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Abstract 
 
A detailed study of pressure and temperature driven flows through long channels of triangular and 
trapezoidal cross sections is carried out. The solution is based on the linearized Shakhov model subject to 
Maxwell boundary conditions and it is valid in the whole range of the Knudsen number. In addition to the 
dimensionless flow rates, a methodology is presented to estimate the pressure distribution along the channel, 
as well as the coefficient of the thermomolecular pressure difference. 
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1. Introduction 
 

The fully developed flow of rarefied gases 
through long channels of various cross 
sections is of major importance in 
microfluidics (Kandlikar & Garimella 2006). 
Extensive theoretical and experimental work 
has been performed in the case of circular and 
rectangular cross sections (Sharipov & 
Seleznev 1998; Colin & Lalonde 2004; 
Lockerby & Reese 2008; Tang et al. 2008; 
Pitakarnnop et al.). The corresponding work 
with channels of other cross sections is quite 
limited. In addition, most of the existing work 
is focused to isothermal pressure driven flows. 

In the present work based on linearized 
kinetic theory a detailed study of pressure and 
temperature driven flows through long 
channels of isosceles triangular and 
trapezoidal cross sections is carried out. This 
type of cross sections, with an acute angle of 

, is very common in microchannels 
manufactured by chemical etching on silicon 
wafers (Morini et al. 2004; Pitakarnnop et al. 
2008). For both the isothermal and non-
isothermal flows, in addition to the flow rates 
a methodology is presented to estimate the 
pressure drop along the channel as well as the 
coefficient of the thermomolecular pressure 
difference (TPD). The analysis and the results 

are valid in the whole range of the Knudsen 
number. 

54.74ο

 
2. Flow configuration 
 

Consider a long channel of length  and 
hydraulic diameter , where 

L
4 /hD A Γ= � � A�  is 

the area and Γ�  the perimeter of the channel 
cross section, connecting two reservoirs 
maintained at pressures and temperatures 
( )1 1,P T  and ( )2 2,P T , with  and 1P P≤ 2 1 2T T< . 
Due to the imposed pressure and temperature 
gradients there is a combined gas flow 
consisting of a thermal creep flow from the 
cold towards the hot reservoir and a Poiseuille 
flow from the high towards the low pressure 
reservoir. Special attention is given to the case 
of zero net mass flow (Sharipov & Seleznev 
1998). 

By taking  the flow is considered 
as fully developed, and then, end effects may 
be ignored. Even more, at each cross section 
the pressure and the temperature are constant 
and vary only along the flow direction , i.e., 

hD � L

z�
( )P P z= �  and ( )T T z= � . The imposed 

dimensionless pressure and temperature 
gradients are written as 

h
P

D dPX
P dz

=
�

   and h
T

D dTX
T dz

=
�

.            (1)   
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At this point it is important to note that under 
the assumption of  the dimensionless 
pressure and temperature gradients are always 
much less than one, i.e. 

hD �

 

 1 h
P

D PX
L P

Δ� � and  1h
T

DX
L

ΔΤ
Τ

� �   (2) 

 
independently of the magnitude of the pressure 

 and temperature  
differences between the two reservoirs. This 
remark is easily explained by noting that even 
at large pressure or temperature differences, 
the ratios  and  are at most of 
order of 1, while . Therefore, even 
at large pressure and temperature drops, the 
quantities 

2P P PΔ = − 1 2 1T T TΔ = −

/P PΔ /T TΔ
/ 1hD L�

PX  and TX  are used as small 
parameters to linearize the flow equations 
(Sharipov & Seleznev 1994). 

The basic parameter characterizing both 
the Poiseuille and thermal creep flows is the 
rarefaction parameter δ  defined by 
 

1hD P
Kn

δ
μυ

= ∼                                               (3) 

 
where μ  is the gas viscosity at temperature T  
and 2RTυ = , with /R k m=  denoting the 
gas constant (  is the Boltzmann constant and 

 the molecular mass), is the most probable 
molecular velocity. It is seen that 

k
m

δ  is 
proportional to the inverse Knudsen number 
( ), i.e., Kn 0δ =  and δ →∞  correspond to 
the free molecular and hydrodynamic limits, 
respectively. 

