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Abstract A novel algorithm is developed for the design of gaseous micro distribution systems consisting of 
long tubes based on linear kinetic theory. Provided that the geometry of the pipe network is fixed the 
algorithm is capable of estimating the mass flow rates through the pipes as well as the pressure heads at the 
nodes of the network. The pressure distribution along each pipe element may also be provided. The analysis 
is valid and the results are accurate in the whole range of the Knudsen number, while the involved 
computational effort is very small. This is achieved by successfully integrating the well known kinetic results 
for single tubes into a typical solver for designing gas pipe networks. 
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1. Introduction 
 
 Rarefied gas flows through long channels 
of various cross sections have been extensively 
investigated over the years based on linear 
kinetic theory (Valougeorgis and Thomas, 
1986; Sharipov, 1999; Valougeorgis, 2007; 
Naris and Valougeorgis, 2008). It has been 
clearly shown that this approach is the most 
reliable one in the case of low speed flows 
providing very accurate results in the whole 
range of the Knudsen number with minimal 
computational effort. Very good agreement 
with corresponding experimental work 
developed in micro or either in vacuum 
experimental facilities has been obtained 
(Varoutis et al., 2009; Pitakarnnop et al., 2010; 
Szalmas et al., 2010).  
 However, in many microfluidics 
applications, the gaseous distribution system is 
consisting of single channels accordingly 
combined in order to form a microchannel 
network. The implementation of such 
micrometer-sized systems, made possible by 
modern micro-fabrication techniques, enable 
the reduction of weight, power consumption, 
and production costs of various systems in 
several engineering fields including vacuum 
technology, high altitude gas dynamics, 
aerosol industry, porous media, and 
microfluidics. Despite the fact that 

computational algorithms dedicated to the 
design of gas pipe networks in the continuum 
regime are well developed (Potter and 
Wiggert, 1997), corresponding tools for the 
design of gaseous pipe networks operating 
under rarefied conditions have not been 
developed so far. Obviously this is a serious 
drawback in the detailed design and 
optimization of complex gaseous micro 
electromechanical devices.  
 In the present work a computational 
approach is presented for the design of pipe 
networks consisting of long tubes. This is 
achieved by successfully integrating the 
kinetic results obtained for the rarefied flow 
through each tube of the network into a typical 
network algorithm solving the whole 
distribution system. Once the geometry of the 
network is fixed, the integrated algorithm may 
successfully handle gas pipe networks of any 
complexity operating under any rarefied 
conditions from the free molecular, through 
the transition up to the slip and hydrodynamic 
regimes.  
 
2. Formulation of the problem 
  
 A typical pipe network may be considered 
as a directed linear graph consisting of a finite 
number of pipe sections (or edges) 
interconnected in a specified configuration. 



3rd Micro and Nano Flows Conference 
Thessaloniki, Greece, 22-24 August 2011 

- 2 - 

Each pipe is characterized of its length L , 
diameter D  and roughness. A point where 
two or more pipes are joined is known as a 
junction node or simply as a node. The closed 
path uniquely formed by adjacent pipes is a 
loop, while the open path connecting two 
fixed-grade nodes is a pseudo-loop. A fixed 
grade node is a node where a consistent energy 
grade is maintained (e.g. a constant pressure 
reservoir). For a well-defined network with p  
pipes, n  junction nodes, l  loops and f  
fixed-grade nodes the relation 

1p n l f= + + −                (1) 

holds. Usually the geometry of the network is 
specified and the objective is to compute the 
flow quantities, i.e., the mass flow rates   
through each tube and the pressure head at 
each node. In the present setup, the losses in 
the junctions of the network are considered 
negligible compared to the losses through the 
long piping elements and are not taken into 
account. This assumption seems reasonable for 

