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1. INTRODUCTION

In this paper we explore how to tailor methods of inte-
ger programming to a particular and difficult real-world
problem: the optimal design of an oil pipeline network for
the South Gabon oil field. This problem involves multiple-
choice constraints as well as multiple-fixed charges. These
make it very hard to solve the problem exactly. Problems of
that type for which an optimal solution may be proved are
still relatively small, of the order of, say, 30 nodes. Oil pro-
duction from southern Gabon is expanding. A number of
offshore platforms are currently built and under operation;
extensive explorations have been made and proved reserves
located in various places to be exploited under favorable
circumstances. Moreover, there are other possible reserves,
i.e., locations where traces of oil have been found. The
infrastructure existing at the time of the study requires the
oil to be brought by shuttle to the port of Cap Lopez (north
of the map shown in Figure 1), from where it is shipped
to its final destination. Because this solution is very expen-
sive, the Direction Générale des Hydrocarbures du Gabon,
in charge of management of oil production, decided to ten-
der for the construction of an oil pipeline along the coast,

with connections to offshore platforms and onshore wells.
The objective of the pipeline system would be to signifi-
cantly reduce oil transportation costs to the port of Gamba
(which would then be used for export of this region’s oil
instead of Cap Lopez), and thus, allow expansion of pro-
duction, due to increased profitability. Several international
oil companies would share use of the pipeline.
Since the start of the study, an expansion of the pipeline

system has been underway. This study was conducted to
assist in the planning phase. Due to confidentiality reasons,
we present a particular scenario with simulated production
and cost data; however, the network in Figure 1 depicts
the locations of platforms, wells, and possible intermedi-
ate connections in the actual problem. (See §5 for further
details.)
The paper is organized as follows. Previous work on

pipeline design problems and the related one-terminal tel-
pak problem is surveyed in the next section. Our model
is stated mathematically in §3; we consider both optimal
design of a new pipeline network and optimal expansion
of an existing one. A new feature of the model formu-
lation is that it ensures a tree structure (or arborescence)
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Figure 1. South Gabon oil field problem with heuristic solution.
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rooted at the port. Two heuristic algorithms based on
Tabu Search and Variable Neighborhood Search method-
ologies are described in §4, as well as an exact solution
method supplemented with two new types of valid inequal-
ities. Detailed solution of a large example, simulating the
offshore pipeline design problem in southern Gabon, is
discussed in the last section, as well as computational
results of the heuristics on a series of randomly generated
problems.

2. RELATED WORK ON PIPELINE DESIGN

A seminal paper by Rothfarb et al. (1970) studies the opti-
mal design of offshore natural gas pipeline systems. Three
problems are investigated:
(a) selection of optimal diameters in a given pipeline

network;
(b) design of an optimal pipeline system given gas-field

locations and delivery requirements; and
(c) optimal expansion of an existing pipeline network.
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The network is assumed to have a tree (or arborescence)
structure with known production rates at specified nodes.
Flow of gas in a pipe is governed by nonlinear pressure-
drop constraints, with maximum and minimum pressures
applying. The costs of pipes and compressors are to be min-
imized. The cost of a compressor depends on the path from
the delivery node to the point of greatest pressure. Roth-
farb et al. (1970) propose a heuristic solution method. In
a first phase an initial tree is generated according to rules
garnered from trial and error experience. Optimal diameters
of the individual pipes are then computed. In the second
phase, local transformations called �-changes are applied
as follows. A circuit is formed by adding an arc connect-
ing a node to the closest nonadjacent one. Then each other
arc from this circuit is deleted in turn and the correspond-
ing flows, diameters, pressures, and costs computed. If an
improved feasible solution is found, one moves to it and
iterates the procedure until no further improvements can be
made with �-changes. This type of heuristic search scheme
is close to a greedy algorithm in that improving moves are
made at each iteration, but it differs in that only a subset
of all possible moves is considered at each iteration before
selecting the best one among them. Rosenthal (1982) stud-
ies the solution of the pipe diameter problem by nonse-
rial dynamic programming (see Bertelè and Brioschi 1972).
More recent advances in nonsequential dynamic program-
ming applied to pipeline design are described in Carter
(1998). However, the methodology assumes that the net-
work layout is already given, and furthermore, in order
to work efficiently, the network must have an “almost”
serial structure. A different approach to the pipeline net-
work design problem, due to Dolan et al. (1989), combines
the approach of Rothfarb et al. with simulated annealing
(Kirkpatrick et al. 1983, Aarts and van Laarhoven 1985).
The work of Rothfarb et al. is also discussed in several

surveys on optimization in oil and gas pipeline engineering
(Mah and Shacham 1978, Huang and Seireg 1985) and on
network optimization (Golden et al. 1981). A more general
treatment of the network expansion problem than that given
by Rothfarb et al. is due to Olorunniwo and Jensen (1982a,
1982b): Future expansion times, sizes, and locations are
jointly considered in a two-level hierarchical method. The
related problem of determining the optimum number, sizes,
and locations of offshore platforms has been studied by
Yoo and Tcha (1986) and Hansen et al. (1992).
The graphsack problem is a simplified version of the

pipeline network design problem, in which a single dimen-
sion for pipes is considered together with linear constraints
for pressure drop. Solution of the continuous relaxation
of the graphsack problem and of its dual is studied by
Tinhofer (1984) and later Schreck and Tinhofer (1985).
This last paper contains an O�n2� algorithm for solving
the dual, where n is the number of nodes in the network.
An even more simplified version arises if the pressure-
drop constraints are deleted but integrality constraints are
kept. One then obtains, up to a reversal of orientations,
the minimum weighted arborescence problem, for which

