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Abstract We present methodological innovations to the multi-component lattice Boltzmann equation 

simulation method which allow for the simulation of dynamic contact lines in the continuum approximation. 

The improvements are set-out and verified by quantitative results. They allow the simulator access to an 

expanded range of simulation parameters like viscosity, viscosity contrast and interfacial tensions, and to 

obtain data with low levels of interfacial micro-current activity in the region of the dynamic contact line.  
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1 Introduction 
 

The list of areas in which the lattice 

Boltzmann Equation method (LBM) has 

widely accepted advantages over traditional 

methods of CFD is relatively short but 

geometrically complex flow of multiple, 

immiscible fluids is close to its top. Such 

flows are of unquestioned importance in a 

range of emerging, micro-fluidic technologies, 

in which wetting plays a crucial role. 

This article’s main content extends our 

accurate lattice closure developed over a series 

of articles [1-3], to the treatment of multiple 

fluids at a boundary (ie. to a dynamic contact 

point). We focus here, on quantitative 

verification of the resulting method but also 

demonstrate its considerable potential with 

applications to the viscous mesoscale (the 

problem of modeling cellular interactions with 

vessel walls [4]) and, in the inertial regime 

(the simulation of a novel, micro-fluidic 

resonator [5]). 

The multi-component lattice 

Boltzmann (MCLB) method considers 

“diphasic” fluid as a single “background” fluid 

with a coupled phase field (which varies only 

near a fluid-fluid interface) in which physical 

effects of interfacial tension accrue from 

application of an appropriately designed 

external force distribution, directed by the 

state of the phase fields (a process reviewed 

briefly in section 2).  Applications in wetting 

clearly demand a demonstrably consistent 

adaptation of this force / coupled phase field 

methodology in “boundary” simulation lattice 

sites which are to represent a slipping (section 

3) contact line. Section 1 contains a brief 

discussion of general, background issues and 

the results of section 4 measure our success.  

 

2 Background 
 

The simulation of complex wetting 

phenomena is very important in a number of 

traditional areas of research. Its understanding 

is complicated by fact that, as a mathematical 

necessity, there must be tangential fluid slip in 

the region of a contact between an interface 

and a boundary. 

 

2.1 Multi-scale modelling In fact, dynamic 

contact-line (DCL) behaviour may be used to 

model eg. the effects of the chemical 

signalling and selectin-mediated pinning, 

observed in leukocyte attachment to an arterial 

vessel wall [4], [6]. The inherent complexity 

of models such as those in references [4] and 

[6] urges a highly adapted, numerical 

description and, since signalling effects will be 

coupled to flow (through diffusion-convection 

behaviour), it is essential to retain a meso-

scale description of the flow. Therefore, we 

state at the outset that the multi-scale capacity 

of the model we develop here resides in its 

ability (i) to interface with the meso-scale (see 
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section 2.2 below) and (ii) to accommodate 

suitable, microscopic, models of an effective 

wetting process. More precisely, in this article, 

we shall assume that hydrodynamic assist of 

the wetting is negligible, that slip velocity may 

be described by a slip length model and that 

the variation of dynamic wetting angle is a 

known (possibly experimentally determined) 

function of the local slip velocity, 

)( slip

D

W vf=θ . In the present context, these 

assumptions are justified on two counts: first, 

this work concentrates on the development of 

an underlying multi-scale technique and, 

second, for the continuum hydrodynamic 

scales targeted by eg. King et al. [6], absorbed 

surface layers, typically of a few molecular 

diameters’ thickness, and chemotractant 

interactions are not explicitly resolved when 

treating flow.  

Notwithstanding our previous 

remarks, the meso-scale method developed 

here will couple flexibly to the micro-scale via 

appropriate models of (i) slip and (ii) dynamic 

wetting (eg. after King et. al. [6]). 

 

2.2 Meso-scale flow simulation method for 

externally forced fluid Let us consider the 

simplest, most popular Lattice Boltzmann 

Equation (LBE) method, the LBGK variant 

[7]. Like LBE,  LBGK simulation may be 

considered as a collision and propagation, over 

a regular lattice with basis vectors (or links) ic  

and associated weights, pt , of a single particle 

distribution function [8]. In the case of 

multiple, immiscible fluids, considered here a 

segregation step [9] is added (see section 3).  

Pro tem we consider a single fluid. An 

enhanced LBGK scheme, due to Guo et al. 

