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Fault Detection for Markovian Jump
Systems with Sensor Saturations and
Randomly Varying Nonlinearities

Hongli Dong, Zidong Wang and Huijun Gao

Abstract— This paper addresses the fault detection prob-
lem for discrete-time Markovian jump systems with incom-
plete knowledge of transition probabilities, randomly vary-
ing nonlinearities and sensor saturations. For the Marko-
vian mode jumping, the transition probability matrix is al-
lowed to have partially unknown entries, while the cases
with completely known or completely unknown transition
probabilities are also investigated as two special cases. The
randomly varying nonlinearities and the sensor saturations
are introduced to reflect the limited capacity of the com-
munication networks resulting from the noisy environment,
probabilistic communication failures, measurements of lim-
ited amplitudes, etc. Two energy norm indices are used
for the fault detection problem in order to account for, re-
spectively, the restraint of disturbance and the sensitivity of
faults. The purpose of the problem addressed is to design an
optimized fault detection filter such that 1) the fault detec-
tion dynamics is stochastically stable; 2) the effect from the
exogenous disturbance on the residual is attenuated with re-
spect to a minimized H∞-norm; and 3) the sensitivity of the
residual to the fault is enhanced by means of a maximized
H∞-norm. The characterization of the gains of the desired
fault detection filters is derived in terms of the solution to
a convex optimization problem that can be easily solved by
using the semi-definite programme method. Finally, a sim-
ulation example is employed to show the effectiveness of the
fault detection filtering scheme proposed in this paper.

Keywords— Fault detection; Markovian jumping systems;
randomly varying nonlinearities; sensor saturation; incom-
plete knowledge of transition probabilities; optimized filter.

I. Introduction

In the past decade, the FDI problem has received con-
siderable research attention and a rich body of literature
has appeared on both the theoretical research and practical
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applications, see e.g. [1,7–10,18,19,22]. FDI techniques are
essentially employed in modern manufacturing processes to
minimize downtime, increase the safety of plant operations
and reduce costs. A practically motivated way of handling
the FDI problems is to introduce two performance indices
for the robustness and sensitivity, one is the H∞ norm of
transfer function from the unknown input to the residual
that is made to be small, and the other is the H∞ norm of
the transfer function from the fault to the residual that is
designed to be large [4]. Another recently popular model-
based way for tackling the FDI issues is to construct the
residual that is as close to the fault (or weighted fault)
as possible within an as small as possible, see e.g. [8, 19].
Also, in [6], a reference model has been introduced so as to
transfer the robust fault detection problem into an equiva-
lent H∞ model match problem.

Markovian jump systems (MJSs) have gained particular
research interests in the past two decades because of their
practical applications in a variety of areas [2, 3, 5, 11–15].
So far, existing results about MJSs have covered a wide
range of research problems including those for stability
analysis, filter design and controller design. Neverthe-
less, compared to the fruitful results for filtering and con-
trol problems of MJSs, the corresponding fault detection
problem of MJSs has received much less attention [8] due
primarily to the difficulty in accommodating the multiple
fault detection performances. On the other hand, much of
the effort has been devoted to deal with the phenomena
of sensor/actuator/state saturations in the literature, see
e.g. [16, 20]. However, the sensor saturation issue has sel-
dom been taken into account in designing fault detection
filters due probably to the mathematical complexities.

Recently, the MJSs with partially unknown transition
probabilities have been brought to the attention of re-
searchers in the area of control engineering [21]. On the
other hand, it is well known that nonlinearities exist uni-
versally in practice and it is quite common to describe them
as additive nonlinear disturbances that are caused by envi-
ronmental circumstances. As discussed in [17], in nowadays
prevalent networked control system, the nonlinear distur-
bances themselves may experience random abrupt changes
due to random changes and failures arising from networked-
induced phenomenon, which give rise to the so-called ran-
domly varying nonlinearities. In other words, the type and
intensity of the so-called randomly varying nonlinearities
could be changeable in a probabilistic way. Unfortunately,
up to now, the fault detection problem for discrete-time
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Markovian jump systems with randomly varying nonlin-
earities has not been investigated yet, not to mention the
case when the sensor saturation occurs as well.

