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Abstract 

Eigen-mode matching techniques offer a versatile approach for solving acoustic scattering 
problems in ducts. However, until recently, these techniques have been restricted to prob- 
lems in which the boundary conditions contain at most one derivative, that is, Neumann, 
Dirichlet or Robin's conditions. Here a method is developed to solve scattering problems 
in ducts that are discontinuous in height and have at least one surface described by a 
high order boundary condition. Attention is focussed on the membrane condition, but the 

method can be extended to elastic plates and other higher order conditions. An original 

orthogonality condition is derived and used to solve two problems. Limiting cases of the 

results are compared with some special cases solveable by standard Fourier techniques and 
(for the case of no height discontinuity) the Wiener-Hopf technique. 
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Chapter 1 

Introduction 

For many years, structural acoustics has provided challenging and interesting problems 
for researchers in the-fields of engineering and applied mathematics alike. The significant 
and continued interest in the subject is often motivated by the requirement to design and 
construct objects in which structural vibration and the noise associated with it is to be 

minimised. Such noise is generated by a variety of mechanisms but typically involves the 

scattering of waves at a discontinuity in either the material properties or the geometry of 
the object. For this reason it is important to understand the scattering characteristics of 
all the key features of a given structure. In fact, in the high frequency limit, the geometric 
theory of diffraction (Keller, 1962) enables the total sound field at any point in space to 
be calculated as the sum of all the scattered wave contributions. This alone justifies the 

study of a range of problems all of which are canonical to diffraction theory. 
Problems that involve a change in the material properties of an otherwise planar struc- 

ture may be amenable to solution by the Wiener-Hopf technique. This technique, described 

in great detail by Noble (1958), has proved to be a powerful and flexible tool, enabling the 

analytic solution of a variety of complicated problems involving the scattering of sound 

waves at an edge or sharp discontiuity. Cannell (1975) uses the Wiener-Hopf technique to 

solve a problem where a plane acoustic field is incident from an angle, upon a lightly loaded 

elastic half-plane in a uniform acoustic medium. As mentioned above, work in this field is 

often motivated by the desire to limit structure borne sound, and this work in particular 
is related to the problems of noise generated by jet aircraft. In this first paper an exact 

solution to the general problem, valid for arbitrary values of fluid and plate parameters 
is given using the Wiener-Hopf method, in terms of a contour integral. In a later paper 
(Cannell 1976), a similar problem is considered where the half-plane is heavily loaded and 

freely attached to a baffle. 

Brazier-Smith (1987) considers a problem of a more complex geometry. In this paper 
two co-planar semi-infinite plates of differing thickness which are joined along one edge 

are considered. An incident-wave is incident normally on the join. The join is considered 
to take one of three forms, either free-free (that being, the plates are not attached in any 

1 



Chapter 1. Introduction 2 

way), hinged (implying zero displacement but varying gradient on either side of the join) 

or welded (allowing gradient and displacement to vary in a continuous manner over the 
join). The three possible edge conditions produce distinct solutions when solved using the 
Wiener-Hopf technique. The solutions found in all three cases can be used to consider 
both the heavy and light fluid loaded cases, by simply adjusting the parameters of the 

problem accordingly. Norris & Wickham (1995) revisit the problem tackled by Brazier- 

Smith using a more elegant method. By employing a general procedure as opposed to the 
direct method used by Brazier-Smith, the factorization of the Wiener-Hopf kernel yields 
finite integral expressions for the reflected, transmitted and acoustically radiated fields. 

The final expression of these three elements also provides the opportunity to enforce the 

edge conditions rigorously. 
Alternatively, where the change in material property occurs in a less abrupt or smooth 

manner to that described above, a solution may be sought by modelling the material pa- 

rameters as functions of the spatial variables. Such an approach may enable the boundary- 

value problem to be recast as a difference equation, the solution to which provides valuable 
insight into the qualitative behaviour of the physical problem. This approach was origi- 

nally formulated by Roseau (1976) and has subsequently been employed by Evans (1985), 

Fernyhough & Evans (1996) and Grant & Lawrie (1999). 

For non-planar structures no standard solution method is available. One such class 

of problem involves two semi-infinite planar boundaries joined along their edges to form 

a wedge of arbitrary angle containing the propagating medium. When the boundaries 

comprise wave-bearing surfaces, the scattering problem is immensely difficult. The first 

major solution is due to Maliuzhinets (1958) who solved the scattering problem for the 

case in which the boundaries satisfy the Robin (impedance) condition. He employed the 

Sommerfeld integral representation of the fluid velocity potential to reduce the boundary- 

value problem to a system of difference equations, the solution to which he wrote in 

terms of a new special function which has since been termed the Maliuzhinets' function. 

The extension of this work to wedges whose boundaries comprise membranes or elastic 

plates posed a significant problem to the applied mathematics community.. Abrahams 

(1986,1987) considered two such problems and, using the Kontorvich-Lebedev transform, 

obtained a solution for special wedge angles. It was, however, not until 1994 that Osipov 

posed an ansatz that would extend the work of Maliuzhinets to high order boundary 

conditions and arbitrary wedge angle. Independent work by -Abrahams & Lawrie (1995) 

and Lawrie & Abrahams (1996) provided the first full analytic and numerical investigation 

of the reflection and transmission of membrane waves by a corner of arbitrary angle. This 

work was soon followed by an article by Osipov & Norris (1996) who, again independently, 

solved the same problem. 
Corners comprise only part of any structure and their scattering effects cannot, there- 

fore, usually be considered in isolation. For example, waveguides with one or more abrupt 
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Figure 1.1: Physical configuration of the general problem considered in the thesis 

changes in height contain at least two corners in their geometry. Further, a change in 

geometry of this type may co-incide with a change in material property (see figure 1.1). 
It is problems of this type that are to be considered in this thesis. 

Chapter 2 commences with a review of some basic examples of this class of problem 
in which the boundary conditions are Neumann, Dirichlet or Robin's in type. Solution 

methods for waveguide problems with these types of boundaries are known and well un- 
derstood. Section 2.1 comprises the solution to the problem where all boundary conditions 

are of Neumann type and so the surfaces of the duct are acoustically hard (this problem 
is henceforth referred to as the hard/hard problem in view of the nature of the duct walls 

on either side of the height discontinuity). The problem is solved using standard Fourier 

series methods and results are given for a number of cases. The solution to the hard/hard 

problem takes the form of an infinite system of algebraic equations, the convergence of the 

truncated system is found to be very slow. To rectify this problem, the system of equa- 
tions is altered algebraically to create a further system, still appropriate for the problem 

at hand but solvable for a different set of variables. Once this new system is solved, the 

original variables (that are in fact, amplitudes of the acoustic modes) can be regained by 

simple substitutions. The algebraic alteration that occurs is analysed in section 2.2, to 

investigate why it is required and what makes the new system more convergent (and thus 

solvable). 
Section 2.3 comprises an over view of the Sturm-Liouville theory. This theory is a 

generalization of the Fourier series method used in section 2.1, for considering ducts with 
impedance (Robin's) boundary conditions at the surfaces. By employing this technique, it 

is possible to tackle the problem where all surfaces are acoustically rigid, apart from that 
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located at y=b, x>0 which is an impedance boundary condition (here after referred 
to as the hard/impedance problem). This problem is solved in section 2.4 and results are 
given. Also discussed in section 2.4 is the problem where all surfaces are acoustically rigid 
apart from that occupying the region y=6, x>0 which is of Dirichlet type (this problem 
hereafter referred to as the hard/soft problem). The Dirichlet boundary condition, and 
indeed, the Neumann condition as tackled in sections 2.1, are special cases of the Robin's 

condition. 
In section 2.5, Sturm-Liouville theory is applied again, this time to a problem where 

all surfaces are acoustically rigid apart from that occupying the region y=b, x>0 
which is now a membrane (hereafter, the hard/membrane problem). On this occassion the 
method is found to fail due to the higher order of the membrane boundary condition and 
so, for the solution of this problem a new method is required. It is problems of this type 
that have provoked such concentrated efforts to find solutions in the past. However, by 

applying a technique similar to that used in the preliminary stages of the derivation of 
the Sturm-Lionville theory, an orthogonality condition that allows the hard/membrane 

problem to be completed is found. The analysis that brings about the discovery "of this 

orthogonality condition is included in section 2.6, and the reader is referred to Lawrie & 
Abrahams (1999) for further details 

It is worth noting at this point that the three problems solved so far (those being the 
hard/hard, hard/impedance and hard/soft problems) provide a useful insight into more 
complicated problems of this class. Not only is this analysis a good template to follow for 

the techniques that will be employed when more complex problems are tackled, but also 
the programming for gaining numerical solutions to these problems is instructive. Further, 

and maybe most importantly, the results gained from these preliminary problems prove to 
be useful as a comparison with results gained in later chapters. The validation of results 
lends considerable weight to the techniques employed and conclusions drawn later in the 

thesis. 
The orthogonality condition that is derived in section 2.6 is applied to solve the 

hard/membrane problem in chapter . 3. However, as mentioned above, the case where 
there is no change in duct height (that is, where a= b) is amenable to solution using 
the Wiener-Hopf technique. The solution for this special case is presented in section 3.2 

and provides a useful check for results produced by the methods employed in section 3.1. 

The two sets of results are compared in section 3.3. Also, by choosing the values of the 

parameters that define the behaviour of the membrane correctly, it can be made to behave 

in a very similar way to an acoustically soft surface, and so results from the system found 

in section 3.1 can be compared with those gained in section 2.4 for the hard/soft problem. 
In chapter 4, the orthogonality condition of section 2.6 is applied again, this time to the 

problem where the surfaces occupying y=a, x<0 and y=b, x>0 are both membranes, 

whilst all other surfaces are acoustically rigid (the membrane/membrane problem). Again 
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the special case, where a=b is considered using the Wiener-Hopf method in section 4.2 

and a range of results are given in section 4.3. 
Note that in all sections where results have been presented, the values selected for the 

parameters of the problem have been chosen arbitrarily. These values are not intended to 

replicate physical geometries or material behaviours, but to provide a benchmark for the 

accuracy and correctness of future work. 
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Preliminary examples 

Before going on to tackle examples of two-dimensional duct problems where the duct sur- 
faces are described by higher-order boundary conditions, it is important to discuss the 

techniques available for problems of a simpler nature - not least because some of these 

problems provide useful checks for later analysis. In this chapter, combinations of Neu- 

mann, Dirichlet and Robin's boundary conditions are considered with a field equation of 

second-order. In all cases, the problems are concerned with the sound field in a waveguide 

comprising two, semi-infinite ducts, joined along a matching interface. The duct to the 

left of the matching interface is of height, a, whilst that to the right is of height b where 

a<b. The lower surfaces of the two ducts are alined and acoustically rigid whilst the up- 

per surfaces are of Neumann, Dirichlet or Robin's type. Where the two ducts meet at the 

matching interface, the gap between their upper surfaces is closed by a rigid surface (see 

figure 2.1) and the region exterior to the ducts is in vacuo. The solution of such problems 

can be found using separation of variables to yield an eigenfunction expansion. For the 

first two problems, the resulting eigen-subsystem will be Sturm-Liouville in nature and 

so can be solved using well-known, simple orthogonality conditions leading to a system of 

well behaved linear algebraic equations. This system, though infinite, can be truncated to 

a level where sufficient accuracy of solutions is given. 
Considered first, in Section 2.1, is the case where 0 surfaces are rigid, that is the 

surfaces perfectly reflect the sound field. This problem is amenable to solution by standard 

Fourier techniques. The convergence of the solution is discussed in Section 2.2. In Section 

2.3, Sturm-Liouville theory is discussed in regard to a general example. The analysis 

discussed in Section 2.3 is then applied to the hard/impedance problem in Section 2.4. It 

should be noted that Dirichlet and Neumann conditions are special cases of the Robin's 

condition. The limitations of the Sturm-Liouville theory are demonstrated in Section 2.5, 

where a problem in which one duct surface is described by a high-order boundary condition 
is considered. A brief discussion of the differences between the problem of sections 2.4 and 

2.5 is presented in Section 2.6, and a new orthogonality relation, appropriate to the non 
Sturm-Liouville eigen-subsystem of Section 2.5 is derived. The new orthogonality relation 

6 
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Figure 2.1: Physical configuration for the problem. of Section 2.1 
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provides a valuable tool by which duct problems with membrane boundaries can be solved 
(see Chapters 3 and 4). 

2.1 Acoustic reflection and transmission at the junction of 
two rigid ducts of differing height 

The initial problem is to determine the sound field within two semi-infinite, two dimen- 

sional ducts which are joined along an interface at x=0,0 <y<& The first duct 

occupies the region 0<y<a, x<0 and the second, the region 0<y<b, x>0 with 
b>a>0, where (x, y) are the usual Cartesian coordinates. The duct is assumed to be 

closed so that the vertical surface 2=0, ä<y<h forms part of its boundary. All surfaces 

are acoustically hard, see figure 2.1. The interior region, of this structure is filled with a 

compressible fluid of sound speed c= w/k and density p. A plain sound wave, of unit 

amplitude and harmonic time dependence with radian frequency w, propagates along the 

duct in the positive x direction. 

The boundary-value problem is described in terms of the fluid velocity potential 

which satisfies the wave equation. The choice of forcing ensures that the ve- 

locity potential has harmonic time dependence and thus may be written in the form 

= y'e-iwtý 
(2.1.1) 

where Ot,: (i, 9) satisfies Helmholtz' Equation as derived in many reference texts include 

Crighton et al (1992), that is 

1as a2 
äxa + äy2 + k2 ýtot(x, y) = 
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It is convenient to non-dimensionalize the problem with respect to a length scale k'1 and 
time scale w'1. An overbar has hitherto indicated a dimensional quantity and henceforth 

its un-barred counterpart is non-dimensional. Thus, the non-dimensionalised velocity 
potential, tot, is given in terms of its dimensional counterpart as 

otot(x' y) = ka c5tot(x, y) (2.1.3) 

and the second derivatives with respect to 2 and y become 

82 
2 

92 82 
- k2 

02 
äi2 k 

9X2' (9y2 
- ay2. 

(2.1.4) 

Hence, the governing equation, (2.1.2), now takes the form 

V2o+0=0. (2.1.5) 

The non-dimensional velocity field is expressed in terms of two potentials, 01(x, y) for 

x<0 and 02(x, y) for x>0, meeting at the matching interface x=0, such that 

tot = 
01, x 
02 x>0 

(2.1.6) 

The boundary conditions imposed on 01(x, y) are 

1901 
= o, y=o, (2.1.7) 

Oy 
1901 0, (2.1.8) äy = y=a 

where a= kd. Equations (2.1.7) and (2.1.8) state that the normal component of fluid 

velocity vanishes at the surfaces y=0 and y=a, implying that these surfaces are rigid. 
Similarly, for x>0 the duct is comprised of rigid surfaces at y=0 and y=b, so the 

boundary conditions imposed on 02 are 
802 

0,0, (2.1.9) 
ey =y= 

002 
= 0, y=b (2.1.10) 

äy 

with b= kb. 
The fluid pressure and normal velocity are continuous across the matching interface 

whilst the surface a<y<b, x=0 is rigid. These conditions are expressed in terms of 

the fluid velocity potential as 

0i=02, x=0,0 <y<a (2.1.11) 

and 
4902 0<y<a, x=0 (2.1.12) 
äx = 0, any<b, x=0 
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As mentioned above, the acoustic field is forced by a plane wave, incident in the positive 

x direction. It is convenient to include this incident field in the expression for the potential 

,01, and so 
Oi = Oinc -k- 0ref (2.1.13) 

where, given the time dependence in equation (2.1.1), ý; nc = eil. The reflected field, 0,, f, 
is comprised of an infinite sum of reflected duct modes, and so can be written in the form 

co 
0ref =EA. 01.. 

n-o 
To determine the form of a single duct mode 41, a, n=0,1,2, ..., separation of variables 
is used. In the usual manner 01,, is written as 

inýxýY) = XiWyi(Y) 2.1.15) 

where the subscript 1 indicates that these functions are components of the reflected field. 

Then, using (2.1.2) 

`Yi 
_1__ 2 (2.1.16) 

Xl Yi 

where the separation variable is chosen to ensure that Xl is sinusoidal. Thus 

Xi (x) = Ale"fix +. Bie-'nx (2.1.17) 

1'i (y) = Cl cosh(ry) + Dl sinh(ry) (2.1.18) 

where Al, B1, Cl and Dl are arbitrary constants and 

(2.1.19) 7= (772 - 1) 12'- 

Since reflected waves propagate in the negative x direction then Al =0 and since all duct 

surfaces are rigid, Dl =0 and r= ina/a. It follows that 

where, 

ý1n = cos (nay)_; n, x (2.1.20) 
a 

77, = 1- n2. r2 
a2 

and, for convenience the arbitrary constants are omitted. In the case where n>a, 77� is 

taken as the positive imaginary value given by (2.1.21). Thus, the potential 01 has the 

form 
'er Aoe-; x °O ar-+nnx (2.1.22) 01=e+ 

2 +ZA�Cos(!! 
) 

ae n= 1 

where the coefficients, A, are the complex amplitudes of each duct mode, 01,,. The term 

for n=0 is taken outside of the summation the coefficient is chosen to be Ao/2 to be 

consistent with a standard Fourier cosine series. 
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The potential, 02, is made up purely of transmitted waves and so, in a similar manner, 

02n(xiY) _ X2(2; )Y2(y)" 

Again, using (2.1.5) 

(2.1.23) 

ýi n X2 YZ 
- 1= -v2 (2.1.24) Xa Y2 

where, again the separation variable is chosen to ensure that X2 is sinusoidal. So 

X2(x) = A2et' + Bee-; "' (2.1.25) 

Y2(y) = C2 cosh(ryy) + D2 sinh(yy) (2.1.26) 

where A2, B2, C2 and D2 are arbitrary constants and 

y=(v2--1)2. (2.1.27) 

The transmitted field will only propogate in the positive x direction, so B2 =0 and again, 
since all surfaces in this model are acoustically hard, D2 =0 and y= inn/ b. Thus, 

02n = cos 
(nb y) 

e"'x (2.1.28) 

with 

l 

n2ý2 
vn = 1- 

b2 
(2.1.29) 

and, as before, the arbitrary constants are omitted. It follows that 

02 = 
B2 

+0B, 1 cos 
(! ) (2.1.30) 

n=1 

where the coefficients, B,,, are the complex amplitudes of each duct mode, i2n. In a 

similar way to that in (2.1.22), the n=0 term is taken outside the summation term and 

expressed as Bo/2 to create a standard Fourier cosine series form. 
Now that expressions for ýi and 02 as eigenfunction expansions have been found, it 

is possible to apply the matching conditions at the interface, x=0. Continuity of fluid 

pressure is expressed in terms of q1 and 02 by equation (2.1.11). Hence 

"0 00 E 2+ A0-}- 
At cosäy)=2 0 +EB,,, cos 

mby), 0<y<a. (2.1.31) 

=i �º=i 
The expressions on each side of (2.1.31) are standard Fourier series and so the coefficients 
At, E=0,1,2,..., oo or Bm, rn = 0,1,2,..., oo can be expressed as an infinite sum of 
terms involving the other set of coefficients, by using the usual Fourier series formula. A 

second equation is found by considering the matching condition that implies continuity of 
fluid velocity, (2.1.12) and substituting the expressions for 01 and 02 into that, giving 

co (nry) Bo+ B. v�eosbn=1 

00 
1- 

2° 
--ýA(Iý ) Ant cos 

(Ill 

J 
y 

1=1 
0, 

0 <y<a (2.1.32) 

a<y<b 
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The form of (2.1.32) is such that the left hand side is a Fourier series and so B,,,, m= 
0,1,2,..., oo can be expressed in terms of infinite sums of At, I=0,1,2,..., oo, but 

because of the piece-wise nature of the right hand side, the converse is not true. Thus, 

since this cannot be used to determine At, t=0,1,2, ..., oo, instead standard Fourier 

analysis must be applied to (2.1.31) to obtain these coefficients. So, using the usual 
technique for evaluating the coefficients of Fourier Series as detailed in Korner (1988) 

among others, 

/\ a 00 
2+Ao =2f 

B0-I-EB,,, 
cosImlyJ dy 

a m=1 \/ 

m, a 

= Bo + 
7ru Bm sinm -ý- (2.1.33) 

m=1 

and 

2Gr\ 00 
At =fc t+EBmcos()} cos f 

ýay\ 
dy 

M=l 

=2 
ab E1 ä2( £262 

sin 
()" (2.1.34) 

, n= 

Similarly, when standard Fourier techniques are applied to (2.1.32) to find B,,,, m= 
0,1,2,. - -, 00 it is found that 

Bo =bf 
2° 

= 
2b 

I1- 
2°ý 

and 

00 E A, cos 
(ý'-'y )1 dy 

t=i a 

Bn =° bvý 
ra 

1-' 2 Atilt cos 
(ýa 

cos 
(nby) 

dy 
�fl t_i 

2_v 
sin(Ha) 

[1__2a2 2° 
ntat( 

ý) 
z a_ 2b2 

t-i 

(2.1.35) 

(2.1.36) 

Now, having gained expressions for At, I=0,1,2,... in terms of B n, m=0,1,2... 

and vice versa, it is possible to combine these to form a system in either purely Al's or 

B,,, 's. Here a system in B,,, is formed. First using (2.1.33) in (2.1.35) it is found that 

4a 2b Bm sin 
(9 mira 

B) (2.1.37) Bo = b+a r(b+a) m 

Similarly, by substituting (2.1.33) and (2.1.34) into (2.1.36) gives 

2 sin (nar) Bo 1 °O 1 °0 2mn2r3'is 
B�- 

[2_---EB,,, 
sin(mrr) ---Fý 22 122 a_ 2 nerv� 2 

, n_1 rm tai 
(m r- )(n r) 

(2.1.38) 
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where r= 
The system that is formed by (2.1.37) and (2.1.38) is infinite and, because of the nature 

of the coefficients of B,,,,, m=0,1,2.... in the summation terms, non-convergent. The 

cause of this non-convergence is discussed later in the chapter, but for the time being it is 

taken that convergence can be improved by a simple substitution of the form 

B� =2 sin (nirr) D0,. (2.1.39) 
inva 

Then 
Ao 22 ntA_(-1)t O'o 

D� =1-2-nrL 
n2r2 - ¬2 

(2.1.40) 

-i 
and (2.1.33) becomes 

Ao - 
2(r -1) +4 

00 sin2(m7rr)Dm (2.1.41) 
r+1 a2r(r + 1) 

E 
m2v,,, 

whilst (2.1.34) reduces to 

Al 4r(-1)1 sin2(m7rr)D, 
. 

(2.1.42) 
7r2 (m2r2 

-12 
)1/ 

m=1 m 

Expressions (2.1.41) and (2.1.42) are now substituted into (2.1.40) to obtain 

2b 4 °O sin2(mirr)D,,,, 1 °° 23 [ý r/1 
D" _a+b- 

7f2 
M_1 

vm 2r(r + 1)m2 
+nr jJ (m2r2 - £2)(n2r2 - ý2) 

(2.1.43) 

which is solvable for D,,, n=1,2,3,..., oo and is convergent, albeit slowly. Once D,,, 

n=1,2,3,..., oo are evaluated, B,,, n=1,2,3,..., oo can be found directly via (2.1.39) 

and At, I=0,1,2,..., oo can also be found using (2.1.41) and (2.1.42), but B0 in terms of 

D,, is, as yet, undefined. This gap can be filled by substituting for Bn in (2.1.37) to give 

B0 _ 
4r 

-4 
00 sin2(rnirr)D,,, (2.1.44) 

r+1 7r2(r + 1) 
E 

m2il. 

and so by solving a truncated version of the system given by (2.1.43), all values of At, I 

0,1,2,... and B,,, n=0,1,2,... can be found. 

Whilst this new system in D� is convergent the rate of convergence is poor. As a 

consequence, for results of high accuracy the number of terms required in the truncated 

system is large and so computation times are long. The aim is to be able to achieve highly 

accurate results with as little computational time as possible, so the convergence of the 

system in (2.1.43) needs to be further improved. This can be achieved by utilising the 

asymptotic properties of the term in the inner sum, that is 

00 
E_ätz 

z_ j2 i 
l=1 

(M-2r2 J)(n r) 
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The quantity i is defined by 
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i 
ý2ir2 2 

17l =1- 
a2 

Zäß, £-+oo, -(2.1.46) 

and so the inner sum can be rewritten as 
Co 00 sa1r Z9C C 

(m2T2 - 12)(n2T2 12) - (m2T2 
-22)(n2T2 - 

T2) + 
[L 

E 
(m2T2 

- 
£2)(n2T2 

- 
J2)" 

(2.1.47) 
The second sum can be evaluated exactly and it transpires that 

00 00 
- 

ihr 

(mars - )(n2r2 - $a) 
t=l 

(m2r2 
-B2)(n2r2 

- £a) 

+2ar2(n2 
- m2) 

[ 

rnm 
+ {cot(irrm) - cot(7rrn)} +-2 {o(rm) -u(rn)}] 

(2.1.48) 

where j z) is the Psi or Digamma function defined by 

O(z) =d 
In{r (x)}] 

_ 
ýi(z) (2.1.49) 

(see Abramowitz and Stegun (1964)) and r(z) is the usual Gamma function. Expression 

(2.1.48) appears to have a singularity when m=n. However, on the application of 

L'Höpital's Rule, it is found that (2.1.48) becomes 

co Q_11- r12 + 2rO'(Tm} (2.1.50) 
1=1 

I 
(mare - t2)2 4rzm rm2 sin2(mr7r) 

when m=n. Hence, with the singularity removed 

-1-Dn-1-4 
sina(m7rr)D,,, 1 (2.1.51) 

"r+172v,,, 
[2r(r 

-ß-1)m2 M=j 

+ 
ini 

+ 
inarirFmn 

+ n2r3 
00 171 - 

iaýr 

2am( 2a(n + m) (m2r2 -12)(n2r2 - ýa) 

where 

-nm 
{cot(irrm) - cot(7rrn)} + 

n? m 
{b(rm) -tb(rn)}, nom Fmtt (2.1.52) 

-2- ain (TAT, ) + 2rbi (rm), n=m 

This system has a diagonally dominant matrix form and also offers rapid convergence 

under computation resulting in a high level of accuracy, gained using a relatively small 

number of terms. With computation time kept to a bare minimum, highly accurate results 

are readily available for analysis. The truncated system is solved using Mathematica and 
the values Dm, m=1,2,3, ..., t, (t being the number of terms in the truncated system) are 
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then used in the expressions derived above to give values for required At, I=0,1,2, ..., t 

and Bm, m=0,1,2,..., t. The code for the Mathematica programme is given in Appendix 

A. 1. 
To check these results, a power balance is calculated. Since the surfaces of the duct 

are perfectly reflecting and the duct is closed then no power is lost from the system, and 

none is carried in the form of waves induced on the boundary surfaces. Thus, the power 

associated with the incident wave must balance the sum of that for the reflected and 
transmitted waves. The results gained from the solution of the system given in (2.1.51) 

should reflect this theory. First consider the dimensional equation for power, as derived 

in Auld (1990) and given by 

P= 2 wp Re Ii (Fn) * 
d. (2.1.53) 

where `*' indicates the complex conjugate, S is an arbitrary cross-sectional surface of the 

duct and n is normal to that surface. This expression must be non-dimensionalised using 
the same basis as for the rest of the problem to provide a power equation that is suitable 
for application to this problem. As previously noted 

w q5 
ka 

(2.1.54) 

and so 
( ) 

8n k 8n 

Further, using the dimensions of power 

P= Mk-2w3P, (2.1.56) 

and similarly, 
p= Mk'. (2.1.57) 

Thus, the non-dimensional form of (2.1.53) is 

ds] io P2 Re 
If (2.1.58) 

än . 

The system considered in this section has one source of power, that being the incident 

field, whilst power travels out of the system via the reflected -field and the transmitted 

field, as shown in figure 2.1. A power balance is achieved if the total energy flux in the 

positive x direction crossing the surface Il is equal to that travelling in the positive x 

direction across 12. Note that unit vector in the normal direction to Ii and 12 is X. 

The incident field takes the form of a plane wave with unit amplitude and so, P;,,, the 

power fed into the system per unit length in the z direction is given by 

11 
Pin =2 Re 

I ra ie'X (_ie) dy] 
Jo 

=a (2.1.59) 
2ý 
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Power leaving the system will be either reflected, P,., f; that is moving in the opposite 
direction to the power into the system, the negative x direction, or it will be transmitted, 
Ptran, which moves in the positive x direction and so leaves the system along the duct of 
width b. The reflected field is given as 

N A0e 'x 00 
e-iý1x + Aý cos l (2.1.60) 

ft 

2 la 

and so 

=i 
ýa Aoe 'x co 

x 
r`f Re 

2 
lo 

2 cos 
(s!! ) 

e- x P 

iAQeix °O 
/mir 

2+ 
iimA�ý, cos l7 y) 

e`7--' dy (2.1.61) 
a m=1 

The integrand of (2.1.61) can be expanded to obtain 

ja iAOAo* iApe'x °O /ý7ry1 ix p, .r Re 
2 Jo 4+2 

Aý cos `aJ e- ýc 
1.1 

Aoe-; x 00 %mir 
+2Z i77mA, *� cos 1a 

y) 
e''n'^x 

m=1 \ 

00 00 
m7om 

m(+EE i77. AsA* cos 
$7C ydy. 2.1.62 I\ Qy) J cos 

(a) 

t-1 m=1 

On the assumption that, for each term, the orders of summation and integration can be 

interchanged, it is clear that the second and third terms do not contribute to this integral. 

The first term is easily evaluated as 

i 
Re aA e-ix iAesx 

d -! Re 
110 a AoA* 

d2 
Jo 

ý2 
2y24ý, yJ 

_ -IAo12a (2.1.63) 
8 

The last term of (2.1.62) satisfies the standard orthogonality relation used in Fourier series 

methods for {cos (l ), cos ( )}. Thus 

a 00 00 0 ? 7L t 
m fEE irlý, ºALA;, a cos I1) cos 

(ai yl 
A, 

4 
a' M=1 

(2.1.64) 

However, here the real part of (2.1.62) is sought. It is clear that (2.1.63) is purely real, 

but the polarity of (2.1.63) is dependent upon the value of rye. From (2.1.21) it can be 

seen that when a> 17r, rll is real but when a< tir, 77, is pure imaginary. Indeed in the 

case where a< 7r, (2.1.64) makes no contribution to P,., f since all terms are imaginary. 

Upon reassembling the constituent parts of (2.1.62), P, -e f can now be expressed as 

Pref = 
IA8l a- Re 

l`4il2ilea (2.1.65) 
4 1' =1 
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where, as noted above, the infinite sum will be truncated or may not contribute at all, 
since not all terms will be real for any finite value of a. Since n (which here is in the 
direction of positive x) is in the opposite direction to the propogating reflected field, it is 

not surprising that P,. ej is found to be negative in value. The energy flux in the positive 
x direction across Il on figure 2.1 is thus found to be 

f2 
Re 

J A, 12 
Finc -I- Pry f=2- 

IA8I2 Q 00 

. (2.1.66) 
- 

LE 

The transmitted field is given by 

(!! 
-b 

\ 00 
4trana = 

B02ix 
+ B.,, cos 

yf (2.1.67) 
n=1 

and so, following the above method, energy flux across 12 on figure 2.1 is given as 
2 

Ptrans = 
IB012b 

-I- Re 
I B"1 y"`b (2.1.68) 

The power balance is now given by 

"inc + Pref = Ptrans (2.1.69) 

or equivalently 

a_ lAol2a 
- Re II A42i, a fBOI2b 

+ Re 
00 JB"12v"b (2.1.70) 2848 

F- 
4 

which can be rearranged to give 

1= 1A012 + iB°12b + Re JA442i + °° lBn12vnb (2.1.71) 
4 4a 

_1 
2 . 2a 

This expression may be used to check the validity of the results gained from the system 

given previously in this section. 

