activity of all the components of 

the spinal column compliment each other (Cripton et al., 2000). Their response 
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however, varies according to tissue type and the amount of force applied (Cripton 

et al., 2000). The stability of the spinal movement segment is dependent upon the 

IVD (Cripton et al., 2000) and the nucleus pulposus has a major role within this 

mechanism (Nachemson, 1981).  

The pressure within the nucleus pulposus is expressed in mathematical 

terms as; 

P (nucleus pulposus) = K (F (disc) /A (disc)) (Nachemson, 1981) 

(F (disc) - vertical force applied to the IVD, A (disc) -surface area and K- coefficient [between 1.3 and 1.6]) 

 The intradiscal pressure is greatest during trunk flexion when compared to 

side flexion or extension (Cripton et al., 2000). This response creates more pain in 

the early morning compared to the latter parts of the day because of the 

hydrophilic nature of the disc material (Giles and Singer 1997; Boyling and Jull, 2004) 

and the gradual loss of fluid caused by the effects of gravity when in an erect 

position. 

 Anecdotal evidence suggests that lumbar traction has been used for many 

years to treat LBP caused by an increase in intradiscal pressure. However the 

mechanism by which this works remains unsubstantiated because it is thought that 

the beneficial effect of the technique does not last for longer than 30 minutes 

following application (Twomey, 1985).The process involves the application of axial 

load to distract the movement segments. The efficiency and overall affect of the 

lumbar traction is dependent upon two main factors; 

 The position of the patient in order for the load to be applied; either 

with the hips and knees in 90 degrees of flexion or not. The former is 
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described as the Fowler position and considered to be the most 

effective (Lee and Evans, 2001). 

 The angle at which the load is applied to the spine. For effective 

coupling of forces this angle is approximately 18 degrees (Colachis 

and Strohm, 1969). 

 Lumbar traction is applied in the Fowler position; crook lying with the knees 

supported in 90 degrees of flexion, to produce an anterior shear with simultaneous 

flexion of the movement segments to increase the size of the neural foramina (Lee 

and Evans, 2001). There is also a reduction in tension within the posterior column of 

the spine including the posterior fibres of the annulus fibrosus (Lee and Evans, 

2001). 

  Lumbar traction also affects facet joints (Ianuzzi et al., 2004). 

Because of the angle to which they lie and because facet joints are sliding joints 

there is a tendency for the contact area between the surfaces to be reduced 

(Ianuzzi et al., 2004). This effect is limited by the capsule and associated ligaments 

(Ianuzzi et al., 2004) but the force applied can produce shear strain between the 

surfaces (Ogrodnik, 1997a; Watkins, 1999).  

However compressive force causes the spine to shrink as a result of either 

flexion or to a lesser degree rotation of the vertebrae (Wisleder et al., 2001). There 

are however only a few instances where true compression actually occurs (Wisleder 

et al., 2001) but there is usually extension between L2 and L4 and flexion at L5 

(Wisleder et al., 2001). There is simultaneous anterior shear at these levels with a 

corresponding loss of lumbar lordosis (Lee and Evans, 2001). However, the net 

effect of compression may be exaggerated by torque as demonstrated in a study 
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using the cervical spine. It was demonstrated that torque grossly affects tissue 

response to axial loading because the majority of damage occurs at the end plates 

as the vertebral body with the facet joints remaining relatively unscathed even 

though the overall stability of the movement segment is jeopardised (Aultman et 

al., 2004).  

Because of the tendency for the segments L2-4 to extend in response to 

compressive loading (Wisleder et al., 2001), TrA activation timing and the influence 

of the TrA on lumbar lordosis is important, a process already demonstrated 

suggesting that the TrA is an ‘anticipator’ to loading activities (Hodges and 

Richardson, 1996; Hodges and Richardson, 1997).   

1.23 Effects of mechanical stress and strain on the spine 

 Direct or indirect forces applied to tissue causes tensile stress which is a ratio 

of the force (F) applied to a cross-sectional area (A) of the surface, to which the load 

is applied,  

Stress = F/A 

The stress developed within the tissue causes it to change shape or deform. 

This is achieved by a change in its length. The ratio of the length change to the 

original length is the strain which the tissue is put under. 

Strain = ∆l/l 

(∆l - change in length; l - original length before deformation) 

The effect of either stress or strain on tissue can be demonstrated in living 

tissue (Ogrodnik, 1997a; Whiting and Zernicke, 1998b; Watkins, 1999). Living tissue 

is heterogeneous in nature consisting of both viscous and elastic properties.  It is 

therefore expected that a vertebral body and the IVD will respond in a particular 
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way to axial loading (Whiting and Zernicke, 1998b; Watkins, 1999).  The effect of the 

axial loading is directly related to the length of time for which the load is applied 

(Ogrodnik, 1997a) because Hooke’s law suggests that the longer the time frame 

during which it is applied the increasing likelihood of the structure losing its integral 

elastic property and returning to its normal shape because it would have exceeded 

its elastic limit (Ogrodnik, 1997a).  

Temperature fluctuation influence tissue performance by producing a 

thermal strain as can be demonstrated in isotropic materials (Ogrodnik, 1997a).  

Thermal strain = Thermal Coefficient X ∆T 
(∆T - change in temperature) 

 
There is paucity in the literature describing the effects of thermal strain on 

trunk tissue. However, this maybe a component of an underlying mechanism by 

which the anecdotal evidence may suggest occurrence of LBP reported by patients 

in the clinical environment to be worse during the winter months and extremely 

warm summers. 

1.24 Deformation of tissue as a response to loading 

 The IVD as part of the movement segment experiences the greatest 

deformation during loading losing approximately 0.16mm in height (Heuer et al., 

2007), and when an IVD is subjected to an axial load of 500N for 15 minutes its 

internal pressure decreases linearly (Heuer et al., 2007). However, loading will 

initially cause anterior deformation because the whole deformation process is time 

dependent (Little et al., 2004). The long term effects of the deformation are created 

postero-laterally where it can be shown to be greatest (Heuer et al., 2007). This 

suggests that the historic assumption that acute LBP and associated radicular 
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symptoms reported after an immediate incident may not be caused by direct IVD 

damage but by the immediate response to facet joint loading, deformation of the 

IVD and the narrowing of the neural foramina (Little et al., 2004). Asymmetrical 

deformation in response to load is a viscoelastic property referred to as creep 

(Watkins 1999). 

1.25 Creep 

‘Creep’ is a time dependent property demonstrated by continual tissue 

deformation after the cessation of the application of load applied to it before there 

is a gradual return to a normal state as seen before the point of tissue failure as 

caused by prolonged application of the load (Fig 1.16).  

 
Fig. 1.16: Stress-strain curve (from Whiting and Zernicke, 1998b) 

 
 There is a linear relationship between stress and strain (Fig 1.16) and 

70homogenous materials demonstrate characteristics that obey the laws of 

elasticity or Hooke’s law (section 1.21). Observation of the Hookean law suggests 

that when a load is removed, the material will be restored to its original length. This 

response is a ratio of the gradient of the stress-strain curve (a/b). Within this range 

the material has elastic properties. If the load is removed at or beyond the yield 

point the material will not return to its original length but assumes another shape 

demonstrating ‘plastic or non-elastic’ properties (Watkins, 1999). Exceeding the 
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plastic range when the material will reach its maximum tolerance causes failure 

(Watkins, 1999) and when if applied to the trunk, acute LBP may ensue. 

 The enforced change in shape of the tissue is proportional to the load 

applied; the greater the load the greater the change in shape. When the load is 

removed and if the strain remained within the elastic range, the deformation will 

gradually reverse until the normal shape or length is resumed (Watkins, 1999) (Fig 

1.17).  

 
Fig. 1.17: Load - Deformation curve (from Whiting and Zernicke, 1998a) 

 
The ‘creep’ response demonstrated by the capsule of facet joints is 

particularly significant after sustained flexion at L5/S1 (Little et al., 2004), suggesting 

that the spine is very vulnerable after performing tasks when in prolonged flexion. 

Furthermore it also suggests that such induced LBP will respond effectively to rest 

in a supine or prone position during which deformation is reversed. It has been 

suggested that this reversal can take up to 20 minutes (Little et al., 2004). 

‘Creep’ as a characteristic therefore can have a detrimental effect on the 

stability of the movement segment especially when the muscles responsible for 

stability during trunk functional activity involving sustained or repeated flexion 

demonstrate a reduction in reflexive activity (Gedalia et al., 1999, Solomonow et al., 

2000; Williams et al., 2000; Claude et al., 2003; Lu et al., 2004).  Changes in 

Multifidus electromyography (EMG) activity when adjacent facet joints are 
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stimulated with an electric current (Little et al., 2004) demonstrate a possible 

mechanism for loss of trunk stability. 

1.26 Energy absorption  

 As tissue experiences deformation some energy is absorbed to provide 

resistance to the load. During the unloading stage this energy is re-released 

gradually and a natural 3-dimensional shape is regained. The amount of energy 

released is equal to the area between the curves, ‘d’ (fig 1.17) (Whiting and Zernicke, 

1998a; Watkins, 1999). It may be this energy that is reported as an increase in 

temperature during LBP and it may not be the same as the increase in temperature 

and associated erythema observed during an objective assessment with palpation 

or during an inflammatory process. There is paucity in the literature to support this 

supposition.  

1.27 Conclusions 

 Low Back Pain continues to be a complicated condition generating concern.  

Although there are various historical diagnostic tests available to diagnose LBP 

these tests are only effective when there is an underlying pathology. The diagnostic 

tests however lack sensitivity to demonstrate effectiveness of intervention for 

mechanical non-specific back pain. It is therefore justified to explore the possibility 

of quantifying real time trunk movement characteristics after using interventions 

such as the increasingly popular core stability exercises. There is also empirical 

evidence to suggest physiological mechanisms for trunk movement that may 

underlie CSE (Hodges and Richardson, 1996; Hodges and Richardson, 1997; Barr et 

al., 2005; Barr et al., 2007). 
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 This study utilises a method of analysis that evaluates changes in trunk 

acceleration and investigates the relationship between the effectiveness of CSE and 

the pain and disability reported following an episode of acute pain. 

 The following chapter evaluates the current methods of evaluation of trunk 

movement characteristics, considered opinion about the underlying mechanism for 

the onset of LBP and the mechanisms for the effectiveness of core stability 

exercises as an intervention for the treatment of LBP.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 41 
 

Chapter 2 

Literature Review  

2.1 Summary 

This chapter explores what is known of the effect of Core Stability Exercises 

(CSE) on acute non-specific low back pain to date. The chapter also explores the 

depth of existing knowledge of movement characteristics of the trunk in terms of 

its higher order kinematics. The research questions, as a direct consequence of the 

chapter conclusion, are then stated. 

2.2 Historical factors that influence the management of low back pain  

The main cause of LBP has previously been suggested to be vascular 

deficiency (Jayson, 1996). This is because there is greater relevance of the effects of 

smoking on vascular integrity rather than height, weight, inherited factors, spinal 

movements, muscle strength or even radiological signs for the onset of LBP 

(Jayson, 1996). However, this proposition originates from a heavily medical oriented 

opinion and an organic orientation upon which an onset can be related.  This 

interpretation also seems to suggest that mechanical non-specific LBP can be 

experienced in the absence of both functional movement and the central 

neuromodulation that may influence segmental and global spinal movements. 

Anecdotal evidence from the clinical environment suggests that non-specific 

LBP does respond to intervention if efficient movement is restored to spinal 

segments. An inability to adequately demonstrate this may be a reason why the 

prevalence of LBP has not improved over the years despite intensive research. 

Indeed, even technological advances in diagnostics and intervention have not 
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reduced the economic burden of LBP (Dagenais et al., 2008). Data from Australia, 

Belgium, Japan, Korea, Netherlands, Sweden, United Kingdom and United States 

suggests that LBP is reported to be the 4th most expensive health condition with 

both direct and indirect economic costs (Dagenais et al., 2008) and physiotherapy 

as an intervention is one of the largest components of those direct costs (17%) 

(Dagenais et al., 2008).  It is therefore justifiable that physiotherapists continue to 

seek a method to demonstrate effectiveness of intervention and be able to justify 

associated costs within healthcare delivery. This may be achievable by 

demonstrating both efficiency and effectiveness through the quantification of the 

effects of intervention. 

Historical assessment of LBP in a clinical environment consists of both a 

subjective self reporting system and an objective assessment of function to 

evaluate functional ability (Petty, 2006). This process precedes the development of 

hypotheses upon which an explanation for reported symptom behaviour can be 

developed. Subsequent Intervention involves various management strategies. Each 

strategy however usually includes muscle strengthening programmes. This is 

because previous studies have suggested that LBP causes weakness in trunk 

musculature (Hodges and Richardson, 1996; Hodges and Richardson, 1997; Barr et 

al., 2005; Barr et al., 2007).  

2.3 Acute non-specific low back pain   

 Acute non-specific low back pain is an episode of LBP that has lasted for up 

to 6 weeks (BackCare, 2007; Kinkade, 2007). It has also been described as lasting for 

up to 3 months (Smith et al., 2002; Gullick, 2008) but the authenticity of this 

description lacks credibility because one point of view is that the length of time of 
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onset during which other secondary effects of LBP may become apparent may be 

driven by central neuromodulation (Jayson, 1996).  Acute LBP can also influence 

gait depending upon its severity (Taylor et al., 2004), however kinematic analysis of 

the influence of LBP on gait has not been adequately demonstrated (Taylor et al., 

2004).  

 2.3.1 Classification of low back pain 

The Quebec Task Force Classification (QTFC) (Spitzer, 1987) has been used 

successfully to classify LBP patients by defining differences in the extent of pain and 

types of pain. The method has been used to categorise sciatica as a classification in 

which pain radiates down the leg beyond the knee and thus indicates the severity of 

symptoms and the likelihood of future surgical intervention (Atlas et al., 1996).  

Within the sample evaluated by the study, the non-surgical group demonstrated 

better improvement in outcome compared to the surgical group (Atlas et al., 1996).  

However, the QTFC cannot differentiate between acute and chronic LBP and thus 

does not effectively demonstrate discriminant validity (George and Delitto, 2005). It 

therefore may be considered to be a taxometric assessment which can be used to 

classify types of low back pain. 

 The heterogeneous nature of acute LBP suggests that it cannot be treated 

by a single mode of treatment (Abbott, 2008) there is therefore a need to match 

intervention to clinical findings for meaningful treatment outcomes (Abbott, 2008).  

Delitto et al. (1995) proposed a Treatment Based Classification (TBC) system (Table 

2.1). This system utilises subjective history and symptoms for LBP as a method to 

assist in the physiotherapy decision-making process to decide on an appropriate 

intervention (George and Delitto, 2005).   
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Table2.1: Treatment Based Classification -adapted from George & Delitto (2005) 
  Classification Key History/Clinical findings Intervention 

Specific Exercise 
Extension syndrome 
 
 
 
 
Flexion syndrome 
 
 
 
 
Lateral shift syndrome 

 
1. Posture preference is extension 
2. Pain with lumbar flexion 
3. Pain ‘centralises’ with  lumbar 
extension but intensity increases with 
flexion tests 
1. Posture preference is flexion 
2. Pain with lumbar extension 
3. Pain ‘centralises’ with lumbar 
flexion  but intensity increases with 
extension tests 
1. Frontal plane deformity 
2. Unilateral side flexion restriction 
with lumbar movement testing 
3. Improvement with pelvic 
translocation  

 
Extension exercises and avoidance of 
activities involving flexion 
 
 
 
Flexion exercises and avoidance of 
extension movements 
 
 
 
Passive or active pelvic translocation 
exercises 

Mobilisation 
Lumbar mobilisation 
 
 
 
Sacroiliac (SIJ)  mobilisation 

 
1. Local/unilateral LBP 
2. “Opening pattern” or  “Closing 
pattern” during trunk movement 
tests 
1. Local pain at PSIS, buttock or lateral 
thigh pain 
2. Three fourths  SIJ test cluster are 
positive 

 
Lumbar mobilisation/manipulation  
techniques and/or range of 
movement exercises 
 
SIJ manipulation, Muscle energy 
techniques and lumbar range of 
movement exercises 

Immobilisation 
Immobilisation syndrome 

 
1. Frequent prior episodes of LBP with 
minimal perturbation 
2. History of trauma 
3. Generalised ligament laxity 
4. “Instable catch” during lumbar 
flexion tests 

 
Trunk strengthening exercises 

Traction 
Traction syndrome 
 
 
 
Lateral shift syndrome 

 
1. Signs and symptoms of nerve 
compression 
2. No improvement with lumbar 
movement testing 
1. Visible frontal plane deformity 
2. Unilateral side flexion restriction 
during lumbar movement testing 
3. Symptoms worsen with pelvic 
translocation 

 
Intermittent mechanical traction or 
autotraction 
 
 
Autotraction 

TBC is therefore capable of using information from a clinical examination to 

classify acute LBP into effective intervention groups and simultaneously reduce self-

reported disability (George and Delitto, 2005). However, there is limited evidence to 

suggest that TBC can be used to discriminate between subgroups of patients 

presenting with acute LBP (George and Delitto, 2005). The clinical assessment used 

to classify this cohort of patients relies on palpation using both static and dynamic 

landmarks which do present challenges in terms of reliability and validity (George 

and Delitto, 2005). In the clinical environment the ability to repeatedly locate 

specific lumbar vertebrae using palpation is essential for effective management 
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using manual techniques. However it has been demonstrated that agreement in 

identifying comparable lumbar segments (kappa=0.37) and the identification of 

spinal levels (kappa=0.09) between practitioners is relatively low (Downey et al., 

2003). The kappa (k) is the chance-corrected statistical determination of agreement 

of a measure with perfect agreement being 1.00 (Altman, 1991). This does therefore 

suggest that treatment using these techniques need to be viewed within that 

context because the kappa scores are relatively low. 

2.3.2 Management of acute non-specific low back pain 

Guidelines for the treatment of LBP suggest that management should 

involve physical methods of physiotherapy using a biopsychosocial approach (NHS, 

2005). What these physical methods may be is ambiguous, however spinal 

manipulation has been suggested as being beneficial for the treatment of LBP 

(Assendelft et al., 2003; Haas et al., 2004; Ernst, 2007). Manipulation, however, has 

not been demonstrated to be better than other forms of treatment (Assendelft et 

al., 2003). A probable reason for this conclusion has been described earlier (Downey 

et al., 2003) and is demonstrated within the clinical environment where less than 5% 

of patients presenting with LBP in primary care receive manipulation (Jackson, 

2001). Skill mix of the practitioners, however, may also influence the choice of 

treatment because different levels of experience influence the clinical reasoning 

process (Doody and McAteer, 2002) that underpins the preferred intervention.  

 Although there is depth in guidelines across Europe for the management of 

LBP within primary care (Abenhaim et al., 2000; ANAES, 2000; Hagen et al., 2002; 

Hagen et al., 2005; NHS, 2005; Ostelo et al. 2005) compliance with the 

recommendations is variable and may be dependent upon the fear-avoidance 
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beliefs of General Practitioners (GPs) (Coudeyre et al., 2006). Furthermore GPs may 

lack the specialist knowledge to make an initial diagnosis of LBP especially when 

assessing chronic low back pain (Cayea et al., 2006). There is no current evidence 

however to suggest that this is also true for acute LBP but the criteria used to 

generate referrals have been shown to be vague (Stanley et al., 2000). However, 

current guidelines provided for healthcare practitioners in the United Kingdom 

suggests that patients should be encouraged to remain active and engage in 

exercises (NICE, 2009). 

A study in Scotland of patients who either self referred or were referred by 

their GP for physiotherapy treatment demonstrated that there is a difference in the 

profiles of both groups (Holdsworth et al., 2006).  Self-referrers were more likely to 

complete their treatment with fewer treatment sessions per episode of care and 

were absent from work for fewer days than those referred by GPs who were much 

fewer in number (Holdsworth et al., 2006). This may be a reflection of GP referral 

behaviour. 

Cognitive-Behavioural Therapy (CBT) has been advocated as a useful adjunct 

to the treatment of acute LBP but screening for the subgroup of LBP patients who 

will most favourably respond to CBT can be useful in preventing acute LBP from 

becoming chronic (Frank and DeSouza, 2001; Smith et al., 2002; Fritz and George, 

2002; Johnstone et al., 2004). A randomised controlled trial has demonstrated the 

benefits of combining Cognitive behavioural therapy to physical treatment involving 

exercise (Linton et al., 2005). The transition of LBP from acute to chronic is 

influenced by risk factors such as stress, anxiety, mood, emotions, cognitive 

function and pain behaviour (Johnstone et al., 2004). These risk factors have been 
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found in 17% of patients reporting with acute LBP (Burton et al., 1995 cited in 

Johnstone at al., 2004) and because physiotherapists are usually the first point of 

contact with LBP patients (Johnstone et al., 2004) early recognition of these factors 

and appropriate intervention will benefit these patients. However, incorporating a 

cognitive behavioural therapy approach within standard physiotherapy intervention 

is largely resisted because of time restraints, even though there are cost-benefit 

advantages (Johnstone et al., 2004).  

Proctor et al. (2000) cited in Johnstone et al. (2004) proposed that disability 

caused by LBP is dependent upon the degree to which a patient suffers from 

distress, psychopathology, depression and catastrophisation of their condition. 

These factors along with the risk factors identified by Johnstone et al. (2004) 

therefore suggest that any outcome reliant upon self reporting measures may be 

subject to bias and distort quantification of acute LBP. Research involving acute LBP 

therefore, requires a methodology that considers the possible effect of this bias 

during the procedures.  

A minority of patients with work-related LBP that do not return to work 

account for an appreciable percentage of the costs of treatment and early 

intervention to prevent disability can therefore be beneficial (Fritz and George, 

2002). Understanding the effects of fear-avoidance beliefs is important to reduce 

the probability of an acute onset of LBP from becoming chronic, especially if it is 

caused by work related activities (Fritz and George, 2002). However, how and if fear 

avoidance beliefs are perpetuated by belief systems during the management of LBP 

by health practitioners is unclear because the relationship dynamics are ambiguous 

(Fullen et al., 2008). What has been demonstrated however is that using fear 
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avoidance techniques to treat LBP can reduce disability in the short term (Fritz and 

George, 2002). There is however, a caveat in that more research is required to 

demonstrate fear avoidance techniques have a role as a treatment strategy (Fritz 

and George, 2002). Previous work by Frank and De Souza has already proposed that 

that a pre-requisite to successful management of LBP and the prevention of an 

acute onset from becoming chronic is the need for the clinician to be ‘positive’ and 

exercise good person management (Frank and DeSouza, 2001).  

Acute LBP alone was reported to generate direct costs of £251 million and 

the gateway to treatment is increasingly via physiotherapists (Lauchlan, 2005) and it 

is suggested that there is a need to reduce unnecessary tertiary referrals (Lauchlan, 

2005). However, much more research has been done on chronic LBP compared to 

acute LBP. A reason for this may be because most episodes of acute LBP resolve 

quickly. Pullaim et al. (2003) reports that 70% of LBP patients no longer experience 

disability at 4 weeks following an onset of LBP (cited in Lau et al., 2008). Another 

reason may be because of the relative speed of resolution of symptoms; no 

treatments (including painkillers) for acute LBP have been able to stand up to the 

rigours of inquiry that would merit evidence based practice (Smith et al., 2002; 

Rozenberg et al., 2003).  

Effective management of LBP during the acute stage is reported to be bed 

rest (not exceeding 4 days) complimented by painkillers (Rozenberg et al., 2003).  

This approach has been suggested to be comparable in effect on LBP as a 

continuation of normal daily activity alone (Rozenberg et al., 2003). This treatment 

approach however is not recommended (Smith et al., 2002; Kinkade, 2007) because 

normal activity results in fewer days of sick leave (Smith et al., 2002; Rozenberg et 
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al., 2003; Kinkade, 2007) even though patient satisfaction is much less (Atlas and 

Deyo, 2001). This is because it has been demonstrated that patients who receive 

early physiotherapy intervention respond much more quickly in the short term 

demonstrated by improvement in outcome measures of pain and global perception 

of the effect of intervention (Lau et al., 2008). Furthermore, it has been suggested 

that an assess/advise/treat model of care can offer better outcomes than an 

assess/advise/wait model of care because of the better psychosocial features 

demonstrated by improved scores in outcomes of reported pain (Visual Analogue 

Scale), functional disability (the Roland and Morris Disability Questionnaire), mood 

(Modified Zung Self Rated Depression Score, Modified Somatic Perception 

Questionnaire, State-Trait Anxiety Inventory), general health (Euroqol), and quality 

of life (Short Form 36) (Wand et al., 2004).  

Acute LBP is in the main a result of a mechanical deficiency (Atlas and Deyo, 

2001) and is in the main not associated with any serious underlying pathology even 

if there may be evidence of sciatic pain (Kinkade, 2007). Positive identification of a 

causal relationship between structure and symptoms is difficult even when using 

sophisticated diagnostic tools such as X-rays, MRI or CAT scans even though 98% of 

LBP accompanied by radicular symptoms occur at L4/5 or L5/S1 lumbar segments 

(Atlas and Deyo 2001). A majority of acute LBP may not respond favourably to 

specific exercises (Atlas and Deyo, 2001).  

Spinal manipulation using either high or low velocity manoeuvres to restore 

function within the lumbar spine is an acceptable choice of treatment for acute LBP 

but there is uncertainty of the right timing for this type of intervention (Kinkade, 

2007; Sizer, 2008). It had previously been proposed that spinal manipulation is 
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generally of little benefit to the overall management of acute LBP (Smith et al., 

2002) and most recent opinion is that spinal manipulation does not provide long 

term benefit for this group of patients (Kinkade, 2007).   

2.4 Characteristics of acute non-specific low back pain 

Candotti et al. (2008) investigated the effect of LBP on fatigue indices in a 

group of sedentary participants to see if it was possible to replicate the results as 

seen in a group of athletes. The authors collected bilateral EMG and force data 

during isometric contractions of the iliocostalis lumborum and the longissimus dorsi 

muscles during 3 repetitions of maximum voluntary contractions (MVC), each 

contraction lasting for five seconds duration with a 2 minute rest between 

repetitions. The fatigue test consisted of maintaining 80%MVC for 35 seconds. The 

post fatigue test consisted of a contraction which was 80% MVC for 10 seconds 

duration to assess recovery. The authors suggested that there was a need for 

objective measures to evaluate evolving LBP characteristics during treatment and 

proposed that EMG activity can provide such information. They proposed that EMG 

could do this because it can detect changes in the median frequency which is 

purported to reduce as a result of LBP.  The study does also suggest that 

physiological changes occurring during an episode of LBP can influence trunk 

activity. Although the objectives of the study were clear the reliability of repeated 

measures using EMG is not precise. The reliability of EMG can be compromised by 

potential sources of error involving electrode placement (Soderberg and Knutson, 

2000; Suzuki et al., 2002). The study would therefore be strengthened if there was 

supporting evidence to demonstrate a measure of reliability for the method used to 

gather the presented data. The sincerity of effort by study participants may also 
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have influenced the results. This was acknowledged by the authors who considered 

the effect of the pain adaptation model (Chapter 1) on the participants. As an 

inclusion criterion, pain was not scaled. The level of pain experienced by the 

participants before, during and after the study was ambiguous and it is possible that 

variations in the level of pain could have an affect on the ability to produce reliable 

MVCs. 