In this paper, we are motivated to deal with the FDI
problem for MJSs where the transition probability matrix
has partially unknown entries, the nonlinearities vary ran-
domly and the sensor saturations occur with given ampli-
tudes. The main contributions of this paper can be high-
lighted as follows. 1) The randomly varying nonlinearities,
which are modeled by a Bernoulli random binary distributed
white sequence with a known conditional probability, are
introduced to describe the binary switch between two kinds
of nonlinear disturbances. 2) In the plant under consid-
eration, both the incomplete knowledge of mode transition
probabilities and the sensor saturations are present, which
render more practical significance of system model. 3) Two
energy norm indices are used for the fault detection problem
in order to account for, respectively, the restraint of distur-
bance and the sensitivity of faults. 4) Intensive stochas-
tic analysis is carried out to enforce multiple performance
requirements against the uncertainties, nonlinearities and
saturations.

II. Problem Formulation

Let θ(k) (k ≥ 0) be a Markov chain on the probability
space which takes values in the finite space S = {1, 2, ..., s}
with transition probability matrix Ψ̂ = [λij ] given by

Prob {θ(k + 1) = j|θ(k) = i} = λij , ∀i, j ∈ S

where λij ≥ 0 (i, j ∈ S) is the transition probability from
i to j and

∑s
j=1 λij = 1, ∀i ∈ S.

We assume that some elements in the transition proba-
bility matrix Ψ̂ are unknown. For notation clarity, for any
i ∈ S, we denote that

Si
K := {j : λij is known} , Si

UK := {j : λij is unknown} .
(1)

Also, we define λi
K :=

∑
j∈Si

K
λij throughout the paper.

Remark 1: Note that S = Si
K + Si

UK (i ∈ S). More-
over, when Si

K 6= ∅, it can be further described as Si
K =

{Ki
1,Ki

2, . . . ,Ki
m}, ∀ 1 ≤ m ≤ s, where Ki

m ∈ N+ (N+ rep-
resents the sets of positive integers) denote the mth known
element with the index Ki

m in the ith row of the matrix Ψ̂.
Consider, on a probability space (Ω, F , Prob), the fol-

lowing class of Markovian jump discrete systems:




x(k + 1) = A(θ(k))x(k) + α(k)g(θ(k), x(k))
+ (1− α(k))h(θ(k), x(k))
+ D1(θ(k))w(k) + G(θ(k))f(k)

y(k) = σ(C(θ(k))x(k)) + D2(θ(k))w(k)
+ E(θ(k))f(k)

(2)

where x(k) ∈ Rnx represents the state vector; y(k) ∈
Rny is the process output; w(k) ∈ Rnw is the dis-
turbance input which belongs to l2 [0,∞); g(·) and
h(·) are nonlinear vector functions. f(k) ∈ Rl is
the fault to be detected. For fixed system mode,

A(θ(k)), D1(θ(k)), G(θ(k)), C(θ(k)), D2(θ(k)) and E(θ(k))
are constant matrices with appropriate dimensions.

The stochastic variable α(k) is a Bernoulli distributed
white noise sequences taking values on 0 and 1 with

Prob{α(k) = 1} = ᾱ, Prob{α(k) = 0} = 1− ᾱ.

In this paper, we assume that Markov chain θ(k) is in-
dependent of the stochastic variable α(k).

The nonlinear functions g(θ(k), x(k)) and h(θ(k), x(k))
are assumed to satisfy g(θ(k), 0) = 0, h(θ(k), 0) = 0, and

‖g(θ(k), x(k) + δ(k))− g(θ(k), x(k))‖
≤ ‖B1(θ(k))δ(k)‖

‖h(θ(k), x(k) + δ(k))− h(θ(k), x(k))‖
≤ ‖B2(θ(k))δ(k)‖ (3)

where, for fixed system mode, B1(θ(k)) and B2(θ(k)) are
known matrices, and δ(k) is a vector.

The saturation function σ: Rny → Rny is defined as

σ(v) =
[

σT
1 (v1) σT

2 (v2) · · · σT
ny

(vny )
]T

(4)

with σi(vi) = sign(vi)min {vi,max, |vi|} , where vi,max is the
ith element of the vector vmax, the saturation level.

Definition 1: [20] A nonlinearity Ψ : Rm 7→ Rm is said
to satisfy a sector condition if

(
Ψ(v)− H̄1v

)T (
Ψ(v)− H̄2v

) ≤ 0,∀v ∈ Rr (5)

for some real matrices H̄1, H̄2 ∈ Rr×r, where H̄ = H̄2− H̄1

is a positive-definite symmetric matrix. In this case, we
say that Ψ belongs to the sector

[
H̄1 H̄2

]
.