2.1.1 Results 

The results in this section comprise a selection of graphs and some tables. Successive 

transmitted modes are switched on by increasing b and the graphs show the effect this 

has on the fundamental and secondary reflected and transmitted modes. In each case a 

is fixed. Each graph is discussed individually, although in many cases, the explanation of 

the behaviour demonstrated is similar. 
The tables of results are to demonstrate the continuing accuracy of the power balance 

calculations for a range of fixed a and varying b. As b is increased, the number of terms 

included in the power balance increases also, and this is considered in the analysis. 
In the first three graphs, a=2.1 and b is varied from 2.1 to 14.1. Figure 2.2 shows 

a graph of the modulus of the fundamental reflected coefficient and peaks can be seen 
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Figure 2.2: Plot of the modulus of the reflection coefficient of the fundamental mode for 
the hard/hard problem with a 2.1. 

occurring at regular intervals. These peaks are actually located at nir, n=1,2,3, .... The 

peaks occur as each new transmitted mode (with coefficient B, ,n=1,2,3,... 
) becomes 

significant to the total far field within the system. In figures 2.3 and 2.4, JB0I and IB11 are 

shown. It can be seen from these that the transmitted nodes fluctuate as b is increased. 

Bo 
21 

O. E 

O. E 

0.4 

0.2 

2468 10 12 14 

Figure 2.3: Plot of the modulus of the transmitted coefficient of the fundamental mode 
for the hard/hard problem with a=2.1. 

In the range a<b<r it is clear from figures 2.2 and 2.3 that Ao and Bo have the 

greatest contribution to the total power of the system. Note also that at the point a=6, 

446ö 10 12 
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JAoI =0 and (B0I = 1. This is not a surprise since at the point a=b the duct is of 

uniform height from -oo to oo and is perfectly transmitting, so any field introduced from 

one end will pass through to the other with no interaction, hence the primary transmitted 
field should equal the incident field exactly. From figure 2.4 the effect of Bl can be seen 
to become significant at the point where b= ir. For b> ir, IA0I periodically peaks at 

nr, n=2,3,..., whilst both jBoI and JB1I show gradual decrease of value, with sharp 
downward steps at na, n=2,3,.... These steps occur everytime a new transmitted mode 
becomes significant to the total power of the system. That is, B2 is 'switched on' on at 
2x, B3 at 3a and so on. 

IB1I 
1.! 

1.2! 

0.7c 

o.! 

0.2° 

b 

Figure 2.4: Plot of the modulus of the reflection coefficient of the secondary mode for the 
hard/hard problem with a=2.1. 

The next four graphs show similar data for the case where a=4.3 Now, since a> 7r, 

there are two significant reflected modes from the outset, these being AO and Al. These 

are shown in figures 2.5 and 2.6. Both show the same peak and trough behaviour as JAoJ 

in figure 2.2. 

Also, at a=b, JA0I = JAI I=0, whilst it can be seen from figures 2.7 and 2.8 that Bo is 

the only significant transmitted mode at this point. This is again because the duct takes 

the form of an infinite perfectly transmitting duct when a=b and so the transmitted field 

is identical to the incident field, since there is no structural or geometrical discontinuities 

to affect it. 

It can be seen that (BiI steadily increases in value until b= 27r. At this point, as 

mentioned previously, B2 begins to contribute to the transmitted field and so from that 

point on, BI decreases in value. 
In the following tables, a value for a is again set and b is increased. For each value 

of b, a power balance is calculated, as described in Section 2.1. Remember that as a 

2468 10 12 14 
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Aa 
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Figure 2.5: Plot of the modulus of the reflection coefficient of the fundamental mode for 
the hard/hard problem with a=4.3. 

JAuI 

0.5 

0.4 

0.3 

0.2 

0.1 

-b 16 

Figure 2.6: Plot of the modulus of the reflection coefficient of the secondary mode for the 
hard/hard problem with a=4.3. 

and b increase, more terms in the reflected and transmitted fields respectively must be 

considered, as described previously in the section (see (2.1.61) - (2.1.64) for explanation). 
In table 2.1, a=0.8. As mentioned previously, when a< 7r only Ao is significant 

in the power balance and so that is the only reflected mode inculded on the table. As b 

increases, the number of transmitted modes that are significant also increases, which is 

reflected in the table, showing a second, and then a third transmitted mode being included. 
Clearly, the accuracy of the results is borne out by the sum of the significant reflected and 

bö 10 12 14 

b 10 12 14 
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Figure 2.7: Plot of the modulus of the transmitted coefficient of the fundamental mode 
for the hard/hard problem with a=4.3. 
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Figure 2.8: Plot of the modulus of the transmitted coefficient of the secondary mode for 
the hard/hard problem with a=4.3. 

transmitted terms always being dose to 1, as prescribed by (2.1.71). 
Table 2.2 again has a fixed at a value such that a< ir. The same increase in the 

number of transmitted modes that are significant to the power balance is also seen, with 

the behaviour being that n+1 terms are significant for b> nir, n=0,1,2,.. .. 
Again the 

total of the transmitted and reflected power is equal to 1 in all cases. 
In table 2.3,7r <a< 2ir and so two reflected modes are now of importance (Ao and 

A, ). With the increase of b still bringing more transmitted modes into the equation, again 

68 10 12 14 

68 10 12 14 
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bI J10 Li JB oL B1'vib B2 Fv2b B32v3b Total 

0.8 1 1 
1.8 0.18277 0.81787 1.00064 
2.8 0.53240 0.46851 1.00091 
3.8 0.02089 0.24599 0.73340 1.00028 
4.8 0.12630 0.26041 0.61434 1.00105 
5.8 0.29748 0.22022 0.48230 1 
6.8 0.02576 0.13348 0.28473 0.55662 1.00059 
7.8 0.10606 0.15103 0.31592 0.42698 1 
8.8 0.21947 0.14158 0.29246 0.34974 1.00325 
9.8 0.02520 0.08810 0.18102 0.20568 0.49999 1 
10.8 0.09459 0.10522 0.21497 0.23595 0.34927 1 
11.8 0.17801 0.10288 0.20930 0.22450 0.28531 1 

Table 2.1: The power balance for a=0.8, b increasing 

bI `4° B° 2b Bl 2V, b BZ 2V2b B312v3b Total 

2.3 1 1 
3.3 0.04000 0.60051 0.35949 1 
4.3 0.00450 0.48235 0.51315 1 
5.3 0.00200 0.44380 0.55420 1 
6.3 0.08018 0.32468 0.36763 0.22751 1 
7.3 0.00428 0.28980 0.45595 0.24997 1 
8.3 0.00258 0.27791 0.45840 0.26111 1 
9.3 0.02089 0.27339 0.45422 0.25150 1 
10.3 0.00467 0.20615 0.36445 0.25258 0.17215 1 
11.3 0.00285 0.20175 0.36353 0.26541 0.16646 1 
12.3 0.01058 0.19961 0.36186 0.26752 0.16043 1 

Table 2.2: The power balance for a=2.3, b increasing 

the results can be seen to be accurate. Table 2.4 shows similarly accurate results. 

21 

One other characteristic of note, shown in all tables is for the case where a=b. As 

mentioned previously, this case is where the duct has no discontinuity in height, and also 

no discontiuity in material property, and so is just a duct that has no effect on the incident 

wave - it just passes straight through. This results in the only significant reflected and 

transmitted mode being Bo, which must carry exactly the power of the incident field. 

2.2 Convergence in Section 2.1 

In Section 2.1, what appears to be a solvable system, for Bn, n=0,1,2, ... is given in 

(2.1.38). However, when this system is truncated and a solution is sought computationally, 
it is found that the system does not converge. To overcome this problem, two methods 

of improving the convergence of the system are employed. In this section, the reasons for 



Chapter 2. Preliminary examples 

bI AAA 12 Al 2771 Bo 2b BI 2vlb BZ 2'2b B3 2v3b B4 2V4b Total 7 A- n.. n- n_ n- 

4.1 1 1 
5.1 0.00791 0.03357 0.89440 0.06412 1 
6.1 0.01453 0.08976 0.61209 0.28362 1 
7.1 0.00067 0.00154 0.58849 0.36352 0.04578 1 
8.1 0.00452 0.02006 0.54017 0.42272 0.01254 1 
9.1 0.01035 0.05955 0.44657 0.45018 0.03336 1 
10.1 0.00085 0.00217 0.40981 0.47978 0.04744 0.05996 1 
11.1 0.00349 0.01519 0.38920 0.48843 0.07474 0.02896 1 
12.1 0.00780 0.04247 0.34660 0.47143 0.11584 0.01586 1 
13.1 0.00091 0.00252 0.31322 0.46029 0.15488 0.00459 0.06358 1 
14.1 0.00291 0.01240 0.30423 0.45958 0.17288 0.01145 0.03656 1 
15.1 0.00624 0.03256 0.28111 0.43988 0.19196 0.02839 0.01987 1 

Table 2.3: The power balance for a=4.1, b increasing 

b AOL Al '7i Bý 0I'b Bl'vlb B2 'v2b B3'v3b B4'v4b Total 

5.8 1 1 
6.8 0.00216 0.00554 0.84857 0.05705 0.08669 1 
7.8 0.00069 0.00186 0.72276 0.16491 0.10978 1 
8.8 0.00029 0.00065 0.66636 0.25106 0.08164 1 
9.8 0.00159 0.00426 0.58274 0.32884 0.02772 0.05485 1 
10.8 0.00061 0.00160 0.52711 0.38887 0.00481 0.07699 1 
11.8 0.00037 0.00086 0.49397 0.42716 0.00068 0.07695 1 
12.8 0.00158 0.00430 0.44681 0.44389 0.01372 0.04739 0.04231 1 
13.8 0.00063 0.00163 0.41384 0.46064 0.03405 0.03487 0.05434 1 
14.8 0.00041 0.00097 0.39251 0.47011 0.05624 0.02058 0.05918 1 

Table 2.4: The power balance for a=5.8, b increasing 
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the success of these methods, and the cause of the convergence problem are discussed. 

Expressions (2.1.37) and (2.1.38) can be combined to obtain 

_2 
sin(n7rr) O° 

B" 
Tb7rv 

C' -EB, bmn 
sn=1,2,3.... 

(2.2.1) 

n m=1 

where r=Q, G is a forcing term given by 

2b (2.2.2) 
a+b 

and 
sin(m7rr) 2mn2r3 sin(mirr) °O 17 b""` = mtrr(1+ r) 

+ 
ir (m2r2 - t2)(nzr2 - t2)* 

(2.2.3) 

t=l 
Upon rearranging (2.2.1) it can be seen that 

00 B�nirv� 

2 sin(nar) 
+ Bmbmn = G, n=1,2,3,.... (2.2.4) 

m=j 
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When rewritten in matrix form, this becomes 

B17rv1 
2 sin(9Cr) b11 b21 b31 """ Bl G 2B27rv2 

b12 b22 b32 """ B2 

_G 2 
3B 
sin32ý7rv3r) + b13 b23 b33 ... B3 =G (2.2.5) 

2 sin(3rr) 

which can be easily rearranged to give 

bll + 7r Vi. b21 b31 ... 2 sin(rr) 
27v2 Bi G 

b12 b22 + b32 ... B2 G 
2 sin(2ar) (2.2.6) 3rv3 B3 G 

b13 b23 b33 i' 
2 sin(37rr) 

Since 
n2iý2 z 

vn =1-2, (2.2.7) 
b2 

) 

the terms on the diagonal of the matrix grow as n -+ oo which implies that the system is 

non-convergent and so the matrix cannot be truncated. However, making the substitution 

B�_ 
2 

7rnv� sin (nirr) D� 

a new system in D� is found, that being (2.1.43). Now (2.2.1) assumes the form 

2 sin(nirr)D� 
_2 

sin(nrr) O° 2 sin(mirr)Dm bmn 

nrv� nirvn 

[G 
- 

m=1 mirvm 

which reduces to 
00 
E2 sin(mirr)Dm Dfl + 

m7CV, n 
Omn = G. 

m=1 

Upon writing this in matrix form, the following system is obtained 
2 sin(lrr) 

2 in(irr) 
b12 

irv1 
2 sin(7rr) b13 

avl 

2 sin(2ar) b21 
2irv2 

2 sin(2ar) 
1 2irv 

b22 + 
2 sint(27rr) b23 

27rv2 

2 sin(3irr)b3i 
31rv3 

2 sin(37rr) b32 
. 3irv3 

2 sin(3irr) b33 "F 1 
3irv3 

(2.2.8) 

(2.2.9) 

(2.2.10) 

D, G 

... D2 G 
D3 =G 

-- (2.2.11) 

The matrix coefficients display one of two types of behaviour. In the case where m 54 n 

the coefficients tend towards zero as n or m tends to oo. When m=n, the coefficients 
tend to 1. Thus, letting 

2 sin (mar) 
b 2.2.12) 

m7rvn mn = dmn ( 
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then 

d11 +1 d21 d31 
... 

d12 d22 +1 d32 ... 
d13 d23 d33+ 1 

(2.2.13) 

where d,,,, e,,, --º0asm-+oo. 
This system, although an improvement, is still not convergent. However, the right 

hand side of the equation is constant, unchanging with the value of m and it, follows that 

the individual equations in the system as m -+ oo simply reads as 

24 

Di G 
D2 G 
D3 G 

1 ým Emi 1 Cm }-2 ... Dm G 

Em 1+ Em+1 Em+2 ... Dm-Fl G 

Em Em +i 1+ Fmm+2 ... Dm+2 G 

Dm, =G, m» 1. (2.2.14) 

This behaviour is sufficient to ensure that 

2 sin(nirr)G 2 
B" _ 

7rv, ý 
N n2ir2' 

n -+ oo. (2.2.15) 
n 

A further modification conducted in (2.1.47) - (2.1.52) gives rise to a convergent system 
by subtracting out the leading order term of the numerator in the sum in (2.1.45), this 

yielding 
77t 

Ur 
-77-+0 

is(1) (2.2.16) Nýa 

. 23 

and so for the expression summed over I in (2.1.51), the behaviour is 

Ile -ä 
_0 (2.2.17) 

(m2r2 - £2)(n2T2 - £Z) 
(i), 

which gives very rapid convergence. Thus, in this case, the convergence problem can be 

overcome. 

2.3 Sturm-Liouville Theory 

Section 2.1 deals with a boundary-value problem for which the solution is available by 

recourse to standard Fourier analysis. It is desirable, however, to consider a more general 

problem in which the upper duct surface for x>0 satisfies the impedance (Robin's) 

condition. The solution method is, in fact, very similar, but separation of variables now 

yields an eigen-subsystem of Sturm-Liouville type. Before this problem is discussed in 

detail it is instructive to summarise here the salient features of Sturm-Liouville theory. 

The Strum-Liouville theory can be found in greater detail from a number of texts, for 

example Churchill & Brown (1982). 
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A simple generalised problem is considered, involving a duct occupying the region 

a<y<b with the surfaces located at y=a and y=b having impedance (Robin's) 

boundary conditions. The boundary-value problem has a general second-order governing 

equation, that is 
t ýyy +t ýý +=0 (2.3.1) 

where r(y), r'(y), s(y) and t(y) are real-valued continuous functions of y, r'(y) is the first 

derivative of r(y) with respect to y, r(y) >0 when a<y<b and t(y) 54 0 for all y. The 

two boundary conditions are 

alq5(x, a) + a2q5y(x, a) = 0, (2.3.2) 

bl«x, b). + b2Oy(x., b) =. 0, (2.3.3) 

Figure 2.9: Physical configuration for the problem of Section 2.3 

Separation of variables is used on the system and -so, in the usual manner 

0=X (x)Y(Y)" (2.3.4) 

When this is substituted into the governing equation (2.3.1) it can be seen that 

X11 + rY"X + r'Y'X + 
XY 

_ 0. (2.3.5) 
ttt 

This can be rearranged and the separation variable, A, introduced so that 

T 1Y, + rY� Sx it 
-a. 

(2.3.6) 
Yt +t -X- 

When the terms involving the eigenfunction Y are considered alone, this can be rearranged 

to give 
(TY')' + (s + At)Y =0 

(2.3.7) 

where al and a2 are constant and never both equal to zero and likewise with bl and b2. 

The physical configuration for such a problem is shown in Figure 2.9 
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whilst the boundary conditions, expressed in terms of Y become 

ajY(a) + a2Y'(a) = 0, (2.3.8) 

b1Y(b) + b2Y'(b) = 0. (2.3.9) 

Take two distinct eigenvalues of this system, A, and A,, and the eigenfunctions asso- 

ciated with these, Y,,, and Y. Each pair must satisfy (2.3.7) and so 

(rYY)' + sYm, _ -. 1mtYm,, (2.3.10) 

(rYY)' + sYn = -A tYY. (2.3.11) 

On multiplying (2.3.10) by Y,, and (2.3.11) by Y, and subtracting one from the other, the 

resulting expression is 

(A - Am) tYmYn = (rYm)'Y. - (rYri)'Ym 

= dy 
[r (Y. ' Y. - Y. 'Y,,,, )] 

. 
(2.3.12) 

Hence, 
(An - Ami fbt YmYn dy = [r(y)0(y)] (2.3.13) 

a 

where 
AM =IY; 

Y. I" (2.3.14) 
Y., 

However, since (2.3.8) must hold for both Y, and Y� then 0(a) =0 and likewise, (2.3.9) 

implies that 0(b) =0 also. Thus 

(a, º_)ý�ti) 
f btymy�dy=0. (2.3.15) 

4 

Since A.. and a� are distinct, non-equal eigenvalues, then the orthogonality property which 

is sought is found to be 
b r 

JtY,,, Y�dy-0, rrcýn. (2.3.16) 
a 

A boundary-value problem of the form described by (2.3.7) - (2.3.9) may be referred 

to as being Sturm-Liouville in type and has associated with it an orthogonality relation 

given in (2.3.16). 

As an illustration of the application of Sturm-Liouville theory, an example is consid- 

ered. The boundary-value problem is such that the governing equation, given in general 

form by (2.3.7), reduces to 
Y""(y) + XY(y) = 0, (2.3.17) 

whilst the boundary conditions are stated to be 

Y'(0) = 0, (2.3.18) 

hY(a) + Y'(a) = 0, (2.3.19) 
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where h is a positive constant. Thus, the boundary at y=0 is of Neumann type whilst 
that at y=a is an impedance (Robin's) condition. The problem as described in (2.3.17) 

- (2.3.19) has three possible distinguishing cases; those are the cases where A=0, A>0 

and A<0; each will be considered. 
In the case where A=0, the solution is found trivially to be that the eigenfunction 

Y(y) - 0, and thus zero is not an eigenvalue. 

When A>0, then it is taken that A= a2, a>0 and so the general solution of the 
differential equation (2.3.17), taken with the first boundary condition, gives 

Y(y) =A cos(ay). (2.3.20) 

When the second boundary condition is imposed, in order for A to be non-zero, a must 
be a root of 

h cos(aa) -a sin(aa) = 0, (2.3'. 21) 

which can be rearranged and expressed as 

tan(aa) =h. (2.3.22) 
a 

It is clear that this has an infinite number of consecutive positive roots, and these roots 

are given in Abramowitz and Stegun (1964). The corresponding eigenvalues are given as 
An = an, n=0,1,2,. . ., and eigenfunctions of Y, (y) = cos(a�y). 

When A<0, then take A= -p2, p>0. By following similar steps as for the case 

where A>0 it is easily shown that, for this case 

Y(y) =B cosh(fly) (2.3.23) 

and so to prevent B from being non-zero, ß must satisfy the equation 

tanh(ßa) =-h. (2.3.24) 

This equation has no real roots however, and so the complete solution of this Sturm- 

Liouville problem is 
Yn(y) = An cos(any) (2.3.25) 

where an = An and an, n=0,1,2.... are the roots of (2.3.22). 
Now consider the orthogonality relation, defined generally in (2.3.16). That is, in this 

case 
JO 0, m#n (2.3.26) cos(a,,, y) cos(any)dy = Cn' m=n 

n the case where m=n then the integral becomes I 

Z1 sin(2a, ýa)] (2.3.27) f 
cos (any)dy =2 

[a 
+ 

2a� . 

However, using (2.3.22), this can be rewritten as 

Ja cosz(any)dy = 
ah -}- s2 (a�a) 

_ an. (2.3.28) 
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Figure 2.10: Physical configuration for the problem of Section 2.4 

2.4 Reflection and transmission at the junction of two ducts 
of differing height and wall conditions 

In this section, the theory of Section 2.3 is employed to solve a more general boundary- 

value problem. The geometric configuration of the problem is identical to that of the 

problem encountered in Section 2.1, in that it comprises two ducts of different heights, 

meeting at an interface, the first duct occupying the region 0<y <a, i<0 and the 

second, the region 0<y<b, >0 with b>ä>0. Also the duct to the left of the 

matching interface, =0 is acoustically rigid, but the upper surface of the duct to the 

right now has a boundary described by Robin's condition. The vertical surface between 

the ducts, = 0, ä<y<b is acoustically hard as in the first case, see figure 2.10. All 

other conditions are as they were for the case in Section 2.1, as is the incident field. 
The same notation and non-dimensionalisation as in Section 2.1 is used again here, and 

so the problem is reduced to solving Helmholtz' equation subject to specified boundary 

conditions. That is 
(V2+1)0=0, 

-oo<x<oo. (2.4.1) 

The boundary conditions on the duct on the left hand side of the matching interface are 

801 0, y=0, (2.4.2) 
y 

, 901 
= 0, y=a (2.4.3) 

and on the right hand side are 

1002 p, y=p, (2.4.4) 
ey= 
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a02 +ß = 0, y=b. (2.4.5) 
ß2 

The problem here is more general because of the nature of the upper boundary condi- 
tion applied to the duct to the right of the interface, x=0. By adjusting the values of a 

and p appropriately, the boundary condition becomes Neumann, Dirichlet or Robin's in 

form. For example, the problem considered in Section 2.1 is equivalent to the case where 

a=0and, 0>0. 

Fluid pressure and normal velocity are again continuous across the matching interface 

and the surface a<y _< 
b, x=0 is rigid so that conditions (2.1.12) and (2.1.13) still hold, 

that is 
01=42i x=0,0 <y<a (2.4.6) 

and aha 211 0<y<a, x-0 
19X 0, a<y<b, x=0 ' 

(2.4.7) 

In this problem, as in Section 2.1,01 comprises the incident wave and a reflected field, 

such that 
01 = e; x+0,. ef 

(2.4.8) 

where 4ref comprises an infinite sum of reflected duct modes. Thus 

00 
0ref =E An0ln, (2.4.9) 

n=O 

where q51, ß, n=0,1,2, ... is an eigenmode for the problem. Separation of variables is used 

and the separation variable, 77, is chosen to make Xi sinusoidal. Thus 

X1(x) = A, e'nx -}. Ble-inx (2.4.10) 

1'1(y) = Ci cosh(py) + Di sinh(py) (2.4.11) 

where Al, B1, Cl and Di are arbitrary constants and 

p= (i2 - 1)ý. (2.4.12) 

Since the reflected field will only be made up of waves travelling in the negative x direction, 

Al =0 and since the lower surface of the duct on the left hand side of x=0 is acoustically 

hard, Di = 0. Further, the acoustically hard property of the upper surface of this duct 

' äimplies that p� = and hence the eigenmodes are given by 

din = cos 
(nry) 

e_innx 
(2.4.13) 

a 

where, for convenience, the arbitrary constants are omitted and rin = (1 -n )1/2" It 

follows that 

+ 
20 

e-ýx +E An cos 
(! 

e-'"i"x (2.4.14) 
n=1 

\aJ 
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where the_ coefficients, An, are the complex amplitudes of each duct mode, q1, ß. Again 

here the n=0 term is given coefficient Ao/2 to create a Fourier cosine series. 
The potential, 02 is made up of purely transmitted waves and so using separation of 

variables as in Section 2.1 

X2(x) = A2e=" + Bee-i" (2.4.15) 

Y2(y) = C2 cosh(gy) + D2 sinh(qy) (2.4.16) 

where A2, B2, C2 and D2 are arbitrary constants and 

q= (v2 - 1)1. (2.4.17) 

Transmitted waves travel only in the positive x direction, so B2 =0 and since the lower 

surface of this duct is acoustically hard, D2 =0 also, so 

'2n = cosh(gn y)eiYnx 
(2.4.18) 

where, for convenience the arbitrary constants are omitted, v� = (qmm + 1)1/2 and q,,, n= 
0,1,2,..., oo are the roots of the dispersion relation obtained on substituting (2.4.18) into 

(2.4.5), that is 

a cosh(q ab) + ßq� sinh(q�b) =0 (2.4.19) 

and so 00 
02 =E B� cosh(gy)e"nx (2.4.20) 

n-0 

where the coefficients, B� are the complex amplitudes of each duct mode 02n. 

Equations (2.4.14) and (2.4.20) are a Fourier cosine series and a Sturm-Liouville series 

representation for ¢i and 02 repectively. The next step is again to substitute these into 

the conditions at the matching interface, x=0,0 <y<b. Continuity of fluid pressure is 

expressed by (2.4.6) and gives rise to 
co 00 2 2A0 

+E Al cos (/ 
La- y) 

=EB,,,, cosh(qy), 0<y<a. (2.4.21) 

l=1 \ 
m-o 

As before, the left hand side of this expression is a Fourier cosine series, so the standard 

techniques can be applied to find expressions for At, l=0,1,2,..., oo. Thus, for I=0 

°O a 
2+ Ao =äEB,,, cosh(gmy)dy 

m=0 

Jo 

2 -B,,, sinh(gmy) 
a m_o qm 

and, for l=1,2,3, ... 
0o 

At =ý Bm Ia 
cosh(gmy) cos 

(! ýyl dy 
m=0 0aJ 

2 co 

aE 
Bm Rlm 

m=0 

(2.4.22) 

(2.4.23) 
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where 

Rtm =Ja cosh(gmy) cos 
a) dy 

- 
(-1)tq, sinh(gma) (2.4.24) 

a 

These two expressions can be combined to give a single expression, that being 

00 
At = -2Sot_+ 

ýE 
B�, Rt,,,,, £=0,1,2, ..., oo (2.4.25) 

M=0 

where 5,,,,, is the Kronecker delta, defined by 

S[m= 1' 1=m (2.4.26) 
0, tom 

The second matching condition, (2.4.7) states that normal fluid velocity is also contin- 
uous across the interface and so, applying the expressions gained for 01 and 02 yields 

00 2-A°-EAýrýlcos 
' 0<y<a B�v� cosh(q�y) =2E( a) (2.4.27) 

ri=0 1 0, a< y<b 

Here, the left hand side is not a standard Fourier series and the right hand side is defined 

piecewise on 0<y<b. Thus, the standard Fourier series approach cannot be used to 
isolate either A� or B,,, n=0,1,2,.... However, the Sturm Liouville theory is applicable 

and so multiplying (2.4.27) through by cosh(q,,, y) and integrating from 0 to b gives 

00 b 2-AO a E B,, v� 
Jo 

cosh(gnV) cosh(gmy) dy =2 
Jcosh(q, 

y) dy (2.4.28) 

n-o 
00 

Alit Ja cos (1äy I cosh(q,, ºy) dy 

e_1 o 

From (2.3.22) the appropriate orthogonality relation (since, for this problem, t(y) = 1) is 

J0 cosh(gmy) cosh(qy) dy = 
C"' n=m (2.4.29) in 0, nom 

where 
C. = 

sinh(2q,, b) + 2q�b. (2.4.30) 
4qn 

On applying this result to (2.4.28), the coefficients B,,, n=0,1,2.... are expressed in 

terms of At by 

BnvnC� 
2-A° °aa r 

cosh(gny) dy - Atrýt 1 
cos 

(- i 
cosh(gny) dy 

J 
l-1 

-2- 
Ao1 

2J 
Ron - Ati? eR1n" 

(2.4.31) 

la 
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Now, having gained expressions for At, I=0,1,2, ..., oo in terms of an infinite summation 
of 'Bm, m=0,1,2.... oo and vice versa, it is possible to combine these expressions to form 

an infinite system for either purely A,,, or B,,, n=0,1,2,.... As in Section 2.1, a system 
for B,, is formed by substituting (2.4.25) into (2.4.31), that is 

Bn = 
[2Ron 

- 
Rp" 

BmRpm -2 77iBmRlmRIm (2.4.32) 
vriCn a 

m=O a 1=1 m=p 

This final solution throws up what appears to be a problem. The quantity Rim R1 

appears in the last term in the above expression and, from (2.4.24), it is clear that there 
, 
4,2 121r2 is a singularity for the case q, 2,, + =0 or q,, +=0. Consider simply RI,,, in the 

case where q,,, = `ä. By applying L'Hopital's rule to Rim it can be seen that 

lim RI, - 
(-1)1 [sinh(4ma) + qma cosh(gma)] (2.4.33) 

q, 7 2q, 
a 

However, since q,,, _ it-Ir 
, then 

lim Rtm _ 
(-1)1 [sin(ter) + it r cos(t7r)] 

9m-+ Ct, r 2ilar 
a 

a 
=2 (2.4.34) 

and so in this limit, RI, is defined by (2.4.34), likewise R&. 
The Mathematica code used to calculate the numerical solutions given later in this 

section is given in Appendix A. 2 

As mentioned previously, the Robin's boundary condition given in (2.4.5) for the sur- 
face occupying the region y=b, x>0, may have its behaviour altered by appropriate 

selection of a and /3. Specifically, it can be made to behave as a Dirichlet boundary by 

taking :A=0 or as a Neumann condition by taking a=0. The second of these cases is in 

fact the problem where all surfaces are acoustically hard, which was examined in Section 

2.1, and so requires no further consideration. The case where the upper boundary of the 

right hand duct assumes Dirichlet form is discussed as this particular problem will prove 

useful in later sections for comparison of results. 
In this specific case (ß = 0), condition (2.4.5) now becomes 

02 = 0, y=b. (2.4.35) 

It follows that q,,, n=0,1,2.... are now the roots of 

cosh(gnb) =0 (2.4.36) 

and so are simply found to be q. =j (2n 21*. n. 0,1,2, .... Thus, for this specific case 

02 =E Bn cos 
(2n -{- 1)iry 

e(2.4.37) 12b I n=o 
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where I 
vn 

(2n 1)27x2 ' 
(2.4.38) 

The method from here on in follows the same format as for the general condition, except 
that now, Rt,,, and C, a have the forms 

2b(-l)lsin [ 2n+1 "aj 
Rim = 

2b J (2.4.39) 
(2n + 1) jl 

- 2n+4V 
b2 
1a 

j 

and 
Cx =b 

(-1)"b 
+ 11 . (2.4.40) 

2l+ 1) 

When these new definitions are applied to (2.4.32), the appropriate system for this special 
case is obtained. Numerical solution is straightforward and highly accurate results are 
found with rapid computation. There is no problem with convergence in this case. 

2.4.1 Results 

The first two graphs show the effect that varying the value of a and 0 has on the moduli of 
the fundamental reflected and transmitted modes. In figure 2.11 the fundamental reflected 

mode is shown for a/, 0 = 0.1,1 and 10. It can be seen that in the case where a/p = 0.1 the 

graph follows a very similar pattern to that of the graphs showing fundamental reflected 

modes in Section 2.1, that is starting very close to zero and have peak values at b n7r, 

n=1,2,3 ...... This is because ß is much larger than a and so the boundary condition 
(2.4.5) is behaving in a similar way to 

002 
= 07 

äy 
as was the case in Section 2.1. 

(2.4.41) 

As the value of a/ß increases, the peaks on the graph move to the right. This shifting 
is caused by the roots of (2.4.5) moving due to the change from p being greater than a, 

to the case where 8 _- a and on to where a is much greater than P. Now, in this case, 
(2.4.5) is behaving more and more like 

02=0, y=b, (2.4.42) 

and hence the roots of (2.4.5) are now located at y- 2"2 1 'r, n 
In a very similar way, the characteristic troughs in the graphs showing fundamental 

transmitted modes, move from occurring at b n7r, n=1,2,3.... when ,Q»a to 

bN 2s 21 ", n=1,2,3.... when ß<a. 