This type of combined rarefied gas flow 
has been investigated for circular (Sharipov 
1996) and rectangular (Sharipov 1999) 
channels and more recently for ellipsoidal ones 
(Graur & Sharipov 2009). In the present work 
we extend this approach to the case of 
channels with isosceles triangular and 
trapezoidal cross sections, which have been 
investigated recently only for the case of 
pressure driven flows (Naris & Valougeorgis 
2008; Varoutis et al. 2009).  

 
Figure 1. Triangular and trapezoidal cross sections 

 
The two cross sections considered in this 

work are shown in Fig. 1. In both cases, B  
and  denote the base and the height of the 
cross sections, while the acute angle 

h
ω  is 

taken equal to 54.74ο . This angle is chosen 
because it is very common in microchannels 
manufactured by a photo-lithographic process. 
In the trapezoidal cross section the small base 
is denoted by b . For the triangular cross 
section the acute angle ω  is adequate to define 
the dimensionless coordinates of the three 
apexes. The four apexes of the trapezoidal 
cross section may be defined by ω  and the 
ratio . The dimensionless coordinates of 
the apexes may be readily deduced by noting 
that 

/b B

 
21 / 2

sinh

1B b h h b
D B B Bω

⎛ ⎞ ⎛= + + +⎜ ⎟ ⎜
⎝ ⎠ ⎝ B

⎞
⎟
⎠

           (4) 

 
and 
 

tan 2 / 1h b
B B

ω ⎛ ⎞= −⎜ ⎟
⎝ ⎠

.             (5) 

 
Here, results are provided for the cases of 

/b B 0= , which corresponds to the triangular 
cross section and for two trapezoidal cross 
sections with / 0.b B 5=  and 0.25. It is noted 
however, that the present analysis is general 
and may be applied to any cross section. 
 
3. Kinetic formulation 
 

It has been shown, over the years, that in 
the case of non-isothermal flows driven by a 
temperature gradient, the linearized Shakov  

ω

B B 

b
h  

h  
ω
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(S-model) kinetic equation (Shakhov 1968) 
provides a reliable alternative of the 
Boltzmann equation yielding accurate results 
with much less computational effort (Sharipov 
& Seleznev 1998). Following the well known 
projection procedure, the linearized, 
dimensionless S-model equations, modelling 
the present flow configuration may be written 
in the following form (Graur & Sharipov 
2009): 

 

( )2

2

2 1
15 2

1 3
5 4

P P

P

u q
s

q
s

ζ δ δ ζ

ζ δ δ ζ

∂Φ ⎡+ Φ = + − −⎢∂ ⎣
∂Ψ

Ψ = −
∂

1⎤
⎥⎦    (6) 

 
Here, ( ), , ,x y ζ θΦ = Φ  and ( , , ,x y )ζ θΨ = Ψ  
are the unknown reduced distribution 
functions, ( , )x y  are the two components of 

the position vector, ( ),ζ θ  are the magnitude 
and the polar angle of the molecular velocity 
vector, while 
 

( ) 2
2

0 0

1,Pu x y e d d
π

ζ ζ θ ζ
π

∞
−= Φ∫ ∫                      (7) 

 
and 
 

( )

( )

2

2

2

0 0
2

2

0 0

1,

1 1

Pq x y e d d

e d d

π
ζ

π
ζ

ζ θ ζ
π

ζ ζ θ
π

∞
−

∞
−

= Ψ

+ − Ψ

∫ ∫

∫ ∫ ζ

+

                 (8) 

 
are the bulk velocity and heat flux respectively 
in the flow direction. Also,  denotes the 
direction along the characteristic defined by 
the polar angle 

s

θ  of the molecular velocity 
vector at some point ( , )x y . The associated 
diffuse Maxwell boundary conditions are 

 and , where the plus sign 
refers to distributions representing particles 
departing from the walls. 