Assuming that there exist two diagonal matrices L1 and
L2 such that 0 ≤ L1 < I ≤ L2, then the saturation function
σ(C(θ(k))x(k)) in (2) can be decomposed into a linear and
a nonlinear part as

σ(C(θ(k))x(k)) = L1C(θ(k))x(k) + Ψ(C(θ(k))x(k)) (6)

where Ψ(C(θ(k))x(k)) is a nonlinear vector-valued function
satisfying the sector condition with H̄1 = 0, H̄2 = L, and
can be described as follows:

ΨT (C(θ(k))x(k)) (Ψ(C(θ(k))x(k))− LC(θ(k))x(k)) ≤ 0
(7)

where L = L2 − L1.
For presentation convenience, for each possible θ(k) =

i (i ∈ S), a matrix N(θ(k)) and a function l(θ(k)) are
denoted by Ni and li, respectively.

We consider a fault detection filter of the following form:




x̂(k + 1) = Aix̂(k) + ᾱgi(x̂(k)) + (1− ᾱ)hi(x̂(k))
+ Ki[y(k)− Cix̂(k)]

r̃(k) = M [y(k)− Cix̂(k)]
(8)

where x̂(k) ∈ Rnx is the state estimate, r̃(k) ∈ Rl is the
so-called residual, and Ki and M are appropriately dimen-
sioned filter matrices to be determined.
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Letting e(k) = x(k) − x̂(k), by augmenting η(k) =[
xT (k) eT (k)

]T , the overall fault detection dynamics is
governed by the following augmented system:




η(k + 1) = Yi(η(k)) + (α(k)− ᾱ)Λ2Gi(η(k)) +Ddiw(k)
+Dfif(k) +Kσiσ(CiH1η(k))

r̃(k) = M [σ(CiH1η(k)) + Ĉiη(k) + D2iw(k)
+ Eif(k)]

(9)
where

Yi(η(k)) = Aiη(k) + Λ1Gi(η(k)),Kσi =
[
0 −KT

i

]T
,

H1 =
[
I 0

]
, Ĉi =

[−Ci Ci

]
,

Ai =
[

Ai 0
KiCi Ai −KiCi

]
,Dfi =

[
Gi

Gi −KiEi

]
,

Λ1 =
[
ᾱI (1− ᾱ)I 0 0
0 0 ᾱI (1− ᾱ)I

]
,

Λ2 =
[
I −I 0 0
I −I 0 0

]
, Ddi =

[
D1i

D1i −KiD2i

]
,

Gi(η(k)) =
[HT

i (x(k)) H̃T
i (e(k))

]T
,

Hi(x(k)) =
[
gT

i (x(k)) hT
i (x(k))

]T
,

H̃i(e(k)) =
[
g̃T

i (e(k)) h̃T
i (e(k))

]T
,

g̃i(e(k)) := gi(x(k))− gi(x̂(k)),
h̃i(e(k)) := hi(x(k))− hi(x̂(k)). (10)

Moreover, it follows from (3), (6) and (7) that

‖Gi(η(k))‖ ≤ ‖B̃iη(k)‖, (11)
σ(CiH1η(k)) = L̃1iη(k) + Ψ(CiH1η(k)), (12)

ΨT (CiH1η(k))
(
Ψ(CiH1η(k))− L̃2iη(k)

)
≤ 0(13)

where

B̃i :=
[
BT

1i BT
2i 0 0

0 0 BT
1i BT

2i

]T

, L̃1i :=
[
L1Ci 0

]
,

L̃2i :=
[
LCi 0

]
. (14)

Definition 2: The fault detection dynamics in (10) is said
to be stochastically stable in the mean square for any initial
conditions η(0) and θ(0) ∈ S if, when w(k) = 0 and f(k) =
0, there exists a finite W (θ(0)) > 0 such that

E

{ ∞∑

k=0

‖η(k)‖2
∣∣∣∣η(0), θ(0)

}
< ηT (0)W (θ(0))η(0).

The main purpose of this paper is to design a fault detec-
tion filter of the form (8) such that the following require-
ments are met simultaneously:
a) The fault detection dynamics (9) is stochastically sta-
ble.
b) Under the zero-initial condition, the following inequality
holds for any nonzero w(k)

∞∑

k=0

E{‖r̃(k)‖2} ≤ γ2
∞∑

k=0

‖w(k)‖2
∣∣∣∣
f(k)=0

(15)

where γ > 0 is made as small as possible in the feasibility
of (15) so as to minimize the effect from the exogenous
disturbance on the residual.
c) Under the zero-initial condition, the following inequality
holds for any nonzero f(k)

∞∑

k=0

E{‖r̃(k)‖2} ≥ β2
∞∑

k=0

‖f(k)‖2
∣∣∣∣
w(k)=0

(16)

where β > 0 is made as large as possible in the feasibility
of (16) so as to enhance the sensitivity of faults on the
residual.