O�n2� algorithms have been proposed by Chu and Liu
(1965), Edmonds (1967), and Karp (1971). Guignard and
Rosenwein (1990) consider a constrained version of the
minimum weighted arborescence (or directed tree with a
single sink) problem where linear constraints on the sum of
arcs entering each node apply. The problem is NP-hard, but
fairly large instances �n� 50� are solved using Lagrangean
decomposition.
When the substance being transported in the pipeline is

in the form of a liquid such as oil instead of a gas, the use of
costly compressors or pumps and the resulting constraints
on pressure may be secondary considerations in the model
formulation. Under the assumption that pressure constraints
may be omitted, which is taken in this paper, the pipeline
design problem simplifies considerably. The problem then
closely resembles another basic one found in telecommu-
nications: the one-terminal telpak problem (see Rothfarb
and Goldstein 1971), which arises when long-distance tele-
phone facilities are leased from common carriers. Lessees
have certain voice and data communication needs, usually
expressed as numbers of voice-equivalent channels required
between given pairs of locations. Circuits to implement
these requirements can be leased individually or in bulk
units of, say, 60 or 240 voice-equivalent channels called
TELPAKS. The lessee must submit for billing purposes a
configuration of individual lines and TELPAKS which sat-
isfies his requirements (usually the way they will be met
in practice by the common carrier is different). The one-
terminal TELPAK problem arises when all communications
are to a common destination. It can then be expressed as
a single-commodity network flow problem with nonlinear
and nonconvex cost functions. The same structure applies
to communications between a central computer and remote
terminals, or to many locations requiring channels to a
switching center only. Rothfarb and Goldstein (1971) pro-
pose a heuristic based on linear programming. Their work
is discussed in the surveys of Frisch (1975) and Chang
(1976). It is also studied with multicommodity flow exten-
sions in Minoux (1975, 1976).
There are several similar network design models con-

sidered in the literature, but these do not take into
account multiple-choice constraints and/or do not assume
an arborescence structure of the solution. For example,
Bousba and Wolsey (1991) give a model with fixed capac-
ities on both nodes and arcs on the tree; Toth and Vigo
(1995) also consider capacity- and degree-constrained mod-
els. Bienstock et al. (1998) formulate a minimum cost
capacity installation (MCCI) problem as multicommodity
network flow on a directed graph G�V �A�. Each pair (i� j)
corresponds to a commodity to be sent from source node i
to destination node j using arcs in A. The demand for com-
modity k may be fractional. Capacities are installed on the
arcs in integral units. The objective is to obtain a minimum
cost installation of capacities to ensure that all commodities
can be shipped simultaneously. Closely related problems
to MCCI, including multicommodity survivable network
design, have been studied in Barahona (1996), Bienstock
and Gunluk (1996), and Nemhauser and Wolsey (1988).
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3. THE MODEL

In this section basic definitions are given, as well as a math-
ematical statement of the pipeline design problem which
we consider. Flow of oil in the pipeline system is modeled
by a network �N �A� with node-set N and arc-set A. The
node-set N = �i�i = 1�2� � � � � n� corresponds to the wells,
i.e., both those on offshore platforms and at onshore sites
(aggregated by platform or site), to potential connection
points between pipeline segments (not all of which need to
be used), and to the port. We specify the index of the port
to be n. The amount of oil produced in the reference period
at node i is denoted by pi. Thus, production of all wells
at a given platform is summed up and the same holds for
wells at a given onshore site. These values are assumed to
be known. We also assume that there is no production; i.e.,
pi = 0, at connection points and at the port.
The arc-set A corresponds to potential layouts of pipeline

segments between offshore platforms, onshore production
sites, connection points, and the port. These are assumed
to be given, on the basis of proximity between nodes and
a study of soil and sea conditions—i.e., rocks, depth, and
currents. Arcs are assumed to be oriented, but in some of
the arcs flow may be sent either from i to j or from j
to i; that is, there are two potential directions for these
pipes, only one of which will be chosen in the optimal
solution. A set of pipe diameters is associated with each
arc �i� j� of A. Together with physical restrictions, such as
pressure at the ends, we assume that the pipe capacity is
fixed once the diameter is fixed. To write the flow conser-
vation conditions, the set of predecessors and successors
of node i will be denoted by P�i� and S�i�, respectively,
for i = 1�2� � � � � n; i.e., P�i�= {

j ∈ N \ �n���j� i� ∈ A
}
and

S�i�= {
j ∈ N ��i� j� ∈A

}
. The capacities of pipes are to be

chosen among a given set which may vary with the pair
of nodes i and j . These capacities are denoted by Ck

ij for
k = 1�2� � � � � kij . Usually not more than five or six capac-
ities will be considered. The fact that potential connection
points need not necessarily be used is modeled by a special
capacity C1

ij equal to 0; i.e., no flow can go through this
pipe and its cost E1

ij is, of course, also 0. Costs associated
with each arc and each capacity are denoted by Ek

ij . They
correspond to all expenses needed to set up the correspond-
ing pipes and to the cost of these pipes themselves as well
as to the cost of pumps necessary to ensure the desired flow
direction. Pipe costs are assumed to increase with diameter
at a decreasing rate; i.e., there are economies of scale.
Moreover, this leads to the reasonable assumption that

there is a single outgoing flow from any platform or well
site, at most one outgoing flow from each connection point,
and none from the port (from where ships are used to trans-
port the oil). This assumption plays an important role in
both the heuristic and the exact solution methods; indeed,
it ensures that the optimal design of the pipeline network
is an arborescence rooted at the port.
Flow in arc �i� j� will be denoted by fij � 0, for all

�i� j� ∈ A. Let yk
ij = 1 if a pipe with the kth capacity is laid

out between nodes i and j , and 0, otherwise, ∀ �i� j� and k.