Candotti et al., (2008) also found that significant differences were 

demonstrated unilaterally and proposed that those significant differences, found 

mainly of the left side were due to the fact that rotation was not restricted during 

the testing procedure. This argument may not be entirely valid because it implies 

that trunk movements are one dimensional, but trunk movements are 3-

dimensional (Marras and Wongsam, 1986).  A more plausible argument may be that 

all the participants presented with unilateral problems producing movement 

towards the side of least resistance (McKenzie, 1981). However, an important 

observation of this study is that the participant group is in the main very ambiguous. 

The authors did not indicate if the participants were experiencing either acute or 

chronic episodes of LBP. 

Trunk strength evaluation within a clinical environment has traditionally 

played a significant role within primary care and anecdotal evidence suggests that 

LBP patients referred for treatment quite often are referred for ‘back strengthening 

exercises’. However, some studies have suggested that measures of trunk strength 

should be described more precisely in terms of its motor performance or higher 

order kinematics (Kroemer et al., 1990; Marras et al., 1990). 
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Higher order kinematics of the trunk can be described in terms of displacement, 

velocity and acceleration (Kroemer et al., 1990; Marras et al., 1990). Previous work 

does exist in abundance exploring the behaviour of trunk velocity but there is a 

paucity of literature exploring the behaviour of trunk acceleration even though 

acceleration is defined as the rate of change in velocity when there is a change in 

direction of movement (Ogrodnik, 1997c). Evaluation of acceleration may therefore 

provide more detail because anecdotal evidence does suggest that LBP is reported 

by patients when there is a change in trunk direction during functional activity. 

2.5 Physical/general exercise and low back pain 

Storheim et al. (2003) recruited 93 participants with sub-acute LBP (8-12 

weeks) for a randomised controlled trial lasting 18 weeks. They compared the effect 

of physical exercise and cognitive behavioural therapy (CBT) on sub-acute LBP.  

Primary outcome measures included pain, disability, sick listing and care satisfaction 

as primary outcomes and self-efficacy for pain and function, fear avoidance beliefs, 

emotional distress, generic health status and life satisfaction as secondary 

outcomes. The study concluded that CBT improved disability and that physical 

exercise can reduce patients’ symptoms.  The results suggested that physical 

exercise as treatment for low back pain requires high motivation among the 

participants and attrition is greatest among this group who were more likely to be 

male than female. It was also observed that none of the interventions had an effect 

on sick listing. A challenge to the study was the fact that no previous data existed to 

determine a sample size but the authors calculated a sample size using an 

assumption based upon a pilot study and recommendations from previous studies. 

They acknowledged this as a limitation. Because of the attrition (18%) the data 
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analysis involved an ‘intention to treat’ analysis. An ‘intention to treat’ analysis is a 

method by which a direct comparison of the groups can be made by including all 

participants within the groups to which they were originally allocated (Peacock and 

Peacock, 2011). By doing so balance between the groups in respect to the subject 

characteristics is maintained (Peacock and Peacock, 2011). 

The control group were excluded from the standard clinical examination 

during the recruitment phase. The reasons for this omission were not given and it 

was not clear but it is possible that the omission could have introduced some form 

of bias into the sample. The underlying mechanisms for the onset of the episode of 

back pain could have influenced the response within the control group and 

therefore distort its comparison with the other groups. It was also not clear as to 

what this standardised clinical examination consisted of.  

The randomisation process for the aforementioned study was ambiguous. It 

is not clear if the envelopes used for allocation were picked in a sequence or 

shuffled before being chosen by the participants. Once allocated, the participants in 

the exercise group did not have a consistent exercise routine. Some attended 

exercise classes twice weekly and others thrice weekly. The control group were 

treated by their GP but also had no restrictions as to types of their preferred 

treatment or referrals. 

It can therefore be surmised that although exercise can reduce patient 

symptoms any study using exercise as an intervention may be limited by attrition of 

participants. 
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2.6 Review of the literature 

The review within this section of the chapter is narrative because of the 

paucity of literature. This choice of review allowed consideration of a wide scope of 

information without the constraints of a criterion based selection criteria (Collins 

and Fauser, 2005). Furthermore a systematic review with a meta-analysis was not 

considered useful because of inconsistencies in application of intervention and 

outcome measures (Collins and Fauser, 2005) making comparison between the 

results of the studies difficult. A realist review that can be useful in identifying and 

explaining links and interactions between context, mechanisms and outcome 

(Wong et al., 2010) was also considered but rejected because a common mechanism 

by which CSE may work is unknown. Furthermore the method is more suited for 

policy intervention (Wong et al., 2010).  

A search of Amed (1990-2011), Cinahl (1990-2011), Medline (1990-2011), 

Science Direct (1990-2011), SportsDiscus (1990-2011), Scopus (1990-2011) and the 

Cochrane library (1990-2011) databases for literature on current understanding of trunk 

movement characteristics and Core Stability (stabilisation) Exercises was conducted. 

All the databases were searched using the keywords; acute low back pain, stabilisation, 

trunk acceleration and velocity, Core Stability Exercises and Lumbar Motion Monitor.  

Articles listed in a recent systematic review (May and Johnson, 2008) were also 

considered. The search strategy and the articles reviewed are listed (Table 2.2) and the 

methodological quality of the studies reviewed was tested using PEDro rating; a 

score on a scale developed to score trials on the Physiotherapy Evidence Database 

(Maher et al., 2003) (Table 2.3) and the reviewed articles are summarised (Table 

2.4).  
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Although all the studies included compared baseline data, none of them 

provided evidence of participant blinding. Four studies did not apply ‘intention-to-

treat’ analysis, three of which could not because they were not randomised 

controlled studies (Hicks, 2005; Herbert, 2006; MacDonald, 2010) and registered the 

lowest PEDro scores. 

The final papers reviewed were chosen because they all evaluated acute LBP 

and changes in the multifidus muscle. Although similar outcome measures were 

used the techniques were not consistent. Direct comparison between the studies 

was therefore not possible. Of the relevant 12 studies identified, 6 were rejected 

because they were duplications. 
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Table2.2: Literature Search Strategy 
 
Database Acute 

LBP 
Stabilisation CSE Trunk 

performance 
Trunk 
Acceleration 

Trunk 
Velocity 

LMM Combination 
of search 

words 

Relevant 
No. of 

Articles 

Selected 
Articles 

Reviewed 
AMED 2643 6653 5786 7277 5087 5863 1598 4 2 1 
CINAHL 76 3 1 1 0 0 6 1 0 0 
MEDLINE 295058 290361 298714 294369 291438 302523 297475 4 3 2 
ScienceDirect 58893 7112 845 365 133 107 47 5 2 0 
Scopus 2365 17 7 1 0 0 0 0 0 0 
Cochrane 7 19 11 103 11 57 11 0 0 0 
Other 21 0 21 0 0 0 0 0 5 3 
Total 359063 304165 305385 302116 296669 308550 299137 24 12 6 

 

Key: 
Other: May & Johnson (2008) 
CSE: Core stability exercises 
LMM: Lumbar motion monitor 
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Table 2.3: Evaluation of methodological quality of the reviewed studies using PEDro rating 
Study 1 2 3 4 5 6 7 8 9 10 11 Score 

Rasmussen-Barr et al. (2003) Y Y Y Y NS NS NS N N Y Y 5/10 

Childs et al. (2004) Y Y Y Y NS Y Y N Y Y Y 8/10 

Hicks et al. (2005) Y N N Y NS N NS Y N/A Y Y 5/10 

Brennan et al. (2006) Y Y N Y N N Y N Y Y Y 6/10 

Hebert et al. (2010) Y N N Y N N N Y N/A N Y 3/10 

MacDonald et al. (2010) Y N N Y N N NS Y N/A Y Y 4/10 

 

PEDro items: 1. Specification of eligibility criteria (Not included in the total score); 2. random allocation; 3. concealed allocation; 4. baseline comparability; 5. patient blinding; 6. therapist 
blinding; 7. assessor blinding; 8. at least 85% follow-up; 9. intention to treat analysis; 10. between group statistical comparisons; 11. point measures and measures of variability. 
Yes-Y; No-N; NS-Not stated; N/A-Not applicable 
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Table2.4: Literature review core stability exercises 

Study Sample size and type Symptom 
Duration 

Intervention and Outcome 
Measures 

Follow up 
Period 

Conclusions 

Rasmussen-Barr et al. (2003) 
 
 
RCT 
 
6/52 duration 

47 participants 
 
Age range: 18-60 
 
 
Randomisation by lot 
 
 

>6 weeks 
+/- radicular pain 

Stabilisation exercises (n=24) 
 
Manual treatment (stretches, 
traction, mobilisation, manipulation) 
(n=23) 
 
Pain (VAS) 
 
Disability (ODI and Disability Rating 
Index) 
 

3 and 12 months Stabilisation exercise 
produced significantly better 
improvement in disability at 
6/52 (50%), 3/12 (67%) and 12/12 
(56%). Pain improved by 39% 
(6/52), 58% (3/12) and 61% 
(12/12). Participants in the 
manual treatment group had 
more episodes of 
reoccurrence long term. 

Childs et al. (2004) 
 
RCT 
 
4/52 duration 

131 participants 
 
Age range: 18-60 
 
ODI ≥ 30% 

?<16 days. Only 46 (35%) had 
symptoms for this length of 
time. 
 
+/- radicular pain 

Manipulation plus ROM exercise 
 
Low stress aerobic and lumbar spine 
strengthening Exercise  
 
Disability (Modified ODI) 
 
 
Pain (VAS) 
 

1 and 4 weeks 
 
6/12  

Manipulation was more 
effective in reducing disability 
in patients who were positive 
on the clinical prediction rule 
compared to a similar patient 
receiving exercise 

Hicks et al. (2005) 
 
Prospective cohort study 
 
8/52 duration 

54 participants 
 
Age range : > 18 

Symptom duration -Not 
stated. Assumed to be acute? 
 
No radicular pain 

‘standardised’ stabilisation exercises 
 
Disability (ODI) 

Not stated A clinical prediction rule can 
be used to identify patients 
who will more likely respond 
to stabilisation exercises 
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Brennan et al. (2006) 
 
RCT 
4/52 duration 

123 participants (55% male, 
45% female) 
 
Age range: 18-65 
 
ODI ≥ 2.5% 
 

<90 days 
 
+/- radicular pain 

Manipulation 
Stabilisation exercises 
Specific exercises 
 
Disability (ODI) 

4/52 
 
1 year 

Outcome of treatment of LBP 
can be improved by sub-
grouping patients. 
ODI improved by 56% 

Hebert et al. (2010) 
 
Cross sectional study  
Duration not stated 
 
 

40 participants 
(30 prospective, 10 
participants with ongoing Rx) 
 
Age range: 18-60 
 
Positive prone instability test, 
aberrant movement, SLR >91 
deg, lx hypermobility, self 
reported disability 

Current episode of pain 
between T12 and the 
buttocks. 

Nil 
 
Rehabilitative Ultrasound Imaging 
(RUSI) 
 
 

Nil  
Decreased MF activation is 
more associated with 
predictive of factors to 
determine the success of 
stabilisation exercises than 
decreased TrA activation 

MacDonald et al. (2010) 
 
Cross sectional study 

13 participants with LBP and 
14 healthy participants. 

Unilateral LBP for 75% of the 
time. Can be of varying 
frequency but without a 
duration exceeding 3 months 

Bilateral EMG recording of deep and 
superficial multifidus during both 
predictable and unpredictable trunk 
loading 

Nil Both deep and superficial 
multifidus activity was 
subdued after remission of 
LBP compared to healthy 
participants. Superficial 
multifidus activity during 
predictable trunk loading was 
not affected. 

Key: 
Randomised Controlled Trial (RCT) 
Visual Analogue Scale (VAS) 
Oswestry Disability Index (ODI) 
Range of movement (ROM) 
Electromyography (EMG) 
Multifidus (MF) 
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Rasmussen-Barr et al. (2003) compared the effect of stability exercises and 

manual treatment as interventions for an episode of LBP for 6 weeks with follow up 

periods of 3 and 12 months. The sample was made up of 47 participants aged 

between 18 and 60 years who presented with an episode of LBP. Participants were 

allocated to either a stability exercise or a manual treatment group. Randomisation 

was achieved by allocating the first male and female participants to one of the 

groups by lot and the others were then assigned separately but consistently to 

either group.   

The design of the study was very good as the authors used stratified 

randomisation by sex as a method for group allocation of participants comparing 

two treatments. Unfortunately this design does not provide unequivocal evidence 

to be able to attribute with confidence, changes in outcome to the described 

interventions. The absence of a control group further complicates the conclusion of 

the study because it is not possible to take into account the natural resolution of 

symptoms in the absence of intervention when there is no treatment. However, it is 

possible that because the participants were randomised, natural recovery would be 

equal between both groups. Furthermore the fact that the participants would have 

different structural biomechanical responses associated with trunk strength, 

flexibility and balance because of the different length of time of each episode 

(Standaert et al., 2008) could have been a problem.  

The variation in the number of manual treatments used in the study and the 

lack of consistency in the choice of and length of manual treatment used may have 

also diluted the true effect of the intervention.  It is not possible, therefore, to 

identify which of the interventions were of most benefit.  
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Because of the high rate of attrition, the authors concluded that the study 

should be re-classified as a pilot study and suggested that the study should be 

repeated with a bigger sample size. An alternative would have been to use an 

intention to treat analysis which would have provided credible data analysis 

(Altman, 1991). This problem was dealt with satisfactorily in another study 

(Storheim et al., 2003). 

Childs et al. (2004) compared specifically targeted lumbar strengthening 

exercises with manipulation using a clinical prediction rule to identify patients most 

likely to benefit from manipulation. 131 participants with an age range of 18-60 years 

and who had an Oswestry Disability Index (ODI) score of a minimum of 30% with LBP 

symptoms of 16 days or less were randomised into a manipulation group with range 

of movement exercises and a group who performed targeted strengthening 

exercises for the lumbar spine. Intervention was for a 4 week period with follow up 

periods of 4 weeks and 6 months. Primary outcome measures were disability and 

pain. They concluded that the decision process for the use of manipulation as a 

form of intervention can be enhanced using the clinical prediction rule.  

 This study has its merits but only 46 (35%) of the participants had symptoms 

for less than 16 days. This does suggest that the variation in the length of time 

participants had been experiencing pain could result in recall bias because a 

majority of the participants were being asked to reflect on their pain experience and 

disability when they no longer were experiencing pain and/or disability (Chouinard 

and Walter, 1995). This could account for the very wide confidence interval used to 

suggest significance in the odds for successful outcome among patients who were 

positive for the prediction rule and who were randomised into the manipulation 



 62 
 

group [60.8 (95% CI 5.2-704.7)]. The data could have also been biased because some 

participants who were randomised into the exercise group sought other forms of 

treatment between the 4 week period (end of active intervention) and the 6 month 

follow up. This was further compounded by the absence of a method to ensure 

compliance of the exercise routine even though the authors suggest that the 

strengthening exercises were isolated and targeted in accordance with previously 

published literature.  

 Hicks et al. (2005) investigated the possibility of developing a clinical 

prediction rule for successful use of stabilisation exercises for patients with LBP.  

During an 8 week period 54 participants were recruited. The age of each participant 

was greater than 18 years. They identified 4 main prognostic factors for a prediction 

rule; a positive prone instability test, age less than 40, aberrant trunk movements 

and straight leg raise greater than 91 degrees. However, there was the possibility 

that the results from which the conclusions were derived could have been biased. 

The absence of a control group does not allow a comparison of prognostic factors 

and effects of intervention between the participants receiving treatment and 

participants with no intervention and who’s LBP resolved naturally without 

intervention. This would have provided substantiated proof of improvement due to 

the intervention and added weight to the validity of the prognostic factors.  

The exclusion criteria used during the recruitment process also did not 

consider the mental state of the participants. Poor mental health and other 

psychological factors such as depression can affect the outcome of intervention 

(Standaert et al., 2008) and possibly motivation and compliance of the exercise 

routine (Linton et al., 1996; Frank and DeSouza, 2001; Fritz and George, 2002;). 
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Although the authors used a Fear Avoidance Behaviour Questionnaire (FABQ) and a 

Visual Analogue Scale (VAS) to measure fear of pain and subjective pain 

respectively, it is not clear if any of the participants did not perform the prescribed 

stability exercises for any reason because of their mental state and what was done 

with these participants if they could be identified because this information was not 

provided.   

Hicks et al. (2005) used an inclinometer to quantify the available ROM in 

participants for this study. Although the inclinometer may be reliable (Hicks et al., 

2005) there is no reference to the agreement of measure used to quantify its 

reliability referred to by the authors. However the short confidence interval (0.86-

0.95) for which the reliability is described may negate this argument but the 

suggestion that the straight leg raise test (SLR) and the sit-up test is reliable (k 

range 0.48-0.77) is weak. The SLR itself was not clearly defined because the authors 

did not accurately describe where the pain was elicited for it to be positive. Pain in 

the back region from a SLR is not considered to be positive because it does not 

invoke radicular pain but rather possible pain from secondary lumbar spine flexion 

(Petty, 2006).  It is entirely possible that restrictions at the end of the SLR may also 

be caused by tight hamstring muscles. The relevance of the SLR was not adequately 

provided within the paper. The ambiguity of the efficacy of the SLR as a prognostic 

factor was equivocal by its relative poor reported sensitivity (0.28, C.I .13-.51). 

The authors (Hicks et al., 2005) also suggest that only 18 (33.3%) of the 54 

participants had success with the stabilisation exercises, by deduction a lot more 

did not have a success. It is not clear if the number of reported episodes of LBP 

could have influenced trunk behaviour of the participants through repeated 
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structural and functional adaptation. The authors did acknowledge this in the paper 

but more discussion could have provided greater clarity. 

Brennan et al. (2006) used a randomised controlled trial to investigate the 

effect of intervention on sub-groups of non-specific LBP. 123 participants reporting 

with an onset of non-specific LBP of not more than 90 days whose ages ranged 

between 18-65 years and had a disability score of a minimum of 2.5% on the 

Oswestry Disability Index (ODI) were randomised into three intervention groups- 

manipulation, stabilisation exercises and specific exercises. The primary outcome 

was changes in the ODI at 4 months and 1 year follow-up periods. The authors 

concluded that non-specific LBP is in all probability a heterogeneous condition with 

outcomes that are more successful if sub-grouping is used to guide treatment 

decision-making. An instability test of central (posterior-anterior) PA translation of 

vertebral segment was used to verify inter-segmental hypo-mobility as an inclusion 

criterion for allocation to the manipulation group. This approach is problematic 

because of poor agreement between assessors for the identification of a 

comparable spinal level indicative of a problem (k=0.37) and the poor agreement for 

the identification of a spinal level palpated (k=0.09) (Downey, Taylor et al. 2003). 

This does mean that if, as reported outcomes rely on the successful sub-grouping of 

patients there is a need to match reported symptoms to actual spinal segmental 

levels of impairment and for this process to be consistent between assessors. 

Indeed, a previous study has suggested that early baseline profiling for low back 

pain can be useful in predicting long term pain and information gathered at 6 weeks 

post onset can be useful in predicting both long term pain and disability (Wand et 

al., 2009). Another issue is the description of what is ‘normal’ movement during the 
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stability test. The authors do not provide clarity. Without prior knowledge of the 

spinal segment behaviour to AP pressure before the onset of the LBP it is not 

possible to define ‘normal’ in context of the participants.  

The interventions used by the Brennan et al’s. (2006) study also provided a 

lack of specificity of poor discrimination between interventions. The quadruped 

position was used as a starting position for all groups. Activity in this position would 

have activated the tranversus abdominis and multifidus within both the stabilisation 

and specific exercise groups. Without further clarity from the authors it is not 

possible to identify the difference between the stabilisation and specific exercise 

groups because a comparison against a benchmark was not possible. The natural 

recovery of a control group would have provided this benchmark to which a 

tangible meaning to the improvement reported within the study between the two 

groups could be made. 

Brennan et al. (2006) used the ODI alone as an outcome however, the initial 

assessment included fear-avoidance beliefs and pain. Further valuable information 

could have been provided if any relationship between the ODI scores and the fear 

avoidance and pain scores could have been identified and compared throughout 

the study. This could be useful because the effect of fear-avoidance on the 

transition from acute to chronic LBP has been established (Fritz and George, 2002). 

Hebert et al. (2010) investigated the relationship between prognostic factors 

for clinical success of stabilisation exercises for the treatment of LBP and changes in 

muscle activation in the multifidus and transversus abdominis muscles using 

rehabilitative ultrasound imaging (RUSI). The prognostic factors have been 

described earlier as a positive prone instability test, age less than 40, aberrant trunk 
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movements and straight leg raise greater than 91 degrees (Hicks et al., 2005).  40 

participants were recruited from two similar studies, aged between 18 and 60 years 

and had a current episode of LBP sufficient enough to precipitate a self report of 

disability. The results demonstrated a relationship between the prognostic factors 

and multifidus activation suggesting that stabilisation exercises increased muscle 

activation. It was concluded that the activation of the multifidus muscle was 

therefore more important than that of transversus abdominis for successful 

management of LBP. 

The results could have significant impact on the management of LBP but the 

prognostic factors used in the study have not been validated (Hebert et al., 2010) 

limiting the validity of the results. However, there are questions about the method 

used to support the presence of each of those factors. Similar to Hicks et al, the 

prone instability test like that used by Brennan et al may not be entirely reliable 

unless there is prior agreement for the location of each level to be palpated. 

Aberrant movement was described as any of the following; a sudden 

acceleration/deceleration of movement during active flexion/extension or 

movement outside the sagittal plane, the Gower movement (creeping up the thigh 

during extension from a flexed position) or the reversal of the lumbo-pelvic rhythm 

(bending of the knees on return to extension from the flexed position) and a painful 

arc of trunk movement. Although reported to have a reasonable inter-rater 

reliability (k=0.6), the tests are rather subjective and to try and demonstrate 

objective quantifiable measurement could be problematic.   

Segmental Posterior-Anterior movement as a mobility test has a poor inter-

rater reliability (k=0.3) but the authors consider this to be fair. This may be a slight 
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exaggeration.  It is also not clear what the levels of agreement were for the RUSI 

even though the authors report it to be good. A Bland-Altman plot would be very 

useful to investigate if the reported correlation corresponds to good agreement 

(Altman, 1991). The methodology used by Hebert et al. (2010) suggests that this 

information is important to support the validity of the results. 

One common limitation not identified by any other studies reviewed is the 

effect of the age group on the generalisability of the results. Although all the 

studies had a minimum age of 18, the upper limit of between 60 and 65 could have 

been a problem. Although the age group most likely to present with an episode of 

LBP in primary care is 18-55 years of age (Croft et al., 1998), changes in the structural 

integrity of the spine will differ with advancing age (Gruber et al., 2007; Standaert, 

et al., 2008). None of the authors interpreted their results in this context within 

their work.  Although older patients with chronic LBP may be reliably assessed by a 

physical assessment even with the possible biomechanical and/or soft tissue 

pathologies they may have (Weiner et al., 2006). It is not thought that younger 

patients can be reliably assessed in the same way (Weiner et al., 2006).  

The review suggests that changes in activity within Multifidus and 

Transversus Abdominis muscles can be observed in acute non-specific low back 

pain. Although it is suggested that core stability exercises (CSE) may reduce 

disability caused by acute non-specific low back pain, the success CSE relies on 

correctly identifying the patients that will respond to CSE very early on during an 

onset of acute non-specific low back pain. This study was designed to reduce the 

ambiguity that exists within the review. To do this the study will not only use strict 

exclusion criteria but consider additional work to help substantiate any findings.  
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Little is known of the mechanism by which core stability exercises may work. 

This study, will investigate the effect of a targeted trunk exercise routine using an 

objective measure as an outcome. However, firstly the tool to be used (The lumbar 

motion monitor) will be tested for its reliability by investigating the levels of 

agreement of its measures. Secondly, basic trunk performance characteristics will 

also be explored with the intention that the information will be used to interpret 

the primary outcome data obtained by the study.  

2.7 Trunk functional performance 

There is a logical clinical reasoning process by which CSE are suggested to 

work (Willardson et al., 2007) (Fig 2.1). The flow diagram demonstrates the 

physiological effects of trunk neuromodulation and the role of stability within this 

process. The mechanism by which CSE may influence the process is not entirely 

clear but it is thought that CSE can restore a balance in fat infiltration within both 

the Multifidus and Transversus Abdominis muscles and the balance between type I 

and type II muscle fibre atrophy (Hebert et al., 2010). The maintenance of this 

balance may be crucial to the efficiency of the multifidus and transversus abdominis 

in establishing and maintaining trunk performance.   

 

 

 

 

 

 

 

Fig. 2.1 Trunk core stability model (from Willardson 2007b) 
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Trunk functional performance can be used to quantify incapacity caused by 

LBP (Marras and Wongsam, 1986; Marras et al., 1993; Marras and Mirka, 1993; 

Marras et al., 2000) and different outcome measures have been used to describe 

this trunk performance. 

  Cox et al. (2000) investigated the correlation between self reporting and 

functional assessments of the trunk using spinoscopic assessments with the 

Quebec Back Pain Disability Questionnaire (QBPDQ) and Visual Analogue Scale 

(VAS). It was shown that trunk velocity and ROM are highly subjective and a better 

indication of spinal dysfunction and a more robust measure independent of patient 

influence is required (Cox et al., 2000).  The study was a retrospective study over a 3 

year period and involved 91 participants. Participants were referred by both 

physicians and insurance companies for an assessment of work capacity, treatment 

outcome following injury or surgery in the lumbar spine and residual function for a 

disability claim.  The selection criteria for this study was wide as the participants 

only had to be able to walk and have an episode of non-specific LBP for a period of 

10 weeks to be included. Outcome measures of range of movement (ROM), 

velocity, range of lordosis (ROL) and estimate of inter-segmental movement (EISM) 

were observed during flexion-extension and lateral bending movements with the 

spine either loaded or unloaded. Loading was achieved by applying incremental 

weights and it was up to participants to determine the level of maximum load. The 

results suggest that the reliance upon subjective feedback to quantify levels of 

disability is flawed because there is poor correlation between pain and trunk 

performance.  
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Load has an effect on the interaction between simple and complex 

coordination by encouraging concomitant muscular recruitment to cope with 

increased levels of mechanical stress applied to the spine (Cox et al., 2000). This 

process adds a further level of complexity to spinal coordination during functional 

movements. Although a questionnaire may be more valuable in evaluating the 

affective state caused by LBP it is not very useful for evaluating biomechanical 

function. Velocity (rate of change in displacement) is strongly linked to subjective 

self assessment (Cox et al., 2000) but it is not clear if the rate of change in velocity 

or in this instance; acceleration during functional movement can be influenced by 

subjective assessment of capability of performing that functional movement. 

Repeated subtle adjustment movements may be required to complete a pre-

meditated task in a single plane with tolerated velocity. This may be an underlying 

mechanism to provide stability.  Patients with low back pain perform slower 

movements than healthy patients (Marras et al., 1999). An inability to perform these 

subtle adjustments may play a significant role in the predisposition to an onset of 

acute LBP.  