[10], describes bulk fluids in the presence of a 

spatially variable external force as an 

evolution of a single particle distribution 

function: 
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where the “equilibrium “is: 
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In (2.2.1), a prime denotes a “collided” 

quantity [8] and the source contribution, iφ  is 

related to the spatially variable external force 

distribution, F [10]: 
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In the last equations, all other symbols have 

their usual meaning. Guo et al. show, by 

means of a modified Chapman-Enskog (CE) 

expansion [8] that the macroscopic fluid 

density and velocity are, respectively, to be 

obtained from the following moments of the 

pre-collision particle distribution function with 

the lattice basis, ic : 

 

∑=
i

ifρ ,  

Fcfu t

i

i

i
2

δ
ρ +=∑ ,.  (2.2.4) 

 

and proceed to recover, with modified 

Chapman-Eskog analysis [8], meso-scale 

dynamics described by a continuity and 

Navier-Stokes equation, with external body 

force, F [10]. 

 

3 Theoretical Developments 

 
3.1 General Developments We present, in 

this sub-section, key results which follow 

directly from the analysis of Guo at al. [10 ], 

who assume the usual ic -moments of 

( )uf i ,
)0(

ρ  [8,11]. It is implicit, however, that 

modifications are necessary for moments of 

( )( )ufff iii ,
)0()1(

ρ−≡ . By straightforward, 

but tedious, algebra it is possible to extract 

modified relations for ic -moments of the pre-

collision distribution function 
)1(

if : 
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where, in (3.1.3), we have modified the 

definition of the fluid strain rate tensor: 
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in which u is given by (2.2.4) and F is the 

known external force. Of course, 

(3.1.1)..(3.1.3) reduce to the usual results 

[8,11] in the limit 0→αF . In our target 

adaptation (the interaction of the interface with 

a solid boundary), the external force is a sum 

of two contributions: gravity and an interface 

force. The latter is used to insert appropriate 

dynamics (eg. the no-traction condition) and 

the kinematics (ie. continuity of velocity) 

appropriate to the continuum interface [9,12]. 

This, central aspect of the simulation 

methodology is bound-up with the definition 

of the fluid component identifying phase field, 

and so is discussed in the next section. 

 

3.2 Boundary Segregation Scheme In the 

parent, bulk, MCLB, segregation is designed 

to be consistent with advection of the 

component-distinguishing phase field function, 

optimally to recover continuum regime multi-

component hydrodynamics [9,13]: this 

consistency is strikingly verified by the good 

agreement achieved recently in a challenging 

validation against theoretically predicted drop 

shapes [14]. The interface between a red and 

blue fluid is identified by constant value 

contours of phase field function: 
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in which we define: 
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i
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iBB , (3.2.1) 

 

where nodal densities, R and B, derive from a 

“coloured” particle distribution function: 

 

iii BRf += ,   (3.2.2) 

 

and, of course, conserve “un-coloured” mass: 

 

BR +=ρ .   (3.2.3) 

 

When post-collision colour allocation follows 

d’Ortona et al. [15] and Latva-Koko and 

Rothman [16]:  
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the dynamics of the phase field [9,13]: 

 

( )αββαρρ uu
Dt

D N ∂∂−= ,  (3.2.5) 

 

is close to that passive advection required by 

the kinematic condition of continuum 

hydrodynamics (since the right hand side of 

(3.2.5) is small). The surface tension inducing 

force applied in our LBGK fluid is also 

determined by Nρ  [ 12]: 

 

N

x
KF ρσ

α

α
∂

∂
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2

1
, nK ˆ.∇≡  . (3.2.6) 

 

We consider now a set of modifications to this 

method which facilitate its application to the 

problem of wetting: that is, we consider the 

contact region between two immiscible fluids 

and a solid boundary, depicted in figure 1. 

 

3.2.1 Boundary isotropic derivatives For 

optimal accuracy and minimum micro-currents 

[8] it is essential that all derivatives occurring 

in (3.1.1)..(3.2.3) should be measured using 

isotropic derivatives [17]. Expressions 

equivalent to those in ref. [17]  (ie. isotropic 
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and of o(4) accuracy in the lattice basis) may 

be straightforwardly obtained for positions on 

the flat boundary of the D2Q9 lattice, depicted 

in figure 1, simply by constraining expansions 

in ic to the half-plane which lie in Ω  and 

considering sites further from the boundary 

[8]: 
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i
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    (3.2.7) 

 

where g is some observable parameter and the 

summation is to be taken over only those 

“live” link directions which connect to the 

flow domain, Ω , (see figure 1). 

 

3.2.2 Colour conserving boundary closure 

In the situation represented in figure 1, the 

boundary has a known velocity, 0u  (which 

may correspond to slip). We are concerned to 

populate only live links ( 3,2,1≠i ) with values 

of iR and iB which are as accurately calculated 

by the bulk scheme (2.2.1) and conserve, 

within Ω , masses of both colours.  