Note that due to the assumption on the tree structure of
the pipeline network, once the yk

ij variables are fixed, they
induce an arborescence, and the flows are fixed also by con-
servation, assuming the capacity constraints are satisfied.
Moreover, it is also true that once the layout of the pipeline
is known, i.e., the arborescence corresponding to it is given,
the decision variables are readily fixed at their optimal val-
ues. First, flows can be computed from the various sources
to the sink by conservation equations and, second, small-
est capacities sufficient to accommodate these flows can be
chosen. This important property will be exploited by the
heuristics proposed in §4, and will allow the obtainment of
Type 2 valid inequalities explained later in that section.
The mathematical model of the pipeline design problem

we consider is the following:

minimize
∑

∀ �i�j�∈A

kij∑

k=1

Ek
ijy

k
ij (1)

subject to

∑

j∈S�i�

kij∑

k=1

yk
ij = 1 ∀ i ∈ N \ �n�� (2)

∑

j∈P�i�

fji +pi =
∑

j∈S�i�

fij ∀ i ∈ N \ �n�� (3)

fij �

kij∑

k=1

Ck
ijy

k
ij ∀ �i� j� ∈ A� (4)

fij � 0 ∀ �i� j� ∈ A� (5)

yk
ij ∈ �0�1� ∀ �i� j� ∈ A� k = 1�2� � � � � kij � (6)

The objective function (1) is simply the sum of costs for
all pipes. The multiple-choice constraints (2) express that a
single pipe that can accommodate the flow leaves node i in
accordance with the assumption on the arborescence struc-
ture of the pipeline network and flow conservation at each
node except the port. This is a unique feature of our model
which differentiates it from other network design problems
such as the multicommodity flow models referred to in
the previous section. Equations (3) express conservation of
flow: The total flow entering node i plus the flow due to
production there equals the leaving flow. Constraints (4)
express limitations on flow due to pipe capacity. Constraints
(5) express that flows are nonnegative and constraints (6)
that pipes are set up entirely or not at all.
Model (1)–(6) can be easily adapted to the problem of

optimal expansion of an existing pipeline network. Still,
assuming that it has an arborescence structure implies
that all arcs in the existing pipeline network are oriented
towards the port. (Otherwise there would be outgoing flow
from a node to two different ones, a contradiction.) The
expanded network will have an arborescence structure that
must make use of all the pipes in place in the existing
one. Let the variable ye

ij = 1 if the capacity of the existing
pipe between i and j is sufficient in the expanded network,
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and 0, otherwise. Then those of the constraints (2) and (4)
which correspond to nodes and arcs of the existing network
should be replaced by the following ones:

ye
ij +

kij∑

k=1

yk
ij = 1 ∀ i ∈ N ′ \ �n�� j ∈ S�i�� (2′)

fij � Ce
ij +

kij∑

k=1

Ck
ijy

k
ij ∀ �i� j� ∈ A′� (4′)

where N ′ denotes the set of nodes and A′ the set of arcs of
the existing network. Note that A′ is an arborescence on N ′

rooted at the port. For each node i ∈N ′ \�n�, the successor
set of i consists of only one node. Constraints (2′) and (4′)
express that:
(i) if there is an arc between i and j in the existing

network, there will be a pipe between these nodes in the
expanded network;
(ii) an additional pipe between i and j may be con-

structed in parallel to the existing one.
Constraints (4′) express that the capacity of the pipe(s)

between nodes i and j is equal to that of the existing pipe,
i.e., Ce

ij , plus possibly that of a pipe built in parallel. Con-
straints (2) and (4) appear as usual for nodes in N \N ′

and arcs not in the existing network. Moreover, arcs join-
ing pairs of nonadjacent nodes of the existing network or
outgoing arcs from nodes of the existing network to nodes
outside it need not be considered. Again, this follows from
the assumption that the expanded network has an arbores-
cence structure that embeds the existing structure.
Problem (1)–(6) is close to several well-known combi-

natorial optimization problems. If linear costs for the flows
in all arcs are added to (1), it becomes the one-terminal
telpak problem (see Rothfarb and Goldstein 1971, Frisch
1975, and Chang 1976 for some early references). When
there are such linear costs for flows but only one capacity
for each arc, the problem reduces to the single-source fixed-
charge network flow problem (Hochbaum and Segev 1989).
If only one capacity is considered for each arc and linear
costs for the flows are omitted, the problem becomes a pure
fixed-charge one (McKeown and Ragsdale 1990 and Rags-
dale and McKeown 1991). All these problems are NP-hard.
The first reduction of the fixed-charge problem to Steiner’s
problem in graphs is due to Karp (1972). A slight variation
on this proof shows problem (1)–(6) to be NP-hard.

4. SOLUTION METHODS

In this section we propose two heuristics and an exact algo-
rithm to solve problem (1)–(6). We first discuss a general
graph-theoretic approach to the problem. Tabu Search and
Variable Neighborhood Search heuristics are developed in
§4.1. These heuristics may also be used to obtain an upper
bound for the branch-and-bound procedure explained in
§4.4. Lower bounds on the optimal solution of problem
(1)–(6) are obtained by linear relaxation and improved by
using two new types of valid inequalities, described in §4.2.