Trunk functional performance is a realistic indicator of recovery from LBP 

(Marras and Wongsam, 1986; Marras et al., 1993; Marras and Mirka, 1993; Marras et 

al., 2000; Marras et al., 1999).  The natural course of recovery from LBP and the 

quantification of recovery are dependent upon the outcome measure observed 

(Ferguson et al., 2000). Kinematic functional performance measures are the most 

sensitive to improvements during that process particularly during later stages of 

recovery (Ferguson et al., 2000). The recurrence of LBP can be caused by a time lag 

between resolution of reported symptoms and the attainment of full functional 
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performance resulting in errors in motor control (Panjabi, 2003). This mechanism 

may be of significance as a potential cause of reoccurrence of LBP long after an 

initial incident and this may underpin the effectiveness of CSE for subsets of 

individuals with symptoms of LBP.   

Ferguson et al. (2000) evaluated the functional performance of the trunk 

reporting an onset of LBP. They used a sample of 32 participants and allocated them 

to either an occupational or non-occupational group. The authors did not make it 

clear as to how the participants were allocated and the occupational group had 

more men than women (37.5%). This could have affected the functional testing 

because gender may have influenced the results. The criterion for allocation was 

solely if their injury was related to occupation or not.  The authors justified this 

method of allocation by suggesting that by controlling the diagnostic category 

significant differences between the groups were avoided. Although the participants 

were recruited within the first month of their symptoms being reported it was not 

made clear how this was verified. The participants may have had symptoms long 

before reporting to a physician. Anecdotal physiotherapy clinic evidence would 

indicate this possibility. The effects of a time difference could affect the outcome 

measures because the condition may have evolved over time and measures 

observed during the assessment may therefore be different to what could be 

observed earlier within the natural course of the condition (Panjabi, 2003).  

To evaluate functional performance, Ferguson et al. (2000) used the Lumbar 

Motion Monitor (LMM). Measurements were recorded during trunk flexion-

extension movements whilst the trunk was positioned in different degrees of 

rotation to both the left and right (0, 15, 30 degrees). Varying degrees of rotation 



 72 
 

provided graded levels of difficulty requiring different levels of motor coordination 

(McGill et al., 2003) and changes in muscle recruitment patterns (Cholewicki et al., 

1997; Thomas et al., 1998; Granata and Marras, 2000; Granata et al., 2005). The 

revised protocol for functional assessment using movement in the neutral position 

within the sagittal plane without rotation only as described in a later study 

(Ferguson and Marras 2004) is therefore more practical. 

Ferguson et al. (2000) used a functional performance probability for the 

participants in the study by normalising the data for age and gender and using an 

existing model that distinguishes between asymptomatic and symptomatic patients 

(Marras et al., 1999) to interpret the results. But the visual and oscillatory feedback 

system used during the functional performance tests, like the Cox et al. (2000) 

study may have introduced an element of subjectivity and bias because of the 

reliance upon complete participant cooperation and willingness to perform the 

tests to the best of their ability. In the absence of a clearer definition for the cause 

of onset of the LBP within the participants other than whether it was work related 

or not, the authors appear to suggest that all categorised injuries are similar in both 

nature and influence on trunk movement characteristics. This cannot be strictly true 

because changes in anatomical movement caused by biomechanical changes within 

the structures may not be identical in either nature or scope.  But what may be 

possible is the ability of participants to influence their trunk movement. It has been 

suggested that velocity and ROM are subjective (Cox et al., 2000). However the net 

result of those biomechanical changes influence the severity, irritability and the 

nature (SIN) of LBP playing a significant role in trunk function (Petty, 2006). 
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2.8 Trunk velocity 

 The ability for the trunk to change direction quickly may be important in the 

prevention of structural trauma. It has been suggested that sudden or 

unpredictable trunk loading is a common cause of LBP (MacDonald et al., 2010) and 

following remission Multifidus muscle activity can remain subdued (MacDonald et 

al., 2010). Activities such as rowing require a rapid change in trunk direction. It has 

been demonstrated that the lower lumbar segments move into extension as quickly 

as possible to avoid a position of maximum flexion during peak force production 

during the stroke phase of rowing (Pollock et al., 2009). This mechanism is initiated 

and executed by the trunk extensor muscles (Pollock et al., 2009). Velocity as an 

outcome measure was observed in an investigation into muscle activation and trunk 

kinematics during rowing by Pollock et al. (2009). Twelve participants performed a 

standardised 2000m race simulation on an ergometer. Data was collected for 30 

seconds during 250m splits. Participants were recruited irrespective of previous 

injury status (Three had a previous trunk injury involving rib fractures, 3 had a 

history of LBP). At the time of testing all participants reported to be healthy with no 

injuries that impacted upon their training. However, the effect of a previous injury 

may have left residual errors in motor control (Panjabi, 2003; Panjabi, 1994) and 

possible changes in muscle recruitment patterns (Cholewicki et al., 1997; Granata 

and Marras, 2000; Granata et al., 2005; Thomas et al., 2008). The use of a mix of 

different training methods may also have had an influence on muscle coordination 

(McGill et al., 2003). Different types of rowing requires different muscle recruitment 

patterns and therefore different levels of muscle activity (Cholewicki et al., 1997; 

Thomas et al., 1998; Granata and Marras, 2000; Granata et al., 2005). Pollock et al. 
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observed the angular velocity of the spine using a motion capture system. The 

measures were calculated by differentiation and the data analysed using a custom 

written software programme. Although the rowing action is performed in a sitting 

position, the direction, range and end position of flexion closely mirror the flexed 

position attained during flexion-extension movements in the sagittal plane when 

standing.  

In Chapter 1 (introduction) it was suggested that relative segmental mobility 

of the lumbar spine increases sequentially from upper to lower sections of the 

lumbar spine with the greatest amount of movement occurring at L4/5 (Kulig et al., 

2007). Segmental extension movement during the early stages of flexion (Pollock et 

al., 2009) therefore occurs simultaneously as flexion occurs in the upper segments 

of the spine.  This mechanism influences structural deformation of the lumbar spine 

and explains why during flexion, deformation of the lower intervertebral discs 

occurs before that of the upper discs and during extension from the neutral 

position deformation is mainly at L5/S1 (Kanayama et al., 1995). 

 Rowing is a sport that renders the trunk to movement similar to day to day 

functional movement albeit with concentrated repetitions over a short period and 

exposes the trunk to extreme loading. Understanding the mechanisms by which 

injury is prevented during this sport can therefore provide an insight into the 

mechanism by which the trunk copes with extreme loading during this activity. 

During rowing the lower lumbar segments are moved into extension by extensor 

muscle activity quickly to avoid a position of maximal flexion during peak force 

production with most of the extension movement occurring between L3 and S1 

(Pollock et al., 2009). However, the relative movement of the pelvis to the trunk is 
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also important in this process because peak pelvic angular velocity occurs at the 

onset of co-activation (Pollock et al., 2009). The onset of co-activation is the period 

between the onset of the first flexor muscle and the end of the last extensor muscle 

burst (Pollock et al., 2009).  This movement characteristic if replicated during trunk 

flexion-extension movements may suggest a need to establish and maintain an 

ability to initiate and maintain synergy between lumbar and pelvic structures in 

response to changes in trunk position. The coordination of the extensors of the 

spine and pelvis and peak extension angular velocity very early in the cycle before 

peak loading after the ‘catch’ phase of the rowing stroke may be an effective 

strategy to stabilise the spine (Pollock et al., 2009).  

The relative position of the innominate bones in the sagittal plane influences 

not only the size of the lumbar lordosis but also the cause of lumbar dysfunction 

(Young et al., 2000). The lumbar lordosis will increase as the anterior tilt of the 

pelvis is increased and vice versa (Young et al., 2000). The rowing position at the 

beginning of the stroke positions the lumbar spine in minimal lordosis. The lordosis 

increases as the trunk extends towards the point of peak force and maximum 

velocity as described earlier. This relationship is observed in various postures of the 

spine during sitting and standing (Knutson, 2002; Al-Eisa et al., 2006). 

 Pollock et al. (2009) like the previous studies of Cox et al. (2000) and 

Ferguson et al. (2000) introduced a degree of subjectivity to the method by using a 

self directed warm up and thus inconsistency within the method.  

Data were collected every 250m of rowing for the duration of the study but 

only the data from the first 250m was used for analysis. The authors argued that this 

period represented steady state after the initial ‘‘push’’ and was likely to be before 
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the onset of significant fatigue. However, no evidence was provided to support this 

assumption.  

 Low back pain produces less movement irrespective of the speed at which 

the test is performed (McGregor and Hughes 2000). This therefore suggests that 

during a routine objective assessment the actual range of movement measured and 

the speed at which it is attained may not be indicative of impairment or suggestive 

of underlying abnormal mechanisms (Cox et al., 2000).  The speed of trunk flexion 

does not influence the range attained in either symptomatic or asymptomatic 

patients but the speed of extension is greater within asymptomatic participants 

producing greater ranges of extension (McGregor and Hughes, 2000). The process 

of trunk kinematic assessment is therefore best performed at the participants’ own 

preferred speed (McGregor and Hughes, 2000).  

The difference in ascent and descent velocities between asymptomatic and 

symptomatic groups observed by McGregor and Hughes (2000) may have been as a 

result of the different age range of the participants within the respective groups; 

those with LBP were older. LBP resulted in less movement and speed of execution 

of trunk flexion-extension and the consistency of measure of velocity favoured 

measurements conducted at the preferred speed of the participant to perform the 

task (McGregor and Hughes, 2000). However, there was no difference in this 

consistency of measurement collected either at participants’ preferred or slowest 

speed (McGregor and Hughes, 2000). The smaller measurements of the difference 

in range of movement and mean velocity suggest that preferred speed is the most 

reliable (McGregor, Hughes 2000).  
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The data sampling rate of 10Hz used by McGregor and Hughes is much 

smaller than the sampling rate of between 40 and 120Hz used in most current 

studies investigating trunk kinematics (Marras et al., 2000; Ferguson et al., 2000; 

Granata and Marras, 2000; Giorcelli et al., 2001; Stodden et al., 2008). McGregor and 

Hughes (2000) argued that this was adequate to assess simple planar movement 

but did not provide evidence to support this claim. However, important information 

could have been missed because the greater the sampling rate the more sensitive 

the procedure. An ideal conversion of analogue signals to digital form can be 

achieved if the sampling observes the Nyquist-Shannon theorem in which the 

sampling rate should be greater than twice the maximum frequency of the signal 

being sampled (Shannon, 1998). The authors also did not provide information on 

how randomisation was achieved for the test protocol using variation of test 

speeds or if there was a rest period between the tests.  

 An experimental crossover study (Giorcelli et al., 2001) investigated the 

effects of wearing a belt on trunk kinematics. A comparison was made of lifting two 

different sized boxes from floor level to a height of 79cms and 60 degrees to the 

right of a neutral starting position. It was hypothesised that this was similar to 

stacking shelves. The maximum sagittal flexion and maximum velocity during 

flexion and extension movements of the trunk were reduced by wearing a belt 

while lifting both boxes (Giorcelli et al., 2001).  Significant reduction in right side 

flexion and left rotation was only demonstrated when lifting the large box and 

these parameters only become significant as the trunk begins to function with 

increasing asymmetry caused by the increasing load (Giorcelli et al., 2001). It is 

unclear if the same characteristics demonstrated in this study using asymptomatic 
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participants will be replicated with a symmetrical functional movement such as 

flexion-extension. It is a possibility that similar responses produced by the belt may 

be replicated by the Internal Oblique (IO) and external oblique (EO) abdominal 

muscles of the trunk. In healthy individuals the loss of efficiency through muscle 

recruitment patterns (McGill et al., 2003) and the affect of an increasing load (either 

through repetition or actual weight) may cause uncontrolled increases in flexion, 

rotation, lateral side flexion or various combinations of movement usually 

associated with problem intervertebral discs (IVD) - with compromise to its 

anatomical structure (Holm, 1996).  The IO and EO by coactivation are actively 

involved in maintaining trunk stability (Granata and Marras, 1993) but it is suggested 

that the role of the IO and EO may not be significant in sagittal movements of the 

spine (Granata and England, 2006) but it remains unclear if this is indeed true given 

the possible functional similarities with a belt as previously described above. It is 

unclear if CSE aimed at improving the integrity of the IO and EO could assist in the 

restoration of the trunk kinematic characteristics to an acceptable level at which 

they are required to function to ensure trunk stability.  

The Transversus Abdominis and Multifidus  muscles are often identified by 

clinicians as the muscles that require improvement in function after an onset of LBP 

that may cause early functional impairment (Hides et al., 2011). Furthermore it is 

proposed that both the Transversus Abdominis and Multifidus work together to 

provide trunk stability through its effects on intra-abdominal pressure and lumbar 

segmental stiffness respectively (Hides et al., 2011). 
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2.9 Trunk stability 

 Grenata and England (2006) investigated the influence of pace and direction 

of movement during trunk flexion and extension on the control of trunk dynamic 

stability. Their opinion was that kinetic energy and its role in trunk mobility or the 

onset of LBP have not been fully acknowledged in biomechanical models (Granata 

and England, 2006).  Kinetic energy, described as energy generated by movement is 

important because it has to be converted/stored (Ogrodnik, 1997b) somewhere 

within the trunk during activity. This process may involve an effective and efficient 

strategy which is facilitated by muscle recruitment patterns (Panjabi, 2003) and 

possible changes in muscle recruitment patterns (Cholewicki et al., 1997; Thomas et 

al., 1998; Granata and Marras, 2000; Granata et al., 2005) and coordination (McGill 

et al., 2003).  The inability of the trunk to do this and moderate its rate of change 

may contribute to the predisposition of the lumbar spine to injury and the onset of 

LBP.  

Trunk stability is enhanced by reducing the pace of activity (Granata and 

England, 2006).  Granata and England (2006) describe trunk stability in terms of the 

Lyapunov exponent (ʎ  MAX) or state of chaos within the system and calculated it 

using the formula; 

  Y (t) =1/Δt [lndi (t)] 

The average logarithm of displacement is [lndi (t)], di (t) the distance 

between nearest points and Y (t) the re-constructed state-space. It is best described 

as the slope of the best fit line created by the equation (Fig. 2.2). 
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Fig. 2.2: The Lyapunov Exponent (from Granata and England 2006) 

 

Flexion–extension movements of the trunk in both symptomatic and 

asymptomatic individuals demonstrated that stability is greatest when performing 

the movement asymmetrically (Fig. 2.3). This is shown by the Lyapunov exponent 

(ʎ  MAX), the greater the value the more unstable the movement.  

 
Fig. 2.3: Effect of pace on the stability of the spine (from Granata and England 2006) 

  
Fast asymmetrical flexion creates greater instability than performing a 

symmetrical flexion slowly (Fig. 2.3). The differences in the stability demonstrated 

were statistically significant between slow and fast movements (P< 0.001) in both 

symmetric and asymmetric movement. This therefore suggests that neuromuscular 

control of dynamic stability decreases significantly with increases in pace.  The 

increase in momentum requires an increase in neuromuscular activity to attenuate 

kinematic instability as the trunk demonstrates changes in velocity and acceleration 

(Marras and Mirka, 1993; Dolan and Adams, 1993; Granata and England, 2006).  

Modulation of muscle forces during this process requires the recruitment of large 

motor units with corresponding limitation in fine motor control during fast paced 
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movements (Granata and England, 2006). This may explain why seemingly 

mundane, easy or common asymmetrical movements of the trunk can cause an 

onset of LBP but the likelihood of onset is dependent upon the speed at which the 

activity is executed. This may explain anecdotal evidence that suggests LBP is often 

reported to occur whilst performing tasks that have been previously executed 

successfully. If the muscle groups associated with ‘core stability’ are primarily 

involved in fine motor control it is possible that restoration of this function will 

enhance stability by altering asymmetrical movement characteristics. 

 The Lumbar spine accounts for approximately 70% of total trunk movement 

during flexion-extension movements during lifting tasks in healthy individuals 

(Granata and Marras, 2000) but the coordination of the important interdependent 

relationship of the pelvis and lumbar spine (Young et al., 2000) during such tasks is 

non-linear (Granata and Marras, 2000). The amount of lumbar spine involvement 

will increase as the magnitude of the load increases (Granata and Marras, 2000).  

Granata and Marras (2000) found that lumbar spine involvement is increased at 

slower rates of performing a task such as lifting but is reduced at higher velocity 

suggesting that there is a greater need for the pelvis to be involved to start the 

extension component of the lifting task (Granata and Marras, 2000).  

The lumbo-pelvic relationship described by Granata and Sandford (2000) 

correlates with previous observations that lumbar disc distortion starts in the lower 

lumbar region during extension (Kanayama et al., 1995). The lower segments take 

more of the strain during the more vigorous part of the process- extension from 

flexion.  How this movement behaviour correlates with the extension observed in 

the lower lumbar segments during the start of flexion (Pollock et al., 2009) remains 
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unclear but does explain why lower lumbar segments are more prone to injury than 

the upper during lifting tasks whilst the upper segments are more involved when 

the task involves either pushing or pulling (Plouvier et al., 2008) when shear forces 

generated by the trunk oblique muscles (EO and IO) are primarily responsible 

(Marras and  Granata, 1995; Marras and Granata, 1997b). 

2.10 Stability or robustness 

Lumbar stability has no specific definition (Standaert et al., 2008) but 

robustness has been used to describe the adaptability of the trunk to perturbation 

(Reeves et al., 2007).  

Trunk flexion requires summative lumbar segmental flexion (Kulig et al., 

2007). The performance of which is highly dependent upon its acceleration that 

requires magnitude and direction (Ogrodnik, 1997c; Bloomfield, 2006). Because the 

segment is restrained to a relatively fixed point by soft tissue such as ligaments, it is 

presumed that movement occurs about a fixed point producing a pivot movement 

(Fig. 2.4). 

                                                
 
Fig. 2.4: Posterior view of a lateral pivot (F) and lateral view of a flexion pivot (E) of a spinal segment (from 
MacNab and McCulloch, 1990) 

        

 This movement behaviour of the spine is dependent upon perturbations 

large enough to cause a change in position through a trajectory, which may not be 

entirely unidirectional through range (Fig 2.5). 
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Fig. 2.5: Effect of perturbation on the movement of the spine (from Reeves et al., 2007) 

  

The diagram demonstrates the difference between a state of equilibrium (a) 

and a change caused by a perturbation (b). 

 Remodelling occurs within vertebrae through time affecting the ability to 

adjust to variations in activity (Shao et al., 2002; Sevinc et al., 2008) hence ageing is 

significant when evaluating the response of the trunk to either intervention or 

functional activity (Gruber et al., 2007). However, it is suggested that the spine has 

movement characteristics similar to that of an inverted pendulum with behaviour 

that will sometimes deviate from the expected norm by demonstrating an inability 

to maintain robustness (Reeves et al., 2007). A feedback control system (FCS) 

restores trunk movement back to its intended trajectory if it is altered (Reeves et 

al., 2007) (Fig 2.5). This therefore suggests that acceleration will play a significant 
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role in the ability of the spine to readjust itself and restore this intended sagittal 

trajectory during flexion and extension. Acceleration into both lateral and rotational 

directions will therefore also be of significance in the execution of the trajectory.  

The feedback control system (Fig 2.6) suggests that the feedback from intrinsic 

pathways (short range muscle stiffness and damping) is instantaneous while the 

feedback from both the reflexive and voluntary pathways has a delay. However, all 

components of the feedback control system can be used in part or in combination 

to provide stability through force generation (Reeves et al., 2007).   

 
Fig. 2.6: Feedback control system (from Reeves et al., 2007)  

 

The mechanism by which the FCS provides tolerance to perturbation is 

described as its robustness (Reeves et al., 2007) and it is this principle that this study 

proposes to critique to offer an explanation for the mechanism by which CSE may 

influence trunk performance in response to an onset of LBP. The absence/lack of 
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intervertebral stiffness provided by the passive sub-system (Panjabi, 1994) within 

any direction of movement caused by perturbation implies that the counteracting 

force is not proportional to the size of the displacement caused by the perturbation 

suggesting a possible failure of the FCS (Reeves et al., 2007). The central nervous 

system (CNS) responds to perturbation by increasing muscle activation (Reeves et 

al., 2007) irrespective of the fact that it has been shown that LBP patients 

demonstrate higher trunk muscle co-contraction than the healthy (Marras et al., 

2001; Lariviere et al., 2002; van Dieen et al., 2003). The difference between these 

two groups has been shown to be of clinical significance (Reeves et al., 2007).  

 In principle, therefore, it has been proposed that there are two main 

possibilities by which errors in neuromuscular control and loss of robustness can 

cause LBP (Preus and Fung, 2005 cited in Reeves (1997)); 

1. Failure of the osteoligamentous structures of the spine creating 

excessive segmental movement -beyond limits 

2. Increased and sustained muscle contraction of muscle after a brief 

period of instability  

The second possibility could account for acute onset of LBP during functional 

activity such as during trunk movements previously executed with success (Reeves 

et al., 2007). However, this does not theorise why some episodes of acute LBP occur 

well within the limits of trunk movement. Anecdotal evidence suggests that these 

episodes are usually described as sharp twinges whilst performing a movement but 

not always severe enough to cause an immediate cessation of function.  There are 

suspicions that changes in muscle recruitment in response to a perception of 

instability may be the answer (Hodges et al., 2003; Moseley et al., 2004). It is 
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therefore proposed that robustness is directly related to trunk performance 

requiring input from the FCS responding with a high degree of precision. The 

resulting trunk movement behaviour in responding to perturbation has been 

likened to an inverted pendulum (Stepan, 2009). 

2.11 Inverted Pendulums 

 The human body is a multiple inverted pendulum of which the time delay 

within the neural system required for control can be affected by age, physical and 

mental state (Stepan, 2009). Three systems are recognised as providing control for 

this complicated multiple inverted pendulum; the labyrinth (auditory system), eyes 

(visual system) and mechanoreceptors (touch system) (Stepan, 2009).  It is 

suggested that the time delay affects the recruitment of the superficial component 

of the multifidus and transversus abdominis (Stepan, 2009). Given the anatomy of 

these muscles and the assumption that these muscle groups have a role in trunk 

kinematics (Reeves et al., 2007), this delay could influence the ability of the trunk to 

accelerate. This mechanism would suggest that the over all response cannot be 

unduly influenced by subjectivity. In contrast once the trunk has accelerated, its 

velocity in all probability becomes less independent.  Although the deep component 

of the multifidus creates stability by generating force without torque it is proposed 

that the net effect of multifidus contraction is to maintain the relative position of 

vertebrae (Reeves et al., 2007). 

 Two systems may describe the mechanism by which the trunk moves about 

the pelvis. One system, a two-degree of freedom system best demonstrated by 

balancing a stick on the hand, suggests that in order to maintain equilibrium a 

control force (F) is required at the point of contact through a distance ‘χ’ (Fig.2.7). 
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The angle of displacement of the stick is denoted as ‘φ’ with ‘m’ the mass of the 

stick and ‘ℓ’ its length (Stepan, 2009). 

 
Fig. 2.7: Two-degree of freedom model for balance (from Stepan, 2009) 

 

 The second system is described as a one-degree of freedom model. This 

model can best be demonstrated by trying to maintain balance whilst standing still. 

Control is achieved through the ankle (Stepan, 2009) (Fig. 2.8). This model may 

demonstrate a much clearer mechanism than the two-degree system because it 

considers the influence of a control torque or moment (M) about the ankle (-M, M). 

This system would probably fit more comfortably in describing movement of the 

trunk about the sacrum in the absence of osteoligamentous connections. 

 

 
Fig. 2.8: One-degree of freedom model for balance (from Stepan, 2009) 

 

If either of the above systems are assumed to be true and the trunk moves 

from a relatively fixed point, the sacrum (S), it will in all probability exhibit similar 
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characteristics of an inverted pendulum albeit with a degree of ‘chaos’ (Granata and 

England, 2006) as illustrated in Fig. 2.9. 

 During flexion the trunk is displaced through an angle of θ in relation 

to its starting point travelling over a displacement ‘A’ to ‘B’ represented by ds. Trunk 

angular velocity (ω) is expressed as dθ/dt and its angular acceleration (α) (dω)/dt. 

 
 

Fig. 2.9: Illustration of inverted pendulum movement of the Trunk 

 

Another important characteristic of pendulum movement is simple harmonic 

motion (SHM) (Ogrodnik, 1997c). SHM is rhythmic motion about a point, usually the 

mid-point of the pendulum swing. It is proposed that this is the point during 

functional movement when the trunk is in a state of ‘balance’ when the force 

developed by muscle coordination equals the force developed by the perturbation. 

Further work would be required to support this assumption but it is an interesting 

possibility. It can be demonstrated in the lumbar spine during repetitive movements 

whilst performing tasks; the trunk deviates and returns to a starting position (Fig. 

2.9).  If this holds true it would be possible to propose that from the waveform for 

the movement; 

Χt (angular displacement from midpoint) = A sin ωt (Fig. 2.10) 

 (t=time) 
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The maximum velocity of a pendulum is achieved at the midpoint of the 

displacement when the amplitude of displacement is zero (Ogrodnik, 1997c). 

According to Ogrodnik (1997c), the velocity (V) is therefore derived as;                                         

V= dx(t)/dt………………………………………..(1) 

Or 

V= d(A sin ωt)/dt = Aω cos ωt…………………….(2) 

 
(ω is the frequency and A is the amplitude of the sin wave) (Fig. 2.10) 
 
 The acceleration (α) exhibited by such a movement can also be derived as;   
 

α = dvx(t)/ dt……………..(3) 

Or  

α = d(Aωcos ωt) dt….………..…(4) 

Or 

α = -Aω2sin ωt…………………... (5) 

 
Fig. 2.10: Simple harmonic motion wave (from Ogrodnik, 1997c) 

 
 This reinforces the importance of acceleration in initiating the change of 

direction, a process less likely to be biased by subjectivity unlike velocity. 

 There is however, a need to translate angular movement into its linear 

offshoot to appreciate how two fixed points on a vertebra may move in the 

absence of the osteligamentous constraint from a point 1 to a point 2 (Fig. 2.11) or 

from ‘A’ to ‘B’ (Fig 2.9). 

The distance travelled by the point (ds) = rdθ……….. (6) 
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The vector velocity |v| = ds/dt………………………….. (7) 

 

Or  

|v|= Rdθ/dt……………………………………………… (8) 

Or 

|v| = r dθ/dt……………………………………………... (9) 

Or 

|v| = ωr…………………………………………………. (10) 

 

Centripetal acceleration (ac) is required to attain a velocity once there is a 

change in direction as a vertebra travels in a ‘circular’ path (Fig. 2.11).  