Figures 2.13 and 2.14 show very similar characteristics, with their peaks and troughs 

respectively moving to the right of the graph as a/p increases. 
This movement of the peaks on the graph for the modulus of the fundamental reflected 

mode and of the troughs on the graph for the modulus of the fundamental transmitted 
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Figure 2.11: Plot of the modulus of the reflection coefficient of the fundamental mode for 
the hard/impedance problem with a=2.5 and varying b. The case where a/ß = 10 is the 
thin dotted line, a/ß =1 is the thick dotted line and a/p = 0.1 is the solid line. 
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Figure 2.12: Plot of the modulus of the transmitted coefficient of the fundamental mode 
for the hard/impedance problem with a=2.5 and varying b. The case where alp = 10 is 

the thin dotted line, a/ß =1 is the thick dotted line and a/ß = 0.1 is the solid line. 

mode can be easily explained. At the end of Section 2.1, analysis was conducted of the 

total power in the system. This analysis took the form of a power balance, where it was 

stated and confirmed that the total power introduced to the duct had to be equal to the 

total of that reflected and transmitted. It was further shown that although the reflected 

and transmitted power took the form of infinite sums, many of the terms in these sums 
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Figure 2.13: Plot of the modulus of the reflection coefficient of the fundamental mode for 
the hard/impedance problem with a=1.35 and varying b. The case where a/, 0 = 10 is 
the thin dotted line, a/p =1 is the thick dotted line and a/ß = 0.1 is the solid line. 
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Figure 2.14: Plot of the modulus of the transmitted coefficient of the fundamental mode 
for the hard/impedance problem with a=1.35 and varying b. The case where a/ß = 10 
is the thin dotted line, a/ß =1 is the thick dotted line and a/ß = 0.1 is the solid line.. 

had no effect in the far field. Only those eigenmodes associated with real positive roots 

of the dispersion relationship are significant as was explained in section 2.1. It was also 

noted that as the value of a (or b, dependent upon which amplitude is being considered) 
increases, more roots became real and `turn on' new modes in the far field. 

The same principles apply here: as the value of b increases, so the number of roots 
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Figure 2.15: Plot of the modulus of the reflection coefficient of the fundamental mode for 
the hard/soft problem with a=1.211 and varying b. 

of (2.4.19) that are real (and thus the number of transmitted modes that are significant) 
increases. However, for this problem, the location of the roots depends upon the ratio of 

a to p. When p»a, the problem is very similar to that considered in Section 2.1 and so 
the peaks on the graph of the fundamental reflected mode and the troughs on the graph 

of the fundamental transmitted mode occur very close to where they were located in that 

initial problem. As /3 becomes closer in value to a the peaks and troughs move across 

the graph. Once aK /j the location of the peaks and troughs tends towards (2n+1)" 

n=1,2,3,.... - 
The remaining four graphs show results for the case where /3 = 0, that is the special 

case described in (2.4.35) - (2.4.40). As stated, the roots of the boundary condition given 

in 2.4.36 are ` 2n+1 ýn=0,1,2 
.... It is easy to see from the graphs that new ()9, ý =2>>>>Y 

transmitted modes are turned on when b= (211), 
n 

These last four graphs will be used later in sections 3.3 and 4.3 for comparison with 

results from subsequent problems. 

2.5 The failure of the Sturm-Liouville theory for problems 
of ducts with a membrane surface 

In this section, the techniques applied to the two problems tackled so far will be used in 

an attempt to solve a problem of identical geometry but where one surface is modelled 

by a boundary condition that " contains second-order derivatives. As in the cases of the 

previous problems, the duct occupying the region 0<y<a, Fo <0 and 0<9<b, x>0 

with b>ä>0, where (i, 9) are the usual cartesian coordinates is closed so that the 

Z" 4' 68 10 



Chapter 2. Preliminary examples 

IB0I 

1. 

o. 

b 

37 

Figure 2.16: Plot of the modulus of the transmitted coefficient of the fundamental mode 
for the hard/soft problem with a=1.211 and varying b. 
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Figure 2.17: Plot of the modulus of the reflection coefficient of the fundamental mode for 
the hard/soft problem with a=1.51 and varying b. 

vertical surface F: = 0, ä<y<& forms part of its boundary. The surface y=b, x>0 is 

now occupied by a membrane, of tension T and mass per unit area p,,,, whilst every other 

surface is acoustically hard, see figure 2.19. 
The interior region of this structure is filled with a compressible fluid of sound speed 

c= w/k and density p, whilst the region exterior to the duct is in vacuo. A plain 

sound wave, of unit amplitude and harmonic time dependence with radian frequency w, 

propagates along the duct in the positive i direction. The dimensional boundary-value 

468 10 
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Figure 2.18: Plot of the modulus of the transmitted coefficient of the fundamental mode 
for the hard/soft problem with a=1.51 and varying b. 
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Figure 2.19: Physical configuration for the problem of Section 2.5 

problem is described in terms of the fluid velocity potential (x, y', t) which satisfies the 

wave equation. A time harmonic solution is sought and thus the velocity potential may 
be written in the form 

ýD(5ý, y>> _ (2.5.1) 

where satisfies Helmholtz' Equation, that is 

a2 02 
axe + äy2 +V &&t, y) = 0. (2.5.2) 
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Once again, the problem is to be non-dimensionalized with respect to a-length scale k'1 

and time scale w-1, and so the non-dimensionalised boundary conditions (2.1.7) to (2.1.9) 

still hold. The surface y=b, x>0 consists of a membrane for which the equation of 
motion is 

a2H a2H + axe cm ate =T IPý- (2.5.3) 

where H(2, y, t) is the membrane displacement, P(. ý;, y, ) is the fluid pressure (and so [P]+ 

is the pressure difference between the internal and external regions across the membrane 

surface) and c, = (T/p,,, )1/2 is the in vacuo sound speed of waves on the membrane. 
Equation (2.5.3) must be non-dimensionalised using the same basis as for the rest of the 

problem. However, there are some properties of H and P that need to be noted. With 

the chosen forcing, both these quantities have harmonic time dependence, thus 

P(ýý y>> = P(xý y)e-ýwtý (2.5.4) 

(2.5.5) 

where the fluid pressure perturbation, as derived in Crighton et al (1992), is 

related to the velocity potential by 

-p 
a 

tot = zwpýtot(x, y)e-: wf, (2.5.6) 

whilst the membrane displacement is given by 

oil 
=_a ; wf(2.5.7) 

O äyýtote . 
The membrane boundary condition can be expressed in terms of the velocity potential by 

substituting (2.5.6) and (2.5.7) into (2.5.3), thus gaining 

as a- w2 a- Pw2 - b+ (2.5.8) 
X2 äyýtot + T2 ayýtot =T [ýtt]b_. 

Then, given that Otot is related to tot by 

k2 Otot(X) Y) (2.5.9) 

and using the non-dimensional properties gained in previous sections, the non-dimensional 

membrane boundary condition is given by 

as aa otot b (2. s. lo) 
9X2 '+' iý (9y +« tot = o, y= 

where a= cep/Tk3 is the fluid loading parameter and µZ = C2/C2n is the non-dimensional 
in vacuo membrane wave number. Note that, since the region outside the duct is in vacuo, 

then 
[Ototl± = -Otot(x, b ), (2.5.11) 
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The non-dimensionalised boundary-value problem can now be described. in full. The 

governing equation is Helmholtz' Equation, that is 

V2¢+o= 0. (2.5.12) 

The duct has different height. on either side of the vertical line x=0, so this line is taken 

as the matching interface and the non-dimensional acoustic field is expressed in terms of 
two potentials, 01(x, y) for x<0 and 02(x) y) for x>0. Thus, 

j0,, x<0 Otot= 1 02) x>0 
(2.5.13) 

The boundary conditions imposed on 01(x, y) are 
a01 

= 0, y= 8y 

dN1 
= 0, y=a (2.5.15) 

äy 

whilst those on 02(x1 y) are 

002 
= 0, y=0, (2.5.16) 

ay 

a2 2 axe +µ 02V + a02 .=0, y=b. (2.5.17) 

The fluid pressure and normal velocity are continuous across the matching interface and 

these conditions are expressed in terms of the fluid velocity potential by 

01 = 02, X=0,0: 5 y<a (2.5.18) 

and 
0902 O<y<a, x=0 (2.5.19) 
Ox 0, a<y<b, x=0 

Unlike the problems of sections 2.1 and 2.4, an edge condition must be imposed at the 

point where the membrane meets the rigid vertical surface, that is, at the point (0, b). The 

edge condition specifies the behaviour of the membrane at the corner. Here, either 

Ay(0, b) =0 (2.5.20) 

or alternatively 
02xy(0, b) = 0. (2.5.21) 

The first of these two conditions implies behaviour similar to that of a hinge, allowing 

variation in gradient of the membrane at the point where it meets the rigid surface but no 

variation in displacement. The second of these conditions implies zero membrane gradient 
but variable displacement, so allowing the membrane edge to slide up and down against 

the rigid vertical surface. 
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The form of the duct to the left of the matching interface is identical to that of the 

previous two problems and the incident field is also the same. Thus, by the same method 
(separation of variables and application of boundary conditions), 01 will be of the same 
form as it has been in the previous two problems, that being 

eix + 
20 

e-ix +E An cos 
(! ) 

e-" 7"x (2.5.22) 
n=1 

2,2 

where rin = (1- )lea and the term for n=0 is taken outside of the infinite sum and 
the expression for 01 is in the form of a standard Fourier cosine series. 

The potential, 02 is made up of purely transmitted waves and so using separation of 
variables as in Section 2.1, where v� = (yn + 1)1/2 and -y,,,, n=0,1,2,..., oo are the roots 

of the dispersion relation obtained from (2.5.17), that is 

(yn +1- µ2)y� sinh(ynb) -a cosh(yrib) = 0. (2.5.23) 

It follows that 
co 

02 =EB, cosh(7nV)e: v�x (2.5.24) 

n=0 

where the coefficients, B� are the complex amplitudes of each duct mode. 
The only difference between the above analysis and that of Section 2.4 is the dispersion 

relationship. The expressions found for 01 and 02 take the same form as previous with 

l', ß replacing qti. It would seem natural, therefore, to follow the method of Section 2.4 

further. The next step is again to apply the conditions at the matching interface to the 

expressions for 01 and 02. Continuity of fluid pressure is expressed by (2.5.18) and thus 

00 00 2 2A0 
+ At cos 

äy) 
=EB, cosh(y,,,, y), 0<y <a. (2.5.25) 

t_I \ 
m-o 

The left hand side of this expression is in the form of a Fourier cosine series, whilst the right 
hand side is not (again, analagous to the method in Section 2.4). Hence the coefficients 
At, t=0,1,2, ..., oo can be found using standard Fourier analysis, to be 

2+ Ao =2 
°O 
> Bm 

ja 
cosh(7my)dy 

m=0 
2 Bm sinh(7m () 
a 

m=O 7m 

and, for t=1,2,3, ... 
04 

co sh(yzy) cos -dy At = B,,, fo 

m_o a 

2' 
QE Bm Rlm 

m=0 

(2.5.26) 

(2.5.27) 
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where 

Rem = 
JO a 

cosh(7my) cos 
(ßäy) 

dy 

- 
(-1)t7 sinh(y,,, a)) (2.5.28) 

7m +- 

Combining these two expressions gives the single equation: 

00 
Al = -25ol -I- a> BmRlm, £=0,1,2, 

... , oo (2.5.29) 

M=0 

where 55,,, is the Kronecker delta. 

Still following the method used in Section 2.4, the expressions for 01 and 02, that is 

(2.5.22) and (2.5.24), are substituted into the matching condition which prescribes that 

normal velocity is continuous, and so 

00 
2-Ao 

_ 
00 

Ajr? lcos( 
! ýry) 

0<y<a 
Bnvn cosh(-rny) =2 £=1 \a (2.5.30) 

n=0 0, a<y<b 

The series on the left hand side side of this equation is not a standard Fourier series, 

and so the usual Fourier techniques cannot be applied to isolate B,, n=0,1,2,.... In 

the previous case, the Sturm Liouville theory was applicable and so a similar approach is 

considered here as well. Multiplying through by cosh(ymy) and integrating from 0 to b 

gives 

E 00 
$�vI =2 2A0 

fa 
cosh(7ýºýºy)dy - Aerie Ja 

a 
cos 

(_ _-) 
cosh(7my)dy (2.5.31) 

n -1 
a 

where . lb I= J cosh(7�y) cosh(ry,,, y)dy. (2.5.32) 
0 

The integral, I, on the left hand side of (2.5.31) is easily evaluated to obtain 

y,,, sinh(y, �. b) cosh(y�b) - y� sinh(y�b) cosh(7mb) mn m- 
an 

sinh(2q,,, b) + 2q�b 
y 

=Cn, n=m 

(2.5.33) 

4q, 1 

As for the Sturm Liouville problem of Section 2.4 the dispersion, relation can be used to 

rearrange the above expression for m0n. In this case, following the steps of Section 2.4 

it is found that 

7m sinh(i b) cosh('ynb) -'y n sinh(ynb) cosh(y,,, b) 

y '1m sinh(y,,, b) cosh(y,, b) - yny� sinh(y�b) cosh(yb) 

µ2 
0 0. (2.5.34) 
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Clearly the eigenfunctions cosh(y�y) and cosh(rymy) are not orthogonal in the usual sense, 

and so the eigen-subsystem cannot be described as Sturm Liouville in nature. 
The difference here is the second-order boundary condition. It is well known that edge 

conditions must be applied at the junction between any two boundaries where at least one 

of the boundaries is described by a high-order condition. The number of edge conditions 

required depends upon the degree of the highest derivative in the boundary condition. For 

a second-order boundary condition, as mentioned above, one edge condition is required. 
Clearly, the Sturm-Liouville orthogonality relation (2.3.22) leaves no scope to apply such 

a condition. An original orthogonality condition must be derived. 

The analysis and subsequent conclusion that the Sturm Liouville theory does not apply 
here is not unexpected. The methods used to solve the hard/hard, hard/impedance and 
hard/soft problems are standard eigenfunction matching procedures, of which many exam- 

ples exist. Peat (1991) uses eigenmode matching techniques extensively to find numerical 

solutions to acoustic impedance problems involving a geometry of three ducts, either po- 

sitioned as inlets or outlets, whilst Dalrymple and Martin (1996) use an eigenfunction so- 
lution gained by the employment of Fourier transforms to examine the behaviour of ocean 

surface waves incident on an inlet. These approaches are limited however in that the ducts 

considered can still only be bounded by surfaces of Dirichlet, Neumann or Robin's type. 

This is borne out if (2.5.17) is compared with the boundary condition, (2.3.9) in Section 

2.3. It is clear that that (2.5.17) does not comply with the necessary conditions prescribed 
in Section 2.3 that are the minimum requirements to generate a Sturm-Liouville (and thus 

solvable) system for this particular type of problem. To solve the problem described in 

this section, a new orthogonality relation is required. 

2.6 Derivation of a new orthogonality relation 

The failure of the Sturm-Liouville method for solution of the problem in Section 2.5 raises 

the question of why the similar system in Section 2.4 can be solved and yet this one cannot. 

The only difference between the two is the upper boundary condition of the duct to the 

right of the matching interface, x=0,0 <y<b. The solution of the problems thus 

far has relied on the ability to obtain a Sturm-Liouville series for the eigenfunctions and 

eigenvalues associated with each duct. In Section 2.1, Fourier series are used, which are in 

fact special forms of Sturm-Liouville series. When considering the problem in Section 2.4, 

the duct on the right of the matching interface no longer yields a simple Fourier series and 

so a Sturm-Liouville series is sought instead. The fact that one is found should come as 

little surprise when the necessary conditions for Sturm-Liouville analysis to be viable, are 

considered. From Section 2.3, it was seen that for a Sturm-Liouville series to be obtained, 

the boundary-value problem must be of the form 

a<y<b, (2.6.1) 



Chapter 2. Preliminary examples 

aiY(a) + a2Y'(a) 

b1Y(b) + b2Y'(b) 

44 

=Ot (2.6.2) 

= 0,. (2.6.3) 

For the boundary-value problem in Section 2.4, the duct to the right of the matching 
interface meets all three of these conditions. In this specific case r(y) = 1, s(y) =1 and 
t(y) =0 whilst for the boundary conditions, al =0 and a2 =1 on a surface located at 

y=0 for the first, and bi =a and b2 =ß at y=b in the second. The conclusion of 
Section 2.3 was that if all conditions are met, a Sturm-Liouville series can be found, and in 

Section 2.4 this can be seen to be true. Given that Y, = cosh(gny) then the orthogonality 

relation given in (2.3.16) is easily seen to be 
b 

cosh(q,,, y) cosh(q,,, y)dy = 0, m0n. (2.6.. 4) JO 
The problem occurs in Section 2.5 as a result of the high-order of the membrane 

boundary condition. When 02 is substituted into the membrane condition the result, 

expressed in the notation used in Section 2.3, is 

Y"'(b) + (1 - µ2)Y'(b) - aY(b) = 0. (2.6.5) 

This third order derivative that is included in the condition that would correspond to 
(2.6.3) violates one of the necessary conditions required for a Sturm-Liouville series to be 

formed and hence, the method fails for the boundary-value problem attempted in Section 

2.5. 
To make the problem in Section 2.5 viable for solution, an orthogonality relation for 

the infinite set of eigenfunctions 

Y (y) = cosh(yriy), n=0,1,2,..., 0<y<b (2.6.6) 

where -' are the roots of 

(i' + 1-142)Yn(a) - aYri(a) = 0, (2.6.7) 

must be found. The method used follows a similar pattern to that used in Section 2.3 

for the formation of general Sturm-Liouville methods, but the resulting orthogonality 

condition is both different and original. The orthogonality condition is found by recourse 

to the unforced model system comprising an infinite two dimensional duct bounded by a 

rigid surface at y' =0 and a membrane of similar structure to that in the previous section, 

of tension T and mass per unit area p,,,, at y=a, where (2, y) are Cartesian co-ordinates. 

The interior region, 0<y<a, -oo <x< oo, contains a compressible fluid of sound 

speed c= w/k and density p, while the region exterior to the duct is in vacuo. 

As in the previous problems, the boundary-value problem is non-dimensionalized with 

respect to a length scale k'1 and time scale w-1. The governing equation in the dimen- 

sional problem is the Helmhotlz equation, which, when non-dimensionalised as described 

above, becomes 
020 +0=0. (2.6.8) 
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The lower surface of the duct is rigid, and so the boundary consition is given by 

00 
T = 0, o (2.6.9) 

whilst the non-dimensionalised membrane boundary condition, as previously derived in 
(2.5.3) - (2.5.10), is given by 

a2 
ßx2 + µ2 0y + «o = 0, y=a, (2.6.10) 

where a= w2 p/Tk3 is the fluid loading parameter and µ2 = c2/c, 2 is the in vacuo 
membrane wave number. 

Separable solutions to (2.6.8) that satisfy boundary conditions (2.6.9) and (2.6.10) 

have the form 
00 E anY"W eil"'x (2.6.11) 

n=o 
where the eigenfunctions, Yn(y), n=0,1,2,..., satisfy the system 

yn (Y) - *Inyn(Y) = 0, (2.6.12) 

('fn + 1- µ2)Yn(a) - cYYn(a) = 0, (2.6.13) 

yn(0) = 0, (2.6.14) 

with -in = (vn - 1)1. Here and throughout a prime indicates differentiation with respect 

to y. To obtain the orthogonality relation, first define function fn(y) by 

fn(v) = (, Yn + 1- µ2)1'm(2) - aYn(y)" (2.6.15) 

Clearly, from (2.6.13) and (2.6.14) 

[fn(y)Y, (y) - fm(Y)Y'n(y)] 
0=0, 

n (2.6.16) 

4py=u 
Figure 2.20: Physical configuration of a two dimensional duct,. bounded on its upper 
surface' by a membrane 
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which can be rearranged as 

[(7n 
- -tm)Y. (y)Ym(y) - a(Yn(y)Y, n(y) - lm(y)1'n(y))10 = 0, m On. (2.6.17) 

Equation (2.6.17) can be expressed in integral form as 

(. - 7'm)Yn(a)Yi (a) -af 
[Y. (y)y (y) - Ym(y)Yn (y), dy = 0, m n. (2.6.18) 

Applying (2.6.12) to the second gives 

(7n - 7m)Yn(a)Ym(a) + a(-y, 2, 
- 7r2rº) 

fYn(y)Ym(y)dy 

= 0, m n. (2.6.19) 
a 

It follows that, 

a 
ja Yn(y)Ym(y)dy+Y'(a)Ym(a) = 0, m#n. (2.6.20) 

te, from (2.6.12), that Y� (y) is actually a function of both y� and y. The equivalent No 

expressions Y�(y) = Yn(-yn, y) will be used as appropriate in the following steps. For 

m=n, the left hand side of (2.6.17) and (2.6.20) can be equated to obtain 

a1aY,, (y)Ym(y)dy + Y, (a)Y, (a) _ (2.6.21) 

lim 
{'Yn2yn(y) 

- aYn(y)} 1'x(7, y) -{ Y21'"(7, y) - aY('Y, y)}Y", (y) a. 

'Yý Yn yn 2 72 0 

This limit may be evaluated using L'Höpital's Rule. The derivative of the numerator with 

respect to 7 is 

[ýnYri(Y) 
- aYn(y)] dyY, (7, ýJ) - ý'n(y) [27Y'(7, 

y) + 7'2 l', (7, Y) -ad -Y(7, y), 
(2.6.22) 

whilst that of the denominator is simply 27. On evaluating (2.6.22) at the limits specified 

in (2.6.21) and dividing by 2y it is found that 

lim 
{yný'I 

- Cy 'Y (y)} Y'(, y) 

yn 
- 

-{ya 

y2ý''(y, ') - aY(y, y)} 1 (y) 

'' " 0 

_ 
Y,, ' (a) a (2.6.23) 
2 7,, dry 

where K(s) is the dispersion function given by 

K(S) = (y2 +1- µ2)Y'(7, a) - aY(7, a), y= (s2 -1)2 . (2.6.24) 

This is consistent with (2.6.13) which states that K (v, ) = 0. 
It follows from (2.6.20), (2.6.21) and (2.6.23) that the orthogonality relation for the 

eigen problem specified by (2.6.12)-(2.6.14) is 

afa Ym(y)Yn(y)dy + YY(a)Y, (a) = bmnCn (2.6.25) 
0 
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where 
Cn Y,, (a) d 

Kls)ý'Y=7n (2.6.26) 
tin .7 

and ö,,, n is the usual Kronecker delta. Note the extra term, Y�a(a)Y�(a) on the left hand 

side. It is this which enables an edge condition to be applied at the edge of the membrane. 
The orthogonality relation, (2.6.25), may be written as an inner product of eigenfunc- 

tions 
(YmIYn) = smnCn" (2.6.27) 

This definition may be extended to functions that are sufficiently differentiable over the 
interval 0<y: 5 a and have the form 

to obtain 

9(y) _E bnYY(y) (2.6.28) 
n=0 

ý9ý ý'rrºý =a 
fa 

g(y)Ym(y) dy + g'(a)Ym(a) = bnºC m. 
(2.6.29) 

Expression (2.6.25), in a slightly" different form, has been discussed by Warren & Lawrie 

(1999), and a generalised form of this orthogonality relation can be found in Abrahams 

& Lawrie (1999). It is this result together with the inner product representation (2.6.29) 

that enables the boundary-value problem of Section 2.5 to be completed. 
The derivation of specialised orthogonality relations to solve non-Sturm-Liouville boundary- 

value problems is not uncommon. Indeed, such orthogonality conditions are found in many 
fields of applied mathematics: Mclsaac (1991) considers orthoganality relations applicable 

to electromagnetic fields in waveguides of a specific type; Folk & Herczynski (1986) and 

Herczynski & Folk (1989) derive orthogonality conditions by which the coeffiecients in the 

eigenfunction expansions for vibration within an end-loaded elastodynamic slab'are found; 

and Rao & Rao (1988) examine the flexure of rectangular plates, using an orthogonality 

condition specific to the eigenfunctions found using refined plate theories. In all these ex- 

amples, the eigen-sub-systems are not Sturm-Liouville, however, specialised orthogonality 

conditions can be found. 



Chapter 3 

Reflection and transmission at the 
junction of a rigid duct with a 
duct of different height, bounded 

on its upper surface by a 
membrane 

In section 2.5, a boundary-value problem was specified and an attempt made to solve it 

using methods taken from Fourier Series analysis and Sturm-Liouville theory. It was seen 
that the attempted solution method was inappropriate. The reason for this failure is that 

the above techniques utilise a simple orthogonality relationship which the eigenfunctions 
for the problem in 2.5 do not satisfy. A different approach to this problem is required. 

That different approach was found in the form of (2.6.29), an orthogonality condition 

that is borne directly from the dispersion 'relation 'associated with a duct of similar form 

to that found to the right of the matching interface in'the problem in section 2.5. In this 

section, that orthogonality condition will be applied to the problem in section 2.5 and a 

system of equations, similar to that found in sections 2.1 and 2.4 will be found and used 

to gain a solution for the problem. The results that this yields will be compared with the 

results from two special cases. Firstly, the case where a=b (a and b being the heights 

of the two ducts as indicated in figure 3.1) for which the problem can be solved using 

the Wiener-Hopf technique. Secondly, by selecting the values of a and y (a being the 

fluid loading parameter and µ is the non-dimensional in vacua membrane wave number) 

appropriately the membrane boundary condition can be made to mimic the behaviour 

of a Dirichlet (soft) boundary condition and so the solution can be compared with that 

obtained for the hard/soft problem in section 2.4. 

48 
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3.1 Solution of the problem 

In section 2.5 the problem was specified and non-dimensionalised, and so at this point the 

non-dimensionalised boundary-value problem is simply re-stated. The governing equation 
is Helmholtz' Equation, that is 

v2 ý+4=0. (3.1.1) 

The vertical line x=0 is taken as the matching interface and the acoustic field is expressed 
in terms of two potentials, 01(x, y) for x<0 and 02(x, y) for x>0. Thus, 

01, x<0 
tot= 021 x>0 

(3.1.2) 

The duct lying in the region x<0,0 <y<a has rigid boundaries, so the conditions 
imposed on q51 (x, y) are 

ai 
= 0, y=0, (3.1.3) 

8y 
1901 
äy = 0, y=a. (3.1.4) 

The upper surface of the duct lying in x>0,0 <y<b comprises a membrane, the 

non-dimensionalised boundary condition for which was derived in (2.5.3) - (2.5.10), whilst 

the lower surfaces is rigid, hence for 42(x, y) 
02 

= 0, y=0, (3.1.5) 
y 

a2 
ax2 + µ2 02y `{- 0102 = 0, -y=b. (3.1.6) 

The fluid pressure and normal velocity are continuous across the matching interface 

and these conditions are expressed in terms of the fluid velocity potential by 

01 =kx=0,0 <y <'a (3.1.7) 

and 002 ä, 0<y: S x=0, (3.1.8) 
8x 0, a<y<b, x=0. 

The two possible edge conditions will be considered here. As mentioned in section 2.5, 

these are 

or alternatively 

02y(0, b) =0 (3.1.9) 

02zy(0, b) = 0. (3.1.10) 

As in previous problems, eigenfunction expansions for ¢1 and 02 are required. These 

are found in (2.5.22) to (2.5.24) and are re-stated here as 

ix ADe ix 
X3.1.11) ýi-e +2 +F_ A,, cos 

n=l 
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{+2}2Y+2 ä=0 

oiv=0 

Incident 

Reflected 

b 

0 
U 
H 

N 

Q 

Transmitted 

Oiy=0 U1 c52y=0 

Figure 3.1: Physical configuration for the problem of section 3.1 

where 'in = (1- n'2 7r2 and 

00 
02 =E Bn cosh(, 'ny)e"n' (3.1.12) 

n-0 

in which vn = (7n + 1)1/2 and y,,, n=0,1,2,..., oo are the roots of the dispersion relation 

(. y +1- µ2)y� sinh(yb) -a cosh(y�b) = 0. (3.1.13) 

The expression for ý1 is a Fourier cosine series and so the method for finding At, I= 

0,1,2, ..., oo is. the -same as in sections 2.1 and 2.4. On applying the matching condition 

that enforces continuity of fluid pressure at the interface x=0,0 <y<a to (3.1.11) and 

(3.1.12), it is found that 

00 2 
2Ao 

+, Atcosh iýäyl 
=EB,,, cosh(7,,, y), 05y<a. (3.1.14) 

It follows that 
At = -26ot +2E BmRlm, £=0,1,2, ..., oo (3.1.15) 

a 
m=0 

where 

Rim =f cosh(-y,,, y) cos 
ad 

y 

= 
(-1)t-ym sinh(ym, a) (3.1.16) 

7m -1- 
'T 
a 

and &t n is the usual Kronecker delta. 
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Up to this point the method is directly analogous to that of sections 2.1 and 2.4. 

However, at this point, as demonstrated in section 2.5 a different approach is required 

and is supplied by the new orthogonality relation derived in section 2.6. On substituting 
(3.1.11) and (3.1.12) into the condition for continuity of normal velocity, it is found that 

Bnvn cosh(7ny) =2 2Ao 
At* cos 

(i7ry0 
y<a (3.1.17) 

00 

n=o a<y<b 

which, using the notation of section 2.6, can be rewritten as 

(y) _B2 

Ac 
-> Al* cos 

(iäy) 
,0<y<a 

00 
9 (3.1.18) nv�Y" 

2 
l_1 

n=0 0, a<y<b 

where Y,, = cosh(ry�y). On multiplying this by aY�a and integrating over the range 0< 

y<b, it is found that 

00 
aj 

6 
9(y)Y+ndy =afa2 2A0 -E A117a cos 

(I ) 
Ymdy. (3.1.19) 

l=1 / 

Expression (2.6.29) is now used, that is 

afb 9(y)1'm(y) dy + g'(b)Y,, (b) = B�av r. C�,, (3.1.20) 
0 

which can be rearranged to yield 

a 
Ja 

9(y)Ym(y) dy = BmvmCm - g'(b)Ym(b) 

= B,. nvmCm - EY�(b), (3.1.21) 

where it can be seen by comparing (3.1.12) with (3.1.18) that 

00 
E= -i02xv(O, b) _E Bmv Y (b) (3.1.22) 

and 

Cm = 
Yýý(b) d 

K(s)ý Y='Ym 27m d7 
a2 

=2+ 
(-t, 

' + y, 
2 

%1sinh2(7b)" (3.1.23) 

For computational purposes it is more convenient to use the coefficient C;, defined by 

aC, '� which is obtained from (3.1.23) by using (3.1.13), thus 

C __ 
1b+ (2-y, + v, 2 - µ2) sinh(27�tib) (3.1.24) 

m2 27m(vm - µ2) 
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The left hand side of (3.1.21) can be replaced with the right hand side of (3.1.19) and it 

is then found, after rearrangement, that 
n() a o0 

B, = 
EY b+ ý* 2- Ao 

-E AIN cos 
()] äy Ydy 

Yný'n vny n02Z, 1 

= 
EY"(b) 

-I- 
C {{2_Ao}RARJ 00 

ln (3.1.25) 
v" " v" n l=l 

Once again, an expression for At, Z=0,1,2,..., oo in terms of a infinite sum of B., m= 

0,1,2.... have been found and vice versa and so, an infinite system of equations in only 

one set of coefficients can be formed. As in previous cases, here a system for the coefficients 
B., n=0,1,2,..., oo is formed and from that At can be found. So on eliminating At, I_ 

0,112, ..., oo between (3.1.15) and (3.1.25), it transpires that 

'7n sinh(7 b)E 1 Ro� E BmRom -2EE Bm? 7tRtmRln B� = 
V'C' 

+ 
V. C'*' 

[2Ron 
-aEa 

t_l, n_o (3.1.26) 

For most ranges of parameters, this system is sufficiently convergent to provide results 

of high accuracy even for a truncation of only a few terms. This reflects the fact that 

the behaviour at the corner (0, b) is not singular. However, in the case where a=b, 
the resulting truncated matrix is diagonally dominant with diagonal elements that are 

constant and thus, non-convergent, which makes computation of a complete solution using 

the system described by (3.1.26) impossible. To remove this undesirable behaviour from 

the solution matrix, the behaviour of the terms on the diagonal must be considered. As 

mir m --+ co then 7m . --4 -, and for the case where I=m, the expression Rtm as given in 

(3.1.16) takes on the form 

(-1)'Csin ýba a 2b 
Ru -, lir(b2 -a 2) ) 1-+ oo. (3.1.27) 

For the case where a=b, L'Hopital's rule is applied to give, . 
Ra --i- 2a, 

1 -+ oo, b -+ a. (3.1.28) 

To improve the convergence of the diagonal terms in the system of (3.1.26), for this special 

case, the diagonal terms must be removed. To complete this, first define 

A, a S6m = Rtm 
2 

(3.1.29) 

Hence, (3.1.15) can be rewritten as 
00 

Al _ -26ot + Bi +2 Bmslm� = Of 1,2,. 
.., oo (3.1.30) 

m=0 

and (3.1.25) becomes 

_ 
EY, '(b) 

+12- Ao aA °° B^ - vnCn vnCn 2 {t_IRo. 
_ 2 ý" A¬i ySln 'n=0,1,2,.... 