We also discuss possible decomposition of the problem
according to geographical considerations in §4.3.
As mentioned in the previous section, the optimum

pipeline network has an arborescence structure. This sug-
gests a way to solve small instances of problem (1)–(6) by
complete enumeration of all the arborescences rooted at the
terminal port. We first assume that there is only one port in
the oil pipeline system; thus, all the oil flows to the port.
The problem can be separated into two cases.
1. No intermediary connection points in the system; i.e.,

pipes connect only offshore platforms, onshore well sites,
and the port.
2. Intermediary connection points given onshore or off-

shore together with offshore platforms, onshore well sites,
and the port.
First, assume that there are no intermediary connection

points. The solution to this problem can then be found
by complete enumeration of spanning trees rooted at the
port. For each spanning tree, there is a corresponding total
expense to set up the pipes for transporting oil from off-
shore platforms and onshore production sites to the port.
This cost is determined once the spanning tree is fixed
because there is exactly one path from any platform or well
site to the port; i.e., the production at each location has
exactly one way to be sent to the port. Thus, the flow in
each arc of the tree is determined and the diameter of the
pipe for that arc is that of the least expensive pipe that can
accommodate the flow. Note that the direction of the flow
is also determined as it is directed toward the root (port).
Thus, the spanning tree (undirected) structure is in fact
a spanning arborescence (directed) structure. The cost of
the pipeline system corresponding to this spanning arbores-
cence is the sum of the costs on each arc of the spanning
arborescence. The minimum cost of the oil pipeline system
is the cost corresponding to the least expensive spanning
arborescence.
We next discuss the case where there are intermediary

connection points included in the network. The problem
is then similar to Steiner’s problem on graphs (e.g., see
Winter 1987): A fixed set of nodes corresponding to the off-
shore platforms, the onshore production sites, and the port
must be included in a subgraph, but not all of the interme-
diary connection points need be included in that subgraph.
This extension may be reduced to the previous case of enu-
meration of spanning trees. As discussed in the modelling
section, we may treat the connection points as platforms
with zero production. When a connection point is a leaf
in the spanning tree, oil transported through the pipe from
that connection point is zero and the pipe chosen for that
arc has a zero capacity and costs nothing. This generalizes
to the case where there are several connection points in
sequence with no flow. Thus, oil sent out of any point is the
sum of oil flow into that point and the production at that
point. The pipe used in any arc is the least expensive one
that can accommodate the flow on that arc. Note, however,
that by adding potential connection points the problem size
is enlarged.
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In case there is more than one port, we may add a “super
sink” connected to all the ports and consider these ports
as intermediary connection points without production. Oil
that is sent to any of the ports will be transported to the
super sink without cost. Note that not every spanning tree
corresponds to a solution in this case. Only spanning trees
that include all the arcs between the super sink and the
original ports correspond to valid solutions.
The resolution method of complete enumeration of span-

ning trees just discussed may allow the solution of prob-
lems with up to 15 to 20 nodes, depending on the density
of the associated network. More efficient general mixed-
integer programming codes such as CPLEX may alterna-
tively be used. Larger problems are difficult to solve in
either of these ways as the number of spanning trees or
branching nodes increases rapidly. This suggests the fol-
lowing general approaches:
(i) explore in a heuristic way the space of all spanning

trees, quickly getting a near-optimal or unproved optimal
one as an upper bound; and
(ii) proceed to the exact solution of Problem (1)–(6)

by general mixed-integer programming techniques such as
branch and bound, using cuts in the form of valid inequali-
ties embedded in this solution procedure to reduce the dual-
ity gap.
We combine both approaches in our solution method.

Tabu Search and (or) Variable Neighborhood Search heuris-
tics are used to obtain an upper bound, and linear relax-
ation together with two types of valid inequalities to obtain
a lower bound for the branch-and-bound procedure.

4.1. Heuristics

Many frameworks have recently been proposed for design-
ing heuristic algorithms which, contrarily to more tradi-
tional ones, are not blocked as soon as a local optimum is
found. In this section, we adapt the well-known Tabu search
(Glover 1989, 1990; Hansen and Jaumard 1990; and Glover
and Laguna 1997) and the more recent variable neigh-
borhood search (Mladenović 1995, Brimberg and Mladen-
ović 1996, Mladenović and Hansen 1997, and Hansen and
Mladenović 2001) heuristics to our pipeline network model.
Our methods are based on elementary tree transforma-

tions that define the neighborhood structure. The set of all
neighbors of a given solution for the pipeline design prob-
lem is naturally defined as all those spanning arborescences
with distance 1 to the given solution, i.e., the set of span-
ning arborescences which differ from the current solution
by adding one new (or free) arc while deleting one existing
arc. The deleted arc must belong to the cycle closed by the
added arc in order to maintain the tree structure. Note that
the neighboring spanning arborescences may require the
direction of some arcs in the formed cycle to be reversed.
A local search is performed by examining all points in the
1-neighborhood of the current solution. If the best neigh-
borhood point provides a better solution, a move is made to
that point. The process is repeated until a local minimum

is reached. Since the number of neighbors may be large,
a complete enumeration to find the direction of steepest
descent (or mildest ascent) tends to be costly in computing
time. It may therefore be more efficient to choose a few
entering arcs and for each of these to examine several out-
going arcs.

Tabu Search. After obtaining an initial solution (e.g., one
corresponding to the minimum length tree of the given net-
work), performing a local search, and initializing the Tabu
list �= ∅�, the following steps are taken:
Step 1. Consider the set of all arcs outside the current

arborescence T and not in the Tabu list, or alternatively,
generate at random p (a parameter) of them.
Step 2. For each such arc, determine the unique cycle C

that it closes upon being added to T ; delete in turn each arc
of C (except the newly added one); update the flows in the
remaining arcs of C; and compute the resulting difference
in pipe costs.
Step 3. From all the elementary tree transformations

above, keep the pair of entering and leaving arcs for which
the cost decreases the most or increases the least.
Step 4. Perform the corresponding exchange to obtain

the new current solution.
Step 5. Set a Tabu restriction on the reverse move of the

leaving arc (update Tabu list); if an improved solution has
been found, it becomes the new incumbent.
Step 6. Repeat the preceding steps until a stopping cri-

terion is reached.
An alternate strategy, instead of examining the unique

cycle obtained by adding the free arc �u� v�, simply deletes
arc �u�w�. This is possible so long as C is not a directed
cycle starting and ending at u, in which case we ignore the
attempt. A much smaller number of points in the neighbor-
hood is examined with this strategy.