Remark 2: It should be noted that the performance in-
dex γ reflects the robustness of residuals against the dis-
turbance in the fault-free case, and the performance index
β quantifies the sensitivity of the residuals with respect to
the fault in the disturbance-free case. Therefore, in order
to achieve a satisfactory trade-off between the robustness
against the disturbances and the sensitivity to the faults,
the fault detection dynamics (9) should be made stochas-
tically stable where the index

J = γ/β, (17)

is used to evaluate the overall performance of the designed
fault detection filter.

We further adopt a residual evaluation stage including
an evaluation function J̄(r̃) and a threshold J̄th of the fol-
lowing form:

J̄(r̃) =

{
s=k∑

s=k−L
r̃T (s)r̃(s)

} 1
2

, J̄th = sup
w∈l2,f=0

E{J̄(r̃)}

(18)
Based on (18), the occurrence of faults can be detected by
comparing J̄(r̃) with J̄th according to the following rule:

J̄(r̃) > J̄th =⇒ with faults =⇒ alarm,

J̄(r̃) ≤ J̄th =⇒ no faults.

III. Main Results

Lemma 1: Consider the discrete-time Markovian jump
system (2) with known transition probability matrix Ψ̂.
Let the filter parameters Ki (i ∈ S), M and the index
γ > 0 be given. The system (9) is stochastically stable and
satisfies the constraint (15) if there exist a set of matrices
Pi > 0 (i ∈ S) and positive scalars ε1, ε2 satisfying

Φ̂i =
[

Φ̂11 ∗
Φ̂21 Φ̂22

]
≤ 0 (19)

where

Φ̂11 =
[

Φ11 +MT
i Mi + ε1B̃

T
i B̃i ∗

ΛT
1 P̄iĀi Φ22 − ε1I

]
,

Φ̂21 =
[

MTMi +KT
σiP̄iĀi + ε2L̃2i KT

σiP̄iΛ1

DT
diP̄iĀi +DT

2iMi DT
diP̄iΛ1

]
,

Φ̂22 =
[ KT

σiP̄iKσi + MT M − ε2I ∗
DT

diP̄iKσi +DT
2iM Ξi

]
,

P̄i =
∑

j∈S

λijPj , Φ11 = ĀT
i P̄iĀi − Pi,
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Āi = Ai +KσiL̃1i, Ξi = DT
diP̄iDdi +DT

2iD2i − γ2I,

Mi = M(L̃1i + Ĉi), D2i = MD2i,

Φ22 = ΛT
1 P̄iΛ1 + ᾱ(1− ᾱ)ΛT

2 P̄iΛ2.
Proof: Consider (9) with w(k) = 0 and f(k) = 0, and

define the following Lyapunov function:

V (η(k), θ(k)) = ηT (k)P (θ(k))η(k) (20)

We can obtain that

E {V (η(k + 1), θ(k + 1)) | η(k), θ(k)} − V (η(k), θ(k))
< −λmin(−Γi)‖ξ(k)‖2 < −λmin(−Γi)‖η(k)‖2, (21)

where

Γi =




Φ11 + ε1B̃
T
i B̃i ∗ ∗

ΛT
1 P̄iĀi Φ22 − ε1I ∗

KT
σiP̄iĀi + ε2L̃2i KT

σiP̄iΛ1 KT
σiP̄iKσi − ε2I


 .

which implies

E

{ ∞∑

k=0

‖η(k)‖2∣∣η(0), θ(0)

}
< ηT (0)W(θ(0))η(0)

where W(θ(0)) := (λmin(−Γi))−1P (θ(0)) > 0. Hence the
fault detection dynamics (9) is stochastically stable.

Next, consider system (9) with f(k) = 0. We introduce
the following index:

J1 := E {V (η(k + 1), θ(k + 1)) | η(k), θ(k)}
−V (η(k), θ(k)) + E

{‖r̃(k)‖2}− γ2‖w(k)‖2

we have E {J1} ≤ 0. By considering the zero initial condi-
tions, we can obtain(15), and then the proof is complete.