0+Φ = 0+Ψ =

Once the kinetic equations are solved, the 
macroscopic profiles are computed. Then, the 
dimensionless flow rates for the pressure and 

temperature driven flows may be computed 
according to 

 
2

P P
A

G u
A

= dA∫∫              (9) 

 
and 
 

2
T

A

G q
A

= PdA∫∫                                           (10) 

 
respectively, where  is the 
dimensionless cross section. It is noted that 
the well known Onsager – Casimir relations 
have been used to obtain  (Sharipov & 
Seleznev 1998; Graur & Sharipov 2009). The 
flow rates 

2/ hA A D= �

TG

PG  and , depend on the 
rarefaction parameter 

TG
δ  and the cross section 

. The mass flow rate is given by A
 

*

A

PAM udA Gρ
υ

= =∫∫
�

���                                 (11) 

 
where ( ) ( ) 22 /z P zρ ρ υ= = , with / hz z D= � , 
is the mass density, u  is the velocity profile of 
the overall flow and 
 

*
P P TG X G X G= − + T            (12) 

 
is the combined dimensionless flow rate. Both 

PG  and  have been introduced so that to be 
always positive. 

TG

 
4. Dimensionless flow rates PG  and  TG
 

The system of the kinetic equations (6) has 
been solved by the discrete velocity method 
following a methodology recently introduced 
(Naris & Valougeorgis, 2008). Numerical 
results for the dimensionless flow rates PG  
and  are presented in Figs. 2 and 3 
respectively, for the three cross sections under 
consideration, with . 

TG

3 210 10δ− ≤ ≤
It is seen that in both figures the results for 

the three cross sections are almost identical. 
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This is due to the fact that the hydraulic 
diameter has been implemented as a 
characteristic length to non-dimensionalize the 
problem. Any differences between the results 
are due to the approximation introduced to the 
concept of  and to its deviation of the exact 
hydraulic diameter. 

hD

 

 
Figure 2. Dimensionless flow rate due to pressure 
drop in the whole range of δ . 
 

 
Figure 3. Dimensionless flow rate due to 
temperature drop in the whole range of δ . 

.  
Both PG  and  follow the expected behavior 
in terms of 

TG
δ . In particular, PG  is almost 

constant in highly rarefied atmospheres and 
proportional to δ  in dense atmospheres, while 
the Knudsen minimum appears at about 1δ = .  

Also,  is decreased monotonically as TG δ  is 
increased and finally for  becomes 
negligibly small. 

210δ >

 
5. Generalization of the kinetic solution to   
large pressure and temperature drops 
 

The solution of the S-model kinetic 
equations, is obtained under the assumption of 
condition (2). When the pressure and 
temperature gradients are small then, we may 
assume linear distributions along the channel 
and write 

 

 h
P

av

D PX
L P

Δ�     and        h
T

av

DX
L

ΔΤ
Τ

�   (13) 

 
where ( )1 2 / 2avP P P= +  and . 

Then, for specified 
( )1 2 / 2avT T T= +

( )1 1,P T  and , cross 
section and type of gas, the mass flow rate 
may be computed using (11), (12) and (13) as 
well as the dimensionless flow rates from 
Figs.2 and 3, using  as the reference 
pressure and 

( 2 2,P T )

avP

avδ  the corresponding rarefaction 
parameter.  