 
Fig. 2.11:  Velocity changes of vertebrae caused by angular movement (from Ogrodnik, 1997c)  

 

If ds = rdθ…………………………………………………. (11)  (Eq 6.) 

ds/r = dv/|v|………………………………………. (12) 

Or 

dv = |v| ds/r………………………………………............... (13) 

And 

|ac| = |dv/dt|………………………………………………. (14) 

|ac| = |v|/r ds/dt…………………………………………….. (15) 

|ac| = |v|2/r……………………………………………….… (16) 

Or  

centripetal acceleration (ac) = ω2r……………………..… (17) 
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 It is the average cumulative changes in acceleration that this method 

quantifies and investigates (Fig. 2.11). Therefore force generated by movement is 

proportional to ‘r’ and thus the greater the value of ‘r’ the greater the acceleration 

and the force developed. This does suggest that the centripetal force is therefore 

dependent upon the distance of the vertebra from the fixed point (sacrum) 

suggesting that the closer the vertebra is to the fixed point (sacrum) the greater 

the effect of cumulative centripetal force produced by trunk movement is 

experienced. It is therefore proposed that this could be the mechanism by which 

the L5/S1 segment has become specialised in terms of the relative size of L5 to other 

vertebrae in the same region. A natural response to a role that is similar to a hinge, 

upon which the trunk rotates.  

2.12 Intra-abdominal pressure 

Intra-abdominal pressure (IAP) is thought to play a significant role in the 

stability of the spine (Cholewicki et al., 1999; Janda and Valenta, 2000). It may not 

be possible to isolate this role from that of what is commonly termed as ‘core 

stability’ muscle activity because of the interdependency of the muscle groups 

concerned (Chapter One). A mathematical model has been devised to predict levels 

of IAP and moment occurring at L4/5 movement segment during functional tasks 

(Janda and Valenta, 2000). 

IAP=IAP0 + 0.567735· M [Pa] 
(IAP0 - initial value of the intra-abdominal pressure during relaxed standing; M- moment produced at the L4/5 motion 
segment) 
 

The generation of IAP is directly linked to anthropometric values, lumbar 

lordosis and pelvic tilt during relaxed standing (Youdas et al., 2000) suggesting that 

the ability to develop and maintain lumber/pelvic symmetry is an important way by 
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which excessive loading of the trunk can be dampened. However, IAP responds to 

changes in posture and for instance it has been demonstrated that IAP is directly 

related to respiratory activity (Cholewicki et al., 1999; Hodges and Gandevia, 2000).  

2.13 Trunk acceleration 

Higher order trunk movement characteristics are valid and reliable measures 

to determine sincerity of effort (Marras et al., 2000). Velocity can be used to classify 

trunk movement during controlled and uncontrolled sagittal flexion-extension, 

uncontrolled rotation, uncontrolled side flexion, and repeatability of function 

(Marras et al., 2000). Although it also influences the central set and acceleration 

(Marras et al., 2000) it is only possible when there is a change in direction during the 

task. This may also be true during a unidirectional task if a change in velocity is 

required to respond to pain or discomfort at different points through the range of 

activity. 

Low Back Pain affects the characteristics of the central set or the 

recruitment pattern of trunk muscles during movement (Marras et al., 2000). A 

recruitment pattern of movement is developed and maintained by day to day 

activity (Hseih et al., 1992) and is well developed for common tasks such as those 

involving trunk flexion (Marras et al., 2000). The relationship between acceleration 

and velocity during a movement can be demonstrated using a phase plane (Fig. 2.12) 

using a set of Rho numbers to represent the distance in the phase plane space 

between each point within it and the centroid of the phase plane.  
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The consistency of this plot with repeated cycles will therefore demonstrate 

a sincerity of effort because the closer these phase planes are with repeated 

measure the more the consistent the effort (Marras et al., 2000). 

Physical factors may inhibit or change the characteristics of the central set 

and produce inconsistent plots demonstrating changes in direction within the 

tripartite coupling system (sagittal, coronal and axial planes) (Marras et al., 2000). It 

is proposed that altered acceleration can be observed at those differing points 

during the completion of a task such as flexion-extension. There is paucity in the 

literature exploring this hypothesis and it is not clear which of the variables of 

velocity or acceleration are the most sensitive to changes in direction but given that 

acceleration is a factor of velocity it would appear that changes in acceleration 

would be more descriptive of changes in both direction and dysfunction.  

It is not clear if acceleration and velocity exhibit a similar behaviour during 

trunk dynamic functional activity, especially when pain can influence trunk 

characteristics. Anecdotal evidence does suggest that pain influences trunk mobility 

and during an episode of LBP is reported to be at the beginning or end of changes in 

trunk position. It has been reported that LBP reduces trunk acceleration (Marras 

and Mirka, 1993). However, because of the direct relationship between acceleration 

and velocity it is assumed that both measures will demonstrate a similar trend.  It 

Fig. 2.12: Phase plane of trunk movement (from Marras, 2000) 
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may be because of this assumption that there is a paucity of research into the 

behaviour of trunk acceleration. But it is not clear if the pain reported at the 

beginning or end of trunk movement is of the same magnitude experienced during 

the actual movement within which the trunk is expected at some point to reach 

peak levels of velocity. Hence it is proposed that if this pain is different both in 

description and magnitude, acceleration or deceleration measures will have more 

significance for outcome and expectation of intervention.  

The subgroup of LBP patients most likely to respond to stabilisation 

exercises are those with lumbar instability (Hicks et al., 2005) but the diagnosis of 

instability remains controversial because its measurement and validity rely on static 

observations  (Teyhen et al., 2007). Using the same terminology to define 

mechanical LBP is therefore a problem unless there is a valid means to observe such 

instability during trunk movement. The pain experienced during flexion-extension 

movements of the trunk is thought to be caused by a disruption to the passive 

osteoligamentous system limiting movement (Teyhen et al., 2007). Loss of 

neuromuscular control causes instability within the trunk causing the feeling of 

‘’slipping’’ or ‘’catching’’ during movement (Panjabi, 1994). A flexion-relaxation 

phenomenon, the period of electromyographic electrical silence of the lumbar 

paraspinal muscles is evident at the end of range of trunk flexion (Teyhen et al., 

2007). This phenomenon is particularly poor in patients with LBP causing segmental 

hypomobility with reduced linear displacement (Teyhen et al., 2007).  

It is a theory that the ability of the trunk to harness efficient neuromuscular 

control to produce trunk positional changes that will determine if the movement 
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will produce pain (Panjabi, 2003). Furthermore, it is proposed that this ability is 

reliant on an ability to accelerate to and maintain an efficient velocity.  

2.14 This thesis research questions 

The main aim of this thesis was therefore to investigate the effect of core 

stability exercises (CSEs) on the acceleration of the spine after an acute onset of 

LBP.  

 The study was also designed to answer the following research questions; 

 Does the kinematics of the spine change with the onset of acute LBP? 

 Do CSEs reduce the levels of disability caused by LBP? 

 Do CSEs reduce pain caused by LBP? 

 Can CSEs be used effectively in primary care to prevent the increasing 

prevalence of chronic LBP? 

2.15 Conclusions 

Higher order kinematics is a valid and reliable means of describing trunk 

movement (Kroemer et al., 1990; Marras et al., 1990) but trunk velocity and range of 

movement (ROM) can be subjective (Cox et al., 2000). Stability of the trunk during 

movement is dependent upon the speed of execution and symmetry of the task 

(McGregor and Hughes, 2000). However, tasks evaluating trunk performance are 

best done when participants are evaluated performing tasks at their preferred 

speed (McGregor and Hughes, 2000). Asymmetrical tasks require greater motor 

control using large trunk muscles; a process that is accompanied by a corresponding 

loss of fine motor control (Granata and England, 2006). The literature seems to 

suggest that there is an assumption that both trunk acceleration and velocity will 
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demonstrate similar characteristics. However it is not clear if the ability to 

accelerate mirrors the ability to maintain a desired velocity during displacement. 

This mechanism is worthy of investigation. There is paucity in literature quantifying 

the effects of core stability exercises using functional objective measures. This 

study set out to evaluate changes in trunk performance as an effect of a course of 

core stability exercises. It has been suggested that LBP does reduce trunk 

acceleration but the behaviour of trunk acceleration in response to core stability 

exercises as an intervention is not well understood. This is compounded by the fact 

that previous studies purported to investigate the effects of CSE are not well 

designed. 
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Chapter 3 

 Development of the method 

3.1 Summary 

 This chapter describes the development of the rationale for the method 

chosen to test the study hypothesis and answer the research questions described in 

the previous chapter. 

3.2 Operational definition of acute non-specific low back pain 

 Acute LBP is described as an episode of LBP that has lasted for up to 6 weeks 

becoming chronic if it lasts longer (BackCare, 2007; Kinkade, 2007). It has also been 

described as lasting for up to 3 months (Smith et al., 2002; Gullick, 2008).  The ‘3 

months’ definition was used in articles within a systematic review of core stability 

exercises (May and Johnson, 2008) but the practicality of describing acute non-

specific low back pain as lasting for up to 3 months is most probably unacceptable 

because of the secondary effects of LBP which are largely driven by a process of 

central neuro-modulation (Jayson, 1996). The latest informed opinion is that an 

acute episode of low back pain lasts up to 6 weeks (BackCare, 2007).   

The National Institute for Health and Clinical Excellence (NICE) suggests that 

non-specific LBP describes LBP which cannot be attributed to any specific cause and 

also suggests that exercises and physical activity should be offered to patients with 

non-specific LBP for a period of 12 weeks in the first instance (NICE, 2009). 
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3.3 Recruitment of participants 

 The study was approved by the School of Health Sciences & Social Care 

Ethics Committee at Brunel University and Oxfordshire NREC ethics committee (Ref. 

07/H0606/102) in September 2007. 

 3.3.1 Inclusion Criteria 

Participants of either gender, male or female and aged between 18 and 55 

were eligible for inclusion. This age group was chosen because they provide the 

greatest number of consultations for LBP in primary care (Croft et al., 1998). Each 

participant’s history of onset of non-specific LBP was to be no longer than 6 weeks’ 

duration, a period described as acute (BackCare, 2007). 

 3.3.2 Exclusion Criteria 

 Participants were excluded if they did not meet the inclusion criteria as 

described above and demonstrated evidence through routine physiotherapy 

assessment of any of the following;  

 Degenerative conditions affecting the spine- Loss of bone, joint and 

intervertbral disc integrity influencing spinal mobility (Gruber et al., 2007).  

 Diabetes- Diabetes increases the risk of muscle strength impairment 

(Bohannon, 2000) and affects the ability to perform the exercises required 

by the protocol. 

 Pregnancy- Underlying mechanism for LBP during pregnancy is ambiguous 

and may be multi-factorial (Kerr and Grahame, 2003) with approximately 

50% of women reporting an incidence of LBP whilst pregnant (Kerr and 

Grahame, 2003). Hormonal changes affect pelvic ligaments and cause an 

increase in joint mobility (Kerr and Grahame, 2003).  
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 Neurological involvement- Peripheral neurological damage will affect 

muscle response to stimuli and exercise.  A study on the ulnar nerve 

conduction velocity of injured baseball pitchers suggested that although the 

velocity appeared to be normal they demonstrated suboptimal performance 

(Wei et al., 2005). 

 On-going spinal treatment- Other surgical and non-surgical treatment would 

contaminate responses to intervention. Contamination of this type can 

cause a cross-over effect (Altman, 1991).  

 On-going legal issues- subjective perception of pain and disability could be 

affected by expected monetary gain from an injury (Standaert et al., 2008). 

 History of depression- Subjective perception of pain could be altered by 

psychological factors (Standaert et al., 2008).  

 Histories of multiple recurrent episodes of low back pain- Biomechanical 

properties of the structure of the spine are altered during repeat episodes 

of LBP (Standaert et al., 2008).  

 Involvement in other research studies- Participation in multiple studies could 

compromise safety. Attributable effects of intervention given in this study 

will be ambiguous (Hicks, 1998). 

 English not being their first language- Misinterpretation of study procedure 

and instruction would jeopardise results and the ability to provide informed 

consent. 

Participants were recruited from 5 locations within Hillingdon Primary Care Trust 

(PCT). These locations included  

1.  Church Road Surgery, Cowley 
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2. The Warren Medical Centre, Uxbridge 

3. Uxbridge Health Centre, Uxbridge 

4. Eastcote Health Centre, Eastcote; Westmead Clinic, South Ruislip  

5. Harefield Health Centre, Harefield  

All the Centres operate with a ‘hub and spoke system’ with Laurel Lodge, the 

hub, in Hillingdon coordinating physiotherapy provision across those Centres. 

Referrals are generated from general practitioner (GP) surgeries within the area but 

patients referred to a Centre may not necessarily be registered with a GP at the 

Centre at which they will receive their physiotherapy treatment.  

3.3.3 The sample size 

The sample size presented within this work needed to be small enough to be 

managed effectively within the constraints of true micro and macro environmental 

pressures as described in the following section 3.3.4 but large enough to 

demonstrate differences between the CSE and control groups (Section 4.3).   

 3.3.4 Challenges to recruitment 

A number of challenges have affected the recruitment process. These include 

the following; 

 The waiting list.  

Fluctuations in the length of time patients were on the waiting list could 

have been significant. This period may also differ according to each location from 

which participants will be recruited. The waiting list was predicted to range 

between 6 and 12 weeks depending upon the location. A significant number of 

patients became ineligible for inclusion because they no longer met the definition of 

acute non-specific LBP. 
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 Local demands.  

The demands of the Commissioners for healthcare delivery within primary 

care resulted in changes in physiotherapy delivery within the primary care trust. As a 

result physiotherapy staff were pressurised into implementing queue management 

strategies to redress disparity in access to services and waiting times. These 

strategies actively changed during the study to suit prevailing circumstances. 

 Staff turnover.   

There was a continuous change in personnel within and between locations. 

The structure of physiotherapy career pathways within the NHS precipitated this 

tendency. This study protocol required physiotherapy staff to be actively involved 

with the recruitment process. Non- clinical staff was also required to assist in 

arranging convenient appointment times to ensure that participants’ visits for data 

collection coincided with treatment times.   

 Personal Ethics.  

Some physiotherapy practitioners faced personal dilemmas as they took the 

view that patients who agreed to take part in the study were in effect ‘queue 

jumping’. Practitioners who relied upon CSE as a primary form of intervention also 

questioned the ethics and efficacy of withholding such intervention when they were 

requested not to prescribe CSE because their patient was allocated to a control 

group. Using alternative treatment methods, albeit for a short period of time (6 

weeks) was not an entirely comfortable option for them.  

 Facilities.  

All locations except Eastcote Health Centre operate within either a GP 

surgery or a room within a Health Centre. These rooms did not offer enough space 
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within which to accommodate both the normal day to day function and additional 

space required for data collection. Care was taken to ensure that visits coincided 

with the least busy time of routine operational procedures.  

 Logistics 

The study did not attract funding from either internal or external sources. All 

the data for the study, was therefore collected by the researcher alone. This did 

present difficulties involving travel to and between locations. 

3.3.5 The randomisation process 

 Two hundred opaque envelopes with pieces of paper on which either 

‘control’ or ‘experimental’ group were prepared by a colleague who was blinded to 

the study. The colleague did not have contact with the participants or have any 

other input to the study. The researcher did not take part in the process and had no 

knowledge of the allocation of envelopes to groups. Once the envelopes were 

sealed, they were shuffled and then had a sequence of numbers marked on the 

exterior of the sealed envelope in a chronological order to denote the order in 

which participants were recruited. Each sealed envelope was opened in the 

sequence in which they were numbered by the participant as they are recruited. 

This was done only after the participant had given their written consent to take part 

in the study and after the participant was aware that it was not possible to change 

from the group to which they would be potentially be allocated to. Neither the 

researcher nor the participant was aware of the contents of the envelope until it 

was opened by the participant. The participants were therefore not blinded to the 

allocation. 
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3.4 Tools and outcome measures 

3.4.1 Pain 

 There are a number of scales that are used to evaluate pain. These 

include the Brief Pain Inventory (BPI) in either its short or long version (Daut and 

Cleeland, 1982), Dallas Pain Questionnaire (DPQ) (Lawlis et al., 1989), Numeric Pain 

Intensity Scale (NPIS) (McCaffery and Beebe 1993), Faces Pain Rating Scale (Bieri et 

al., 1990), Wong-Baker Faces Pain Rating Scale (Wong and Whaley 1986), Aberdeen 

Back Pain Scale (ABPS) (Ruta et al., 1994) and the Visual Analogue Scale (VAS) 

(Huskisson, 1974). The VAS was used for this study because of its ease of use and 

the ease to which the information was interpreted. 

 The Visual Analogue Scale (VAS), as a single item measure, is very sensitive to 

changes in symptoms that can be rated (Paul-Dauphin et al., 1999). The VAS is 

reliable and valid as an outcome measure (Crossley et al., 2004) and it is a good tool 

for quantifying both pain and disability in conditions involving chronic 

musculoskeletal pain but the measures for pain are more reliable than that for 

disability (Boonstra et al., 2008). Because levels of disability correlate to levels of 

pain it is realistic however, to assume that the reliability of measures will be similar 

in the acute phase of a condition by relating consistently with levels of pain 

(Boonstra et al., 2008). The VAS is also reliable when time variance is a factor (Badia 

et al., 1999) especially with LBP (Olaogun et al., 2004).  

The minimal clinically significant difference in the VAS pain score remains 

unaffected by levels of pain (Kelly, 2001) which made the VAS a realistic choice for 

this study to quantify pain during an acute onset of LBP. This is because pain is a 

single variable/construct and there is the need to consider the complexity of the 
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recruitment process. ‘Pain on the day’ of testing was used to evaluate reported pain 

because it minimised participants’ recall bias (Chouinard and Walter, 1995).  

The VAS was denoted by a 100 mm line to indicate a range from a state of ‘no 

pain’ (0 mm) to that of ‘very severe pain’ (100 mm). Increased scores indicated 

more pain. 

3.4.2 Disability  

 There is no preferred functional limitation outcome measure for low back 

pain (The Chartered Society of Physiotherapy, 2004). However, a number of 

outcome measures available include the Aberdeen Back Pain Scale (ABPS) (Ruta et 

al., 1994), Quebec Back Pain Disability Scale (QBPDS) (Kopec et al., 1995), Oswestry 

Disability Index (ODI) (Fairbank et al., 1980) and the Roland Morris Disability 

Questionnaire (The Chartered Society of Physiotherapy, 2004). The Oswestry 

Disability Index (ODI) and the Roland Morris Disability Questionnaire (RMDQ) 

(Roland and Morris, 1983) are recommended for use by physiotherapists however 

the setting and location should determine which one is more appropriate for the 

circumstances (The Chartered Society of Physiotherapy, 2004). The RMDQ was used 

in this study. The ODI was discounted because of its relative low internal 

consistency (Cronbach’s а = 0.77) and because it has a mixture of both capacity and 

performance based items (The Chartered Society of Physiotherapy, 2004). The 

ABPS was not used because a relatively long time is required to complete it (The 

Chartered Society of Physiotherapy, 2004) and the QBPDS was not used because 

there is not enough evidence to support its use at present (The Chartered Society of 

Physiotherapy, 2004).  
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The Roland-Morris Disability Questionnaire (RMDQ) is regarded as the best 

scale to measure self reported disability (Deyo et al., 1998; Boonstra et al. 2008) and 

it is both valid and reliable (Roland and Morris, 1983). This scale is recommended for 

use in primary care studies (Roland and Morris, 1983; Kopec et al., 1995) and has a 

high intra-class reliability of 0.8 (Kopec et al., 1995, Stratford et al., 1996; Dunn and 

Croft, 2005). It also has a high degree of sensitivity (Hseih et al., 1992) and been 

recommended for use without the need for further validation (Grotle et al., 2004; 

Grotle et al., 2006). 

 The RMDQ as a tool can easily be used within a clinical environment. The 

RMDQ consists of a 24-item back pain specific disability scale. The participants were 

asked to answer ‘yes’ or ‘no’ to each question. The sum totals ‘yes’ score was 

determined.  The change in this score quantified the relative change in pain and 

disability as a result of intervention.  

 The RMDQ results of this study will be interpreted with an understanding of 

the minimal clinically important difference of the RMDQ for LBP. A rule for minimal 

clinically important difference for RMDQ is shown below (Table 3.1) (Jordan et al., 

2006). 

Table 3.1: Minimal clinically important difference rule for disability (from Jordan et al., 2006)  

 Definitely improved: Patients rating back pain as at least better at 6 
months with a reduction > 30% on their RMDQ score. 

 Possibly improved:  Patients with an RMDQ score >30% reduced at 6 
months but have not rated their back pain as better. 

 Not improved:  Patients with less than 30% reduction in RMDQ score at 6 
months. 

 3.4.3 Trunk performance 

 Various methods of obtaining trunk kinematic evaluation have been 

explored; video analysis (Wickstrom et al., 1996; Neumann et al., 2001; Chang et al., 
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2003, Trott and Fisher, 2005; Wong and Lo, 2007), EMG activity (Capodaglio et al., 

1995; Oddsson et al., 1997; Chiou et al., 1999; Bonato et al., 2002; Pitcher et al., 2008) 

and 3-D motion analysis (Nakajima et al., 2007; Pazos et al., 2007). The Lumbar 

Motion Monitor (LMM) is however, potentially the most practical tool for use in a 

clinical setting because it is highly portable and the time to set up the equipment is 

much less labour intensive than the other aforementioned tools. The video analysis 

and EMG evaluations may have allowed a greater freedom of movement in the 

trunk than the LMM because of the harnesses required to secure the device to the 

participant, however, these methods of analysis are labour intensive and require 

high intra and inter-reliability measures rendering the procedures difficult to 

transpose into the clinical environment. 

 The LMM provided objective measures of real time changes in trunk 

kinematics to quantify LBP by measuring spinal kinematics (Marras and Wongsam 

1986; Kroemer et al., 1990; Marras et al., 1990; Marras, 1996). Simultaneous 

information on displacement, acceleration and velocity of the spine in three 

dimensions during functional movement was obtained. 

The LMM is an electrogoniometer consisting of a number of potentiometers 

within an exoskeleton capable of detecting and measuring real time movement in 3-

dimensions (sagittal, frontal and coronal planes). The LMM was developed at Ohio 

State University and it has become a useful tool in the quantification of triaxial 

movement of the spine (Marras and Wongsam 1986).  

3.4.3a Calibration of the Lumbar Motion Monitor 

The LMM was originally demonstrated to be both valid and reliable with an 

accuracy of measure of +/- 0.25% (Marras et al., 1990). The LMM has a sampling rate 
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of 60Hz and can measure between -35 to +65 degrees in the sagittal plane and 

between -45 and +45 degrees in both the coronal and frontal planes (Lumbar 

Motion Monitor, Industrial Analysis Desk Reference Chattanooga Group, Inc.). 

Further calibration tests in a laboratory environment using a video motion analysis 

demonstrated its accuracy to be within +/- 0.5 degrees (Parnianpour et al., 2001). 

This was done by using a reference frame to +/- 3o degrees in the frontal and 

coronal planes and to +/- 45 degrees in the sagittal plane (Parnianpour et al., 2001).  

The manufacturers of the LMM calibrate the LMM before its inaugural use.  

However, supplementary calibration tests within laboratory conditions for this 

study demonstrated a 2% discrepancy between actual and recorded data (Appendix 

2). This calibration test procedure was carried out by measuring the angle of 

displacement of the LMM at different angles during both components of forward 

bend and extension from flexion during a single flexion-extension movement 

(Appendix 3: a-f). A comparison of the LMM programme output to actual LMM 

plate angle was made. For this process, the subject was instructed to stand with the 

feet at shoulder width apart and with the shoulders placed across the chest. A 

single flexion-extension movement of the trunk was performed and still pictures 

were taken to measure the angle of the LMM plates. These measurements were 

taken in neutral and 6 other positions of flexion; 3 during forward bend movement 

and 3 during backward extension movement of the trunk as it resumed the neutral 

position.  

The 2% difference between the measures suggests that the LMM produces 

reliable data even when a thin layer of clothing exists between the LMM harnesses 

and the skin.  
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3.5 The Lumbar Motion Monitor protocol 

The original protocol devised by Marras et al. (1986) consisted of 5 tasks for 

a single kinematic evaluation of trunk sagittal movement in 0 degrees or neutral, 15 

and 30 degrees of rotation to the left and then right (Marras and Wongsam, 1986; 

Marras, 1996; Gill and Callaghan, 1996). Movements in the sagittal plane with the 

trunk in these degrees of rotation utilises different muscle recruitment patterns to 

cope with the increase in the level of difficulty in performing the task (McGill et al., 

2003). The study protocol for this research did not consider difficulties performing 

the task which may be complicated by underlying facet joint pathology (Boyling and 

Jull 2004) but tested a revised version of the original protocol requiring only one 

task to provide an evaluation of trunk sagittal movement in neutral (Ferguson and 

Marras, 2004). This was done using a pilot study. The adjusted protocol resulting 

from the pilot study was then used for this research project. For testing the 

adjusted protocol participants stood with their feet shoulder width apart with the 

arms loosely folded across the chest and performed flexion-extension movements 

in neutral without rotation to either the right or left.  

Although the LMM has been reported as reliable using the Intra-class 

Correlation Coefficient (ICC) analysis of the data, levels of agreement between 

measurements were not reported (Ferguson and Marras, 2004). For this study it 

was therefore imperative that levels of agreement of the reliability for a single task 

evaluation was demonstrated. This was important because all the data was 

collected by one researcher who was not be blind to the study aims or objectives. 
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3.6 Reliability of the LMM using a single task method 

3.6.1 Participants for the pilot study to evaluate its reliability 

Approval for the pilot study was granted by the School of Health Sciences & 

Social Care Ethics Committee at Brunel University and Oxfordshire NREC ethics 

committee (Ref. 07/H0606/102).  

Twenty participants were recruited by incidental sampling at Brunel 

University between February and March 2008 and were classified as belonging to 

one of two groups (Table 3.1). One group consisted of healthy participants, a mix of 

both colleagues and students (male =5, female=5). This group had an average age of 

38.3 years (SD 8.6) and did not have a recent history of LBP. No recent history was 

defined as the 6 months prior to testing. This was judged to be sufficient enough to 

avoid recall bias (Chouinard and Walter, 1995) and limit any possibility of any carry 

over of previous treatment effects (Altman, 1991) and provide a wash-out period 

where any effects of any previous intervention is reduced (Chapter 1 Peacock and 

Peacock, 2011). The other group of participants were potential participants for the 

main study (male = 4, female =6) and had an average age of 31.7 years (SD 7.5). All 

participants in this group had been diagnosed with an acute onset of LBP within a 6 

week period. A description of both groups of participants is provided below (Table 

3.2). 

Table 3.2: Pilot study group descriptive 

  Minimum Maximum Mean Std. Deviation 
 

Healthy Participants  
(m=5, f=5) 

Weight (Kgs) 54.5 99.0 71.2 14.4 
Age (Yrs) 21 51 38.3 8.6 

Height (cms) 154.0 183.0 171.9 11.2 
 

LBP Participants 
(m=4, f=6) 

Weight (Kgs) 45.0 113.0 74.5 21.3 
Age (Yrs) 20 44 31.7 7.5 

Height (cms) 157.0 191.0 171.3 12.0 
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3.6.2 Pilot study procedure 

 The Lumbar Motion Monitor (LMM) was used to collect data to explore the 

intra-rater reliability of the equipment. The equipment consists of a light weight 

exoskeleton within which are a set of potentiometers. The exoskeleton was 

connected, via an umbilical lead to a laptop containing specialised software 

(Lumbar ProSoft 2.0, NexGen Ergonomics, Canada) for data collection and analysis 

(Fig. 3.1). The exoskeleton was positioned on the participant with a 2-piece harness, 

one for the thorax and the other for the pelvis; both harnesses were secured in 

place with Velcro strapping. 