Lemma 2: Consider the discrete-time Markovian jump
system (2) with known transition probability matrix Ψ̂.
Let the filter parameters Ki (i ∈ S), M and the index
β > 0 be given. For the system (9), the constraint (16)
is met if there exist a set of matrices Pi > 0 (i ∈ S) and
positive constant scalars ε1, ε2 satisfying

Ωi =
[

Ω̂11 ∗
Ω̂21 Ω̂22

]
≤ 0 (22)

where

Ω̂11 =
[

Φ11 −MT
i Mi + ε1B̃

T
i B̃i ∗

ΛT
1 P̄iĀi Φ22 − ε1I

]
,

Ω̂21 =
[ −MTMi +KT

σiP̄iĀi + ε2L̃2i KT
σiP̄iΛ1

DT
fiP̄iĀi − ET

i MTMi DT
fiP̄iΛ1

]
,

Ω̂22 =
[ KT

σiP̄iKσi −MT M − ε2I ∗
DT

fiP̄iKσi − ET
i MT M Ω33

]
,

Ω33 = DT
fiP̄iDfi + β2I − ET

i MT MEi,

and the other symbols are the same as defined in Lemma
1.

Proof: Consider the system (9) with w(k) = 0 and
define

J2 := E {V (η(k + 1), θ(k + 1)) | η(k), θ(k)}
−V (η(k), θ(k))− E{‖r̃(k)‖2} + β2‖f(k)‖2,

we have

E {J2} ≤ E
{
ξ̄T (k)Ωiξ̄(k)

}
,

where

ξ̄(k) :=
[

ξT (k) fT (k)
]T

.

Furthermore, it follows from (22) in Lemma 2 that

E {V (η(k + 1), θ(k + 1))− V (η(k), θ(k))}
−E{‖r̃(k)‖2} + β2‖f(k)‖2 ≤ 0

for all nonzero f(k). Considering the zero initial conditions,
it is easy to see that

∞∑

k=0

E
{‖r̃(k)‖2} ≥ β2

∞∑

k=0

‖f(k)‖2

which is equivalent to (16). The proof is now complete.
The following lemma is easily accessible from Lemma 1

and Lemma 2, and therefore its proof is omitted.
Lemma 3: Consider the discrete-time Markovian jump

system (2) with known transition probability matrix Ψ̂. Let
the filter parameters Ki (i ∈ S), M and the indices β > 0,
γ > 0 be given. The system (9) is stochastically stable
while satisfying the constraints (15)-(16) if there exist a set
of matrices Pi > 0 (i ∈ S) and positive constant scalars ε1,
ε2 such that inequalities (19) and (22) hold simultaneously.

Next, given the unknown transition probability matrix
described in (1), we first propose the following performance
analysis results with a given fault detection filter (8), and
then deal with the design problem of the fault detection
filter for system (2).

Theorem 1: Consider the discrete-time Markovian jump
system (2) subject to randomly varying nonlinearities,
sensor saturation and incomplete knowledge of transition
probabilities. Let the indices β > 0, γ > 0 and the fault
detection filter parameters Ki (i ∈ S), M be given. The
fault detection dynamics (9) is stochastically stable while
achieving the performance constraints (15)-(16) if there ex-
ist matrices Pi > 0 (i ∈ S) and positive constant scalars
ε1, ε2 such that the following inequalities hold:

Πij =
[

Π11 ∗
Π21 Π22

]
≤ 0 (23)

Π̄ij =
[

Π̄11 ∗
Π̄21 Π̄22

]
≤ 0 (24)

where, if λi
K = 0, Qj is defined to be Qj = Pj (j ∈ Si

UK),
otherwise





Qj =
1

λi
K

P i
K =

1
λi
K

∑

j∈Si
K

λijPj , ∀j ∈ Si
K

Qj = Pj , ∀j ∈ Si
UK
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and

Π11 =
[

Φ̄11 +MT
i Mi + ε1B̃

T
i B̃i ∗

ΛT
1 QjĀi Φ̄22 − ε1I

]
,

Π21 =
[

MTMi +KT
σiQjĀi + ε2L̃2i KT

σiQjΛ1

DT
diQjĀi +DT

2iMi DT
diQjΛ1

]
,

Π22 =
[ KT

σiQjKσi + MT M − ε2I ∗
DT

diQjKσi +DT
2iM Φ̄33

]
,

Π̄11 =
[

Φ̄11 −MT
i Mi + ε1B̃

T
i B̃i ∗

ΛT
1 QjĀi Φ̄22 − ε1I

]
,

Π̄21 =
[ −MTMi +KT

σiQjĀi + ε2L̃2i KT
σiQjΛ1

DT
fiQjĀi − ET

i MTMi DT
fiQjΛ1

]
,

Π̄22 =
[ KT

σiQjKσi −MT M − ε2I ∗
DT

fiQjKσi − ET
i MT M Ω̄33

]
,

Φ̄11 = ĀT
i QjĀi − Pi,

Φ̄22 = ΛT
1 QjΛ1 + ᾱ(1− ᾱ)ΛT

2 QjΛ2,

Φ̄33 = DT
diQjDdi +DT

2iD2i − γ2I,

Ω̄33 = DT
fiQjDfi + β2I − ET

i MT MEi.