Variable Neighborhood Search. The basic idea of the
recent metaheuristic known as Variable Neighborhood
Search (VNS) is to allow a change of neighborhoods in the
search for a better solution. To construct different neigh-
borhood structures and to perform a systematic search, one
needs to have a way of finding the distance between any
two solutions; i.e., one needs to supply the solution space
with some metric (or quasi metric), and then induce neigh-
borhoods from it. In our case, the distance between two
spanning arborescences T1 and T2 is defined as the symmet-
ric difference between their sets of edges. It is well known
that this distance is a metric function, and thus, a set of
spanning trees represents a metric space.
In our basic version of the VNS, a single parameter kmax

is specified that gives the maximum radius (or distance)
that will be allowed from the current solution. After an
initial solution is found and a local search performed, the
following steps are repeated until a stopping criterion is
reached.
Step 1. (First neighborhood) Set distance k = 1.
Step 2. If k > kmax, return to Step 1.
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(a) (Shaking) Draw an arborescence T ′ at a distance k
from the current solution T ; i.e., add k times one
free arc at random and delete each time the best
existing arc from the closed cycle.

(b) (Local search) Perform a local search starting from
T ′ to obtain a local minimum T ′′.

Step 3. (Move or not) If f ′′ < fopt (value of T ′′ < value
of incumbent, T ), T ← T ′′, fopt ← f ′′, and return to Step 1;
otherwise, k ← k+1, and go to Step 2.

4.2. Valid Inequalities

Solving problem (1)–(6) exactly may be made difficult by a
large duality gap. The gap is attributed to the several sizes
of pipes available that make the solution of the continuous
relaxation far removed from the integer one. Typically, for
any node i with positive production there will be two vari-
ables yk

ij with positive (fractional) values: One of the values
will correspond to a portion of the largest-capacity pipe that
is exactly enough to allow the outgoing flow to traverse the
pipe, while the other corresponds to the portion of the least-
cost pipe from that node required to satisfy constraint (2) on
that node. For intermediary points, the least-cost pipe will
correspond to one of the zero-capacity/zero-cost pipes. Few
results on cutting-plane methods for fixed-charge problems
appear in the literature. To the best of our knowledge, the
first derivation of cuts for multiple fixed-charge problems
is found in Lih (1993) for the particular problem under
study; also see Glover et al. (1997) for more general mod-
els. Cuts based upon considering a subproblem have also
been proposed in other types of network design problems
in, for example, Stoer and Dahl (1994), Bienstock et al.
(1998), and Bienstock and Muratore (2000). However, a
careful search of the literature did not find the equivalent
cuts of ours which are derived on the objective function.
Two types of specialized valid inequalities for our pipeline
design problem, which are capable of drastically reducing
the duality gap, are given below.

Valid Inequalities of Type 1. Let W be a subset of the
set of N \ �n�. The total production that must be trans-
ported across the boundary of the bipartition �W�N \W� is
at least

∑
i∈W pi. Moreover, for each node i in W there will

be at most one arc directed to a node j in N \W . A valid
inequality will then be obtained by finding a lower bound
on the cost of the arcs belonging to the cut �W�N \W�.
This is done by solving a multiple-choice knapsack prob-
lem formulated as follows:

minimize
∑

i∈W

∑

j
W

kij∑

k=1

Ek
ijy

k
ij

subject to

∑

i∈W

∑

j
W

kij∑

k=1

Ck
ijy

k
ij �

∑

i∈W

pi

∑

j
W

kij∑

k=1

yk
ij � 1 ∀ i ∈ W�

yk
ij ∈ �0�1� ∀ i ∈ W� j ∈ N \W� k = 1� � � � � kij �

Assume that the minimum objective value for this prob-
lem is VW . A valid inequality of Type 1 is then defined by

∑

i∈W

∑

j
W

kij∑

k=1

Ek
ijy

k
ij � VW �

Even for fairly large pipeline design problems, the
multiple-choice knapsack problems needed to find valid
inequalities of Type 1 may be sufficiently small to allow
solution by hand. Should this not be the case, a specialized
algorithm can be used (e.g., Bulfin and Liu 1985 or Chern
and Jan 1986).

Valid Inequalities of Type 2. As mentioned at the begin-
ning of this section, small pipeline design problems can be
solved by complete enumeration of all trees. This suggests
a second type of valid inequality, using a bound on the cost
of pipes in all arcs of a given subset instead of in a cut
only, as in Type 1 inequalities. Consider again a bipartition
�W�N \W� of the nodes; then merge all nodes of N \W
into a node n′ and keep for each node i ∈W and each pos-
sible capacity k the arc with least cost Ek

ij between node i
and some node j of N \W . This gives a smaller pipeline
design problem on �W �+ 1 nodes. Solve this last problem
by enumeration of trees and let Vst be the optimal value
found. Then a valid inequality of Type 2 is given by

∑

i∈W

∑

j∈N

kij∑

k=1

Ek
ijy

k
ij � Vst�

4.3. Decomposition

Pipeline design problems have a particular geometric struc-
ture which may sometimes be exploited to simplify their
solution. For instance, reservoirs may be geographically
dispersed, which induces some natural decomposition. If
the network �N �A� has a cut vertex, i.e., a vertex j the
suppression of which disconnects the network, the problem
can be solved for the subnetwork(s) so obtained and not
containing the port, considering vertex j as a port. Then a
smaller problem is obtained by deleting these subnetworks
except node j and adding their production to that at j . A
less powerful decomposition scheme may be used in the
case where �N �A� has a small disconnecting set of nodes,
say �i� j�; then the subproblem corresponding to the differ-
ent distribution of flow at i and j must be considered.