  Before collecting data the anthropometric measurements (age, height and 

weight) for the participants were entered into the computer software.  The 

potentiometers were then calibrated with the exoskeleton firmly in place within its 

holding case. A zero- calibration check procedure using explicit instructions from 

the manufacturers using the LMM software was performed before data was 

collected from each participant and between each set of data.  

A harness size (small, medium or large) which allowed for the exoskeleton to 

be placed on the participant’s trunk without demonstrable movement whilst 

standing erect in the neutral position was selected. The exoskeleton was then 

attached and tightly secured in place onto the harness and tightly secured with the 

locking mechanism provided.  

For each set of data collected, each participant was asked to stand with their 

feet shoulder width apart and their arms loosely folded across the chest. The 

participant was instructed to perform trunk flexion-extension movements in a 

sagittal plane for 8 seconds. The movement flexion-extension in the sagittal plane 
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without rotation to either side of midline were performed at the participants’ 

preferred speed (McGregor and Hughes, 2000; Al-Eisa et al., 2006)  to ensure 

natural trunk movement (Al-Eisa et al., 2006). No other instruction was given to the 

participant. Previous studies that used the LMM (Marras and Wongsam, 1986; 

Marras et al., 1990; Ferguson and Marras 2004) did not do this. No other 

encouragement or stimulus was provided. Two sets of data (Test 1 and Test 2) were 

collected with a 10 minute rest period in-between each measurement. This 

prevented data contamination by cross over effects (Altman, 1991; Hicks, 1998). 
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Fig. 3.1: The Lumbar Motion Monitor exoskeleton 
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3.6.3 Results of the pilot study 

 The LBP group demonstrated slower acceleration compared to the healthy 

participants within all kinematic variables during both tests 1 and 2 (Table 3.3) (Fig. 

3.2). The LBP group were unable to increase trunk acceleration with repeated 

measure (Fig. 3.2). There was no correlation between sex, height or weight with any 

sagittal acceleration values. 

Table 3.3: Pilot study group comparison (Acceleration)  

 
 

 
Sagittal Acceleration 

 (Deg/s2) 

 
Lateral Acceleration 

 (Deg/s2)   
 

 
Rotation Acceleration 

 (Deg/s2)   
 

 Average (SD) Peak (SD) Average (SD) Peak (SD) Average (SD) Peak (SD) 
       

Healthy   T1 
                    T2 

215.9 (149.5) 
   253.9 (160.0) 

627.1 (363.6) 
674.5 (298.9) 

42.6 (37.6) 
33.6 (21.4) 

175.5 (130.0) 
130.4 (90.2) 

20.8 (16.7) 
28.6 (21.0) 

88.9 (57.5) 
106.6 (71.1) 

       
LBP          T1 
                  T2 

148.8 (103.1) 
151.6 (114.3) 

426.4 (177.3) 
416.9 (208.3) 

31.7 (17.9) 
30.3 (22.3) 

129.1 (60.6) 
131.4 (79.3) 

15.5 (7.3) 
16.2 (11.5) 

61.9 (24.3) 
67.1 (34.9 

       

 

The mean differences between measurements (T1 and T2) for all kinematic 

variables were calculated and a two-way mixed ANOVA analysis (SPSS ver. 15 for 

windows) was used to determine the intra-class correlation coefficient (ICC). 

 

 

 

 

 

Fig. 3.2: Pilot study comparison of Sagittal Acceleration Test 1 Vs Test 2 

Average sagittal acceleration demonstrated the highest ICC at 0.96 (C.I 0.90-

0.98) (Table 3.4). This suggests that average sagittal trunk acceleration is the most 
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reliable of the variables obtained from the LMM for measuring changes in trunk 

performance produced by an intervention. 

Table 3.4: Pilot study Intra-class correlation coefficient (ICC)  
 

Kinematic variable (Deg/s2) 
 
Differences in the mean (SD) 

 
Intra-class Correlation Coefficient 

 
(95% CI) 

Average Sagittal Acceleration 20.4 (40.1) 0.96 0.90-0.98 
Average Lateral Acceleration 5.2 (19.1) 0.72 0.42-0.88 
Average Rotation Acceleration 4.2 (9.1) 0.83 0.62-0.93 
Peak Sagittal Acceleration 19.1 (133.6) 0.89 0.75-0.96 
Peak Lateral Acceleration 21.9 (62.1) 0.77 0.51-0.90 
Peak Rotation Acceleration 11.4 (30.4) 0.83 0.62-0.93 

 
3.6.4 The Bland-Altman plot 

  The Bland-Altman plot (Bland and Altman, 1986) was constructed 

using the SPSS programme (Ver. 15 for windows). The raw data was manipulated to 

determine the difference between the within subject measures of average 

acceleration (ACCDIF1) in the sagittal plane was first determined. The within subject 

mean (ACCMean1) was then calculated for the two measures (AAcc.S1 + AAcc.S2/2).  

The mean and standard deviation for ACCDIF1 (Table 3.5) were then 

substituted within two equations (1 and 2) below to determine the boundaries 

within which approximately 95% of the individual subjects’ differences would be 

expected to be. 

Table 3.5: Pilot study acceleration differences 

  N Minimum Maximum Mean Std. Deviation 
ACCDIF1 20 -116.14 36.12 -20.4 40.1 
Valid N  20     

 

Mean + 2 X Standard Deviation…………………………. (1) 

-20.40 + 2 x 40.12 = 59.84 

Mean – 2 X Standard Deviation…………………………. (2) 

-20.40 – 2 x 40.12 = -100.64 

  Key:  
ACCDIF1 - Difference between the first and second measures of average sagittal 
acceleration 
ACCMean1 – The mean average sagittal acceleration 
AAcc.S1 + AAcc.S2/2 – The sum of first and second average sagittal acceleration 
measurements divided by two 
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A plot of ACCDIF1 (y-axis) against the ACCMean1 (x-axis) was then drawn to 

produce the Bland-Altman plot (Fig. 3.3) 

 
Fig. 3.3: Bland-Altman plot showing limits of agreement of repeated measures for the pilot study 

 

 The plot (Fig. 3.3) suggests that the measures were not in very close 

agreement. However, the high values for the ICC suggests that it remains 

reasonable to use the LMM as a tool for measuring the primary outcome of trunk 

acceleration. 

3.6.5 Conclusions derived from the pilot study 

 It was reasonable to use the LMM as a tool for measuring the primary 

outcome of sagittal trunk acceleration. The disparity in the level of agreement may 

be because it is not at present possible to attach the LMM harness directly to 

participants’ skin. To do so would be a potential health and safety hazard because 

of possible cross infection between participants and/or possible skin irritation on 

each participant. A small amount of unwanted movement may have therefore 

occurred between the harness and the clothing worn by the participants. Another 

reason for the disparity could be the fact that trunk performance will change with 
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repetition i.e a practice effect (Hicks, 1998) irrespective of whether the subjects 

have LBP or not.   Although the harness was applied over loose fitting clothes, this 

did not directly interfere with lumbar spine movement; the 2% discrepancy 

demonstrated earlier supports this assumption. 

This pilot study has been published in full elsewhere (Aluko et al., 2011) 

(Appendix 4). 

3.7 Evaluation of trunk kinematics   

 No data is available which evaluates trunk performance within a sample 

population. This information was useful for analysis of the results of this proposed 

main study. A further pilot study was therefore required. Approval for this part of 

the study was also granted by the School of Health Sciences & Social Care Ethics 

Committee at Brunel University and Oxfordshire NREC ethics committee (Ref. 

07/H0606/102) as an amendment. 

 3.7.1 Recruitment of participants   

Participants were recruited from staff and students at Brunel University 

between September 2009 and March 2010. A request for volunteers to take part in 

the study was placed on the University intranet.  Another verbal request was made 

to the physiotherapy staff of the Musculoskeletal Physiotherapy Services, Hillingdon 

Community Health based at Eastcote Health Centre.  The combination of these 

resulted in a total of 50 willing participants agreeing to take part in the study. Each 

participant gave their written consent to take part.  

A short questionnaire (Appendix 5) was used to gather a brief subjective 

history for each participant to explore the history of their self reported LBP. This 

questionnaire consisted of simple questions used during a standard subjective 
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history gathering process for all musculoskeletal conditions in a clinical setting and 

therefore did not need to be piloted before use. The participants were classified as 

belonging to either a healthy or LBP group according to that self reported history of 

LBP. None of the participants reported LBP at the time of testing.  A history of LBP 

was described as an experience of an episode of acute non-specific LBP up to and 

during the preceding 6 months prior to the date on which the participant was 

measured as part of the evaluation of trunk kinematics study. 6 months was chosen 

because it is long enough to prevent recall bias (Chouinard and Walter, 1995) and 

limit cross over effects (Altman, 1991).  On the date on which the participants were 

tested none of the participants reported any disability in performing day to day 

activities or underlying pathology that could have interfered with their trunk 

performance. A description of the groups is shown in table 3.6. 

Table 3.6: Database participant descriptive (Healthy participants, n=13; participants with LBP n=37) 
Presence of LBP  N Mean Std. Deviation 

LBP Age (Years) 37 33.2 12.3 
Height (cms) 37 168.6 8.4 
Weight (Kgs) 37 69.6 15.0 

Last episode of LBP 37 3.1 2.2 
Number of days LBP was 

present (days) 
36 27.0 86.7 

    
No LBP Age (Years) 13 31.2 13.2 

Height (cms) 13 167.7 10.5 
Weight (Kgs) 13 66.3 16.9 

    

 
Thirty seven of the 50 participants reported episodes of LBP in the preceding 

6 months. These participants had a mean age of 33.2 (S.D 12.3) years, mean height 

of 168.6 (S.D 8.4) cms and a mean weight of 69.6 (S.D 15.0) kgs.  13 of the fifty 

participants reported no history of LBP and had a mean age of 31.2 (S.D 13.2) years, 

mean height of 167.7 (S.D 10.5) cms and a mean weight of 66.3 (S.D 16.9) kgs. The 

LBP group reported an average of 3.1 (S.D 2.2) weeks proceeding the date on which 
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they provided data as when they experienced an episode of acute non-specific LBP 

and reported average duration of an episode to be 27 (S.D 86.7) days. 

3.7.2 Procedure to evaluate trunk kinematics using the LMM 

 The LMM was applied as described in section 3.6.2 above.  Data was 

collected during one cycle of flexion-extension movement during a single 8 second 

period (Section 3.6.2 above). Each participant was requested to perform the test 

movement at their preferred speed. No other encouragement or stimulus was 

provided to ensure as much natural trunk movement as possible (Al-Eisa et al., 

2006). 

3.7.3 Statistical analysis 

 A measure of reliability was investigated using the two-way mixed model of 

intra-class correlation coefficient to evaluate the proportion of the total variance 

that was due to the variance between subjects alone.  

A one way ANOVA analysis was used to investigate difference between and 

within groups.  

Pearson’s Correlation Coefficient (r) was used to investigate relationships 

between factors.  

All Analyses were conducted using SPSS (ver. 15 for Windows). 

3.7.4 Results 

74% of the participants reported a history of LBP.  Data were collected during 

a mean sagittal displacement of 52.7 (S.D 16.8) and 43.3 (S.D 15.0) degrees for the 

participants with and without a history of LBP respectively. The distribution of data 

was skewed as demonstrated by the asymmetrical distribution of the 
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measurements. This therefore required the data to be log-transformed before 

analysis. 

One way ANOVA (α=0.05) suggested that average sagittal acceleration was 

not significantly different either between or within the groups (p= 0.4). 

 Participants who did not report a history of LBP demonstrated slower 

performance (Table 3.7). This could possibly be because these participants had 

better control of trunk movement during the measurement process compared to 

the group who considered they were experiencing an episode of non-specific LBP. 

Interestingly, none of the participants within this group were actively receiving 

treatment for their back pain during the period of data collection. However it would 

be expected that the reverse should hold true given the results demonstrated in 

section 3.6.3 above.  

Table 3.7: Group performance comparison (kinematic evaluation) 

Presence of LBP   N Mean 
Std. 

Deviation 
LBP     

Sagittal ROM (Max-
Min PS) (Degs) 

37 52.7 16.8 

Average Sagittal 
Acceleration (Deg/S.S) 

37 359.2 170.1 

No LBP     
Sagittal ROM (Max-
Min PS) (Degs) 13 43.3 15.0 

Average Sagittal 
Acceleration (Deg/S.S) 13 309.7 150.4 

    

 

Female participants demonstrated slower mean trunk performance than 

males whether they reported a history of LBP or not but this was not significant 

(Table 3.8). 
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Table 3.8: Mean sagittal acceleration (Deg/S2) by level of gender and the presence of low back pain 
Presence of LBP 

( p=0.84) 
 Yes No 

G
en

de
r 

( p
=0

.2
7)

 Male 
M= 440.4 
S.D = 240.9 

M= 364.8 
S.D = 152.2 

Female 
M= 336.8 

S.D = 142.3 
M = 293.1 

S.D = 153.9 

 

More females reported a history of LBP than males (M=8; F=29) and 41% of 

this group of participants reported an episode within the last month prior to 

testing. 

Neither the length of time of the last reported episode prior to testing 

(p=0.8) nor gender (p= 0.27) was significant in the mean sagittal acceleration 

measures of participants.  

Intra-Class Correlation Coefficient (ICC) analysis using a two-way mixed 

method demonstrated the reliability of the single measure as 0.65 (95%CI 0.40-0.80) 

and 0.58 (95%CI 0.70-0.85) for participants with and without a history of LBP 

respectively.   

  Pearsons’ Correlation Analysis (r) suggests that there is a stronger 

correlation between trunk displacement and the mean sagittal acceleration 0f 0.64 

(p=0.01) and 0.57 (p=0.05) within participants with a history of LBP compared to the 

healthy participants respectively. The displacement demonstrated by this group 

was affected by the history of LBP.  

A significant correlation between weight and height was demonstrated in 

both the LBP group (r=o.49, p=0.01) and the group without LBP (r=0.87, p=0.01). 

This suggests that the correlation for the participants who did not report a history 

of LBP was stronger than in those reporting a history of LBP. A weight/age 
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correlation only existed in the participants with a history of LBP (r=0.34, p=0.05) but 

was not statistically significant at p=0.05 in the other group (r=-0.29).  

3.7.5 Conclusions derived from trunk kinematic evaluation 

 Within a sample of the population described here, the data suggests 

that the prevalence of LBP can be demonstrated to be relatively high however a self 

reported episode of LBP within this sample may not be reliable. From the sample 

evaluated, more female participants reported an episode of LBP than males. 

However, whether females reported a history of LBP or not within the sample they 

consistently demonstrated slower average trunk performance. The reliability of the 

LMM in both groups of participants without or with a history of LBP was similar but 

the confidence interval within which the results are reported was smaller in the 

group who did not report a history of LBP. The results demonstrated by the sample 

in question may tentatively be applied in general, however, only a much bigger 

study can provide substantive facts. This information is however used with this in 

perspective to discuss trunk acceleration in relation to the findings of this research 

study within chapter 6.  

3.8 Development of the intervention 

 3.8.1 Core stability exercises 

 The ‘core’ is described as the lumbopelvic region (Willardson, 2007a; 

Willardson, 2007b). Muscles that influence trunk performance are two groups 

‘global’ (erector spinae, rectus abdominis) and ‘segmental’ or those that act across 

spinal segments (multifidus and transversus abdominis) (Bergmark, 1989). 

Stabilisation exercises improve the integrity of the segmental muscles (Willardson, 

2007a; Willardson, 2007b). Exercise for the treatment and management of LBP is 
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common but the efficacy of exercise is doubtful (Linton et al., 1996). The 

comparative effect of therapeutic exercise regimen with active exercises suggests 

that there is no clinically significant difference (May and Johnson, 2008). 

 Stabilisation exercises may be useful for the management of chronic LBP 

but the effects may not be more effective than other methods of management 

involving activity (May and Johnson, 2008). The effect on acute LBP is not widely 

reported. This may be because it is assumed that the effects of stabilisation 

exercises in enhancing neuromuscular control and rectifying dysfunction 

(Richardson et al., 1999; Norris, 2000; McGill, 2002) may not be required during an 

acute phase of LBP.  

There is no formal definition of core stability exercises or recommendation 

for any specific grouping of CSE (Standaert et al., 2008). There is also no justification 

for the choice, combination of, or the number of repetitions and frequency of the 

chosen exercises (Standaert et al., 2008). However the clinical decision and 

justification for using stability exercises to improve the integrity of the lumbar 

multifidus has traditionally been underpinned by a set of belief systems (Table 3.9) 

(MacDonald et al., 2006). Increases in cross sectional area of the multifidus can be 

observed within 6 weeks following the introduction of CSE and this increase is 

directly related to the frequency of the exercise (Sokunbi et al., 2008).  Stabilising 

exercises have been designed to encourage the activation of the deep fibres of the 

multifidus through low loaded isometric activity with the spine in as much of a 

natural position as possible (MacDonald et al., 2006; Standaert et al., 2008). The 

exercise routine that was used in this study and derived from a software package 
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which accompanied work on core stability exercises (Norris, 2000) is attached 

within the appendices (Appendices 4 and 5).  

Table 3.9: Core stability exercises belief systems (MacDonald et al., 2006) 
Belief System Evidence 

 
Deep multifidus rather than superficial fibres or the erector 
spinae responsible for spinal stability 
 

 
Richardson & Jull, 1995; Richardson et al., 1999f 

 
Deep multifidus has the most proportion of type 1 muscle 
fibres 
 

 
Porterfield & DeRosa, 1991a,b; Richardson et al., 1999f 

 
Isotonic activity is observed in the deep multifidus during 
trunk movements and gait  
 

 
O’Sullivan et al., 1997; Richardson et al., 1999f; Taylor & 
Sullivan, 2000; Hides, 2004a 

 
Deep multifidus and transversus abdominis co-contract 
during function 

 
Richardson & Jull, 1995; O’Sullivan et al., 1997; Pool-
Goudzwaard et al., 1998; Richardson et al., 1999b; 
Richardson et al., 2000; Taylor & Sullivan, 2000; Arokoski et 
al., 2001; Hides et al, 2004 

 
Low back pain induces most changes within the deep 
multifidus  
 

 
Norris , 1995a,b; Pool-Goudzwaard et al., 1998; Richardson 
et al.; 1999d; Arokoski et al., 2001; Hides  2004a,b 

3.8.2 Exercise compliance 

 Compliance in Physiotherapy is important because the effect of intervention 

is largely reliant upon it (Sluijs et al., 1993). Compliance plays a significant role in the 

outcome of intervention (Linton et al., 1996). It does not significantly change the 

perception of pain in LBP; although compliance with exercises can be improved 

when pain intensity is negligible when compared to a control group (Linton et al., 

1996). The fear avoidance model of inactivity is the primary factor in restricting 

levels of pain and thus by implication compliance (Linton et al., 1996; Frank and 

DeSouza, 2001; Fritz and George, 2002). Exacerbation of pain may be linked to 

attempts at becoming active (Linton et al., 1996).  

The exercise routine that was used in this study was chosen because they 

reflected the exercise routines which anecdotal evidence suggest are most 

commonly used in clinical practice. They were also devised on the assumption that 

compliance would be enhanced if participants understand the aetiology, onset of 
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their LBP and the behaviour of their pain. A good relationship with whoever is 

providing the exercise instruction and the frequency and number of repetitions of 

the exercise reflecting their lifestyle (allowing for omissions in the routine due to 

unforeseen circumstances) will also improve exercise compliance (Linton et al., 

1996; Frank and DeSouza, 2001; Fritz and George, 2002). 

 Each participant that was randomised into the experimental group was 

required to complete an exercise compliance sheet (Appendix 8). The participants 

were to bring the sheets with them for each treatment session where the sheets 

will be examined by the treating Physiotherapist. This served two purposes; to 

suggest to the participant that their progress was being monitored closely and to 

provide an incentive for compliance. Although each sheet represented the requisite 

daily exercise compliment, participants were given only enough sheets for 3 weeks 

at a time. Each participant in the experimental group was inclined to ask for more 

sheets to complete the remaining 3 week period. 

 The participants in the experimental group were able to demonstrate the 

frequency and the number of repetitions that were completed for each of the 

exercises. The participants were told that if a set of the exercises were 

inadvertently missed they were not to double up the number of repetitions for the 

subsequent set of exercises. They were required to leave the corresponding section 

on the sheet blank. This prevented anomalies in the data caused by the different 

effects of either high or low repetition of exercises. 

 Other forms of compliance methods were not be used to avoid adding to the 

participants’ perceived barrier to exercise by impinging on the available time that 

they have to do the exercise routine (Sluijs et al., 1993).  
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3.9 The effects of missing data 

Because of possible attrition and its possible effects on the results, an 

‘intention to treat’ analysis (Altman, 1991) was used. As described in chapter 2, this 

type of analysis allows direct comparison of the groups in response to the 

intervention by maintaining the balance in respect to the subject characteristics 

within each group (Chapter1 Peacock and Peacock, 2011). In order to achieve the 

‘intention to treat’ analysis the last measurement obtained from a participant was 

carried forward to replace any missing data. This is known as the Last Observation 

Carried Forward (LOCF) (Howell, 1992). This procedure is often preferred (Peacock 

and Peacock, 2011) however the trend of the data in this instance suggested that 

this was a reasonable strategy.  

3.10 Conclusions 

 This chapter has set out the method to answer the research questions 

described in chapter 2. This chapter also defined and justified the use of the RMDQ, 

VAS and the LMM to describe changes in pain and disability as a direct result of the 

introduction of core stability exercises.  

 The following chapter describes the method derived from this chapter that 

was used to answer the research questions and hypotheses posed in chapter 2. 
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Chapter 4 

Method 

4.1 Summary 

 This chapter describes the method used to collect the data for this study. It 

provides an insight into the obstacles that the researcher encountered during the 

study and the decisions made to ensure that the study remained valid. The biggest 

threat to the success of the study was the frequent local changes to Physiotherapy 

provision at the behest of the local Primary Care Trust. These changes resulted in a 

number of amendments (4.6 below). 

4.2 Introduction 

 It remains unclear if CSEs will make a significant difference in the treatment 

of LBP or indeed if there is a defined subset of patients with non-specific LBP who 

will respond more favourably than others (Brennan et al., 2006). This study 

evaluates the effect CSEs have on an onset of acute non-specific LBP. 

 A significant problem with using CSE is the ambiguity of the underlying 

mechanism that underpins the clinical decision making process that suggests its 

use. This process can influence treatment outcome and any cost/benefit analysis 

within both primary and secondary care. Better clarity can be achieved by providing 

answers to the following research questions; 

• Does an onset of acute LBP change trunk kinematics? 

• Can CSEs reduce self reported disability caused by LBP? 

• Do CSEs reduce LBP? 
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The study involved two groups of participants (Control and Experimental) who 

were experiencing an acute episode of non-specific LBP and comparing the changes in 

trunk average sagittal acceleration, reported pain and reported disability between 

participants who had a CSE programme (experimental group) and those who did not 

(control group). 

4.3 The research design 

The study was a randomised controlled trial and was approved by the School 

of Health Sciences & Social Care Ethics Committee at Brunel University and 

Oxfordshire NREC ethics committee (Ref. 07/H0606/102) in September 2007. The 

study did not attract any internal or external funding and in view of the time 

constraints it was decided that the study would proceed within the capabilities of 

the researcher. 

The objectives of this study were; 

• To evaluate the effect of Core Stability Exercises (CSE) on trunk 

performance during flexion-extension movements in the sagittal 

plane. Performance was to be evaluated during a period of non-

specific acute LBP.  

• To evaluate changes in disability caused by an acute onset of non-

specific LBP during a course of CSE. 

• To evaluate the changes in pain during an acute episode of non-

specific LBP. 

The hypotheses of the study tested were the following; 

• CSE will improve average trunk acceleration when performing flexion-

extension movements in the sagittal plane. 
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• CSE will reduce pain during an episode of non-specific LBP. 

• CSE will reduce self reported disability caused by an onset of acute 

non-specific LBP 

The study process is shown below (Fig 4.1). 

 
Fig. 4.1: Study flow chart 

4.4 The study sample size 

A standard formula, N=2ks2/d2 (k=10.5 standard multiplier; s= standard 

deviation and d= clinically significant difference) would have been the preferred 

choice for calculating the sample size for this study in the first instance. The sample 

size calculated would have provided a power of 90% with a significance of 5%. 

However, the absence of a known clinically significant difference suggested that 

this approach was not beneficial (Bland, 2009), since no research predating this 



 129 
 

study provided a clinically significant difference for the primary outcome measure 

for changes in mean sagittal acceleration in response to CSE. Although the trunk 

produces an average sagittal acceleration of 470 deg/s2 (Marras et al., 1990) no data 

existed to suggest a possible differential as a result of an intervention.  

 Because of the problems with recruitment (chapter 3), the alternative of an 

estimation of the likely width of the confidence level to a power calculation was 

used to interpret the findings (Bland, 2009).  Clinical implementation of previous 

research has been impeded by the inability of research to effectively demonstrate 

its clinical importance; it is often lost in the emphasis of stating the power of the 

research tests (Domholdt, 2005). This study had to be able to demonstrate its 

meaningfulness to clinical practice by ensuring that the sample size presented in 

this work was small enough to be managed effectively within the constraints of true 

micro and macro environmental pressures and used confidence levels to report the 

findings. This needed to be done without losing potentially important information 

or giving misleading interpretation of results (Bland, 2009). 

4.5 Study recruitment process 

 All patients referred between July 2008 and June 2010 for treatment of an 

acute episode of non-specific LBP within Hillingdon Primary Care Trust in West 

London were given the opportunity to take part in the study. The recruitment 

process was continuous with participants randomised to groups as they were 

recruited. Participants were approached during their first visit for an assessment 

after being referred for physiotherapy treatment. Physiotherapy staff members in 

the musculoskeletal outpatients departments of Hillingdon Community Health 

providers who had agreed to be involved in the recruitment process made the initial 
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approach to patients who were under their care. The patients who were interested 

were given the patient information sheet and asked to sign and return the reply slip 

at their next appointment. Participants who were willing to take part are described 

below (Table 4.1). The researcher was then notified within a working day of the 

patient’s willingness to participate and informed of the date of the patient’s next 

scheduled treatment session.  This next scheduled appointment was the date at 

which written informed consent was obtained and baseline data collected. 