Proof: Note that Φ̂i in (19) can be rewritten as

Φ̂i =
[

Φ̃11 ∗
Φ̃21 Φ̃22

]

+
∑

j∈Si
UK

λij

[
Φ11 ∗
Φ21 Φ22

]

= λi
K Πij

j∈Si
K

+
∑

j∈Si
UK

λijΠij

where

Φ̃11 =
[

~Φ11 + λi
KM̄i ∗

ΛT
1 P i

KĀi
~Φ22 − λi

Kε1I

]
,

Φ̃21 =
[ KT

σiP
i
KĀi + λi

KM̃i KT
σiP

i
KΛ1

DT
diP

i
KĀi + λi

KDT
2iMi DT

diP
i
KΛ1

]
,

Φ̃22 =
[

Ξ̃11 ∗
DT

diP
i
KKσi + λi

KDT
2iM DT

diP
i
KDdi + λi

KD̄2i

]
,

Φ11 =
[

Φ̌11 + M̄i ∗
ΛT

1 PjĀi Φ̌22 − ε1I

]
,

Φ21 =
[ KT

σiPjĀi + M̃i KT
σiPjΛ1

DT
diPjĀi +DT

2iMi DT
diPjΛ1

]
,

Φ22 =
[ KT

σiPjKσi + MT M − ε2I ∗
DT

diPjKσi +DT
2iM DT

diPjDdi + D̄2i

]
,

Ξ̃11 = KT
σiP

i
KKσi − λi

K(ε2I −MT M),

λi
K :=

∑

j∈Si
K

λij , P i
K =

∑

j∈Si
K

λijPj ,

D̄2i = DT
2iD2i − γ2I, ~Φ11 = ĀT

i P i
KĀi,

~Φ22 = ΛT
1 P i

KΛ1 + ᾱ(1− ᾱ)ΛT
2 P i

KΛ2,

Φ̌11 = ĀT
i PjĀi, Φ̌22 = ΛT

1 PjΛ1 + ᾱ(1− ᾱ)ΛT
2 PjΛ2,

M̄i = MT
i Mi + ε1B̃

T
i B̃i − Pi,

M̃i = ε2L̃2i + MTMi.

Therefore, inequality (23) guarantees that (19) holds. Sim-
ilarly, it is not difficult to see from (24) that the inequality
(22) is true. The proof of this theorem is complete.

Based on the analysis results with a given fault detection
filter, we are now ready to solve the filter design problem
for system (9) in the following theorem with the incomplete
knowledge of transition probabilities.

Theorem 2: Consider system (2) with the unknown tran-
sition probability matrix described in (1). Let β > 0,
γ > 0 be given indices. The fault detection dynamics
(9) is stochastically stable while achieving the performance
constraints (15)-(16) if there exist matrices Pi > 0, Nij

(i, j ∈ S), M̄ and positive constant scalars ε1, ε2 such that
the following linear matrix inequalities (LMIs) hold:




Ῡ11 ∗ ∗
Ῡ21 Ῡ22 ∗
Ῡ31 Ῡ32 Ῡ33


 ≤ 0, (25)




Υ̂11 ∗ ∗
Υ̂21 Υ̂22 ∗
Ῡ31 Υ̂32 Ῡ33


 ≤ 0, (26)

where

Ῡ11 = diag{Υ11 + Υ̃11,−ε1I},

Ῡ21 =
[
M̄(L̃1i + Ĉi) + ε2L̃2i 0

DT
2iM̄(L̃1i + Ĉi) 0

]
,

Ῡ22 =
[−ε2I + M̄ ∗

DT
2iM̄ DT

2iM̄D2i − γ2I

]
,

Ῡ31 =
[
QjA0i + Nij(Ĉi + L̃1i) QjΛ1

0
√

ᾱ(1− ᾱ)QjΛ2

]
,

Ῡ32 =
[
Nij QjD̂1i + NijD2i

0 0

]
,

Ῡ33 = diag{−Qj ,−Qj},
Υ̂11 = diag{Υ11 − Υ̃11,−ε1I},

Υ̂21 =
[−M̄(L̃1i + Ĉi) + ε2L̃2i 0

−ET
i M̄(L̃1i + Ĉi) 0

]
,

Ῡ22 =
[−ε2I − M̄ ∗
−ET

i M̄ −ET
i M̄Ei + β2I

]
,

Υ̂32 =
[
Nij QjĜi + NijEi

0 0

]
,Υ11 = ε1B̃

T
i B̃i − Pi,

Υ̃11 = (L̃1i + Ĉi)T M̄(L̃1i + Ĉi),A0i = diag{Ai, Ai},
H̄ =

[
0 −I

]T
, D̂1i = 12 ⊗D1i, Ĝi = 12 ⊗Gi. (27)

Furthermore, Ki = (H̄T QjH̄)−1H̄T Nij , and M can be
obtained by means of the matrix M̄ , where M is a factor-
ization of M̄ (i.e., M̄ = MT M).