/ 100L D > .  
 Independent of the flow regime, the system 
of equations describing such a network is 
consisting of the pressure drop equations along 
each pipe element and the mass conservation 
equations at each node of the network. The 
pressure drop equations may be reduced to a 
set of the energy balance equations for the 
closed loops of the network, which along with 
the mass conservation equations form a closed 
set, which may be solved for the unknown 
mass flow rates. Then, the pressure heads at 
the nodes are estimated through the pressure 
drop equations. When the Knudsen number 
characterizing the flow through the network is 
very small and the flow is in the continuum or 
slip regimes, then the pressure drop equations 
along each channel are given by explicit 
algebraic expressions and their integration in 
the whole algorithm is straightforward. In 
contrary, when the flow is in the transition 
regime such expressions are not available. 
Here, this information is obtained from a data 
base, which has been developed for this 
purpose by solving a linearized kinetic 
equation in a wide range of the Knudsen 
number and obtaining the corresponding data. 

 Based on the above, in Subsection 2.1 all 
necessary information of the kinetic solution 
for rarefied flow through a single tube is 
provided, while in Subsection 2.2 the 
integrated algorithm for the flow solution of 
the whole network is described. 
 
2.1 Single pipe formulation 
  
 The solution of a pressure driven rarefied 
gas flow through a long circular tube based on 
linear kinetic theory is a very well known 
problem (Sharipov and Seleznev, 1998) and 
therefore here, only information which is 
directly connected and needed to the solution 
of the whole network is reviewed. 
Since D L<< , the flow is considered as fully 
developed and therefore the pressure (or 
density) varies only in the flow direction being 
constant at each cross section, while end 
effects at the connecting nodes of the channel 
are ignored. The mass flow rate at each cross 
section through the tube is given by 

 ( ) ( )
0

2
R

M z u r rdrπ ρ= ∫ ,               (2) 

where 0 r R≤ ≤  is the radial direction, 
0 z L≤ ≤  is the flow direction, ( )zρ  is the 

mass density and ( )u r  is the bulk velocity. 

By introducing into Eq. (1) the equation of 
state 2

02 /Pρ υ= , where ( )P P z=  is the local 
pressure along the tube 0υ  the most probable 

molecular velocity as well as the 
dimensionless variables /r r D= , /z z D= , 

( )0/ Pu u Xυ= , where ( )( )/ /PX D P dP dz=  

is the local pressure gradient and following a 
straightforward procedure (Sharipov, 1996; 
Sharipov and Seleznev, 1998; Varoutis et al., 
2009) it is found that 

 
3
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−
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Here, 1P  and 2P  denote the pressure head at 
the two ends of the tube and 
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In Eq. (4),  

 
0
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2
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πδ
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= =                    (5) 

with μ denoting the gas viscosity at some 
reference temperature, is the local rarefaction 
parameter which is proportional to the inverse 
Knudsen number. The values 1δ , 2δ    
correspond to 1P , 2P  and denote the rarefaction 
parameters at the two ends of the tube. Also, 
the quantity ( )G δ  is the dimensionless flow 
rate obtained by solving a suitably chosen 
linearized kinetic model equation subject to 
some boundary condition. For the purposes of 
the present work, the dimensionless flow rates 
are estimated based on the linearized BGK 
equation with Maxwell purely diffuse 
boundary conditions. It is noted that the later 
choice is related to the assumed roughness of 
the tube. The quantity ( )G δ   may easily be 
found in the literature (or computed) in the 
whole range of δ . These results are kept in a 
data base and are used in the solution of the 
network. In particular, in the process of 
solving the whole network the 
pressures 1P , 2P and therefore 1δ , 2δ are 
estimated and then the values of ( )G δ   
obtained from the data base are used in the 
integration according to Eq. (4) to yield *G , 
which is substituted next into Eq. (3) to deduce 
the mass flow rate for each pipe section of the 
network. 
 
