
Squeeziness: An Information Theoretic Measure for
Avoiding Fault Masking

David Clarka, Robert M. Hieronsb

aDepartment of Computer Science, University College London, Gower Street, London, WC1E 6BT United
Kingdom

bSchool of Information Systems, and Computing Mathematics, Brunel University, Uxbridge, Middlesex,
UB8 3PH, United Kingdom

Abstract

Fault masking can reduce the effectiveness of a test suite. We propose an information
theoretic measure, Squeeziness, as the theoretical basis for avoiding fault masking. We
begin by explaining fault masking and the relationship between collisions and fault
masking. We then define Squeeziness and demonstrate by experiment that there is a
strong correlation between Squeeziness and the likelihood of collisions. We conclude
with comments on how Squeeziness could be the foundation for generating test suites
that minimise the likelihood of fault masking.

Keywords: Software engineering; formal methods; software testing; fault masking

1. Introduction

This paper explores relationships between fault masking and information theoretic
measures. What follows assumes a knowledge of basic information theory although a
reader who simply takes the mathematical definitions on trust should find it rewarding.

In recent years information theory has been used to quantify information flow (QIF)
in software. The context has been to ensure correct behaviour with respect to security
properties [5, 11, 3, 8]. This paper explores fault masking in software testing and its
dependence on what we call collisions. Since execution paths can be used to generate
tests in a coverage approach, we argue that ranking paths using a measure for the effect
of collisions can assist in avoiding fault masking. We define an information theoretic
measure, Squeeziness. We compare Squeeziness with the previously defined Domain
to Range Ratio metric (DRR) and show that they induce different orderings. We show
that there is a strong statistically significant correlation between the likelihood of col-
lisions and Squeeziness, which seems to be invariant as domain size increases, unlike
the weaker correlation between collision likelihood and DRR. Finally, we discuss pos-
sibilities for estimating Squeeziness.

Email addresses: david.clark@ucl.ac.uk (David Clark), rob.hierons@brunel.ac.uk
(Robert M. Hierons)

Preprint submitted to Information Processing Letters November 4, 2011

2. Fault Masking and Collisions

In software testing we execute the implementation under test (IUT) with an input
(test case) and observe the output. Typically we cannot use all inputs and choose a set
of test cases, a test suite. Often we choose a test suite that satisfies a particular test
criterion. In this paper we are interested in white-box testing, in which a test criterion
refers to the code. Most white-box test criteria require that elements of the code are
executed. Such criteria are called coverage criteria. For example, 100% statement
coverage requires that each statement of the program is executed (covered) in testing.

One challenge is to produce test cases that are likely to lead to failures: observations
not consistent with the specification. A fault is a mistake in the IUT that can lead to
a failure and to simplify the discussion we assume that a fault is associated with a
particular statement s of the IUT. In order for a fault at s to lead to a failure, the
execution of the IUT with test case t must lead to a path π that includes s; t exercises
the fault. Testing is complicated by the fact that a test case can exercise s but not lead
to a failure. Even if the program state after s is not that expected, later statements can
lead to the correct output being produced, a phenomenon often called fault masking.
The fault might lead to a failure if executed in a different path or with different input. It
has been observed, in the PIE framework [16], that for a failure to be caused by faulty
statement s it is necessary for s to be Executed, this must Infect the state (create an
incorrect program state) and the infection must Propagate to the output or final state.

We illustrate the idea with an example. Consider the intended program P1

x = x + 2;
if (x > 0) x = x % 4; else x = x;

and the faulty program P2

x = 3 * x;
if (x > 0) x = x % 4; else x = x;

For an input that executes the first statement of P2 (Execution), the program state
immediately after the execution may not be that expected (Infection). An input for P2

which leads to x being bigger than 0 after x = 3 * x; will not always discover this
(no Propagation) but one which leads to x being less than or equal to 0 will (Propa-
gation). For example, consider test cases t1 : x = 3 and t2 : x = −5. P1 leads us
to expect outputs of 1 for t1 and −3 for t2. P2 produces 1 and −15 respectively; t1
does not uncover the fault, whereas t2 does. The problem is that, in both programs,
t1 has an execution path that executes x = x % 4;. For P1, x is 5 after x = x +
2; and for P2, x is 9 after x = 3 * x;, but executing x = x % 4; produces 1
in both cases. This is not the case for t2 as both programs take the false branch and
Propagation is guaranteed.