(3.1.31) 

t-1 
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At this point, some caution is required. In the case where n=0, (3.1.31) must be 

considered carefully since the term QA2 n is gained by drawing through a term from a sum 
from I=1 to co and so (3.1.30) cannot be used to find Bo. As a result, for the case where 
n=0 alone, (3.1.30) is applied to (3.1.25) to give 

, () CO 00 00 Bo = 
EY° b 

-I- 
1 [Roo_ R00 

-2 -I- Bo +2 Bm So�ti 2 
V0 voC 2dF, - 17 B»,, RlORc�, 

° M=O 1=1 M=O 
(3.1.32) 

The above expression may be rearranged as 
00 00 2voCo + Roo 

= 
EIY(b) Moo 

_ 
Roo °O 2 

17BmReoRim Bo 
j 

2voCo 
, 

v0C0 
+ 

voCO avoCO 
EB Som - avoCo 1=1 M=O (3.1.33) 

and so 

2E äö(b) 
., }, ARoo -2 

Roo 00 A 0' 00 

A. So,,, - tItBmRtoRtm 
Bo = m=O 1.: -1 m=o (3.1.34) 

2voCo + Roo 

For the cases where n=1,2,3,..., (3.1.30) is substituted into (3.1.31) and results in 

Bn = 
vYCb) 

-F 
Ron 

- 2R 
C 

-2 + Bo +2 BmSom C* nnn , mco 
00 00 00 

- 2yn (ern 
B+º +aE Bm 

ºSnm - 
vnCý 

'743t, 
[Be 

+ Bm Sim 

n=1,2,3,.... (3.1.35) 

The coefficient B,, is easily isolated to obtain 

r2ynC*R + 1m al EY'(b) 
+1 

RpnB0 ROn 

E'o Bm SOm B IL 2v1, C J= 
VnC,,, VnC'n 

{2RO, 
t -2-2 

M=o 
r7�a 00 00 00 00 

-2E BmSnm -E 77t SI, BI -EE %7tBmSimSill I 
m=0 1=1 1=1 7A=0 

n. =l, 2,3,.. (3.1.36) 

and hence 

= 
{2EY(b) 

ý 
Bn + 4Ron - RonBo -2 aon 

1: BmSom - 277, E BºnSnm 
m=0 m=0 

4 00 00 

.... -2 
E i]tBtStn -EE i77BmSlmstn (2vn%n* ̀F' rina), 'n=1,2,3, 
t=1 t=l m=o 

(3.1.37) 

The system described by (3.1.34) and (3.1.37) for B,,, n=0,1,2,... is suitably convergent 
but as yet incomplete as the value of Eis not specified. However, as stated previously, there 

must be an edge condition imposed at the point where the membrane meets the vertical 
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rigid surface. The two possible edge conditions, (3.1.9) and (3.1.10), will be considered in 

turn. 
To enforce the first edge condition, q2(0, b) = 0, consider first the form of 42 given in 

(3.1.12). Differentiating this with respect to y and evaluating at the point (0, b) gives 
00 

c'2y(0, b) = E77Bn sinh (ynb) = 0. (3.1.38) 
n=0 

On substituting for Bn via (3.1.26) it is seen that 

00 y� sink (ynb) Rpn °° 
0=E 

[7n 

sinh(ynb)E +a 2Ro� -E BRRo, �, 
n=0 

vncn a 
m=0 

00 2 00 

-aý, B*r+r1ýR4mRen (3.1.39) 
1=1 m=0 

which maybe rearranged to obtain 
°° ay� sinh(ynb) Ron 00 2 00 00 [2Ro. 

- BmRom --E Bm1l1RlmRln 

o V, c", a 
m=o 

a 1=1 m=0 E. _n= (3.1.40) 
yjsinh'(yjb) 

i=o vjcj 

The imposition of the second edge condition, 02., y(0, b) =0 is much more straight 
forward. From (3.1.12) 

00 
ý2xy(0, b) =z1: v�mynB� sinh (y�b) = 0, (3.1.41) 

however, in (3.1.22), it is stated that E= -i02ýy and so it follows directly that 

E=0. (3.1.42) 

So, in contrast to section 2.5 where Sturm-Liouville treatment of this problem failed, 

here a viable system of equations has been found. To check that the results of this system 

are accurate, some comparison problems are required. One such problem is the problem 

where the upper boundary of the duct to the right of the matching interface consists of 

a surface with a Dirichlet boundary condition. This problem was discussed at the end 

of section 2.4 and results for that problem were given. Later in this chapter these will 

be compared with results for the heavy fluid loading case of this example, that is where 

a»1 and µ is of moderate value. Under these conditions, the dispersion relation, given 

in (3.1.14) is approximated by 

a cösh('y�b) =0 
(3.1.43) 

which is the same form as that for a Dirichlet boundary condition. A further comparison 

problem is investigated in the next section, where the case where a=b is solved using the 

Wiener-Hopf technique. 
The Mathematica code for the system found in this section is given in Appendix B. 1. 
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3.2 The Wiener-Hopf technique for the case a=b 

In the case where a=b the problem solved in section 3.1 is amenable to solution by 

the Wiener-Hopf technique. The technique involves dividing the complex plane into two 
halves, overlapping in a strip of analyticity. In this strip, e_ < `a(s) < E+, some known 
function K(s), the Wiener-Hopf kernel is regular and non-zero. This function is decom- 

posed into a product defined by 

K(s) = K+(s)K_(s) (3.2.1) 

where K+(s) is regular and non-zero in s(s) > e_ and K_(s) is regular and non-zero in 

s(s) < e+. Note, that in order to obtain a strip of the form c_ < U(s) < E+ it is often 

necessary to introduce a small, positive imaginary part to the wavenumber, k. In what 
follows below, this is assumed. Usually, it is also necessary to decompose a forcing term 

into a sum of the form 

F(s) = F+ (3) + F_ (s). (3.2.2) 

These factorizations, together with the Wiener-Hopf process, enable one to recast an 

expression of the form 

K(s)ýP+(s) +'_(s) + F(s) =0 (3.2.3) 

into a form whereby explicit expressions for ±(s) can be obtained. The method is ex- 

plained in detail below, although a more comprehensive discussion of the Wiener-Hopf 

technique can be found in Noble (1958), and many specific examples of its applications to 

problems in structural acoustics can be found, for example Cannell (1975), Brazier-Smith 

(1987) and Lawrie (1986,1987). 

Apart from the fact that a=b the duct is constructed in the same way as that in section 

3.1 and so the non-dimensionalised boundary-value problem has governing equation 

p20 +0_ (3.2.4) 

where «(x, y) is the time independent scattered potential and the total field is given by 

ctot = «(x, y) + e". (3.2.5) 

The boundary conditions are now 

00 
ay 

00 
äy 

a2 2 Ob ao µ ä2Z {+}+ 

= 0, Y=o, - oo <x< oo, (3.2.6) 

= 0, y=a, x<0, (3.2.7) 

_ -ae`s, y=a, x>0. (3.2.8) 

As in section 3.1, one of two possible edge conditions must be applied at the point y= 

a, x=0. The choice is either 

c , (O+, a) =0 
(3.2.9) 
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or 
0,, y(0+, a) =0 (3.2.10) 

where the superscript `+' indicates that these edge conditions are to be applied on the 

edge to the right of the line x=0, see figure 3.2. 

On taking the full-range Fourier transform of the governing equation, it is found that 

'Iýyy-'Y2`ß=0 

where ý(a, y) is the Fourier transform of «(x, y) and y= (s2 -1)2, and so 

4(s, y) = A(s) cosh(yy) + B(s) sinh(ryy). 

The Fourier transform of boundary condition (3.2.6), is 

IDy(3,0) =0 

which implies that B(s) =0 in (3.2.12). Hence 

4ý (s, y) = A(s) cosh(yy). 

(3.2.11) 

(3.2.12) 

(3.2.13) 

(3.2.14) 

The full-range Fourier transform can be defined as the sum of half-range transforms, viz 
to 

E3, Y) =J q(x, y)essadx + 
rý 

O(x, y)e" dx 

00 
Jo 

= dý-(s, y) + "+(3, y)" (3.2.15) 

Hence, on applying the lower half-range transform to the boundary condition on the upper 

surface of the duct for x<0, it is found that 

4ýy_(s, a) = 0. (3.2.16) 

Now, on differentiating (3.2.14) with respect to y, 

ýv(s, a) _ iDv-(s, a) + -Pb+(s, a) = A(s)y sinh(ya) (3.2.17) 

Figure 3.2: Physical configuration for the problem of section 3.2 
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and so, using (3.2.16), it is clear that 

A(s) I 
inh(7) 

(3.2.18) 

It follows that 

which can be recast as 

cosh(ryy) 
y) _ ýv+(sý a) (3.2.19) 

y sinh(ya) 

+(s, a) = -I)v+(3, a) 
cosh(rya) 

- ý5 _(a, a). (3.2.20) 
y sinh(ya) 

Now, on taking the upper half-range Fourier transform of boundary condition, (3.2.8), it 
is seen that 

J00 0vxxeisxdx + µ2 it, v+(s, a) + aýP+(s, a) =- fo 00 
ae''(l+3)dx (3.2.21) 

which can be integrated to obtain 

P(s) - (32 - IU2)a) + aýP+(s, a) _1+s (3.2.22) 

where 

p(s) _ -ýyx(0, a) + isc, (0, a). (3.2.23) 

It is also worthy of note that the right hand side of (3.2.22) contains a singularity in 

the lower half-plane, at s= -1. This will be of significance later in the method. On 

eliminating +(s, a) between (3.2.22) and (3.2.20), the Wiener-Hopf equation is obtained, 

namely 
K(s)L, +(s, a) + a4-(s, a) - p(s) -1+s=0 

(3.2.24) 

where the kernel, K(s), is defined as 

K(s) - s2 - µz a cosh(rya) (3.2.25) 
-ysinh(7a) 

Equation (3.2.24) is now in the form prescribed by (3.2.3) and is valid only in the strip of 

analyticity (see figure 3.3). 

As mentioned above, a product factorization may be defined for K(s) such that 

K(s) = if+(s)K-(s) (3.2.26) 

where 
K+(-s) = K-(s). (3.2.27) 

This factorization is performed later in the section, but for now it is only necessary to 

know that it can be done. The aim is to rearrange (3.2.24) so that all functions that are 

regular and non-zero in the region"¬ > f_ are on the left hand side of the expression and 
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Figure 3.3: The complex s-plane 

those that are regular and non-zero in the region e< E+ are on the right. On dividing 

(3.2.24) throughout by K_ (s) it is found that 

K+(s)ýv+ýsý a) = 
P(s) + 

is 
_ 

a(P _(s, a) (3.2.28) 7f--(s) K-(s)(1-ß- s)'' K- 

There remains only one problem with this expression which occurs in the second term on 

the right hand side. This does not completely fulfill the criteria set out above, because 

1/(1 + s) has a singularity at s- -1 and is, therefore, not regular in the region e< E+. 

However, this can be overcome by, performing a sum split on the term in question, that is 

is 
_ 

is 1`1 is 32 29 
K-(s)(1 + s) (1 + s) 

CK_(s) 
^ K+(1)j + K+(1)(1 + s)' 

() 

On substituting this into (3.2.28) it is found that 

Ii+(s)I'y+(s, a) - 
P(s) + 

is f1 aý-(s, a) 
K+(1)(1 + s) K-(s) (1+ s) 

[K-(s) 
K+(1)J x-(3) 

(3.2.30) 

As mentioned above, this expression is valid only in the strip of analyticity, c- <E<E... 

However, analytic continuation can now be used to extend the definition of both sides of 

(3.2.30) beyond the strip. It is easily shown that 

and also that 

li'f(S) _ 0(8), Isl -' co, (3.2.31) 

P(s) = 0(s), 1s1 -' oo, 
(3.2.32) 

ýv+(sºa) = 0(8 ß), ýsý -g oo, O< /3 < 1, (3.2.33) 

implying that 4y(x, a) has, at worst, an integrable singularity. It follows that the left hand 

side of (3.2.30) is of order sl'Q, s --> Co in the strip whilst the right hand side is of order 
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1. Thus, appealing to Liouville's theorem, it is apparent that both sides must be equal to 

some constant. Later in this section, an expression for K+(s) is found, given in (3.2.85). 

This is later expanded in (3.2.95) from which it is easy to see that 

K+(s) N -is, 8--+00. (3.2.34) 

Thus, when this is considered in relation to (3.2.28), it can be seen that this constant is 
qy(0, a) and so, 

K (s)ýv+(s, a) -+ s) -4 , (0, a) (3.2.35) 
K+(1)(1 

from which it is seen that 

dar+(s, a) = K+(1)K+(s)(1-' s) 

ýK+()) (3.2.36) 

It remains to evaluate 0y(0, a) by application of an edge condition. The two possible 

choices, as detailed in (3.2.9) and (3.2.10) are taken in turn. 

Case(i): Oy(0, a) =0 
In the case where ýy(0, a) = 0, it is easily seen that (3.2.36) becomes 

ýy+(s, a) = K+(1)KK+(3)(1 + s) 
(3.2.37) 

and, it follows from (3.2.19) that 

is cosh(yy) (3.2.38) 
h+(1)X+(s)(1 + s)7 sinh(ya) 

Hence, 
1f °O is cosh(y7, )e-"x 

ds. (3.2.39) 
2r 

_ý K+(1)K+(s)(1 + 3)y sinh(ya) 

Case(ii): cyx(0, a) =0 
On comparing (3.2.33) and (3.2.36), it is clear that 6=1 and so 

00 

a) = 4y(x, a)e; sxdx. (3.2.40) 
0 

The form of iky+(s, a) as s -+ oo can be obtained by replacing OV(x, a) by its MacLaurin 

expansion. Hence, on evaluating the first two terms it is found that 

I)v+(s, a);: tý sßv(0, a)- 
saýyx(0, 

a)+..., ýsý --> 00. (3.2.41) 

Now, to complete the expression for 4ýy+(s, a) as given in (3.2.35), jb(0, a) must be evalu- 

ated, and to accomplish this the right hand side must be expanded in powers of s so that 

a comparison with (3.2.41) can be made. For this purpose K+(s) is expressed as 

K+(s) "r is f1+3 -ý ... 
(3.2.42) 
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where x is the constant term in the asymptotic expansion of K+(s) and will be calculated 
later in the section. So, using this in (3.2.36), it is found that 

a 
(1 

+3\ 
-1 (1 

+Si a) 
(1 

+3 
ýv+(s, a) N K+(1)82 

Jfs 
-I- .... (3.2.43) 

This can be expanded using the binomial expansion to give 

aK ßs2 (i-! 
++... 

) 
+(a) ^' K+(1)32 

, +, 
iOv(0, a) 1- s+ 322 +... 

) 
, (3.2.44) 

which can. be rearranged as 
iq , (O, a) 1als+h, 

+(1) 
- -I- 0 

(-v). (3.2.45) 

On comparing this with (3.2.41) it is clear, since Oyý(0, a) = 0, that 

0, (0, a) If+(1)i. 
(3.2.46) 

Hence, 
is 11+ (3.2.47) ýy+(s> a) = K+(s)If+(1) 1+s 

and from (3.2.19) 

is cosh(yy) 11 
y) _+ (3.2.48) ( 

K+(s)K+(1)7sinh(7y) 1+s x 

By combining this with the result from the application of the previous edge condition, it 

follows that 

)=2f °O is cosh('yy)e y1+ D1 s. (3.2.49) 
oo K+(s)K+(1)ry sinh(ya) 

t 
1+ sJ 

where 
D. 0, `ßv(0, a) =0 (3.2.50) 

KI 
ovx(0, a)=0 

Expressions for c(x, y), valid for the two edge conditions, ßy(0, a) =0 and Oy (0, a) = 0, 

have been found. To find analytic expressions for specific reflected and transmitted modes, 

O(x, y) must be evaluated using residue calculus. Here, it is only the fundamental reflected 

and transmitted modes which are of interest. The relevent pole for the fundamental 

reflected pole is at s=1. Since x<0, the contour of integration is closed in the upper 
half-plane and so 

1- ým -(s - 1)a cosh(ryy)e-'sx 1+D 
P(ý' ) 

8-"1 K+(1)K+(s)-y sinh(7a) 

{1+s 

_ 
-ae-ixE 

4a[K+(1)]2 

= Roe-`= (3.2.51) 
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where p(ß, 1) is used to denote the residue of ý at s=1 and 

E=1,0y(0, a) 0 (3.2.52) 
K7 

oyx(0, a) =0 

Thus, 
JRoj = 4a[KK (1)]2 

(3.2.53) 

For the fundamental transmitted mode, To, a similar process is employed. The relevant 

pole is now s= -vo . 
Now, x>0 so the contour of integration is closed in the lower 

half-plane. Note that there is also an additional pole at s= -1 which will be captured, 

corresponding to the forcing wave. This is the same pole that was noted in (3.2.22). With 

this pole included it should be further noted that the forcing wave is removed from the 

final value of ITo1. Thus 

P(0, -vo) _ Um -(s + vo)a cosh(yy)e-'sx 1+ 
DI] 

0o Kf+(1)K+(s)-y sinh(ya) 

{ 
l+ S 

_ -ae"0 K_(-vo) cosh(yoa)F 
4aK+(1)K'(-vo)(1-- vo)yo sinh(yoa) 

= T0 eivax 

where 

Thus 

1,0. (0, a) 

r. 2 0�, (0, a) _0 
k 1-v 

ITOI = 
aK- (-vo) cosh(yoa)F 

4aK+(1)K (-vo)(1- vo)7o sinh(7oa) 

(3.2.54) 

(3.2.55) 

(3.2.56) 

3.2.1 Factorisation of the Wiener-Hopf kernel and determination of ic 

In order to evaluate expressions (3.2.53) and (3.2.56) for Ro and To respectively, it is 

necessary to specify K+(s) and n. First consider K(s), that is 

K(s) = sa _ A2 _a 
cosh(7a) (3.2.57) 

-y Binh(-ja)' 

where, as previously, 7= (s2 -1)1. This may be rewritten as 

32 58 s_ -f 
(s) ýý 

-t sinh(ya) 
(. ) 

where 
f (s) = (s2 - µ2)y sinh(ya) -a cosh(ya). (3.2.59) 

Now, f (s) has no poles, but does have an infinite number of zeros located at s= ±vn, n= 
0,1,2,. --. Furthermore, f (s) is an even function of s and hence, can be written in an 
infinite product representation of the form 

f (3) =f (Oýe s1(of 1_ 
S" (3.2.60) 

n=Q 
vn 
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(see Titchmarsh 1960). By choosing to set y(0) = -i then, from (3.2.59), 

f (0) = µa sin(a) -a cos(a). (3.2.61) 

Also, 

f'(s) = 2sy sinh(ya) + (s2 - µ2)i 
± 

sinh(ya) + sa cosh(ya)} -a sinh(ya) (3.2.62) 

so that f'(0) = 0. Thus, it follows that 

2) 
f (s) _ 

{µ2 
sin(a) -a cos(a)} 1-- v2 

. 
(3.2.63) 

n=O n 

Now consider f (s) as a function of 7, say F(y), then 

F(y) = (yz + 1- µ2)y sinh(ya) -c cosh(-fa). (3.2.64) 

F(7) has zeroes defined by 'y = ±7,,,, y,, = (vn - 1)} ,n=0,1,2,... . Further, F(O) = -a 

and 

F'(7) = 272 sinh(7a) + (72 +1- A2) [sinh(7a) + 7a cosh(7a)] - as sinh(7a) (3.2.65) 

which implies that F'(0) = 0. So F(ry) has the infinite product form 

F(Y) = -a 
(i_ y2 (3.2.66) 

�=0 Yn 

However, using (3.2.59), it is seen that 

/ 00 
f (0) = F(-i) = µ2 sin(a) -a cos(a) = -a 

0 (1 +12 (3.2.67) 

On substituting this into (3.2.63), it is found that 

00 
.f 

(s) _ -a fi (1 +ZI 
(1- s 

vnn 
nco \7n/2 

°° s2 
_-a1- 

(3.2.68) 

n=o 
+ 

yn inn 

which can be factorised to give 

2 -f- 
1 )1 

+ (3.2.69) 11 
t1 As) = -a H (1+ 

-L- 
s 

where the term on the far right has zeroes at s= -vn, n=0,1,0,1,2,... and that to its left 

has zeroes at s= vn, n=0,1,2, .... 
Now consider the denominator of (3.2.58), that is 

y sinh(ya) = (s2 - 1)g(s) (3.2.70) 
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where 
9(s) = 

sinh('ya) (3.2.71) 

Note that g(O) = sin(a) and that 

g'(s) = 
sa cosh(rya) 

-s 
sinh(ya) (3.2.72) 

7a 173 

which implies that g'(0) = 0. Also, g(s) has zeroes when (s2 -1)1a = inwr, hence g(s) has 

the infinite product representation 

2 

9(s) = sin(a) 11 1-1 sn,,, 
r, 

(3.2.73) 
n=1 

The standard infinite product representation of sin(a), as given in Abramowitz and Stegun 

(1964), which is 

1- as 
nag 

(3.2.74) sin(a) =a II 
( 

n=1 

can now be used to obtain 

00 
y, sinh(7a) = a(s 2- 1) a2 s2 11- 

n27,2 n=i 
00 a2 a2sz 

a('92 -1) II T2- 2+ n27r2 
(3.2.75) 

n=1 

It follows then, from (3.2.58), (3.2.69) and (3.2.75) that 
11 

7. lyn ei 
(1 +i 

IY6 00 
f(1+1)--ýf (i +3 

(3.2.76) h (s) 
a(1 - s2) () 

re=1 S 
CL 

nJ+ nor} 1 
(1- 32 - nýI 

This may be rearranged as 

2 2) Co -VZL -L 0(Vä ý 'Yn 'Yn 'Y» 'Y»3.2.71 
l1 a(vÖ - 32) 

n1=11 111^ a2 
)1 iae 

1ý rl 
_ i_? ý 1- iae 

1 ̀3 J 't' �i 1ln a_ star 

which is now in "a form that can be factorised by inspection. Hence 

00 Y- e (3.2.78) IWS) _ 
II 

a(vp - 1) 

I 

1±j 
1 a1 2 ias1 {(1 

-ný-ý) ýna1 

where x(s) is chosen to ensure that K±(s) is of algebraic growth as s -+ oo, and 17(, 5, n) is 

chosen to improve the convergence of the infinite product. Also, since v(s, n) is artificially 

added into the infinite product X(s) must cancel the terms of a (s, n). 
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In order to determine a(s, n) it is necessary to consider the behaviour of the terms of 
the product as n --* oo. This requires knowledge of the roots of K(s) as n -4 co. It can 
be seen that 

vn N 
i7rnI 

n» 1 (3.2.79) 
a 

for all a, but the order of the next term is unclear for general a- at worst it will be 0(1). 
Also 

Y� (vn - 1)z 

= v�(1- 
1)ý 

v 2 
n 

N- 
vri 

-v� 2 
:... (3.2.80) 

Now consider the terms of the product form of K+(s). Expanding these in powers of n 

gives 
1 -1 

Vn 
+31 1_ 

aZs_ Ea3 

7n 
jl 

vn 
T 

nzaa nr 

+0(1) 
JI, 

+ sý ias_ a2 
22 _aasz O\1 

/ 2vn r2 n3 v4 v, y n7I 2n 7C n2 

+s+1+ 
ias 

+ 
ias2 

+ a2 
_ 

a2s2 +O\1 
vn 2vn n7C n7ývn 2n27f2 n27C2 n3 

1+ s+ ias 
+O 

1'1 (3.2.81) 
vn nr n2)' 

Thus, using the assumption made in (3.2.79), it is clear that the product part of K+(s) 

converges liken . Hence, the choice 

a(s, n) 
s_ %as (3.2.82) 

V" n7r 

results in the product converging like ri 
. 

The growth of the product part of K+(s) is already algebraic as s -º oo. Hence, no 

adjustment is needed for this, but X(s) must still be chosen to cancel with the terms now 
included to improve the convergence within the infinite product. Thus 

00 
e-x(a) _H evn+; °; ý (3.2.83) 

n=1 

which implies that 
°O is 1 (3.2.84) X(s) = -s 

E 
nor 

+. 
v .n 

It follows directly that 

11tý3). 
CY 1 (yo±S)e±sF 

=1 n+ n In yn}e 
n* 

(3.2.85) 
a(vp - 1) 

}1fS 
11 

Qa 
ä ia3 nil 

{(1_. 
) ý 

ný J 
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Now to complete the evaluation of «(x, y), all that is required is an expression for rc, the 

constant term in the expansion of K+(s). As stated in (3.2.42), K+(s) can be expressed 

as _ 
K+(s)Nis(l+s 

) 
+.... (3.2.86) 

By taking logarithms of K(s) and integrating such that the contour of integration lies 
below any singularities it is found that 

In [K+(s)I = 2ri 
foo In [K(()] 

- s' 
(3.2.87) 

Thus, substituting in for If(s) from (3.2.25) gives 

1n [Kt(s)1= -1 In 
f 
C. 2 - ýý _a 

cosh ya 1 d( 
(3,2.88) 

z 2iri 0Ly sinh(ya) J- s 

This expression can be rearranged as 

In [K+ (s)1 - 2Z Iri J-ý 
ln(e 2 -14 2)(s + 

27ri J-ý 
In 

Ll (C2 »2)y s nh(ya), Cads 
(3.2.89) 

Now consider the first integral alone. Let 

fýs) = f+(s)f (s) = 32 - µa (3.2.90) 

where f+(-s) = f_(s). When this condition is enforced on f±(s) it is found that f+(s) _ 
(3 + p)e f and so, using this in (3.2.89) gives 

in [K+(s)] =1n 
[(s + µ)et1 ]+ 

tai 
F-00 in [i 

- (C2 
a cosh( 

nh(yd)J 
a(s. (3.2.91) 

Consider now the second integral in (3.2.89); it can be seen that 

J In Ll -a 
cosh(ya) dC 

00 (C2- µ2)ysinh(ya), S-s 
%°° In [I -a cosh(ya) 1 dC 

f o (('2 - 12) y sinh(ya) (-s 
ýo a cosh(ya) 1 d( 

+ In 1- 
((Z - µa )ß, sinh(ya) J (+ s 

fc* In a cosh(ya) 1-1 d( 
[1 ((2 - µ2)y sinh(ya)] LC 

--s C+s 

= 2s I In 
[i 

-a 
cosh(ya) dt (3.2.92) 

o ((2 - µ2)ysinh(ya) C2 - s2' J 

So substituting this into (3.2.91) gives 

r2 -i 
In [K+(s)1=1n [(s, + 14)eir, + 

s7ri 
I 00 In Ll - (C2 

«u2)7 
nh(7a)1 

1 
s2 

dCs 

(3.2.93) 
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Now, breaking the range of integration at the point R, where 1«R« Ist, and expanding 
21 (1 

- .) binomially, (3.2.93) becomes 

1 ý2 
In K+(s)j = In (s -{-µ)e' 

J+ 1 jR [1 a cosh(ya) 1 
sri o 

In - (C2 - µ2)7Y sinh(ya)J 
+ 

sZ -I- ... 
d( 

r1 S2 -1 
+sri 

,! R 
In I1- 23J 1- s2 d(. (3.2.94) 

Then, as R --ý oo, the last integral in (3.2.94) tends to zero and so 

K+(s) _ (s + µ)e2 e--, 
A*,. 

_ (s -}- µ)eýz 
ý1- 

+ ... 
} (3.2.95) 

Sri 

where 00 n=J In 
[1- 

Z 
ap2)y(inh(rya)] d(. (3.2.96) 

(( 

Thus, when multiplied out this becomes 

K+(s) = is 1+s +0 
(-! )J, (3.2.97) 

and when this is compared with (3.2.86) it is clear that 

x=µ+i 
J°° 

-a 
cosh(rya) d(. (3.2.98) 

L (C2 - 142), y sinh(7a), 

Hence, the expressions for Ro and To can now be evaluated using Mathematica (the code 

for this is found in Appendix B. 2) and the results gained can be compared with those 

gained for the solution found in section 3.1 in the case where a=b. 

3.3 Results 

Figures 3.4 and 3.5 show the modulus of the fundamental reflected and transmitted modes 

plotted against a for fixed a=b=1.6, µ=2.2 and for the edge condition gxy(0, b) = 0. 

There are two limiting cases displayed here. In the case where a«1 the, membrane 

behaves very much like a rigid surface, and in the case where a»1 the membrane is 

behaving more like a soft boundary. The solid line in figure 3.4 represents the value for 

IAoI/2 given from solving the system of equations found in section 3.1. The dots are the 

value of IRol found using the solution of the same problem by means of the Wiener-Hopf 

technique as described in section 3.2. It can be seen that JRoI has a value of almost 

zero for a«1 which is not surprising since the membrane surface is behaving like a rigid 

surface and there is no change in height in the duct. Thus the incident field passes straight 

through with the duct having no affect, and so no reflected field is seen. 
The results shown are obviously very good, with little difference evident between the 

two sets of figures. Figure 3.5 compares jB0I -1 (found in section 3.1) with ITol (found 
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IRoI 

logb(«) 

Figure 3.4: Comparison of the modulus of the coefficient for the fundamental reflected 
mode for the hard/membrane problem with edge condition 0y., (0, b) = 0, a=b=1.6 
and µ=2.2. The eigenfunction expansion results are the solid line and the Wiener-Hopf 

results are the dots. 

IT 1 

loglo(a) 

Figure 3.5: Comparison of the modulus of the coefficient for the fundamental transmitted 
mode for the hard/membrane problem with edge condition Oyy(0, b) = 0, a=b=1.6 
and µ=2.2. The eigenfunction expansion results are the solid line and the Wiener-Hopf 

results are the dots. 

in section 3.2). JBo - 11 is used because; as mentioned at the end of section 3.2, the effect 

of the forcing wave is removed from the expression for ITo) given in (3.2.54). At first sight 

this graph appears to be less accurate, but attention should be drawn to the scale on the 

1Tol axis. This scale is very fine and so exaggerates any small inaccuracy that may be 

-3 -L -l 1L 

-3 -L -1 1A3 
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evident in the results. Some level of inaccuracy can be expected since the solutions for 

both the method used in section 3.1 and that for the Wiener-Hopf technique, have been 

truncated to some degree for the purpose of computation. The accuracy of each set of 

results could be enhanced by taking further terms in the systems computed, but this is 

not always possible due to computational time involved in gaining solutions. 
When the value of a«1 (and so the membrane is behaving much like a hard surface), 

IT01 can be seen to be close to zero. In previous results it has been see that in such cases 

where no change in height is coupled with a purely rigid duct, the fundamental transmitted 

mode has been equal to 1. However, it is noted again that, for these results, the forcing 

wave is removed from consideration. Since it is the forcing wave that passes straight 
through such a duct as this, with no affect on its behaviour, the purely transmitted field 

can be expected, and indeed is seen, to be zero. Figures 3.6 and 3.7 show the results as 
described for the previous two graphs, except here the edge condition ßy(0, b) is used. 

1D1 

loglo(a) 

Figure 3.6: Comparison of the modulus of the coefficient for the fundamental reflected 
mode for the hard/membrane problem with edge condition qy(0, b) = 0, a=b=1.6 
and it = 2.2. The eigenfunction expansion results are the solid line and the Wiener-Hopf 

results are the dots. 

Whilst the shapes of the graphs are a little different, the same high level of correlation 

between the results two sets of results is maintained. The next four graphs (figures 3.8 - 
3.11) are for cases where the membrane condition has been made to mimic the behaviour 

of a Dirichlet condition. To do this a must be very large (in the case here, a= 5000000, 

but it can be taken much higher if necessary to get the correct behaviour) and y must be 

relatively small in comparison, ideally 0(1). By imposing these conditions, results for the 

Hard/Membrane case can be compared with those from the Hard/Soft case. The results 

shown in figures 2.15 - 2.18 are used here to draw a comparison with results found using 
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ITOI 

logio(a) 
3 

Figure 3.7: Comparison of the modulus of the coefficient for the fundamental transmitted 
mode for the hard/membrane problem with edge condition 0y(0, b) = 0, a=b=1.6 
and µ=2.2. The eigenfunction expansion results are the solid line and the Wiener-Hopf 

results are the dots. 

the parameters specified above. All four graphs show excellent agreement between the 

IRai 

0. s 

0.6 

0.4 

0.2 

Figure 3.8: Comparison of the modulus of the coefficient for the fundamental reflected 

mode with a=1.211, a= 5000000 and µ=2.2. The hard/membrane eigenfunction 
expansion results are the solid line and the hard/soft results (from section 2.6) are the 
dots. 

two sets of results. 
As a final set of results, two general cases are considered. The two graphs, figures 3.12 
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ITOI 

2 

1.5 

1 

0.5 

Figure 3.9: Comparison of the modulus of the coefficient for the fundamental transmitted 

mode with a=1.211, a= 5000000 and µ=2.2. The hard/membrane eigenfunction 
expansion results are the solid line and the hard/soft results (from section 2.6) are the 
dots. 