2.2 Generalized network equations 
 
 As mentioned above the initial system of 
equations describing the network consists of 
the pressure drop equations along each piping 
element and the mass conservation equations 
at each node of the network. The former ones 
are given by solving Eq. (3) for the pressure 
difference to yield  

 ( ) 0
1 2 * 34 j j

jj
j j

M L
P P P

G D
υ

π
− = Δ = ,          (6) 

where the index 1 j p≤ ≤  denotes each of the 
p  pipes of the network. The latter ones may 

be expressed as 

 ( ) 0j
j i

M Q
⎡ ⎤

± − =⎢ ⎥
⎣ ⎦
∑                  (7) 

where the index 1 i n≤ ≤  denotes each of the   
n  junction nodes of the network, while the 
summation index j refers to the pipes 
connected to the node i , while Q  is the 
external demand (if any) at node i . The plus 
and minus signs are used for flow into and out 
of the node i  respectively. Equations (6) and 
(7) are coupled and may be solved for the 
unknown pressure heads and mass flow rates. 
 However, it is convenient to reduce the 
number of equations by combining the 
pressure drop equations (6) along each 
uniquely determined closed loop of the 
network to derive the so-called energy balance 
equations (Potter and Wiggert, 1997): 

 ( )( ) 0j
j k

PΔ
⎡ ⎤

± =⎢ ⎥
⎣ ⎦
∑ .                 (8)

Here the summation index j  pertains to the 
pipes that make up a loop, while the index 
1 k l≤ ≤ , denotes each of the l  loops. The 
plus sign is used if the flow in the element is 
positive in the clockwise sense; otherwise the 
minus sign is employed. By substituting Eqs. 
(6) into (8), the energy balance equations 
become  

 ( ) 0
* 34 0j j

j j j k

M L
G D

υ
π

⎡ ⎤⎛ ⎞
± =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ .           (9)  

Following this procedure, the pressure heads 
have been eliminated from Eqs. (9), which 
along with Eqs. (7) form a well defined system 
having as unknowns only the mass flow rates 

jM . Once this system is solved for the mass 
flow rates then, the pressure heads are 
obtained from Eqs. (6). When there are fixed-
grade nodes in the network then, the system of 
equations for the mass flow rates is amplified 
by the energy balance equation around each 
pseudo-loop connecting two fixed grade 
nodes: 

 ( ) 0
* 34 0j j

j j j m

M L
H

G D
υ

Δ
π

⎡ ⎤⎛ ⎞
± + =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ .    (10)         

Here, the summation index j  pertains to the 
pipes that make up a pseudo-loop, the index 
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1 1m f≤ ≤ − , denotes each of the 1f −    
pseudo-loops ( f  is the number of fixed grade 
nodes) and HΔ is the difference in magnitude 
of the fixed-grade nodes in the path ordered in 
a clockwise fashion across the imaginary pipe 
in the pseudo-loop. The plus and minus signs 
follow the same arguments given for Eqs. (8) 
and (9). 
 Based on the above the final system of 
equations will consist of 1n l f+ + −   
equations to be solved for the p  unknown 
mass flow rates jM . This clearly explains 
why for a well defined pipe network relation 
(1) must be satisfied. However, it is important 
to note that since in the system consisting of 
Eqs. (7), (9) and (10) the quantities *

jG  are 
not known a priori, an overall iterative 
algorithm incorporating Eqs. (6) is needed. 
The detailed description of this algorithm is 
presented in the next section 
 
3. Numerical algorithm 
 
 The developed code includes the drawing 
of the network in a graphical environment and 
the formulation and solution of the governing 
equations describing the flow conditions of the 
micro distribution system. At the present stage 
the code is able of providing the input data and 
solving pipe networks of various complexity. 

The drawing of the network and the input 
of the data are prepared on a graphical user 
interface (GUI). The development of the 
graphic interface is based on available GNU 
General Public License (GPL) libraries 
including some new libraries written in 
javascript to match the needs of the 
application. As a result, the user is able to 
draw the desired network by adding nodes and 
edges and the corresponding data, i.e., the 
coordinates of the nodes in a 3D space, the 
length and the diameter of the pipe elements, 
the pressure heads of the fixed-grade nodes 
and information for the type of the gas and its 
properties (viscosity, most probable molecular 
velocity, etc.). The demands (if any) at the 
nodes are also provided. A sample picture of 
the developed GUI is shown in Fig.1.   