Let us restate what is necessary for fault masking. The faulty program (we assume
a single fault for simplicity) must create a semantic condition, an “incorrect” state,
immediately after the fault. The fault free program would create a “correct” state for
the same input. The subsequent behaviour of the program maps both of these states
to the same output. We say that the subsequent behaviour of the program causes the

2

“correct” and “incorrect” states to collide in the output. If there were no possible
collisions then fault masking would not be possible.

This is the key intuition in this paper. Some execution paths are more effective at
revealing faults than others and an optimal path has fewest collisions. This is important
when generating test suites on the basis of coverage: given a choice of paths that cover
a structural element we can minimise the possibility of fault masking by choosing a
covering path that minimises the potential for collisions.

3. Evidence for Fault Masking

This section briefly reviews two pieces of evidence of fault masking through col-
lisions in real code. We start by discussing mutation testing, where a program p is
changed (mutated) at one point to produce mutant m. The effectiveness of test suite
T is judged by determining the proportion of mutants in a set M killed by T . Under
strong mutation testing,m ∈M is killed by t ∈ T ifm and p produce a different output
on t. In weak mutation testing t kills m if the execution of p and m with t leads to dif-
ferent states after the point mutated. Thus, if t kills m under weak mutation testing but
not under strong mutation testing then fault masking has occurred through collision.
Experiments, using 11 programs, found that a test suite T that killed all mutants under
weak mutation also killed 85% or more under strong mutation but not all [12, 13]. For
mutant m, killed under weak mutation, to not be killed under strong mutation we re-
quired fault masking for all t ∈ T that weakly kill m. Thus, these experiment provide
evidence regarding a lower bound on fault masking due to collisions.

In regression testing we have an original program p, a new program p′ produced by
changing p, and we test p′ to check that new faults have not been introduced. Tradi-
tionally, we use test cases that exercise the statements changed. However, the MATRIX
method [2] chooses test cases that exercise a changed statement and are likely to prop-
agate differences in the state to output (i.e. to not suffer from collisions). A (small)
value d is chosen and the method uses dependence analysis, for chains with depth at
most d starting at the change point, and symbolic evaluation. Experiments suggest that
this works [2]. For example, in experiments with nine versions of two programs, if
the tester simply chose test cases that executed the change points then in all but one
case fewer than 23% of the test suites revealed a change in behaviour1. The results
were much better using the MATRIX method and d = 3. For one program over 90%
of the test suites revealed a change in behaviour for all four versions. The results for
the other program also showed a significant improvement. Recent work has used more
efficient approaches to analysing propagation conditions [14] with empirical studies
again showing a significant improvement over approaches that simply aim to test the
change point [14]. While these studies did not aim to assess fault masking, the methods
aim to lead to test cases in which there is less potential for collisions and the results
provide additional evidence for the significance of fault masking through collisions.

1All results were averaged over 50 runs.

3

4. Avoiding Collisions

In this section we design a metric that can be used to compare paths, ranking them
by measuring the effect collisions have on the transfer of information along the path.
We can treat execution paths as if they are programs by observing that any path, π,
can be made into a program by introducing a special termination state, ABORT, for
branches not on π. We call these path programs. For example the execution path in
program P1 above that follows the true branch would become the following and the
effect of ABORT statements can easily be discounted when computing the metric.

x = x + 2;
if (x > 0) x = x % 4; else ABORT;

We make some reasonable assumptions about the nature of the programs we are
analysing, namely that they are deterministic and can be given a functional semantics.
By this we mean that outputs are a function of inputs; the programs terminate and
there is no internal non-determinism. This covers a very large and important class of
programs. Using these assumptions a program can simply be treated as a function.

execution path←→ program←→ function

Our measure will be the loss of information from the input space caused by the ex-
ecution path. Information is only lost by inputs leading to the same output (collisions).
The smaller the loss the weaker the effect of collisions. No loss of information means
no collisions. In what follows we assume familiarity with basic information theory.

We consider total, onto functions with fixed, finite, discrete domains. That is, a
function f is equipped with a fixed input domain, I , and an output range, O, so that
f : I → O and (overloading f) O = fI and I = f−1O.