Importantly, the presence of an 

external force-inducing, source, term in 

evolution equation (2.1) disrupts mass 

conservation on the subset of live links:  
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Let ( )inin BR  denote the total red (blue) mass 

which propagates onto our boundary node: 

 

∑
≠

≡
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≡
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Define auxiliary, boundary density, ρ ′ : 
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Note, from (3.2.10) and the definition of M∆ : 
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Since ( )0

)0(
,uf i ρ ′  is always linear in ρ ′  [8] 

it is possible to invert (3.2.11), to identify ρ ′ ; 

for our example of geometry of figure 1: 
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Alternative boundary geometries may be 

similarly treated. For definiteness, suppose 

that 0u  has only an x-component: 

 

( )inin BR +=′
5

6
ρ .  (3.2.12) 

 

In fact, equations (3.2.12)..(3.2.13) are 

sufficient to determine an o(1) accurate mass 

conserving closure for a fluid under external 

force, from ( ) iii uff φρ +′≈
′

0

)0(
, . To obtain 

the desired  o(2) accurate closure, however, it 

is necessary to determine appropriate
)1(

if s for 

live links.  This is made possible by the 

system of ( )( ) 2/21 ++ DD  (where D denotes 

dimensionality) simultaneous equations after 

(3.1.1)..(3.1.3) of section (3.1), in which the 

first equation (only) has been adjusted to 

underwrite mass conservation:  
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(Restricting the summation in zeroth moment 

in the first equation (3.2.13) above conserves 

mass on live links of the geometry in figure 1.)  

Previously, we have solved this under-

specified system of 6 simultaneous equations 

in unknown
)1(

if s by recourse to a choice of 

“free variables”, a process complicated by 



2nd Micro and Nano Flows Conference 

West London, UK, 1-2 September 2009 

- 5 - 

several considerations [1-3].  

A considerable improvement in stability and 

simplicity may be achieved, and the need 

arbitrarily to select free variables removed, by 

solving the under-specified system of 

equations (3.2.13) by the method of singular 

value decomposition (SVD) [18].  System 

(3.2.13) may be written in non-square matrix 

form: 
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in which system we have defined: 
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SVD allows one to establish a pseudo-inverse 

matrix 
1−

M . SVD is a standard method for 

decomposing non-square matrices, which may 

be regarded as a generalization of the 

eigenvector decomposition commonly used on 

square matrices. Our solution for )1(
f  

obtained in this way is described in a basis 

comprised of the right singular vectors 

associated with M and contains no 

contribution from the other three, which form 

the null-space of  M . It is the latter choice 

which essentially provides the remaining three 

conditions needed to close the incomplete 

description furnished by equations (3.2.13). 

The solution for the live links of figure 1 is: 
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The strains in the above system were evaluated 

by fourth-order accurate isotropic finite 

differences.  

With the means of calculating boundary 

densities determined, we turn now to the 

problem of allocating colour mass at a 

boundary interfacial site, in such a way as to 

maintain consistency with the core scheme and 

to conserve colour in the flow domain. Stated 

relative to our chosen geometry, colour 

conservation requires that the post collision, 

post segregation red and blue densities 

assigned to live links should give: 
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Let ′R and ′B be fictitious boundary node red 

and blue densities which will satisfy mass 

conservation. We wish to segregate the 

boundary node in a manner which is consistent 

with the bulk node. We obtain an equation in 
′R and ′B by substituting, into the first 

equation (3.2.15) using bulk segregation 

formula (3.2.4); straightforwardly we obtain: 
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The summation in the second term of the left 

hand side of (3.2.16) may be evaluated for any 

boundary node geometry. For the case of 

figure 1: 
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where, yn is the y-component of the interfacial 

colour field. Since BR ′+′=′ρ , we obtain, 

using (3.2.12) (still for our example geometry 

of Figure 1, note) an expression for ρ ′  which 

may be evaluated readily: 
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With the above simple result and equations 

(3.2.17) and (3.2.16), we obtain, by 

straightforward algebra: 
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solution of which quadratic yields a value of 

R′ . With B′ determined directly, using 

(3.2.18), the segregation formula (3.2.4) may 

be applied on the boundary as: 
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4 Results 

 

In the simulation results reported, the model 

outlined in section 3 was used. Where a simple 

model of DCL slip was necessary, a slip-

length, b, was employed to obtain a tangential 

boundary slip velocity, the normal component 

following from kinematical considerations: 
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Figures 2 and 3 relate to a semi-infinite 

meniscus, parameterized for the air-water 

interface under gravity. We have reported 

elsewhere the method of MCLB surface 

tension parameterization [19] used to obtain 

the data of Figure 2, which shows the micro-

current generated by the method. It is 

important to note that the intensity of this 

spurious flow, where the interface approaches 

the boundary, is comparable to its value close 

to the bulk interface (which is indicated by the 

solid line). Since the bulk algorithm has a very 

low interfacial micro-current and an ability to 

reach large interfacial tensions, this result 

underlines the utility of the method.  