4.4. Branch-and-Bound Procedure

The proposed algorithm, while exact (i.e., leading to a guar-
anteed optimal solution), relies on the following heuris-
tic strategy: The optimal solution (or at least a solution
very close to the optimal one and coinciding with it on
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many arcs) should be determined in a first phase by a
(sophisticated) heuristic; then the optimality of this solution
should be proved in a second phase using cutting planes
and branch and bound. This implies that the choice of cut-
ting planes should be guided by the differences between the
heuristic solution and the solution of the current relaxation;
they should be aimed at reducing, and eventually eliminat-
ing, such differences.
As mentioned above, problems with multiple fixed

charges are very difficult to solve as the duality gap is usu-
ally very large. Therefore, we propose to follow an inter-
active procedure and to exploit the geographic structure of
the problem (which is easily done visually, but difficult to
automate).
The steps of the interactive branch-and-bound procedure

are as follows.
Step 1. Initialization: Read the input data of the prob-

lem to be solved. Let LIST (the list of subproblems to be
solved) be empty.
Step 2. Decomposition: Determine, using depth-first

search (Tarjan 1972), the articulation points of the network,
if any. Assuming there are some, decompose the problem
by considering each articulation point as the root of a sub-
problem in turn, beginning by those the farthest from the
root of the network.
Step 3. Heuristic: Apply the heuristic procedure

TABU_PIPE or VNS_PIPE to the decomposed problem.
Let Topt denote the incumbent solution so found and fopt
its value.
Step 4. Initial bound: Solve the continuous relaxation of

the decomposed problem. Note the value of the initial esti-
mate of the duality gap; i.e., the difference between the
value f of the optimal solution of the relaxation and fopt,
the solution obtained by the heuristic procedure in Step 3.
Step 5. Valid inequalities from dense zones: Consider

the geographical description of offshore platforms and
onshore wells. Find clusters of them geographically iso-
lated from others, and of a size not exceeding 15 such
nodes. (This limit is chosen so as not to use up excessive
computing time when generating valid inequalities.) Com-
pute Type 2 valid inequalities for all clusters so determined.
Add these valid inequalities to the continuous relaxation
and solve the resulting program, from the previous solution
on, using the dual simplex method. (It may be of interest
to introduce valid inequalities one at a time and note their
effect on the estimate of the duality gap; valid inequalities
which do not lead to any improvement may be deleted.)
Step 6. Valid inequalities from comparison of solutions:

Compare the solutions of the current relaxation and the
current incumbent. List all arcs in which these solutions
do not agree (this includes two cases: arcs out of a node
joining different endpoints in both solutions, and arcs join-
ing the same nodes in both solutions, but such that several
parallel arcs are used fractionally in the continuous relax-
ation). Introduce additional Type 1 or Type 2 valid inequal-
ities which cut at least one arc in the list. Continue this
step interactively as long as the estimate of the duality gap
decreases (or, in other words, the lower bound increases).

Step 7. Optimality test: If f > fopt, discard the current
subproblem and go to 10.
Step 8. Solution test: If f < fopt and the solution of the

continuous relaxation is all integers, replace fopt by f , Topt

by the current tree, and go to 10.
Step 9. Branching: Consider a pair of nodes joined by

an arc in which the solutions of the continuous relaxation
and Topt differ. Apply multiple branching with all feasible
diameters of the pipe. Update the solutions of these sub-
problems with the revised dual simplex method; store all
such solutions, i.e., subproblems, in LIST (including all
specifications of fixed ones), except that one for which the
optimal value of the relaxation is smallest. Consider this
last subproblem as the current one and go to 6.
Step 10. Subproblem: If LIST is empty, this branch-and-

bound procedure ends; otherwise, choose as the current
subproblem the one with the lowest value of f , and go to 6.

Clusters may be generated automatically in Step 5 using,
for example, a sequential clustering algorithm with mini-
mum radius and/or maximum split criteria (see Hansen et al.
1994). Depending on the number of offshore platforms
and onshore wells, there could be many potential clusters
obtained in such a manner. However, only a few carefully
selected clusters should be examined to avoid excessive
computing time. Furthermore, cluster selection may depend
on previous ones selected for maximum effect. We argue
that this process may be best accomplished through a visual
examination of the geographical layout of the network.

5. COMPUTATIONAL RESULTS

In this section, we investigate the exact solution of the
pipeline design problem for the South Gabon oil field. An
important step in the solution procedure is to obtain a high
quality heuristic solution that provides a tight upper bound.
Thus, the South Gabon oil field problem is followed by a
comparative study of the Tabu Search and Variable Neigh-
borhood Search heuristics on a series of randomly gener-
ated pipeline problems.

South Gabon Oil Field. The South Gabon oil field con-
sists of 33 nodes. These represent offshore platforms,
onshore wells (both represented by circles in Figure 1),
seven connection points (represented by squares in Fig-
ure 1), and one port (Gamba). The number inside each cir-
cle and square identifies the node. The numbers adjacent to
the circles are the production rates at those sites. All the oil
production in this region is transported to Gamba, where
it is exported abroad by sea. There are 129 possible arcs
with associated “generalized” distances shown in Figure 1.
The total cost of a section of pipe is obtained by multiply-
ing the arc distance by the unit price for each pipe capacity
(monetary units 10, 15, 25, 40, and 65, for capacity sizes
5, 10, 25, 50, and 100, respectively).
The branch-and-bound procedure is applied to the South