Table 4.1: Participant demographics 

Participant Gender 
Age 

(Years) 
Occupation 

Onset of 
symptoms 

Period of 
symptoms 

(Weeks) 

Previous 
Episode and 
treatment 

Date 
seen by 

GP 
(Days) 

1 M 38 Manual Sudden 5-6 Yes >7 
2 M 45 Driver Gradual 5-6 No >7 
3 M 31 Office worker Gradual 6 Yes 2-3 
4 F 43 Post woman Sudden 3-4 Yes 2-3 
5 F 28 Office worker Sudden 6 Yes 2-3 
6 M 33 Unemployed Gradual 5-6 Yes >7 
7 F 21 Student Gradual 4-5 No >7 
8 F 24 Researcher Insidious 5-6 Yes >7 
9 F 28 Unemployed Gradual 6 No >7 
10 F 22 Student Gradual 5-6 Yes >7 
11 M 40 Airline Officer Sudden 6 Yes >7 
12 F 55 Teacher Gradual 6 Yes >7 
13 F 43 Housewife Insidious 6 No >7 
14 F 32 Office worker Gradual 6 Yes >7 
15 F 55 Carer Gradual 5-6 Yes >7 
16 F 55 Housewife Gradual 6 No 7  
17 F 40 Office worker Gradual 1-2 No >7 
18 F 36 Housewife Gradual 6 No >7 
19 F 47 Housewife Sudden 6 No >7 
20 F 27 Housewife Gradual 5-6 Yes >7 
21 F 28 Housewife Gradual 4-5 No 4-5 
22 F 48 Housewife Gradual 6 Yes >7 
23 F 32 Housewife Sudden 6 Yes 2-3 
24 F 28 Housewife Gradual 5-6 No 4-5 
25 F 29 Unemployed Gradual 6 Yes >7 
26 F 39 Office worker Gradual 6 Yes >7 
27 F 31 Housewife Gradual 5-6 Yes 2-3 
28 F 50 Housewife Gradual 6  Yes >7 
29 F 50 Unemployed Gradual 6  Yes >7 
30 F 42 Administrator Gradual 1-2 No 4-5 
31 F 45 Office worker Gradual 6 Yes >7 
32 F 53 Administrator Sudden 1-2 Yes 2-3 
33 F 45 Housewife Gradual 6 Yes >7 

 

Prior to commencement of the study, all general practitioners (GP) who have 

access to the Musculoskeletal Physiotherapy Services were informed of the study. 
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This was done with care so as not to change the referral behaviour. This was 

important for the physiotherapy staff members who had volunteered to be actively 

involved in the recruitment process because changes in referral patterns would 

have had consequences on capacity, queue management and general treatment 

outcomes.  

All participants were referred from within primary care but there was a 

variation between the times they had been experiencing symptoms before they 

saw their GP.  This variation ranged from between 2 and 7 days (Table 4.1). Although 

this posed a threat to the recruitment process it was not possible to influence this 

first stage of the care pathway.  

An initial informal estimation of the waiting list suggested that referrals for 

treatment of LBP constituted a significant majority of the referrals on the waiting 

list for all locations included as a study site (Section 3.3.2). However, the length of 

the waiting list suggested that a majority of those referrals would not meet the 

inclusion criteria because they would have been waiting for more than 12 weeks. 

The local physiotherapy staff members were co-opted into appraising all referrals as 

they arrived at the locations and recruiting potential participants as quickly as 

possible. Some physiotherapy staff had reservations about doing so because they 

considered that those patients could be ‘jumping’ the queue. The Lead 

Practitioner/Manager provided valuable support for the study by emphasising the 

need for local research. This intervention was crucial in changing the view of those 

staff members. However, a compromise was that a 3 month rather than a 1 year 

follow up was more realistic. Six participants had been recruited before this 

decision and had passed the time for the 3 month follow up. The data collected 
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from these participants at baseline, 3 weeks and 6 weeks were included in the 

analysis of the results. Although they provided data at the 1 year follow up this data 

was not included in any analysis within this study and the data that should have 

been obtained at 3 months was considered to be missing data replaced with the last 

observations carried forward (LOCF) (See section 3.9). 

Changes in access policy and information management by the local Primary 

Care Trust (PCT) presented a real threat 3 months into the study.  A new IT system 

(RIO) meant the physiotherapy staff no longer maintained control of their diaries 

and all appointments were made from a central point. In an attempt to improve 

access and drive down waiting times, the PCT decided that all patients with LBP 

should have an initial one-to-one assessment and then be referred to ‘Core Stability 

Classes’. The content of the classes included a mixture of exercises aimed at both 

‘global’ muscle and ‘intersegmental’ muscle activity (Appendix 7 and 8). The 

protocol for this group of participants is shown in fig 4.1. These classes were 

provided on a weekly basis and each patient was offered a 5 week course of 

treatment. Participant grouping for this study was therefore redefined. The control 

group was redefined from the group that did not perform any exercises to that 

which consisted of participants who attended the core stability classes only. The 

experimental group constituted those participants who attended the core stability 

classes but performed an additional exercise routine (Appendices 6 and 7). The 

protocol for this group of participants is shown in fig 4.1. Care was taken to avoid 

duplication of exercises and the use of specific words/phrases such as Transversus 

Abdominis, Multifidus, core strengthening and stability were avoided during the 

core stability classes. This was so that the chance of the physiotherapy staff 
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member introducing bias to the study was minimised and also to avoid potential 

doubt of the impact of being allocated to a specific group within the minds of the 

participants.  

An advantage of these classes was that data were collected during those 

class attendances however other contractual obligations of the researcher 

prevented the researchers’ attendance at all the available classes and some 

potential participants were missed to the recruitment process. 

Local turnover of staff did not play a significant role in disrupting the 

recruitment process. Staff co-opted to assist in the recruitment process was 

experienced physiotherapists who had permanent non-rotational positions within 

their respective departments. This meant that there was no need to re-visit the 

various sites (Section 3.3.2) to maintain levels of interest within the departments to 

remain actively involved in the recruitment process. 

4.6 Randomisation and allocation process 

 Participants were allocated to groups using the method described in chapter 

3. A colleague independent and blind to the study placed notes on which was 

written either ‘experimental’ or ‘control’ group into opaque envelopes. These 

envelopes were shuffled and then marked in numerical order.  

4.7 Study procedure 

Every participant received an initial assessment by a suitably qualified 

member of staff at the nearest physiotherapy outpatient department to which they 

were referred to by their GP. Once a participant was identified and agreed to take 

part in the study, the physiotherapist completed a short history sheet (Appendix 11). 
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These details would have formed part of the standard musculoskeletal subjective 

history procedure. This sheet provided basic details of the history of onset and 

nature of the LBP. Each willing participant was then provided with a Participant 

Information Sheet (Appendix 12). This took place after each participant was offered 

a place in the core stability classes which was part of the routine care pathway for 

an acute non-specific LBP patient. Each participant was asked to sign a return slip 

confirming their willingness to participate in the study and requested to bring this 

confirmation slip with them to their first core stability class where the researcher 

met the participants for the first time. Eastcote Health Centre was the location for 

data collection because it was easier for the participants to attend the same 

location for measurement at which they were taking part in the CSE programme.   

During the initial session, each participant was given the opportunity to ask 

questions about the study and was given a further opportunity to withdraw. 

Written informed consent was then obtained (Appendix 13). The participant was 

then requested to open an envelope marked with the number which represented 

the order in which they agreed to become a participant in the study. Neither the 

participant nor the researcher was aware of the contents of the envelope prior to 

this time. The researcher then re-affirmed the procedure for the study in relation to 

the group to which the participant had been allocated. The participant was also 

given a further opportunity to decline taking part in the study. 

Baseline measurements of height, weight and age were collected and 

recorded on the specialist software on a laptop to which the LMM was connected 

via an umbilical cord through which two-way communication between the LMM 

exoskeleton and the laptop occurred. Each participant was also required to 
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complete a RMDQ (Appendix 14) and VAS (Appendix 15). The RMDQ was not 

required at 3 weeks (Fig 4.1) because it was not considered a long enough period to 

identify any change in function. It was however, noted that it has been 

demonstrated that cross sectional area of the multifidus can be increased within 6 

weeks of CSE (Sokunbi et al., 2008). 

 The LMM had already been calibrated by the manufacturers before its initial 

use (section 3.4.3). However, the ‘zero calibration’ procedure (section 3.4.3) was 

performed before each measurement. A harness size (small, medium or large) 

which allowed for the exoskeleton to be placed on the participant’s trunk without 

demonstrable movement whilst standing erect in the neutral position was selected. 

The exoskeleton was then attached and tightly secured in place onto the harness 

and tightly secured with the locking mechanism provided. 

 The assessment of repeated measures demonstrated during reliability 

testing of the equipment suggested that some movement can occur between the 

LMM harness and the skin of the participant. It was, however, not possible to place 

the LMM directly onto the participants’ skin because of health and safety 

considerations. To reduce unwanted movement to a minimum all participants were 

evaluated wearing a top made of as thin a material as possible and asked to wear a 

similar garment for each evaluation. 

Each participant was requested to perform as many sagittal trunk flexion-

extension movements as possible for 8 seconds. The movement was executed at 

the participants’ preferred speed and within their preferred range of movement. No 

encouragement verbal, non-verbal or otherwise was offered. No warm up exercise 

was performed because the interest of the study lay within the natural muscle 
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recruitment process to effect functional movement without prior warning. All trunk 

measurements were therefore also taken before each scheduled core stability class. 

All participants completed the evaluation and none reported an exacerbation of 

their symptoms. 

 Following the initial LMM evaluation, the participants allocated to the 

experimental group were given their CSE instruction (Appendices 4 and 5) by the 

researcher. The experimental group was required to perform 10 repetitions of 8 CSE 

three times a day for 6 weeks. This was in anticipation that the participants would 

be able to complete the routine at least twice a day given their individual personal 

circumstances involving work commitments and family life. The participants in this 

group were encouraged to keep an account using a diary (Appendix 8) to 

demonstrate their compliance with the task. This diary was inspected by the 

treating physiotherapist at each visit either for treatment or attendance at the core 

stability classes. The participants in the control group were asked to continue with 

the classes alone. Participants in the control group received the same face-to-face 

contact time as those in the experimental group. 

 Trunk performance of all 33 participants using the LMM procedure was 

evaluated at 0, 3 and 6 weeks. A further evaluation was made at 3 months for all 

participants excluding the first 6 participants, three of whom provided an 

evaluation at 1 year follow up after cessation of the intervention (Fig 4.1). All but the 

6 week and 3 month follow-up evaluations coincided with regular attendance at the 

core stability classes. However, all participants were asked to continue their routine 

as advised by their treating physiotherapist until their follow up at three months.  
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4.8 Ethical considerations 

 The original protocol submitted for ethical approval was changed on three 

occasions to meet volatile circumstances encountered during the study. These 

circumstances were out of the control of the researcher. All amendments were 

substantial and therefore required resubmission to the Oxfordshire NREC ethics 

committee (Appendix 16) 

 Procedures were put in place to allow for ethical considerations during the 

study (Table 4.2).   

Table 4.2: Study ethical considerations 
Ethical Consideration Consequences Procedures 

1. Participants changed their mind about 
taking part in the study 

High rates of attrition Participants were 
advised at every step 
that they could 
withdraw without 
prejudice at any point in 
the study. 

2. Bias Participants in the control 
group could have felt 
‘disadvantaged’ in not having 
an extra exercise routine 

Each participant in the 
control group was told 
that at the end of the 
study they would be 
offered the same 
exercise routine. 

3. Adverse response to exercises Increase in subjective pain and 
discomfort 

All participants were 
instructed to stop any of 
the exercises at any time 
they considered their 
symptoms to have 
increased. 

4. LMM assessments Increase in pain with measure 
of outcome 

Participants were 
instructed to perform all 
test movements at their 
own preferred speed 
and range 

 

4.9 Potential sources of error 

 Potential sources of error during the study and strategies adopted to 

minimise potential influence on the outcome of the study included the following; 
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• The success of the study was dependent upon the researcher. To 

minimise bias the researcher avoided any involvement in the 

recruitment process, the randomisation of the sample or allocation of 

participants into groups.  

• Although all raw data for each of the outcome measures using the 

VAS, RMDQ and LMM were collected by the researcher, the VAS 

score measurement and the evaluation of the RMDQ were carried out 

by a colleague independent of the study. This was to ensure that any 

indirect influences that could have been introduced by the researcher 

were addressed. 

• Although the experimental group received exercise instruction from 

the researcher care was taken to give equal face-to-face time to the 

control group participants. 

• The researcher avoided any cues/prompting during any of the 

outcome measurement procedures. This was particularly important 

during the LMM evaluation. 

• Similar contact was made with all the participants throughout the 

study irrespective of the group into which they were allocated. 

• Evaluating the intra-rater reliability of the LMM demonstrated a 

discrepancy between repeated measures (section 3.6.3). Participants 

were evaluated wearing a similar thin layer of clothing for each 

evaluation. 

• LMM evaluation was not preceded by a ‘practice’ run to minimise 

exaggeration of trunk performance resulting from ‘practice effect’. 
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• Participants in the exercise group may not have been entirely 

accurate with the exercise diary. An assumption was made that the 

exercise routine would be completed at least twice a day. 

4.10 Data preparation 

 The following procedures were used to prepare the data before analysis; 

 The VAS score was measured in centimetres between a minimum of 0 

(no pain) to a maximum of 10 (Worst pain). The score was directly 

proportional to the amount of pain reported. This figure was 

imported directly and without manipulation for statistical analysis. 

 The RMDQ was scored out of a maximum of 24 points.  The level of 

self reported disability due to LBP was directly proportional to the 

score out of 24. This figure was imported directly and without 

manipulation for statistical analysis. 

 Trunk displacement was defined as the difference between the 

maximum and minimum trunk position for each evaluation. This 

figure was imported directly for statistical analysis. 

  Average trunk acceleration was provided as an absolute number by 

the LMM software and did not require manipulation. This figure was 

imported directly for statistical analysis. 

 The CSE routine was recorded by the degree of compliance. The 

exercise routine was considered to be done if the routine was 

completed a minimum of twice a day. The total number of days for 

which the exercise was completed was then directly imported to the 
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statistical software package without further transformation and used 

for analysis. 

 Where data were log-transformed to give a normal distribution, the 

results of comparisons between transformed means were back-

transformed to give the ratio of geometric means. 

4.11 Procedure for testing the hypotheses 

 All analyses to test the study hypotheses were conducted using SPSS 

(ver. 15 for windows) (Table 4.3) using an intention to treat analysis. 

Table 4.3: Statistical tools to test the study hypotheses 
Study Null  
Hypothesis 

Outcome Measure used Statistical 
Analysis 

1. Pain experienced 
during an acute onset 
of LBP will not be 
reduced with CSE  

Pain VAS score  
 

Two way mixed 
ANOVA analysis 

(α=0.05) of 
differences between 
and within both the 

control and 
experimental groups 

2. Self reported 
disability during an 
acute episode of LBP 
will not be reduced by 
CSE 

Disability RMDQ 

3. Sagittal trunk 
performance  during 
an acute episode of 
LBP will not be 
improved by CSE 

Trunk performance Average sagittal trunk 
performance 

 A regression analysis was used to investigate the causal relationship 

between CSE and outcome measures  

 Pearson’s correlation co-efficient analysis (r) was used to identify 

relationships between the 3 outcome variables. 

 Intra-Class Correlation Coefficient (ICC) analysis using a two-way 

mixed method was used to evaluate the reliability of the measure. 
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4.12 Conclusions 

 The method described in this chapter was designed to answer the research 

questions and test the generated hypotheses posed in chapter 2. The outcome 

measures used provided data to adequately achieve this goal. Reasonable measures 

were taken to reduce sources of error that could affect the results of the study but 

total eradication of error could not be entirely guaranteed.  
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Chapter 5 
 
 Results 
 
5.1 Study participants and attrition 
 

Thirty four participants were recruited for this study and more females than 

males participated (Table 5.1). Variation in compliance with the exercise routine 

within the experimental group was evident during the 6 weeks active stage of the 

study (Appendix 17). 

Table 5.1: Study group descriptive 

 
Age (s.d) 
(Years) 

Height (s.d) 
(cms) 

Weight (s.d) 
(Kgs) 

Control 
(Male= 2, 

Female=15) 
35.8 (9.1) 167.4 (9.0) 73.3 (15.6) 

Experimental 
(Male=3, 

Female=13) 
36.2 (9.8) 166.8 (10.6) 75.9 (18.0) 

 

Although 34 participants were originally recruited, data were collected from 

only 33 participants. One participant decided not to take part after reflecting on the 

level of commitment required and withdrew before either randomisation took place 

or baseline measurements were collected. This participant was excluded from all 

analyses. However attrition amongst other participants occurred at later stages (Fig 

5.1). Measurements not provided by these participants after attrition were dealt 

with as missing data. No reasons were offered by participants for their decision to 

withdraw from the study. 

Most attrition occurred between the 3rd and 6th week of the study and only 3 

of the first 6 participants recruited who were scheduled to provide 1 year follow up 

data actually did so. These 6 participants did not provide 3 months’ follow up data 

because they had completed the first 6 week phase of the study and had been in 
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abeyance beyond the 3 months’ follow up period before the decision was made to 

reduce the follow up from 1 year to 3 months. The absent data was therefore 

treated within the missing data protocol described in Chapter 3. The one year follow 

up data was not used for any data analysis. Of the remaining 25 participants only 11 

completed the whole study; 5 and 6 participants in the experimental and control 

groups respectively.  

 

Fig.5.1: Description of sample and attrition  
 

Three participants, following a discussion with their treating 

physiotherapists decided that they may be disadvantaged by taking part in the 

study. One participant developed an unrelated orthopaedic problem in the lower 

limb and decided to end involvement following a tertiary referral to a consultant. 

The rest of the attrition is unaccounted for because the participants did not provide 
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a reason and in keeping with the research protocol consent form were not pressed 

to provide any further information. 

5.2 Missing data analysis 

The missing data (section 3.9) was replaced with the Last Observation 

Carried Forward (LOCF) (Howell, 1992). This decision was based upon the fact that it 

allowed an analysis over the whole time frame of the study and assumed that the 

data carried forward followed the trend of the data preceding it. The reason for this 

approach was because the trend of the raw data demonstrated either a sequential 

improvement or status quo in the outcome measures within both groups of 

participants. It was therefore assumed that the missing data could be replaced with 

the data that proceeded without the fear that the results would therefore be over 

optimistic. It was therefore assumed that bias would be kept to a minimum as the 

artificial inflation of the effect of intervention was avoided.  

5.3 Description of the data  
 
 The trend of the data collected is demonstrated in figs 5.2-5.7 below and a 

comparison of the data between the data including and excluding missing data is 

also demonstrated in figs 5.9-5.13).The number at the top of each graph denotes the 

number of each participant during the allocation to group process. 
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Fig. 5.2: Mean trunk sagittal acceleration (Control group)  
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ig. 5.3: Mean trunk sagittal acceleration (experimental group)  
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Fig. 5.4: Mean pain scores (control group)  
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Fig. 5.5: Mean pain score (experimental group)  
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Fig. 5.6: Mean disability scores (control group) 
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Fig. 5.7: Mean disability scores (experimental group)  
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Fig. 5.8: Mean trunk sagittal acceleration (control group) without missing data  
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Fig. 5.9: Mean sagittal trunk acceleration (experimental group) without missing data 
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Fig. 5.10: Mean pain scores (control group) without missing data  
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Fig. 5.11: Mean pain scores (experimental group) without missing data  
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Fig. 5.12: Mean disability scores (control group) without missing data 
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Fig. 5.13: Mean disability scores (experimental group) without missing data 
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5.4 Data transformation 

 The data for the outcome measures of mean sagittal acceleration, pain and 

disability did not demonstrate a normal distribution (Figs 5.2-5.4) and were 

transformed using the logarithm for analysis. The data were back transformed to 

provide meaningful results on the original scale. For a comparison of means this 

gives the ratio of geometric means rather than the difference of arithmetic means. 

5.5 Range of movement 

 The experimental group (m=3, f=13) with a mean age of 36.2 (9.8) years, 

mean height of 166.8 (10.6) cms and mean weight of 75.9 (18.0) kgs demonstrated 

greater range of movement during testing at every stage of evaluation including 

baseline (Table 5.2) when compared to the control group (m=2,f=15) with a mean 

age of 35.8 (9.1) years, mean height 167.4 (9.0) cms and mean weight of 73.3 (15.6) 

kgs. The mean difference between the groups was greatest at 3 months even when 

the difference between the groups narrowed halfway through the study. This was 

demonstrated even when the mean range remained relatively constant within the 

experimental group. 

Table 5.2: Between group differences in range of movement (ROM) 
 

Control Experimental 
% Difference 

between groups 
Mean ROM at 0 weeks  
[(degs (SD)]  

37.6 (11.2) [n=17] 41.3 (14.0) [n=16] 9.8 

Mean ROM at 3 weeks  
[(degs (SD)] 

34.7 (8.7) [n=12] 42.1 (18.3) [n= 13] 21.3 

Mean ROM at 6 weeks  
[(degs (SD)] 

38.3 (13.4) [n=9] 41.1 (16.8) [n=8] 7.3 

Mean ROM at 3 months  
[(degs (SD)] 35.9 (10.2) [n=6] 41.9 (15.7) [n=5] 16.7 

5.6 Trunk sagittal acceleration 

 The experimental group consistently demonstrated greater mean sagittal 

acceleration than the control group throughout the study (Table 5.3). The 
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differences, however were not statistically significant at the start of the study (two-

sample t-test, t= -0.2, 31 d.f, p=0.83) 3 weeks (two-sample t-test-1.1, 31 d.f., p=0.28), 6 

weeks (two-sample t-test, t= -0.5, 31 d.f., p=0.64) or at 3 months (two-sample t-test, 

t=-0.9, 31d.f., p=0.41).  

The control group had better trunk performance at the 3 week stage. At the 

end of the 6 week active intervention period the control and experimental groups 

demonstrated overall increases of 15.1 and 29.4% respectively which increased at the 

3 month follow up evaluation to 13.0 and 37.0% respectively.  A comparison of 

sagittal acceleration at 3 months to week 6 shows that the control group 

demonstrated a reduction in performance.  
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Table5.3: Study outcome measures by group 
 

 
Mean sagittal 

 acceleration (s.d) 
(deg/s2 ) 

 
Mean pain score (s.d) 

(mm)  
(VAS 1-10) 

 
Mean disability (s.d) 

(RMDQ 0-24) 
 

 Control Experimental P value Control Experimental P value Control Experimental P value 
 (n=17) (n=16)  (n=17) (n=16)  (n=17) (n=16)  

Baseline  166.0 (110.2) 174.5 (133.7)  31.4 (22.0) 36.4 (23.2)  10.5 (5.0) 8.6 (5.0)  
Analysis          

3 weeks 170.7 (95.5) 225.5 (163.4)  25.3 (23.5) 26.0 (22.0)  - - - 
Difference between 
groups adjusted for 
baseline at 3 weeks. 
Ratio of geometric 
means (95% C.I) 

1.2 (0.9-1.6) 0.2 1.3 (0.8-2.2) 0.3 - - 

       
6 weeks  191.1 (99.1) 225.8 (178.0)  26.7 (26.0) 31.8 (23.6)  9.4 (5.8) 7.4 (5.4)  
Difference between 
groups adjusted for 
baseline at 6 weeks. 
Ratio of geometric 
means (95% C.I) 

1.1 (0.8-1.5) 0.7 1.2 (0.7-2.0) 0.6 1.0 (0.7-1.5) 1.0 

       
3 months  187.5 (99.5) 239.1 (177.5)  27.1 (26.7) 25.9 (23.2)  8.4 (6.2) 6.8 (5.1)  
Difference between 
groups adjusted for 
baseline at 3 months. 
Ratio of geometric 
means (95% C.I) 

1.2 (0.8-1.9) 0.9 1.0 (0.5-1.9) 1.0 1.3 (0.8-1.9) 0.3 

 

The ratio of geometric means takes the value 1 when the means are the same in the experimental and control groups. The ratio of 1.2 (0.9-1.6) indicates a 20% 
improvement in the experimental group with 95% C.I ranging from a 10% worsening to a 60% improvement. 
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At 3 weeks the improvement in trunk sagittal acceleration in the 

experimental group was 20% greater than in the control group but this was not 

statistically significant (95% CI 0.9-1.6, p=0.2). Similar improvements of 10% and 20% 

respectively were observed at 6 weeks (95% CI 0.8-1.5, P=0.7) and 3 months (95%CI 

0.8-1.9, P= 0.9) but again these were not statistically significant (Table 5.3).  

5.7 Pain 

 Mean pain scores were similar in both groups at each stage of the 

study; the differences in mean pain scores between the groups adjusted for 

baseline were not statistically significant at 3 weeks (30%) (95%CI 0.8-2.2, p= 0.3), 6 

weeks (20%) (95%CI0.7-2.0, p=0.6) or 3 months (0%) (95%CI 0.5-1.9, p=1.0) (Table 5.3).  

Analysis of VAS scores between 3 months and 6 weeks was not possible 

because of the missing data and the small number of the sample.  

5.8 Disability 

The data suggests that the differences in disability scores between the 

groups adjusted for baseline were also statistically insignificant at 6 weeks (0%) 

(95%CI 0.7-1.5, p= 1.0) and 3 months (30%) (95%CI 0.8-1.9, p= 0.3) (Table 5.3).  

5.9 Between variable relationships  

 Anecdotal clinical evidence suggests that there would be logical 

relationships between the variables measured. However, the results do not 

demonstrate this at any of the time points of the study (Table 5.4).  
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Table 5.4: Relationship between mean variable scores [Pearson's Correlation Coefficient (2-tailed sig.) p= .05] 
  Mean pain score 

(mm) 
Mean sagittal acceleration 

(deg/s.s) 
Mean disability score Range of movement  

(Deg) 
  3 weeks 6 weeks 3 months 3 weeks 6 weeks 3 months 3 weeks 6 weeks 3 months 3 weeks 6 weeks 3 months 
Control group 
(n=17) 

Mean pain score 
(mm) 

1 1 1 .3 (.4) -.3 (.4) -.2 (.6) - .65 (.0) .8 (.0) -.4 (0.1) -.2 (.5) -.5 (.1) 

 Mean sagittal acceleration 
(deg/s.s) 

.3 (.3) -.3 (.4) -.2 (.6) 1 1 1 - -.2 (.4) -.2 (.6) 0.2 (.5) .3 (.2) .4 (.1) 

 Mean disability score - 0.7 (.0) .8 (.0) - -.2 (.4) -.2 (.6) - 1 1 - -.1 (.7)* -.4 (.2) 
 Range of movement (Deg) -.4 (.1) -.2 (.5) -.5 (.1) .2 (.5) .3 (.2) .4 (.1) - -.9 (.7) -.4 (.2) 1 1 1 
              
Experimental group 
(n=16) 

Mean pain score 
(mm) 

1 1 1 .4 (.2) .3 (.3) .4 (.2) - .3 (.3) .2 (.6) -.0 (.9)* -.1 (.8) -.1 (.9)* 

 Mean sagittal acceleration 
(deg/s.s) 

.4 (.2) .3 (.3) .4 (.2) 1 1 1 - -.2 (.5) -.1 (.7) .6 (.0) .6 (.0) .6 (.0) 

 Mean disability score - .3 (.3) .2 (.6) - -.2 (.5) -.1 (.7) - 1 1 - -.2 (.4) -.4 (.2) 
 Range of movement (Deg) -.0 (.9)* -.1 (.8) -.1 (.9)* .6 (.0) .6 (.0) .6 (.0) - -.2 (.4) -.4 (.2) 1 1 1 

 

Significant correlations are denoted by (*). However, the extent of the correlation and the statistical significance are not informative because of the sample size. In a 
large sample the small correlations will be significant but the same size of correlation in a small sample will not.   
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5.10 Conclusions 

 The results do not decisively demonstrate that CSEs do improve trunk 

performance, reduce disability and pain.  