However, when the pressure and 
temperature drops are large, the pressure 
distribution along the channel is not linear. 
Also, δ  varies significantly along the channel. 
It depends on the local pressure and 
temperature according to  
 

1
1

1

( )( , )
( )
TP zP T

P T z
δ δ= ,                              (14) 

 
where  is unknown, while  is given 
( /

( )P z ( )T z

hz z D= � ). In this case, we introduce for the 
mass flow rate the complimentary expression 
 

1

1

hDAPM G
Lυ

=
�� ,                                           (15) 

 
where  is an arbitrary unknown parameter, 
which, unlike the reduced  flow rate , does 
not depend of the local rarefaction parameter 

G
*G

( )zδ . From (11) and (15), using (1) and (12) 
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we obtain the following ordinary differential 
equation for the pressure distribution: 
 

1

1

1 1h
P T

DP T dP dG G
P T L P dz T dz

= − +
T G

)

.        (16)    

 
It is mentioned again that temperature 
distribution  along the channels is 
known. It is convenient to introduce the axial 
independent variable  and 
rewrite (16) in the form 

( )T z

(/ / hz z L D′ =

 

1 1

1 ( ) 1 T

P P

GdP P z dT G T
P dz P T dz G G T

′
= −
′ ′ 1

1

P

,            (17) 

 
with . Equation (17) is solved for the 
unknown pressure distribution having  as a 
free parameter. In particular, introducing an 
initial guess for , Eq. (17) is numerically 
integrated along  starting with the initial 
condition . Then, at the end of the 

integration path the estimated pressure 

0 z′≤ ≤
G

G
'z

( ) 10P =

( )1P  is 
compared to the known pressure . If they do 
not match the parameter  is accordingly 
updated and the whole process is repeated 
until the imposed convergence criteria 
between 

2P
G

( )1P  and  is satisfied. Upon 
convergence, in addition to the pressure 
distribution, the free parameter G  has been 
adjusted. Finally, the mass flow rate may be 
computed from (15) provided that the cross 
section and the type of gas have been 
specified. 

2P

Indicatively, the parameter G  for one 
temperature ratio  and two pressure 
ratios  and  is given in 
Table 1 in terms of 

2 1/ 3.T T = 8
1 P P =2 1/P P = 2 1/ 10

1δ , which is taken as a 
reference rarefaction parameter. The ratio 

 corresponds to a situation where 
one reservoir is maintained at liquid nitrogen 
temperature, while the other one is maintained 
at the room temperature. For 

2 1/ 3.T T = 8

12 1/P P =  the 
flow is driven only by the temperature gradient 
from the cold reservoir towards the hot one 

(parameter  and therefore G M�  are positive). 
As expected,  is decreased as G 1δ  is 
increased. For  the values of the 
parameter  are quite different. In this case 
there is a combined flow and due to the large 
pressure ratio the pressure driven flow 
dominates over the temperature driven flow. 
The parameter G  and therefore 

2 1/ 1P P = 0
G

M�  are 
negative indicating clearly that the gas flows 
from the hot reservoir, where the pressure is 
higher, to the cold one, where the pressure is 
lower. As expected, in this case  is 
increased as 

G
1δ  is increased. 

Next, in Fig. 4, the pressure distribution 
along the trapezoidal channel, with 

/ 0.2b B 5= , 2 1/P P 1=  and  2 1/ 3.T T 8=  is 
shown for various rarefaction parameters 1δ . It 
is interesting to note that even though 1 2P P= , 
there is an increase of the pressure inside the 
channel, which becomes larger as the 
atmosphere becomes more rarefied. Actually, 
for 30δ =  the pressure increase is negligible 
small, while for 0.01δ =  the maximum 
increase is about 17 % with respect to the 
pressure of the reservoirs. 