Definition 1. Function Collision. A pair of inputs to function f , t, t′ ∈ I , collide if
t 6= t′ ∧ ft = ft′.

We take a probabilistic view of the behaviour of f . We overload I and O to also
represent random variables equipped with probability distributions, σI and σO respec-
tively. Shannon [15] measured the information content, or entropy, of a random vari-
able X with probability distribution p as follows.

Definition 2. Entropy of a random variable.

H(X) = −
∑
x∈X

p(x)log2p(x)

Since random variable O is completely determined by f ’s action on I all the infor-
mation in O stems from I [7] soH(I)−H(O) is the amount of information destroyed
by f . We call this quantity Squeeziness. If the function is one to one there are no
collisions and the Squeeziness of the function is 0 since σI = σO andH(I) = H(O).

Definition 3. Squeeziness. The Squeeziness of total function f : I → O, Sq(f), is
defined as the loss of information after applying f to I

Sq(f) = H(I)−H(O)

4

The partition property of entropy [9] allows us to reformulate Squeeziness in a
more useful way. Let f−1o be the random variable in the inverse image of o ∈ O. The
inverse images of elements of O partition I . For each o ∈ O, σO(o) =

∑
i∈f−1o σI(i)

so σO is the probability distribution for the random variable in the partitions induced
by the inverse images. The inverse images partition I . By the partition property

H(I) = H(O) +
∑
o∈O

p(o) H(f−1o)

hence
Sq(f) =

∑
o∈O

p(o) H(f−1o)

The RHS is a weighted sum of terms and H(f−1o) is the amount of information
contained in (the random variable in) the set of elements mapped to a single output.

It is mostly likely that, at the point of testing software for the first time, developers
will have little idea of the probability distribution. A possible strategy is the principle
of maximum entropy which produces a counting metric.

Maximum Entropy Principle: The principle of maximum entropy states that if
a probability distribution is not known the best strategy is to assume a distribution
consistent with the known constraints that maximises the entropy [1]. If there are no
constraints on the distribution, maximum entropy is attained when the distribution is
uniform. If the input distribution is uniform the entropy in the normalised probability
distribution on the inverse image of an output o is log2|f−1o| where |f−1o| is the
number of elements in the inverse image. The weight of a single element of σI is 1/|I|
and the weight of each inverse image is |f−1o|/|I|. So the squeeziness of f is

Sq(f) =
1

|I|
∑
o∈O
|f−1o| log2(|f−1o|)

Another possibility is to work with a worst case scenario.
Maximum Loss of Information: When the probability distribution on inputs is

not known it is possible to calculate maximum loss of information via a characterisa-
tion of the class of distributions that achieve the upper bound,

⊔
σI
Sq(f). An input

distribution that achieves maximum Squeeziness is one which is uniformly distributed
on one of the maximally sized inverse image partitions and zero everywhere else. Let
o′ ∈ O be such that ∀o ∈ O, |f−1o′| ≥ |f−1o|. Define for all i ∈ I , σI(i) = 1/|f−1o′|
if i ∈ |f−1o′| and σI(i) = 0 otherwise. If σI is the probability distribution associated
with I , we have Sq(f) = log2|f−1o′|. For any other probability distribution on inputs,
σI , we have

Sq(f) =
∑
o∈O

p(o) H(f−1o) ≤ log2|f−1o′|

that is, log2|f−1o′| is an upper bound for information loss. This is a consequence of
the following lemma.

Lemma 1. Let {Ai}1≤i≤n, {αi}1≤i≤n be such that ∀i, Ai, αi ∈ R, Ai, αi ≥ 0, and
∀i, A1 ≥ Ai, and

∑
1≤i≤n αi ≤ 1, then

∑
1≤i≤n αiAi ≤ A1.

It is straightforward to demonstrate this by induction on n. Given the lemma, it is only
necessary to observe that, by construction, ∀o ∈ O,H(f−1o) ≤ log2|f−1o′|.

5

5. Squeeziness and the Domain to Range Ratio

The only previous metric for fault masking we are aware of is Woodward and Al-
Khanjari’s Domain to Range Ratio (DRR) [17]. They claim that it is a good candidate
for a metric which is useful to discuss (our emphasis) concepts such as fault masking
and testability. Part of their rationale is the claim that it provides an approximate mea-
sure of information loss, by which they mean the proportion of what we call collisions.
In what follows we compare DRR with Squeeziness as ranking measures for collisions.