IRol 

0.8 

0.6 

0.4 

0.2 

Figure 3.10: Comparison of the modulus of the coefficient for the fundamental reflected 
mode with a=1.51, a= 5000000 and µ=2.2. The hard/membrane eigenfunction 
expansion results are the solid line and the hard/soft results (from section 2.6) are the 
dots. 

and 3.13 are both for the case where a=1.51, a= 50 and u=2.2. In figure 3.12 the 

edge condition q (0, b) =0 is applied whereas in figure 3.13, cy (0, b) =0 is used. These 

results will be used later as a comparison for results gained in chapter 4. 
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ITo J 
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1.5 

1 

0.5 

Figure 3.11: Comparison of the modulus of the coefficient for the fundamental reflected 
mode with a=1.51, a= 5000000 and µ=2.2. The hard/membrane eigenfunction 
expansion results are the solid line and the hard/soft results (from section 2.6) are the 
dots. 

lRol 
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0.6 

0.4 

0.2 

Figure 3.12: Plot of the modulus of the coefficient for the fundamental reflected mode for 
the hard/membrane problem with edge condition c , 1(0, b) = 0, a=1.51, a= 50 and 
y 2.2. 
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iRof 
0.6 
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0.4 

0.3 

0.2 

0.1 

Figure 3.13: ' Plot of the modulus of the coefficient for the fundamental reflected mode 
for the hard/membrane problem with edge condition 0, (0, b) = 0, a=1.51, a= 50 and 
µ=2.2. 
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Chapter 4 

Refection and transmission at the 
junction of two membrane 
bounded ducts of different ý height 

Whilst the problem in Chapter 3 was of considerable interest, not least because it can be 

solved at all, a problem of greater significance is that comprising two ducts of dif£erring 

heights, bounded by membranes. The most general case is considered, whereby the ma- 
terial pi operties of the membranes differ in the two duct regions 0<y<a, x<0 and 
0<y<b, x>0. In this case, it is no longer appropriate to assume a plane incident wave 

as the duct along which the incident wave travels is not rigid and so the wave will interact 

in some way with the membrane surface. Instead, forcing is introduced in the form of a 
fluid-coupled structural wave which propagates in the positive x-direction along the duct 

lying in0<y<a, x<0. 
In the solution of the problem, Fourier and/or Sturm Liouville techniques are no longer 

appropriate for either duct region. The orthogonality condition, derived in section 2.6 and 

used in section 3.1, must now be applied twice. In addition, the problem here considered 
has two points where membranes meet rigid surfaces . and so two edge conditions must be 

applied. Whereas in Chapter 3 two distinct solutions were found (corresponding to the 

application of the two different edge conditions), here there will be four distinct solutions 

as there are four combinations of edge conditions available. 

4.1 Solution of the problem 

The problem considered in this section is similar to the previous one, in that the duct in 

question occupies the region 0<y<a, x<0 and 0<y<b, x>0, where b>a, and a 

rigid vertical barrier, lying along x=0, a<y<b, connects the two semi-infinite regions. 

As usual the lower surface at y=0 is rigid, however, unlike the previous cases, the upper 

surfaces, at y=a, x<0 and y b, x>0, both comprise membranes but with different 

material properties. Forcing is introduced in the form of a fluid-coupled structural wave 
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that propogates in the positive x-direction towards x=0, see figure 4.1. 

a {ä 
-I-µä} 02y + 0202 =0 

b 

CD 

H 
N 

82 zý 

a 

Incident 

Reflected 

Transmitted 
BID 

ý1y =0 U1 02y =0 

Figure 4.1: Physical configuration for the problem of section 4.1 

The non-dimensionalisation of the problem with respect to length parameter k-1 and 

time period w'1, is conducted in the same manner as in chapters 2 and 3. Again, the 

non-dimensionalised governing equation is Helmholtz' equation, that is 

v20+0= 0. (4.1.1) 

The fluid velocity is in terms of an incident field and two scattered fields by 

I cosh , roy esýux. ý1i x<0 0_ cos To a 
:' 

02, x>0 

where 
To = (rlö - 1)' (4.1.3) 

and 170 is the wavenumber of the fluid-coupled structural wave for the membrane lying 

along y=a, x<0 (see (4.1.14) for further details). For brevity, the boundary conditions 

are simply stated as 
a= 

0, j=1,2, y=0, -oo<x<oo, . 
(4.1.4) 

a2 4.1.5 
äx2+µi 

Oly-+ -aloe=0, y=a, x<0 
() 

a2 4.1.6 
1 axa + µz 02y + 0202 = 01 y= b, x>0) 

where a� j=1,2 are the fluid loading parameters of the two membranes and µj, j= 112 

are the non-dimensional in vacuo membrane wave numbers. At the matching interface, 
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continuity of pressure and normal velocity are required, which can be expressed in terms 

ofO5, j=1,2as 

cosh(roy) 02 = 
cosh(TOa) 

+01, x=0,. 0<y<a, (4.1.7) 

002 
_ 

0, x0, a<y<b (4.1.8) ax 
öx 

+ tncos 
(i a) 'z=0,0 <y<a 

In chapter 3, to obtain a unique solution to the problem, an edge condition was imposed 

at the point where the membrane surface met the rigid vertical surface (x = 0, y= b). 

In this case, two such points exist, at x=0, y=a and x=0, y=b, and suitable edge 

conditions must be applied at both. Zero displacement at (0, a) is implied by 

7ro tanh(roa) -- 01y(0, a) = 0, .. 
(4.1.9) 

whilst 
iiioro tanh(roa) + 01xy(0, a) = 0, (4.1.10) 

indicates zero gradient. The corresponding conditions at (0, b) are 

42y(0, b) =0 (4.1.11) 

and 
02xy(0, b) = 0. (4.1.12) 

There are four possible combinations of these conditions, each of which yields a different 

solution, and so each will be considered. 
Eigenfunction expansion forms for c5i and 02 are found in the usual way, that is by 

using separation of variables and then applying the boundary conditions relating to the 

upper and lower surfaces of the relevant ducts. Both the duct to the left and that to 

the right of the matching interface are bounded below by a rigid surfaces and above by a 

membrane, so the resulting expressions will be analogous to (3.1.12). Hence, remembering 

that q1 is the reflected field and so comprises modes travelling in the negative x direction, 

Co 
ý1 =E An cosh(r,, y)e ill"' (4.1.13) 

n=0 

where r,, = (rin - 1)2 and s= f77, a, n=0,1,2.... are the roots of the dispersion relation 

Li(s) = (s2 - µ1)y sinh(ya) - al cosh(rya) = 0, (4.1.14) 

and y= (s2 -1)12. Similarly, given that ¢2 comprises only transmitted waves which travel 

in the positive x direction, 

Co 
02 =Z B� cosh (7ny) etY"ý (4.1.15) 

n=0 
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where ly,, = (vn - 1)12* and s= fv,,, n=0,1,2,. .. are the roots of the dispersion relation 

L2(s) - (s2 - µ2)ysinh(yb) - Ct2 cosh(yb) -`0. (4.1.16) 

As in all previous problems, it is the complex amplitudes A,, and B, ' of equations 
(4.1.13) and (4.1.15) that are to be determined, and the first step is to apply the matching 

conditions, (4.1.7) and (4.1.8). By rearranging (4.1.7) it can be seen that 

(O, y) 
cosh(ray) +02(0, Y), 0<y<a. (4.1.17) 
cosh(roa) 

When the eigenfunction expansions (4.1.13) and (4.1.15) are substituted into this, it is 

seen that 
00 E At cosh(rly) =_ 

cosh(roy) + 
Co 

B,,,, cosh(y,,,, y), 0<y<a. (4.1.18) 
1=0 

cosh(roa) 
. m-0 

It is convenient to define a function f (y) according to 

_ 
cosh(roy) °O 

f (y) 
cosh(roa) 

+EB,,, cosh(-Im y), 0: 5 y<a. (4.1.19) 
m=0 

This may then be multiplied by a1Y,,,, where Yl, a = cosh(T�y), and integrated over the 

range 0 <y <a to give 

cosh(roy) °O 
al 

faf (y)Y1ndy = a, 
Jo a 

Lcoshroa) -ý- 
E 8,,, cosh(ymy) Y1ndy" (4.1.20) 

( 
'n=0 

It is clear from (4.1.18) that f (y) may be represented as an expansion in terms of the 

eigenfunctions for the left hand duct, that is 

00 
f (y) _E AtYit (4.1.21) 

e=o 

where 
Yit(y) = cosh(rty), £=0,1,2,... (4.1.22) 

and it follows that f (y) satisfies the inner product (2.6.27). That is, 

(f (y), Yin) = ai 
J 

.f 
(y)Yindy +f '(a)Y (a) = A»Dn (4.1.23) a 

where, from (4.1.19) 

Dl = 
ý'it(a) d 

L(s)j y=TQ 2rß d7 
(2rl + 7712 - jj) sinh(2ria) 

= 
al [a 

+ (4.1.24) 
2 2rj(r7, ' - µi) 

With some simple rearrangement, (4.1.23) becomes 

ai 
faf (y)Yitdy = AtDI - . 

f'(a)ýit(a) 
0 

= AtDt -F- 
ro sinh(roa)l ylt(a) (4.1.25) 1 

cosh(ýroa) J 
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where, from (4.1.15) 

F= 021, (0, a) =Ey,, B,,, sinh(yma). (4.1.26) 
m=o 

On comparing the right hand side of (4.1.20) with (4.1.25) it is seen that 

Loo At _ 
Y111(a) 

F, _ 
ro sinh(roa) + al a ý 

_cosh(roy) + B,,, cosh(7my) ý'lcdy 
Dt 

[ 
cosh(roa) 

, 
Dl JO 

[cosh(roa) 
m=o 

_ 
Fr` sinh(rLa) 50t 1 Co 

Di cosh r0) a+ D* 
B,. Tim (4.1.27) (L 

m=O 

where 
a jTi 

= cosh(riy) cosh(y�jy)dy 

- 
Ti sinh(ria) cosh(yma) - -y n sinh('yma) cosh(Tja) 

-, (4.1.28) 
T£ - y, 2 

Dt =s and toe is the usual Kronecker delta. 
To obtain similar expresions for Bn, n=0,1,2, ..., the orthogonality relation is applied 

to the second of the matching conditions, (4.1.8). On substituting (4.1.13) and (4.1.15) 

into (4.1.8), it is seen that 

0, a<y<b 00 
1 

ivmBn cosh(7ny) = iiio cosh(roy) 
- irýtAt cosh(Tty), 0<y<a 

(4.1.29) 

n=0 COS1LýTpaý 1-0 

It is again convenient to define a function, g(y), to be the right hand side of (4.1.29), thus 

0, a<y<b 
g(y) = rho cosh(Toy) °O (4.1.30) 

cosh(TOa) - Ei7tAt cosh(Tty), 0<y: 5 a 
t-o 

This may then be multiplied by a2Y2n , where Yen = cosh("yny) and integrated over the 

range 0<y<b to give 

a2 
ýb 

9(y)Y2n(y)dy = °`2 Joa cosh( oa)) -E r7tAl cosh(Tty) 1'2n(y)dy. (4.1.31) 

t=o 

However, g(y) has an eigenfunction expansion representation of the form 

9(y) _E vnBny2n (4.1.32) 

n=0 

where 
Y2n(y) = cosh('Yy), n=0,1,2.... (4.1.33) 

and thus satisfies the inner product, (2.6.29). Thus, 

b 
(9(y), 1'2m) =af 9(y)Y2m(y) dy + g'(b)YYm(b) = BmvmC'm, (4.1.34) 
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where, in this case 

C, - 
Y2yn 

dyL(3)J 

Y='Yn 

_ 
22 b+ 

(27n, + v, 2, - µä) sinh(27,, b) 
2 2'yn(vn-µ2) 

This can be rearranged to give 

a2 
0a 

g(y)Y2m(y) dy = BmvmCm - g'(b)Y2m(b) 
0 

Bm PmCm - EY2 (b), 

where, from (4.1.15) 

E_ -02xy(O) b) _ 
co 

BnvnY2n(b)' 

n=0 

On equating the right hand sides of (4.1.31) and (4.1.37) it is found that 

78 

(4.1.35) 

(4.1.36) 

(4.1.37) 

B. 
EY2�(b) 

+ a2 ýa {uiocos(ro) 
Y2ndy 

v�C� v�C� Jo cosh(roa) -, 
EA, rý, ecosh (r, ýy) 
=I 

- A177tTb, (4.1.38) E'Y,, sin 
V. C 

(, ytt b) 
+ 

vnCn 
[cosh(roa) 0 0T 

l=I 

where Cn =C 
Equations (4.1.27) and (4.1.38) comprise a pair of coupled infinite systems for A,, and 

B,,, n=0,1,2,.... On eliminating A, between these it is found that 

_ 
7,, sinh(y7z b)E 1 217 A() r7tTý�re sinh(rta)F 00 °° rltBmý'lm2'ln 

vnC� 
+ 

vnC; ý Cosh(TOa) - Dl -,, ö DI* 
(4.1.39) 

which forms an infinite system purely in terms of B,,. However, before the system can be 

solved it is necessary to specify the constants E and F. At the edge x=0, y=a, either 

zero displacement, (4.1.9), or zero gradient, (4.1.10) may be applied. In the case of zero 

displacement 

ro tanh(roa) + q5ly(0, a) = 0, (4.1.40) 

and from (4.1.9) and (4.1.26) it is seen that 

ro tanh(roa) + Oly(0, a) = 02y(0, a) =F=0. (4.1.41) 

The alternative condition, (4.1.10) states that 

which, using (4.1.13) implies 

it oro tanh(roa) + 01 (0, a) = 0, (4.1.42) 

00 
i oro tanh(roa) -> r7jAlrL sinh(r`a) = 0. (4.1.43) 

t-o 
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When the expression for A, given in (4.1.27) is substituted into this, it is seen that 

FYJ__ sinha(rla) 
= 

°O °° i7 rrB�yTi,,,, sinh(rta) 

Dl - 277oro tanh(roa) -E E (4.1.44) 
i=o t=0 m=o 

De 

and so solving for F, 

277o7-0 tanh(roa) -E 
00 co 171r1BmTsinh(rea) 

* 
F= t=0 M=o t (4.1.45) 

00 771r, sinha(rja) 

D 

D3 
. i=o 

Now consider the edge at x=0, y=b and take first the case where condition (4.1.12) is 

enforced. On using (4.1.37), this is 

E_ -ic52xy(0, b) = 0. (4.1.46) 

Alternatively condition (4.1.11), that is 

02v(0, b) = 0. (4.1.47) 

The expression for 42 given in (4.1.15) may be substituted into this, and results in 

00 
E B�-y� sieh (7ny) = 0. (4.1.48) 
n=O 

Now substituting in for B� from (4.1.39) gives 

yn sink (-y y) 
r-y" sinh(-t b)E 

+1 
2n Tbn (4.1.49) 

n_p l v1 vC 

fcosh(roa) 

co ? ]eTcnTi sDt (Tea)k' ? IeB 
ETlmTen =0 

e=o 1=o �n=o 

which can be rearranged to find an expression for E, that is 

E_ 

00 E 
co y,, sinh('y, lb) 2i 0Tp, 

_ 
ntTt rt sinh(Tea)F 

_ 
ý. ý rltBmTtmTi, º 

n=_O 0 
YnCn [cosh(roa) 

L_0 
D. 

1=0m=0 
Dj 

i7j sinh2(yjb) E 
j=o vi ci 

(4.1.50) 

As mentioned at the start of the problem, these edge conditions form four separate cases 

which are summarised below; 

(i) Zero membrane displacement at both edges: 

F=0 (4.1.51) 
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02 (DO 
- 

00 -y� sinh('y�b) 217oTon 77eBmT imT17i 
v�Cn cosh(TOa) D; 

E ==o 1_0m=0 (4.1.52) 
°° i'yj sinh2(y2b) 

vj Ci j=o 

(ii) Zero gradient at (0, a) and zero displacement at (0, b) : 
00 00 

TBTs 

2i oro tanh(Toa) -EE 
ýl "" ý inh(Tea) 

F_ 1=0 M=o 1 (4.1.53 
00 

) 
? 7jT2 sinh2(Tja) 

Di 
=o 

y, . 
sinh(, b) 2i o7'on 

, 
ý, teTtnrs sinh(r`a)F 

,EE L 
n=o V. � 

[cosh(roß) 
t_o DI 

£=o M=o 
D, 

Ec 
0"iyj sinh2(yjb) 

i=o v1 C1 
(4.1.54) 

(iii) Zero displacement at (0, a) and zero gradient at (0, b): 

F=O (4.1.55) 

E=0 (4.1.56) 

(iv) Zero gradient at both edges: 
00 (>O 

2,0r0 tanh(roa) -E 
"7tTiBmTim sinh(Tta) 

D* t=O m=O 1 (4.1.57) 
00 rijrj2 sinha(rja) 

=0 D. i 

E-0 (4.1.58) 

The above expressions for E and F must be used in conjunction with the equation 
for B� given in (4.1.39) to form an infinite system for the solution of this problem. As 

in previous examples, this system can be- truncated and solved numerically using Mathe- 

matica, the code for which is given in Appendix C. 1. The results can then be compared 

with' a variety of special cases, all of which are taken from chapters 2 and 3. For the case 

where a=b, an analytic solution to the problem can be obtained using the Wiener-Hopf 

technique; this provides further corroboration of the results herein. 
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4.2 The Wiener-Hopf technique for the case a=b 

For the case where a=b, the problem tackled in this chapter becomes amenable to solution 

using the Wiener-Hopf technique. The duct is constructed in the same way as that in 

section 4.1 (see figure 4.2) apart from the fact that a=b, and so the non-dimensionalised 
boundary-value problem has governing equation 

, &2ý+O=0 (4.2.1) 

and the boundary conditions are now 
aý 

0, y=0, -cc <x< cc, (4.2.2) 
äy 

a2 
axe 

+ µi ýy + aid = 0, y=a, x<0, (4.2.3) 

as 
axe -1- Ni + µä)ro tanh(roa) - a2] e'"ý0x, y=a, x>0. 

(4.2.4) 

where «(x, y) is the time-independent scattered potential. The total time-independent 

fluid velocity potential is thus 

0"' cosh(roy)e"7o' (x, y) = «x, y) + 
cosh(raa) 

(4.2.5) 

where the quantities -ro and rho are defined later in the text. 

ä+ µI yt+ Cl tot .ä }- 

oy =0 

a 

0 

0ta+ a20soa =_ [(n2 - µ2)ro tanh(roa) -a21 e`7)ox. 

oy=0 

Figure 4.2: Physical configuration for the problem of section 4.2 

The conditions that are to be enforced at the edge of the membrane bounding the duct 

to the left of the line x=0, are zero displacement, ýý t(0', a) = 0, which is expressed in 

terms of the scattered potential as 

O. y(0-, a) = -7-o tanh(roa) (4.2.6) 

or alternatively zero membrane gradient, qjx (0`, a) = 0, which gives 

Oxy(O-, a) = -ii oro tanh(roa) (4.2.7) 
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which are equivalent to (4.1.9) and (4.1.10) respectively. Similarly for the edge condi- 
tions on the membrane bounding the duct to the right of x=0, the conditions that are 

equivalent to those given in (4.1.12) and (4.1.11) are 

0x, (0+, a) = -ii7oro tanh(roa) (4.2.8) 

or 
Oy (0+, a) = -ro tanh(Toa). (4.2.9) 

On taking the full range Fourier transform of the governing equation 

`T)v (s, y) -'YZ. 1) (3ºY) 0 (4.2.10) 

where ý(s, y) is the Fourier transform of «(x, y) and y= (s2 -1)2, and so 

-'(s, y) = A(s) cosh(yy) + B(s) sinh(yy). (4.2.11) 

The Fourier transform of the first of the boundary conditions, (4.2.2), is 

ý>y(s, 0) =0 (4.2.12) 

which implies that B(s) =0 and hence 

-1) (s, y) = A(s) cosh(7yy). (4.2.13) 

As in section 3.2, the full range Fourier transform, ý§(s, y), can be expressed as the sum 

of two half rang transforms, such that 

ý(sy) = `ý-(sy) + +(s, J) (4.2.14) 

and so 
ý_(s, a) + 4+(s, a) = A(s) cosh(, ya). (4.2.15) 

where 4ý±(s, a) are the upper (+) and lower (-) half range Fourier transforms which are 

analytic in the overlapping upper and lower halves of the complex plane. Also, 

4Dv(s, a) = ýv-(sea) +4'y+(s, a) = A(s)7sinh('ya). (4.2.16) 

and so, on differentiating (4.2.14), these two statements may be combined to eliminate 

A(s). Thus, 

{lýy-(s, a) + ý5v+(s, a)) 
cosh(7y) (4.2.17) 

ý sinh(, ya) 

The lower half range Fourier transform is now applied to boundary condition (4.2.3) to 

obtain o J, 
xxe3dx+µv-(s, a)+al a) 0. (4.2.28) 

ý 
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On integrating by parts, this reduces to 

Pi(s) - (s2 - µi)dýv-(s, a) + ai - 
(s, a) =0 (4.2.19) 

where, using notation 0., (0-, a) = 4y°x , Oy(0-, a) _ ý°y', then 

pi(s) = OVUM - isýy-. (4.2.20) 

Similarly, taking the upper half range Fourier transform of boundary condition (4.2.4) 

gives 

f0°° ývx. eisxdx µ2ýiv+(s) a) + a2§+(s, a) 

=1 
[(1lö 

- µz )TO tanh(roa) - a2] le°O 
(4.2.21) 

s) 0 

which may be rearranged as 

where 

and 

P2(s) - (s2 - µ2)ßv+(s) a) + a2J+(s, a) = 
iL2(rio) 

(4.2.22) 
rhos 

L2(170) _ (1102 - µ22)T tanh(roa) - a2 (4.2.23) 

P2(s) _ -Oy°x + ist°y+ (4.2.24) 

having let 0. y.. (0+, a) and 0. ,(0+ ,a) 
Equation (4.2.17) is now used to eliminate a) from (4.2.19). Thus, 

Pi (S) - (32 - µi)(1ýv-(s, a) +ai I {ýy-(sý a) ý' ýv+(sý a)} 
cosh(ya) 

_ +(s, a)1 =0 
L 7sinh(ya) J 

(4.2.25) 

which 'can be rearranged to give 

ai cosh(ya) ZZ al cosh(ya) 
PI( s) +I 

'y sinh(ya) - (s - J2 )} ýy-(s, a) +y cosh('a) ýy+(s, a) - ai&+(s, a) = 0. 

(4.2.26) 

Now, on eliminating +(s, a) using (4.2.22), it is found that 

a) 
Dy+(s' a) P1(3) +[7 

inh i'a) 
_ 

(s2 i4)] ýy-(s, a) + 
al 

) 

inh 

() 

a2 2 

[-P2(3) 
('92 - µi)`ýv i (s, a) + zý 2+ 

s= 
(4.2.27) 

which can be expressed as 

where 

t(s)7 tanh(ya) - a2L1(s%-(s, a) -a, L2(s)2v+(s, a) =0 (4.2.28) 

43) = a2PI(s) -F aIP2(s) _ 
ia1L2(rio) (4.2.29) 

Ll (s) = (s2 - µi)7 tanh(ya) -- al, (4.2.30) 

L2(S) = (s2 - µz)'Ytanh(ya) - a2. (4.2.31) 
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Equation (4.2.28) is the Wiener-Hopf equation for this problem. This contains two un- 
known functions, a) and a), and is valid only in the strip of overlap between 

the upper and lower halves of the complex s-plane. On defining a product factorisation 
for the Wiener-Hopf kernel, L(s), as 

L(s) = L+(s)L-(s) = 
L_(s) 

- 
(32 - u21)7tanh(rya) - al (4.2.32) 

L2(s) (s2 - µ2)7tanh(-ya) - a2' 

then (4.2.28) may be rearranged as 

t(s)-t tanh(7ya) 
_ 

al_y+(s, a) 
L2(s)L+(s) L+(s) - aaty-(s, a)L-(s) =0 (4.2.33) 

To proceed further with the Wiener-Hopf technique (4.2.33) must be rearranged so that 

all the `-F' functions are on one side and all of the `-' functions are on the other. Equation 

(4.2.33) is almost of a form where that can be done, but performing a sum split on 

y tanh(ya) is tricky. It is easier to perform sum splits on simple poles and so a better way 
to express y tanh(ya) is sought. Consider the following pair of equations: 

a2Li(s) _ (a2S2 - aaµi)'Ytanh(-ya) - ala2, 

and 
a1L2(s) _ (a1s2 

- alµ2)7tanh(7a) - ala2. 

When (4.2.35) is subtracted from (4.2.34) it is found that 

cr2 L1(s) - alL2(3) _ (aa - ai)(32 - a2)7 tanh(7 a) 

where 
Z_ a2A1 - al/ý2 

012 -a1 

(4.2.34) 

(4.2.35) 

(4.2.36) 

(4.2.37) 

and so 
^ytanh(ya) _ 

a2 

i( i)(alL 

(2)' (4.2.38) 

Note at this point that a is undefined for the case where al = a2. It will become clear that 

a plays a significant part in the solution of this problem and thus in the expressions that 

define the reflected and transmitted modes. In subsection 4.2.3, a case where al = a2 

is considered, but for now, the analysis shall be continued under the assumption that 

al. 34 a2. Equation (4.2.38) may now be used to rearrange (4.2.33) as 

t(s) «zLi(s) - a1L2(s) 
_ 

ai ßv+(s, a) 
- «Z-y-(s, a)L-(s) =0 (4.2.39) 

L2(s)L+(s) 
[(a2 

- al)(s )] L+(s) 

from which it follows 

t(s) [2L 
_(3) _ 

a, y+(s, a) 
_ «Zý-(3ý a)L-(S) = 0. (4.2.40) 

aa - al)(SZ _ 0-2) a) L+(s)J L+(S) 
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On first attempt at separating (4.2.40) into `+' functions and `-' functions, the expression 
is rewritten as 

t(s)c 2L _(s) _ azýý-(Sý Q)L-(s) = 
t(3)al 

+ a14'y+(s, a) 
(a2 - a1)(s aZ) (0! 2 _'. cr1)(8 oZ)L' (s) 14(s) 

(4.2.41) 
Equation (4.2.41) is split as prescribed except for some simple poles. To remove these, 

partial fractions are used to isolate the poles and then simple sum splits are implemented 

to remove them completely. 
Note that 

t(s) 
_ 

a2pl(s) - a1p2(s) ia1L2('io) 

s2 - Q2 (s 
- a)(s + a) (s 

- a)(s + a)(s + ? ]o) 

_ 
a2(Oyx - 

isOy )- al(-q + isg5 ) Za1L2(170) 

(s - o)(3 + a) (s - o)(s + °)(s + 770), 
(4.2.42) 

This can be expressed in terms of partial fractions as 
t(s) U+V+W (4.2.43) 

s2-Q2 _s 
-}- Q3 -U 3+770 

where 

U' 
2Q 

[al(goyx + iaq +) + a2(-O°ý - iooy )- W(77o + o), , 
(4.2.44) 

V [al(-goyx 
20 

+ ia'goy+) + a2(O°y; - iv y-) + W(i70 - v)] , 
(4.2.45) 

w -ia1La(1lo) (4.2.46) 
(772 - a2) 

So, (4.2.41) can be written as 

a2L_(s)U a2L_(s)V a2L_(s)W 
a2 - al Ls -F Q+s-a+s _} rho J-0! 2"b, -(s, a)L-(s) (4.2.47) 

r aiU a1V aiW l aid, +(s+a) 
a2 - a1 LL+(s)(s + a) 

+ 
L+(s)(s - a) 

+ 
L+(s)(s + 77o)1 

+ L+(s) 

Apart from isolated simple poles, equation (4.2.47) is now such that the left hand side 

comprises minus functions whilst the right hand side contains only plus functions. The 

offending simple poles are easily subtracted out, for example: 
a2L (s)U 

_ 
a2U [L-(s) - L+ (a)] + a2L+(a)U (4.2.48) 

$+a s-i-Q S 
There are three such singularities to be removed, after which it is found that 

+ ? 7n as 

1 

ai Lsa+ 
{L_(s) - L+ (a)) + {L-(s) - L+(i7o)} 

-a + 770 
ajV + aas 

-( 

)V 
L+(a ) (s - Q)] - a2iy-(s, a)L-(s) 

1 a1U a2L+(v)U a1W a2L+(a)W 
as - al 

LL+(s)(s 

-I- a) s+v+ L+(s)(s + rlo) s+ 170 

+ a1 V1-1+ a1 (s, a) E(s) (4.2.49) 
(s - a) 

{ 
L+(s) L+(a) 

ýý 
L+ (s) 
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where E(s) is an entire function and forms the analytic continuation of either side of 
(4.2.49) into the whole of the complex s-plane. It is easily shown that 

L± (3) = 0(1)ý 00, (4.2.50) 

ev-(s, a) =0(, 
Sp z 

Isl -. > 00, (4.2.51) 

4)vf(3, a) =0 
(g'ß+ 

i), 
1,51 

. --+- Co, (4.2.52) 

where 0<p<1. Then, on appealing to Liouville's theorem it is clear that E(s) = 0. 

Hence, 

v (, )= 1U L+(v) W L+(770) 
_sa a2 _ al 

[3+ 

Q 
{1 

- L-(3) 
I+s+ 

770 lý 
I 

)L-(S)11 4.2.53 +s 
Va I1- 

a2L+(aal 
( 

and 

s, a1 
[_U {c2L+(c)L+(3) 

_ 11, E 
W {c12Lý(17o)Lý(s) 

_- a2-al s+a al J s+770 al f 

+V 
L+(s) 

- 1)1 , 
(4.2.54) 

s-Q L+(a) fJ 

It is easily shown from (4.2.36) that 

ai 
_ L-(ý)ý 

a2L+(a) 

and it follows that 

(4.2.55) 

, ýPv(s, a) = -Py+(s, a) +`Dv-(s, a) 
L+(s) rUL+(a) 

+ 
VL_(Q) 

+ 
WL+(iio)1 (a2 

(4.2.56) 
a2-a1 L 3+0- 3-Qs+ 7)0 J Lai L(s)1 . 

However, from (4.2.17) it can be seen that 

(s, y) 
a) coth(-yy) 

y sinh(ya) 

- 
L7(s) - rUL+(a) VL_(c) ' WL+(r7o)1 rat 

-1 
cosh(yy) 

(a2 - a1) Ls : Fa- 1- Q++ as+ 170 Lai L(s y sinh(ya)' 
(4.2.57) 

and so 
1 00 

2a J_ý 
ý(sý y)e-, 8sds 

-1 
jO0 L+(s) f UL+(Q) 

+ 
VL_(o) 

+ 
WL±(flo)1 

fL Jx 27C(aa-al) 
oo s+U 3-Q S+170 

22 
-1 

cosh(yy) e-;, xds. (4.2.58) 
ai L(s)] rysinh(^7a) 
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When (4.2.44) and (4.2.45) are substituted into this, the result is 

1 °° a2 1 
y) 2ýc(a2 - ai) .ý. 