Pressure distributions along the trapezoidal 
channel, with / 0.2b B 5=  and 2 1/ 1P P 0=  are 
also shown in Figs. 5, 6 and 7 for 1 0.01δ = , 1 
and 10 respectively. In each figure three 
temperature ratios, namely , 2 and 
3.8, are considered. The pressure distributions 
for 

2 1/T T =1

12 1/T T =  correspond to the pure pressure 
driven flow and they agree qualitatively with 
the corresponding ones obtained in Varoutis et 
al. 2009. They are linear for small values of 1δ  
and then, as 1δ  is increased, they become 
parabolic. The corresponding profiles for the 
cases of combined flow with 2 1/T T 2=  and 
3.8 are also presented. The deviation between 
the pressure profiles along the channel for the 
isothermal and non-isothemal flow is clearly 
demonstrated. The presented results may be 
considered as typical for other pressure and 
temperature ratios. Also, similar behavior has 
been observed for the other two cross sections 
studied in the present work. 
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Table 1 
The parameter G  for 2 1/P P =  and , with 2 1/ 1P P = 0 82 1/ 3.T T = . 

G  

Triangular Trapezoidal 
/ 0.b B = 5  

Trapezoidal 
/ 0.25b B Triangular Trapezoidal 

= / 0.5b B  
Trapezoidal 

/ 0.2b B= 5=  
1δ  

2 1/ 1P P ; T T  2 1/ 10P P ; T T  = 2 1/ 3.8= = 2 1/ 3.8=

0.01 0.4492 0.4417 0.4357 -3.83 -3.76 -3.71 
0.1 0.4065 0.3990 0.3955 -3.77 -3.70 -3.66 
0.5 0.3341 0.3270 0.3268 -4.04 -3.92 -3.92 
1 0.2898 0.2834 0.2846 -4.50 -4.32 -4.36 
5 0.1681 0.1650 0.1669 -8.29 -7.73 -8.06 
10 0.1164 0.1151 0.1162 -13.01 -12.02 -12.68 
30 0.0539 0.0538 0.0540 -31.83 -29.10 -31.05 

 
 

 
 

 
Figure 4. Pressure distribution along a trapezoidal 

channel, with  and . / 0.2b B =

 
Figure 5. Pressure distribution along a trapezoidal 

channel, with / 0.2b B 5= , for  and . 2 1/ 1P P =5 2 1/ 1P P = 0 1 0.01δ =

 

 
Figure 6. Pressure distribution along a trapezoidal 

channel, with , for  and / 0.2b B =

 
Figure 7. Pressure distribution along a trapezoidal 

channel, with / 0.2b B5 02 1/ 1P P = 1 1δ = . 5= , for  and 2 1/ 1P P = 0 1 10δ = . 
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6. Thermomolecular pressure difference 
 

An interesting situation exists when the 
pressure and temperature driven flows counter 
balance each other and the net flow between 
the reservoirs is equal to zero (Sharipov & 
Seleznev 1998; Graur & Sharipov 2009). This 
situation is known as the thermomolecular 
pressure difference (TPD) state and the 
relation between , ,  and  can be 
written in the form 

1P 2P 1T 2T

 
(2 1 2 1/ /P P T T γ=                                         (18) 

 
where the TPD coefficient γ  depends on the 
gas rarefaction, the pipe geometry, the type of 
the gas, as well as on the gas-surface 
interaction. The latter one is not considered in 
the present work since we have assumed 
purely diffuse reflection at the walls. Our 
objective here is to develop a procedure for the 
estimation of the coefficient γ  provided that 
all required data are given.  

By setting, in Eq. (16), , we find  0G =
 
1 1

P T
dP dTG

P dz T dz
= G                                    (19) 

 
Next, the dimensionless pressure and 
temperature are introduced as 
 

1/p P P=         and 1/T Tτ = .                (20) 
 
Based on the above, the rarefaction parameter 
in any cross section, given in (14), may be 
expressed as 
 

1( , ) .ppδ τ δ
τ

=                                            (21) 

 
Then, equation (19) reads 
 

( )
( )

1

1

/
/

T

P

G pdp p
d G p

δ τ
τ τ δ τ
=                                   (22) 

Equation (22) is an ordinary differential 
equation where p  and τ  are the dependent 
and independent variables respectively, i.e., 