Proof: We rewrite the parameters in Theorem 1 in
the following form

Ai = A0i + H̄KiĈi, Ddi = D̂1i + H̄KiD2i,

Kσi = H̄Ki, Dfi = Ĝi + H̄KiEi. (28)
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Noticing (28) and applying the Schur complement equiv-
alence, together with some straightforward algebraic ma-
nipulations, (25) and (26) can be obtained from (23) and
(24), respectively. The proof is now complete.

Remark 3: Theorem 2 provides a solution to the fault
detection filter design problem for the discrete Markovian
jump system (2) under partially unknown transition prob-
abilities. Obviously, in the spirit of fault detection, the
index γ > 0 should be made as small as possible subject to
(25) so as to minimize the effect from the exogenous dis-
turbance on the residual, while the index β > 0 should be
made as large as possible subject to (26) in order to max-
imize the sensitivity of faults on the residual. Based on
such a principle, we will propose an algorithm that locally
optimizes the gains of the fault detection filters.

To achieve both the satisfactory robustness against dis-
turbances and the satisfactory sensitivity to faults, we sug-
gest the following locally Optimized Fault Detection Filter
Design (OFDFD) algorithm.

Algorithm OFDFD:
Step 1. Obtain γmin (the minimum of γ) and βmax (the
maximum of β) by solving (25) and (26) in Theorem 2,
respectively.
Step 2. If, with γ and β replaced by γmin and βmax respec-
tively, (25) and (26) are feasible for Theorem 2, we can
obtain the locally optimized parameters Ki and M for the
desired fault detection filter and exit. Otherwise, go to
Step 3.
Step 3. Increase γmin by µ and decrease βmax by µ where
µ > 0 is a sufficiently small scalar, and then solve (25)
and (26) with the updated γmin and βmax. Repeat such
a procedure until (25) and (26) are feasible, and therefore
obtain the locally optimized filter parameters {Ki,M} and
the index Jmin = γmin/βmax.
Step 4. Stop.

Remark 4: Based on the proposed Algorithm OFDFD,
the main results in Theorem 2 can be applied to solve the
fault detection problem for a wide class of Markovian jump
systems involving sensor saturations and randomly varying
nonlinearities that result typically from networked environ-
ments. The Algorithm OFDFD is developed to check the
existence of the desired fault detection filter gains, and the
explicit expression of such filter gains is characterized in
terms of the solution to a set of LMIs that can be effec-
tively solved by the algorithms such as the interior-point
method.

Remark 5: The system (2) under consideration is quite
comprehensive that reflects partially known mode transi-
tion probabilities, randomly varying nonlinearities as well
as the sensor saturations. Furthermore, two energy norm
indices are used for the fault detection problem in order to
account for, respectively, the restraint of disturbance and
the sensitivity of faults. Note that the main results es-
tablished contain all the information of the addressed gen-
eral systems including the physical parameters, the transi-
tion probabilities, occurrence probabilities of the randomly
varying nonlinearities, and the amplitudes of the sensor
saturations. In the next section, a simulation example is
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TABLE I

The optimal indices and filter gains for different cases

Transition probability matrix Jmin K1 K2 M

Ψ̂1 (Completely known) 0.8992

[
0.6387
0.1695

] [
0.0058
−0.1199

]
0.0547

Ψ̂2 (Partially known) 1.2983

[
0.5643
0.3226

] [
0.1708
−0.5382

]
0.4362

Ψ̂3 (Completely unknown) 1.6180

[
0.1628
0.0608

] [
0.1166
−0.0127

]
0.3308

TABLE II

Thresholds and time steps of fault detection for different cases

Transition probability matrix Ψ̂1 (Completely known) Ψ̂2 (Partially known) Ψ̂3 (Completely unknown)
Thresholds 1.2113 ∗ 10−6 0.4823 ∗ 10−5 0.8116 ∗ 10−5

Time steps 111 112 117

provided to show the usefulness of the proposed fault de-
tection technique.