L+(s) 
[al 

- L(s) x 

12 
(s(+)) [al(0y1 + iagy+) + a2(-4yx - ic0y-) - W(77o + a)1 

+2 
ýs (c)) [ai(-Oyox + io, 4Pu+) + a2(0.; - iaq )+ W(i7o - a) 

+, 
WL+(r7o)l cosh(yy) 

e-; 3Xds. (4.2.59) 
-9+770 

fy sinh(ya) 
Of interest here are the amplitudes of reflected and transmitted fluid-coupled structural 

modes on the membrane surface, y=a. For the reflected mode, x<0 so the contour of 
integration is closed in the upper half-plane and the relevant pole is that at s, '= rho. Hence, 

iL+(i7o)L2(t7o) cosh(roa)e iýnox [WL+(17o) 
P(ýýýlo) = Li(7o)(a2 - ai)Tosinh(roa) 21lo 

+ (ý 
(+, 

a) 
[ 

i(O°ox + ivO°y+) + aa(-Oyox - iQýy )- W(rýo + a)] 

+2 
(r%o 

a)Q) [al(--4yx 
+ iCey+) + a2(4lyy - 

is oov )+ W(770 
- a)]} 

(4.2.60) 

is the residue contribution to q(x, y) from the pole at s= rho. Note that 

Li(s) =s tanh(ya) s2 -- µi + 27+ 
cosh (yaµi)) 

(4.2.61) 
y cosh 

is the derivative of Li(s) with respect to s. On putting s= rho in (4.2.38) it is seen that 

- ro tanh(roa) = 
a1L2(i7o) iW (4.2.62) 

(a2-«])(7702 
-a2) a2-al 

and so 

Thus, (4.2.60) becomes 

1z (4.2.63) 
ro tanh(rroa)(a2 - al) W 

P(Ov Flo) = -L+(iio)L2(, o)e-"101 
L 
WL+(ilo) 

Li(? lo)W ZTIo 

+ (77o + c) 
[c 

i (qyt + iaoy+) + a2(-Ooy - iaoy-) -W (i o+ or) 

0 + 2o-o0+) + a2(00 - ioroy-) + W(770 - Q)}J +2 
(110 

-) `al(-0 

= Roe-"10x (4.2.64) 

where Ro is the complex amplitude of the reflected mode on the membrane surface. With 

further rearrangement, the expression for Ra becomes 

__-+(no Ro 
Li(7lo)Wrlo) 

(W 
2 770 

(? lo) 
To- + 

2a(7702 Q2) 
{G(r7oP - 01Q) + H(7loQ - QP)}ý L 

(4.2.65) 
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where , 

G= alOoyx - a2Ov; - W770, 

H= ivalO°y+ - iQa20()- - Wo, 

and 

P- L+(o) - L-(v), 

Q= L+(a) + L-(c). 

88 

(4.2.66) 

(4.2.67) 

(4.2.68) 

(4.2.69) 

For the fundamental transmitted mode, the pole of significance is that at s= -vo. 
In this case the contour of integration is closed in the lower half-plane and so following 

similar steps to those for the reflected coefficient and putting y =. a it is seen that the 

residue from the pole at s= -vo is 

P(', -VO) _ 
[_L(a) 
2 (Q vo) 

Ia1(4 +ii +) + a2(-Oovx - iogy) - W(170 + a)] 

L 
+2 (a-( 

a) 
al(Oyl - icon+) + a2(-Oy; +iaoy) - W(77o - a)] 

+WL+(rio)l 
ia2Li(vo) cosh(, yoa) esvox 

17o -- vo 1 L2(vo)L+(vo)al(a2 - al)'Yo sinh(7oa) 
Toe; vox (4.2.70) 

where To is the complex amplitude of the reflected mode on the membrane surface and 

L2(s) =s tanh(rya) sa µz + 2y + sa(sa2 µ2) (4.2.71) 
'y cosh (rya) 

is the derivative of L2(s) with respect to s. After replacing `_al using (4.2.63) and 

rearranging, To can be re-expressed as 

T0 a2Li(vo)ro tanh(roa) WL+(17o) 
aiWL2(vo)L+(vo)yo tanh(yoa) 

[ 
rho - vo 

+1 {G(vQ +, qoP) + H(aP + 17oQ)}] . 
(4.2.72) 

2v(va - 7702) 

4.2.1 Determination of 0°yf, qy-, 00x and 00 
lix 

The above analysis has resulted in expressions for Ro and To (the complex amplitudes of 

the reflected and transmitted structural modes) in terms of the, as yet unknown, constants 
0y+, 0v-, 4y°, and 0°yx . These are contained solely in G and H, so once expressions are 

found for the four unknowns they need only to be substituted into G and H to find the 

reflected and transmitted modes. Of course, to accomplish this the four unknowns must 

be determined. Application of the edge conditions will specify two of them, whilst the 

remaining pair are deduced by considering the large Isl behaviour of ýf(s, a). It should 
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be recalled that the fluid velocity potential has at worst an integrable singularity, from 

which it follows that 

- ro sinh(TOy) e: x(no+3) dx _0 (3, y) + 
()' 

0<p<1, lil --ý oo, (4.2.73) 

which, considering the integral on the left hand side, implies that 

4ýv+(s, a) =0 
(s) 

e ý3ý -ý oo, (4.2.74) 

and similarly 
-1)y-(s, a) =0IsI, I31-- oo. (4.2.75) 

Note that this is consistant with (4.2.54) and (4.2.53) respectively. 

Now consider again (4.2.19), that is 

Pi(3) - (s2 µi)ýDv-(s, a) + a1, ý 
_(s, a) = 0. (4.2.76) 

On replacing pi (s) using (4.2.20) and fiy_(s, a) with the expression given in (4.2.54), this 

can be rearranged to give an expression for 4'_(s, a). That is 

_b 
%sýy- 1 U(s2 - µi) 

_ 
UL+(a) 

( 
(sz - µi 

s, a) 
al 

+ 
al 

+C1 
1( 02 - al) s+Q L-(s)(s'+' a) 

+W(sa - fei) 
_ 

WL+(rlo)(s2 - µi) +V 
(32 - µi) 

_ 
a, W(s2 - µl) 

S+770 L-(s)(s + ho) s-a a2L+(°)L-(s)(s - Q) 
(4.2.77) 

Now, assuming the form 

L -(s) 
1+ 

s 
-{- 

32 
-{- ... 

(4.2.78) 

where di, d2, ... are unknown but constant, (4.2.77) can be expanded in powers of s. It is 

found that 
o' isoo ý' 

(s, a) -yx +V+1f U1s--o, + 
1(a2 

-µi)} 
ai al al(a2 - al) 

Is 

+V{s+ or + 3(Cra-µi)}-+ -W{s-77o+ 
s(ýlö-µi)} 

-UL+(Q) 
ts 

+ (di - a) +s (a2 - µi - adl + d2)} 

+ adl + d2)} (4.2.79) 2-i2 -VL+(Q) {s+ (dl + a) +s (a 
` 

(1 
-WL+(ilo) 

fs 
-F (dl - 77) +i- µi - ýod1 + (22)11 +0 

s2 

Hence, 

cos + Cl + c2 + ... 
(4.2.80) 

3 
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where 
r 

CO 
Lo o- 

-}- 
1jU 

-I--V +W- UL+(Q) - WL+(771)) - 
«2V } 

a1 a1(a2 - al) ` a2L+(a) 

(4.2.81) 

Cl = 
0°yx 

+1 {-Uo+Va-Wqo-UL+(a)(dl-a) 
al ai(aa - al) 

-WL+(r7o)(di - 77o) - 
a, V(dl +o) 

a2Lt(a) 

} (4.2.82) 

and it is in fact not necessary to calculate c2 for the purposes of this analysis. However, 

it is known that ýP_ -0(; 
), which implies that co = cl = 0. Thus, from (4.2.81) 

0= i(a2 - al)gv- +U+V+W- UL+(v) - WL+(io) - 
a1V 

aZL+(Q) 
(4.2.83) 

On replacing U and V with their expanded forms as given in (4.2.44) and (4.2.45), it is 

found that 

0= i(a2 - aj)0y` +R [1- L+(ilo)] 

+ 2or 
[a1(00+ + iagoy+) + aa(-qyo; - iogvo) - W(770 + v)] [i - L+(cr)] 

ß'2Q lal(-ý�x + i040,1 + a2(4Pyx - ice°y) + W(170 
a2L+(o, )] L 

(4.2.84) 

On using (4.2.55) this may be rearranged as 

0=a 
2a 

[L-(a) - L+ (a)] -I- 2 
[-L+(v) - L-(a) -f- 2] 

a 
2a 

y; (L+(o) - L-(a)] + 
is 

2y 
{L+(a) 

-F 
11 

2Q 
[? 7o {L+(Q) - L_(a)} +a {L+(v) + L_(c)} - 2vL+(rýo)] (4.2.85) 

and, using (4.2.68) and (4.2.69), it follows that 

C-al 
yx -I- a21ý°ýx) P+ iQ 

[ct10lf0+(2 
- Q) + a20t) 

(Q 
- 

2c21)] 

9 c92 

R [2QL+(no) - i7oP - QQJ " 
(4.2.86) 

Now, on enforcing cl = 0, equation (4.2.82) becomes 

0= -(a2 - ai)Oyo; - Ua + Va - Wr70 - UL+(a)(d2 - a) 

-WL+(7I0)(di - 'lo) - 
a1V (dl + a) (4.2.87) 

a2L+(v) 

Upon replacing U and V using (4.2.44) and (4.2.45), this can be expressed in terms of 
Oo+ 4o- 0o+ and 00' as y yxý Yv 

0 -(aa - al)02. x - Wio - WL f(f/o)(di - 'lo) 
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2 [a, (-0, ', + iaoo+) + a2(0yx - iv y-) + W(170 - Q) 

-al (O°yx + iO'Ooy+) + a2(q°yx + i01"°ß") + W(770 + a)1 

- 2ý 
[a, (0yi + iGago, +) + io0b-) -W 

(i70 + a)J L+(a)(d1 - o) 

-- Ial(_g5 yo+ 
+ ioq 

yo+ 
)+ a2(g5 - Wyo )+ W070 - Q), L-(a)(dl + a) yox ` 

(4.2.88) 

which can be rewritten as 

0= alO, O, [-2v + di {-L+(v) + L_(a)} +a {L+(a) + L-(a)}} 

+ia1o0°y+ [dl {-L+(Q) - L_(Q)} ± a. {L+(a) - L-(a)}) 

+ 20°ýý 12aa1 + dl {L+(a) - L_ (v)} +a {-L+(a) - L_(a)}l 
`zJ 

-Fia2QOy- [d1 {L+(a) + L_(a)} +a {-L+(o) + L-(a)}] 

+W [-2aL+(rjo)(di - o) + i7odi {L+(a) - L_(a)l+ ioa {-L+(a) -L- (a)) 

+ad, {L+(a) + L_(a)} + a2 {-L+(a) + L_ (a)}] 
. (4.2.89) 

Thus, using (4.2.68) and (4.2.69) 

a1gv+ [-2Q - d1P + aQ] + ia1Qgo+ I-d1Q + cP] 

a -f-a20yx 
[2' ai + d1P - 7Q] + ia2CrOoy- [d1Q - oP] 2 

=W 
[2QL+(rlo)(di 

- Flo) - P(rjodl -- c2) - Qa(dl - tio)] . (4.2.90) 

Hence, a pair of equations in the four variables qyx , 0yf, 0y; and OI- is formed by (4.2.86) 

and (4.2.90). As expected, an identical system is obtained if the convergence of P+(s, a) 
is considered instead of a). The system thus obtained comprises only two equations 
but contains four unknowns and so is not uniquely solvable as it stands, but the two edge 

conditions supply further information and enable a simple two by two system to be formed. 

As seen previously, there are four possible combinations of edge conditions. Each results 
in a different system for solution and, as in section 4.1, all four cases will be considered. 

(i) 0y+ = (ßy' = -To tanh(Toa) 

This pair of edge constraints corresponds to zero displacement on both membranes at 

x=0, and may be rewritten using (4.2.62) as 

0o+ = 00_ _ 
iW (4.2.91) 

yy 
lYZ - al 

On substituting this into (4.2.86) it is found that 

-ai ý'yý + «2¢yx) P=W (2o-L+ (i7o) -h oP] . 
(4.2.92) 
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Likewise, from (4.2.90) 

alýyx [-2d - d1P + QQ] + a20yw + d1P - aQ - aW [diQ -o PI I. a2 

=W 
[2QL+(rlo)(di 

- rlo) -- P(? lodi va) - Qa(di - rho)] (4.2.93) 

which can be rearranged to give 

ce, Ooy [-2v - d1P + QQ] + a2q°)ý [20, a2 
1+ d1P - ýQJ 

W [2QL+(rlo)(di - 'o) - Pilodi + Qc'o] " 
(4.2.94) 

Now (4.2.92) and (4.2.94) form a solvable system in the two remaining unknowns, O 

and -& , which can be expressed in matrix form as 

-P P alýo+ 
2Q - d1P + QQ 2+ d1P - aQ jI a2¢ ,ß 

`w 
2rL+(r7o) - noP (4.2.95) 

2QL+(flo)(di -170) - Pi7odi + Qa77o 

It follows that 

alýyx a2W + diP - aQ -P x 
a20°y; 2aP(a2 - al) 2a + d1P - aQ -P 

2oL+(? 7o) - ? loP (4.2.96) 
2aL+(? 7o)(dl - rho) - P77odi + Qai7o 

It is worth taking a moment to consider the situation where the determinant of the matrix 
in (4.2.95) is equal to 0. If the definition of P as given in (4.2.68) is considered, it is clear 

that P 34 0 for any value of o and so, only the case where al = a2 would result-in the 

determinant of the matrix being equal to 0. However, when a was first defined, it was 

mentioned that the case where al = a2 would have to be dealt with separately, because of 
the singularity that occurs in a at that point. So, the only case where this problem with 

the determinant occurs is already to be handled separately later. 
. 

Now, taking the top line of the matrix solution given in (4.2.96), 

_ 
a2W 2aa l 

alýýx 2QP(a2 - a1) a21 
+ d1P - aQ } {2vL+(r7o) - 77oP} 

-P {2oL+(i o)(d2 -, lo) - P97odl + 
JQalloi) 

" 
(4.2.97) 

On multiplying out and noting that 

-Q=P- 2L+(v) (4.2.98) 

this becomes 

lo) -aI+ 2aL+(o) 
{a2 

-' L+(°')} + oPL+(1lo)] alovo = 
a2 W 

P(a2 - al) 

[P0{L+(t 

(4.2.99) 
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Similarly, 

Ct200 2QP(txW al) 
[{2c + d1P - cQ} {2oL+(rio) - rioP} 

-P {2oL+(ilo)(di - 77o) - Priodi + Qai7o}J (4.2.100) 

which, using (4.2.98), can be rearrnged as 

aZýy°x = P( 2a al) 
[P77o {L+(r7o) - 11 + 2aL+(r7o) {1- L+(Q)} + QPL+(i7o)) 

(4.2.101) 
It is now possible to write down expressions for G and H given by (4.2.66) and (4.2.67), 

the expressions being 

G 
I, (aa 

a2w I) 

c 1) 

L1'770 (1- 

02 - 2oL+(ilo) 
(1 

asýJ - W770 

2QWL+(i7o) 
(4.2.102) 

P 

and 

H= -oa1W + cra2W 
-Wo a2-al a2-ai 

= 0. (4.2.103) 

When (4.2.102) and (4.2.103) are used in (4.2.65) it is easily found that 

Ro 
[L+(i7o)]2L2(1lo) 1 17o QQ 

Li(i7o) 
[271o 

770 _ v2 
+ (7702 - a2) P 

(4.2.104) 

Similarly, when (4.2.102) and (4.2.103) are used in (4.2.72) the resultant expression for To 
is found to be 

_ 
a2L1(vo)L+(r10)r°tanh(roa) 1_ v° cQ (4.2.105) T0 
aiL' (vo)L+(vo)7o tanh(7oa) no - VO a2 - vö (vo - Q2) P 

(ii) cy+ = -r0 tanh(roa), coy = -ir7oro tanh(ýroa) 

This pair of edge constraints corresponds to zero displacement on the membrane to 
the right of the point a=0, y=a and zero gradient on the membrane to the left of that 
point. By using (4.2.62), these conditions can be rewritten as 

0y+ = 
iW 

(4.2.106) 
a2-ai 

and 
0o0 _ -77OW (4.2.107) 

a2 - a1 
On substituting this into (4.2.86), it is found that 

-al0oyx P+ iaa2ýy_ (Q 
- 

2ai 1_W 

as a2 - al 
(2a {(a2 - ai)L+(ilo) + al} 

+a1r1oP - a2aQJ . 
(4.2.108) 
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Likewise, from (4.2.90) 

aj [-2o - d1P + QQ] + iva2q°0- (d1Q -- oP] 
ril 

- ä2 
a1 

al 
(cP - d1Q] -ä2a2ä 12äa + d1P - QQJ 

=W 
[2cL+(cr)(di 

- Flo) -- P(77odi - a2) - Qa(di - rho), 

which can be rearranged to give 

algyz [-2Q - d1P + vQ] + ica2gy- [d1Q - aýP] 
w 

94 

(4.2.109) 

_vv [2o {(a2 - a, )L+(a)(di - io) + iloai} 
a2 - al 

+. {a2 
a2 + alditio} -Q {a1i oc + a2d, a}1 (4.2.110) 

Equations (4.2.108) and (4.2.110) form a complete system in the two remaining unknowns, 
0 and °y-, which can be expressed in matrix form as 

-P Q- alo°yx WC (4.2.111) 
-2Q - d1P + aQ d1Q - aP ida2O° as - al .D 

where - 

C= 2a {(a2 - al)L+(rlo) + al} + al7]oP - a2oQ, (4.2.112) 

D= 2a {(a2 - ai)L+(a)(di - 7Io) + r7oai} +P {a2Qa + a, dilJo} 

-Q {a11700 + a2d1Q} . 
(4.2.113) 

It follows that 

at 
-W 

d1Q - vP 2 L_ QC (4.2.114) 
iQa2ýy- (a2 - ai)O1 20, + d1P - aQ -P D 

.I 

[] 

where the determinant of the matrix, A,, is given by 

[11 = -P(d1Q - cP) - 
(tai 

- Q) j (-2v - d1P + aQ) 
02 

_a 
(P2 

- Q2) + 
2C12a1(aQ 

- d1P) + 2r 
(Q 

-2 2l 
}" (4.2.115) 

Again here, as in case (i), the situation where the denominator of the term multiplying 

the solution matrix in (4.2.114) is equal to 0 must be considered. The expression given 
for Al is easily shown to never be equal to 0, and so again, only the case where al = aZ 
is of interest. As has already been mentioned, at this point a is undefined and so this 

particular case requires further investigation anyway. Hence, 

Ol(az - al)aiOyt 
_ W 

(d1Q - QP) [2a {(ca2 - ai)L+(rlo) + ail + a1 oP - a2°Q] 

2a2 
-f- a2 - Ql [2o {(a2 - ai)L+(a)(dl - Flo) + tloal} 

+P {a2a2 + a, dii o} -Q {a1ioc + a2dlo}] (4.2.116) 
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which can be rearranged to become 

o+ 2aL+(ilo)W 2ai(di - flo) ali7oW 
alb, =- Pa + Q7701 - (4.2.117) 

O1 a2 a2 - al 

Similarly, 

AI(aa - al)iQa200y- 
= [2Q + d1P - QQ] [2Q {(ca2 - al)L+(io) + al} + alioP - a2QQ] w 

-P [20 {(a2 - al)L+(a)(di - 77o) + lloal} 

+P {a2v2 + aid, 77o} -Q {ail7ocT + a2div}] (4.2.118) 

which can be rearranged as 

ioa20oo- = 
2QL (ilo)W 

[2Q+ Pro - Qa] - 
a2cW (4.2: 1"19) 

Al as - al 

It is now possible to write down expressions for G and H given by (4.2.66) and (4.2.67), 

these being 
G_ 

2aL+('7o)W [2a1(d1-'/o) 
- Pa + Quo] (4.2.120) 

Al L 
cat 

and 
H__ 

2aL (i o) W 
(2a + P2 7o - Qv]. (4.2.121) 

When (4.2.120) and (4.2.121) are applied to (4.2.65) the resultant expression for Ro is 

1 Ro 
[L+(1I0)]2L2('lo) [277o 

Li (170) 

+ 0i (7]6 
Z- 

a2) 

{f 2a1(d z- ilo) 
- PQ + Q17o } {r7oP - QQ} 

J 

- {2Q + Pro - Qv} {uoQ - vP}] ]. (4.2.122) 

Once simplified, this becomes 

[L+(no)}ZL2(? lo) 1 Ro =- L', (no) 
[277o 

+2 
2) 

f 12oi(d1- 7Io)(noP 
- QQ) + 2a(c. P - 7loQ)}, . 

(4.2.123) 
70 Q2 

The transmitted coefficient, To, is found in a similar way, by applying (4.2.120) and 
(4.2.121) to (4.2.72). This gives 

TO _ 
a2Li (vo)L+(rlo)ro tanh(roa) 1 
a1L2(vo)L+(vo)'Yotanh(Yoa) 

[rho 

- vo 

+Ol 
(Qa - v2) 

[{ 2a1(d 

2- 

Flo) 
- Pa + Quo } {aQ + voP} 

oJ 

-{2a+Pro-QQ}{vP+voQ}11 1 
(4.2.124) 
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which can be simplified to 

To ` 
a2Li (vo)L+(tlo)rotanh(roa). (I 

a1L2(vo)L+(vo)'yotanh(7oa) Lqo - vo 

+1 
{2cx1(dl -'lo) (QQ + voP) A, (Q2-vö) 'aa 

- 2Q((7P + voQ) + a(Q2 - P2)(vo + rho) 
11 

. (4.2.125) 

(lii) c5 = -irjoro tanh(roa), 0y- = -7-0 tanh(TDa) 

This pair of edge constraints corresponds to zero gradient on the. membrane tp the 

right of the point x=0, y=a and zero displacement on the membrane to the left of that 

point. By using (4.2.62), these conditions can be rewritten as 

Oo+ = -floW (4.2.126) 
Vx C12 - a1 

and 
00- = as 

i-W 
al, 

(4.2.127) 

On substituting these conditions into (4.2.86) it is found that 

a20oyx P+ iaalooo (2 - Q) =W [2Q {(a2 - al)L+(flo) -' a, } 
a2 - al 

-a2170P + a10'QJ (4.2.128) 

Similarly, from (4.2.90) 

[2crai 1a 
-r di P- QQl + iualoy [o P- diQ] 

z 

_ 
ai7loW [-2u - diP + QQ] - 

a2UW [d1Q - vP] 
as - al a2 - al 

=W 
[2crL+(a)(di 

- no) - A(r7odi - c2) - Qa(dl - rho)] (4.2.129) 

which, when rearranged becomes 

o_ 2Qa1 oy+ aP - diQJ a2ýy 
a2 

+ di P- QQl + ivai c[ 

= a2Wal 
[2v{(a2 - al)L+(a)(di - no) -'loci} 

+P {-a10'2 
- a2dlilo} +Q {a1dia + a2'7ocr}] " 

(4.2.130) 

As in previous cases, the two equations, (4.2.128) and (4.2.130), form a complete, and thus 

solvable system in the two remaining unknowns. This system can be expressed in matrix 

form as 
p2-Q 

a2 0.; w [c] 
() I. aP-dQ iaal/+ - a2-a, 

Hi 4.2.131 
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where 

C= 2a {(aa -- ai)L+(i? o) - al} - cr2 oP + aivQ 

D -- 2a {(a2 - al)L+(a)(dl - rho) --'7oai} +P {-ala2 
- a2diiio}. 

+Q {aldiv + a2l7ocT} 

It follows that 
I 0200y 

_W 
vP - d1Q Q-2C 

[ioai0°y+ 
02(a2 - al) -2- - diP + aQ PD 

012 

where the determinant of the original matrix, 62, is given by 

Da = P(aP-diQ)-(2-Q)(2va1+diP-0Q/ 
a2 

=a 
(P2-Q2)+2(CQ-d1P)+ 2 '7a1 (Q-2). 

ryn 

97 

(4.2.132) 

(4.2.133) 

(4.2.134) 

(4.2.135) 

Again, the denominator of the expression multiplying the matrix solution in (4.2.134) must 
be considered; should this expression ever equal 0, then the solution would be undefined. 
As in the previous two cases, this only occurs when aI = a2, which is already being dealt 

with as a special case, and so the analysis of this case continues, with the assumption that 

ai 0 az made. The matrix solution to the system gives expressions for both of the two 

remaining unknowns. Thus, 

a2o°v;, aa(aa - ai) 
= (aP - d1Q) [2a {(caa -- al)L+(ilo) - ai} - aa1? oP + aivQ] W 

(Q - 2) [2a{(a2 - al)L+(a)(di - rlo) -'oal} 
+P {_cia2 

- a2dit o} +Q {aidla + a2iioa}] (4.2.136) 

which, when rearranged, gives 

o a2l7oW 2QL+(r7o W 
az0bx as - al 

+ 
02) 

[vP - , qoQ - 2(d1 ''ýo)ý " 
(4.2.137) 

Similarly, 

iaaloy+A2(a2 - al) 20 a1 1 

W= 
{- 

a- 
d1P + QQJ [2a {(a2 - al)L+(? lo) - cell - 02770P 

2 
+aiaQ) +P [2a {(a2 - al)L+(cT)(dl -- 77o) - lloal} 

+P {-alo. 2 - a2diiioI +Q {a1dia + a2? 700}] (4.2.138) 

which can be rearranged to give 

ioal 
'oo+ .=- 

ä2 1v W 2aL Qilo)W [cQ 
701,2äa11 (4.2.139) 

j 
Now expressions for G and H, given as (4.2.66) and (4.2.67) can be written down. These 

are 
G _2QL ap_ ý 77oQ -Z(dl-7lo)] 

(4.2.140) 
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and 
H- 

2vL ((ZO)W r- 
rloP - 

2äa1] 
" (4.2.141) 

It is now possible to find an expression for Ro, by applying (4.2.140) and (4.2.141) to 
(4.2.65) to give 

[L+(ilo)]2L2(ilo) 1 
Ro =- Li (i7o) 

[217o 

1 
a) 

[{P 
- ioQ - 2(dl - rho)} {i oP - QQ} A2(no - QZ 

- 
JaQ 2La1 

JJ 
{77oQ - oP} (4.2.142) 

a2 

After multiplying out, this can be simplified to give 

Ro 
[L+(ilo)]2L2(no) 1 

Li(7lo) 
[217o 

+02(1)2 
-0,2) 

{2(dl 
- ilo)(7IoP - QQ) + 

2äa1(QP 
- ? 7oQ)}, . (4.2.143) 

2 

Similarly for To, (4.2.140) and (4.2.141) are applied to (4.2.72) to give 

To _ 
a2Li (vo)L+(Vo)ro tanh(roa) r1 
a1L2(vo)L+(vo)7otanh(yoa) Lilo - vo 

+A1(a2 
V02) 

[ciP 
- ? 7oQ - 2(dl -Flo)} {vQ {- voP} 

{QQ 
_, lop - 

2ä21t lap + voQ}J 
]' (4.2.144) 

which simplifies to 

TO _ 
«2Lý (vo)L+(ýo)-ro tanh(roa) 1 
a1L2(vo)L+(vo)7otanh(-iba) Lilo - vo 

+01(2) {(dl 
- no)(aQ + voP) 

-2äa 
l (QP + voQ) + 0, (Q2 - P2)(vo + 7/o)ýJ " 

(4.2.145) 

o+ = o- = _Zi0T0 tanh(Toa) (iv) ýxy 
'- 

ýxy 
- 

In this last case, the pair of edge constraints correspond to zero gradient on both 

membranes at x=0, and may be rewritten as 

0of o- 
- 

-slow (4.2.146) 
xý _ ýyx 

a2 - al 

When this is substituted into (4.2.86), it is found that 

i 
[ajOO+(2 

- Q) + a2Ooy 
(Q 

- 
2«21)] 

=W [2L+(rlo) - Q1, (4.2.147) 
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Likewise, (4.2.90) yields 

- 
17OW [al 

{-2a - d1P + vQ} + a2 
2aai 

+ d1P - QQ 
-ai l a2 2 

ýJ 

+ia [alo'y+ {aP - d1Q} + ca20°o 
. 
{dlQ - aP}] 

=W 
[2QL+(i7o)(di 

-'lo) - A('7odl - v2) - B(dja - 770o)] (4.2.148) 

which can be rearranged to give 

i [al0oy+ {aP - d1Q} + a20, °0y- {d1Q - oP}] =W [2L+(i7o)(di -- 77o) - Pa - Bdj]. 
(4.2.149) 

Equations (4.2.147) and (4.2.149) now form a solvable system that can be used to find the 

two remaining unknowns, O°, + and 0°0, -. The system maybe written in matrix form as 

2-Q Q- 2 2. iaiOy+ 
W 2Lf(ýo)-Q 

oP - d1Q diQ - ýA ia2O°y' 2L+(77o)(dl - 77o) - Pa - Bdi 
(4.2.150) 

It follows that 

iaio, °oy+ a2W d1Q - arP 2cvL -Q a1 x 

ia2cvo- 2(a2 - al)(dlQ - cP) d[i Q- aP 2-Q 

2L+(r7o) -Q"(. 4.2.151) 
2L+(i7o)(di -1lo) - Pa - Bd1 

The denominator of the multiplying expression in front of the matrix solution in (4.2.151), 

as in previous cases, is only equal to zero when ai = aZ. This case is already recognised 

as a special case because of the singularity that occurs in o at this point, and so analysis 

continues with the assumption that al 56 a2. It is easy to see from (4.2.151) that 

iairy+ [{ } {+(ilo) - Q} - 2(a2 - a)(d Q- aP 
d1Q - QP 2L 

+{2 01 -Qj {2L+(to)(di -h o) - Pa - Bdi }] (4.2.152) 

and 

ia20vo- = 2(a2 - al)(d Q- QP) 
[{dIQ - aP} {2L+(i o) - Q} 

+ {2 - Q} {2L+(i7o)(dl -Flo) - Pa - Qdl}] . 
(4.2.153) 

It is now possible to write down forms for G and H given in (4.2.66) and (4.2.67) respec- 

tively, that is 

G=- airloW ý-aZý1oWa2-al-W1Jo 
a2 - al 

=0 (4.2.154) 
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and 

H- a2oW tai 
21 {2L+(i7o)(di - i7o) 2(a2 - al)(d1Q - CP) a2 

-Pa - Bdl} - Wa 

_ 
2oWL+(i7o)(di - rho) (4.2.155) 

aP - d1Q 

The expressions gained in (4.2.154) and (4.2.155) can be applied to (4.2.65) to give 

Po 
[L+(17o)]2L2(flo) [217o 1 (di -, lo)(Qilo - Po)j (4.2.156) J Li(i7o) (1702 - a2)(Qdl - Pa) 

Similarly, when (4.2.154) and (4.2.155) are applied to (4.2.65), the resultant expression 
for Ta is 

= 
a2Li(vo)L+(i7o)rro tanh(roa) 1 (dl -i o)(PQ + voQ)l (4.2.157) T0 
cý1L2(vo)L+(v°)yotanh(7oa) Leo - v° (vo - vZ)(Po - dlQ)J . 

4.2.2 Sum split of the Wiener-Hopf kernel and determination of dl 

So, for the four possible combinations of edge conditions, detailed in cases (i) to (iv) above, 
Ro and To have distinct forms. However, all these expressions for Ro and To rely on L+(s) 

and L_(s) and all but one also rely on dl. Before Ro and To can be evaluated it will be 

necessary to construct suitable expressions for these remaining quantities. First, L±(s) 

will be found. In this case, the Wiener-Hopf kernel is 

Li(s) (4.2.158) L(s) . L2(S) 

where 

Li(s) = (s2 - µi)'Ytanh(ya) - al, (4.2.159) 

La(s) = (s2 - µä)y tanh(ya) - a2. (4.2.160) 

Hence, L(s) can be expressed as 

L(s) - 
(s2 - µl)ysinh(ya) - ai cosh(ya) (4.2.161) 
(s2 - µj)y sinh(ya) - a2 cosh(ya) 

However, in section 3.2, a function, f (s) was defined as 

.f 
(S) _ (s2 -142)7 sinh(7a) -a cosh(ya). (4.2.162) 

This was separated to give 

.f 
(s) = `a (1-}. 