A comparison of the experimental and control groups showed that the mean 

sagittal acceleration of the trunk was 20% greater at 3 weeks, 10% greater at 6 weeks 

and 20% greater at 3 months but none of the differences were statistically 

significant. 

A comparison of the mean pain scores between the groups was 

demonstrated to be 30% at 3 weeks, 20% at 6 weeks and 0% at 3 months but none of 

the differences were statistically significant. 

A comparison of the mean disability scores between the groups was 

demonstrated to be 0% at 6 weeks and 30% at 3 months but none of the differences 

were statistically significant. 

Although the results do not provide exhaustive evidence of the effect of CSE 

there does appear to be improvement which may become more significant with a 

much larger study because the larger the sample size the greater the power of the 

study and it will be more probable that significant differences between groups 

could be demonstrated.     
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Chapter 6 

Discussion  

6.1 Introduction 

 This study set out to test the hypotheses that pain, disability and trunk 

performance impaired by an onset of non-specific Low Back Pain (LBP) can be 

improved by Core Stability Exercises (CSE). The hypotheses was tested using a 

randomised controlled trial conducted on a sample of patients referred for 

physiotherapy treatment at Musculoskeletal Physiotherapy Services, Hillingdon 

Community Health following an acute onset of non-specific LBP. 

 This chapter affirms the originality of this study and contribution to the 

existing knowledge. It discusses the results generated by the study and examines 

the meaning of these results in the context of existing knowledge of trunk 

behaviour as influenced by an onset of acute non-specific LBP. Furthermore, it 

examines the implication of the results on possible management of acute non-

specific LBP in future clinical practice. 

 There were some important limitations to the design and conduct of the 

study that meant that the researcher could not be blinded and it was not possible to 

recruit a very large sample. The chapter will explore the implications of this design 

in view of these constraints and discuss the consequences of the design on the 

results.  

 Finally the chapter will discuss the limitations within the study and highlight 

the direction in which supplementary work can be done to augment the conclusions 

of this study.  
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6.2 Originality of the study 

 Although the effects (Wong and Deyo, 2001; Pahl et al., 2006) and costs 

(BackCare, 2007; Dagenais et al., 2008) of LBP are well documented effective 

control of LBP remains elusive. One of the causes of this is the inability to quantify 

real time changes in trunk performance and relate those changes to subjective 

measures of the effects of an onset of LBP.  

 Physiotherapy practitioners like osteopathy and chiropractic practitioners 

have relied upon manipulation/mobilisation to rectify aberrant lumbar segment 

movement patterns suggestive as being the cause of an onset of LBP. The 

effectiveness of these techniques has been compared to other non-manual 

interventions and found to be effective only for specific stages of LBP (Assendelft 

et al., 2003; Haas et al., 2004; Ernst, 2007). The effectiveness of non-specific 

exercises has also been compared to specific exercises and it is suggested that 

there is no difference (May and Johnson, 2008). All the studies have relied upon 

subjective measures as either a primary or significant outcome upon which the 

results have been interpreted. This study used a Lumbar Motion Monitor (LMM) to 

demonstrate objective real time measures of trunk performance.  

 The validity and reliability of the LMM, however, had only been established 

using a method that was impractical for clinical use and although a revised 

streamlined method had been shown to be reliable, the agreement for the 

measurement used to demonstrate its reliability had never been demonstrated. The 

level of agreement was explored within this study and a subsequent paper was 

published (Aluko et al., 2011) (Appendix 4). This was important because it provided 
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evidence of reliability allowing this measure to be used more confidently for this 

study and by future researchers and clinicians. 

 No previous evidence was available to interpret trunk behaviour within a 

sample population. Within this study trunk behaviour of 50 volunteers was 

quantified and evaluated. A paper demonstrating these findings has also been 

submitted for publication (Appendix 18). The findings of this study (Appendix 18) 

suggest that a self reported episode of LBP may not be a reliable indicator of 

changes in real time measures of trunk performance. Changes in trunk performance 

due to LBP may also not be cumulative. Furthermore females within the sample 

demonstrated slower trunk performance.  These findings are used to discuss the 

results of this study. 

 Although CSEs have become a popular intervention for the treatment of LBP 

(Willardson, 2007a; Willardson, 2007b) no previous research has explored the 

mechanism by which they may work. This study was designed with the purpose of 

doing just that by comparing the changes in subjective measures with an objective 

measure and investigating if a correlation exists. No existing published research has 

as yet explored a relationship between self reported measures of either pain or 

disability with measures of trunk kinematics.  This work has attempted to do this by 

using the Lumbar Motion Monitor. 

 In order to ensure the effectiveness of the CSE all the participants in the 

experimental group completed a diary to demonstrate their compliance (Appendix 

17). The data suggested that compliance was highest in the early stages of the 

study. This could account for the observed rapid mean changes within this group. 

Furthermore it demonstrated that compliance is essential for the true benefits of 
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CSE to be seen. This observation may be a key element for why previous 

comparative intervention studies for the management of LBP have not been able to 

demonstrate significant differences.  

6.3 Contribution to existing knowledge 

This study demonstrated a 20% difference in mean trunk sagittal acceleration 

at 3 weeks, 10% at 6 weeks and 20% at 3 months between the experimental and the 

control groups which was not statistically significant. This study therefore did not 

conclusively suggest that CSE can improve trunk performance. Similarly the 

difference in the reduction in pain between the two groups was a statistically 

insignificant 30% at 3 weeks, 20% at 6 weeks and 0% at 3 months. The difference in 

the mean disability scores between the 2 groups of 0% at 6 weeks and 30% at 3 

months was equally statistically insignificant. The lack of statistical significance may 

in part be due to the small sample size and is suggestive of the need to conduct this 

study on a much bigger sample. However, the improvement demonstrated within 

these outcomes suggests an improved clinical response to an onset of acute non-

specific LBP may be achieved if CSE are commenced quickly within an episode and 

may result in a reduction in the likelihood of an acute onset becoming chronic.  It is 

proposed that a direct impact of such improvement to patients may be increased 

empowerment, quicker resolution of symptoms and improvement in well being. 

The advantage to the economy at large may therefore be a reduction in the cost of 

treatment and therefore a reduction in the burden of LBP on healthcare delivery. 

This study provides evidence to suggest a new method to quantify the 

effects of an acute onset of non-specific LBP using the Lumbar Motion Monitor to 

evaluate trunk sagittal acceleration. A mechanism by which CSEs work may be by 
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improving trunk sagittal acceleration. The results of this study therefore suggest 

that the NICE guideline of encouraging activity and exercise as soon as possible 

(NICE, 2009) have credence and adds to the evidence-base of practice.  

6.4 Results 

 Trunk displacement demonstrated by participants during data collection 

improved within both groups of participants. However, the amount of increase was 

more evident in participants in the experimental group. Although the range of trunk 

movement during an episode of LBP can be subjective (Cox et al., 2000) the results 

lend some support to the hypothesis that LBP produces less movement (McGregor 

and Hughes, 2000). However, the increases were not statistically significant and 

could be attributed to chance alone. The experimental group may have 

demonstrated greater increases because of specificity of the intervention compared 

to the control group. 

 Although trunk displacement during an episode of LBP can be subjective, the 

results of this study do suggest that this may only be applicable where a specific 

range is anticipated for use during trunk kinematic evaluation and therefore 

becomes an emphasis on the sincerity of effort (Ferguson et al., 2000). This study 

did not have specific start or end points for trunk movement during the LMM 

evaluation, participants were therefore not able to regulate movement in 

anticipation of these points and thus influence their effort to complete the task. 

Clinical practice involves emphasis upon the range of movement attainable within 

the patient’s tolerance during an assessment. The method used in this study 

attempted to replicate this. The participants were encouraged to focus on the 

number of repetitions that could be performed during the data collecting period of 
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8 seconds without a fixed starting or end point. This approach gave each participant 

control and ownership of the test, consequently, the range of movement 

demonstrated was less likely to be manipulated. They were also informed that the 

study involved an assessment of the quality of movement rather than range. The 

range was therefore more likely to represent the capability of the participants at 

the time of testing. 

6.4.1 Trunk sagittal acceleration 

There is a paucity of literature investigating trunk acceleration. There are 

however studies that evaluate trunk velocity (Marras et al., 2000; Cox et al., 2000; 

McGregor and Hughes, 2000) only one study specifically suggests that acceleration 

may be sensitive to sincere conditions (trunk movement profiles reflecting its 

musculoskeletal status) at the point where the participant changes direction 

(Marras et al., 2000).  The work of Marras et al has over the years investigated the 

quantification of 3-dimensional trunk movement. The work (Marras et al., 2000) 

demonstrated that an acceleration profile may be highly repeatable for sincere 

conditions. It has also been demonstrated that kinematic functional performance 

measures are sensitive to improvements during recovery from LBP (Ferguson et al., 

2000). The results of this study demonstrate improvement in trunk performance 

defined as trunk sagittal acceleration, in participants in both the control and 

experimental groups. Although it is possible that some of this improvement could 

be due to the natural course of recovery the experimental group did show greater 

improvement in trunk performance at the end of the active 6 week period of the 

study. The improvement continued at the 12 week follow up within this group. The 

improvement at 6 weeks in the control group however was not maintained as this 
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group demonstrated a reduction at the 12 week follow up. These findings are 

consistent with the findings of those previous studies (Marras et al., 2000; Ferguson 

et al., 2000). It may therefore be possible to suggest that CSE can improve and 

maintain trunk performance more efficiently than the natural course of recovery 

following an onset of acute LBP. This however, has to be put in context of the 

statistically insignificant difference between the groups. 

The pilot study suggested that acute non-specific LBP may reduce trunk 

performance; which cannot be improved by repetition (Aluko et al., 2011). This 

supports a previous finding (Marras et al., 2000) however, this may only be 

reproduced in a clinical environment if the participant actually has an episode of 

LBP. A subjective opinion for the presence or absence of LBP may not be strictly 

reliable (Appendix 18). 

The clinical assessment of trunk movement is not functional but rather a 

global unidirectional anatomical movement (Petty, 2006). Most episodes of LBP 

occur whilst performing movements involving complex tasks requiring a wide array 

of muscle recruitment patterns (McGill et al., 2003; McGreary et al., 2003) however, 

the data for this study was obtained using a global unidirectional anatomical 

movement which was adapted to increase the level of difficulty by using repetitions 

to create instability within the movement segments of the lumbar spine (Reeves et 

al., 2007). 

The results of the study do support the suggestion that improved trunk 

muscle activity and co-contraction increases trunk acceleration (Granata and 

England, 2006). The mean sagittal acceleration in the experimental group was 

consistently greater than in the control group. The difference between the groups 
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at key milestones (3, 6 and 12 weeks) was also not statistically significant. However, 

the insignificance could be attributed to the sample size.  The sample size used in 

this study was similar to that used in a previous study that used a sample size of 33 

to investigate the effect of stabilisation instruction on lumbar acceleration using a 

uniaxial accelerometer (Webber and Kriellaars, 2004). They were able to 

demonstrate statistically significant reduction in lumbar acceleration induced by 

limb movement (Webber and Kriellaars, 2004).  It is possible that the difference in 

results was because the Webber and Kriellaars’ study was observing the effect of 

limb movement rather than adjacent lumbar musculature on trunk acceleration.  

The reasons for the insignificant differences in the pain and disability scores 

demonstrated in this study may also be because an assumption was made that all 

reported scoring was sincere. All participants, however, had been assessed and 

considered to have a true episode of LBP prior to agreement to take part in the 

study. If there were any doubt about the sincerity of the episode, it would be 

expected that this would be reflected in the rate of attrition. Insincerity of the 

presence of LBP would be expected to be proportional to the willingness to 

participate in the study. Attrition, however, was similar within both groups (chapter 

5) suggesting that the likelihood of this having affected the results was very low. It 

is, however possible that the initial referral for treatment by the general practitioner 

was based more on subjective assessment of the severity of disability and/or pain. 

This assumption is based upon previous suggestions that disability is reliant upon 

the level of distress (Proctor et al. (2000) cited in Johnstone et al. (2004)). This may 

therefore have had an influence on the urgency and timing of their referral from 



 170 
 

their GP and ensuing prevalent belief systems (Coudeyre et al., 2006; Cayea et al., 

2006; Fullen et al., 2008). 

Both groups demonstrated increases in mean acceleration at the end of the 

study. This is in agreement with previous findings (Marras et al., 2000; Aluko et al., 

2011) and agrees with the suggestion that LBP causes segmental hypomobility 

(Teyhen et al., 2007). However, the increase in acceleration was much greater 

within the experimental group at 12 weeks. This does suggest that CSE may not only 

improve trunk acceleration but may also help in maintaining any increase. The 

reduction in mean acceleration within the control group between 6 and 12 weeks 

following the end of the active period of the study further strengthens this 

argument. 

Although there is very little evidence to suggest that LBP affects a particular 

gender more than the other (Walsh et al., 1992; Fritz and George, 2002), this 

hypothesis could not be tested because of the small number of male participants 

recruited. However, previous results have already shown that females may 

consistently demonstrate slower trunk performance (Appendix 18).  The reason for 

the small number of male participants is not clear. Significance in weight and height 

was not demonstrated in this study. The possibility exists that pelvic pathologies 

(Frank and DeSouza, 2001) may have a significant affect on general trunk 

performance within females but it has not yet been demonstrated how these 

pathologies impact on trunk movement. 

An increase in displacement has been reported to be accompanied by an 

increase in velocity (Cox et al., 2000) and thus by default an increase in acceleration. 

This trend is not demonstrated by the results of this study.  Although both groups 
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demonstrate an increase in mean acceleration over time, mean displacement does 

not follow the same trend. There was a negative correlation within the control 

group between the start of the study and 12 weeks.  An exception was between 6 

and 12 weeks when the mean acceleration actually decreased within the control 

group. A possible explanation for this negative correlation could be due to the fact 

that the previous study (Cox et al., 2000) was retrospective and relied upon patients 

referred from insurance companies and who may have had other reasons for being 

motivated to demonstrate good functional movement during the assessment 

irrespective of the discomfort they were experiencing. Participants in this study 

were not under the same pressure, fear avoidance (Fritz and George, 2002) 

however may have inadvertently been reinforced by the encouragement 

participants were given to concentrate on the number of repetitions rather than the 

range. This may have given the impression that the range of movement required to 

perform the test would not aggravate their symptoms. This fact was repeatedly 

given in the patient information sheet (Appendix 12) and at each point of contact 

during which data was obtained. The experimental group participants may not have 

responded this way because they reported a lower mean disability score at the start 

of the study.  

Mean trunk acceleration changed at different stages of the study. The 

control and experimental groups demonstrated improvements of 2.8% and 29.2% 

respectively at 3 weeks, 15.1% and 29.4% respectively at 6 weeks and 13% and 37% 

respectively at 12 weeks. This does suggest that the affects of CSE on sagittal trunk 

acceleration may be rapid. Previous studies have suggested that specific exercises 

for the treatment of acute LBP are not significantly better than any other 
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intervention (May and Johnson, 2008). The results of this study do not change this 

view. 

The results of this study suggest that the significance of the effects of CSE in 

the early stages following an onset of acute LBP may be underestimated because 

trunk muscle activity and co-contraction has been shown to increase with trunk 

velocity and acceleration (Granata and England, 2006).  The Multifidus (MF) and 

Transversus Abdominis (TrA) are accredited with the facilitation of this mechanism 

(Bergmark, 1989).  The rapid response demonstrated within the experimental group 

suggests that there is a rapid increased ability for the trunk to respond to 

perturbation by increasing trunk sensitivity to positional change (Reeves et al., 

2007). Trunk stiffness reported to be a result of LBP (Owens et al., 2007) is more of 

a structural response to pain and therefore supports the supposition that LBP 

produces slower trunk movements (Marras et al., 1999). The ability to accelerate 

quickly to change in trunk sagittal movement is demonstrated by the results of the 

pilot study that preceded this study (Aluko et al., 2011). This finding fits well with 

earlier findings that suggest that the MF and TrA are affected very quickly following 

an onset of LBP (Hodges and Richardson, 1996; Hodges and Richardson, 1997) and 

improvement in cross sectional area in the MF can be observed within 6 weeks 

during of a course of CSE (Sokunbi et al., 2008). The strength of a healthy muscle is 

directly proportional to its cross sectional area (Jones and Round, 1990) improving 

the cross sectional area of the MF and TrA through targeted exercise may therefore 

be beneficial. 

Improvement in muscle recruitment and coordination which accompanies 

increases in trunk acceleration is supported by the findings of Pollock et al. (2009) 
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that suggest that to avoid excessive loading of the lower lumbar segments, these 

segments rapidly move into extension during the stroke phase of rowing.  The 

demonstrated improvement in trunk sagittal acceleration suggests that this 

mechanism is critical for normal trunk function when the lower lumbar segments 

are incrementally loaded during flexion.  

The increase in trunk sagittal acceleration may also increase the range of 

lordosis (ROL) because the range of lordosis should be directly proportional to the 

changes in acceleration (Cox et al., 2000). It has been shown that lumbar lordosis 

alters according to posture (Knutson, 2002; Al-Eisa et al., 2006). This would not be 

true if there was structural trunk stiffness caused by underlying natural pathology 

such as natural degenerative change (Gruber et al., 2007; Standaert et al., 2008). An 

increase in ROL during loading facilitates trunk efficiency during any task involving 

lifting, carrying or pushing/pulling. This is pertinent because pushing/pulling 

activities are a main cause of LBP associated with lumbar disc involvement (Plouvier 

et al., 2008; Marras et al., 2009). Anterior-posterior (AP) shear force across the 

lumbar spine is increased by an increase in speed of activity and during pushing 

activities the AP shear force is in the opposite direction to the push and occurs 

mainly at L5 (Marras et al., 2009).  

The inability for the control group to demonstrate a similar trend may be 

because the muscle recruitment and coordination mechanism where not engaged 

by core stability exercise training. The net result of this non-engagement may be the 

reason why any gains achieved within the first 3 weeks of the study is lost at the 6 

week stage. The net increase in trunk sagittal acceleration demonstrated at the 3 

month stage may be attributable to the participant returning to normal daily 
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activity. A follow up period of 18-24 months may provide significant evidence of any 

correlation between any re-occurrence of LBP and the continued absence of this 

muscle recruitment and coordination mechanism. It has been suggested that 

reoccurrence is linked to stress, anxiety, mood, cognitive function and pain 

behaviour (Johnstone et al., 2004) however, it is highly suggestive that a 

precipitating factor for the onset of these risk factors is the underlying inability for 

the trunk to adequately compensate for the effects of axial loading on the trunk 

with consequent frequent and/or periodic episodes of LBP. 

The use of a belt has been shown to reduce trunk velocity (Giorcelli et al., 

2001) and because acceleration is a factor of velocity it is possible to assume that it 

will also be reduced. The action of a belt is similar to the action of the global trunk 

muscles. It is not clear how such a support will influence trunk acceleration in the 

long term. An increase in the perception of support may increase trunk robustness 

rather than stiffness in the immediate term but the cumulative effect must become 

evident when the belt is removed. The use of an artificial support may interfere with 

the natural muscle coordination required to reduce the natural perception of 

instability (Hodges et al., 2003; Moseley et al., 2004) or indeed the suggested chaos 

within the trunk during movement (Granata and England, 2006). 

6.4.2 Pain 

 Although there was no demonstrable statistical difference in pain 

score between the groups, within the first 3 weeks of the study the experimental 

group demonstrated a larger mean reduction in reported pain at 3 and 12 weeks. 

The difference in pain however can be considered to be clinically significant (Kelly, 

2001). The experimental group achieved the greatest reduction within the first 3 
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weeks compared to the control group that demonstrated a slight increase in pain 

between the end of the study and the follow up at 12 weeks. This result parallels the 

behaviour of trunk acceleration suggesting that most of the change occurred within 

the first 3 weeks. However, the study has not demonstrated that there is a causal 

relationship between the changes in trunk acceleration and pain although a 

negative correlation between pain and trunk performance has been previously 

reported (Cox et al., 2000).  

It has been suggested that the pain adaptation model reduces trunk velocity 

(van Tulder et al., 2000). The findings of this study therefore suggest that non-

specific LBP may induce the pain-spasm-pain model (van Dieen et al., 2003) rather 

than the pain adaptation model  because the results of this study demonstrate an 

increase in acceleration accompanied by a reduction in pain (van Dieen et al., 2003). 

Clinically this could be very important because treatment/intervention for 

the pain experienced by an onset of non-specific LBP could be more effective if it is 

aimed at reducing the excitability of the α-neurons or reducing muscle spindle 

activity (Johansson and Sojka, 1991).  It is possible that CSE act favourably in 

enhancing both of these activities of α-neurons or reducing muscle spindle activity. 

If the TrA and MF are actively involved in stability and respond to trunk 

perturbation, they will need a high proportion of both fast and slow twitch motor 

units. They will also require low activation thresholds to facilitate an ease of 

response to pre-empt trunk perturbation (Barr et al., 2005) and be able to produce 

prolonged contractions with a relatively low force with low fatigue resistance 

(Watkins, 1999). The results of this study do suggest that the behaviour of the MF in 

particular in response to CSE may fit this assumption. The findings of the pilot study 
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(Chapter 3) demonstrate the possibility that trunk acceleration will increase as 

recovery develops (Aluko et al., 2011) and these muscles regain normal function. 

Previous evidence suggests that the deep MF have a high proportion of type 1 fibres 

compared to the superficial MF (Richardson et al., 1999; MacDonald et al., 2006). It 

could therefore be speculated that the superficial and deep fibres of the MF have, 

apart from their similar functions, quite specific functions pertaining to the load 

placed upon them by trunk displacement. This speculation may be supported by 

previous work that does suggest that although both the deep MF and the 

superficial MF produces trunk torque, the deep MF may be primarily involved in 

generating compressive forces with minimal associated torque (MacDonald et al., 

2006). It may be that the CSE routine facilitates this ability to generate the torque 

efficiently without compromising the structure of the spine. 

The results do not demonstrate differences within gender, age, weight or 

height or correlate any changes with subjective pain.  But the difference in 

structural build between the genders may play a significant role in trunk sagittal 

acceleration in the fact that females may be more likely to report an episode of 

acute non-specific LBP (Aluko et al. in preparation) (Appendix 18) than males and 

because males are more likely to have more muscle bulk because of the higher 

levels of testosterone (Jones and Round, 1990). The larger muscle size may suggest 

that males may also have higher thresholds at which the α-neurons are excited or 

have a greater ability to reduce muscle spindle activity. This assumption does 

require further enquiry. Exercises designed to increase muscle bulk may not be 

effective because previous work has suggested that the increase in strength during 

muscle training is disproportionate to the increase in its cross-sectional area (CSA) 
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(Jones and Round, 1990; Hansen et al. 2006). Exercises used in physiotherapy are 

therapeutic and may include an aim of restoring muscle coordination. The TrA and 

MF, may be affected by an increase in fatty tissue content and/or reduction in trunk 

intra-abdominal pressure (IAP). The efficiency of the TrA and MF may be reduced in 

either circumstance; furthermore anecdotal evidence suggests that low back pain is 

often associated with obesity or Body Mass Index (BMI) and it is often referred to 

by general practitioners in referrals of patients to physiotherapy reporting with an 

acute episode of low back pain and obesity is recognised to have a negative effect 

in reducing LBP induced disability (Yildirim et al., 2007). This may change in the near 

future because it is now suggested that a better barometer for obesity could be 

trunk circumference rather than the Body Mass Index (Lean et al., 1995).  

The lack of statistical power for the study precipitated the absence of a 

demonstrable relationship between weight and pain. However, it could be 

suggested that there ought to be a direct correlation between anthropometric 

measures and trunk performance because there is an established correlation 

between poor IAP and moment arm of the trunk during movement (Janda and 

Valenta, 2000). It is believed that IAP is proportional to anthropometric measures 

(Youdas et al., 2000). An increase in waist circumference is expected to decrease 

lumbar lordosis and therefore influence adaptive lengthening of the lumbar MF and 

its subsequent loss of efficiency. Weak MF may reduce the ability to maintain a 

natural lumbar lordosis when the spine experiences axial loading (chapter 1). The 

importance of this mechanism may be linked to the early changes observed within 

the MF during an onset of LBP (Hodges and Richardson, 1996; Hodges and 

Richardson, 1997). The TrA by virtue of its anatomical location may remain relatively 
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unaffected unless there is an increase in waist circumference. This is probably why 

CSE is thought to be effective because it aims at restoring ‘normal’ activation of the 

MF (Hodges and Richardson, 1996; Hodges and Richardson 1997). All the core 

stability exercises used in this study included activity designed to increase and 

maintain tension within the MF during the exercise routine by instructing the 

participant to ‘draw the navel towards the spine and hold’ during each activity 

(Appendices 4 and 5). 

Bed rest not exceeding 4 days has been a recommendation as a first 

treatment intervention for an acute onset of non-specific LBP (Rozenberg et al., 

2003). The reduction in pain scores demonstrated during the study suggests that 

CSE may be a more effective alternative. Unlike bed rest, CSE may help maintain a 

normal level of activity as much as possible and therefore reduce days of sick leave 

(Smith et al., 2002; Rozenberg et al., 2003; Kinkade, 2007). However, requesting a 

patient who presents with an acute onset of non-specific LBP to commence a 

regime of CSE may not be appreciated because even the request to resume normal 

activity reduces patient satisfaction (Atlas and Deyo, 2001). The use of CSE, 

however, may be very useful to prevent catastrophisation of the condition and 

possible associated bouts of depression (Johnstone et al., 2004), facilitate fear 

avoidance techniques (Fritz and George, 2002) and ferment a positive approach to 

treatment (Frank and DeSouza, 2001). Unnecessary tertiary referrals could be 

minimised (Lauchlan, 2005) and it could be speculated that in doing so it is possible 

to reduce the cost of healthcare delivery. 

Within chapter 3, a sample of the participants were asked if they had pain at 

the time of testing, episodes of LBP and when the last episode was experienced 
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(Appendix 5). The results suggest that any correlation between self reported pain 

and the participant responses may not be reliable (Appendix 18). The pain reported 

by the high proportion of females in that part of this study may be associated with 

pelvic pathology that is difficult to exclude by history alone (Frank and DeSouza, 

2001).  It may therefore be difficult for example to differentiate between LBP 

associated with the female pelvic pathology and pain associated with real time 

structural/mechanical dysfunction. Recall bias (Chouinard and Walter, 1995) may 

also be problematic because invariably most sufferers of LBP may have difficulty 

describing pain that occurred in the past in the context of an active subjective 

history interview. Asking patients to describe their pain on the day does not 

adequately describe the fluctuation in intensity that may occur between 

assessments. These fluctuations may have had an impact on the exercise 

compliance demonstrated by the reduction during the second half of the study 

(Appendices 15).  