IV. An Illustrative Example

Consider the following three cases for the transition
probability matrix Ψ̂ of the Markov process:

Ψ̂1 =
[

0.3 0.7
0.4 0.6

]
, Ψ̂2 =

[
? ?

0.4 0.6

]
, Ψ̂3 =

[
? ?
? ?

]
.

Apparently, the matrix Ψ̂1 (respectively, Ψ̂2, Ψ̂3) means
that the transition probabilities are completely known (re-
spectively, partially known and completely unknown).

Assume that the system involves two modes and the
other system data are given as follows:

A1 =
[ −0.6 0.4

0.3 0.5

]
, A2 =

[
0.3 0.5
0.4 0.5

]
,

D11 =
[ −0.1

0.7

]
, D12 =

[
0.1
−0.5

]
,

G1 = G2 =
[

1
−1

]
, C1 =

[
0 0.5

]
,

C2 =
[

0.2 0.2
]
, D21 = D22 = 0.4,

E1 = 1, E2 = 2.2.

Furthermore, let ᾱ = E{α(k)} = 0.9 and suppose that the
randomly varying nonlinearities are given by

g1(x(k)) = g2(x(k))

=
[

0.05x1(k)− tanh(0.05x1(k)) 0.2x2(k)
]T

h1(x(k)) = h2(x(k))

=
[ −0.1x1(k) tanh(0.1x1(k))

]T

It can be readily seen that (3) is satisfied with B11 = B12 =
diag{0.1, 0.2} and B21 = B22 = diag{0.1, 0.1}.

The saturation functions σ(Cix(k)) (i = 1, 2) are de-
scribed as follows:

σ(Cix(k))

=





Cix(k), if − vCix(k),max ≤ Cix(k) ≤ vCix(k),max;
vCix(k),max, if Cix(k) > vCix(k),max;
−vCix(k),max, if Cix(k)(k) < −vCix(k),max

where the saturation values are taken as vC1x(k),max =
vC2x(k),max = 0.5 and L = 0.3, L1 = 0.7.

With the above parameters, the fault detection filter de-
sign problem can be solved by using Algorithm OFDFD.
For the three different cases of transition probability matri-
ces, the locally optimized index Jmin and the corresponding
filter gains are summarized in Table I. It can be observed
from Table I that, the more known knowledge in the transi-
tion probability matrix we have, the better fault detection
performance the filter can achieve.

For the simulation purpose, we consider the initial
value x(0) =

[
0.2 −0.5

]T and x̂(0) =
[
0 0

]T with
k = 0, 1, . . . , 300. The exogenous disturbance input is
w(k) = 10−4 sin(5k)v(k) where v(k) is a uniformly dis-
tributed noise over [−0.5, 0.5]. The fault signal f(k) is
given as follows:

f(k) =
{

1, 100 ≤ k ≤ 200
0, else.

To demonstrate the mode switches, we take the tran-
sition probability matrix Ψ̂1 as an example and let
θ(0) = 2. The corresponding evolution functions J̄(r̃) ={∑k

l=0 r̃T (l)r̃(l)
} 1

2
for both the faulty case and fault free

case are shown in Figs. 1–3, respectively. The selected
thresholds J̄th = supf=0 E{

∑300
k=0 r̃T (k)r̃(k)} 1

2 are obtained
in all cases which are listed in Table II. Also, the time steps
required for successfully detecting the faults are calculated
and outlined in Table II. Obviously, the more knowledge
about the transition probabilities we have, the faster the
fault detection process would be.

V. Conclusion

In this paper, the fault detection problem has been inves-
tigated for discrete-time Markovian jump systems with ran-
domly varying nonlinearities and sensor saturation. The
transition probability matrix is allowed to have partially
unknown entries, while the cases with completely known
or completely unknown transition probabilities have also
been investigated as two special cases. Two energy norm
indices have been used for the fault detection problem in
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order to account for, respectively, the restraint of distur-
bance and the sensitivity of faults. A locally optimized
fault detection filter has been designed such that 1) the
fault detection dynamics is stochastically stable; 2) the ef-
fect from the exogenous disturbance on the residual is at-
tenuated with respect to a minimizedH∞-norm; and 3) the
sensitivity of the residual to the fault is enhanced in terms
of a maximized H∞-norm. A simulation example has been
exploited to demonstrate the effectiveness of the theoreti-
cal results presented in this paper. It should be noted that
one of the future research topics would be to investigate
the globally optimal tradeoff between the restraint on dis-
turbances and the sensitivity to faults in the filter design
for the fault detection problems.
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