2' 
-S 

«l+ 1'+S (4.2.163) 

n =O 7n -in 'yn 

J 

'Yn 
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Hence, using this infinite product form and applying it to (4.2.161), L(s) can be given as 

S 11 
alý 

(1+T ) 

Tn {('+T +Tn 

L(s) _o n}n1 (4.2.164) 

( 1)'-s ( 1)' 02 
n=o 

1+ 
7n 7n 

1+ 
in 

+ 
7n 

Thus, when separated into plus and minus functions and simplified, 

La(s) 
\a2 / 11 T� 

(s 
f v�) 

(4.2.165) 
n=O 

The quantity d1 is analogous to that of is in subsection 3.2.1 and is, therefore deter- 

mined using similar analysis. This constant, as defined in terms of L_ (s) by (4.2.78), 

is 
gis) 

-{- 
sl 

+i+.... (4.2.166) 

It is also worth noting at this point that a direct implication of (4.2.158) is that 

__ 
Ll(s) Ll+(s)Li-(s) (4.2.167) L(s) 
L2(s) L2+(s)L2-(s)' 

and so 1_ L2-(-9) (4.2.168) 
L-(s) L1=(s) 

By following the method dictated by (3.2.87) - (3.2.98), it is clear that 

1 00 In 
L 

(s)] 
= 2ýri J_[L(s), ý'ýs' 

(4.2.169) 

Expression (4.2.161) for L(s) as stated can be rearranged as 

(s2 - ýi _ 
«1 Dash -ya 

l)_) 
'Y ein11 rya () Ls4.2.170 

s2 a «acosh ya ( 
-. ý2) - "y sinn rya 

Hence, from (4.2.169) 

1 00 _ 
«q cosh rya 

In L1s 2xi 
foo 

in 
(S2 µä) ' rysinh rya d( (4.2.171) - 
((2 

-a- 
«l cosh rya (-3' 

N1) 
rysi rya 

By using rules of logarithms, it can easily be seen that (4.2.169) can be rearranged to give 

00 2-2 a2 cosh(rya) dC In 
L (s) = 2ri 00 

In 
[(ý 

2) ry sinh(ya), -s 
j°° r-2 al cosh(_ya)l d( 

27ci J 
., 

In [C2 Al _J 
(4.2.172) 

7 sinh(7a) C-s 
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It is noted that the two expressions on the right hand side of (4.2.172) are equivalent to 

that in (3.2.88) and so, following the method laid out in (3.2.89) - (3.2.98), L-aJ can be 

written in the form 

L 
(s) 

_ 1-I- 
3 [µi 

- µz -I- 
{Jo 00 In 

[1- 
((2 

a, cosh(7a) 
)'Y Sn (7 a)1 

dS 

- J"o In 11- 
((2 

aµä7 
nh(7a)J 

dC }J -}- 
s2 

-} .... 
(4.2.173) 

Thus, referring to (4.2.166) 

di = µi - µa + 
{Jo In [l - (C2 

a 
112l 
cos 

), / 

h(-ya) 
d( 

-f In 
f 
1- a cosh(ya) ] 

dC} 
. 

(4.2.174) 
oL(. 2 - »2), y sinh(^ya) 

All of the work carried out on this problem so far is reflected in the Mathematica code 
included in Appendix C. 2. 

4.2.3 The special case when al = a2 

Recall the definition of a as given in (4.2.38), that is. 

_ 
(«2 µi - «1µ22)i 2. 

(a2 - a1)2 
(4.2.1 75) 

When a was first defined, reference was made to the potential problem caused in the case 

when al = a2. Here that problem will be addressed. 
In the case where al = a2, a singularity occurs in a. This singularity affects all the 

expressions found for Ro and To, and so for each pair of edge conditions, the case where 

al = as must considered separately. As an example of the analysis involved, case (i) from 

subsection 4.2.1 is considered for al = 02. 
It is worthwhile noting first, that the expressions for Ro and To bear striking similarities 

to each other. Consider the expression I, given as 

I= Kf1+3_ aQ 1. (4.2.176) 
1TO 

+s U2 - S2 (s2 
- a2) PJ 

In the case where s= 'io and 

K= _[L+(1lo)1ZLZ(7Jo) 
(4.2.177) 

L ('7o) 

then I= Ro. However, when s= -vo and 

K= a2L1(vo)L+(r7o)rotanh(roa) (4.2.178) 
alL2(vo)L+(vo)yo tanh(yoa) 

then I= To. It is convenient to use the common form given in (4.2.176) since K is 

essentially unaffected if al = a2. Thus, using expression for o given in (4.2.175), ' it is 

easily shown that 
S (4.2.179) 

. 92 . 32 
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Further, 
n ,s 

is unaffected as al --> a2. 
The only term that needs consideration as al -+ a2 is the last term of (4.2.176). From 

(4.2.39) it can be shown that 

i rytanh('Ya)(a2 - a1) (2 -1)2, (4.2.180) 72-62 _ a2L1(s) - a1L2(s) =s 

and so 

a_ 7tanh(-ta)(a2 - ai)'(a21.1i - ai2' (32 -1)z. (4.2.181) 
sa - a2 a2L1(s) - a1L2(s) 

From (4.2.68) and (4.2.69), it is clear that 

Q_ L+(_) + L-(a) 
P L+(a) - L-(a) 

a2L+(a) + ai (4.2.182) 
a2L+(a) - al 

Hence, the term in question can be expressed as 

OQ 
_ 

')'tanh(7a)(a2 - a1)' (a2/di 
- a1iýä)' (a2L+(0) + al) 

g2_'1 
z 

(s2 - Q2)p (a2L1(s) 
- a1L2(g))(a2L2 (a) - al) 

y=-() 

(4.2.183) 

It follows that 

Jim aQ 7tanh(7a)(a2µi - aiµä)' (a2L+(v) + al) lim 
(a2 - a1)5 Jim 

a, --+a2 

L(s2 

- Q2)P] - a2L1(g) - a1L2(s) al-"a1 a2L+(Q) -- 

I 

(4.2.184) 

It has been stated previously that L+(s) takes the form 

and so it is clear that 

L+(s) =1+s+... {4.2.185) 

L+(o) + 
2d1 

+ .... 
(4.2.186) 

Q 
If (4.2.186) is substituted into (4.2.184) then 

lim °Q "I 
_ 

ytanh('ya)(a2µi - aiµ2)' (a2 + al) x 
al-"«, (S2 - a2)p a2L1(3) - a1L2(s) 

Jim 
11 

(4.2.187) 
01~°I2 (a2 

- a1)1 + 2a 

This leads simply to 

QQ ytanh('Ya)(a2A2j - a1 4)(aa + al) (4.2.188) 
(s2 - aa)P 2a2d1(a2L1(s) - aiL2(s)) 

Thus, bringing together the analysis conducted in this particular case (that being case (i) 

when al = aa), then 

Ro =- 
(L+(? 7o)]2L2 (77o) 1_ ro tanh(rroa)(a2ý1 - aiµ2)(a2 + «1) (4.2.189) 

Li (, lo) 

[2770 

2aia2d1L2(7lo)) 
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and 

_ 
a2L1(vo)L+(r7o)rotanh(roa) 1 'yotanh('Yoa)(a2µ1 - aiµ22)(a2 + ai)1 

. T0 
a1L2(vo)L+(vo)ryotanh('Yoa) 

k7o 

- v° - 2a2diLi(io) .J 
(4.2.190) 

For Cases (ii), (iii) and (iv) analysis follows in a similar manner to produce appropriate 

expressions for the situation where al = a2. 

4.3 Results 

Because of the number of combinations of edge conditions and the infinite range from 

which a. and µ� j=1,2, may be selected, an exhaustive set of results is impossible 

to produce. Therefore, a selection of results is given here. First, for the case a=b, 

results given by the system derived in section 4.1 are compared with those found using 

the Wiener-Hopf technique as described in section 4.2. Then, by choosing the parameters 

a' and pi, j=1,2 in the two boundary conditions appropriately, results given from the 

system of equations found in section 4.1 can be compared' against those found in Chapters 

2 and 3. 
Figures 4.3 - 4.18 show the graphs of the fundamental reflection and transmitted modes 

against either al (graphs 4.3 - 4.10) or a2 (graphs 4.11 - 4.18) for fixed a=b=1.5, 

p1 = 1.6, A2 = 5. In each case four curves are shown corresponding to the Wiener-Hopf 

solution (solid line) and various truncations of (4.1.39). It is noticeable that as the value 

of a2 or al increases, the accuracy of the results falls away. This fall off is counteracted 

to some extent by increasing the number of terms used in the truncation of (4.1.39), but 

it is still noticeable that accuracy is waining for particularly large values of aj, j=1,2, 

even when 20 terms are used. The reason for this can be seen when rl or 7n are expanded 

asymptotically. For rl, when expanded in terms of 1, that being 

Tt =+ 
Talaa. 

+Q (4.3.1) 
a . 

Q37' 

(k), 

it is dear that the second term of this expansion becomes large in the case where al » I3. 

Thus this term affects the value of rt (and in turn raj) when I is small. This incorrect 

evaluation of i7t is enough to cause the inaccuracy in the results and also explains why, 

as n is increased, the accuracy of the results is found to improve. Similar analysis applies 

to 'y� when a2 » n3 with the result being similarly inaccurate. In all graphs, the edge 

conditions used are indicated in the captions. 
It has already been discussed how, by suitable choice of parameters, a membrane 

surface can be made to behave in an almost identical way to *a soft surface, and now it is 

desired that a membrane be made to act in the same way as a hard surface. In addition 

it is necessary to make the incident structural wave behave like the incident plane wave 

used in section 3. To do this, values of al and µl must both be small. This has the effect 
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Figure 4.3: Comparison of the modulus of the coefficient for the fundamental reflected 
mode for the membrane/membrane problem with edge conditions 01, (0, a) = '2 (0, b) =0 
where a=b=2.5, al = 10, µl = 1.6 and P2 = 5. The eigenfunction expansion are the 
dotted lines, using the number of terms n for the solution as indicated, whilst the Wiener- 
Hopf results are the solid line. 
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Figure 4.4: Comparison of the modulus of the coefficient for the fundamental transmitted 

mode for the membrane/membrane problem with edge conditions 4i (0, a) =q 2y(0, b) =0 
where a=b=2.5, ai = 10, p=1.6 and P2 = 5. The eigenfunction expansion are the 
dotted lines, using the number of terms n for the solution as indicated, whilst the Wiener- 
Hopf results are the solid line. 
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Figure 4.5: Comparison of the modulus of the coefficient for the fundamental reflected 
mode for the membrane/membrane problem with edge conditions 01y(0, a) = 02, x(0, b) = 
0 where a=b=2.5, al = 10, µl = 1.6 and µ2 = 5. The eigenfunction expansion are 
the dotted lines, using the number of terms n for the solution as indicated, whilst the 
Wiener-Hopf results are the solid line. 
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Figure 4.6: Comparison of the modulus of the coefficient for the fundamental transmitted 

mode for the membrane/membrane problem with edge conditions Oly(0, a) = 42yx(O, b) = 
0 where a=b=2.5, al = 10, µl = 1.6 and 112 = 5. The eigenfunction expansion are 
the dotted lines, using the number of terms n for the solution as indicated, whilst the 
Wiener-Hopf results are the solid line. 

of forcing rho towards 1 and 77, to tend to 0. With this behaviour in place, it is possible 
to compare results from the hard/soft and hard/membrane problems, with those gained 

--� -4 -1 J. 2 3 
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Figure 4.7: Comparison of the modulus of the coefficient for the fundamental reflected 
mode for the membrane/membrane problem with edge conditions 01, x(0, a) = 02y(0, b) = 
0 where a=b=2.5, al = 10, µi = 1.6 and A2 = 5. The eigenfunction expansion are 
the dotted lines, using the number of terms n for the solution as indicated, whilst the 
Wiener-Hopf results are the solid line. 
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Figure 4.8: Comparison of the modulus of the coefficient for the fundamental transmitted 

mode for the membrane/membrane problem with edge conditions q51yx(0, a) = 42y(0, b) = 
0 where a=b=2.5, ai = 10, µi = 1.6 and µ2 = 5. The eigenfunction expansion are 
the dotted lines, using the number of terms n for the solution as indicated, whilst the 
Wiener-Hopf results are the solid line. 

by using equation (4.1.39). Indeed, in graphs 4.19 - 4.22, it is seen that the correlation is 

excellent. 
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Figure 4.9: Comparison of the modulus of the coefficient for the fundamental reflected 
mode for the membrane/membrane problem with edge conditions Olyx(0, a) = cS2Vx(0, b) = 
0 where a=b=2.5, al = 10, µl = 1.6 and P2 = 5. The eigenfunction expansion are 
the dotted lines, using the number of terms n for the solution as indicated, whilst the 
Wiener-Hopf results are the solid line. 

IToI 

= 30 

= 20 
= 15 
=10 

loglo(a2) 

Figure 4.10: Comparison of the modulus of the coefficient for the fundamental transmitted 

mode for the membrane/membrane problem with edge conditions Oiyz(0, a) _ c2yx(0) b) = 
0 where a=b=2.5, al = 10, µl = 1.6 and µ2 = 5. The eigenfunction expansion are 
the dotted lines, using the number of terms n for the solution as indicated, whilst the 
Wiener-Hopf results are the solid line. 
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Figure 4.11: Comparison of the modulus of the coefficient for the fundamental reflected 
mode for the membrane/membrane problem with edge conditions q51y(0, a) = 02y(O, b) =0 
where a=b=2.5, a2 = 10, µl = 1.6 and 112 = 5. The eigenfunction expansion are the 
dotted lines, using the number of terms n for the solution as indicated, whilst the Wiener- 
Hopf results are the solid line. 
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Figure 4.12: Comparison of the modulus of the coefficient for the fundamental transmitted 

mode for the membrane/membrane problem with edge conditions q5iy(0, a) = c2, (0, b) =0 
where a=b=2.5, as = 10, Al = 1.6 and µ2 = 5. The eigenfunction expansion are the 
dotted lines, using the number of terms n for the solution as indicated, whilst the Wiener- 
Hopf results are the solid line. 
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Figure 4.13: Comparison of the modulus of the coefficient for the fundamental reflected 
mode for the membrane/membrane problem with edge conditions 01y(0, a) = 02yx(0, b) = 
0 where a=b=2.5, a2 = 10, µl = 1.6 and 112 = 5. The eigenfunction expansion are 
the dotted lines, using the number of terms n for the solution as indicated, whilst the 
Wiener-Hopf results are the solid line. 

ITO I 
n- in 

= 15 

= 20 

4 
1ogio(ai) 

Figure 4.14: Comparison of the modulus of the coefficient for the fundamental transmitted 
mode for the membrane/membrane problem with edge conditions c iv (0, a)-= 02yx(0, b) = 
0 where a=b=2.5, a2 = 10, p, = 1.6 and 142 - 5. The eigenfunction expansion are 
the dotted fines, using the number of terms n for the solution as indicated, whilst the 
Wiener-Hopf results are the solid line. 
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Figure 4.15: Comparison of the modulus of the-coefficient for the fundamental reflected 
mode for the membrane/membrane problem with edge conditions -0lyx(0, a) = 02V(0, b) = 
0 where a=b=2.5, aZ = 10, it, = 1.6 and µ2 = 5. The eigenfunction expansion are 
the dotted lines, using the number of terms n for the solution as indicated, whilst the 
Wiener-Hopf results are the solid line. 
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Figure 4.16: Comparison of the modulus of the coefficient for the fundamental transmitted 

mode for the membrane/membrane problem -with edge conditions ýlyx(0, a) _ 02y(0, b) = 
0 where a=b=2.5, as = 10, A, = 1.6 and µ2 = 5. The eigenfunction expansion are 
the dotted lines, using the number of terms n for the solution as indicated, whilst the 
Wiener-Hopf results are the solid line. 
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Figure 4.17: Comparison of the modulus of the coefficient for the fundamental reflected 
mode for the membrane/membrane problem with edge conditions glyý(0, a) = '2, z(0, b) = 
0 where a=b=2.5, as = 10, µl = 1.6 and µ2 = 5. The eigenfunction expansion are 
the dotted lines, using the number of terms n for the solution as indicated, whilst the 
Wiener-Hopf results are the solid line. 
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Figure 4.18: Comparison of the modulus of the coefficient for the fundamental transmitted 

mode for the membrane/membrane problem with edge conditions Oly., (0, a) _ 02yx(0, b) = 
0 where a=b=2.5, a2 = 10, µl = 1.6 and µ2 = 5. The eigenfunction expansion are 
the dotted lines, using the number of terms n for the solution as indicated, whilst the 
Wiener-Hopf results are the solid line. 
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Figure 4.19: Comparison of the modulus of the coefficient, for the fundamental reflected 
mode with a=1.211. The hard/soft problem results (from section 2.4) are shown as solid 
line, the hard/membrane limiting case results (from section 3.3) are shown as dots and 
the membrane/membrane limiting case results are shown as a dashed line. 
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Figure 4.20: Comparison of the modulus of the coefficient for the fundamental transmitted 

mode with a=1.211. The hard/soft problem results (from section 2.4) are shown as solid 
line, the hard/membrane limiting case results (from section 3.3) are shown as dots and 
the membrane/membrane limiting case results are shown as a dashed line. 
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Figure 4.21: Comparison of the modulus of the coefficient for the' fundamental reflected 
mode with a=1.51. The hard/soft problem results (from section 2.4) are shown as solid 
line, the hard/membrane limiting case results (from section 3.3) are shown as dots and 
the membrane/membrane limiting case results are shown as a dashed line. 
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Figure 4.22: Comparison of the modulus of the coefficient for the fundamental transmitted 

mode with a=1.51. The hard/soft problem results (from section 2.4) are shown as solid 
line, the hard/membrane limiting case results (from section 3.3) are shown as dots and 
the membrane/membrane limiting case results are shown as a dashed line. 

Similarly, figures 4.23 and 4.24 compare the case where al and pi are selected so 

that the left hand membrane mimics a rigid surface with the results obtained for the 

hard/membrane problem (see figures 3.12 and 3.13). Thus in both these graphs al = 
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p, = 10-11, whilst a=1.51, µ2 = 2.2, a2 = 50 and b varies from 1.51 to 12. Again the 

agreement between the two sets of results is excellent. 
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Figure 4.23: Comparison of the modulus of the coefficient for the fundamental reflected 
mode with edge condition Oyx(0, b) = 0, a=1.211, a2 = 50 and 92 = 2.2. The 
hard/membrane limiting case results (from section 3.3) are shown as dots and the mem- 
brane/membrane limiting case results are shown as a solid line. 
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Figure 4.24: Comparison of the modulus of the coefficient for the fundamental reflected 
mode with edge condition ßy(0, b) = 0, a=1.51, a2 = 50 and p2 = 2.2. The 
hard/membrane limiting case results (from section 3.3) are shown as dots and the mem- 
brane/membrane limiting case results are shown as a solid line. 

Clearly, all the results gained in this section show an excellent level of accuracy when 
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compared with the results gained in previous chapters. 
The results can be further extended by applying the physical properties of actually 

materials to the membranes. Tables of physical constants, such as those found in Kaye & 
Laby (1986) can be used to evaluate cri and /25, j=1,2, to give the results applicability 
to actual problems in engineering. 



Chapter 5 

Discussion 

The problems discussed in this thesis demonstrate how a particular class of problem may 
be solved by utilizing the orthogonality relation appropriate to the eigen-sub-problem 

obtained through separation of variables. In section 2.5 it was seen that, for an acoustic 
duct bounded on its upper surface by a membrane, the standard Sturm-Liouville method 
failed to yield a solution, and it was later noted that the cause of this failure was because 

the eigen-system that was generated lacked the flexibility to accommodate the enforcement 
of an edge condition. For problems involving finite or semi-finite domains, it is inherent in 

the nature of the membrane boundary condition that an edge condition must be applied, 

and it is this fact that makes the Strum-Liouville method inappropriate. The key to the 

success of the method employed in Chapters 3 and 4 was the derivation of a specialised 

orthogonality relation. 
However, in the derivation of the orthogonality condition (as described in section 2.6), 

much is owed to the lessons learnt from observing the Sturm-Liouville method's derivation 

in section 2.3. The steps followed to derive the new orthogonality relation are analogous to 

those followed for the Sturm-Liouville relation. It is only because the-dispersion relation 
differs from one case to the other that the relations themselves differ at all. The deriva- 

tion of this new orthogonality condition, and its more generalised form, (see Abrahams & 

Lawrie, 1999) enables a whole new class of problems to to be solved in a neat and concise 
form. 

The class of problem that can be solved using this type of orthogonality relation is 

vast namely the reflection and transmission of plane or fluid-coupled structural waves at 

a discontinuity in height and/or material property in an otherwise infinite waveguide. It 

is well known that for cases where there is no change in height such problems can be 

solved using the Wiener-Hopf technique. However, it should be noted that the classical 
Wiener-Hopf technique is appropriate only for problems in which the planar boundaries 

are described by two-part conditions. The modified Wiener-Hopf technique can be applied 

to problems having three-part boundary conditions but the calculations are cumbersome 

and require either asymptotic interpretation or numerical evaluation of a pair of coupled 

117 
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integral equations, see for example, Lawrie (1988). Other extensions of the Wiener-Hopf 

technique deal with semi-infinite but non-planar' geometries. In such cases, the Wiener- 

Hopf equation assumes a matrix form but exact factorization can be performed in only a 

small minority of cases and for the vast majority of problems an approximate factorization 

is necessary, see Lawrie & Abrahams (1994). All such extensions to the Wiener-Hopf 

technique are inappropriate if the scattering structure has any vertical components and 

alternative approachs must then be employed such as Jones (1953). In contrast, the 

eigenfunction expansion method described herein is not limited either to waveguides with 

planar boundaries or to two-part problems. In principle, the waveguide may undergo 

several changes in height and material property and, provided the correct orthogonality 

relation is utilized in each duct region, the solution can still be obtained in a relatively 

straightforward manner. 

The eigenfunction expansion method does, of course, have its limitations. The solution 
takes the form of an infinite system of algebraic equations which are difficult to interpret 

asymptotically and must, therefore, be solved numerically. Truncation or iteration are the 

usual methods by which infinite systems are solved but, in either case, it is necessary that 

the system converges adequately. It is known (see, for example, Evans & Porter, 1995), 

that in problems of this class the convergence of the infinite system is inversely proportional 
to the strength of the corner singularity of the fluid velocity potential. Indeed, this is borne 

out by the hard/hard problem of section 2.1, for which the system converged very slowly 

even after the leading order terms were subtracted out of the system and calculated exactly. 
However, in the membrane/membrane problem the fluid velocity potential is not singular 

at either corner. This is reflected in the extreme behaviour of the infinite system which, for 

moderate values of the parameters, gave highly accurate results even for radical truncation 

when as few as 8 equation were retained (of course more equations are needed if any of the 

parameters are excessively large or small). A further limitation is the class of problems 
for which the method is appropriate. Although a vast class, it is characterized by the fact 

that the propagating medium is contained within the waveguide. The method cannot be 

applied to problems in which the walls are wave-bearing and there is fluid extending to 

infinity outside the duct boundaries. For problems of this type the-eigenfunctions are not 

complete, as is evident by the fact that there is always a branch-cut contribution to the 
far-field even within the duct itself. 

A number of alternative approaches and further extensions of this work could be con- 

sidered. Throughout the work described in this thesis a non-dimensionalisation scheme 
based on the wavenumber has been used and the height of the two adjoining ducts has 

been varied to provide a range of results. An equally valid approach would be to non- 
dimensionalise with respect to the height of one of the ducts, giving results for varying a 

and µ. Indeed further results could be given by varying the wavenumber which would pro- 

vide information on the effect of different wave structures passing through a duct of fixed 
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geometry and material property. It should however be noted that the solutions gained 
herein can easily be adapted to provide these results as well. By varying the heights of 
the ducts whilst maintaining a fixed ratio between the heights and varying a and p in 

accordance with the factor by which the heights change, the effect is one of varying the 

wavenumber. 
Whilst only two-dimensional problems are considered here, extension to three-dimensional 

problems is a natural progression. In Lawrie (1986,1987) the Wiener Hopf method is used 
to solve axisymmetric three-dimensional problems involving a circular cylinderical duct 

with discontinuity in material property, that is totally immersed in fluid. A problem sim- 
ilar to this, that is acoustic scattering in a circular cylindrical duct with abrupt change in 

height and material property (see figure 5.1), can be solved using a suitable orthogonality 

relation provided the exterior region is in vacuo. The orthogonality relation is expected 

to be a little more complicated than that derived in section 2.6 but should, nevertheless, 
be relatively straight forward to apply. 

V 

This geometry is similar to that of an exhaust pipe silencer and whilst previous work 

has alluded to such a geometry, the problem represented in figure 5.1 is the closest in both 

physical structure and material behaviour that has been tackled. 
Problems involving three-dimensional rectangular cross-section ducts are also open to 

solution using orthogonality relations derived in a similar manner to that demonstrated in 

section 2.6. Such ducts have been considered previously in a number of works, including 

Kirby & Cummings (1998) and Cummings & Astley (1995), both of which are concerned 

with the installation of acoustically-absorbent material in air-conditiong ducts to reduce 

resonance effects at certain frequencies. Air conditioning ducts use silencers to some extent 

Figure 5.1: Physical configuration for a three-dimensional cylindrical duct problem 
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and it is the geometry associated with the application of a silencer that is considered in 
both of the above mentioned papers, see figure 5.2. Whilst Cummings & Astley (1995) 

use an eigenmode. method to gain results (that are later compared with experimental 
readings), Kirby & Cummings (1998) use an alternative finite element method. 

Liner 

Airw 

exible wall 

-I- 

Figure 5.2: Physical configuration for three-dimensional rectangular duct problem consid- 
ered by Cummings & Astley (1995) 

The problems considered by Cummings & Astley (1995) and Kirby & Cummings (1998) 

are closely related to practical engineering problems involving air-conditioning ducts. The 

ducts found in such systems are usually completely surrounded by air, but it is common 

practise to neglect the fluid in the exterior region. Thus, using the methods employed in 

section 2.6 of this thesis to derive the appropriate orthogonality relation, changes in the 

geometry of the duct could be considered along with complicated boundary conditions. 
In summation, ' the orthogonality relation that has been derived within this thesis 

allows the problems considered to be completed in an elegant and compact manner. The 

problem that is solved in section 4.1 for the case where a<b takes noticably less effort 
both mathematically and computationally, using the eigen-function method, than does 

the less general case, where a=b, which is tackled using the Wiener-Hopf technique. The 

new technique is borne of simplicity, but ultimately, as shown within, can prove to be a 
powerful tool. 
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All the problems that are completed in the thesis result in some form of infinite sum. 
Obviously calculating an infinite sum is impractical (not to mention impossible), but the 

mathematical solutions that are gained are structured in such a way that high levels of 

accuracy are gained from systems based on these solutions, that are truncated to just a few 

terms. Ways of reducing the number of terms required have been discussed throughout 

and used to improve the convergence of the systems used in-the final programmes. These 

programmes are listed in the appendices and are annotated with reference made to the 

mathematics completed in the previous chapters. 
The text of the programme is written in verbatim whilst annotation is in normal text. 
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Programmes relating to Chapter 2 

Detailed in this first appendix are the programmes for evaluating At, Q=0,1,2, ..., t and 
B,,, n=0,1,2, ..., t (where t+ 1 is the number of terms that the system is truncated to) 

for the two problems solved in Chapter 2. The two cases from chapter 2 are considered, 
that being the hard/hard problem in section 2.1, and the hard/impedance problem in 

section 2.4. 

A. 1 Programme from section 2.1 

The first programme considered is that relating to section 2.1. First the values of a and b 

are read in, the number of terms that are to be used in the solution is set and the value 

of r is set as I 

a=1.51 

ba2.4 

terms = 20 

r= a/b 

Then the values of i7e, 1= 0,1,2,.. ., t and v,,, n=0,1,2,.. ., t are calculated as specified 
in (2.1.21) and (2.1.29) respectively. 

eta = Tab1e[Sgrt[1-((1'2 Pi-2)/(a"2))], {1,1, terms}] 

nu = Table[Sgrt[1-((n'2 Pi-2)/(b'2))], {n, 1, terms)] 

The function F as detailed in (2.1.52) is input. Note that the function Polygamma[z] 

is a Mathematica function and gives the Digamma function as given in (2.1.49) and that 

PolyGamma[n, z] is the nth derivative of that function. 

f [n_] := If [m == n, (-r Pi"2)/((Sin[r m Pi])-2) + 

2r PolyGamma[1, m r], Pi (Cot[r m Pi] - Cot [r n Pi])/(n - m) + 

2 (PolyGamma[r m] - PolyGamma[r n])/(n - m)] 

The three terms of (2.1.51) that are summed over I and m are clustered together in the 

function inner. 
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inner[n_] :a (-4 n"2 r"3/Pi"2)*Sum[((Sin[m Pi r])"'2 c[m]/ 

(nu[[m]]))*((eta[[1]]-(I 1 Pi/a))/ 

((n-2 r'2 - 1"2)*(m-2 r'2 -1'2)) + (I Pi/(2 a r'2 (n + m)))* 
(1/(r n m) + f[n])), {1,1, terms}, {m, i, terms}] 

The remaining term that is summed over just in is given in degn. 

degn[n_] ._ -(4/Pi-2)* 

SumC((sin[m Pi r])"2 d[ai7)/(2 nu[[m7] m"2 r (r+i)), 
{m, i, terms}] 
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The two functions deqn and inner are combined with the simple terms at the beginning 

of (2.1.51) to give the complete solvable. system that (2.1.51) describes. This system, is 

then solved for D, n=1,2,3,. .., t, and the results are placed in an array and sorted to 

give v. 

x= Solve [Table Ed [n] == 1- (r-i)/(r+i) + degn[n] + inner[n], 

{n, 1, terms}], Array[d, terms, 1]] 

v= Sort[x[[i]]] 

The values of At, t=0,1,2, ... ,t are given using the next piece of code which takes in to 

account the special case when I=0 using the definition given in (2.1.41) and calculates 

all other values using (2.1.42). 

avals = Table[If[1 == 0, (2 (r-1)/(r+1)) + (4/Pi"2 r (r+1))* 

sum[(SinCm Pi r])'2 d[m]/(m'2 nu[[m]]) /. v[[m]], 
{m, 1, terms}], ((4 r (-1)"1)/Pi-2)* 

Sum[(Sin[m Pi r])-2 d[m]/(nu[[m]] 
*(m-2 r-2 - 1-2)) /. v[[m]], {m, 1, terms}]], {1,0, terms}] 

Similarly, the values of Bn, n=0,1,2,..., t are calculated taking the n=0 case as given 

in (2.1.44) and all others as in (2.1.39). 

bvals = Table[If[n == 0, -(4 r/(r+i)) - 
(4/(Pi-2 (r+1)))*Sum[(Sin[m Pi r])'2 d[m]/ 

(m-2 flu [Cm]]) /. v[Cm]l, {m, 1, terms}], 
2*Sin[n Pi r]*d[n]/(Pi u nu[[n]]) /. v[[n]]], {n, 0, terms}] 

A. 2 Programme from section 2.4 

As in the appendix A. 1, the programme for the problem tackled in section 2.4 begins with 
the values of a and b being set, along with the number of terms to be used. Also entered 
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here are the values for a and ,Q that determine the exact nature of the boundary filling 

the region y=b, x>0 as is specified in (2.4.5). 

a 2.5; 

b-3.8; 

alpha = 1; 

beta - i; 

terms - 20; 

The values of 77,,, n=0,1,2, ..., t where t+1 is the number of terms that are to be used, 

are found. To find the corresponding values for v,,, and thus q,,, n=0,1,2, ..., t, a root 
finder is programmed. It is easy to see that the value of q� will be arranged such that 

0< qo <' 'ö < ql < i'l 
2b b and so on, following the formula "' < q� < 2nZb "r Hence, 

as an intial estimate of the value of qn, the set, y, is constructed, comprising the midpoint 

of these ranges. This value is then used as a starting point . for an iterative sequence to 
find roots of the dispersion relation found when the eigenfunction, cosh(qb) is applied to 
(2.4.5). From this the values for v� and q,,, n=0,1,0,1,2,.. .t are found. 

eta = Table[(1 - n'2 Pi-2/a-2)-0.5, {n, 0, terms}]; 

ys Table[(4 n+ 1) Pi I/(4 b), {n, 0, terms}]; 

nu = Table[z = FindRoot[beta Cosh[k b] + 

alpha k Sinh[k b] _= 0, {k, y[[i]]}, 

MazIterations -> 1000]; 

W2 + 1)'0.5 /. z, {i, 1, terms+1}]; 

q= Table[(nuC[n]]"2 - 1)"0.5, {n, 1, terms+1}]; 

The values of Cn, n=0,1,2,..., t are found using the expression given in (2.4.30). 

c" Table[(Sinh[2 q[[n]] b] +2 q[[n]] b)/(4 q[[n]]), {n, 1, terms+i}]; 

The function R,, as defined in (2.4.24) is also coded. 

r[m_, n_] :_ (-1)"m Sinh[q[[n+1]] a]/ 
(q[[n+i]] (1 + Cm Pi/(a q[[n+1]]))2)); 

The functions one [n_] , two [n_] and three [n_] are coded. These make up the three 

terms in the brackets of the equation given in (2.4.32). 

one[nJ 2 r[0, n]; 

two[n_] := r[0, n]/a Sum[bvals[m] r[0, m], {m, 0, terms}]; 

three[na :- 2/a Sum[eta[[1+1]] bvals[m] r[1, m] r[1, n], 
{1,1, terms}, {m, 0, terms}]; 
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These functions are then brought together and divided by P ,, C,, to give the full expression 
in (2.4.32), which is defined here as begn [n-]. 

begn[na :a (one[n] - two[n] - three [n])/(nu[[n+1]] c[[n+1]]); 

The system is then solved and the resulting answers are sorted in v. The values found are 
B, n= 0,1,2,..., t. 

f= Solve [Table [bvals[n] _= beqn[n], {n, 0, terms}], 

Array[bvals, terms+i, 011; 

vn Sort[f[[i]]]; 

These are then used in (2.4.22) and (2.4.23) to find the values of At, I=0,1,2, ..., t. 

a- Table[If[1==0, -2 + (2/a) Sum[bvals[m] r[0, m] /. v[[m+i]], 
{m, 0, terms}], N[(2/a) Sum[b[m] r[l, m] /. v[[m+i]], 
{m, 0, terms}]]] 
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Programmes relating to Chapter 3 

In this appendix, the programmes for the problems solved in chapter 3 are detailed. The 

two problems solved were that of a duct with variation in height and a membrane upper 
surface on the right duct solved in section 3.1, and also the comparison problem without 
a change in height solved using the Wiener-Hopf technique in section 3.2. A programme 
for each of these is detailed and annotated. 