Definition 4. Domain to Range Ratio
For a total, onto function f : I → O define the Domain to Range Ratio, DRR(f), as
DRR(f) = |I|

|O| .

This is not an information theoretic measure and only measures information loss
in an informal sense of the term. In what follows we show that Squeeziness is not a
refinement of DRR or vice versa. In fact: DRR is a cruder measure than Squeeziness,
making fewer distinctions; and they produce inconsistent orderings on functions.

For simplicity we assume the maximal entropy principle. The examples are the
simplest for which the observations hold.

Observation 1. Fix |I| and |O|. Let F = {f | f : I → O} every f ∈ F has
DRR(f) = |I|

|O| but ∃f1, f2 ∈ F, Sq(f1) 6= Sq(f2).

Suppose I = {1, 2, 3, 4, 5, 6} and O = {A,B}, so every f ∈ F has DRR(f) =
6/2 = 3. Consider f1 ∈ F where f1x is A if x = 1 and B otherwise so Sq(f1) =
(5.log25 + log21)/6 = 1.935. Let f2 ∈ F where f2x is A if x ≤ 3 and B otherwise
so Sq(f2) = (2.3.log23)/6 = 1.585.

Observation 2. There exist functions, f1, f2 such that DRR(f1) < DRR(f2) but
Sq(f1) > Sq(f2).

Let I = {0, . . . , 15}, let f1 : I → O1 be defined by f1x is: 6 if x < 7; and x
otherwise. We haveO1 = f1I = {6, . . . , 15} so |O1| = 10,DRR(f1) = 16/10 = 1.6
and Sq(f1) = (7.log27)/16 = 1.23. Let f2 : I → O2 be defined by: f2x is: 7 if x < 2;
8 if 2 ≤ x < 4; 9 if 4 ≤ x < 6; 10 if 6 ≤ x < 8; 11 if 8 ≤ x < 10; 12 if 10 ≤ x < 12;
13 if 12 ≤ x < 14; and x otherwise.

O2 = f2I is the set of states in which x takes values in {7, . . . , 15} so |O2| = 9
while DRR(f2) = 16/9 = 1.78 and Sq(f2) = (7.2.log22)/16 = 14/16 = 0.875.
Hence the observation holds. In the next section we look at the relationship between
Squeeziness, DRR and the likelihood of collisions.

6. Squeeziness and the Likelihood of Collisions

In this section we assume that all input domains have a uniform probability distri-
bution. We show that there is no monotonic relationship between the probability of a
pair of inputs to function f being in a collision and the Squeeziness of f but provide
evidence of a strong statistical correlation.

6

Fault masking occurs when the expected state at statement s is σ, the actual state
is σ′ 6= σ but the expected output is produced. If f denotes the function defined
by starting the program at s, this occurs if and only if there exists o ∈ O such that
σ, σ′ ∈ f−1o; there is a collision and one state is not “correct”. A collision is necessary
but not sufficient for fault masking as some collisions could be between “correct” states.

Assume O = {o1, . . . , on} and Ii denotes the set f−1oi with size mi. Further,
let d =

∑n
i=1mi denote the size of the input space. Given a uniform distribution on

inputs, the probability of both σ and σ′ being in Ii is pi =
mi∗(mi−1)
d∗(d−1) , since σ 6= σ′.

Thus, the probability of collisions occurring is the sum of the pi, giving

PColl(f) =

n∑
i=1

mi ∗ (mi − 1)

d ∗ (d− 1)

This can be seen as the probability of collisions, when there is a uniform distribu-
tion on inputs. The relationship between PColl and Sq is not in general monotonic.

Observation 3. ∃f1 : I1 → O1, f2 : I2 → O2, Sq(f1) < Sq(f2) but PColl(f2) <
PColl(f1).

Let f1 take {A,B,C} to X and {D,E} to Y , while f2 takes {A,B,C} to X and
D to Y . Then PColl(f1) = 0.4 and PColl(f2) = 0.5 however Sq(f1) = 1.35 and
Sq(f2) = 1.1887.