Gabon oil field problem shown in Figure 1. A heuristic
solution of value 1,423 was obtained by both TABU_PIPE
and VNS_PIPE; this solution is also shown in Figure 1.
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Computing time for both heuristics was less than one sec-
ond on a SUN SPARC 10 station. Observe that the network
naturally decomposes into a northern and a southern part
with node 17 as an articulation point. The first (southern)
problem has nodes 18 to 32 with node 17 as the root (a
port). This problem was solved by complete enumeration of
trees, which is equivalent to computing a Type 2 inequality
with the same node set. (The subproblem was also solved
in 33.7 seconds with a branching tree of 18,119 nodes and
83 cuts applied, using Version 7.0 of the commercial code
CPLEX.) An optimal value of 672 was obtained for the first
subproblem, which coincides with the heuristic solution.
The second (northern) problem has nodes 1 to 17 with

node 33 as the port. Connection point 17, being the artic-
ulation point of the northern and southern subnetworks, is
now given a total production equal to the sum of all pro-
ductions in the southern subproblem. The continuous relax-
ation of the northern problem obtained a value of 668.78
compared with a value of 751 from the heuristic solution of
this subproblem. Three Type 2 inequalities were eventually
added in order to reduce this (quite large) gap. The first cut
corresponded to the southern part of the subproblem, i.e.,
nodes 11 to 17; the effect of this inequality was to raise
the lower bound f to 687.81. A second inequality corre-
sponded to the northern part, i.e., nodes 1 to 10. Adding
this inequality alone gave a lower bound of 691.82. Adding
both inequalities gave a lower bound f of 740; i.e., 87%
of the estimated duality gap was closed. The third inequal-
ity was aimed to remove the fractional capacity existing
between node 10 and node 8 after adding the first two
inequalities. This inequality corresponds to a subset of the
nodes in the second inequality, i.e., nodes 1 to 9. Adding
all three inequalities resulted in a lower bound f of 749,
or 99.73% of the estimated duality gap was closed.
With the lower bound of 749 and the estimated opti-

mal value of 751 for the northern problem, we proceeded
to branching. Multiple branching, by fixing the size of the
pipe, was used on arc (10,8), which had a flow in the
heuristic solution but not in the current solution. Among
the five resulting subproblems, one obtained the same value
as the heuristic solution, while the others had a larger value
or were infeasible. This allowed us to conclude that the
heuristic solution must be optimal. The northern problem
was also solved directly with CPLEX 7.0 in 4.2 seconds
using a branching tree of 904 nodes and 89 cuts applied.
In conclusion, despite the fact that the South Gabon oil

field problem is quite large by comparison with other prob-
lems involving multiple fixed charges, it could be solved
with decomposition, only three inequalities, and one multi-
ple branching. On the other hand, when we tried the orig-
inal problem directly on CPLEX 7.0, the optimal solution
was obtained after 4,867 seconds with a branching tree of
1,298,242 nodes. During the solution process, 167 general
cuts were added, raising the lower bound from an initial
value of 698.0675 to 1,191.3. Meanwhile, by adding only
three of our inequalities to the original model the initial
duality gap was reduced by 83% (by increasing the LP
relaxation value to 1,300.375).

Random Test Problems. The South Gabon oil field
example has a number of nodes, n = 33, and arc den-
sity, dens = 0.131. In order to test our two heuristics on
a wide range of problem sizes, we randomly generated
graphs with n = 15�20�25�50�75, and 100 vertices and
dens= 0�1�0�2� � � � �0�8.
Random test problems were generated for each param-

eter pair �n�dens� on a "0�100#× "0�100# square. Node
n (the port) always had coordinates �100�100�, while the
remaining �n−1� nodes were distributed uniformly in the
square. A random number RND was generated for each
pair of points �i� j�. If RND < dens, an undirected arc �i� j�
was added and distance d�i� j� calculated as the Euclidean
distance between i and j; otherwise, arc �i� j� was deleted.
Oil production pi was obtained from a uniform distribu-
tion over the interval �0�1�, i = 1� � � � � n− 1. The number
of possible pipe diameters was set at 10 for all arcs. The
associated capacities were given by cap �k� = nk/10 with
associated cost per unit distance, cost �k�= 10�cap �k��0�75,
k = 1� � � � �10.
Table 1 compares the optimal solution obtained by

CPLEX 7.0 for n= 15�20, and 25 with the values obtained
by various heuristics. One random test instance was gener-
ated for each parameter pair (n, dens) listed. In the fourth
column of Table 1, the Minimum Spanning Tree (MST)
solution (as % deviation from optimal) is given as a first

Table 1. Comparison of heuristics with optimal solu-
tion.

fopt
% Deviation from the Optimal Value

n dens CPLEX MST RA LS TS VNS

15 0.10 1221.00 25�27 22�90 0.00 0.00 0.00
15 0.20 1170.36 9�23 3�65 0.03 0.00 0.03
15 0.30 1532.96 6�08 3�84 2.71 0.62 0.00
15 0.40 1572.39 0�69 0�69 0.00 0.00 0.00
15 0.50 1221.00 25�27 22�90 0.00 0.00 0.00
15 0.60 1142.17 0�00 0�00 0.00 0.00 0.00
15 0.70 1221.00 25�27 22�90 0.00 0.00 0.00
15 0.80 1683.09 4�45 4�45 0.00 0.00 0.00

Average 12�03 10�17 0.34 0.08 0.00

20 0.10 2281.74 17�56 14�69 2.36 0.00 1.84
20 0.20 2028.93 27�83 27�83 0.84 0.00 0.84
20 0.30 2622.42 10�73 2�70 0.91 0.00 0.91
20 0.40 1488.30 2�81 2�00 0.00 0.00 0.00
20 0.50 1722.18 4�20 1�39 0.00 0.00 0.00
20 0.60 2281.74 17�56 14�69 2.36 0.00 0.00
20 0.70 1845.33 56�12 46�70 0.00 0.00 0.00
20 0.80 1967.44 3�38 3�38 0.00 0.00 0.00

Average 17�52 14�17 0.81 0.00 0.45

25 0.10 2738.40 7�25 7�25 2.88 0.00 2.88
25 0.20 3283.76 7�40 6�15 0.00 0.00 0.00
25 0.30 3274.47 4�69 4�69 0.19 0.00 0.00
25 0.40 2087.49 7�90 2�09 1.22 0.00 0.00
25 0.50 2970.78 6�91 6�91 1.05 0.00 0.00
25 0.60 3083.81 18�60 13�72 1.36 1.33 0.00
25 0.70 2331.56 11�69 7�91 1.89 1.68 1.89
25 0.80 3451.02 16�72 6�05 0.62 0.62 0.62

Average 10�15 6�85 1.15 0.45 0.67
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Table 2. Average results on 10 random instances.