B. 1 Programme for section 3.1 

Note that the programme given in this section is that for the special case where a=b. The 

reader will recall that this case is considered because of the diagonal dominance on the 

resulting matrix solution that is found initially in (3.1.26). It was noted in section 3.1 that 
by subtracting out the dominant term on the diagonal of the matrix (this accomplished 
by defining St,,, in (3.1.29)), the convergence of the system is greatly improved. Since this 
is the programme used to generate results that are later compared with the Wiener-Hopf 

problems solutions for the case a=b, it is included here. The programme for the solution 
of the problem considered in section 3.1, for the case where a4 bis omitted, as it contains 
little additional functionality to those programmes given in appendix A for the problems 
considered in sections 2.1 and 2.6. What new Mathematica programming techniques are 
used in that programme are also applied here. 

First, the values of the duct heights, a and b are input, along with the value of a and 

µ, the constants that define the membrane's behaviour, the number of terms that are to 
be used and the value of ec. The value of ec defines which edge condition is to be used, 

ec =0 implying that ýyx(0, b) = 0, ec =1 implying that Oy(O, b) = 0. 

aa1.6 

ba 

alpha a 10 

mu - 2.2 

terms - 30 

ec=0 
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Define the values for raj, l=0,1,2, ..., t as prescribed. 

eta = Table[(1 - n'2 Pi"2/a-2)-O. 5, {n, 0, terms}] 

To find the values of vn and 7n, n=0,1,2, ..., ta root finder programme is set up. The six 
values given by u are the solution to a version of the dispersion relation (3.1.13), considered 
in the case where v� is taken as being very large. For the purpose of the root finder, only 
the largest positive real solution is required and is set as w. The values found in y are best 

guesses at the remaining roots, falling between the two extreme cases of and 2s21 "' 
. 

The numbers held in u and w are combined in y and rotated once to put them into the 

correct order, making the large positive real root the first in the list. Taking the values 
in y as a first estimation, the final command iterates to a root of the actual dispersion 

relation and outputs the values for v� and thus, 7� are also found. 

u= NSolve[(x-2 - mu-2)-2 (a"2-1) 

v- {z} /. u[[6,1]] 

y- Table[(4 n+ 1) Pi I/(4 b), { 

q= RotateRight [Union[y, w], 1] 

nu = Table[z = FindRoot[(k-2 +1 

Sinh[k. b] - alpha Cosh[k b] == 0, 

_= alpha-2, x] 

a, 0, teims-1}] 

- zu-2) k* 

{k, q[Ei]l}, 
Mazlterations -> 1000] 

(k"2 + 0'0.5 /. z, {i, 1, terms+i}] 

gamma = Table [(nu[[n]]"2 - 1)"0.5, {n, 1, terms+1}] 

The values for C,,, n=0,1,2,. . ., t, as given in (3.1.23), are found, as well as the values of 
C;,, n=0,1,2,.. ., t, as given by (3.1.24) and here defined as cons. Remember that this 

form is divided through by a, which in the case where a is large, allows for quicker overall 

computation of solutions. 

c= Table [(1/2)* (alpha b +(2 gamma[En]I"2 + nu[[n]]"2 - mu-2)* 
(Sinh[gamma[[n]] b])"2), {n, 1, terms+1}] 

cons a Table[(1/2)* 

(b + (Sinh[2 gamma[[n]] b]/(2 gamma[[n]] (nu[[n]]"2 - mu'2)))* 
(2 gamma[[n]]"2 + nu[En]I"2 - mu"2)), {n, 1, terms+1}] . 

The function is coded as given in (3.1.16), along with the Dirac delta function and 
S�n,, as described in (3.1.29). 

r[m_, n_] := (-1)-n Sinh[gamma[[m+1]] a]/ 
(gammaCCm+i]] (i - (n Pi/(a gamma[[m+i]]))'2)) 
delta[m_, n_] := If [m==n, 1,0] 

s[m_, n_] := r[m, n] - (a/2) delta[m, n] 
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The next terms create (3.1.37). The expressions given in one [n_] through to five [n_] 

make up the expressions with in the square brackets of that equation and these are divided 

later in the programme by (2v, 
ýCn + Na) . 

one [nj :=4 r[o, n] - b[o] r[o, n] - (2 r[O, n]/a)* 
Sum[b[mJ s[o, m], {m, o, terms}] 

two[n_] :=2 eta[[n+1]] 5um[b[m] s[n, m], {m, 0, terms}] 

threeCn_] :=2 Sum[eta[[1+1]] b[1] s[l, n], {1,1, terms}] 

tour[n_] :- 4/a Sum[eta[[1+1]] b[m]'s[l, m] s[l, n], 
{1, it terms}, {m,. 0, terms}] 

five[n_] := If[ec =- 0,0,2 gamma[[n+1]] bvals[terms+l]* 

Sinh [gamma [ [n+1J J b] /alpha] 

The next two terms, six[n_] and seven[n_] go to make up the expression for Ba given 
in (3.1.34). Note that the term including E in this expression is exactly the same as that 

given by five [0] and so this term is used later to complete the equation. 

six[a. J :=4 r[O, n] - (2 r[O, n]/a)* 
Sum [b [ai] s [O. ml, {m, 0, terms}] 

seven[n_] := 4/a Sum[eta[[1+1]] b[m] r[l, m] r[l, n], 
{1,1, terms}, {m, 0, terms}] 

All the terms created previously are brought together toi create the system that Is to be 

solved for B,,, n=0,1,2,.. ., t. The if statement in the expression allows for the special 

case for Bo to be actioned. 

begn[n_] :- If [n == 0, (five[0] + six[0] - seven[0])/ 
(2 nu[[n+1]] cans[[n+1]] + r[0,0]), (one[n] - two[n] - 

three[n] - fourtn] + five[n])/(2 nu[[n+1]] cons[[n+1]] + 

a eta[[n+1]])] 

Now, the equations- for. finding the value of E (here labelled bvals [terms+1]) are con- 

structed, first taking the denominator of the fracton given in (3.1.40) .... 

divideCn_] := Sum[2 gamma[[]+1]]"2 (Sinh[gamma[Cj+1]] b])"2/ 
(2 alpha nu[[j+1]] cons[[j+1]] +a alpha eta[[]+1]]), {j, 0, terms}] 

and then constructing the remainder of (3.1.40) from the terms that are already used. 
Here the variable ec is applied to determine which of the two possible edge conditions is 

to be applied and defining the expression for E accordingly. 



Appendix B. Programmes relating to Chapter 3 

altegn[n_] :- If[ec == 0,0, Sum[gamma[[1+111 Sinh[gamma[[1+111 h]/(2 

nu[[1+1]] cons[[1+1]] +a eta[[l+i]])* 
(one [1] - two [1] - three [1] -f our [1]) /divide [13, {1,0, terms}]] 

Now combining the two expressions for B,, and E to create a complete system...... 

totegn[n_] := If [n == terms+1, alteqn[n], begn[n]] 

and solving this system for bvals [n], n= 0,1,2, ..., terms+i. 

f- Solve [Table [bvals [n] == toteqn [n] 
, {n, 0, terms+1}], 

Array[bvals, terms+2,0]] 

The solution set is sorted into order so that Bo is first through to E at the end. 

v= Sort[f[[i]]] 

Then, apply these values to (3.1.15) to find values for At, l=0,1,2, ..., t. 

avals = Table[If[1==0, N[-2 + (2/a) Sum[b[m] r[0, m] /. v[[m+i]], 
{m, 0, terms}]], NC(2/a) Sum[b[ml r[l, m] /. v[[m+i]], 
{m, 0, terms}]]], {1,0, terms}] 

B. 2 Programme for section 3.2 
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Again, for this programme the first step is to input the value of a (rembering that this is . 
a programme for a Weiner Hopf problem and so a= b), a, p. and the number of terms 

required in the infinite product used to gain the solution. Also input here are the function 

gain [s_] which is used so that ry can be calculated for any value of s and the vaiiable 
ec which, as in the previous program, determines which edge condition is used, ec =0 
implying that cys(0, a) = 0, ec =1 implying that 0y(0, a) = 0. 

äa1.6 
ec a0 

(* Variable ec set equal to 0 has the affect of implying Edge condition 

phi_yx = 0, other value of ec imples phi_y =0 *) 

alpha = 5000 

mu a 2.2 

gam[s_] :- (s"2 

terms - 200 

The same algorithm is used to gain the values of v� and 7� as in section B. I. 

anoughts = Table[alpha = alfs[[t]] 
u= NSolve[(x-2 - mu-2)"2 (x^2_1) == alpha-2, x] 
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v= {z} /. u[[6,1]] 

y= Table[(4 n+ 1) Pi I/(4 a), {n, 0, terms-1}] 

q= Rotate Right [Union [y, v], 1] 

nu - Table[z Q FindRoot[(k"2 +1- mu"2) k* 
Sinh[k a] - alpha Cosh[k a] _= 0, {g, q[[i]]}, 
Mazlterations -> 1000] 

(k-2 + 1)-O. S /. z, {i, 1, terms+1}] 

gamma .= 
Table [(nu[[n]]"2 - 1)"(1/2), in, 1, terms}] 

The expression for K+(s) as given in (3.2.85) is defined. 

kplus[s_] :- N[(((alpha/(a (nu[[1]]"2 - 1)))-0.5)* 
((nuCC1]] + s)/(1 + s))* 
Exp[s Sum[I ä/(n Pi) + 1/nu[[n+i]], {n, 1, terms-1}]])* 
Product[(((nu[Cn+1]] + s)/gamma [[n+1]])/ 
((1 - a-2/(n-2 Pi-2))'0.5 -Ia s/(n Pi)))* 

Exp[-s (I a/(n Pi) + 1/nu[[n+1]])], {n, 1, terms-1}]] 
kernCz_] :a1- alpha Coth[gam[z] a]/(gam[x]* 
(z"2 - mu-2)) 

Now K'(3) is defined. 

kdash[s_] :-s Tanh[gamma[s] a] ((s'2. - mu-2)/gamma[s] + 

2 gamma[s]) +sa (s"2 - mu-2) (Sech[gamma[s] a]) "2; 
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Now the form of the variable ic, as given in (3.2.98), is defined. This is described in 

terms of an integral in the text, where the path of integration lies below any singularities 
that may occur on the real axis in the complex plane. This is reflected here by the path 

of integration that is taken. 

kappa a N[mu + (I/Pi) Nlntegrate[Log[kern[x]], 
{x, 0,1 - 10 I, 171 - 10 I, 200, Infinity}]] 

Finally, Ro and To are defined as given in (3.2.53) and (3.2.56). The value of ec defines 

which expression is taken according to the appropriate edge condition. 

r= If[ec == 0, (alpha/(4 a (Abs[kplus[1]])"2))*(2 + kappa)/kappa, 

(alpha/(4 a (Abs[kplus[1]])"2))] 

t= If[ec == 0, alpha kplus[nu[[1]]] Cosh[gamma[[1]] a] 
(kappa +1- nu[[1]])/(4 a kappa kplus[1] kdash[-nu[[i]]] 
(i - nu[[1]]) gamma[Eil] Sinh[gamma[[i]] a]), 
alpha kplus[nu[[1]]] Cosh[gamma[[i]] a]/ 
(4 a kplus[1] kdash[-nu[[1]]] (1 - nu[[1]]) 
gammaCC1]] Sinh[gamma[[1]] a])] 
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Programmes relating to Chapter 4 

In chapter 4, the problem involving ducts with upper surfaces made up of membranes was 
considered. First the problem where there is also a variation in the height of'the ducts, 

was completed using the orthogonality condition derived in section 2.6, and then the 

simpler case where the ducts are of the same height was completed using the Wiener-Hopf 
technique. In each case a system was yielded that is required to be solved computationally 
using Mathematica and in this appendix, the codes for those programmes are listed. 

C. 1 Programme for section 4.1 

As in previous programmes, first read in the values that specify the systems set up, those 
being a, b, al, P1i az and µ2. The number of terms for the system to be truncated to is 

set (note that the number is very low for this case) and the edge condition specification 

variables are also introduced - ect defining the condition at (0', a) and ec2 defining that 

at (0+, b) in such a way that when equal to zero these imply that ýyy =0 and when equal 
to one that q5y = 0. Edge condition variable =0 implies xy-differential condition, when = 
1 implies y-differential condition. 

a=1.51 
bm1.73 

alfl=0.1; 

mui - 3; 

alf2 - 50; 

mug = 2.2; 

ecl - 0; 

ec2 = 0; 

terms = 10; 

For the duct to the left of the matching interface, the roots of the dispersion relation given 
in (4.1.14), being raj, are found and thus rl are also gained. This piece of code is of a 
similar form to that used in section B. 1. 
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u= NSolve[(x 2- mu1"2)-2 (x-2-1) == a1f1"2, x]; 

v= {x} /. u[[6, I]]; 

y- Table[(4 n+ 1) Pi I/(4 a), {n, 0, terms-1}]; 

q- Rotate Right [Union [y, v], 1] ; 

eta= TableEz - FindRoot[(k-2 +1- mui"2) k* 

Sinh[k a] - alfl Cosh[k a] _= 0, '{k, q[[i]]}, 
Maxlterations -> 1000]; 

(k'2 + 1)'0.5 /. z, {i, 1, terms+1}]; 

tau - Table [(eta[[nJ1-2-1)-(1/2), {n, 1, terms+1}]; 

ClearCu, v, y, q] ; 
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The same code as used above (with variables relevant to the right hand duct replacing 
those for the left) is used to gain the values of v� and 7n. 

u= NSolve[(x-2 - mu2-2)-2 (x"2-1) == a1f2'2, x]; 

v {x} /. u[[6,1]]; 

p Table[(4 n+ 1) Pi I/(4 b), {n, 0, terms-1}]; 

q- RotateRight [Union [w, p] , 11; 

nu = Table[z = FindRoot[(k-2 +i- mu2-2) k* 

Sinh[k b] - alf2 Cosh[k b] _= 0, {k, q[Ei]l}, 
Maxlterations -> 1000]; 

(k-2 + 1)'0.5 /. z, {i, i, terms+1}]; 

gamma - Table [(nu[[n]]"2-1)"(1/2), {n, 1, terms+1}]; 

Clear[u, w, p, q] ; 

The values for Dl, l=0,1,2,..., t axe set up, taking into account that DI is as defined in 

(4.1.24) and that D j* -' 
s. 

d- Table[(1/2)*(a + Sinh[2 tau[[n]] a]* 
((eta[En]l"2 - mu1"2 +2 tau[[n]]'2)/(2 tau[[n]]* 
(eta[[n]]"2 - mui"2)))), {n,. 1, terms+l}]; 

Similarly, C,;, n=0,1,2,..., t are evaluated from the expression given in (4.1.34) and 

noting that Cn =C. 

c= Table[(1/2)*(b + Sinh[2 gamma[[n]] b]* 
((nu[En]l"2 - mu2-2 +2 gamma[[n]]"2)/(2 gamma[[n]]* 
(nu[[n]]"2 - mu2-2)))), {n, 1, terms+i}]; 

The Dirac delta function is constructed and the function Ttm as defined in (4.1.28) is 

created. 

delta[1_, m_] := If [i = m, 1.0] ; 
t[1_, m_] :_ (tau[[l+i]] Sinh[tau[[1+1]] a] Cosh[gamma[[m+i]] a] - 
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ga=a[[m+1]] Sinh[gamma[[m+1]] a] Cosh[tau[[1+1]] a])/ 
(tau[[1+17]'2 - gamma[[m+i]]'2); 

Functions one{n_] through to sia[n_] construct the major part of all the functions 

required to complete the system to find values of B, n=0,1,2,. .., t, E and F. 

one[nJ := If[ecl -- 1,0, (-1)/(nu[[n+1]] c[[n+i]]) Sum[eta[[l+i]]* 

t[l, n] tau[[1+1]] Sinh[tau[[l+1]] a] bvals[terms+21/(d[[1+1]] alfl), 
{1,0, terms}]]; 

twotni :_ (2 etaCCi]] tCo, n])/ 
(nu[[n+i]] c[[n+i]] CoshCtau[Ci]] a]); 

three[n-] :_ (-1)/(nu[[n+i]] c[[n+1]]) Sum[eta[[l+1]] bvals[m]* 

t[l, n] t[l, n1]/(d[[1+1]]), {m, 0, terms}, {l, 0, terms}]; 

2our[n: ] :_ (gayftma[[n+1]] Sinh[gamma[[n+1]] b] bvals[terms+i])/ 

(nu[[n+1]] c[[n+1]] alf2); 

five[n_] :=2 eta[[1]] tau[[1]] Tanh[tau[[1]] a] ; 

siz[a_] :_ -Sum[eta[[1+1]] tau[[1+1]]* 
Sinh[tau[[1+1]]. a] bvals[m] t[l, m]/d[[1+1]], {m, 0, terms}, 

{l, 0, terms}] 

Thus, taking one [n}, tvo [n], three [n] and four[n] the equation for B,, as given in 

(4.1.39) is formed. 

beqn [n_] := one [n] + two [n] + three [n] + tour [n] ; 

The expression divides is the denominator of the function that yields F in (4.1.45). 

dividel = Sum[eta[[1+1]] tau[[l+1]]'2 (Sinh[tau[[l+1]] a])"2/ 

(d[[1+1]] alß1), {l, 0, terms}]; 

Similarly, divide2 is the denominator of (4.1.50) which gives E. 

divide2 - Sum[I gamma[[]+1]]'2 (Sinh[gamma[[j+1]] b])'2/ 

(nu[[j+1]] alt2 c[[j+1]]), {j, 0, terms)]; 

The construction of functions five [n] and six [n] is such that, when divided by divides 

as they are in altegni [n_], the total expression for F is given as in (4.1.45) and subse- 

quently used in (4.1.53) and (4.1.57). Also taken into consideration here are the occassions 

when F=0, that being the case when 0, (0, a) =0 and thus eci= 1. 

altegnl[n_] := If[eci == 0, (five[n] + six[n])/divides, 0]; 
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The options taken into account in altegn2[n_] are rather more complex. If ec2= 0 this 

implies that Oß(0, b) =0 and thus E=0 also. However, if ec2= 1 then the expression 
that gives F depends on the nature of the other edge condition. In this case, when act= 0 

the term including F must be included and so the expression for E is as given in (4.1.50) 

and also in case (ii). If act= 1 then the term including F can be discarded (as it has 

already been noted that in this case, F= 0) and so E is given by (4.1.52). 

altegn2[n_] := If[ec2 == 0,0, If[eci == 0. Sum [gamma[ [p+111 * 

Sinh[g:; -a[[p+1]] b](one[p] + two[p] + three Epl)/divide2, 

{p, 0, terms}], Sum[gamma[[p+1]] Sinh[gamma[[p+1]] b](two[p] + 

three[p])/divide2, {p, 0, terms}]]]; 

Finally, the three functions begn[n], altegnl[n] and altegn2En] are brought together 

in a nested If statement so that E is given as bvals [terms+t] in the solution and F is 

given as bvals [terms+2] 

totegn[n_] := If [n == terms+l, altegn2[n], If En == terms+2, 

altegni[n], begn[n]]]; 

Solve the system and output the solutions into f. 

f= Solve [Table [bvals[n] == totegn[n], {n, 0, terms+2}], 

Array[bvals, terms+3,0]]; 

Then sort f such that Bo is first through to E and F. 

v= Sort[f [[i]]]; 

Finally, apply the values gained for B, a, n=0,1,2,. .. It to (4.1.27) to gain values for 

At, I = 0,1,2,..., t. 

avals a Table[-2 delta[O, 1]/(Cosh[tau[[1]] a]) + (tau[[1+i]]* 

Sinh[tau[[1+1]] a] bvals[terms+2] /. v[[terms+3]])/ 
(alfi d[[1+1]]) + (1/d[[1+1]]) Sum[bvals[m] t[1, m] /. v[[m+1]], 

{m, 0, terms}], {1,0, terms}]; 

C. 2 Programme for section 4.2 

As for the programme given in C. 1 the initial data is read in first, that being the value of A 

(which in this case is equal to 6 since this is the Weiner Hopf comparison), ai, µl, a2 and 

µz. The number of terms to be used is set and the general definition of 7 is introduced. 

The values of eci and ec2 are read and have the same implications as in the previous 

program. That is eci defines the condition at (0', a) and ec2 defining that at (0+, a) in 

such a way that when equal to zero these imply that qyx =0 and when equal to one that 

Ov = 0. Edge condition variable =0 implies xy-differential condition, when 
.=1 

implies 

y-differential condition. 
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aa2.3; 

a121 a 1; 

mul = 3; 

alf2 - 50; 

mug = 2; 

ed - 1; 

ec2 = 1; 

terms - 200; 

gamma[s_] :- (s'2 
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The values of t7t and ri, l=0,1,2, ..., t are found using the root finding code employed 

previously. 

ua NSolve[(x-2 - mu1'2)"2 (x'2-1) == alf1 2, x]; 

Wa {x} /. u[[6,1]]; 
pa Table[(4 n+ 1) Pi I/(4 a), {n, 0, terms-1}]; 

q- RotateRight [Union [p, w] , 11; 

eta - TableCz a FindRoot[(k-2 +1- mu1"2) k* 

Sinh[k a] - aifi Cosh[k a] == 0, {k, q[Ei]l}, 

Maxlterations -> 1000]; 

(k'2 + 1)'0.5 /. z, {i, 1, terms+i}]; 

Clear[x, y. q] ; 

The values of v� and -y,,, n=0,1,2, ... ,t are find likewise. 

u= NSolve[(x-2 - mu2'2)-2 (x-2-1) _= alf2-2, x]; 

v= {x} /. u[[6,1]]; 
y= Table [(4 n "+ 1) Pi 1/(4 a), {n, 0, terms-1}] ; 

q= RotateRight[Union [y, a] , 13; 

nu - Table[z = FindRoot[(k-2 +1- mu2-2) k* 

Sinh[k a] - alf2 Cosh[k a] == 0, {k, q[[i]]}, 

Maxlterations -> 1000]; 

(k'2 + 1)-0.5 /. z, {i, 1, terms+1}]; 

The equations for Li(s) as given in (4.2.61) and L 2(, s) as given in (4.2.71), and those for 

L1(s) and L2(s) as given in (4.2.30) and (4.2.31) respectively, are coded. 

lldash[s_] :as Tanh[gamma[s] a] ((s"2 - mui"2)/gamma[s] + 

2 gamma[s]) +sa (s'2 - mu1"2) (SechCgamma[s] a])-2; 

12dash[s_] :=s Tanh[gamma[s] a] ((s"2 - mu2'2)/gamma[s] + 

2 gamma[s]) +sa (s'2 - mu2'2) (Sech[gamma[s] a])"2; 
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Il [S-1 := (s'2 - mui'2) gammas] Tanh [gamma [s] a] - alf 1; 

12[sa :_ (s-2 - mu2-2) gamma[s] Tanh[gamma[s] a] - alf2; 

Hence, the coding of K(s) as given in (4.2.32) is trivial. 

1 [s J :- 11[s]/12[s]; 

The form of a as given in (4.2.36) is also coded, using L'Hopital's rule to eliminate singu- 
larities in the case where al _ a2. 

sigma - If [alfI == alf 2, (mu1'2 - mu2-2)-0.5, 
((alf2 mu1"2 - alf1 mu2'2)/(alf2 - alfl))"0.5]; 

The expressions-for L+(s) and L_(s) are read in, as detailed in (4.2.165). 

lplus[sJ := (alf1/alf2)'0.5 Product[gamma[nu[[n]]]* 

(s + eta[[a]])/(gamma[eta[[n]]] (s + nu[[nJJ)), {n, 1, terms}]; 

lminus[s_] : 10 (alfl/alf2)"0.5 Product [gamma[nu[[n]]]* 

(s - eta[[n]])/(gamma[eta[[n]]] (s - nu[[n]])), {n, 1, terms}]; 

intl Nlntegrate[Log[1 - alfl Coth[gamma[x] a]/ 
((X-2 - mul-2) gamma[x])], {x, 0,3 -3I, 150 - 31,2001]; 

int2 Nlntegrate[Log[i - alf2 Coth[gamma[x] a]/ 
((x-2 - mu2-2) gamma[x])], {x, 0,3 -3I, 150 - 31,200}]; 

di s mui - mug + (intl - int2) I/Pi; 

deti - sigma ((lplus [sigma] - lminus [sigmaD -2 - 
(lplus[sigma] + lminus[sigma))-2 + (2 alfl/alf2)* 
(sigma (iplus [sigma] + ]. minus [sigma]) - 
dl (lplus[sigma] - lminus[sigma])) +2 sigma* 
( (]. plus [sigma] + ]. minus [sigma]) - (2 a1f 1/alf2)) ; 

det2 - sigma ((lplus [sigma] - lminus [sigma]) -2 - 
(lplus [sigma] + lminus [sigma]) -2 + 2* 
(sigma (lplus [sigma] + lminus [sigma]) - 
dl (lplus[sigma] - lminus[sigma])) + (2 sigma alfl/ 
alf2) ((lplus [signa] + lminus [sigma]) - 2) ; 

Finally, a nested If statement is used to pick the correct form of Ro and To according to 
which ever combination of edge conditions are selected. 
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r= If[eci == 0, If[ec2 == 0, -((lplus[eta[[1]]])'2 12[eta[[1]]]/ 

lidash[eta[[1]]] )* 

(1/(2 eta[E1]3) - ((dl - eta[[1]])*(lplus[sigma]* 
(eta[[1]] - sigma) + lminus[sigma] (eta[Eil] + sigma)))/ 
((eta[[1]]-2 - sigma-2) (lplus[sigma] (dl - sigma) + 
lminus[sigma] (dl + sigma)))), -((lplus[eta[C1]]])-2 12[eta[[1]]]/ 

lldash[eta[Ci]]]) (1/(2 eta[[1]]) + lplus[sigma]/ 

(deti (eta[[1]] + sigma))*(2 alf1 (dl - eta[[1]])/alf2 -2 sigma) + 

lminus[sigmal/(detl (eta[Eil] - sigma))* 
(- 2 alfi (dl - eta[[i]])/alf2 -2 sigma))], 
IfCec2 == 0, -((lplus[eta[[i]]])-2 12[eta[[i]]]/lidash[eta[[1]]])* 

(1/(2 eta[[i]]) + lplus[sigma]/(deti (eta[[i]] + sigma))* 
(2 (dl - eta[[1]]) -2 sigma alfl/alf2) + ]. minus [sigma] / 

(deti (eta[[1]] - sigma)) (- 2 (dl - eta[E1]1) -2 sigma alfl/alf2)), 

-((]. plus[eta[[1]]])-2 12[eta[[1]]]/lidash[eta[[i]]])* 

(-1/(eta[Ell] - sigma) +2 sigma lplus[sigma]/ 

((]. plus [sigma] - lminus [sigma]) * 
(eta[C1]I"2 - sigma-2)) + 1/(2 eta[[1]]))]] 

t- If[ecl == 0. If[ec2 == 0, (11[nu[[1]]] lplus[eta[[1]]] 

gamma[eta[[1]]] Tanh[gamma[eta[[1]]] a] (nu[[1]]'2 - mu2"2) 
/(lplus[nu[[i]]] 12dash[-nu[[1]]] alfl))*(i/(-nu[[i]] + 

eta[C1]1) + (dl - eta[[1]])/(sigma-2 - nu[[1]]"2)* 
(lplus[sigma] (sigma + nu[[i]]) - lminus[sigma] 
(sigma - nu[[i]]))/(lplus[sigma3-. (sigma -di) - lminus[sigma] 

(sigma *dl))), alf2 11[nu[[i]]] 1plustetaCC1]]] gamma[eta[[1]]] 
Tanh[gamma[eta[[1]]] a]/(alfi 12dash[-nu[[1]]] lplus[nu[[i]]] 

gammaCnu[[i]]] Tanh[gamma[nu[[l]]] a])*(i/(-nu[[i]] + 

eta[E1]3) + 1/(detl (sigma-2 - nu[[1]]"2))*((2 alfi 
(dl - eta[[i]])/a1f2 )*(sigma (lplus[sigma] + lminus[sigma]) + 

nu[[1]](lplus[sigma] - lminus[sigma])) -2 sigma 
(nu[[1]] (lplus[sigma] + lminus[sigma]) + sigma(lplus[sigma] 

- lminus [sigma]. )) + sigma ((lplus[sigma] -+ lminus [sigma]) -2 

- (lplus[sigma] - ! minus [sigma])"2)*(nu[[i]] + eta[Ci]])))], 
If[ec2 == 0, alf2 1l[nu[[1]]] lplus[eta[[1]]] gamma[etaC(1]]] 
Tanh[gamma[eta[[I]]] a]/(alf1 12dash[-nu[[1]]] 1p1us[nu[[1]]] 

gamma[nu[[i]]] Tanh[gamma[nu[[i]]] a])* (1/(-nu[C1]] 

+ etaCCl]]) + 1/(det2 (sigma-2 - nu [Ell] -2)) *(sigma 
(eta[C1]3 + nu1[1]])*((lplus[sigma] + lminus[sigma])-2 - 
(lplus[sigma] - lminus[sigma])^2) +2 (dl - eta[C1]])* 
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(sigma (iplus [sigma] + lminus [sigma]) + nu [ [1] ] (lplus [sigma] - 
lminusCsigma])) - (2 sigma alfl/alf2)*(nu[[1]] (lplus[sigma] + 
lminus [sigma]) + sigma(lplus [sigma] - lminus [sigma])))), 

(11[nu[[1]]] lplus[eta[[1]]] gw-a[eta[[i]]] 

Tanh[g: %-a(eta[[1]]] a] (nu[Ci]]'2 - mu2"2)/ 
(lplus[nu[[i]]] 12dash[-nu[[1]]] alfl))*(-sigma (lplus[sigma] + 

lminus [sigma, ]) / ((lplus [sigma] - lminus [sigma] ) 

(sigma-2 - nuCC1]]"2)) - nu[Ei]7/(sigma-2 - nu[[1]]-2)+ 
1/(-nu[[i]] + eta[[1]]))]] 
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Finally, the code for the special case when al = as that is considered in subsection 
4.2.3 is given. The expression found for Ro as given in (4.2.189) when coded is as follows. 

rprobcure = -((lplus[eta[[1]]])-2 12[eta[[1]]]/ 

lidash[eta[[1]]])*(1/(2 sta[[1]]) - (alf2 + alfl)* 
(alf2 mu1'2 - alf1 mu2"2) gamma[eta[[i]]] 

Tanh[gamma[ata[[1]]] a]/(2 dl alfl alf2 12[eta[[1]]])) 

Similarly, To as given in (4.2.190) for this particular case is coded as follows. 

tprobcure - alf2 11Cnu[Ci]]] lplus[etaCC1]]] 

gamma[eta[C1]]] Tanh[gamma[eta[[1]]] a]/ 
(alfl 12dashE-nu[Ci]]] lplus[nu[Ci]]] gamma[nu[[i]]] 
Tanh[gamma[nu[Cl]]] a))*((alf2 + alfl)* 
((alf2 mu1"2 - alfl mu2-2) gamma[nu[[i]]] 
Tanh[gamma[nu[CI]]] a]/(2 dl alf2"2 11[nu[[1]]]))+1/ 

(-nu[Ci]] + eta[Ei]l)) 
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