 
Figure 1: Sample picture of the GUI interface 
developed for the input data, with numbering 
of nodes (up) and pipes (down). 
 
Therefore, a connectivity matrix for each node 
and tube of the network is formed providing 
all necessary information as input data. In 
addition, the code is scanning to find all 
possible closed loops, keeping finally only the 
l  uniquely determined loops consisting of the 
least number of piping elements and the 1f −  
pseudo-loops between the f  fixed-grade 
nodes. 

Once the network is drawn, the resulting 
input file is introduced into a Fortran code. 
The code is based on an iterative process 
between the pressure drop equations (6) and 
the system of mass and energy conservation 
equations consisting of Eqs. (7), (9) and (10), 
which may be summarized as follows: 
1. At all nodes of the network, where the 

pressure head is unknown it is initially 
assumed and the pressure differences jPΔ  
along each tube are stored. 
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2. The rarefaction parameter at each node is 
estimated by Eq. (5). 

3. The quantity *
jG  is estimated by Eq. (4) 

for each tube using the available data base 
for the dimensionless flow rate ( )G δ . 
Cubic splines are used to interpolate if 
needed between the values provided in the 
data base. 

4. The system of mass conservation and 
energy balance equations (7), (9) and (10) 
is solved by applying Gauss elimination 
with full pivoting to compute the mass 
flow rates jM  through each pipe section. 

5. Equations (6) are solved to estimate the 
updated pressure drops jPΔ . 

6. The updated values of jPΔ  are compared 
with the ones in Step 1 and the whole 
process is repeated upon convergence. 

A detailed flow diagram of the developed 
algorithm including both the graphical 
interface and the solver is shown in Fig. 2. 
 
4. Results 
 
To demonstrate the feasibility and the 
effectiveness of the proposed methodology the 
sample network shown in Fig. 3 is simulated. 
The network consists of 14p =  tubes, 9n =  
junction nodes, 2f =  fixed-grade nodes and 

4l =  loops. All tubes have length 
5000L = μm and diameter 35D = μm. Nodes 

1 and 11 refer to two reservoirs, where the 
pressure is held constant equal to 

4
1 1.25 10P = × Pa and 4

11 1.40 10P = × Pa. The 
micro distribution system is characterized by 
the demands at nodes 4 and 8 equal to 

11
4 7.1 10Q −= × kg/s and 11

8 1.8 10Q −= × kg/s 
respectively. The conveying gas is argon and 
the temperature of the flow is constant and 
equal to 293K.  

The system of governing equations 
includes nine mass conservation equations at 
nodes {2,3,…,10}, four energy balance 
equations along the closed loops {I, II, III, IV} 
and one energy balance equation along the 
open pseudo-loop formed along the nodes 
{1,2,3,4, 5,6,11}. The total number of equations  

 
Figure 2: Flow diagram of the algorithm. 
 
of the system is 14 and its solution returns the 
14 unknown mass flow rates { 1 14,...,M M }. 
Then, from the pressure drop equations the 
pressure heads { 2 10,...,P P } are found. The 
arrows in the left and right parts of Fig. 3 
indicate the initially assumed and finally 
computed flow directions respectively. 
 The results are shown in Tables 1 and 2. In 
Table 1, the computed Knudsen number and 
pressure at each node of the network are 
tabulated. In Table 2, the average Knudsen 
number and the mass flow rate along each tube 

Yes 

Read all given input 

Form and solve system of mass 
and energy conservation 

equations to find 

Identify loops  

Iteration index 
n=1

Compute rarefaction 
parameter δι at the nodes

Compute dimensionless flow 
rate Gj

* at each tube 

jM

No 

Update the values of the 
pressure heads Pι 

Stop 

n=n+1

ABS(Pι
(n+1)-Pι

(n)) ε≤

Assume pressure heads  
at the nodes Pι 

Start 
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Figure 3: Schematic representation of pipe 
network showing the initially assumed flow 
directions (up) and the ones derived after the 
completion of the code (down). 
 
of the network are presented. The negative 
values at some of the mass flow rates indicate 
that the final direction of the flow in this tube 
is opposite to the one initially assumed. The 
red arrows shown in Fig. 3 (down) indicate the 
corrected flow direction obtained after 
convergence of the code. In this test case the 
flow happens to be in the slip regime. 