( )p p τ= , with the initial condition 1p =  at 
1τ = . By integrating (22) along 2 11 /T Tτ≤ ≤  

the unknown pressure  is found. In this 
case no iteration is needed, since 

2 /P P1

( )p τ  
depends only on the ratio  and on the 
rarefaction parameter 

2 /T T1

1δ . The quantities PG  
and  along the integration path are 
computed from the kinetic solution using the 
corresponding estimates of 

TG

δ . Finally, the 
coefficient γ  is calculated from (18) as 
 

( )
( )

2 1

2 1

ln /
.

ln /
P P
T T

γ =                                            (23) 

 
This procedure has been applied, mainly 

for demonstration purposes, to the three cross 
sections under investigation for 2 1/ 3.T T 8=  
and a wide range of 1δ . Results for γ  are 
presented in Table 2, where in addition to the 
triangular and trapezoidal cross sections 
results are included for comparison purposes 
for a square and an orthogonal channel with 
aspect ratio / 0.0b B 5= . It is clearly seen that 
the coefficient γ  depends strongly on the 
reference rarefaction parameter. As 1δ  is 
increased, γ  is decreased. This is easily 
explained, since as the atmosphere becomes 
more dense the thermal creep flow is 
decreased and therefore larger temperature 
drops are needed to maintain the no net flow 
condition. In contrary, in highly rarefied 
atmospheres the effect of the thermal creep 
flow is significant and larger pressure drops 
are needed to counter balance this flow. The 
coefficient γ   depends also on the geometry of 
the cross section. 
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Table 2 
The TPD coefficient γ  over a wide range of 1δ  for various cross sections. 

γ  

1δ  Triangular Trapezoidal 
/ 0.b B 5=  

Trapezoidal 
/ 0.25b B Square Rectangular 

/ 0.0b B == 5  

0.01 0.4956 0.4955 0.4958 0.4951 0.4780 
0.02 0.4908 0.4907 0.4912 0.4908 0.4628 
0.05 0.4793 0.4791 0.4800 0.4809 0.4362 
0.1 0.4648 0.4646 0.4659 0.4684 0.4089 
0.2 0.4444 0.4441 0.4459 0.4500 0.3782 
0.5 0.4018 0.4019 0.4043 0.4106 0.3274 
0.8 0.3717 0.3722 0.3747 0.3822 0.2971 
1 0.3552 0.3560 0.3584 0.3664 0.2813 
2 0.2940 0.2961 0.2978 0.3068 0.2255 
5 0.1953 0.1991 0.1991 0.2072 0.1405 
10 0.1204 0.1246 0.1233 0.1290 0.08068 
20 0.06120 0.06467 0.06290 0.06587 0.03750 
30 0.03734 0.03987 0.03840 0.04020 0.02166 
50 0.01814 0.01957 0.01866 0.01951 0.009891 
80 0.008572 0.009315 0.008810 0.009227 0.004485 
100 0.005871 0.006396 0.006032 0.006332 0.003037 

 
 
6. Concluding remarks 
 

The pressure and temperature driven flows 
through channels of triangular and trapezoidal 
cross sections have been investigated. The 
flow is simulated by the linearized Shakhov 
kinetic model subject to Maxwell boundary 
conditions. The governing integrodifferential 
equations are solved numerically by the 
discrete velocity method. Numerical results are 
presented for the dimensionless flow rates in 
the whole range of the rarefaction parameter. 
Also, a procedure for estimating the pressure 
distribution along the channels and the 
coefficient of the thermomolecular pressure 
difference, has been presented. Results for 
certain pressure and temperature drops have 
been reported.  

 
 
It is hoped that the presented analysis and 

results may be useful to comparisons with 
experimental work, as well as to the design 
and optimization of micro devices. The 
implemented methodology may be easily 
applied to channels of other cross sections 
provided that the channel is sufficiently long 
( hD L<< ) and the corresponding kinetic 
solution is available. The type of gas-surface 
interaction can be also included by considering 
diffuse – specular reflection at the walls. 
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