 Figure 3 shows the excellent 

agreement achieved between our method and 

the predicted meniscus shape [20] of the air 

water interface and contact angle. Importantly, 

the result for figure 3 is insensitive to the value 

of the interface thickness parameter, β . 

Figure 4 shows a potential application of our 

method, in the area of biological micro-

fluidics, where the motion of a leukocyte, 

rolling on a vessel wall is, for purposes of 

modelling, widely represented as that of an 

immiscible drop of one fluid, suspended in a 

second fluid (the point of attachment is then  

represented as a DCL). The contours in figure 

4 represent contours of constant instantaneous 

value of the rectangular stream function. The 

drop, with viscosity contrast 7, is “rolling” on 

the boundary at small Reynolds number- 

generally a challenging and important regime 

for our method to access, as small interfacial 

micro-current flow will not obscure the 

velocities. The quality of these data and, in 

particular, the resolution of the stream function 

in the contact underscore the potential utility 

of the method. Figure 5 is a application of the 

method to the inertial regime of flow, and 

depicts the flow field, phase field and 

rectangular stream function in the cavity of a 

novel micro-fluidic device [4].  

The use of SVD to close the 

description (see section 3 and equation 

(3.2.14)) considerably enhances the stability of 

the resulting method and increases the range of 

collision parameter,τ , (and hence Reynolds 

and Capillary number) accessible. This 

outcome will be reported in more detail 

elsewhere. 

 

5 Conclusion 
 

We have presented methodological 

innovations to the multi-component lattice 

Boltzmann equation simulation method which 

allow for the multi-scale simulation of 

dynamic contact lines in the continuum 

approximation. The improvements are set-out 

and are supported by the results. They allow 

the simulator access to an expanded range of 

simulation parameters like viscosity, viscosity 

contrast, interfacial tension and characteristic 

velocity. Simulation at low values of 

characteristic velocity is made possible by the 

low levels of interfacial micro-current activity 

in the region of the dynamic contact line 

produced by our method. 
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7 Figures 
 

 
 

Figure 1 A D2Q9 lattice node located in a 

boundary. The link indexing it that referred to 

in the text. Horizontal links 0, 4 and 8 are 

located in the fluid. Links 5, 6 and 7 are cut by 

the boundary, which is supposed to move with 

velocity 0u . Fluid (solid) is the grey (black) 

region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Velocity field vectors for the 

spurious interfacial flow or “micro-current” at 

steady state. The heavy solid line indicates the 

flat boundary, the light solid line is the 

location of the curved interface of a drop, 

defined by the (sub-lattice) 0=Nρ contour, 

plotted, always defines the centre of the 

interface. Notably, the spurious interfacial 

micro-current circulations, always present at 

the interface, is seen to be slightly smaller in 

intensity close to the boundary. 
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Figure 3 Computed (points) and predicted 

(continuous line) position of a semi-infinite 

air-water meniscus. Simulation data is clearly 

in excellent agreement with theory. As in 

figure 2, the (sub-lattice) 0=Nρ contour, 

plotted, always defines the centre of the 

interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 A liquid drop model of leukocyte 

detachment (reverse of attachment). The flow 

is viscous-dominated. Light-shaded 

(leukocyte) or light (plasma) phases are 

overlaid by contours of constant value in the 

rectangular stream function [20] Images are 

labelled by time measured in lattice units. 

 

 

 

 

 
 

Figure 5 Inertial flow (Re = o(10
2
)) within the 

chamber of a novel “micro-fluidic resonator”. 

The velocity field, phase field and rectangular 

stream function are all represented in this 

figure. Three streams of two immiscible fluids 

enter the chamber on the left: this “inlet 

geometry” is similar to other flow-focusing 

devices. Simulations confirm experimental 

observation of both dripping and jetting modes 

within the device chamber, with the transition 

between these two regimes being controlled by 

flow rates and Re. Crucially, in the jetting 

mode, the jet is observed to break-up into very 

regular drops, within the cavity. Simulations 

and experiments conducted in similar inlet 

geometry but without the channel constriction 

on the right (ie. with the stabilizing influence 

of the cavity removed) exhibit a loss of this 

resonance [5]. 

  

 
 

 