We now report on simulations that compared PColl; Squeeziness (Sq); and Do-
main to Range Ration (DRR). All three are defined in terms of the sizes of the subdo-
mains (f−1o). We therefore produced all three for randomly generated partition sizes.

Simulations operated as follows. We fixed the size d of the input space and maxi-
mum subdomain size m. Random integers in [1.m], representing subdomain sizes (the
mi), were generated until the values summed to d, the last value being reduced if the
sum exceeded d. The three measures were then computed. This was repeated 100
times for the given d and m. We then computed the Pearson correlation coefficient2

between PColl and Sq and between PColl and DRR. For each pair of values for d
and m we performed this process twice, the results to three significant figures being
shown in Table 1; all results were significant at p = 0.013.

The results show a strong, statistically significant, correlation between Sq and
PColl, all correlations being above 0.96. There is also a correlation between DRR
and PColl but this is noticeably lower; while the correlation is as high as 0.88 in some
cases it is as low as 0.58 in others and there appears to be a tendency for this correlation
to drop as the domain size increases.

7. Squeeziness in Practice

PColl appears to be just as useful a metric for collision avoidance as Squeeziness.
On the other hand they don’t produce the same ordering on paths, but since we are

2The results for Spearman Rank Correlation were almost identical and are not reported.
3Due to space restrictions we only report a few results but we repeated these experiments many more

times, varying the parameters, always obtaining similar results.

7

Table 1: Simulations relating PColl with Sq and DRR

Domain Size Max Sub. Corr with Sq Corr with DRR
105 200 0.981 0.849
105 200 0.986 0.889
105 2000 0.981 0.849
105 2000 0.986 0.889
106 200 0.971 0.748
106 200 0.964 0.686
107 200 0.968 0.645
107 200 0.975 0.606
108 200 0.978 0.584
108 200 0.975 0.668

ultimately looking for statistical correlations, this may be of theoretical interest only.
Both PColl and Squeeziness are intractable to compute directly. Squeeziness has the
advantage of being a QIF measure and enjoying a close connection to an existing body
of research and an active community of researchers who are seeking useful approxi-
mate methods. Possibilities for adaptation to approximate computation of Squeeziness
include Heusser and Malacaria’s bounded model checking approach [10], Chatzikoko-
lakis et alia’s statistical approach to estimating flow quantity [4], or a syntax based
approximation [6]. We briefly sketch how the BCMC model checking approach of
[10] can be adapted to estimating Squeeziness.

Suppose we want to cover a particular statement with a test input. Further, we have
identified a set of post statement paths and we want to select the least squeezy one to
optimise the effectiveness of the test input we will generate. We can use the BCMC
model checker to give us very rough information about the maximum Squeeziness of
each path, sufficient to identify one or more paths as the best option(s) among the set.
We would proceed as follows: we set a threshold for the maximum Squeeziness and
run the model checker on each path. For each path it tells us whether its maximum
Squeeziness is below, equal to, or above our threshold. Having hopefully eliminated
some paths we have the options of refining our results by choosing another threshold
and running BCMC on the remaining paths, or arbitrarily selecting a remaining path.

The BCMC (Bounded C Model Checker) checks properties of C programs through
the use of a driver that encodes the property to be checked. We note that the bounded
nature of the model checker refers to the depth of unwinding of loops and is not relevant
to path programs, which contain none.

Recall that the maximum Squeeziness of a program is determined by the maximum
size of the inverse images over all outputs. We set a threshold,N , for the maximum size
of the inverse image for any output from the path program, function Pi, discounting
the inverse image of the special termination state, ABORT. The driver function tries
to produce a counter-example, an output of Pi with an inverse image larger than N .
Inputs are modelled by a non-deterministic choice function, input(). To check that
the maximal inverse image is N the model checker repeatedly runs the driver function.

8

On each run the driver function produces inputs i1, . . . , iN+1 byN+1 calls to input(
) and then calls Pi on each input to produce outputs o1, . . . , oN+1. The driver then
uses an assume statement after these calls, in this case to assume that the N + 1
inputs are all different, that the first N outputs are all equal, and that no output is equal
to ABORT. Then the driver uses an assert statement to assert that oN+1 is not equal
to o1.

The model checker only considers input sets satisfying the assume statement and
rejects other sets. Then it tries to find a counter-example which satisfies the assumption
but negates the assertion.