% Deviation from the Best Value
tmax

n dens Best Value MST RA LS TS VNS (sec.)

50 0.10 5601�14 6�871 3�737 0.433 0.000 0.056 1�8
50 0.20 4123�37 22�252 11�644 0.716 0.000 0.185 6�5
50 0.30 3266�24 15�105 12�370 0.404 0.000 0.015 11�8
50 0.40 2866�18 15�928 12�318 0.810 0.569 0.000 15�9
50 0.50 2745�04 16�922 7�118 0.079 0.000 0.032 34�3
50 0.60 2626�65 12�013 7�318 0.923 0.635 0.000 25�6
50 0.70 2432�90 11�918 6�884 0.935 0.935 0.000 30�1
50 0.80 2393�97 11�900 9�209 0.922 0.868 0.000 42�5

Average 14�114 8�825 0.653 0.376 0.036

75 0.10 9912�14 11�471 5�346 0.263 0.000 0.200 24�0
75 0.20 6453�67 9�285 3�427 0.810 0.172 0.000 63�7
75 0.30 5415�07 8�679 6�710 1.018 0.000 0.382 96�9
75 0.40 4828�67 13�150 7�457 0.404 0.000 0.190 236�5
75 0.50 4323�93 20�328 3�915 0.323 0.125 0.000 237�8
75 0.60 3995�21 5�904 4�664 0.337 0.256 0.000 184�7
75 0.70 3832�21 3�218 2�888 1.265 0.000 0.000 177�6
75 0.80 3645�71 4�050 3�508 0.200 0.105 0.000 356�8

Average 9�511 4�739 0.577 0.082 0.097

100 0.10 11204�55 9�499 5�860 0.163 0.000 0.035 69�1
100 0.20 7808�18 6�924 5�919 0.740 0.654 0.000 118�9
100 0.30 6541�03 8�254 6�197 0.950 0.000 0.212 337�0
100 0.40 5800�70 9�924 7�307 0.174 0.000 0.070 806�4
100 0.50 5446�56 6�258 4�087 0.455 0.392 0.000 558�4
100 0.60 5293�90 7�956 4�279 0.339 0.184 0.000 826�0
100 0.70 5054�36 8�474 5�231 0.301 0.278 0.000 1287�2
100 0.80 4866�67 7�541 5�733 0.280 0.177 0.000 1554�0

Average 8�104 5�577 0.425 0.211 0.040

attempt, since the cost of a pipe section is assumed to be
proportional to its length. To try to improve on the MST,
we then generated 1,000 random arborescences in a “con-
trolled” vicinity using a variation of Prim’s algorithm (see
Mladenović et al. 1993). The best result from the Random
Arborescence (RA) procedure is shown in column 5. This
solution was used as the initial point for Local Search (LS);
see column 6. The LS solution was then used to launch
the basic versions of Tabu Search (TS) and Variable Neigh-
borhood search (VNS). The results for TS and VNS are
shown in columns 7 and 8, respectively. For both heuris-
tics, the stopping criterion was based on a maximum exe-
cution time, tmax = 10× execution time of LS. In all cases
tmax was 0.1 sec. or less. Compare this with the execution
times of CPLEX, which were of the order of 1 to 10 sec-
onds for the networks with 15 nodes and 1,000 seconds for
those with 25. Furthermore, when tmax was increased by a
factor of 3, both TS and VNS obtained the optimal solution
in all cases.
Table 2 gives the results of the various heuristics on

larger problem instances that were impractical to solve by
CPLEX. In this case, 10 random test instances were gen-
erated for each parameter pair (n, dens), and the aver-
age result is reported in the table as a % deviation from
the best average result (shown in column 3). The stop-
ping criterion for TS and VNS was again set at tmax =
10× execution time of LS.

The length of the Tabu list was set in all runs at 7,
while the VNS parameter kmax was set at 5. In VNS we
used an “intensified” shaking by choosing the entering arc
at random and then finding the best one to be removed.
Parameter p (percent of free edges considered in the neigh-
borhood of the current solution in both TS and VNS) was
fixed at 100%, although sometimes, much better results
were obtained with p = 50% in the given time limit tmax.
For example, this neighborhood reduction was seen to be
very useful in the 33-node Gabon real-life problem.
From Tables 1 and 2 we may conclude that the MST

solution can be quite poor; and, more importantly, both
TS and VNS are able to improve the already good
MST+RA+LS solution. Furthermore, VNS appears to
perform better when the density is larger, while TS per-
forms better on average for small densities, at least for the
suggested parameter values.

6. CONCLUSIONS

This paper formulates a pipeline design problem as a
mixed-binary-integer linear program. Unique features of
the model that make it useful in certain settings such as oil
pipeline design include multiple choice on the capacities of
the pipes, and the construction of tree structures in the net-
work rooted at a single node (the port). The model is also
adapted to the problem of expansion of an existing pipeline
system. The deletion of pressure constraints improves the
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tractability of the model, but may limit the usefulness of
the model to a preliminary stage of the design.
An interactive branch-and-bound algorithm is proposed

which incorporates two new specialized types of valid
inequalities. The procedure is tested successfully on a real
problem of considerable size from the South Gabon oil
field. The duality gap is seen to be drastically reduced by
the introduction of a few of these constraints. Two heuris-
tics, one based on Tabu Search and the other on Variable
Neighborhood Search, are able to find the optimal solution
in less than one second.
Future work will examine the effectiveness of the valid

inequalities on larger problem sizes and apply the solution
concepts in other forms of network design.
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