 

 
 
 In order to provide an estimation of the  
involved computational effort it is noted that 
the solution of the sample network requires the 
CPU time of only 0.63 sec on a 3 Ghz dual 
core system. It is obvious that the involved 
computational effort is negligible. For more 
complex networks consisting of hundreds of 
tubes the computational effort it will be 

Table 2 
Mass flow rates and average Knudsen number 
at each tube of the network. 

Tube
# 

From 
Node 

To 
Node

Average 
Knudsen 

jM  
[kg/s] 

1 1 2 1.61(-2) 9.87(-12) 
2 2 3 1.63(-2) 1.16(-11) 
3 3 4 1.67(-2) 2.68(-11) 
4 4 5 1.65(-2) -4.42(-11) 
5 5 6 1.58(-2) -4.62(-11) 
6 6 7 1.56(-2) 3.29(-11) 
7 7 8 1.61(-2) 1.77(-11) 
8 8 9 1.62(-2) -3.41(-13) 
9 9 2 1.62(-2) 1.69(-12) 
10 9 10 1.62(-2) -2.03(-12) 
11 10 5 1.61(-2) -2.03(-12) 
12 10 7 1.60(-2) -1.53(-11) 
13 3 10 1.63(-2) -1.53(-11) 
14 6 11 1.48(-2) -7.91(-11) 

Table 1 
Pressure head and Knudsen number at each 
node of the network. 

Node 
 number 

Local  
Kn 

Pressure head 
[Pa] 

1 1.61(-2) 1.250(4) 
2 1.62(-2) 1.237(4) 
3 1.64(-2) 1.222(4) 
4 1.69(-2) 1.186(4) 
5 1.61(-2) 1.245(4) 
6 1.54(-2) 1.304(4) 
7 1.59(-2) 1.262(4) 
8 1.62(-2) 1.239(4) 
9 1.62(-2) 1.239(4) 
10 1.62(-2) 1.242(4) 
11 1.43(-2) 1.400(4) 
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increased but not significantly.  
 In the short future the “in house” 
developed algorithm will be extended to 
include channels of any cross section and more 
important, channels of short length. In the 
latter case the pressure drop through the 
junctions is taken into account. Also, it may be 
further developed to include optimization of 
gaseous micro distribution networks in order 
to be used as an engineering tool in the design 
of gas micro network systems.  
 
5. Conclusions 
 
 A novel algorithm has been developed for 
the design of gaseous micro distribution 
systems consisting of long tubes based on 
linear kinetic theory. The drawing of the 
microchannel network is aided by a GUI 
interface, the output of which is directly linked 
to the iterative algorithm.  
 The integrated algorithm may successfully 
handle gas pipe networks of any complexity 
operating under any rarefied conditions from 
the free molecular, through the transition up to 
the slip and hydrodynamic regimes. This is 
achieved by successfully integrating the well 
known kinetic results for single tubes, based 
on the linearized BGK equation with Maxwell 
purely diffuse boundary conditions, into a 
typical solver for designing gas pipe networks. 
The systematic computational approach yields 
the mass flow rates through the pipes as well 
as the pressure heads at the nodes of the 
network. The effectiveness of the methodology 
has been demonstrated by solving a network of 
moderate complexity in the slip regime. It has 
been shown that the approach is 
computationally efficient.  

It is hoped that the developed code may be 
used as an engineering tool in the design of 
networks consisting of long microchannels.  
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