There are three possible outcomes from the model checking: The assume clause
cannot be satisfied, in which case the Maximum Squeeziness is less than log2N . The
assume clause can be satisfied but the negation of the assert clause cannot be
satisfied in which case the maximum Squeeziness of the path is log2N . The assume
clause can be satisfied and the negation of the assert clause can be satisfied so the
maximum Squeeziness is greater than log2N .

8. Conclusions

This paper investigated fault masking through collisions and introduced a new in-
formation theoretic measure, called Squeeziness, which can be applied to program ex-
ecution paths. The results of initial experiments show that there is a strong correlation
between the likelihood of collisions along a path and Squeeziness.

If we can estimate the likelihood of collisions along a set of paths then we might
choose a path that both tests a targeted part of the program and simultaneously min-
imises the scope for fault masking; that is, in practice we might search for suitable
covering paths that minimise Squeeziness. The development of such methods will be
an important part of future work.

Basing a future practical approach on an information theoretic measure opens up
the potential to exploit work on methods for scalably estimating such measures in the
context of secure information flow. We have sketched how one such method might
be employed in practice using the BCMC model checker. For software testing we are
interested in ranking paths rather than computing Squeeziness estimates safely and it
would be interesting to investigate approximation methods that take advantage of our
weaker requirements.

Acknowledgements

This work has benefited from discussions with Sebastian Hunt and Laurence Tratt.
We are also grateful for the valuable comments from the anonymous reviewers.

References

[1] http://en.wikipedia.org/wiki/Principle of maximum entropy.

9

[2] T. Apiwattanapong, R. A. Santelices, P. K. Chittimalli, A. Orso, and M. J. Har-
rold. Matrix: Maintenance-oriented testing requirements identifier and examiner.
In TAIC PART 2006, pages 137–146. IEEE Comp. Soc., 2006.

[3] M. Boreale, D. Clark, and D. Gorla. A semiring-based trace semantics for pro-
cesses with applications to information leakage analysis. In 6th IFIP TC 1/WG
2.2 Int. Conf. TCS 2010, Part of WCC2010 Proceedings. Springer, 2010.

[4] K. Chatzikokolakis, T. Chothia, and A. Guha. Statistical measurement of infor-
mation leakage. In TACAS, pages 390–404, 2010.

[5] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden. Anonymity protocols as
noisy channels. Information and Computation, 206(2-4):378–401, 2008.

[6] D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the leakage of con-
fidential data. In A. D. Pierro and H. Wiklicky, editors, Electr. Notes Theor.
Comput. Sci., volume 59. Elsevier, 2002.

[7] D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying information
flow in a simple imperative language. Journal of Computer Security, 15(3):321 –
372, 2007.

[8] M. Clarkson and F. Schneider. Quantification of integrity. In Proc. IEEE Comp.
Security Foundations Symposium, 2010.

[9] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley Inter-
science, 1991.

[10] J. Heusser and P. Malacaria. Quantifying information leaks in software. In 26th
Ann. Comput. Security App. Conf. (ACSAC), pages 261–269, 2010.

[11] C. Mu and D. Clark. An interval-based abstraction for quantifying information
flow. Electr. Notes Theor. Comput. Sci., 253(3):119–141, 2009.

[12] A. J. Offutt and S. D. Lee. How strong is weak mutation? In Symposium on
Testing, Analysis, and Verification, pages 200–213, 1991.

[13] A. J. Offutt and S. D. Lee. An empirical evaluation of weak mutation. IEEE
Trans. on Software Engineering, 20(5):337–344, 1994.

[14] R. A. Santelices and M. J. Harrold. Applying aggressive propagation-based strate-
gies for testing changes. In IEEE 4th Int. Conf. on Software Testing, Verification
and Validation (ICST 2011), pages 11–20. IEEE Computer Society, 2011.

[15] C. Shannon. A mathematical theory of communication. The Bell System Techni-
cal Journal, 27:379–423 and 623–656, July and October 1948. Available on-line
at http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html.

[16] J. Voas and G. McGraw. Software fault injection: inoculating programs against
errors. John Wiley and Sons, 1998.

[17] M. R. Woodward and Z. A. Al-Khanjari. Testability, fault size and the domain-
to-range ratio: An eternal triangle. In ISSTA, pages 168–172, 2000.

10