6.4.3 Disability 

The results suggest that the trigger for the pain-spasm-pain model to be 

activated may be a structural change capable of reducing trunk sagittal acceleration 

with reduced TrA and MF efficiency. However, it is recognised that the sensitivity of 

the RMDQ in quantifying disability may be not be as high because the participants 

within this study may not be ‘back pain disabled’  because they did not have the 

pain long enough to decide that certain movements caused pain unlike individuals 

with chronic LBP (Beurskens et al., 1996). 

The difference in disability between the groups was not only statistically 

insignificant but also clinically insignificant because the difference was less than 30% 
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(Jordan et al., 2006).  However, the participants within the control group appeared 

to maintain a higher mean disability scores than the participants in the experimental 

group throughout the study. This does suggest that CSE may facilitate a reduction in 

disability however the depth of the facilitation is not effectively demonstrated.  

The result in isolation does suggest that CSE may improve disability, 

however, a possible reason for the insignificant result may be that although all 

participants were asked to answer the RMDQ on the basis of their pain on the day, 

participants were keen to express their opinion of the pain for the duration 

between testing believing that their representation of disability on the day did not 

reflect what they perceived to be their true experience. Recall bias (Chouinard and 

Walter, 1995) would therefore become an issue as they may not have been able to 

accurately quantify their experience. This possibility is enhanced by the fact that all 

participants enquired at every visit and on more than one occasion during each 

testing period if they were supposed to report how their pain was in real time or 

how it had been. They sometimes emphasised the point by trying to suggest that 

their disability had been much worse than at the time of measurement. 

The results do support previous findings that stabilisation exercises can be 

used effectively to effect changes in disability; the magnitude of which has been 

used to develop a clinical prediction rule to determine which patients are most likely 

to respond following an onset of LBP (Hicks et al., 2005). 

The trend of the result is not in keeping with two previous studies that 

demonstrated significant improvement in disability after intervention at 6 weeks 

(50%) and at 3 (67%) and 12 month (56%) follow up periods (Rasmussen-Barr et al., 

2003b). The other study demonstrated a 43.2% improvement after 4 weeks 
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(Brennan et al., 2006). It may be that this study was more rigorous than the 

aforementioned studies but this has to be put in context of the smaller sample size. 

However, both studies (Rasmussen-Barr et al., 2003b; Brennan et al., 2006) used the 

Oswestry disability Index (ODI), the results of which may have been skewed 

because of its low internal consistency (The Chartered Society of Physiotherapy, 

2004). The significance of the results may therefore be lower than that reported.  

The results also differ from the results of Childs et al. (2004) which suggests 

that like for like on the clinical prediction rule for the treatment of LBP comparing 

manipulation and lumbar strengthening exercises, manipulation is better than 

exercise (Childs et al., 2004). Their observation was made using a modified ODI. The 

discrepancy may be because the exercises used in the study were not specific 

enough to engage either the TrA or MF either in isolation or together, to effect a 

change in trunk kinematics. There is, however, a view that suggests that it should 

not matter because any spinal exercise is a stability exercise (McGill et al., 2003) but 

the effect of LBP on trunk sagittal acceleration may suggest otherwise (Marras et 

al., 2000; Aluko et al., 2011). 

The missing data had an effect on any within and between group analyses by 

gender, weight and height. It was therefore not possible to draw any inference 

from the results. However, it would be expected that there should be a trend given 

the difference in body shape and muscle size with respect to gender and age (Jones 

and Round, 1990). It has already been suggested that obesity has a negative effect 

reducing LBP induced disability (Yildirim et al., 2007).  

There were an equal number of dropouts excluding the pre-randomised drop 

out (control 11, experimental 11) by the end of the study (Fig. 5.1). However, one 
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participant dropped out because another unrelated problem required orthopaedic 

intervention and the view was taken that further participation might aggravate the 

problem requiring surgery. Two other participants could not commit to the time to 

be continually involved in the study as their personal circumstances changed and 

the remainder did not offer any explanation other than that a decision had been 

made to terminate their involvement in the study. Further qualitative analyses may 

provide more insight into the underlying reasons for the attrition which may be 

valuable for clinical purposes in understanding compliance with acute LBP home 

exercise programmes or attendance for treatment. However, a future study may 

benefit from recognising the complex lifestyles participants may have and the need 

to factor these complexities into the development of the method stage of the 

study. Funding may also allow better flexibility for data collection that could suit the 

participants better.  

6.4.4 Variable relationships 

 6.4.4.1 Start of the study to 3 weeks  

The increase in range of movement demonstrated was to be expected 

however, the sincerity of effort can be in doubt. Albeit, the results do suggest that 

during the first 3 weeks of the study all activity did produce an increase in 

discomfort within both groups. This was not unexpected because the participants’ 

behaviour was changed from that of fear-avoidance when patients avoid activity 

because of the fear of exacerbating pain, to one of activity. However, the study may 

suggest that the CSE was less aggressive because less pain was provoked. The 

experimental group were able to demonstrate the most improvement in mean pain 

scores within this short period of time. It is plausible that the CSE were specific 
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enough to isolate both movement at lumbar segment level and restrict its affect to 

the immediate structures i.e the MF, that supports those segments being mobilised. 

The finding that as movement increased there was a demonstrable increase in trunk 

sagittal acceleration when the activity reduced spasm within the MF to facilitate 

trunk flexion may support this view.  

During the first 3 weeks of the study it was not possible from the results to 

suggest that there was a difference between genders because of the small number 

of male participants. However, it has already been proposed that women of 

different age and racial groups demonstrate different amounts of trunk movement 

(Trudelle-Jackson et al., 2010). The results do not suggest an inference about male 

participants but there may be a hint of a trend that within both groups male 

participant trunk range of movement was less influenced by CSE. This was equally 

true for the older and the heavier male participants within both groups. This would 

therefore suggest that in the early stages of CSE female patients may experience a 

far more noticeable improvement in trunk flexibility than a similar male cohort. 

Conversely, heavier females may have a slower response to CSE than their slimmer 

counterparts. However, the effect of hormones on range of movement within the 

female participants is not known (Kerr and Grahame, 2003) and variations in the 

menstrual cycle within these participants may be expected. An earlier study in the 

United States of America has found an increase in headaches with the onset of a 

menstrual cycle in women (Johannes et al., 1995) and a similar study investigating 

the effects of oestrogen levels on temporomandibular pain also found that this type 

of pain in women increased when there were low levels of oestrogen (LeResche et 

al., 2003). This may indicate that the effect of hormonal changes on reported pain 
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and disability resulting from an acute onset of non-specific LBP remains unclear and 

is worthy of further investigation. Female participants in this study were not asked 

about the timing of their menstrual cycle or the stage at which they felt they were 

at within it. 

There was no correlation between changes in trunk sagittal acceleration and 

any of the other variables at this stage of the study. However, this does suggest 

that weight loss may not influence the effect of CSE. The implication of which is that 

asking a patient to lose weight as a pre-requisite for treatment of an onset of LBP 

using CSE may not be valid or even possible. 

  6.4.4.2 3 weeks to 6 weeks 

 During this period, the increase in range of movement demonstrated was 

associated with an increase in both pain and trunk sagittal acceleration. During this 

phase of the study improvements in disability are expected (Sokunbi et al., 2008). 

The reduction in disability demonstrated by the end of the 6 week period (Table 

5.10) appears to support this suggestion. It is possible that the reduction in disability 

may be a direct consequence of an increase in both the range of movement and 

trunk acceleration.   

This mechanism is facilitated by improvement in trunk robustness (Reeves et 

al., 2007) as the ability of the trunk to change direction in response to perturbation 

improves. A CSE programme may facilitate this mechanism by improving fine motor 

control to enhance trunk functional stability by reducing its state of chaos (Marras 

and Mirka 1993; Dolan and Adams, 1993; Granata and England, 2006) as can be 

demonstrated by a reduction in the trunk Lyapunov exponent (ʎ  MAX) (Granata and 

England, 2006). This is all the more important because the study involved a 
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symmetrical movement of flexion-extension, a direction within which trunk 

instability is greater than if it was performed with a degree of rotation (Granata and 

England, 2006).  The possible improvement in stability demonstrated by this study is 

therefore of high clinical importance. 

The increase in pain demonstrated during this period may be as a result of an 

exacerbation of the ‘trigger’ of the pain-spasm-pain model (van Dieen et al., 2003) 

induced by the increase in range of movement and the ensuing increased inter-

segmental movement. Although movement and sagittal acceleration improved 

there is no evidence to suggest that structural dysfunction had been reversed at 

this stage. This finding is in keeping with previous findings to suggest that 

performance and pain have a negative correlation (Cox et al., 2000). The structural 

dysfunction may include facet joints, Intervertebral discs (IVD) or ligament damage 

caused by abnormal force, strain and stress applied to the structures (Atlas and 

Deyo, 2001). It is not clear what the effect of the timescale for the repair of these 

structures has on trunk performance and it remains a possible direction for future 

research. 

 6.4.4.3 6 weeks to 12 weeks 

This period is a relatively inactive period of the study. All intervention had 

ceased during this phase and it was assumed that all the participants continued with 

their normal active routine similar to what it was prior to the onset of their episode 

of pain. All participants had been discharged by their treating physiotherapist. 

However, the rate of attrition during this period made it impossible to draw 

inferences from the data. However, it could be that the rate of attrition was directly 

related to the participants’ wellbeing.  The premise for this assumption was that 



 186 
 

none of the participants (to the researcher’s knowledge) reported any reoccurrence 

or returned to their treating physiotherapist requesting further advice or treatment. 

However, it could be that the timescale of 3 months was too narrow to assess 

medium term changes following the cessation of an intervention. Previous studies 

had a range of follow up periods of 6 months (Childs et al., 2004) to a year 

(Rasmussen-Barr et al., 2003b; Brennan et al., 2006). The original protocol for this 

study did have a one year follow up period but enforced changes meant that a 3 

month follow up was more realistic given the constraints of the study. Although it 

has been demonstrated that the majority of the change had occurred within the 

first 3 weeks of the study and the difference between participant groups 

maintained at 6 weeks, the long term effects of the intervention may be best 

judged on trunk performance after a year. However, a control over attrition would 

need to be improved to ensure that the sample remains truly representative of the 

participants of the study by maintaining strict inclusion criteria.  

6.5 Key findings 

 From the above discussion the following key findings of this study were 

deduced; 

 Trunk sagittal acceleration may be sensitive to an onset of acute non-

specific LBP. 

 The effects of CSE on the observed changes within 3 weeks of 

intervention are not conclusive. However, the possible clinical 

importance of CSE cannot be ignored and requires further 

investigation. 
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 The increase in trunk sagittal acceleration and thus its performance 

was not demonstrated conclusively shown to be as a result of CSE. 

 The reduction in disability caused by acute non-specific LBP observed 

was not conclusively shown to be as a result of CSE. 

 The reduction in pain induced by trunk dysfunction observed was not 

conclusively shown to be as a result of CSE. 

 There may be a positive correlation between increased trunk sagittal 

acceleration and the range within which the trunk is displaced. 

 Within the process of restoration of trunk function following an onset 

of non-specific LBP, there is a phase within which there may be a 

negative correlation between the improvement in trunk range of 

movement and sagittal acceleration and subjective reported pain. 

These findings do not in general agree with the suggestion that CSE may not 

be of benefit to acute LBP patients (Atlas and Deyo, 2001). They do however 

suggest that they may encourage normal activity as quickly as possible (Smith et al., 

2002; Rozenberg et al., 2003; Kinkade, 2007). The study is inconclusive in suggesting 

that CSE affects trunk performance and thus it remains to be proved if they are 

effective in preventing acute non-specific LBP from becoming chronic thereby 

reducing tertiary referrals that may be either unnecessary or expensive (Lauchlan, 

2005). 

6.6 Mechanism by which CSE may work 

 Core Stability Exercise may be beneficial for people seeking physiotherapy 

for an episode of acute non-specific low back pain. The literature review and 

ensuing discussion of the research results provides an understanding of a possible 
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mechanism by which acute non-specific LBP is commenced, the effect it has on 

trunk performance and trunk response to early intervention using CSE. 

 Before the study commenced there was a difficult debate between the 

researcher, peers and colleagues independent of the study as to the type of 

movement that occurs within a lumbar segment. The debate was complicated by 

the fact that the movement in question involved relatively small displacements 

based on whether the movement is linear or angular in nature.  It was finally 

concluded that the movement has angular characteristics because the movement 

was more about deformation of the intevertebral discs, gliding/sliding of the facet 

joints and the tilting of the vertebral body about an axis (Fig 2.4).  

 Non-specific acute non-specific low back pain as a symptom is elicited by a 

structural dysfunction (Atlas and Deyo, 2001). The stress and strain that precipitates 

dysfunction may or may not be influenced by underlying pathology (Gruber et al., 

2007) or hormonal changes (Kerr and Grahame, 2003). However, it is assumed that 

underlying pathology will reduce structural tolerance to forces applied across the 

structure and therefore could make it more susceptible to damage.   

Newton’s Laws of Motion suggest that the force and the acceleration 

required to produce it are directly proportional (Ogrodnik, 1997c) and it has been 

shown anecdotally and demonstrated that trunk acceleration is reduced by an 

onset of acute LBP (Marras et al., 2000; Aluko et al. 2011).  But what may be now 

possible is to suggest that trunk performance is not likely to improve with repeated 

measure without intervention (Aluko et al., 2011). At the point of onset of an 

episode of non-specific LBP, local spasm within the MF muscle caused within the 
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pain-spasm-pain model (van Dieen et al., 2003) may oppose trunk flexion through 

stiffness and in the process reduce trunk acceleration.  

The results of this study suggest that early intervention using CSE may 

improve trunk performance by increasing its acceleration (at least within the 

sagittal plane). It is suggested that it may achieve this by facilitating trunk 

robustness (Reeves et al., 2007) by improving trunk muscle recruitment and 

coordination of activity (McGill et al., 2003). The significance of the stability exercise 

programme as an intervention for an episode of acute low back pain is however 

dependent upon the muscle group the CSE are intended to target. The CSE used in 

this study isolated both the TrA and MF in accordance to current suggestions that 

these are the primary muscles activated first to provide trunk stability (Barr et al., 

2005) and are most affected by an onset of LBP (Hodges and Richardson, 1996; 

Hodges and Richardson, 1997). However it has been suggested that the MF muscle 

is more important that the TrA because greater structural change can be observed 

within this muscle group within a relatively short time (Sokunbi et al., 2008) 

following an onset of acute non-specific low back pain. 

The anatomy of the MF (Figs. 1.4 and 1.5) suggests that the trunk may be 

controlled like an inverted pendulum using a mechanism similar to a two-degree of 

freedom of balance (Fig. 2.7) (Stepan, 2009). The movement of this inverted 

pendulum requires constant regulation to initiate and maintain movement within a 

single plane. The evidence may suggest that this mechanism may be provided by 

the torque produced by the multifidus (MacDonald et al., 2006). Gross pendulum 

movement is observed in a single plane however, this movement may require 

constant subtle adjustment in trunk kinematics in 3-dimensions (Marras and 
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Wongsam 1986) during the whole gross trunk displacement. The importance of a 3-

dimensional movement assessment during a functional evaluation of an episode of 

acute non-specific low back pain therefore becomes apparent. 3-dimensional 

evaluation of trunk behaviour can therefore be a more useful method of quantifying 

changes trunk behaviour caused by an episode of acute non-specific low back pain 

(Marras and Wongsam, 1986; Kroemer et al., 1990; Marras et al., 1990). 

 Core stability exercises may also facilitate the stability mechanism of the 

trunk during functional activity by facilitating the restoration of the feedback 

control system (Reeves et al., 2007) within the two-degree of freedom model for 

balance. Improvement in the mechanism of this model therefore reduces trunk 

chaos (Granata and England, 2006).  

Good trunk stability may also require good relative movement of the sacrum 

(and the pelvis) upon which the inverted pendulum system sits and therefore 

requires good lumbar-pelvic coordination (LPC) during trunk movement (Granata 

and Marras, 2000).  The LPC has been demonstrated to be repeatable and 

consistent in the absence of LBP (Granata and Marras, 2000). This consistency may 

enable the multifidus to work at a fairly regular length consistent with Hookean law 

(Chapter 2) with the elastic limit never exceeded.  The core stability exercises may 

have improved the integrity of the TrA and synonymously restored/maintained the 

multifidus length.  

6.7 Study limitations 

The absence of external funding influenced the length of the study and 

meant that there was a degree of risk of bias within the study. The Researcher not 

only collected all the data and analysed the data a month after the 3 month follow 
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up session, but also administered the first CSE instruction for those in the 

experimental group. A colleague independent to this study however collated the 

raw VAS and RMDQ scores.  

The specialist equipment used to measure the primary outcome would have 

required both training for participating physiotherapists and additional costs for the 

acquisition of additional LMM units. However, if there had been multiple data 

collection points inter-rater reliability could have posed difficulties because 

individuality amongst the physiotherapists within the process could have 

threatened consistency.   

The study results refer to only one plane of movement however functional 

movement is three dimensional (Marras and Wongsam, 1986). The test movement 

used in this study was within the sagittal plane only. Data representing sagittal 

movement characteristics may therefore be too restrictive to interpret the true 

natural trunk behaviour during functional movement. It is within this context that 

the acceleration profile may be highly repeatable for sincere conditions (Ferguson 

et al., 2000), but only at the point where there is a change in direction (Ogrodnik, 

1997c). It is therefore assumed that minor adjustments within the frontal and 

rotational planes provide the constant change in direction to maintain consistent 

global movement within a desired direction. This is consistent with the idea that this 

occurs when a recruitment pattern of muscle fibres (central set) for movement is 

established (Marras et al., 2000). The relationship between movement 

characteristics of side flexion and rotation with sagittal movement therefore does 

need to be better understood. 
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6.8 Study rigour and suggestions for improvement 

 The PEDro score (Maher et al., 2003) for the study is shown below (Table 6.1) 

Table 6.1: Study PEDro score 
1. Specification of eligibility criteria (Not included in 
the total score) 

Y 

2. Random allocation Y 
3. Concealed allocation Y 
4. Baseline comparability Y 
5. Patient blinding Y 
6. Therapist blinding N/A 
7. Assessor blinding N 
8. At least 85% follow-up N 
9. Intention to treat analysis Y 
10. Between group statistical comparisons Y 
11. Point measures and measures of variability Y 
Total score 7/10 
Yes-Y; No-N; N/A-Not applicable 

 The score suggests that this study could be improved by seeking funding for 

research assistants that would allow for the assessor to be blinded and increase the 

sample size. Improved funding would also help to reduce attrition by significantly 

retaining the sample size and increasing the manpower required to provide better 

support for the participants.  
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Chapter 7  

Study conclusions and recommendations for future research 

This study set out to investigate the effect of CSEs on trunk sagittal 

acceleration following an onset of acute non-specific low back pain. The findings 

suggest that there may be a positive effect of increasing trunk sagittal acceleration 

however the changes were not statistically significant. Increasing the sample size 

may improve the level of significance demonstrated in this study.  

It is also suggested that it is possible to use the lumbar motion monitor 

efficiently and effectively to quantify changes in trunk sagittal acceleration during 

the natural course of recovery following an acute onset of low back pain within a 

clinical environment.  

 The reported early changes in trunk sagittal acceleration may suggest that it 

is possible to detect a true onset of LBP. This may be achieved by quantifying the 

change in trunk acceleration through repeated functional testing within a short 

time span. This process will need baseline measurements for direct comparison 

from an individual. But an accurate demonstration of an onset of non-specific LBP 

will also require a statistically significant difference in trunk sagittal acceleration 

below which a change can be considered to be negligible.  Further work is required 

to identify such a threshold and the specificity and sensitivity of such a method will 

need further investigation. However, the benefits of such advancement in 

knowledge will be a positive step in reducing the real costs of an onset of non-

specific LBP and the detail could be commercially sensitive. 
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 This study has demonstrated the importance of the MF in trunk stability, 

however, further research is required to unlock the impasse and further explore the 

difference in function between the deep and superficial fibres. This is because the 

deductions arrived at from this study do not sit comfortably with the evidence that 

suggests that the deep MF has a high proportion of type 1 fibres compared to the 

superficial MF. The only conceivable explanation is that the superficial and deep 

fibres of the multifidus may have different functions.  A recent study does suggest 

that the deep and superficial fibres of the MF do have different functions and differ 

between asymptomatic and symptomatic participants.  

Further clarification of the role of the TrA within the stability mechanism is 

also required. Although the TrA may work in synchrony with the MF, the anatomical 

location and function of the TrA may suggest that it is more directly involved with 

the regulation of IAP more so than the regulation of either actual involuntary or 

voluntary inter-segmental movement. 

Further research is also required to investigate the effects of pelvic 

pathology on the onset of non-specific LBP experienced by females. True 

mechanical LBP can be easily confused with the low back pain associated with 

pelvic pathology by experienced and less experienced clinicians alike. It is not 

known if there is a change in trunk kinematics during bouts of LBP that are 

associated with internal viscera and if those changes are permanent and 

cumulative.  It is suggested that such pain will not respond to CSE. 

It is also not clear if the timescale required for the repair of any structural 

deficit has an effect on trunk kinematics. Non-specific LBP (excluding idiopathic 

LBP) is usually initiated by structural dysfunction. It is not clear if the improvement 
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in outcome measured in this study correlates with the repair of the structures 

involved during previous or repeated episodes of low back pain. 
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Appendix 1:  Extraction from the Department of Works and Pensions musculoskeletal injury data 2006 

 

 
 
 
Musculoskeletal and 
Connective Tissue 

Long term WDL 7,313 7,118 19,154 5,446 15,464 19,659 10,323 6,191 7,409 9,442 13,608 121,207 

Occurrences 120 123 226 96 230 304 164 107 126 133 214 1,843 

Short term  WDL 2,936 3,483 5,855 2,777 5,534 7,113 3,702 3,691 2,690 2,844 4,293 44,916 

Occurrences 884 1,043 808 693 1,468 1,843 1,072 1,071 853 887 1,289 12,911 

Sub-total WDL 10,249 10,601 25,009 8,223 20,997 26,771 14,024 9,882 10,099 12,286 17,981 166,122 

Sub-total Occurrences  1,004 1,166 2,034 789 1,698 2,147 1,236 1,178 979 1,020 1,503 14,754 

 

Notes: 
1. The “short term “category represents all those spells lasting 28 calendar days or less (full time equivalency), and “long term” all those over 28 days. 
2. The period covered by the data is from 1 July 2005 and June 2006. 
3. WDL= Working Days Lost 
 

 

 

 

DWP Overall Region/Nation 
Illness Category  Duration   East 

Midlands  
East Of 
England 

London North 
East  

North 
West  
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Appendix 2: Laboratory calibration of the LMM 
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Appendix 3 
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Appendix 4: Published pilot study: Evaluation of trunk acceleration in healthy  
Individuals and those with low back pain 

 

 

Appendix 4 has been removed from this thesis due to the publisher’s copyright restrictions. As a 
result pages 223 – 230 of the thesis are not presented here. 

 

The contents that has been removed is an article with the following citation: 

 

(2011) Aluko, A., DeSouza, L. and Peacock, J., Evaluation of Trunk acceleration in healthy 
individuals and those with low back pain.  International Journal of Therapy and Rehabilitation, 
18(1):  18-25.  

To obtain a copy of the article please go to http://www.ijtr.co.uk/cgi-
bin/go.pl/library/article.cgi?uid=80927;article=IJTR_18_1_18_25 where the article is available 
for subscribers or available to purchase. 

http://www.ijtr.co.uk/cgi-bin/go.pl/library/article.cgi?uid=80927;article=IJTR_18_1_18_25�
http://www.ijtr.co.uk/cgi-bin/go.pl/library/article.cgi?uid=80927;article=IJTR_18_1_18_25�


 231 
 

Appendix 5: Short non-standardised questionnaire 
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Appendix 6: Study stability exercises 1 

 

 

 

 



 233 
 

 

Appendix 7: Study stability exercises 2 
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Appendix 8: Exercise compliance sheet 
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Appendix 9: Core stability exercise class exercise sheets used by Hillingdon  

Community Health sheet level 1 
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Appendix 10: Core stability exercise class exercise sheets used by Hillingdon  

Community Health sheet level 2 
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Appendix 11: Short history sheet used by recruiting Physiotherapists 
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Appendix 12: Patient information sheet 
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Appendix 13: Consent form 
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Appendix 14: Study Roland Morris Disability Questionnaire 
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Appendix 15: Study Visual Analogue Scale 
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Appendix 16: Approved amendments to study 
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Appendix 17: Exercise compliance for experimental group (n=16) [x-exercises 
completed at least twice a day] 
 

 Participant study number 
 1 2 6 8 10 15 16 18 20 23 24 27 28 29 30 33 

Day                 
1 x x x x x - - x x - - - x - x - 
2 x x x x x - - x x - - - x - x - 
3 x x x x x - - x x - - - x - x - 
4 x x - x x - - x x - - - x - x - 
5 x x - x x - - x x - - - x - x - 
6 x x x x x - - x x - - - x - x - 
7 x x x x x - - x x - - - x - x - 
8 x x x - x - - x x - - - x - - - 
9 x x x - x - - x x - - - x - - - 
10 x x x - x - - x x - - - x - - - 
11 x x - - x - - x x - - - x - - - 
12 x x x - x - - x x - - - x - - - 
13 x x x - x - - x x - - - x - - - 
14 x x x - - - - x x - - - x - - - 
15 x x x - x - - x x - - - x - - - 
16 x x x - x - - - x - - - x - - - 
17 x x x - x - - - x - - - x - - - 
18 x x x - x - - - x - - - x - - - 
19 x x x - x - - - x - - - x - - - 
20 x x x - x - - - x - - - x - - - 
21 x - x - x - - - - - - - x - - - 
22 x x x - x - - - x - - - x - - - 
23 x x x - x - - - x - - - x - - - 
24 x x x - x - - - x - - - x - - - 
25 x x x - x - - - x - - - - - - - 
26 x x x - x - - - x - - - - - - - 
27 x x x - x - - - x - - - - - - - 
28 x x x - x - - - x - - - - - - - 
29 x x x - x - - - x - - - - - - - 
30 x x x - x - - - x - - - - - - - 
31 x x x - x - - - x - - - - - - - 
32 x x - - - - - - x - - - - - - - 
33 x x x - x - - - x - - - - - - - 
34 x x x - x - - - x - - - - - - - 
35 x x x - x - - - x - - - - - - - 
36 x x x - x - - x x - - - - - - - 
37 x x x - x - - x x - - - - - - - 
38 x x x - x - - x x - - - - - - - 
39 x x x - x - - - x - - - - - - - 
40 x x x - x - - - x - - - - - - - 
41 x x x - x - - - x - - - - - - - 
42 - x x - x - - - - - - - - - - - 

 



Appendix 18: Submitted paper under review- Quantification of trunk performance in a sample 
population 

 

Appendix 18 has been removed from this thesis due to the fact that the paper is currently under 
review and neither the publisher nor the copyright restrictions are known. As a result pages 266 
– 278 of the thesis are not presented here. 

 

The contents that has been removed is an article with the following citation: 

 

(n.d.) Aluko, A., DeSouza, L. and Peacock, J., Quantification of trunk performance in a sample 
population. Submitted. 
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